Size distributions of micro-bubbles generated by a pressurized dissolution method
NASA Astrophysics Data System (ADS)
Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.
2012-03-01
Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble number density is proposed, and the evaluated visibility agrees well with the visibility measured in the upper tank.
Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation
NASA Astrophysics Data System (ADS)
Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon
2018-02-01
Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.
Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi
NASA Astrophysics Data System (ADS)
Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.
2017-12-01
It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.
Can airborne ultrasound monitor bubble size in chocolate?
NASA Astrophysics Data System (ADS)
Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.
2014-04-01
Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.
NASA Astrophysics Data System (ADS)
Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.
2016-12-01
On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with decreasing depth, seemingly independent of bubble radius.
NASA Astrophysics Data System (ADS)
Keene, W. C.; Long, M. S.; Duplessis, P.; Kieber, D. J.; Maben, J. R.; Frossard, A. A.; Kinsey, J. D.; Beaupre, S. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.
2017-12-01
During a September-October 2016 cruise of the R/V Endeavor in the western North Atlantic Ocean, primary marine aerosol (PMA) was produced in a high capacity generator during day and night via detrainment of bubbles from biologically productive and oligotrophic seawater. The turbulent mixing of clean air and seawater in a Venturi nozzle produced bubble plumes with tunable size distributions. Physicochemical characteristics of size-resolved PMA and seawater were measured. PMA number production efficiencies per unit air detrained (PEnum) increased with increasing detainment rate. For given conditions, PEnum values summed over size distributions were roughly ten times greater than those for frits whereas normalized size distributions were similar. Results show that bubble size distributions significantly modulated number production fluxes but not relative shapes of corresponding size distributions. In contrast, mass production efficiencies (PEmass) decreased with increasing air detrainment and were similar to those for frits, consistent with the hypothesis that bubble rafts on the seawater surface modulate emissions of larger jet droplets that dominate PMA mass production. Production efficiencies of organic matter were about three times greater than those for frits whereas organic enrichment factors integrated over size distributions were similar.
Using a Novel Optical Sensor to Characterize Methane Ebullition Processes
NASA Astrophysics Data System (ADS)
Delwiche, K.; Hemond, H.; Senft-Grupp, S.
2015-12-01
We have built a novel bubble size sensor that is rugged, economical to build, and capable of accurately measuring methane bubble sizes in aquatic environments over long deployment periods. Accurate knowledge of methane bubble size is important to calculating atmospheric methane emissions from in-land waters. By routing bubbles past pairs of optical detectors, the sensor accurately measures bubbles sizes for bubbles between 0.01 mL and 1 mL, with slightly reduced accuracy for bubbles from 1 mL to 1.5 mL. The sensor can handle flow rates up to approximately 3 bubbles per second. Optional sensor attachments include a gas collection chamber for methane sampling and volume verification, and a detachable extension funnel to customize the quantity of intercepted bubbles. Additional features include a data-cable running from the deployed sensor to a custom surface buoy, allowing us to download data without disturbing on-going bubble measurements. We have successfully deployed numerous sensors in Upper Mystic Lake at depths down to 18 m, 1 m above the sediment. The resulting data gives us bubble size distributions and the precise timing of bubbling events over a period of several months. In addition to allowing us to characterize typical bubble size distributions, this data allows us to draw important conclusions about temporal variations in bubble sizes, as well as bubble dissolution rates within the water column.
NASA Astrophysics Data System (ADS)
Huang, Haijun; Shu, Da; Fu, Yanan; Zhu, Guoliang; Wang, Donghong; Dong, Anping; Sun, Baode
2018-06-01
The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.
NASA Astrophysics Data System (ADS)
Huang, Haijun; Shu, Da; Fu, Yanan; Zhu, Guoliang; Wang, Donghong; Dong, Anping; Sun, Baode
2018-04-01
The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.
NASA Astrophysics Data System (ADS)
Seif, Dariush; Ghoniem, Nasr M.
2014-12-01
A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô's calculus, rate equations for the first five moments of the size distribution in helium-vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium-vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the implementation of a path-integral approach may proceed if the distribution is known experimentally to significantly stray from a Gaussian description.
Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams
Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O’Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David DI
2015-01-01
Objective To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Methods Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Results Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Conclusion Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. PMID:26036246
Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
Carugo, Dario; Ankrett, Dyan N; Zhao, Xuefeng; Zhang, Xunli; Hill, Martyn; O'Byrne, Vincent; Hoad, James; Arif, Mehreen; Wright, David D I; Lewis, Andrew L
2016-05-01
To compare foam bubble size and bubble size distribution, stability, and degradation rate of commercially available polidocanol endovenous microfoam (Varithena®) and physician-compounded foams using a number of laboratory tests. Foam properties of polidocanol endovenous microfoam and physician-compounded foams were measured and compared using a glass-plate method and a Sympatec QICPIC image analysis method to measure bubble size and bubble size distribution, Turbiscan™ LAB for foam half time and drainage and a novel biomimetic vein model to measure foam stability. Physician-compounded foams composed of polidocanol and room air, CO2, or mixtures of oxygen and carbon dioxide (O2:CO2) were generated by different methods. Polidocanol endovenous microfoam was found to have a narrow bubble size distribution with no large (>500 µm) bubbles. Physician-compounded foams made with the Tessari method had broader bubble size distribution and large bubbles, which have an impact on foam stability. Polidocanol endovenous microfoam had a lower degradation rate than any physician-compounded foams, including foams made using room air (p < 0.035). The same result was obtained at different liquid to gas ratios (1:4 and 1:7) for physician-compounded foams. In all tests performed, CO2 foams were the least stable and different O2:CO2 mixtures had intermediate performance. In the biomimetic vein model, polidocanol endovenous microfoam had the slowest degradation rate and longest calculated dwell time, which represents the length of time the foam is in contact with the vein, almost twice that of physician-compounded foams using room air and eight times better than physician-compounded foams prepared using equivalent gas mixes. Bubble size, bubble size distribution and stability of various sclerosing foam formulations show that polidocanol endovenous microfoam results in better overall performance compared with physician-compounded foams. Polidocanol endovenous microfoam offers better stability and cohesive properties in a biomimetic vein model compared to physician-compounded foams. Polidocanol endovenous microfoam, which is indicated in the United States for treatment of great saphenous vein system incompetence, provides clinicians with a consistent product with enhanced handling properties. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Yoshiura, Shintaro; Takahashi, Keitaro
2018-01-01
The dispersion measure (DM) of high-redshift (z ≳ 6) transient objects such as fast radio bursts can be a powerful tool to probe the intergalactic medium during the Epoch of Reionization. In this paper, we study the variance of the DMs of objects with the same redshift as a potential probe of the size distribution of ionized bubbles. We calculate the DM variance with a simple model with randomly distributed spherical bubbles. It is found that the DM variance reflects the characteristics of the probability distribution of the bubble size. We find that the variance can be measured precisely enough to obtain the information on the typical size with a few hundred sources at a single redshift.
Jeffries, J. R.; Hammons, J. A.; Willey, T. M.; ...
2017-10-31
We report the self-irradiation of Pu alloys generates He that is trapped within the metal matrix in the form of He bubbles. The distribution of these He bubbles in δ-phase Pu-Ga alloys exhibits a peak near a radius of 0.7 nm, and this size is remarkably stable as function of time. When annealed, the He bubbles in δ-Pu alloys grow, coarsening the distribution. However, the magnitude of this coarsening is uncertain, as different experimental methods reveal bubbles that differ by at least one order of magnitude. Small-angle x-ray scattering results, which can probe a wide range of bubble sizes, implymore » only a mild coarsening of the He bubble distribution for an annealing treatment of 425 °C for 24 h, and analysis of the He bubble content suggests that He is actually lost from the bubbles with annealing.« less
NASA Astrophysics Data System (ADS)
Wang, Binbin; Socolofsky, Scott A.; Breier, John A.; Seewald, Jeffrey S.
2016-04-01
This paper reports the results of quantitative imaging using a stereoscopic, high-speed camera system at two natural gas seep sites in the northern Gulf of Mexico during the Gulf Integrated Spill Research G07 cruise in July 2014. The cruise was conducted on the E/V Nautilus using the ROV Hercules for in situ observation of the seeps as surrogates for the behavior of hydrocarbon bubbles in subsea blowouts. The seeps originated between 890 and 1190 m depth in Mississippi Canyon block 118 and Green Canyon block 600. The imaging system provided qualitative assessment of bubble behavior (e.g., breakup and coalescence) and verified the formation of clathrate hydrate skins on all bubbles above 1.3 m altitude. Quantitative image analysis yielded the bubble size distributions, rise velocity, total gas flux, and void fraction, with most measurements conducted from the seafloor to an altitude of 200 m. Bubble size distributions fit well to lognormal distributions, with median bubble sizes between 3 and 4.5 mm. Measurements of rise velocity fluctuated between two ranges: fast-rising bubbles following helical-type trajectories and bubbles rising about 40% slower following a zig-zag pattern. Rise speed was uncorrelated with hydrate formation, and bubbles following both speeds were observed at both sites. Ship-mounted multibeam sonar provided the flare rise heights, which corresponded closely with the boundary of the hydrate stability zone for the measured gas compositions. The evolution of bubble size with height agreed well with mass transfer rates predicted by equations for dirty bubbles.
Bubble evolution in Kr-irradiated UO2 during annealing
NASA Astrophysics Data System (ADS)
He, L.; Bai, X. M.; Pakarinen, J.; Jaques, B. J.; Gan, J.; Nelson, A. T.; El-Azab, A.; Allen, T. R.
2017-12-01
Transmission electron microscopy observation of Kr bubble evolution in polycrystalline UO2 annealed at high temperature was conducted in order to understand the inert gas behavior in oxide nuclear fuel. The average diameter of intragranular bubbles increased gradually from 0.8 nm in as-irradiated sample at room temperature to 2.6 nm at 1600 °C and the bubble size distribution changed from a uniform distribution to a bimodal distribution above 1300 °C. The size of intergranular bubbles increased more rapidly than intragranular ones and bubble denuded zones near grain boundaries formed in all the annealed samples. It was found that high-angle grain boundaries held bigger bubbles than low-angle grain boundaries. Complementary atomistic modeling was conducted to interpret the effects of grain boundary character on the Kr segregation. The area density of strong segregation sites in the high-angle grain boundaries is much higher than that in the low angle grain boundaries.
Tirunehe, Gossaye; Norddahl, B
2016-04-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
2016-04-28
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Oceanic Gas Bubble Measurements Using an Acoustic Bubble Spectrometer
NASA Astrophysics Data System (ADS)
Wilson, S. J.; Baschek, B.; Deane, G.
2008-12-01
Gas bubble injection by breaking waves contributes significantly to the exchange of gases between atmosphere and ocean at high wind speeds. In this respect, CO2 is primarily important for the global ocean and climate, while O2 is especially relevant for ecosystems in the coastal ocean. For measuring oceanic gas bubble size distributions, a commercially available Dynaflow Acoustic Bubble Spectrometer (ABS) has been modified. Two hydrophones transmit and receive selected frequencies, measuring attenuation and absorption. Algorithms are then used to derive bubble size distributions. Tank test were carried out in order to test the instrument performance.The software algorithms were compared with Commander and Prosperetti's method (1989) of calculating sound speed ratio and attenuation for a known bubble distribution. Additional comparisons with micro-photography were carried out in the lab and will be continued during the SPACE '08 experiment in October 2008 at Martha's Vineyard Coastal Observatory. The measurements of gas bubbles will be compared to additional parameters, such as wind speed, wave height, white cap coverage, or dissolved gases.
Feasibility of an in situ measurement device for bubble size and distribution.
Junker, Beth; Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael
2007-09-01
The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles.
NASA Astrophysics Data System (ADS)
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...
2017-05-06
Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon
Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less
Pinched flow fractionation of microbubbles for ultrasound contrast agent enrichment
NASA Astrophysics Data System (ADS)
Versluis, Michel; Kok, Maarten; Segers, Tim
2014-11-01
An ultrasound contrast agent (UCA) suspension contains a wide size distribution of encapsulated microbubbles (typically 1-10 μm in diameter) that resonate to the driving ultrasound field by the intrinsic relationship between bubble size and ultrasound frequency. Medical transducers, however, operate in a narrow frequency range, which severely limits the number of bubbles that contribute to the echo signal. Thus, the sensitivity can be improved by narrowing down the size distribution of the bubble suspension. Here, we present a novel, low-cost, lab-on-a-chip method for the sorting of contrast microbubbles by size, based on a microfluidic separation technique known as pinched flow fractionation (PFF). We show by experimental and numerical investigation that the inclusion of particle rotation is essential for an accurate physical description of the sorting behavior of the larger bubbles. Successful sorting of a bubble suspension with a narrow size distribution (3.0 +/- 0.6 μm) has been achieved with a PFF microdevice. This sorting technique can be easily parallelized, and may lead to a significant improvement in the sensitivity of contrast-enhanced medical ultrasound. This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.
Tong, Mingming; Cole, Katie; Brito-Parada, Pablo R; Neethling, Stephen; Cilliers, Jan J
2017-04-18
Pseudo-two-dimensional (2D) foams are commonly used in foam studies as it is experimentally easier to measure the bubble size distribution and other geometric and topological properties of these foams than it is for a 3D foam. Despite the widespread use of 2D foams in both simulation and experimental studies, many important geometric and topological relationships are still not well understood. Film size, for example, is a key parameter in the stability of bubbles and the overall structure of foams. The relationship between the size distribution of the films in a foam and that of the bubbles themselves is thus a key relationship in the modeling and simulation of unstable foams. This work uses structural simulation from Surface Evolver to statistically analyze this relationship and to ultimately formulate a relationship for the film size in 2D foams that is shown to be valid across a wide range of different bubble polydispersities. These results and other topological features are then validated using digital image analysis of experimental pseudo-2D foams produced in a vertical Hele-Shaw cell, which contains a monolayer of bubbles between two plates. From both the experimental and computational results, it is shown that there is a distribution of sizes that a film can adopt and that this distribution is very strongly dependent on the sizes of the two bubbles to which the film is attached, especially the smaller one, but that it is virtually independent of the underlying polydispersity of the foam.
A numerical framework for bubble transport in a subcooled fluid flow
NASA Astrophysics Data System (ADS)
Jareteg, Klas; Sasic, Srdjan; Vinai, Paolo; Demazière, Christophe
2017-09-01
In this paper we present a framework for the simulation of dispersed bubbly two-phase flows, with the specific aim of describing vapor-liquid systems with condensation. We formulate and implement a framework that consists of a population balance equation (PBE) for the bubble size distribution and an Eulerian-Eulerian two-fluid solver. The PBE is discretized using the Direct Quadrature Method of Moments (DQMOM) in which we include the condensation of the bubbles as an internal phase space convection. We investigate the robustness of the DQMOM formulation and the numerical issues arising from the rapid shrinkage of the vapor bubbles. In contrast to a PBE method based on the multiple-size-group (MUSIG) method, the DQMOM formulation allows us to compute a distribution with dynamic bubble sizes. Such a property is advantageous to capture the wide range of bubble sizes associated with the condensation process. Furthermore, we compare the computational performance of the DQMOM-based framework with the MUSIG method. The results demonstrate that DQMOM is able to retrieve the bubble size distribution with a good numerical precision in only a small fraction of the computational time required by MUSIG. For the two-fluid solver, we examine the implementation of the mass, momentum and enthalpy conservation equations in relation to the coupling to the PBE. In particular, we propose a formulation of the pressure and liquid continuity equations, that was shown to correctly preserve mass when computing the vapor fraction with DQMOM. In addition, the conservation of enthalpy was also proven. Therefore a consistent overall framework that couples the PBE and two-fluid solvers is achieved.
Eternal inflation, bubble collisions, and the disintegration of the persistence of memory
NASA Astrophysics Data System (ADS)
Freivogel, Ben; Kleban, Matthew; Nicolis, Alberto; Sigurdson, Kris
2009-08-01
We compute the probability distribution for bubble collisions in an inflating false vacuum which decays by bubble nucleation. Our analysis generalizes previous work of Guth, Garriga, and Vilenkin to the case of general cosmological evolution inside the bubble, and takes into account the dynamics of the domain walls that form between the colliding bubbles. We find that incorporating these effects changes the results dramatically: the total expected number of bubble collisions in the past lightcone of a typical observer is N ~ γ Vf/Vi , where γ is the fastest decay rate of the false vacuum, Vf is its vacuum energy, and Vi is the vacuum energy during inflation inside the bubble. This number can be large in realistic models without tuning. In addition, we calculate the angular position and size distribution of the collisions on the cosmic microwave background sky, and demonstrate that the number of bubbles of observable angular size is NLS ~ (Ωk)1/2N, where Ωk is the curvature contribution to the total density at the time of observation. The distribution is almost exactly isotropic.
NASA Astrophysics Data System (ADS)
Boufadel, Michel C.; Gao, Feng; Zhao, Lin; Özgökmen, Tamay; Miller, Richard; King, Thomas; Robinson, Brian; Lee, Kenneth; Leifer, Ira
2018-03-01
Improved understanding of the character of an uncontrolled pipeline flow is critical for the estimation of the oil discharge and droplet size distribution both essential for evaluating oil spill impact. Measured oil and gas properties at the wellhead of the Macondo255 and detailed numerical modeling suggested that the flow within the pipe could have been "churn," whereby oil and gas tumble violently within the pipe and is different from the bubbly flow commonly assumed for that release. The churn flow would have produced 5 times the energy loss in the pipe compared to bubbly flow, and its plume would have entrained 35% more water than that of the bubbly flow. Both findings suggest that the oil discharge in Deepwater Horizon could have been overestimated, by up to 200%. The resulting oil droplet size distribution of churn flow is likely smaller than that of bubbly flow.
NASA Astrophysics Data System (ADS)
Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong
2018-02-01
The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.
Foam Flow Through a 2D Porous Medium: Evolution of the Bubble Size Distribution
NASA Astrophysics Data System (ADS)
Meheust, Y.; Géraud, B.; Cantat, I.; Dollet, B.
2017-12-01
Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for remediation of the vadose zone. Bulk foams are shear-thinning fluids; but for foams with bubbles of order at least the typical pore size of the porous medium, the rheology cannot be described at the continuum scale, as viscous dissipation occurs mostly at the contact between soap films and solid walls. We have investigated the flow of an initially monodisperse foam through a transparent 2D porous medium[1]. The resulting complex flow phenomenology has been characterized quantitatively from optical measurements of the bubble dynamics. In addition to preferential flow path and local flow intermittency, we observe an irreversible evolution of the probability density function (PDF) for bubbles size as bubbles travel along the porous medium. This evolution is due to bubble fragmentation by lamella division, which is by far the dominant mechanism of film creation/destruction. We measure and characterize this evolution of the PDF as a function of the experimental parameters, and model it numerically based on a fragmentation equation, with excellent agreement. The model uses two ingredients obtained from the experimental data, namely the statistics of the bubble fragmentation rate and of the fragment size distributions[2]. It predicts a nearly-universal scaling of all PDFs as a function of the bubble area normalized by the initial mean bubble area. All the PDFs measured in various experiments, with different mean flow velocities, initial bubble sizes and foam qualities, collapse on a master distribution which is only dependent on the geometry of the medium.References:[1] B. Géraud, S. A. Jones, I. Cantat, B. Dollet & Y. Méheust (2016), WRR 52(2), 773-790. [2] B. Géraud, Y. Méheust, I. Cantat & B. Dollet (2017), Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process, PRL 118, 098003.
Flow of foams in two-dimensional disordered porous media
NASA Astrophysics Data System (ADS)
Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team
2015-11-01
Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.
Acoustic bubble sorting for ultrasound contrast agent enrichment.
Segers, Tim; Versluis, Michel
2014-05-21
An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.
NASA Astrophysics Data System (ADS)
Rest, J.; Hofman, G. L.; Kim, Yeon Soo
2009-04-01
An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.
NASA Astrophysics Data System (ADS)
Durand, Marc; Kraynik, Andrew M.; van Swol, Frank; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Ataei Talebi, Shirin; Graner, François
2014-06-01
Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010), 10.1209/0295-5075/90/60002] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011), 10.1103/PhysRevLett.107.168304]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.
NASA Astrophysics Data System (ADS)
Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.
2016-02-01
Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.
Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.
Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D
2016-07-01
Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Barman, S. R.
Ne 1s core-level photoelectron spectra from Ne nanobubbles implanted in aluminum exhibit two peaks whose binding energies and relative intensities change with implantation energy, isochronal annealing, and sputtering. These changes in the core-level spectra are manifestations of the nanometer size of the bubbles since the screening of the photohole by the Al conduction electrons depends on the bubble size. Existence of a bimodal depth and size distribution of Ne nanobubbles is demonstrated in this work: smaller bubbles of about 4 A in radius are formed close to the Al(111) surface while the larger sized bubbles of 20 A in radiusmore » exist deeper below in the beneath subsurface region. A general relation between the radius of the rare-gas bubbles and their core-level binding energies is established.« less
NASA Technical Reports Server (NTRS)
Durian, Douglas J.; Gopal, Anthony D.; Vera, Moin U.; Langer, Stephen A.
1996-01-01
Diffusing-wave spectroscopy measurements show that ordinarily solid aqueous foams flow by a series of stick-slip avalanche-like rearrangements of neighboring bubbles from one tight packing configuration to another. Contrary to a recent prediction, the distribution of avalanche sizes do not obey a power-law distribution characteristic of self-organized criticality. This can be understood from a simple model of foam mechanics based on bubble-bubble interactions.
Bubble size statistics during reionization from 21-cm tomography
NASA Astrophysics Data System (ADS)
Giri, Sambit K.; Mellema, Garrelt; Dixon, Keri L.; Iliev, Ilian T.
2018-01-01
The upcoming SKA1-Low radio interferometer will be sensitive enough to produce tomographic imaging data of the redshifted 21-cm signal from the Epoch of Reionization. Due to the non-Gaussian distribution of the signal, a power spectrum analysis alone will not provide a complete description of its properties. Here, we consider an additional metric which could be derived from tomographic imaging data, namely the bubble size distribution of ionized regions. We study three methods that have previously been used to characterize bubble size distributions in simulation data for the hydrogen ionization fraction - the spherical-average (SPA), mean-free-path (MFP) and friends-of-friends (FOF) methods - and apply them to simulated 21-cm data cubes. Our simulated data cubes have the (sensitivity-dictated) resolution expected for the SKA1-Low reionization experiment and we study the impact of both the light-cone (LC) and redshift space distortion (RSD) effects. To identify ionized regions in the 21-cm data we introduce a new, self-adjusting thresholding approach based on the K-Means algorithm. We find that the fraction of ionized cells identified in this way consistently falls below the mean volume-averaged ionized fraction. From a comparison of the three bubble size methods, we conclude that all three methods are useful, but that the MFP method performs best in terms of tracking the progress of reionization and separating different reionization scenarios. The LC effect is found to affect data spanning more than about 10 MHz in frequency (Δz ∼ 0.5). We find that RSDs only marginally affect the bubble size distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Biswas, C.; Shukla, A. K.
We have studied xenon and argon bubbles formed in the subsurface region of Al(111) by x-ray photoelectron spectroscopy. As a consequence of the nanometer size of the bubbles, the photohole formed by Xe 3d or Ar 2p photoemission is screened by the Al conduction electrons, which substantially lowers the binding energy (BE) as compared to the gas phase. As the bubble size increases, the Al conduction electron screening decreases and the BE increases. On the basis of density functional theory, we show that the change in the bubble pressure with size is not responsible for the BE shift of innermore » shell core levels, such as Xe 3d or Ar 2p. On the other hand, an increase in BE with bubble size for outer shell core levels, such as Ar 3p, could be due to a decrease in both pressure and Al conduction electron screening. The core level line shape also changes with bubble size. For example, the spectra are broadened due to the distribution of the bubble radius around its mean value, and an asymmetry for small bubbles is observed that decreases for larger bubbles. An annealing of Xe and Ar bubbles after an implantation up to 640 K shows that the BE increases with annealing temperature. Since it is well known that bubble size increases with annealing temperature, this further supports our contention of BE shift with bubble size. A defect induced partial disorder of the Al(111) surface by Xe and Ar bombardment is observed by low energy electron diffraction, but this does not affect the Al 2p BE and line shape.« less
Evaluation of Gas Phase Dispersion in Flotation under Predetermined Hydrodynamic Conditions
NASA Astrophysics Data System (ADS)
Młynarczykowska, Anna; Oleksik, Konrad; Tupek-Murowany, Klaudia
2018-03-01
Results of various investigations shows the relationship between the flotation parameters and gas distribution in a flotation cell. The size of gas bubbles is a random variable with a specific distribution. The analysis of this distribution is useful to make mathematical description of the flotation process. The flotation process depends on many variable factors. These are mainly occurrences like collision of single particle with gas bubble, adhesion of particle to the surface of bubble and detachment process. These factors are characterized by randomness. Because of that it is only possible to talk about the probability of occurence of one of these events which directly affects the speed of the process, thus a constant speed of flotation process. Probability of the bubble-particle collision in the flotation chamber with mechanical pulp agitation depends on the surface tension of the solution, air consumption, degree of pul aeration, energy dissipation and average feed particle size. Appropriate identification and description of the parameters of the dispersion of gas bubbles helps to complete the analysis of the flotation process in a specific physicochemical conditions and hydrodynamic for any raw material. The article presents the results of measurements and analysis of the gas phase dispersion by the size distribution of air bubbles in a flotation chamber under fixed hydrodynamic conditions. The tests were carried out in the Laboratory of Instrumental Methods in Department of Environmental Engineering and Mineral Processing, Faculty of Mining and Geoengineerin, AGH Univeristy of Science and Technology in Krakow.
Gas Bubble Dynamics under Mechanical Vibrations
NASA Astrophysics Data System (ADS)
Mohagheghian, Shahrouz; Elbing, Brian
2017-11-01
The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.
Crystallography of rare galactic honeycomb structure near supernova 1987a
NASA Technical Reports Server (NTRS)
Noever, David A.
1994-01-01
Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.
Bubble performance of a novel dissolved air flotation(DAF) unit.
Chen, Fu-tai; Peng, Feng-xian; Wu, Xiao-qing; Luan, Zhao-kun
2004-01-01
ES-DAF, a novel DAF with low cost, high reliability and easy controllability, was studied. Without a costly air saturator, ES-DAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with M-DAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.
Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection
NASA Astrophysics Data System (ADS)
Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan
2017-03-01
To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.
Final bubble lengths for aqueous foam coarsened in a horizontal cylinder
NASA Astrophysics Data System (ADS)
Sebag, V.; Roth, A. E.; Durian, D. J.
2011-12-01
We report on length statistics measured for bubbles in the equilibrium bamboo state, achieved by the coarsening of aqueous foam in long cylindrical tubes, such that the soap films are all flat and perpendicular to the axis of the tube. The average bubble length is found to be 0.88 times the tube diameter, independent of variation of the liquid filling fraction by a factor of nearly three. The actual distribution is well-approximated by a shifted Rayleigh form, with a minimum bubble size of 0.28 tube diameters. And, perhaps surprisingly, no correlations are found in the lengths of neighboring bubbles. The observed length distribution agrees with that of Fortes et al. for short bubbles, but not for long bubbles.
Bubble Size Distribution in a Vibrating Bubble Column
NASA Astrophysics Data System (ADS)
Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian
2016-11-01
While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.
Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2013-06-01
A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become important for inclusion growth and removal. With the increase of the gas flow rate, the total removal ratio increases, but when the gas flow rate exceeds 200 NL/min in 150-ton ladle, the total removal ration almost does not change. For the larger size inclusions, the number density in bubbly plume zone is less than that in the sidewall recirculation zones, but for the small size inclusions, the distribution of number density shows the opposite trend.
Structure and coarsening at the surface of a dry three-dimensional aqueous foam.
Roth, A E; Chen, B G; Durian, D J
2013-12-01
We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.
Reticulite, Scoria and Lava: Foam Formation in Hawaiian Fire Fountain Eruptions
NASA Astrophysics Data System (ADS)
Rust, A. C.; Cashman, K. V.
2006-12-01
Hawaiian fire fountain eruptions can generate three types of foams: 1) scoria pyroclasts characterized by spherical bubbles and typical vesicularities of 70-85%, 2) reticulite pyroclasts consisting of a polygonal network of trigonal glass struts and vesicularities of 95-99% and 3) lava flows with bubble contents as high as 70-80%. We use bubble textures to explore the origins of these three distinct foams. With these data and the observation that all three foam types can erupt simultaneously, we discuss the dynamics of Hawaiian eruptions. Our main focus is reticulite, which is a minor but ubiquitous product of relatively high Hawaiian fountains. Compared to scoria, reticulite is more vesicular and has a larger mean bubble size and a much more uniform bubble size distribution. It was previously suggested that reticulite results from further expansion of hot scoria foam. However, to form reticulite from scoria requires not only that gas expand faster than it can percolate through bubble networks in scoria, but also requires processes such as Ostwald ripening that will reduce the range of bubble sizes. Such processes commonly occur in the formation of polygonal soap foams for instance. However, we suggest that a better analogue for reticulite formation is popcorn. In particular we propose that reticulite did not evolve from scoria but from magma that experienced (1) near-instantaneous bubble nucleation followed by (2) rapid and uniform expansion to generate (3) a polyhedral 'dry' foam that then (4) experienced near-instantaneous film rupture and quenching throughout the foam. In contrast, it seems that there are other parts of the system where bubble nucleation is not instantaneous and yields a broader size distribution of bubbles that expand more slowly, maintain spherical shapes, and become permeable through coalescence of small melt films between spherical bubble walls. We suggest that reticulite only forms in relatively high fire fountains, not because of longer time for expansion but because of higher ascent rates in these eruptions.
Pore Size Control in Aluminium Foam by Standardizing Bubble Rise Velocity and Melt Viscosity
NASA Astrophysics Data System (ADS)
Avinash, G.; Harika, V.; Sandeepika, Ch; Gupta, N.
2018-03-01
In recent years, aluminium foams have found use in a wide range of applications. The properties of these foams, as good structural strength with light weight have made them as a promising structural material for aerospace industry. Foaming techniques (direct and indirect) are used to produce these foams. Direct foaming involves blowing of gas to create gas bubbles in the melt whereas indirect foaming technique uses blowing agents as metallic hydrides, which create hydrogen bubbles. Porosity and its distribution in foams directly affect its properties. This demands for more theoretical studies, to control such cellular structure and hence properties. In present work, we have studied the effect of gas bubble rise velocity and melt viscosity, on pore size and its distribution in aluminium foam. A 15 PPI aluminium foam, prepared using indirect foaming technique having porosity ~86 % was used for study. In order to obtain metal foam, the bubble must not escape from the melt and should get entrapped during solidification. Our calculations suggest that bubble rise velocity and melt viscosity are responsible for vertical displacement of bubble in the melt. It is observed that melt viscosity opposes bubble rise velocity and help the bubbles to stay in the melt, resulting in porous structure.
The role of grain size in He bubble formation: Implications for swelling resistance
El-Atwani, Osman; Nathaniel, II, James E.; Leff, Asher C.; ...
2016-12-07
Here, nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas rangingmore » from 3000 to 7500 nm 2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm 2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.« less
Lifetime of Bubble Rafts: Cooperativity and Avalanches
NASA Astrophysics Data System (ADS)
Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique
2007-06-01
We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.
Lifetime of bubble rafts: cooperativity and avalanches.
Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique
2007-06-15
We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.
CFD-PBM coupled simulation of a nanobubble generator with honeycomb structure
NASA Astrophysics Data System (ADS)
Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H.
2018-06-01
In recent years, nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology. The nitrogen nanobubble water circulation can be used to slow the progressions of oxidation and spoilage for the seafood long- term storage. From previous studies, a kind of honeycomb structure for high-efficiency nanobubble generation has been proposed. In this paper, the bubbly flow in the honeycomb structure was studied. The numerical simulations of honeycomb structure were performed by using a computational fluid dynamics–population balance model (CFD-PBM) coupled model. The numerical model was based on the Eulerian multiphase model and the population balance model (PBM) was used to calculate the gas bubble size distribution. The bubble coalescence and breakage were included. Considering the effect of bubble diameter on the fluid flow, the phase interactions were coupled with the PBM. The bubble size distributions in the honeycomb structure under different work conditions were predicted. The experimental results were compared with the simulation predictions.
Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation
Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane
2017-06-02
Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less
Development of an optical microscopy system for automated bubble cloud analysis.
Wesley, Daniel J; Brittle, Stuart A; Toolan, Daniel T W
2016-08-01
Recently, the number of uses of bubbles has begun to increase dramatically, with medicine, biofuel production, and wastewater treatment just some of the industries taking advantage of bubble properties, such as high mass transfer. As a result, more and more focus is being placed on the understanding and control of bubble formation processes and there are currently numerous techniques utilized to facilitate this understanding. Acoustic bubble sizing (ABS) and laser scattering techniques are able to provide information regarding bubble size and size distribution with minimal data processing, a major advantage over current optical-based direct imaging approaches. This paper demonstrates how direct bubble-imaging methods can be improved upon to yield high levels of automation and thus data comparable to ABS and laser scattering. We also discuss the added benefits of the direct imaging approaches and how it is possible to obtain considerable additional information above and beyond that which ABS and laser scattering can supply. This work could easily be exploited by both industrial-scale operations and small-scale laboratory studies, as this straightforward and cost-effective approach is highly transferrable and intuitive to use.
Bubble statistics in aged wet foams and the Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Yuvchenko, S. A.; Tzyipin, D. V.; Samorodina, T. V.
2018-04-01
Results of the experimental study of changes in the bubble size statistics during aging of wet foams are discussed. It is proposed that the evolution of the bubble radii distributions can be described in terms of the one dimensional Fokker- Planck equation. The empirical distributions of the bubble radii exhibit a self-similarity of their shapes and can be transformed to a time-independent form using the radius renormalization. Analysis of obtained data allows us to suggest that the drift term of the Fokker-Planck equation dominates in comparison with the diffusion term in the case of aging of isolated quasi-stable wet foams.
Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.
Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu
2015-09-21
The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.
Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking
NASA Technical Reports Server (NTRS)
Resch, F.; Avellan, F.
1982-01-01
The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.
Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride.
Lee, Judy; Ashokkumar, Muthupandian; Kentish, Sandra E
2014-01-01
Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer. Copyright © 2013 Elsevier B.V. All rights reserved.
Stride, E.; Cheema, U.
2017-01-01
The growth of bubbles within the body is widely believed to be the cause of decompression sickness (DCS). Dive computer algorithms that aim to prevent DCS by mathematically modelling bubble dynamics and tissue gas kinetics are challenging to validate. This is due to lack of understanding regarding the mechanism(s) leading from bubble formation to DCS. In this work, a biomimetic in vitro tissue phantom and a three-dimensional computational model, comprising a hyperelastic strain-energy density function to model tissue elasticity, were combined to investigate key areas of bubble dynamics. A sensitivity analysis indicated that the diffusion coefficient was the most influential material parameter. Comparison of computational and experimental data revealed the bubble surface's diffusion coefficient to be 30 times smaller than that in the bulk tissue and dependent on the bubble's surface area. The initial size, size distribution and proximity of bubbles within the tissue phantom were also shown to influence their subsequent dynamics highlighting the importance of modelling bubble nucleation and bubble–bubble interactions in order to develop more accurate dive algorithms. PMID:29263127
Bubble migration in a compacting crystal-liquid mush
NASA Astrophysics Data System (ADS)
Boudreau, Alan
2016-04-01
Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid. Bubbles can also move rapidly by `surfing' on porosity waves that can develop in a compacting mush.
-> Air entrainment and bubble statistics in three-dimensional breaking waves
NASA Astrophysics Data System (ADS)
Deike, L.; Popinet, S.; Melville, W. K.
2016-02-01
Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and air-sea interaction, including gas and momentum exchange, and for improving air-sea flux parametrizations for weather and climate models. Here we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.
MOBI: Microgravity Observations of Bubble Interactions
NASA Technical Reports Server (NTRS)
Koch, Donald L.; Sangani, Ashok
2004-01-01
One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.
NASA Astrophysics Data System (ADS)
Weber, Michael; Shandas, Robin
2005-11-01
Micron-sized bubbles have been effectively used as contrast agents in ultrasound imaging systems and have the potential for many other applications including targeted drug delivery and tumor destruction. The further development of these applications is dependent on precise control of bubble size. Recently, microfluidic flow-focusing systems have emerged as a viable means of producing microbubbles with monodisperse size distributions. These systems focus co-flowing liquid streams surrounding a gas stream through a narrow orifice, producing bubbles in very reproducible manner. In this work, a photopolymerization technique has been used to produce microfludicic flow-focusing devices which were successfully used to produce micron-sized bubbles. The flow dynamics involved in these devices has also been simulated using a volume-of-fluid approach to simultaneously solve the equations of motion for both the gas and liquid phases. Simulations were run with several variations of the flow-focuser geometry (gas inlet width, orifice length, gas-liquid approach angle, etc.) in an effort to produce smaller bubbles and increase the working range of liquid and gas flow rates. These findings are being incorporated into the production of actual devices in an effort to improve the overall effectiveness of the bubble production process.
Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny
2016-05-01
Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Mie scattering off coated microbubbles
NASA Astrophysics Data System (ADS)
Nelissen, Radboud; Koene, Elmer; Hilgenfeldt, Sascha; Versluis, Michel
2002-11-01
The acoustic behavior of coated microbubbles depends on parameters of the shell coating, which are in turn dependent on bubble size. More intimate knowledge of this size dependence is required for an improved modeling of a distribution of coated microbubbles such as found in ultrasound contrast agents (UCA). Here a setup is designed to simultaneously measure the optical and acoustic response of an ultrasound-driven single bubble contained in a capillary or levitated by the pressure field of a focused transducer. Optical detection is done by Mie scattering through an inverted microscope. Acoustical detection of the single bubble by a receiving transducer is made possible because of the large working distance of the microscope. For Mie scattering investigation of excited bubbles, two regimes can be distinguished, which require different detection techniques: Conventional wide-angle detection through the microscope objective is sufficient for bubbles of radius exceeding 10 mum. For smaller bubbles, two narrow-aperture detectors are used to reconstruct the bubble dynamics from the complex angle-dependence of the scattered light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.
We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.
2017-06-01
This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.
Optimization of chlorine fluxing process for magnesium removal from molten aluminum
NASA Astrophysics Data System (ADS)
Fu, Qian
High-throughput and low operational cost are the keys to a successful industrial process. Much aluminum is now recycled in the form of used beverage cans and this aluminum is of alloys that contain high levels of magnesium. It is common practice to "demag" the metal by injecting chlorine that preferentially reacts with the magnesium. In the conventional chlorine fluxing processes, low reaction efficiency results in excessive reactive gas emissions. In this study, through an experimental investigation of the reaction kinetics involved in this process, a mathematical model is set up for the purpose of process optimization. A feedback controlled chlorine reduction process strategy is suggested for demagging the molten aluminum to the desired magnesium level without significant gas emissions. This strategy also needs the least modification of the existing process facility. The suggested process time will only be slightly longer than conventional methods and chlorine usage and emissions will be reduced. In order to achieve process optimization through novel designs in any fluxing process, a system is necessary for measuring the bubble distribution in liquid metals. An electro-resistivity probe described in the literature has low accuracy and its capability to measure bubble distribution has not yet been fully demonstrated. A capacitance bubble probe was designed for bubble measurements in molten metals. The probe signal was collected and processed digitally. Higher accuracy was obtained by higher discrimination against corrupted signals. A single-size bubble experiment in Belmont metal was designed to reveal the characteristic response of the capacitance probe. This characteristic response fits well with a theoretical model. It is suggested that using a properly designed deconvolution process, the actual bubble size distribution can be calculated. The capacitance probe was used to study some practical bubble generation devices. Preliminary results on bubble distribution generated by a porous plug in Belmont metal showed bubbles much bigger than those in a water model. Preliminary results in molten aluminum showed that the probe was applicable in this harsh environment. An interesting bubble coalescence phenomenon was also observed in both Belmont metal and molten aluminum.
Effect of the Trendelenburg position on the distribution of arterial air emboli in dogs
NASA Technical Reports Server (NTRS)
Butler, Bruce D.; Laine, Glen A.; Leiman, Basil C.; Warters, Dave; Kurusz, Mark
1988-01-01
The effect of Trendelenburg position (TP) on the distribution of arterial air emboli in dogs was examined in a two-part investigation. In the first part, the effects of the bubble size and the vessel angle on the bubble velocity and the direction of flow were investigated in vitro, using a simulated carotid artery preparation. It was found that larger bubbles increased in velocity in the same direction as the blood flow at 0-, 10-, and 30-deg vessel angles, and decreased when the vessel was positioned at 90 deg. Smaller bubbles did not change velocity from 0 to 30 deg, but acted to increase the velocity, in the same direction as the flood flow, at 90 deg. The second series of experiments examined the effect of 0 to 30 deg TP on carotid-artery distribution of gas bubbles injected into the left ventricle or ascending aorta of anesthetized dogs. It was found that, regardless of the degree of the TP, the bubbles passed into the carotid artery simultaneously with the passage into the abdominal aorta. It is concluded that the TP does not prevent arterial bubbles from reaching the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
Filho, Walter Duarte de Araujo; Schneider, Fábio Kurt; Morales, Rigoberto E M
2012-09-20
Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical applications even when regular air is used as the gas phase. Improved stability can be achieved when biocompatible gas with lower permeability is used.
Raman Spectral Band Oscillations in Large Graphene Bubbles
NASA Astrophysics Data System (ADS)
Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.
2018-05-01
Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.
Acoustic waves in polydispersed bubbly liquids
NASA Astrophysics Data System (ADS)
Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.
2014-11-01
The propagation of acoustic waves in polydispersed mixtures of liquid with two sorts of gas bubbles each of which has its own bubble size distribution function is studied. The system of the differential equations of the perturbed motion of a mixture is presented, the dispersion relation is obtained. Equilibrium speed of sound, low-frequency and high-frequency asymptotes of the attenuation coefficient are found. Comparison of the developed theory with known experimental data is presented.
Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean
2015-10-19
The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.
In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts
NASA Astrophysics Data System (ADS)
Masotta, M.; Ni, H.; Keppler, H.
2013-12-01
Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<20 MPa in basalt and andesite, ca. 100 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.
NASA Astrophysics Data System (ADS)
Khan, Irfan; Costeux, Stephane; Adrian, David; Cristancho, Diego
2013-11-01
Due to environmental regulations carbon-dioxide (CO2) is increasingly being used to replace traditional blowing agents in thermoplastic foams. CO2 is dissolved in the polymer matrix under supercritical conditions. In order to predict the effect of process parameters on foam properties using numerical modeling, the P-V-T relationship of the blowing agents should accurately be represented at the supercritical state. Previous studies in the area of foam modeling have all used ideal gas equation of state to predict the behavior of the blowing agent. In this work the Peng-Robinson equation of state is being used to model the blowing agent during its diffusion into the growing bubble. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The effect of the improved model on the bubble growth and foam properties are discussed.
Vesiculation of basaltic magma during eruption
Mangan, Margaret T.; Cashman, Katharine V.; Newman, Sally
1993-01-01
Vesicle size distributions in vent lavas from the Pu'u'O'o-Kupaianaha eruption of Kilauea volcano are used to estimate nucleation and growth rates of H2O-rich gas bubbles in basaltic magma nearing the earth's surface (≤120 m depth). By using well-constrained estimates for the depth of volatile exsolution and magma ascent rate, nucleation rates of 35.9 events ⋅ cm-3 ⋅ s-1 and growth rates of 3.2 x 10-4cm/s are determined directly from size-distribution data. The results are consistent with diffusion-controlled growth as predicted by a parabolic growth law. This empirical approach is not subject to the limitations inherent in classical nucleation and growth theory and provides the first direct measurement of vesiculation kinetics in natural settings. In addition, perturbations in the measured size distributions are used to examine bubble escape, accumulation, and coalescence prior to the eruption of magma.
NASA Astrophysics Data System (ADS)
Wang, Binbin; Socolofsky, Scott A.
2015-10-01
Development, testing, and application of a deep-sea, high-speed, stereoscopic imaging system are presented. The new system is designed for field-ready deployment, focusing on measurement of the characteristics of natural seep bubbles and droplets with high-speed and high-resolution image capture. The stereo view configuration allows precise evaluation of the physical scale of the moving particles in image pairs. Two laboratory validation experiments (a continuous bubble chain and an airstone bubble plume) were carried out to test the calibration procedure, performance of image processing and bubble matching algorithms, three-dimensional viewing, and estimation of bubble size distribution and volumetric flow rate. The results showed that the stereo view was able to improve the individual bubble size measurement over the single-camera view by up to 90% in the two validation cases, with the single-camera being biased toward overestimation of the flow rate. We also present the first application of this imaging system in a study of natural gas seeps in the Gulf of Mexico. The high-speed images reveal the rigidity of the transparent bubble interface, indicating the presence of clathrate hydrate skins on the natural gas bubbles near the source (lowest measurement 1.3 m above the vent). We estimated the dominant bubble size at the seep site Sleeping Dragon in Mississippi Canyon block 118 to be in the range of 2-4 mm and the volumetric flow rate to be 0.2-0.3 L/min during our measurements from 17 to 21 July 2014.
Jordt, Anne; Zelenka, Claudius; von Deimling, Jens Schneider; Koch, Reinhard; Köser, Kevin
2015-12-05
Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information.
Jordt, Anne; Zelenka, Claudius; Schneider von Deimling, Jens; Koch, Reinhard; Köser, Kevin
2015-01-01
Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168
Effect of polymer additives on hydrodynamics and oxygen transfer in a bubble column bioreactor.
Kawase, Y
1993-01-01
The influence of polymer additives (polyethylene oxide and polyacrylamide) on the hydrodynamics and oxygen transfer in a bubble column bioreactor was examined. The addition of small amounts of these polymers has been known to cause significant drag reduction in turbulent flow circumstances. The gas hold-up was slightly decreased and the liquid-phase mixing was somewhat enhanced due to the addition of the polymers. The addition of polymer additives brought about a reduction of the volumetric oxygen transfer coefficient by about 40%. In dilute polymer solutions, large bubbles formed by bubble coalescence moved with high rise velocities in the presence of many small bubbles and the bubble size distributions were less uniform compared with those in water. The complicated changes in bubble hydrodynamic characteristics were examined to give possible explanations for oxygen transfer reduction.
Topological defects from the multiverse
NASA Astrophysics Data System (ADS)
Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander
2015-05-01
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.
Surface degassing and modifications to vesicle size distributions in active basalt flows
Cashman, K.V.; Mangan, M.T.; Newman, S.
1994-01-01
The character of the vesicle population in lava flows includes several measurable parameters that may provide important constraints on lava flow dynamics and rheology. Interpretation of vesicle size distributions (VSDs), however, requires an understanding of vesiculation processes in feeder conduits, and of post-eruption modifications to VSDs during transport and emplacement. To this end we collected samples from active basalt flows at Kilauea Volcano: (1) near the effusive Kupaianaha vent; (2) through skylights in the approximately isothermal Wahaula and Kamoamoa tube systems transporting lava to the coast; (3) from surface breakouts at different locations along the lava tubes; and (4) from different locations in a single breakout from a lava tube 1 km from the 51 vent at Pu'u 'O'o. Near-vent samples are characterized by VSDs that show exponentially decreasing numbers of vesicles with increasing vesicle size. These size distributions suggest that nucleation and growth of bubbles were continuous during ascent in the conduit, with minor associated bubble coalescence resulting from differential bubble rise. The entire vesicle population can be attributed to shallow exsolution of H2O-dominated gases at rates consistent with those predicted by simple diffusion models. Measurements of H2O, CO2 and S in the matrix glass show that the melt equilibrated rapidly at atmospheric pressure. Down-tube samples maintain similar VSD forms but show a progressive decrease in both overall vesicularity and mean vesicle size. We attribute this change to open system, "passive" rise and escape of larger bubbles to the surface. Such gas loss from the tube system results in the output of 1.2 ?? 106 g/day SO2, an output representing an addition of approximately 1% to overall volatile budget calculations. A steady increase in bubble number density with downstream distance is best explained by continued bubble nucleation at rates of 7-8/cm3s. Rates are ???25% of those estimated from the vent samples, and thus represent volatile supersaturations considerably less than those of the conduit. We note also that the small total volume represented by this new bubble population does not: (1) measurably deplete the melt in volatiles; or (2) make up for the overall vesicularity decrease resulting from the loss of larger bubbles. Surface breakout samples have distinctive VSDs characterized by an extreme depletion in the small vesicle population. This results in samples with much lower number densities and larger mean vesicle sizes than corresponding tube samples. Similar VSD patterns have been observed in solidified lava flows and are interpreted to result from either static (wall rupture) or dynamic (bubble rise and capture) coalescence. Through comparison with vent and tube vesicle populations, we suggest that, in addition to coalescence, the observed vesicle populations in the breakout samples have experienced a rapid loss of small vesicles consistent with 'ripening' of the VSD resulting from interbubble diffusion of volatiles. Confinement of ripening features to surface flows suggests that the thin skin that forms on surface breakouts may play a role in the observed VSD modification. ?? 1994.
Parhizkar, Maryam; Stride, Eleanor; Edirisinghe, Mohan
2014-07-21
This work investigates the generation of monodisperse microbubbles using a microfluidic setup combined with electrohydrodynamic processing. A basic T-junction microfluidic device was modified by applying an electrical potential difference across the outlet channel. A model glycerol air system was selected for the experiments. In order to investigate the influence of the electric field strength on bubble formation, the applied voltage was increased systematically up to 21 kV. The effect of solution viscosity and electrical conductivity was also investigated. It was found that with increasing electrical potential difference, the size of the microbubbles reduced to ~25% of the capillary diameter whilst their size distribution remained narrow (polydispersity index ~1%). A critical value of 12 kV was found above which no further significant reduction in the size of the microbubbles was observed. The findings suggest that the size of the bubbles formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced by the viscosity of the solution. The eventual size of bubbles produced by the composite device, however, was only weakly dependent upon viscosity. Further experiments, in which the solution electrical conductivity was varied by the addition of a salt indicated that this had a much stronger influence upon bubble size.
Study on the bubble transport mechanism in an acoustic standing wave field.
Xi, Xiaoyu; Cegla, Frederic B; Lowe, Michael; Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2011-12-01
The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface. Copyright © 2011 Elsevier B.V. All rights reserved.
Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver
Shonibare, Olabanji Y.; Wardle, Kent E.
2015-06-28
A novel hybrid multiphase flow solver has been used to conduct simulations of a vertical plunging liquid jet. This solver combines a multifluid methodology with selective interface sharpening to enable simulation of both the initial jet impingement and the long-time entrained bubble plume phenomena. Models are implemented for variable bubble size capturing and dynamic switching of interface sharpened regions to capture transitions between the initially fully segregated flow types into the dispersed bubbly flow regime. It was found that the solver was able to capture the salient features of the flow phenomena under study and areas for quantitative improvement havemore » been explored and identified. In particular, a population balance approach is employed and detailed calibration of the underlying models with experimental data is required to enable quantitative prediction of bubble size and distribution to capture the transition between segregated and dispersed flow types with greater fidelity.« less
Fogedby, Hans C; Metzler, Ralf
2007-12-01
We study the dynamics of denaturation bubbles in double-stranded DNA on the basis of the Poland-Scheraga model. We show that long time distributions for the survival of DNA bubbles and the size autocorrelation function can be derived from an asymptotic weak noise approach. In particular, below the melting temperature the bubble closure corresponds to a noisy finite time singularity. We demonstrate that the associated Fokker-Planck equation is equivalent to a quantum Coulomb problem. Below the melting temperature, the bubble lifetime is associated with the continuum of scattering states of the repulsive Coulomb potential; at the melting temperature, the Coulomb potential vanishes and the underlying first exit dynamics exhibits a long time power law tail; above the melting temperature, corresponding to an attractive Coulomb potential, the long time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.
Detecting stellar-wind bubbles through infrared arcs in H II regions
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.
2016-02-01
Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.
In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts
NASA Astrophysics Data System (ADS)
Masotta, M.; Ni, H.; Keppler, H.
2014-02-01
Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R) ranges from 3.4 × 10-6 to 5.2 × 10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B) at nucleation ranges from 7.9 × 104 mm-3 to 1.8 × 105 mm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.
NASA Astrophysics Data System (ADS)
Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor
2017-06-01
Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.
Studies of Islands on Freely Suspended Bubbles of Smectic Liquid Crystal
NASA Technical Reports Server (NTRS)
Pattanaporkratana, A.; Mavel, B.; Park, C. S.; Maclennan, J. E.; Clark, N. A.
2002-01-01
We have constructed an optical system for observing the internal structure of freely suspended smectic liquid crystal bubbles using a reflected light microscope. Liquid crystal bubbles can have thicker circular regions (islands) which can easily be generated by shrinking the bubble diameter. The diameter of these islands is approximately 10 microns and they are typically up to five times thicker than the surrounding liquid crystal film (500 angstroms). In the Laboratory, the location of the islands is strongly influenced by gravity, which causes the majority of islands to migrate to the bottom half of the bubble. We will describe the size and thickness distributions of islands and their time evolution, and also discuss two-dimensional hydrodynamics and turbulence of smectic bubbles, the shapes of islands and holes affected by bubble vibrations, and the interactions between islands, which we have probed using optical tweezers.
NASA Astrophysics Data System (ADS)
Thompson, Matt A. T.
The behaviour of helium in tungsten is an important concern for the fusion materials community. Under helium plasma exposure, small nano-scale bubbles form beneath the material surface as helium precipitates from the tungsten matrix. Under certain conditions this can lead to the subsequent formation of a surface "nano-fuzz", though the mechanisms of this process are not presently understood. For sub-surface nano-bubble formation transmission electron microscopy (TEM) has been the most widely used technique. While certainly a powerful technique, TEM suffers from a number of significant drawbacks: sample preparation is difficult and destructive, and there are sampling limitations as nano-structures must be located and characterised individually. This makes quantitative characterisation of nano-scale modification in tungsten challenging, which in turn makes it difficult to perform systematic studies on the effects of factors such as temperature and plasma composition on nano-scale modification. Here, Grazing Incidence Small Angle X-ray Scattering (GISAXS) is presented as a powerful addition to the field of fusion materials. With GISAXS, one can measure the X-ray scattering from nano-scale features throughout a relatively large volume, allowing information about full nano-bubble size distributions to be obtained from a simple, non-destructive measurement. Where it typically takes days or weeks to prepare a sample and study it under TEM, GISAXS measurements can be performed in a matter of minutes, and the data analysis performed autonomously by a computer in hours. This thesis describes the work establishing GISAXS as a viable technique for fusion materials. A GISAXS pattern fitting model was first developed, and then validated via comparison between GISAXS and TEM measurements of helium induced nano-bubble formation in tungsten exposed to a helium discharge in the large helical device. Under these conditions, nano-bubbles were found to follow an approximately exponential diameter distribution, with a mean nano-bubble diameters mu=0.596+/-0.001 nm and mu=0.68+/-0.04 nm computed for GISAXS and TEM, respectively. Depth distributions were also approximately exponential, with average bubble depths estimated at tau=9.1+/-0.4 nm and tau=8.4+/-0.5 for GISAXS and TEM, respectively. GISAXS was then applied to study the effects of plasma fluence, sample temperature and large transient heat and particle loads on nano-bubble formation. Nano-bubble sizes were found to saturate with increasing fluence at fluences less than 2.7x10. 24 He/m. 2 at 473 K. At higher temperatures larger nano-bubblesare able to form, suggesting a shift in the growth mechanisms, possibly from vacancy capture to bubble coalescence. Evidence is also presented which indicates that nano-bubble size distributions are qualitatively different for tungsten exposed to transient heat and particle loads due edge localised modes (ELMs) in the DIII-D tokamak, with a relatively large population of smaller (0.5-1 nm) nano-bubbles forming in this case. This is posited to be a consequence of rapid precipitation due to either extremely high helium concentrations during the ELM, or rapid cooling after it. Finally, synergistic effects between plasma composition and sample temperature are explored to determine which factors are most relevant for hydrogen and helium retention. Here, evidence has been found that helium ions from the plasma require a minimum energy of 9.0+/-1.4 eV in order to be implanted into tungsten. This was the dominant factor governing helium retention in this experiment. On the other hand, sample temperature is the dominant factor for hydrogen retention.
NASA Astrophysics Data System (ADS)
Khan, Irfan; Costeux, Stephane; Bunker, Shana; Moore, Jonathan; Kar, Kishore
2012-11-01
Nanocellular porous materials present unusual optical, dielectric, thermal and mechanical properties and are thus envisioned to find use in a variety of applications. Thermoplastic polymeric foams show considerable promise in achieving these properties. However, there are still considerable challenges in achieving nanocellular foams with densities as low as conventional foams. Lack of in-depth understanding of the effect of process parameters and physical properties on the foaming process is a major obstacle. A numerical model has been developed to simulate the simultaneous nucleation and bubble growth during depressurization of thermoplastic polymers saturated with supercritical blowing agents. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The model is modified to include mechanisms for Joule-Thompson cooling during depressurization and secondary foaming. Simulation results for polymer with and without nucleating agents will be discussed and compared with experimental data.
Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C
Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...
2016-02-03
Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less
Topological defects from the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.
2015-05-01
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less
Topological defects from the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; Blanco-Pillado, Jose J.; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao
2015-05-28
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less
A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler
Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew
2015-01-01
In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178
Watkins, Mike R; Oliver, Richard J
2017-07-01
Objectives The objectives were to examine the density, bubble size distribution and durability of sodium tetradecyl sulphate foam and the consistency of production of foam by a number of different operators using the Tessari method. Methods 1% and 3% sodium tetradecyl sulphate sclerosant foam was produced by an experienced operator and a group of inexperienced operators using either a 1:3 or 1:4 liquid:air ratio and the Tessari method. The foam density, bubble size distribution and foam durability were measured on freshly prepared foam from each operator. Results The foam density measurements were similar for each of the 1:3 preparations and for each of the 1:4 preparations but not affected by the sclerosant concentration. The bubble size for all preparations were very small immediately after preparation but progressively coalesced to become a micro-foam (<250 µm) after the first 30 s up until 2 min. Both the 1% and 3% solution foams developed liquid more rapidly when made in a 1:3 ratio (37 s) than in a 1:4 ratio (45 s) but all combinations took similar times to reach 0.4 ml liquid formation. For all the experiments, there was no statistical significant difference between operators. Conclusions The Tessari method of foam production for sodium tetradecyl sulphate sclerosant is consistent and reproducible even when made by inexperienced operators. The best quality foam with micro bubbles should be used within the first minute after production.
Adams, N.K.; Houghton, Bruce F.; Hildreth, W.
2006-01-01
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 ??m vesicle diameter and cumulative number densities ranging from 107-109 cm-3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h. ?? Springer-Verlag 2006.
The gas fluxing of aluminum: Mathematical modeling and experimental investigations
NASA Astrophysics Data System (ADS)
Fjeld, Autumn Marie
Chlorine fluxing is an essential purification step in aluminum refining in which impurities such as Ca, Na, Li, and Mg are removed by bubbling a mixture of chlorine and argon gas through molten aluminum. The gas is injected into the fluxing vessel through a rotating shaft and impeller which simultaneously agitates the melt, while breaking up and dispersing gas bubbles through the liquid phase. The efficiency of impurity removal and control of toxic chlorine and chloride emissions are dependent upon the extent of gas dispersion or mixing, residence time of the bubbles, and surface area of the bubbles. Clearly the gas injection and distribution within the liquid metal cannot be directly observed and such operations are often poorly controlled and not well understood. Problems arise when the injection gas, i.e. chlorine, is not completely consumed by reaction with impurities and the excess is reported as emissions of chlorides such as toxic HCl. The intention is to improve the technology to eliminate this waste (saving on the energy entailed in the chlorine production and reducing pollution) by better dispersion of the injected gas throughout the metal. Previous experimental investigations using a capacitance probe, capable of immersion in liquid aluminum for several hours, have been carried out to detect bubbles in an industrial fluxing unit at the Alcoa Technical Center. Bubble frequency data have shown the bubbles to be fairly well dispersed in the areas of the fluxing unit, decreasing in observed bubble frequency with increasing distance from the impeller (source of gas injection). To gain further insight and add to our experimental findings, two computational models have been developed to simulate the complex two-phase fluid dynamics of a rotary gas injection system. The results of these two modeling approaches are presented and analyzed and compared to experimental bubble measurements gathered using the capacitance probe. Bubble size distributions and residence times from the discrete phase model were incorporated in an external demagging reaction model to predict chlorine utilization efficiency. This simplified model included several assumptions regarding the kinetics and reaction path, however the model showed reasonable agreement to prior experimental magnesium removal data and provides valuable information related to the interplay of reaction progress in a fluxing unit and the fluid dynamics, in terms of bubble size, trajectory and resulting bubble residence time.
Collective bubble oscillations as a component of surf infrasound.
Park, Joseph; Garcés, Milton; Fee, David; Pawlak, Geno
2008-05-01
Plunging surf is a known generator of infrasound, though the mechanisms have not been clearly identified. A model based on collective bubble oscillations created by demise of the initially entrained air pocket is examined. Computed spectra are compared to infrasound data from the island of Kauai during periods of medium, large, and extreme surf. Model results suggest that bubble oscillations generated by plunging waves are plausible generators of infrasound, and that dynamic bubble plume evolution on a temporal scale comparable to the breaking wave period may contribute to the broad spectral lobe of dominant infrasonic energy observed in measured data. Application of an inverse model has potential to characterize breaking wave size distributions, energy, and temporal changes in seafloor morphology based on remotely sensed infrasound.
Intraluminal bubble dynamics induced by lithotripsy shock wave
NASA Astrophysics Data System (ADS)
Song, Jie; Bai, Jiaming; Zhou, Yufeng
2016-12-01
Extracorporeal shock wave lithotripsy (ESWL) has been the first option in the treatment of calculi in the upper urinary tract since its introduction. ESWL-induced renal injury is also found after treatment and is assumed to associate with intraluminal bubble dynamics. To further understand the interaction of bubble expansion and collapse with the vessel wall, the finite element method (FEM) was used to simulate intraluminal bubble dynamics and calculate the distribution of stress in the vessel wall and surrounding soft tissue during cavitation. The effects of peak pressure, vessel size, and stiffness of soft tissue were investigated. Significant dilation on the vessel wall occurs after contacting with rapid and large bubble expansion, and then vessel deformation propagates in the axial direction. During bubble collapse, large shear stress is found to be applied to the vessel wall at a clinical lithotripter setting (i.e. 40 MPa peak pressure), which may be the mechanism of ESWL-induced vessel rupture. The decrease of vessel size and viscosity of soft tissue would enhance vessel deformation and, consequently, increase the generated shear stress and normal stresses. Meanwhile, a significantly asymmetric bubble boundary is also found due to faster axial bubble expansion and shrinkage than in radial direction, and deformation of the vessel wall may result in the formation of microjets in the axial direction. Therefore, this numerical work would illustrate the mechanism of ESWL-induced tissue injury in order to develop appropriate counteractive strategies for reduced adverse effects.
Evolution of Helium Bubbles and Discs in Irradiated 6H-SiC during Post-Implantation Annealing.
Shen, Qiang; Zhou, Wei; Ran, Guang; Li, Ruixiang; Feng, Qijie; Li, Ning
2017-01-24
The single crystal 6H-SiC with [0001] crystal direction irradiated by 400 keV He⁺ ions with 1 × 10 17 ions/cm² fluence at 400 °C were annealed at 600, 900, 1200 and 1400 °C for different durations. The evolution of helium bubbles and discs was investigated by transmission electron microscopy. An irradiated layer distributed with fine helium bubbles was formed with a width of ~170 nm after helium ion irradiation. The size of gas bubbles increased with increasing annealing time and temperature and finally reached stable values at a given annealing temperature. According to the relationship between the bubble radii and annealing time, an empirical formula for calculating the bubble radii at the annealing temperature ranged from 600 to 1400 °C was given by fitting the experiment data. Planar bubble clusters (discs) were found to form on (0001) crystal plane at both sides of the bubble layer when the annealing temperature was at the range of 800-1200 °C. The mechanism of bubble growth during post-implantation annealing and the formation of bubble discs were also analyzed and discussed.
Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.
Jeong, Heon-Ho; Yadavali, Sagar; Issadore, David; Lee, Daeyeon
2017-07-25
Microscale gas bubbles have demonstrated enormous utility as versatile templates for the synthesis of functional materials in medicine, ultra-lightweight materials and acoustic metamaterials. In many of these applications, high uniformity of the size of the gas bubbles is critical to achieve the desired properties and functionality. While microfluidics have been used with success to create gas bubbles that have a uniformity not achievable using conventional methods, the inherently low volumetric flow rate of microfluidics has limited its use in most applications. Parallelization of liquid droplet generators, in which many droplet generators are incorporated onto a single chip, has shown great promise for the large scale production of monodisperse liquid emulsion droplets. However, the scale-up of monodisperse gas bubbles using such an approach has remained a challenge because of possible coupling between parallel bubbles generators and feedback effects from the downstream channels. In this report, we systematically investigate the effect of factors such as viscosity of the continuous phase, capillary number, and gas pressure as well as the channel uniformity on the size distribution of gas bubbles in a parallelized microfluidic device. We show that, by optimizing the flow conditions, a device with 400 parallel flow focusing generators on a footprint of 5 × 5 cm 2 can be used to generate gas bubbles with a coefficient of variation of less than 5% at a production rate of approximately 1 L h -1 . Our results suggest that the optimization of flow conditions using a device with a small number (e.g., 8) of parallel FFGs can facilitate large-scale bubble production.
NASA Astrophysics Data System (ADS)
Lanzafame, Gabriele; Ferlito, Carmelo; Mancini, Lucia
2017-04-01
Bubbles are usually present in lavas, often showing an increase in their size and number from bottom to the top of vertical profile of the flows. Their presence is commonly interpreted as the final phase of the degassing processes starting and massively occurring at depth, before the eruption. In this work we present the results of a detailed study of size, shape and volumetric distribution of bubbles in lavas from the 1669 eruption of Mount Etna (Italy), one of the most voluminous and destructive historic events of this volcano. The lava field produced during this event extends up to 18 km from the craters, and the massive presence of bubbles in lavas sampled many kilometres away from the emission point is in contrast with the models predicting their almost total exsolution from the magma before the eruption, at depth of several kilometres beneath the volcano edifice. Sampling of the 1669 lava field has been performed along the longitudinal profile of the field at increasing distance from the vent. Collected rocks have been analysed by X-ray fluorescence and phase-contrast synchrotron X-ray computed microtomography in order to extract three-dimensional (3D) qualitative and quantitative information on the bubbles network. The use of synchrotron light permitted to investigate small portions of the samples at high spatial and contrast resolution and allowed us to obtain the 3D morphology and distribution of the micro-bubbles present in the lava, avoiding the limitations of the traditional two-dimensional analysis on thin sections. Results indicate that bubbles in lavas are present in various abundance, constituting up to 18% of the rocks volume, and are randomly distributed, with no regards for the distance from the vent. Their casual abundance, morphological characteristics and spatial distribution indicate large nucleation from syn- to post-eruptive stage, during the lava flowing and probably after it halted its run. These observations are in contrast with the general view that considers the magma completely (or largely) degassed and the volcanic gas species (mostly H2O, CO2, SO2) as largely exsolved when magma reaches the surface. On the contrary, results indicate that the exsolution of bubble-forming volcanic gases can occur far from the emission vent and right before the complete solidification of the lava. Finally, this process could easily explain, for the case of 1669 eruption, the impressive fluidity of the lavas, which display pahoehoe morphology 16 km away from the emission vent.
Fermi bubbles as a source of cosmic rays above 1015 eV
NASA Astrophysics Data System (ADS)
Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.
2014-11-01
Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.
DNA bubble dynamics as a quantum Coulomb problem.
Fogedby, Hans C; Metzler, Ralf
2007-02-16
We study the dynamics of denaturation bubbles in double-stranded DNA. Demonstrating that the associated Fokker-Planck equation is equivalent to a Coulomb problem, we derive expressions for the bubble survival distribution W(t). Below Tm, W(t) is associated with the continuum of scattering states of the repulsive Coulomb potential. At Tm, the Coulomb potential vanishes and W(t) assumes a power-law tail with nontrivial dynamic exponents: the critical exponent of the entropy loss factor may cause a finite mean lifetime. Above Tm (attractive potential), the long-time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.
Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films
NASA Astrophysics Data System (ADS)
Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco
2018-06-01
We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.
Effect of phytoplackton-derived organic matter on the behavior of marine aerosols
NASA Astrophysics Data System (ADS)
Fuentes, E.; Coe, H.; McFiggans, G.; Green, D.
2009-04-01
The presence of significant concentrations of organic material in marine aerosols has been appreciated for several decades; however, only recently has significant progress been made towards demonstrating that this organic content is biogenically formed. Biogenic organics of placktonic life origin are incorporated in marine aerosol composition as a result of bubble bursting/breaking waves mechanisms that occur at the ocean surface. The presence of organic surfactants in the marine aerosol composition might have a significant impact on the properties of the generated aerosols by affecting the particles surface tension and solution balance properties. Nevertheless, it remains uncertain the role of such organics on the physical-chemical behavior of marine aerosols. In this work an experimental study was performed in order to determine the influence of biogenic marine organic compounds on the size distribution, hygroscopicity and cloud-nucleating properties of marine aerosols. For the experimental study a laboratory water recirculation system (bubble tank), designed for the simulation of bubble-burst aerosol formation, was used as marine aerosol generator. The bubble spectra produced by such system was characterized by means of an optical bubble measuring device (BMS) and it was found to be consistent with oceanic bubble spectra properties. Seawater proxy solutions were prepared from laboratory biologically-synthesized exudates produced by oceanic representative algal species and introduced in the tank for the generation of marine aerosol by bubble bursting. Two experimental methods were employed for seawater proxies preparation: the formation of surface monolayers from the biogenic surfactants extracted by a solid phase extraction technique (monolayer method) and the mixing of the exudates in the sea salt water bulk (bulk mixing method). Particle size distribution, hygroscopicity and cloud condensation nuclei experiments for different monolayers, and exudate mixtures were performed. This contribution provides an overview of the experimental study conducted and the most relevant results found in this research work.
Impact of Groundwater Salinity on Bioremediation Enhanced by Micro-Nano Bubbles
Li, Hengzhen; Hu, Liming; Xia, Zhiran
2013-01-01
Micro-nano bubbles (MNBs) technology has shown great potential in groundwater bioremediation because of their large specific surface area, negatively charged surface, long stagnation, high oxygen transfer efficiency, etc. Groundwater salinity, which varies from sites due to different geological and environmental conditions, has a strong impact on the bioremediation effect. However, the groundwater salinity effect on MNBs’ behavior has not been reported. In this study, the size distribution, oxygen transfer efficiency and zeta potential of MNBs was investigated in different salt concentrations. In addition, the permeability of MNBs’ water through sand in different salt concentrations was studied. The results showed that water salinity has no influence on bubble size distribution during MNBs generation. MNBs could greatly enhance the oxygen transfer efficiency from inner bubbles to outer water, which may greatly enhance aerobic bioremediation. However, the enhancement varied depending on salt concentration. 0.7 g/L was found to be the optimal salt concentration to transfer oxygen. Moreover, MNBs in water salinity of 0.7 g/L had the minimum zeta potential. The correlation of zeta potential and mass transfer was discussed. The hydraulic conductivities of sand were similar for MNBs water with different salt concentrations. The results suggested that salinity had a great influence on MNBs performance, and groundwater salinity should be taken into careful consideration in applying MNBs technology to the enhancement of bioremediation. PMID:28788299
Screening of zinc-based sorbents for hot-gas desulfurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joong B. Lee; Chong K. Ryu; Chang K. Yi
2008-03-15
Highly reactive and attrition-resistant ZnO-based sorbents that are suitable for bubbling fluidized-bed reactors can be produced using the spray-drying method. Most of the ZnO-based sorbents prepared here (ZAC-X, X = 18N-25N) satisfy the physical and chemical criteria for bubbling fluidized-bed application (spherical shape, average particle size, 90-110 {mu}m; size distribution, 40-230 {mu}m; bulk density, 0.9-1.0 g/mL; attrition index (AI), 40-80%; sulfur sorption capacity, 14-17 wt %; sorbent use, 70-80%). The performance test of the ZAC-C sorbent at Korea Institute of Energy Research (KIER) with a bubbling fluidized-bed for 70 h also demonstrated that it had good sulfidation and regeneration performancemore » (11 wt % sorption capacity and 52% sorbent use) as well as reasonable attrition resistance (1.1% attrition loss for 70 h). 14 refs., 7 figs., 6 tabs.« less
Dynamics of Polydisperse Foam-like Emulsion
NASA Astrophysics Data System (ADS)
Hicock, Harry; Feitosa, Klebert
2011-10-01
Foam is a complex fluid whose relaxation properties are associated with the continuous diffusion of gas from small to large bubbles driven by differences in Laplace pressures. We study the dynamics of bubble rearrangements by tracking droplets of a clear, buoyantly neutral emulsion that coarsens like a foam. The droplets are imaged in three dimensions using confocal microscopy. Analysis of the images allows us to measure their positions and radii, and track their evolution in time. We find that the droplet size distribution fits a Weibull distribution characteristics of foam systems. Additionally, we observe that droplets undergo continuous evolution interspersed by occasional large rearrangements in par with local relaxation behavior typical of foams.
Dual-frequency ultrasound for detecting and sizing bubbles.
Buckey, Jay C; Knaus, Darin A; Alvarenga, Donna L; Kenton, Marc A; Magari, Patrick J
2005-01-01
ISS construction and Mars exploration require extensive extravehicular activity (EVA), exposing crewmembers to increased decompression sickness risk. Improved bubble detection technologies could help increase EVA efficiency and safety. Creare Inc. has developed a bubble detection and sizing instrument using dual-frequency ultrasound. The device emits "pump" and "image" signals at two frequencies. The low-frequency pump signal causes an appropriately-sized bubble to resonate. When the image frequency hits a resonating bubble, mixing signals are returned at the sum and difference of the two frequencies. To test the feasibility of transcutaneous intravascular detection, intravascular bubbles in anesthetized swine were produced using agitated saline and decompression stress. Ultrasonic transducers on the chest provided the two frequencies. Mixing signals were detected transthoracically in the right atrium using both methods. A histogram of estimated bubble sizes could be constructed. Bubbles can be detected and sized transthoracically in the right atrium using dual-frequency ultrasound. c2005 Elsevier Ltd. All rights reserved.
Effects of floc and bubble size on the efficiency of the dissolved air flotation (DAF) process.
Han, Mooyoung; Kim, Tschung-il; Kim, Jinho
2007-01-01
Dissolved air flotation (DAF) is a method for removing particles from water using micro bubbles instead of settlement. The process has proved to be successful and, since the 1960s, accepted as an alternative to the conventional sedimentation process for water and wastewater treatment. However, limited research into the process, especially the fundamental characteristics of bubbles and particles, has been carried out. The single collector collision model is not capable of determining the effects of particular characteristics, such as the size and surface charge of bubbles and particles. Han has published a set of modeling results after calculating the collision efficiency between bubbles and particles by trajectory analysis. His major conclusion was that collision efficiency is maximum when the bubbles and particles are nearly the same size but have opposite charge. However, experimental verification of this conclusion has not been carried out yet. This paper describes a new method for measuring the size of particles and bubbles developed using computational image analysis. DAF efficiency is influenced by the effect of the recycle ratio on various average floc sizes. The larger the recycle ratio, the higher the DAF efficiency at the same pressure and particle size. The treatment efficiency is also affected by the saturation pressure, because the bubble size and bubble volume concentration are controlled by the pressure. The highest efficiency is obtained when the floc size is larger than the bubble size. These results, namely that the highest collision efficiency occurs when the particles and bubbles are about the same size, are more in accordance with the trajectory model than with the white water collector model, which implies that the larger the particles, the higher is the collision efficiency.
Investigating the explosivity of shallow sub-aqueous basaltic eruptions
NASA Astrophysics Data System (ADS)
Murtagh, R.; White, J. D. L.
2009-04-01
Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The diverse nature of the vesicularity is reflected also in SEM images. Dense clasts display textures with isolated, tiny, serrate-edged bubbles, while mean- and high-vesicularity clasts display more numerous, medium-sized, rounded bubbles. Based on these observations, fragmentation at various stages of a complex vesiculation history is suggested. The second site, Black Point, is situated in eastern California, U.S. Another emergent volcano, it was erupted into Lake Russell ~13,000 years ago. Similar to Pahvant Butte, its unconsolidated mound consists of glassy ash and lapilli and is topped by indurated, palagonitized tuff ring/cone deposits. A well exposed quarry section on the southeast slopes of the edifice is considered here. Sub-horizontal beds display pinch and swell structures and some cross-stratification. Vesicularity indices extend from 58.7% - 66.6% while vesicularity ranges are broad, 27.8% - 79.7% for example. The higher overall vesicularity implies higher rates of ascent and eruption discharge, a conclusion supported by textural features of bubbles in this section such as a population of uniformly sized small vesicles. Bubble nucleation and growth in an ascending parcel of magma is controlled both by decompression and diffusion of oversaturated volatiles as the magma rises. Bubble growth plays a major role in controlling eruption behaviour and we can obtain useful quantitative records of vesicle size data through thin section imaging and analysis. Vesicle size data can be expressed as number per area (NA), number per volume (NV), cumulative number density (N(>L)), volume fraction, cumulative volume fraction and vesicle size distribution (VSD). Not only can the trends and patterns of bubble size reveal insights into eruptive styles, intensity; bubble nucleation, growth, coalescence and deformation, they can also be analysed with other information to infer volatile content and degassing record. High vesicle number densities have been interpreted as being the result of rapid bubble nucleation at high supersaturations. Homogenous bubble nucleation is symptomatic of large supersaturations and high decompression values, whereas heterogeneous bubble nucleation on pre-existing microlites may occur at much lower saturation and decompression values. The spatial density of bubble nuclei controls the rate of diffusion-limited bubble growth and growth of volatile depletion shells around bubbles. Results thus far are restricted to the Pahvant Butte sample suite and indicate low bubble number densities, which could be reflecting a high connectivity of bubbles; polymodal volume fraction distributions, indicating bubble coalescence and multiple stages of bubble nucleation; VSD plots display curved trends further supporting the theory that bubble coalescence and other ripening processes have occurred. These vesicle-population characteristics are most similar to those reported from Stromboli. Despite this similarity, eruption style, energetics and dispersal are unique to subaqueous eruptions, and are inferred to be equivalent to those that formed the subaqueous base of Surtsey volcano.
Development and performance evaluation of air fine bubbles on water quality of thai catfish rearing
NASA Astrophysics Data System (ADS)
Subhan, Ujang; Muthukannan, Vanitha; Azhary, Sundoro Yoga; Mulhadi, Muhammad Fakhri; Rochima, Emma; Panatarani, Camellia; Joni, I. Made
2018-02-01
The efficiency and productivity of aquaculture strongly depends on the development of advanced technology for water quality management system. The most important factor for the success of intensive aquaculture system is controlling the water quality of fish rearing media. This paper reports the design of fine bubbles (FBs) generator and performance evaluation of the system to improve water quality in thai catfish media (10 g/ind) with density (16.66 ind./L). The FBs generator was designed to control the size distribution of bubble by controlling its air flow rate entry to the mixing chamber of the generator. The performance of the system was evaluated based on the produced debit, dissolved oxygen rate and ammonia content in the catfish medium. The size distribution was observed by using a high speed camera image followed by processing using ImageJ. freeware application. The results show that air flow rate 0.05 L/min and 0.1 L/min received average bubble size of 29 µm and 31 µm respectively. The generator produced bubbles with capacity of 6 L/min and dissolved oxygen rate 0.2 ppm/min/L. The obtained DO growth was 0.455 ppm/second/L while the average decay rate was 0.20 ppm/second/L. (0.011/0.005 fold). In contrast, the recieved DO growth rate is faster compared to the DO consumption rate of the Thai catfish. This results indicated that the potential application of FBs enhanced the density of thai catfish seed rearing. In addition, ammonia can be reduced at 0.0358 ppm/hour/L and it is also observed that the inhibition of bacterial growth of air FBs is postive to Aeromonas hydrophila bacteria compared to the negative control. It is concluded that as-developed FBs system can be potentially applied for intensive thai catfish culture and expected to improve the feeding efficiency rate.
Experimental study on wake structure of single rising clean bubble
NASA Astrophysics Data System (ADS)
Sato, Ayaka; Takedomi, Yuta; Shirota, Minori; Sanada, Toshiyuki; Watanabe, Masao
2007-11-01
Wake structure of clean bubble rising in quiescent silicone oil solution of photochromic dye is experimentally studied. A single bubble is generated, immediately after UV sheet light illuminates the part of the liquid just above the bubble generation nozzle in order to activate photochromic dye. Once the bubble passes across the colored part of the liquid, the bubble is accompanied by some portion of activated dye tracers; hence the flow structure in the rear of the single rising bubble is visualized. We capture stereo images of both wake structure and bubble motion. We study how wake structure changes with the increase in bubble size. We observe the stable axisymmetric wake structure, which is called `standing eddy' when bubble size is relatively small, and then wake structure becomes unstable and starts to oscillate with the increase in bubble size. With further increase in bubble size, a pair of streamwise vortices, which is called `double thread', is observed. We discuss in detail this transition from the steady wake to unsteady wake structure, especially double thread wake development and hairpin vortices shedding, in relation to the transition from rectilinear to spiral or zigzag bubble motions.
Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; ...
2014-07-14
In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale
In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less
Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.
Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego
2017-12-04
We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.
2016-07-08
Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials alongmore » $$\\langle$$110$$\\rangle$$ directions in the body-centered cubic U matrix causes the gas bubble alignment along $$\\langle$$110$$\\rangle$$ directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.« less
Study of CO2 bubble dynamics in seawater from QICS field Experiment
NASA Astrophysics Data System (ADS)
Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.
2011-12-01
One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html
Study of CO2 bubble dynamics in seawater from QICS field Experiment
NASA Astrophysics Data System (ADS)
Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.
2013-12-01
One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html
Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F
2016-03-01
This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization. Copyright © 2015 Elsevier B.V. All rights reserved.
Inviscid dynamics of a wet foam drop with monodisperse bubble size distribution
NASA Astrophysics Data System (ADS)
McDaniel, J. Gregory; Akhatov, Iskander; Holt, R. Glynn
2002-06-01
Motivated by recent experiments involving the acoustic levitation of foam drops, we develop a model for nonlinear oscillations of a spherical drop composed of monodisperse aqueous foam with void fraction below 0.1. The model conceptually divides a foam drop into many cells, each cell consisting of a spherical volume of liquid with a bubble at its center. By treating the liquid as incompressible and inviscid, a nonlinear equation is obtained for bubble motion due to a pressure applied at the outer radius of the liquid sphere. Upon linearizing this equation and connecting the cells at their outer radii, a wave equation is obtained with a dispersion relation for the sound waves in a bubbly liquid. For the spherical drop, this equation is solved by a normal mode expansion that yields the natural frequencies as functions of standard foam parameters. Numerical examples illustrate how the analysis may be used to extract foam parameters, such as void fraction and bubble radius, from the experimentally measured natural frequencies of a foam drop.
Rice-like hollow nano-CaCO3 synthesis
NASA Astrophysics Data System (ADS)
Ulkeryildiz, Eda; Kilic, Sevgi; Ozdemir, Ekrem
2016-09-01
We have shown that Ca(OH)2 solution is a natural stabilizer for CaCO3 particles. We designed a CO2 bubbling crystallization reactor to produce nano-CaCO3 particles in homogenous size distribution without aggregation. In the experimental set-up, the crystallization region was separated from the stabilization region. The produced nanoparticles were removed from the crystallization region into the stabilization region before aggregation or crystal growth. It was shown that rice-like hollow nano-CaCO3 particles in about 250 nm in size were produced with almost monodispersed size distribution. The particles started to dissolve through their edges as CO2 bubbles were injected, which opened-up the pores inside the particles. At the late stages of crystallization, the open pores were closed as a result of dissolution-recrystallization of the newly synthesized CaCO3 particles. These particles were stable in Ca(OH)2 solution and no aggregation was detected. The present methodology can be used in drug encapsulation into inorganic CaCO3 particles for cancer treatment with some modifications.
Acoustic measurement of bubble size and position in a piezo driven inkjet printhead
NASA Astrophysics Data System (ADS)
van der Bos, Arjan; Jeurissen, Roger; de Jong, Jos; Stevens, Richard; Versluis, Michel; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Lohse, Detlef
2008-11-01
A bubble can be entrained in the ink channel of a piezo-driven inkjet printhead, where it grows by rectified diffusion. If large enough, the bubble counteracts the pressure buildup at the nozzle, resulting in nozzle failure. Here an acoustic sizing method for the volume and position of the bubble is presented. The bubble response is detected by the piezo actuator itself, operating in a sensor mode. The method used to determine the volume and position of the bubble is based on a linear model in which the interaction between the bubble and the channel are included. This model predicts the acoustic signal for a given position and volume of the bubble. The inverse problem is to infer the position and volume of the bubble from the measured acoustic signal. By solving it, we can thus acoustically measure size and position of the bubble. The validity of the presented method is supported by time-resolved optical observations of the dynamics of the bubble within an optically accessible ink-jet channel.
Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.
2017-12-01
Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.
Bubble propagation on a rail: a concept for sorting bubbles by size
NASA Astrophysics Data System (ADS)
Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne
We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.
Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam
NASA Astrophysics Data System (ADS)
Lu, Yuan; Katz, Joseph; Prosperetti, Andrea
2013-07-01
In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line holography. Variations in the water density and refractive index are used for determining the spatial distribution of the acoustic pressure nonintrusively. Several cavitation phenomena occur within the acoustic partially standing wave caused by the reflection of sound from the walls of the test chamber. At all sound levels, bubbly layers form in the periphery of the focal zone in the pressure nodes of the partial standing wave. At high sound levels, clouds of vapor microbubbles are generated and migrate in the direction of the acoustic beam. Both the cloud size and velocity vary periodically, with the diameter peaking at the pressure nodes and velocity at the antinodes. A simple model involving linearized bubble dynamics, Bjerknes forces, sound attenuation by the cloud, added mass, and drag is used to predict the periodic velocity of the bubble cloud, as well as qualitatively explain the causes for the variations in the cloud size. The analysis shows that the primary Bjerknes force and drag dominate the cloud motion, and suggests that the secondary Bjerknes force causes the oscillations in the cloud size.
Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.
Chen, Qianjin; Luo, Long
2018-04-17
We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.
A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging
NASA Astrophysics Data System (ADS)
Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue
2014-03-01
Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.
Microbubble Sizing and Shell Characterization Using Flow Cytometry
Tu, Juan; Swalwell, Jarred E.; Giraud, David; Cui, Weicheng; Chen, Weizhong; Matula, Thomas J.
2015-01-01
Experiments were performed to size, count, and obtain shell parameters for individual ultrasound contrast microbubbles using a modified flow cytometer. Light scattering was modeled using Mie theory, and applied to calibration beads to calibrate the system. The size distribution and population were measured directly from the flow cytometer. The shell parameters (shear modulus and shear viscosity) were quantified at different acoustic pressures (from 95 to 333 kPa) by fitting microbubble response data to a bubble dynamics model. The size distribution of the contrast agent microbubbles is consistent with manufacturer specifications. The shell shear viscosity increases with increasing equilibrium microbubble size, and decreases with increasing shear rate. The observed trends are independent of driving pressure amplitude. The shell elasticity does not vary with microbubble size. The results suggest that a modified flow cytometer can be an effective tool to characterize the physical properties of microbubbles, including size distribution, population, and shell parameters. PMID:21622051
On the Physics of Fizziness: How liquid properties control bursting bubble aerosol production?
NASA Astrophysics Data System (ADS)
Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe; Seon, Thomas
2014-11-01
Either in a champagne glass or at the oceanic scales, the tiny capillary bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the ejected droplets produced by a single bubble, we investigate experimentally how liquid properties and bubble size affect their characteristics: number, ejection velocities, sizes and ejection heights. These results allow us to finely tune the bursting bubble aerosol production. In the context of champagne industry, aerosols play a major role by spreading wine aroma above the glass. We demonstrate that this champagne fizz can be enhanced by selecting the wine viscosity and the bubble size, thanks to specially designed glass.
Convection in a volcanic conduit recorded by bubbles
Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Gonnermann, Helge M.; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.
2013-01-01
Microtextures of juvenile pyroclasts from Kīlauea’s (Hawai‘i) early A.D. 2008 explosive activity record the velocity and depth of convection within the basaltic magma-filled conduit. We use X-ray microtomography (μXRT) to document the spatial distribution of bubbles. We find small bubbles (radii from 5 μm to 70 μm) in a halo surrounding larger millimeter-size bubbles. This suggests that dissolved water was enriched around the larger bubbles—the opposite of what is expected if bubbles grow as water diffuses into the bubble. Such volatile enrichment implies that the volatiles within the large bubbles were redissolving into the melt as they descended into the conduit by the downward motion of convecting magma within the lava lake. The thickness of the small bubble halo is ∼100–150 μm, consistent with water diffusing into the melt on time scales on the order of 103 s. Eruptions, triggered by rockfall, rapidly exposed this magma to lower pressures, and the haloes of melt with re-dissolved water became sufficiently supersaturated to cause nucleation of the population of smaller bubbles. The required supersaturation pressures are consistent with a depth of a few hundred meters and convection velocities of the order of 0.1 m s−1, similar to the circulation velocity observed on the surface of the Halema‘uma‘u lava lake.
Modelling the global efficiency of dissolved air flotation.
Leppinen, D M; Dalziel, S B; Linden, P F
2001-01-01
The purpose of this paper is to examine how the efficiency of dissolved air flotation is affected by the size of bubbles and particles. The rise speed of bubble/particle agglomerates is modelled as a function of bubble and particle size, while the kinematics of the bubble attachment process is modelled using the population balance approach adopted by Matsui, Fukushi and Tambo. It is found that flotation, in general, is enhanced by the use of larger particles and larger bubbles. In particular, it is concluded that for the ultra-high surface loading rates of 25 m/hr or more planned for future flotation tanks, bubble size will have to be increased by a factor of two over the size currently employed in many facilities during dissolved air flotation.
NASA Astrophysics Data System (ADS)
Borhan, Nurharyanti; Halim, Nurfadhlina Abdul; Amir, W. Ahmad Wan Muhammad
2017-09-01
A rational speculative bubble is a surge in asset prices that exceed its intrinsic value. Rational speculative bubbles are among the ascription which may lead to the collapse of an economic system. Rational speculative bubble cannot be created but it comes into existence when assets started to be traded. Financial rational speculative bubble and burst have negative effect on the economy and markets. Financial rational speculative bubbles are difficult to detect. This study aims to shows the size of rational speculative bubble in four markets, which are gold, Hang Seng, S&P500 and Nikkei 225 during year 2008 to 2016. In this study, generalized Johansen-Ledoit-Sornette model are used to find the size of the rational speculative bubble. Bubble detection is important for both sides of macro-economic decision makers and to the trader. Especially for a trading system that requires detailed knowledge about the time and the stage of the bubble burst.
Comparison of cavitation bubbles evolution in viscous media
NASA Astrophysics Data System (ADS)
Jasikova, Darina; Schovanec, Petr; Kotek, Michal; Kopecky, Vaclav
2018-06-01
There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB) method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.
Nanoparticle coated optical fibers for single microbubble generation
NASA Astrophysics Data System (ADS)
Pimentel-Domínguez, Reinher; Hernández-Cordero, Juan
2011-09-01
The study of bubbles and bubbly flows is important in various fields such as physics, chemistry, medicine, geophysics, and even the food industry. A wide variety of mechanical and acoustic techniques have been reported for bubble generation. Although a single bubble may be generated with these techniques, controlling the size and the mean lifetime of the bubble remains a difficult task. Most of the optical methods for generation of microbubbles involve high-power pulsed laser sources focused in absorbing media such as liquids or particle solutions. With these techniques, single micron-sized bubbles can be generated with typical mean lifetimes ranging from nano to microseconds. The main problem with these bubbles is their abrupt implosion: this produces a shock wave that can potentially produce damages on the surroundings. These effects have to be carefully controlled in biological applications and in laser surgery, but thus far, not many options are available to effectively control micron-size bubble growth. In this paper, we present a new technique to generate microbubbles in non-absorbing liquids. In contrast to previous reports, the proposed technique uses low-power and a CW radiation from a laser diode. The laser light is guided through an optical fiber whose output end has been coated with nanostructures. Upon immersing the tip of the fiber in ethanol or water, micron-size bubbles can be readily generated. With this technique, bubble growth can be controlled through adjustments on the laser power. We have obtained micron-sized bubbles with mean lifetimes in the range of seconds. Furthermore, the generated bubbles do not implode, as verified with a high-speed camera and flow visualization techniques.
Size limits the formation of liquid jets during bubble bursting
Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat
2011-01-01
A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715
Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F
2015-09-01
The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Herman, Cila
1999-01-01
In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a test cell was developed. All four vertical walls of the test cell are transparent, and they allow transillumination with laser light for visualization experiments by HI. The bottom electrode is a copper cylinder, which is electrically grounded. The copper block is heated with a resistive heater and it is equipped with 6 thermocouples that provide reference temperatures for the measurements with HI. The top electrode is a mesh electrode. Bubbles are injected with a syringe into the test cell through the bottom electrode. The working fluids presently used in the interferometric visualization experiments, water and PF 5052, satisfy requirements regarding thermophysical, optical and electrical properties. A 30kV power supply equipped with a voltmeter allows to apply the electric field to the electrodes during the experiments. The magnitude of the applied voltage can be adjusted either manually or through the LabVIEW data acquisition and control system connected to a PC. Temperatures of the heated block are recorded using type-T thermocouples, whose output is read by a data acquisition system. Images of the bubbles are recorded with 35mm photographic and 16mm high-speed cameras, scanned and analyzed using various software packages. Visualized temperature fields HI allows the visualization of temperature fields in the vicinity of bubbles during boiling in the form of fringes. Typical visualized temperature distributions around the air bubbles injected into the thermal boundary layer in PF5052 are shown. The temperature of the heated surface is 35 C. The temperature difference for a pair of fringes is approximately 0.05 C. The heat flux applied to the bottom surface is moderate, and the fringe patterns are regular. In the image a bubble penetrating the thermal boundary layer is visible. Because of the axial symmetry of the problem, simplified reconstruction techniques can be applied to recover the temperature field. The thermal plume developing above the heated surface for more intensive heating is shown. The temperature distribution in the liquid is clearly 3D, and tomographic techniques have to be applied to recover the temperature distribution in such a physical situation. A sequence of interferometric images showing the temperature distribution around the rising bubble, recorded with a high-speed camera is shown. Again, the temperature distribution is 3D, and a more complex approach to the evaluation, the tomographic reconstruction has to be taken. Measurement of the temperature distribution from the fringe pattern temperature distributions that yield important information regarding heat transfer are determined. Two algorithms that allow the quantitative evaluation of interferometric fringe patterns and the reconstruction of temperature fields during boiling have been developed at the Heat Transfer Laboratory of the Johns Hopkins University. In the first algorithm the bubble is assumed to be axially symmetrical, which significantly reduces the computational effort for quantifying the temperature distribution around the bubble. For this purpose the thermal boundary layer around the bubble is divided into equidistant concentric shells, and the refractive index is assumed to be constant in each of the shells. Since large temperature gradients are expected in the vicinity of the bubble during boiling, the deflection of the light beam cannot be neglected in boiling experiments. Since the exit angle of the light beam is known, this allows to account for the deflections and phase shifts outside the boundary layer (in the bulk fluid and in the windows of the test cell). Three dimensional temperature distributions in the vicinity of the bubble are reconstructed using tomographic techniques. In tomography, the measurement volume is sliced into 2D planes. In the present study these planes are parallel to the heated surface. The objective is to determine the values of the field parameter of interest in form of the field function in these 2D planes. The field parameter is the change of the refractive index of the liquid in the measurement volume caused by temperature changes. By superimposing data for many 2D planes recorded at the same time instant, the 3D temperature distribution in the measurement volume is recovered.
Gas transfer in a bubbly wake flow
NASA Astrophysics Data System (ADS)
Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.
2016-05-01
The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.
NASA Astrophysics Data System (ADS)
Zagnit'ko, A. V.; Chuvilin, D. Yu.
2010-06-01
The parameters of aerosol particles formed in the course of the spontaneous thermal condensation of vapors and bubbling a 66LiF-34BeF2 (mol %) eutectic salt mixture with helium have been studied. For this purpose, a vertical bubbling mode at T ≈ 900 K and an ampule device for obtaining reactor radioisotopes for medical applications were used. The rate of the bulk removal and the chemical composition of aerosols were measured. The size distribution of the aerosol particles was bimodal, and the mass concentration of the particles exceeded by far the maximum permissible concentration (MPC). The characteristics of regenerated nickel multilayer nanofilters for ultrahigh filtration of aerosols from the salt liquid melt were analyzed.
The prediction of the cavitation phenomena including population balance modeling
NASA Astrophysics Data System (ADS)
Bannari, Rachid; Hliwa, Ghizlane Zineb; Bannari, Abdelfettah; Belghiti, Mly Taib
2017-07-01
Cavitation is the principal reason behind the behavior's modification of the hydraulic turbines. However, the experimental observations can not be appropriate to all cases due to the limitations in the measurement techniques. The mathematical models which have been implemented, use the mixture multiphase frame. As well as, most of the published work is limited by considering a constant bubble size distribution. However, this assumption is not realist. The aim of this article is the implementation and the use of a non-homogeneous multiphase model which solve two phases transport equation. The evolution of bubble size is considered by the population balance equation. This study is based on the eulerian-eulerian model, associated to the cavitation model. All the inter-phase forces such as drag, lift and virtual mass are used.
A bubble detection system for propellant filling pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Wen; Zong, Guanghua; Bi, Shusheng
2014-06-15
This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It canmore » generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.« less
Ejection of Metal Particles into Superfluid 4He by Laser Ablation.
Buelna, Xavier; Freund, Adam; Gonzalez, Daniel; Popov, Evgeny; Eloranta, Jussi
2016-10-05
The dynamics following laser ablation of a metal target immersed in superfluid $^4$He is studied by time-resolved shadowgraph photography. The delayed ejection of hot micrometer-sized particles from the target surface into the liquid was indirectly observed by monitoring the formation and growth of gaseous bubbles around the particles. The experimentally determined particle average velocity distribution appears similar as previously measured in vacuum but exhibits a sharp cutoff at the speed of sound of the liquid. The propagation of the subsonic particles terminates in slightly elongated non-spherical gas bubbles residing near the target whereas faster particles reveal an unusual hydrodynamic response of the liquid. Based on the previously established semi-empirical model developed for macroscopic objects, the ejected transonic particles exhibit supercavitating flow to reduce their hydrodynamic drag. Supersonic particles appear to follow a completely different propagation mechanism as they leave discrete and semi-continuous bubble trails in the liquid. The relatively low number density of the observed non-spherical gas bubbles indicates that only large micron-sized particles are visualized in the experiments. Although the unique properties of superfluid helium allow a detailed characterization of these processes, the developed technique can be used to study the hydrodynamic response of any liquid to fast propagating objects on the micrometer-scale.
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Nihei, N.; Ueda, Y.; Moldrup, P.; Nishimura, T.
2016-12-01
The micro- and nano-bubbles (MNBs) have considerable potentials for the remediation of soil contaminated by organic compounds when used in conjunction with bioremediation technology. Understanding a transport mechanism of MNBs in soils is essential to optimize remediation techniques using MNBs. In this study, column transport experiments using glass beads with different size fractions (average particles size: 0.1 mm and 0.4 mm) were conducted, where MNBs created by oxygen gas were injected to the column with different flow rates. Effects of particle size and bubble characteristics on MNB transport in porous media were investigated based on the column experiments. The results showed that attachments of MNBs were enhanced under lower flow rate. Under higher flow rate condition, there were not significant differences of MNBs transport in porous media with different particle size. A convection-dispersion model including bubble attachment, detachment, and straining terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data. Further investigations will be conducted to understand bubble characteristics including bubble size and zeta potential on MNB transport in porous media. Relations between in model parameters in the transport model and physical and chemical properties in porous media and MNBs will be discussed.
The role of cavitation in liposome formation.
Richardson, Eric S; Pitt, William G; Woodbury, Dixon J
2007-12-15
Liposome size is a vital parameter of many quantitative biophysical studies. Sonication, or exposure to ultrasound, is used widely to manufacture artificial liposomes, yet little is known about the mechanism by which liposomes are affected by ultrasound. Cavitation, or the oscillation of small gas bubbles in a pressure-varying field, has been shown to be responsible for many biophysical effects of ultrasound on cells. In this study, we correlate the presence and type of cavitation with a decrease in liposome size. Aqueous lipid suspensions surrounding a hydrophone were exposed to various intensities of ultrasound and hydrostatic pressures before measuring their size distribution with dynamic light scattering. As expected, increasing ultrasound intensity at atmospheric pressure decreased the average liposome diameter. The presence of collapse cavitation was manifested in the acoustic spectrum at high ultrasonic intensities. Increasing hydrostatic pressure was shown to inhibit the presence of collapse cavitation. Collapse cavitation, however, did not correlate with decreases in liposome size, as changes in size still occurred when collapse cavitation was inhibited either by lowering ultrasound intensity or by increasing static pressure. We propose a mechanism whereby stable cavitation, another type of cavitation present in sound fields, causes fluid shearing of liposomes and reduction of liposome size. A mathematical model was developed based on the Rayleigh-Plesset equation of bubble dynamics and principles of acoustic microstreaming to estimate the shear field magnitude around an oscillating bubble. This model predicts the ultrasound intensities and pressures needed to create shear fields sufficient to cause liposome size change, and correlates well with our experimental data.
Ma, L X; Wang, F Q; Wang, C A; Wang, C C; Tan, J Y
2015-11-20
Spectral properties of sea foam greatly affect ocean color remote sensing and aerosol optical thickness retrieval from satellite observation. This paper presents a combined Mie theory and Monte Carlo method to investigate visible and near-infrared spectral reflectance and bidirectional reflectance distribution function (BRDF) of sea foam layers. A three-layer model of the sea foam is developed in which each layer is composed of large air bubbles coated with pure water. A pseudo-continuous model and Mie theory for coated spheres is used to determine the effective radiative properties of sea foam. The one-dimensional Cox-Munk surface roughness model is used to calculate the slope density functions of the wind-blown ocean surface. A Monte Carlo method is used to solve the radiative transfer equation. Effects of foam layer thickness, bubble size, wind speed, solar zenith angle, and wavelength on the spectral reflectance and BRDF are investigated. Comparisons between previous theoretical results and experimental data demonstrate the feasibility of our proposed method. Sea foam can significantly increase the spectral reflectance and BRDF of the sea surface. The absorption coefficient of seawater near the surface is not the only parameter that influences the spectral reflectance. Meanwhile, the effects of bubble size, foam layer thickness, and solar zenith angle also cannot be obviously neglected.
Constraining pre-eruptive volatile contents and degassing histories in submarine lavas
NASA Astrophysics Data System (ADS)
Jones, M.; Soule, S. A.; Liao, Y.; Le Roux, V.; Brodsky, H.; Kurz, M. D.
2017-12-01
Vesicle textures in submarine lavas have been used to calculate total (pre-eruption) volatile concentrations in mid-ocean ridge basalts (MORB), which provide constraints on upper mantle volatile contents and CO2 fluxes along the global MOR. In this study, we evaluate vesicle size distributions and volatile contents in a suite of 20 MORB samples, which span the range of typical vesicularities and bubble number densities observed in global MORB. We demonstrate that 2D imaging coupled with traditional stereological methods closely reproduces vesicle size distributions and vesicularities measured using 3D x-ray micro-computed tomography (μ-CT). We further demonstrate that x-ray μ-CT provides additional information about bubble deformation and clustering that are linked to bubble nucleation and lava emplacement dynamics. The validation of vesicularity measurements allows us to evaluate the methods for calculating total CO2 concentrations in MORB using dissolved volatile content (SIMS), vesicularity, vesicle gas density, and equations of state. We model bubble and melt contraction during lava quenching and show that the melt viscosity prevents bubbles from reaching equilibrium at the glass transition temperature. Thus, we suggest that higher temperatures should be used to calculate exsolved volatile concentrations based on observed vesicularities. Our revised method reconciles discrepancies between exsolved volatile contents measured by gas manometry and calculated from vesicularity. In addition, our revised method suggests that some previous studies may have overestimated MORB volatile concentrations by up to a factor of two, with the greatest differences in samples with the highest vesicularities (e.g., `popping rock' 2πD43). These new results have important implications for CO2/Nb of `undegassed' MORB and global ridge CO2 fluxes. Lastly, our revised method yields constant total CO2 concentrations in sample suites from individual MOR eruptions that experienced syn-eruptive degassing. These results imply closed-system degassing during magma ascent and emplacement following equilibration at the depth of melt storage in the crust.
Investigating the origin of acoustic attenuation in liquid foams.
Pierre, Juliette; Gaulon, Camille; Derec, Caroline; Elias, Florence; Leroy, Valentin
2017-08-01
Liquid foams are known to be highly efficient to absorb acoustic waves but the origin of the sound dissipation remains unknown. In this paper, we present low frequency (0.5-4kHz) experimental results measured with an impedance tube and we confront the recorded attenuations with a simple model that considers the foam as a concentrate bubbly liquid. In order to identify the influence of the different parameters constituting the foams we probe samples with different gases, and various liquid fractions and bubble size distributions. We demonstrate that the intrinsic acoustic attenuation in the liquid foam is due to both thermal and viscous losses. The physical mechanism of the viscous term is not elucidated but the microscopic effective viscosity evidenced here can be described by a phenomenological law scaling with the bubble size and the gas density. In our experimental configuration a third dissipation term occurs. It comes from the viscous friction on the wall of the impedance tube and it is well described by the Kirchhoff law considering the macroscopic effective viscosity classically measured in rheology experiments.
Spreading of Emulsions on Glass Substrates
NASA Astrophysics Data System (ADS)
Mohammad Karim, Alireza; Kavehpour, Pirouz
2012-11-01
The wettability of emulsions is an important factor with explicit influence in an extensive variety of industrial applications ranging from the petroleum to food industries. Surprisingly, there is no comprehensive study of emulsion spreading to date; this is due to the complexity of the structure of the emulsions and non-homogeneity of the dispersed phase bubbles in size as well as distribution through the emulsion. The spreading of water/silicone oil emulsions on glass substrates was investigated. The emulsions were prepared with varying volume fractions of water dispersed in silicone oil, with addition of small amounts of surfactant to stabilize the emulsion structure. The time dependent variation of dynamic contact angle, base diameter, and the spreading rate of the droplets of an emulsion are different from a pure substance. The effect of water/silicone oil weight percentage as well as the droplet size and dispersed phase bubble size were also investigated. The weight percentage of water/silicone oil emulsion and droplet size did not have significant influence on the spreading dynamics; however the dispersed phase drop size affected the spreading dynamics substantially.
Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung
2005-01-01
In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.
The effects of a decompression on seismic parameter profiles in a gas-charged magma
NASA Astrophysics Data System (ADS)
Sturton, Susan; Neuberg, Jürgen
2003-11-01
Seismic velocities in a gas-charged magma vary with depth and time. Relationships between pressure, density, exsolved gas content, and seismic velocity are derived and used in conjunction with expressions describing diffusive bubble growth to find a series of velocity profiles which depend on time. An equilibrium solution is obtained by considering a column of magma in which the gas distribution corresponds to the magmastatic pressure profile with depth. Decompression events of various sizes are simulated, and the resulting disequilibrium between the gas pressure and magmastatic pressure leads to bubble growth and therefore to a change of seismic velocity and density with time. Bubble growth stops when the system reaches a new equilibrium. The corresponding volume increase is accommodated by accelerating the magma column upwards and an extrusion of lava. A timescale for the system to return to equilibrium can be obtained. The effect of changes in magma viscosity and bubble number density is examined.
Fractality and growth of He bubbles in metals
NASA Astrophysics Data System (ADS)
Kajita, Shin; Ito, Atsushi M.; Ohno, Noriyasu
2017-08-01
Pinholes are formed on surfaces of metals by the exposure to helium plasmas, and they are regarded as the initial process of the growth of fuzzy nanostructures. In this study, number density of the pinholes is investigated in detail from the scanning electron microscope (SEM) micrographs of tungsten and tantalum exposed to the helium plasmas. A power law relation was identified between the number density and the size of pinholes. From the slope and the region where the power law was satisfied, the fractal dimension D and smin, which characterize the SEM images, are deduced. Parametric dependences and material dependence of D and smin are revealed. To explain the fractality, simple Monte-Carlo simulations including random walks of He atoms and absorption on bubble was introduced. It is shown that the initial position of the random walk is one of the key factors to deduce the fractality. The results indicated that new nucleations of bubbles are necessary to reproduce the number-density distribution of bubbles.
Measurements of CO{sub 2} fluxes and bubbles from a tower during ASGASEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeuw, G. de; Kunz, G.J.; Larsen, S.E.
1994-12-31
The Air-Sea Gas Exchange experiment ASGASEX was conducted from August 30 until October 1st from the Meetpost Noordwijk (MPN), a research tower in the North Sea at 9 km from the Dutch coast. The objective of ASGASEX was a study of parameters affecting the air-sea exchange of gases, and a comparison of experimental methods to derive the exchange coefficient for CO{sub 2}. A detailed description of the ASGASEX experiment is presented in Oost. The authors` contribution to ASGASEX was a micro-meteorological package to measure the fluxes of CO{sub 2}, momentum, heat and water vapor, and an instrument to measure themore » size distribution of bubbles just below the sea surface. In this contribution the authors report preliminary results from the CO{sub 2} flux measurements and the bubble measurements. The latter was made as part of a larger study on the influence of bubbles on gas exchange in cooperation with the University of Southampton and the University of Galway.« less
Numerical investigation of homogeneous cavitation nucleation in a microchannel
NASA Astrophysics Data System (ADS)
Lyu, Xiuxiu; Pan, Shucheng; Hu, Xiangyu; Adams, Nikolaus A.
2018-06-01
The physics of nucleation in water is an important issue for many areas, ranging from biomedical to engineering applications. Within the present study, we investigate numerically homogeneous nucleation in a microchannel induced by shock reflection to gain a better understanding of the mechanism of homogeneous nucleation. The liquid expands due to the reflected shock and homogeneous cavitation nuclei are generated. An Eulerian-Lagrangian approach is employed for modeling this process in a microchanel. Two-dimensional axisymmetric Euler equations are solved for obtaining the time evolution of shock, gas bubble, and the ambient fluid. The dynamics of dispersed vapor bubbles is coupled with the surrounding fluid in a Lagrangian framework, describing bubble location and bubble size variation. Our results reproduce nuclei distributions at different stages of homogeneous nucleation and are in good agreement with experimental results. We obtain numerical data for the negative pressure that water can sustain under the process of homogeneous nucleation. An energy transformation description for the homogeneous nucleation inside a microchannel flow is derived and analyzed in detail.
Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation
NASA Astrophysics Data System (ADS)
Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon
2017-04-01
The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation.
Interfacial bubbles formed by plunging thin liquid films in a pool
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; David, Richard; Delvert, Alexandre; Gicquel, Eric; Panizza, Pascal; Courbin, Laurent
2017-06-01
We show that the immersion of a horizontally suspended thin film of liquid in a pool of the same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the fluid properties, the film's size, and its immersion velocity, our experiments unveil two formation regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the size of a produced bubble. To rationalize these results, we compare the pressure exerted by the air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which subsequently yields air entrapment and the production of a bubble. This physical model explains the power-law variations of the bubble size with the governing dimensionless number for each regime.
NASA Astrophysics Data System (ADS)
Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.
2017-11-01
Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.
Gas transport and vesicularity in low-viscosity liquids
NASA Astrophysics Data System (ADS)
Pioli, Laura; Bonadonna, Costanza; Abdulkareem, Lokman; Azzopardi, Barry; Phillips, Jeremy
2010-05-01
Vesicle textures of basaltic scoria preserve information on magma bubble content at fragmentation and are commonly used to constrain degassing, vesiculation and magma permeability. These studies are based on the assumption that microscale textures are representative of the conduit-scale structures and processes. However, the conditions for which this assumption is valid have not been investigated in detail. We have investigated conduit-scale structures by performing a series of experiments of separate two-phase flows in a 6.5-m high cylindrical bubble column using a combination of air with pure glucose syrup, water-syrup mixtures and pure water to reproduce open-system degassing and strombolian activity conditions in the upper volcanic conduit (i.e. at very low or zero liquid fluxes). We have varied gas fluxes, initial liquid height, gas inlet configuration and liquid viscosity and analyzed flow regimes and properties. Temperature and pressure were measured at several heights along the pipe and vesicularity was calculated using pressure data, liquid level measurements and an Electrical Capacitance tomography (ECT) system, which measures instantaneous vesicularity and phase distribution from capacitance measurements between pairs of electrodes placed uniformly around the pipe circumference. The aim of the experiments was to identify the effect of gas-flow rates on the flow regimes (i.e. bubbly, slug, churn and annular), the main degassing structures and the total gas content of the column. The effect of increasing and decreasing gas flow rates was also studied to check hysteresis effects. Results indicate that the vesicularity of the liquid column depends primarily on gas flux, whereas flow regimes exert a minor control. In fact, vesicularity increases with gas flux following a power-law trend whose exponent depends on the viscosity of the liquid. In addition, distributions of instantaneous gas fraction in the column cross section during syrup experiments have shown that gas is mainly transported by large, conduit-size bubbles rising in a microvesicular liquid. Coalescence processes occur throughout the whole column, and are strongly affected by bubble size, shearing and flow dynamics. Increasing gas fluxes increases frequency and length of the large bubbles but does not affect the concentration of small bubbles in the liquid matrix. Scaling of these experiments suggest that these conditions could be met in low viscosity, crystal-poor magmas and we therefore suggest that this dynamics could also characterize two-phase flow in open conduit mafic systems.
Size Control of Sessile Microbubbles for Reproducibly Driven Acoustic Streaming
NASA Astrophysics Data System (ADS)
Volk, Andreas; Kähler, Christian J.
2018-05-01
Acoustically actuated bubbles are receiving growing interest in microfluidic applications, as they induce a streaming field that can be used for particle sorting and fluid mixing. An essential but often unspoken challenge in such applications is to maintain a constant bubble size to achieve reproducible conditions. We present an automatized system for the size control of a cylindrical bubble that is formed at a blind side pit of a polydimethylsiloxane microchannel. Using a pressure control system, we adapt the protrusion depth of the bubble into the microchannel to a precision of approximately 0.5 μ m on a timescale of seconds. By comparing the streaming field generated by bubbles of width 80 μ m with a protrusion depth between -12 and 60 μ m , we find that the mean velocity of the induced streaming fields varies by more than a factor of 4. We also find a qualitative change of the topology of the streaming field. Both observations confirm the importance of the bubble size control system in order to achieve reproducible and reliable bubble-driven streaming experiments.
Spatial organization of surface nanobubbles and its implications in their formation process.
Lhuissier, Henri; Lohse, Detlef; Zhang, Xuehua
2014-02-21
We study the size and spatial distribution of surface nanobubbles formed by the solvent exchange method to gain insight into the mechanism of their formation. The analysis of Atomic Force Microscopy (AFM) images of nanobubbles formed on a hydrophobic surface reveals that the nanobubbles are not randomly located, which we attribute to the role of the history of nucleation during the formation. Moreover, the size of each nanobubble is found to be strongly correlated with the area of the bubble-depleted zone around it. The precise correlation suggests that the nanobubbles grow by diffusion of the gas from the bulk rather than by diffusion of the gas adsorbed on the surface. Lastly, the size distribution of the nanobubbles is found to be well described by a log-normal distribution.
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
Formulation and Characterization of Echogenic Lipid–Pluronic Nanobubbles
Krupka, Tianyi M.; Solorio, Luis; Wilson, Robin E.; Wu, Hanping; Azar, Nami; Exner, Agata A.
2012-01-01
The advent of microbubble contrast agents has enhanced the capabilities of ultrasound as a medical imaging modality and stimulated innovative strategies for ultrasound-mediated drug and gene delivery. While the utilization of microbubbles as carrier vehicles has shown encouraging results in cancer therapy, their applicability has been limited by a large size which typically confines them to the vasculature. To enhance their multifunctional contrast and delivery capacity, it is critical to reduce bubble size to the nanometer range without reducing echogenicity. In this work, we present a novel strategy for formulation of nanosized, echogenic lipid bubbles by incorporating the surfactant Pluronic, a triblock copolymer of ethylene oxide copropylene oxide coethylene oxide into the formulation. Five Pluronics (L31, L61, L81, L64 and P85) with a range of molecular weights (Mw: 1100 to 4600 Da) were incorporated into the lipid shell either before or after lipid film hydration and before addition of perfluorocarbon gas. Results demonstrate that Pluronic–lipid interactions lead to a significantly reduced bubble size. Among the tested formulations, bubbles made with Pluronic L61 were the smallest with a mean hydrodynamic diameter of 207.9 ± 74.7 nm compared to the 880.9 ± 127.6 nm control bubbles. Pluronic L81 also significantly reduced bubble size to 406.8 ± 21.0 nm. We conclude that Pluronic is effective in lipid bubble size control, and Pluronic Mw, hydrophilic–lipophilic balance (HLB), and Pluronic/ lipid ratio are critical determinants of the bubble size. Most importantly, our results have shown that although the bubbles are nanosized, their stability and in vitro and in vivo echogenicity are not compromised. The resulting nanobubbles may be better suited for contrast enhanced tumor imaging and subsequent therapeutic delivery. PMID:19957968
Single bubble of an electronegative gas in transformer oil in the presence of an electric field
NASA Astrophysics Data System (ADS)
Gadzhiev, M. Kh.; Tyuftyaev, A. S.; Il'ichev, M. V.
2017-10-01
The influence of the electric field on a single air bubble in transformer oil has been studied. It has been shown that, depending on its size, the bubble may initiate breakdown. The sizes of air and sulfur hexafluoride bubbles at which breakdown will not be observed have been estimated based on the condition for the avalanche-to-streamer transition.
NASA Astrophysics Data System (ADS)
Choi, James J.; Feshitan, Jameel A.; Wang, Shougang; Tung, Yao-Sheng; Baseri, Babak; Borden, Mark A.; Konofagou, Elisa E.
2009-04-01
Recent neuropharmaceutical developments have led to potent disease-modifying drugs. In spite of these advancements, most agents cannot traverse the blood-brain barrier (BBB) and deposit in the brain. Focused ultrasound (FUS) with microbubbles has been shown to induce noninvasive, localized, and transient BBB opening. Although promising, safety and efficacy concerns still remain. Previously reported experiments used conventional imaging contrast agents that have a wide size distribution. In this study, we hypothesize that BBB opening characteristics are dependent on bubble diameter. A 25 μl bolus of in-house manufactured, lipid-shelled bubbles with either 1-2 or 4-5 μm diameter ranges was injected intravenously. Pulsed FUS (frequency: 1.5 MHz, peak-negative pressure: 146-607 kPa, duty cycle: 20%, duration: 1-min) was then applied to the left hippocampus of mice (n = 16) in vivo through the intact skin and skull. MRI or fluorescence microscopy was used to determine BBB opening. Contrast-enhanced (Omniscan™; 0.75 mL; molecular weight: 574 Da) MRI (9.4-T) was acquired on multiple days after sonication to determine BBB opening and closing. Fluorescence microscopy was also used to determine the feasibility of delivering large, 3 kDa dextran compounds through the BBB. The BBB opening acoustic pressure threshold for the 4-5μm bubbles was in the 146-304 kPa range while the threshold for the 1-2μm bubbles was higher. In conclusion, FUS-induced BBB opening and closing was shown to be dependent on the bubble diameter indicating the possibility of specifically designing bubbles to enhance this therapeutic application.
Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows
NASA Astrophysics Data System (ADS)
Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro
2015-11-01
Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.
Propagation of a finite bubble in a Hele-Shaw channel of variable depth
NASA Astrophysics Data System (ADS)
Juel, Anne; Franco-Gomez, Andres; Thompson, Alice; Hazel, Andrew
2017-11-01
We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred rail is introduced to provide a small axially-uniform depth constriction. We demonstrate experimentally that this channel geometry can be used as a passive sorting device. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes on the order of the rail width can propagate over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a depth-averaged theory which reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions. In contrast, for larger bubbles and sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady state of changed topology. The financial support of CONICYT and the Leverhulme Trust are gratefully acknowledged.
El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.
2014-01-01
The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578
Simulation of gas bubbles in hypobaric decompressions: roles of O2, CO2, and H2O.
Van Liew, H D; Burkard, M E
1995-01-01
To gain insight into the special features of bubbles that may form in aviators and astronauts, we simulated the growth and decay of bubbles in two hypobaric decompressions and a hyperbaric one, all with the same tissue ratio (TR), where TR is defined as tissue PN2 before decompression divided by barometric pressure after. We used an equation system which is solved by numerical methods and accounts for simultaneous diffusion of any number of gases as well as other major determinants of bubble growth and absorption. We also considered two extremes of the number of bubbles which form per unit of tissue. A) Because physiological mechanisms keep the partial pressures of the "metabolic" gases (O2, CO2, and H2O) nearly constant over a range of hypobaric pressures, their fractions in bubbles are inversely proportional to pressure and their large volumes at low pressure add to bubble size. B) In addition, the large fractions facilitate the entry of N2 into bubbles, and when bubble density is low, enhance an autocatalytic feedback on bubble growth due to increasing surface area. C) The TR is not closely related to bubble size; that is when two different decompressions have the same TR, metabolic gases cause bubbles to grow larger at lower hypobaric pressures. We conclude that the constancy of partial pressures of metabolic gases, unimportant in hyperbaric decompressions, affects bubble size in hypobaric decompressions in inverse relation to the exposure pressure.
Ocean foam generation and modeling
NASA Technical Reports Server (NTRS)
Porter, R. A.; Bechis, K. P.
1976-01-01
A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches.
Recirculation bubbler for glass melter apparatus
Guerrero, Hector [Evans, GA; Bickford, Dennis [Folly Beach, SC
2007-06-05
A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.
Hettiarachchi, Kanaka; Talu, Esra; Longo, Marjorie L.; Dayton, Paul A.; Lee, Abraham P.
2007-01-01
This paper presents a new manufacturing method to generate monodisperse microbubble contrast agents with polydispersity index (σ) values of <2% through microfluidic flow-focusing. Micron-sized lipid shell-based perfluorocarbon (PFC) gas microbubbles for use as ultrasound contrast agents were produced using this method. The poly(dimethylsiloxane) (PDMS)-based devices feature expanding nozzle geometry with a 7 μm orifice width, and are robust enough for consistent production of microbubbles with runtimes lasting several hours. With high-speed imaging, we characterized relationships between channel geometry, liquid flow rate Q, and gas pressure P in controlling bubble sizes. By a simple optimization of the channel geometry and Q and P, bubbles with a mean diameter of <5 μm can be obtained, ideal for various ultrasonic imaging applications. This method demonstrates the potential of microfluidics as an efficient means for custom-designing ultrasound contrast agents with precise size distributions, different gas compositions and new shell materials for stabilization, and for future targeted imaging and therapeutic applications. PMID:17389962
A fractional Fourier transform analysis of a bubble excited by an ultrasonic chirp.
Barlow, Euan; Mulholland, Anthony J
2011-11-01
The fractional Fourier transform is proposed here as a model based, signal processing technique for determining the size of a bubble in a fluid. The bubble is insonified with an ultrasonic chirp and the radiated pressure field is recorded. This experimental bubble response is then compared with a series of theoretical model responses to identify the most accurate match between experiment and theory which allows the correct bubble size to be identified. The fractional Fourier transform is used to produce a more detailed description of each response, and two-dimensional cross correlation is then employed to identify the similarities between the experimental response and each theoretical response. In this paper the experimental bubble response is simulated by adding various levels of noise to the theoretical model output. The method is compared to the standard technique of using time-domain cross correlation. The proposed method is shown to be far more robust at correctly sizing the bubble and can cope with much lower signal to noise ratios.
Perturbation of a radially oscillating single-bubble by a micron-sized object.
Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F
2017-03-01
A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.
A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Hosangadi, A.; Ahuja, V.
2005-01-01
A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.
Investigation of Gas Holdup in a Vibrating Bubble Column
NASA Astrophysics Data System (ADS)
Mohagheghian, Shahrouz; Elbing, Brian
2015-11-01
Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.
Macedo, R G; Verhaagen, B; Fernandez Rivas, D; Gardeniers, J G E; van der Sluis, L W M; Wesselink, P R; Versluis, M
2014-01-01
Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet fully elucidated. Using sensitive equipment, the sonoluminescence (SL) and sonochemiluminescence (SCL) around these files have been measured in this study, showing that cavitation occurs even at very low power settings. Luminol photography and high-speed visualizations provided information on the spatial and temporal distribution of the cavitation bubbles. A large bubble cloud was observed at the tip of the files, but this was found not to contribute to SCL. Rather, smaller, individual bubbles observed at antinodes of the oscillating file with a smaller amplitude were leading to SCL. Confinements of the size of bovine and human root canals increased the amount of SL and SCL. The root canal models also showed the occurrence of air entrainment, resulting in the generation of stable bubbles, and of droplets, near the air-liquid interface and leading eventually to a loss of the liquid. Copyright © 2013 Elsevier B.V. All rights reserved.
Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru; Kreider, W.; Sapozhnikov, O. A.
2015-10-28
Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biologicalmore » tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.« less
NASA Technical Reports Server (NTRS)
Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping
2008-01-01
Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.
Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, X.; Chen, Q.; Yang, Y.
1996-12-31
Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity ofmore » gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.« less
Using an Ultrasonic Instrument to Size Extravascular Bubbles
NASA Technical Reports Server (NTRS)
Magari, Patrick J.; Kline-Schroder, J.; Kenton, Marc A.
2004-01-01
In an ongoing development project, microscopic bubbles in extravascular tissue in a human body will be detected by use of an enhanced version of the apparatus described in Ultrasonic Bubble- Sizing Instrument (MSC-22980), NASA Tech Briefs, Vol. 24, No. 10 (October 2000), page 62. To recapitulate: The physical basis of the instrument is the use of ultrasound to excite and measure the resonant behavior (oscillatory expansion and contraction) of bubbles. The resonant behavior is a function of the bubble diameter; the instrument exploits the diameter dependence of the resonance frequency and the general nonlinearity of the ultrasonic response of bubbles to detect bubbles and potentially measure their diameters. In the cited prior article, the application given most prominent mention was the measurement of gaseous emboli (essentially, gas bubbles in blood vessels) that cause decompression sickness and complications associated with cardiopulmonary surgery. According to the present proposal, the instrument capabilities would be extended to measure extravascular bubbles with diameters in the approximate range of 1 to 30 m. The proposed use of the instrument could contribute further to the understanding and prevention of decompression sickness: There is evidence that suggests that prebreathing oxygen greatly reduces the risk of decompression sickness by reducing the number of microscopic extravascular bubbles. By using the ultrasonic bubble-sizing instrument to detect and/or measure the sizes of such bubbles, it might be possible to predict the risk of decompression sickness. The instrument also has potential as a tool to guide the oxygen-prebreathing schedules of astronauts; high-altitude aviators; individuals who undertake high-altitude, low-opening (HALO) parachute jumps; and others at risk of decompression sickness. For example, an individual at serious risk of decompression sickness because of high concentrations of extravascular microscopic bubbles could be given a warning to continue to prebreathe oxygen until it was safe to decompress.
Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.
Salari, A; Gnyawali, V; Griffiths, I M; Karshafian, R; Kolios, M C; Tsai, S S H
2017-11-29
Microbubbles have applications in industry and life-sciences. In medicine, small encapsulated bubbles (<10 μm) are desirable because of their utility in drug/oxygen delivery, sonoporation, and ultrasound diagnostics. While there are various techniques for generating microbubbles, microfluidic methods are distinguished due to their precise control and ease-of-fabrication. Nevertheless, sub-10 μm diameter bubble generation using microfluidics remains challenging, and typically requires expensive equipment and cumbersome setups. Recently, our group reported a microfluidic platform that shrinks microbubbles to sub-10 μm diameters. The microfluidic platform utilizes a simple microbubble-generating flow-focusing geometry, integrated with a vacuum shrinkage system, to achieve microbubble sizes that are desirable in medicine, and pave the way to eventual clinical uptake of microfluidically generated microbubbles. A theoretical framework is now needed to relate the size of the microbubbles produced and the system's input parameters. In this manuscript, we characterize microbubbles made with various lipid concentrations flowing in solutions that have different interfacial tensions, and monitor the changes in bubble size along the microfluidic channel under various vacuum pressures. We use the physics governing the shrinkage mechanism to develop a mathematical model that predicts the resulting bubble sizes and elucidates the dominant parameters controlling bubble sizes. The model shows a good agreement with the experimental data, predicting the resulting microbubble sizes under different experimental input conditions. We anticipate that the model will find utility in enabling users of the microfluidic platform to engineer bubbles of specific sizes.
A novel method to harvest Chlorella sp. by co-flocculation/air flotation.
Zhang, Haiyang; Lin, Zhe; Tan, Daoyong; Liu, Chunhua; Kuang, Yali; Li, Zhu
2017-01-01
To develop a more effective dissolved air flotation process for harvesting microalgae biomass, a co-flocculation/air flotation (CAF) system was developed that uses an ejector followed by a helix tube flocculation reactor (HTFR) as a co-flocculation device to harvest Chlorella sp. 64.01. The optimal size distribution of micro-bubbles and an air release efficiency of 96 % were obtained when the flow ratio of inlet fluid (raw water) to motive fluid (saturated water) of the ejector was 0.14. With a reaction time of 24 s in the HTFR, microalgae cells and micro-bubbles were well flocculated, and these aerated flocs caused a fast rising velocity (96 m/h) and high harvesting efficiency (94 %). In a CAF process, micro-bubbles can be encapsulated into microalgae flocs, which makes aerated flocs more stable. CAF is an effective approach to harvesting microalgae.
Visualization of the separation and subsequent transition near the leading edge of airfoils
NASA Technical Reports Server (NTRS)
Arena, A. V.; Mueller, T. J.
1978-01-01
A visual study was performed using the low speed smoke wind tunnels with the objective of obtaining a better understanding of the structure of leading edge separation bubbles on airfoils. The location of separation, transition and reattachment for a cylindrical nose constant-thickness airfoil model were obtained from smoke photographs and surface oil flow techniques. These data, together with static pressure distributions along the leading edge and upper surface of the model, produced the influence of Reynolds number, angle of attack, and trailing edge flap angle on the size and characteristics of the bubble. Additional visual insight into the unsteady nature of the separation bubble was provided by high speed 16 mm movies. The 8 mm color movies taken of the surface oil flow supported the findings of the high speed movies and clearly showed the formation of a scalloped spanwise separation line at the higher Reynolds number.
King, Daniel A; O'Brien, William D
2011-01-01
Experimental postexcitation signal data of collapsing Definity microbubbles are compared with the Marmottant theoretical model for large amplitude oscillations of ultrasound contrast agents (UCAs). After taking into account the insonifying pulse characteristics and size distribution of the population of UCAs, a good comparison between simulated results and previously measured experimental data is obtained by determining a threshold maximum radial expansion (Rmax) to indicate the onset of postexcitation. This threshold Rmax is found to range from 3.4 to 8.0 times the initial bubble radius, R0, depending on insonification frequency. These values are well above the typical free bubble inertial cavitation threshold commonly chosen at 2R0. The close agreement between the experiment and models suggests that lipid-shelled UCAs behave as unshelled bubbles during most of a large amplitude cavitation cycle, as proposed in the Marmottant equation.
A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment
NASA Technical Reports Server (NTRS)
McQuillen, J.
2000-01-01
The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.
Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions
NASA Technical Reports Server (NTRS)
Pais, Salvatore Cezar
1999-01-01
The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.
Optimal conditions for particle-bubble attachment in flotation: an experimental study
NASA Astrophysics Data System (ADS)
Sanchez Yanez, Aaron; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T.
2017-11-01
Mineral flotation is a process used in the mining industry for separating solid particles of different sizes and densities. The separation is done by injecting bubbles into a slurry where the particles attach to them, forming floating aggregates. The attachment depends mainly on the bubbles and particles sizes as well as the hydrophobicity and roughness of the particles. We simplified the collective behavior in the industrial process to a single free particle-bubble collision, in contrast with previous studies where one of the two was kept fixed. We experimentally investigated the collision of spherical solid particles of a fixed diameter with bubbles of different sizes. By controlling the initial relative offset of the bubble and the particle, we conducted experiments observing their interaction. Recording with two synchronized high-speed cameras, perpendicular to each other, we can reconstruct the tridimensional trajectories of the bubble, the solid particle, and the aggregate. We describe the conditions for which the attachment happens in terms of dimensionless parameters such as the Ohnesorge number, the relative particle-bubble offset and the hydrophobicity of the particle surface. We furthermore investigate the role of the surface roughness in the attachment.
Average properties of bidisperse bubbly flows
NASA Astrophysics Data System (ADS)
Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.
2018-03-01
Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.
Compression-induced stacking fault tetrahedra around He bubbles in Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jian-Li, E-mail: shao-jianli@iapcm.ac.cn; Wang, Pei; He, An-Min
Classic molecular dynamics methods are used to simulate the uniform compression process of the fcc Al containing He bubbles. The formation of stacking fault tetrahedra (SFTs) during the collapse of He bubbles is found, and their dependence on the initial He bubble size (0.6–6 nm in diameter) is presented. Our simulations indicate only elastic deformation in the samples for the He bubble size not more than 2 nm. Instead, increasing the He bubble size, we detect several small SFTs forming on the surface of the He bubble (3 nm), as well as the two intercrossed SFTs around the He bubbles (4–6 nm). All thesemore » SFTs are observed to be stable under further compression, though there may appear some SF networks outside the SFTs (5–6 nm). Furthermore, the dynamic analysis on the SFTs shows that the yield pressure keeps a near-linear increase with the initial He bubble pressure, and the potential energy of Al atoms inside the SFTs is lower than outside because of their gliding inwards. In addition, the pressure increments of 2–6 nm He bubbles with strain are less than that of Al, which just provides the opportunity for the He bubble collapse and the SFTs formation. Note that the current work only focuses on the case that the number ratio between He atoms and Al vacancies is 1:1.« less
An experimental study of the distribution of retained xenon in transient-tested UO 2 fuel
NASA Astrophysics Data System (ADS)
Mogensen, M.; Bagger, C.; Walker, C. T.
1993-01-01
XRF and EPMA results for the distribution of retained xenon in twenty fuel pins are surveyed. The aim is to show the progress that has been achieved by combining these methods. One of the main concerns of the paper is the reliability of the XRF and EPMA measurements and the identification, of the principal sources of uncertainty. Another, is the wealth of new mechanistic information that has been acquired by systematically combining XRF and EPMA with quantitative image analysis (QIA) of the local size distribution of the gas bubbles in the fuel. It is shown that by correlating the three data sets it is possible to establish the distribution of retained gas on the grain boundaries and to estimate the pressure of the gas contained in grain boundary bubbles. It is concluded that often gas release during a reactor power transient cannot be predicted on the basis of simple gas diffusion considerations and that it is not possible to derive a gas diffusion coefficent of general relevance from puncturing data.
Cyclic deformation of bidisperse two-dimensional foams
NASA Astrophysics Data System (ADS)
Fátima Vaz, M.; Cox, S. J.; Teixeira, P. I. C.
2011-12-01
In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to measure the characteristics of the foams, including the number of edges separating small from large bubbles N sl , the perimeter (surface energy), the distribution of the number of sides of the bubbles, and the topological disorder μ2(N). Foams that were initially mixed were found to remain mixed after the deformation. The response of sorted foams, however, depended on the initial geometry, including the area fraction of small bubbles and the total number of bubbles. For a given experiment we found that (i) the perimeter of a sorted foam varied little; (ii) each foam tended towards a mixed state, measured through the saturation of N sl ; and (iii) the topological disorder μ2(N) increased up to an "equilibrium" value. The results of different experiments showed that (i) the change in disorder, ? decreased with the area fraction of small bubbles under iso-strain, but was independent of it under iso-stress; and (ii) ? increased with ? under iso-strain, but was again independent of it under iso-stress. We offer explanations for these effects in terms of elementary topological processes induced by the deformations that occur at the bubble scale.
Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants
NASA Astrophysics Data System (ADS)
Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.
2013-03-01
Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL
Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, R.; Baten, J.M. van
About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions.more » The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.« less
Colorful Demos with a Long-Lasting Soap Bubble.
ERIC Educational Resources Information Center
Behroozi, F.; Olson, D. W.
1994-01-01
Describes several demonstrations that feature interaction of light with soap bubbles. Includes directions about how to produce a long-lasting stationary soap bubble with an easily changeable size and describes the interaction of white light with the bubble. (DDR)
Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas
Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.
2011-01-01
Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.
Particle Transport and Size Sorting in Bubble Microstreaming Flow
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha
2014-11-01
Ultrasonic driving of sessile semicylindrical bubbles results in powerful steady streaming flows that are robust over a wide range of driving frequencies. In a microchannel, this flow field pattern can be fine-tuned to achieve size-sensitive sorting and trapping of particles at scales much smaller than the bubble itself; the sorting mechanism has been successfully described based on simple geometrical considerations. We investigate the sorting process in more detail, both experimentally (using new parameter variations that allow greater control over the sorting) and theoretically (incorporating the device geometry as well as the superimposed channel flow into an asymptotic theory). This results in optimized criteria for size sorting and a theoretical description that closely matches the particle behavior close to the bubble, the crucial region for size sorting.
TEM and XAS investigation of fission gas behaviors in U-Mo alloy fuels through ion beam irradiation
NASA Astrophysics Data System (ADS)
Zang, Hang; Yun, Di; Mo, Kun; Wang, Kunpeng; Mohamed, Walid; Kirk, Marquis A.; Velázquez, Daniel; Seibert, Rachel; Logan, Kevin; Terry, Jeffrey; Baldo, Peter; Yacout, Abdellatif M.; Liu, Wenbo; Zhang, Bo; Gao, Yedong; Du, Yang; Liu, Jing
2017-10-01
In this study, smaller-grained (hundred nano-meter size grain) and larger-grained (micro-meter size grain) U-10Mo specimens have been irradiated (implanted) with 250 keV Xe+ beam and were in situ characterized by TEM. Xe bubbles were not seen in the specimen after an implantation fluence of 2 × 1020 ions/m2 at room temperature. Nucleation of Xe bubbles happened during heating of the specimen to a final temperature of 300 °C. By comparing measured Xe bubble statistics, the nucleation and growth behaviors of Xe bubbles were investigated in smaller-grained and larger-grained U-10Mo specimens. A multi-atom kind of nucleation mechanism has been observed in both specimens. X-ray Absorption spectroscopy showed the edge position in the bubbles to be the same as that of Xe gas. The size of Xe bubbles has been shown to be bigger in larger-grained specimens than in smaller-grained specimens at the same implantation conditions.
Helium bubbles aggravated defects production in self-irradiated copper
NASA Astrophysics Data System (ADS)
Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn
2017-12-01
Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.
Sujith, K S; Ramachandran, C N
2016-02-07
The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.
Magma Vesiculation and Infrasonic Activity in Open Conduit Volcanoes
NASA Astrophysics Data System (ADS)
Colo', L.; Baker, D. R.; Polacci, M.; Ripepe, M.
2007-12-01
At persistently active basaltic volcanoes such as Stromboli, Italy degassing of the magma column can occur in "passive" and "active" conditions. Passive degassing is generally understood as a continuous, non explosive release of gas mainly from the open summit vents and subordinately from the conduit's wall or from fumaroles. In passive degassing generally gas is in equilibrium with atmospheric pressure, while in active degassing the gas approaches the surface at overpressurized conditions. During active degassing (or puffing), the magma column is interested by the bursting of small gas bubbles at the magma free surface and, as a consequence, the active degassing process generates infrasonic signals. We postulated, in this study, that the rate and the amplitude of infrasonic activity is somehow linked to the rate and the volume of the overpressured gas bubbles, which are generated in the magma column. Our hypothesis is that infrasound is controlled by the quantities of gas exsolved in the magma column and then, that a relationship between infrasound and the vesiculation process should exist. In order to achieve this goal, infrasonic records and bubble size distributions of scoria samples from normal explosive activity at Stromboli processed via X ray tomography have been compared. We observed that the cumulative distribution for both data sets follow similar power laws, indicating that both processes are controlled by a scale invariant phenomenon. However the power law is not stable but changes in different scoria clasts, reflecting when gas bubble nucleation is predominant over bubbles coalescence and viceversa. The power law also changes for the infrasonic activity from time to time, suggesting that infrasound may be controlled also by a different gas exsolution within the magma column. Changes in power law distributions are the same for infrasound and scoria indicating that they are linked to the same process acting in the magmatic system. We suggest that monitoring infrasound on an active volcano could represent an alternative way to monitor the vesiculation process of an open conduit system.
Characterization of an acoustic cavitation bubble structure at 230 kHz.
Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2011-03-01
A generic bubble structure in a 230 kHz ultrasonic field is observed in a partly developed standing wave field in water. It is characterized by high-speed imaging, sonoluminescence recordings, and surface cleaning tests. The structure has two distinct bubble populations. Bigger bubbles (much larger than linear resonance size) group on rings in planes parallel to the transducer surface, apparently in locations of driving pressure minima. They slowly rise in a jittering, but synchronous way, and they can have smaller satellite bubbles, thus resembling the arrays of bubbles observed by Miller [D. Miller, Stable arrays of resonant bubbles in a 1-MHz standing-wave acoustic field, J. Acoust. Soc. Am. 62 (1977) 12]. Smaller bubbles (below and near linear resonance size) show a fast "streamer" motion perpendicular to and away from the transducer surface. While the bigger bubbles do not emit light, the smaller bubbles in the streamers show sonoluminescence when they pass the planes of high driving pressure. Both bubble populations exhibit cleaning potential with respect to micro-particles attached to a glass substrate. The respective mechanisms of particle removal, though, might be different. Copyright © 2010 Elsevier B.V. All rights reserved.
Acoustic characterisation of liquid foams with an impedance tube.
Pierre, Juliette; Guillermic, Reine-Marie; Elias, Florence; Drenckhan, Wiebke; Leroy, Valentin
2013-10-01
Acoustic measurements provide convenient non-invasive means for the characterisation of materials. We show here for the first time how a commercial impedance tube can be used to provide accurate measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective "acoustic" density, over the 0.5-6kHz frequency range. We demonstrate this using two types of liquid foams: a commercial shaving foam and "home-made" foams with well-controlled physico-chemical and structural properties. The sound velocity in the latter foams is found to be independent of the bubble size distribution and is very well described by Wood's law. This implies that the impedance technique may be a convenient way to measure in situ the density of liquid foams. Important questions remain concerning the acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico-chemical composition and the bubble size distribution of the characterised foams. We confirm differences in sound velocities in the two types of foams (having the same structural properties) which suggests that the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.
Tuziuti, Toru
2016-03-01
This paper describes the sizes of cleaned areas under different sonication conditions with the addition of flowing micrometer-sized air bubbles. The differences in the cleaned area of a glass plate pasted with silicon grease as a dirty material under different sonication conditions were investigated after tiny bubbles were blown on the dirty plate placed in an underwater sound field. The ultrasound was applied perpendicular to the bubble flow direction. The shape of the cleaned areas was nearly elliptical, so the lengths of the minor and major axes were measured. The length of the minor axis under sweep conditions (amplitude modulation), for which the average power was lower than that for continuous wave (CW) irradiation, was comparable to that for CW irradiation and was slightly larger than under bubble flow only. Not only the relatively high power for CW irradiation, but also the larger angular change of the bubble flow direction under sweep conditions contributed to the enlargement of the cleaned area in the direction of the minor axis. The combination of bubble flow and sonication under sweep or CW conditions produced a larger cleaned area compared with bubble flow only, although the increase was not higher than 20%. A rapid change from an air to water interface caused by the bubble flow and water jets caused by the collapse of bubbles due to violent pulsation is the main cleaning mechanism under a combination of ultrasound and bubble flow. Copyright © 2015 Elsevier B.V. All rights reserved.
Argonne Bubble Experiment Thermal Model Development II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
2016-07-01
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations.more » The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.« less
Manipulation of Microbubble Clusters Using Focused Ultrasound
NASA Astrophysics Data System (ADS)
Matsuzaki, Hironobu; Osaki, Taichi; Kawaguchi, Kei; Unga, Johan; Ichiyanagi, Mitsuhisa; Azuma, Takashi; Suzuki, Ryo; Maruyama, Kazuo; Takagi, Shu
2017-11-01
In recent years, microbubbles (MBs) are expected to be utilized for the ultrasound drug delivery system (DDS). For the MB-DDS, it is important to establish a method of controlling bubbles and bubble clusters using ultrasound field. The objective of this study is to clarify behaviors of bubble clusters with various physical conditions. MBs in the ultrasound field are subjected to the primary Bjerknes force. The force traps MBs at the focal region of the focused ultrasound field. The trapped MBs form a bubble cluster at the region. A bubble cluster continues growing with absorbing surrounding bubbles until it reaches a maximum size beyond which it disappears from the focal region. In the present study, two kinds of MBs are used for the experiment. One is Sonazoid with average diameter of 2.6 um and resonant frequency of 5 MHz. The other is developed by Teikyo Univ., with average diameter of 1.5 um and presumed resonant frequency of 4 MHz. The bubble cluster's behaviors are analyzed using the high-speed camera. Sonazoid clusters have larger critical size than the other in every frequency, and its cluster size is inversely proportional to the ultrasound frequency, while Teikyo-bubble clusters have different tendency. These results are discussed in the presentation.
NASA Astrophysics Data System (ADS)
Han, Bing; Liu, Liu; Ni, Xiao-Wu
2017-08-01
In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.
The growth of oscillating bubbles in an ultrasound field
NASA Astrophysics Data System (ADS)
Yamauchi, Risa; Yamashita, Tatsuya; Ando, Keita
2017-11-01
From our recent experiments to test particle removal by underwater ultrasound, dissolved gas supersaturation is found to play an important role in physical cleaning; cavitation bubble nucleation can be triggered easily by weak ultrasound under the supersaturation and mild motion of the bubbles contributes to efficient cleaning without erosion. The state of gas bubble nuclei in water is critical to the determination of a cavitation inception threshold. Under ultrasound forcing, the size of bubble nuclei is varied by the transfer of dissolved gas (i.e., rectified diffusion); the growth rate will be promoted by the supersaturation and is thus expected to contribute to cavitation activity enhancement. In the present work, we experimentally study rectified diffusion for bubbles attached at glass surfaces in an ultrasound field. We will present the evolution of bubble nuclei sizes with varying parameters such as dissolved oxygen supersaturation, and ultrasound intensity and frequency. the Research Grant of Keio Leading-edge Laboratory of Science & Technology.
Liu, Fengyun; Liu, Deqiang; Malekian, Reza; Li, Zhixiong; Wang, Deqing
2017-01-01
Employing the fundamental value of real estate determined by the economic fundamentals, a measurement model for real estate bubble size is established based on the panel data analysis. Using this model, real estate bubble sizes in various regions in Japan in the late 1980s and in recent China are examined. Two panel models for Japan provide results, which are consistent with the reality in the 1980s where a commercial land price bubble appeared in most area and was much larger than that of residential land. This provides evidence of the reliability of our model, overcoming the limit of existing literature with this method. The same models for housing prices in China at both the provincial and city levels show that contrary to the concern of serious housing price bubble in China, over-valuing in recent China is much smaller than that in 1980s Japan. PMID:28273141
Control of flow separation in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Cho, Minjeong; Choi, Sangho; Choi, Haecheon
2015-11-01
Towards the development of successful control methods for separation delay in a turbulent boundary layer, we adopt a model flow field, in which a turbulent separation occurs above a flat plate (Na and Moin 1998 JFM), and apply controls to this flow for reducing the size of the separation bubble and investigating the interaction between the forcing and flow near the separation bubble. We provide a single-frequency forcing with zero net mass flow rate at the upstream of the separation bubble. At low forcing frequencies, spanwise vortices are generated and travel downstream, bringing high momentum toward the wall and reducing the size of the separation bubble. Also, these vortices cause the separation and reattachment points to travel downstream. On the other hand, at high forcing frequencies, the size of the separation bubble becomes smaller and larger in time, respectively, due to the pressure gradient alternating favorably and adversely in time. Supported by NRF-2011-0028032 and 2014048162.
Liu, Fengyun; Liu, Deqiang; Malekian, Reza; Li, Zhixiong; Wang, Deqing
2017-01-01
Employing the fundamental value of real estate determined by the economic fundamentals, a measurement model for real estate bubble size is established based on the panel data analysis. Using this model, real estate bubble sizes in various regions in Japan in the late 1980s and in recent China are examined. Two panel models for Japan provide results, which are consistent with the reality in the 1980s where a commercial land price bubble appeared in most area and was much larger than that of residential land. This provides evidence of the reliability of our model, overcoming the limit of existing literature with this method. The same models for housing prices in China at both the provincial and city levels show that contrary to the concern of serious housing price bubble in China, over-valuing in recent China is much smaller than that in 1980s Japan.
Sound propagation in a monodisperse bubble cloud: from the crystal to the glass.
Devaud, M; Hocquet, T; Leroy, V
2010-05-01
We present a theoretical study of the propagation of a monochromatic pressure wave in an unbounded monodisperse bubbly liquid. We begin with the case of a regular bubble array--a bubble crystal--for which we derive a dispersion relation. In order to interpret the different branches of this relation, we introduce a formalism, the radiative picture, which is the adaptation to acoustics of the standard splitting of the electric field in an electrostatic and a radiative part in Coulomb gauge. In the case of an irregular or completely random array--a bubble glass--and at wavelengths large compared to the size of the bubble array spatial inhomogeneities, the difference between order and disorder is not felt by the pressure wave: a dispersion relation still holds, coinciding with that of a bubble crystal with the same bubble size and air volume fraction at the centre of its first Brillouin zone. This relation is discussed and compared to that obtained by Foldy in the framework of his multiscattering approach.
Transport of Gas and Solutes in Permeable Estuarine Sediments
2009-01-01
seagrass . 2) To quantify the size range and composition of the gas bubbles in the sediment and the overlying water. 3) To determine the volume change and...from sand containing natural bubbles produced by photosynthesis and control sediment without bubbles. Set up of the pressure tank experiments. The...above the tank will permit bubble growth in the incubated sediment by photosynthesis . RESULTS Fieldwork and bubble production. At CML, ample bubbles
Dynamics of Two Interactive Bubbles in An Acoustic Field - Part II: Experiments
NASA Astrophysics Data System (ADS)
Ashgriz, Nasser; Barbat, Tiberiu; Liu, Ching-Shi
1996-11-01
The motion of two air bubbles levitated in water, in the presence of a high-frequency acoustic field is experimentally studied. The interaction force between them is named "secondary Bjerknes force" and may be significant in microgravity environments; in our experiments the buoyancy effect is compensated through the action of the "primary Bjerknes forces" - interaction between each bubble oscillation and external sound field. The stationary sound field is produced by a piezoceramic tranducer, in the range of 22-24 kHz. The experiments succesfully demonstrate the existence of three patterns of interaction between bubbles of various sizes: attraction, repulsion and oscillation. Bubbles attraction is quantitatively studied using a high speed video, for "large" bubbles (in the range 0.5-2 mm radius); bubbles repulsion and oscillations are only observed with a regular video, for "small" bubbles (around the resonance size at these frequencies, 0.12 mm). Velocities and accelerations of each bubble are computed from the time history of the motion. The theoretical equations of motion are completed with a drag force formula for single bubbles and solved numerically. Experimental results, for the case of two attracting bubbles, are in good agreement with the numerical model, especially for values of the mutual distance greater than 3 large bubble radii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan
If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less
The life and death of film bubbles
NASA Astrophysics Data System (ADS)
Poulain, S.; Villermaux, E.; Bourouiba, L.
2017-11-01
Following its burst, the fragmentation of a large bubble (film bubble) at the air-water interface can release hundreds of micrometer-sized film-drops in the air we breathe. This mechanism of droplet formation is one of the most prominent sources of sea spray. Indoor or outdoor, pathogens from contaminated water are transported by these droplets and have also been linked to respiratory infection. The lifetime and thickness of bubbles govern the number and size of the droplets they produce. Despite these important implications, little is known about the factors influencing the life and death of surface film bubbles. In particular, the fundamental physical mechanisms linking bubble aging, thinning, and lifetime remain poorly understood. To address this gap, we present the results of an extensive investigation of the aging of film-drop-producing bubbles in various ambient air, water composition, and temperature conditions. We present and validate a generalized physical picture and model of bubble cap thickness evolution. The model and physical picture are linked to the lifetime of bubbles via a series of cap rupture mechanisms of increasing efficiency.
Error rate performance of atmospheric laser communication based on bubble model
NASA Astrophysics Data System (ADS)
Xu, Ke; Wang, Jin; Li, Yan
2009-08-01
Free-Space Optics (FSO) can provide an effective line-of-sight and wireless communication with high bandwidth over a short distance. As a promising field of wireless communication, FSO is being accepted as an alternative of the more expensive fiber-optic based solutions. Despite the advantages of FSO, atmospheric turbulence has a significant impact on laser beam propagating through the channel in the atmosphere over a long distance. Turbulent eddies of various size and refractive index result in intensity scintillation and phase wander, which can severely impair the quality of FSO communication system. In this paper, a new geometrical model is used to assess the effects of turbulence on laser beam in its propagation path. The atmosphere is modeled along the transmission path filled with spatial-distributed spherical bubbles. The size and refractive index discontinuity of each bubble is K-distributed. This Monte Carlo technique allows us to estimate the fluctuation of intensity and phase shifts along the path. A pair of uncollimated rays arrives at the receiver through different path, and an optical path difference is produced. This difference causes a delay between the two rays. At the receiver, as the two rays are superposed, the delay ultimately affects the judgement of the bits. In the simulation, we assume that when the delay exceeds half of the bit width, bit error is possible. On the contrary, when the delay is less than the bit width, the bit error will not happen. Based on this assumption, we calculate the BER under different conditions, and results are further analyzed.
NASA Astrophysics Data System (ADS)
Lakehal, D.; Métrailler, D.; Reboux, S.
2017-06-01
This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which confirms that the bubbles increase the energy at smaller scales. The coherent structures in the boundary layer are broken by the bubbles, which disrupts the formation of long structures, reducing the streamwise integral length scale.
Collapse dynamics of ultrasound contrast agent microbubbles
NASA Astrophysics Data System (ADS)
King, Daniel Alan
Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering the size distributions of these UCAs, it is shown that the shell material has a large influence on the occurrence of postexcitation rebound at all tested frequencies while moderate alteration of the size distribution may only play a significant role within certain frequency ranges. Finally, the conditions which generate the experimental postexcitation signal are examined theoretically using several forms of single bubble models. Evidence is provided for the usefulness of modeling this large amplitude UCA behavior with a size-varying surface tension as described in the Marmottant model; better agreement for lipid-shelled Definity UCAs is obtained by considering the dynamic response with a rupturing shell rather than either a non-rupturing or nonexistent shell. Moreover, the modeling indicates that maximum radial expansion from the initial UCA size is a suitable metric to predict postexcitation collapse, and that both shell rupture and inertial cavitation are necessary conditions to generate this behavior. Postexcitation analysis is found to be a beneficial characterization metric for studying the destruction behaviors of single UCAs when measured with the double PCD setup. This work provides quantitative documentation of UCA collapse, exploration into UCA material properties which affect this collapse, and comparison of existing single bubble models with experimentally measured postexcitation signals.
Use of an ultrasonic reflectance technique to examine bubble size changes in dough
NASA Astrophysics Data System (ADS)
Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.
2012-12-01
Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.
NASA Astrophysics Data System (ADS)
Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike
2017-04-01
Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 < P < 150 MPa) and the second at low pressure (50 < P < 25 MPa), preceding fragmentation. Both events, restricted to narrow P intervals, are driven by melt H2O supersaturation. In contrast, textures of the H2O-CO2-bearing basaltic melts result from continuous bubble nucleation, which is driven by the generation of melts supersaturated in CO2. This persistent non-equilibrium degassing causes the bubbles to evolve through power law distributions, as small bubbles continue to form and grow. This is what is observed in Plinian products. From our results, the evolution to mixed power law-exponential distributions, as found in Stromboli products, is indicative of the prevalence of bubble coalescence and an evolution toward chemical equilibrium. In line with this, a strong correlation was found between experimental and natural bubble textures (bubble number densities, shapes, sizes and distributions), having implications for interpreting bubbles in volcanic rocks and quantifying magma ascent rates. Next step will be to perform in situ decompression experiments to simulate both degassing and crystallization of basaltic magma during ascent in the shallow volcanic conduit (P < 50 MPa), using synchrotron X-ray imaging. The obtained 4D (3D + time) data will help us refine our understanding of magma ascent processes. This experimental programme requires first technology adaptation and development, which is in progress.
NASA Astrophysics Data System (ADS)
Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.
2016-12-01
Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.
Interaction mechanism of double bubbles in hydrodynamic cavitation
NASA Astrophysics Data System (ADS)
Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin
2013-06-01
Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.
NASA Technical Reports Server (NTRS)
Corrigan, Jackie
2004-01-01
A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.
Separated two-phase flow and basaltic eruptions
NASA Astrophysics Data System (ADS)
Vergniolle, Sylvie; Jaupart, Claude
1986-11-01
Fluid dynamical models of volcanic eruptions are usually made in the homogeneous approximation where gas and liquid are constrained to move at the same velocity. Basaltic eruptions exhibit the characteristics of separated flows, including transitions in their flow regime, from bubbly to slug flow in Strombolian eruptions and from bubbly to annular flow in Hawaiian ones. These regimes can be characterized by a parameter called the melt superficial velocity, or volume flux per unit cross section, which takes values between 10-3 and 10-2 m/s for bubbly and slug flow, and about 1 m/s for annular flow. We use two-phase flow equations to determine under which conditions the homogeneous approximation is not valid. In the bubbly regime, in which many bubbles rise through the moving liquid, there are large differences between the two-phase and homogeneous models, especially in the predictions of gas content and pressure. The homogeneous model is valid for viscous lavas such as dacites because viscosity impedes bubble motion. It is not valid for basaltic lavas if bubble sizes are greater than 1 cm, which is the case. Accordingly, basaltic eruptions should be characterized by lower gas contents and lower values of the exit pressure, and they rarely erupt in the mist and froth regimes, which are a feature of more viscous lavas. The two-phase flow framework allows for the treatment of different bubble populations, including vesicles due to exsolution by pressure release in the volcanic conduit and bubbles from the magma chamber. This yields information on poorly constrained parameters including the effective friction coefficient for the conduit, gas content, and bubble size in the chamber. We suggest that the observed flow transitions record changes in the amount and size of gas bubbles in the magma chamber at the conduit entry.
Acoustic measurement of bubble size in an inkjet printhead.
Jeurissen, Roger; van der Bos, Arjan; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; de Jong, Jos; Versluis, Michel; Lohse, Detlef
2009-11-01
The volume of a bubble in a piezoinkjet printhead is measured acoustically. The method is based on a numerical model of the investigated system. The piezo not only drives the system but it is also used as a sensor by measuring the current it generates. The numerical model is used to predict this current for a given bubble volume. The inverse problem is to infer the bubble volume from an experimentally obtained piezocurrent. By solving this inverse problem, the size and position of the bubble can thus be measured acoustically. The method is experimentally validated with an inkjet printhead that is augmented with a glass connection channel, through which the bubble was observed optically, while at the same time the piezocurrent was measured. The results from the acoustical measurement method correspond closely to the results from the optical measurement.
The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging
NASA Astrophysics Data System (ADS)
Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin
2010-04-01
Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.
NASA Astrophysics Data System (ADS)
Ali Ahmadi, Mohammad; Galedarzadeh, Morteza; Reza Shadizadeh, Seyed
2017-12-01
Colloidal gas aphron-based (CGA) drilling fluids are defined as gas bubbles with diameters in ranges of 10 to 100 microns which are created by intensive stirring of an aphronizer surfactant solution at high speed. Furthermore, CGA-based drilling fluid properties like stability and aphron size distribution extremely depend on the inherent characteristics of the aphronizer surfactant. The selection of an appropriate surface active agent plays a vital role in the generation of micro-bubbles with the favorable characteristics. The primary motivation behind this paper is to evaluate the potential of new natural surfactants as aphronizer in CGA-based drilling fluids. Here, two new natural based surfactants derived from roots of Glycyrrhiza glabra and leaves of Matricaria recutita plant are implemented for the preparation of aphron-based fluids. The physico-chemical properties of the aphronized fluids prepared from these surfactants are studied by different fundamental tests comprising rheological characterizations, bubble size measurements, and stability tests. The effect of polymer and surfactant concentration was also evaluated. According to the experimental outcomes of this research, the two introduced natural surfactants are appropriate for generating CGA-based drilling fluids while they have no environmental impacts and have very low cost in comparison to commercial and industrial surfactants.
Microfluidics-based microbubbles in methylene blue solution for photoacoustic and ultrasound imaging
NASA Astrophysics Data System (ADS)
Das, Dhiman; Sivasubramanian, Kathyayini; Yang, Chun; Pramanik, Manojit
2018-02-01
Contrast agents which can be used for more than one bio-imaging technique has gained a lot of attention from researchers in recent years. In this work, a microfluidic device employing a flow-focusing junction, is used for the continuous generation of monodisperse nitrogen microbubbles in methylene blue, an optically absorbing organic dye, for dual-modal photoacoustic and ultrasound imaging. Using an external phase of polyoxyethylene glycol 40 stearate (PEG 40), a non-ionic surfactant, and 50% glycerol solution at a flow rate of 1 ml/hr and gas pressure at 1.75 bar, monodisperse nitrogen microbubbles of diameter 7 microns were obtained. The external phase also contained methylene blue hydrate at a concentration of 1 gm/litre. The monodisperse microbubbles produced a strong ultrasound signal as expected. It was observed that the signal-to-noise (SNR) ratio of the photoacoustic signal for the methylene blue solution in the presence of the monodisperse microbubbles was 68.6% lower than that of methylene blue solution in the absence of microbubbles. This work is of significance because using microfluidics, we can precisely control the bubbles' production rate and bubble size which increases ultrasound imaging efficiency. A uniform size distribution of the bubbles will have narrower resonance frequency bandwidth which will respond well to specific ultrasound frequencies.
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.
2000-01-01
For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.
Durand, Marc; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Talebi, Shirin Ataei; Graner, François
2011-10-14
We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular patterns n correlates better with √A (as claimed by Desch and Feltham) than with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam, standard deviations Δn and ΔA are in proportion. Possible applications include correlations of the detailed distributions of n and A, three-dimensional foams, and biological tissues.
Eitschberger, S; Henseler, A; Krasenbrink, B; Oedekoven, B; Mottaghy, K
2001-01-01
Detectors based on ultrasonic principles are today's state of the art devices to detect gaseous bubbles that may be present in extracorporeal circuits (ECC) for various reasons. Referring to theoretical considerations and other studies, it also seems possible to use this technology to measure the size of detected bubbles, thus offering the chance to evaluate their potential hazardous effect if introduced into a patient's circulation. Based on these considerations, a commercially available ultrasound bubble detector has been developed by Hatteland Instrumentering, Norway, to deliver bubble size measurements by means of supplementary software. This device consists of an ultrasound sensor that can be clamped onto the ECC tubing, and the necessary electronic equipment to amplify and rectify the received signals. It is supplemented by software that processes these signals and presents them as specific data. On the basis of our knowledge and experience with bubble detection by ultrasound technology, we believe it is particularly difficult to meet all the requirements for size measurements, especially if these are to be achieved by using a mathematical procedure rather than exact devices. Therefore, we tried to evaluate the quality of the offered bubble detector in measuring bubble sizes. After establishing a standardized test stand, including a roller pump and a temperature sensor, we performed several sets of experiments using the manufacturers software and a program specifically designed at our department for this purpose. The first set revealed that the manufacturer's recommended calibration material did not meet essential requirements as established by other authors. Having solved that problem, we could actually demonstrate that the ultrasonic field, as generated by the bubble detector, has been correctly calculated by the manufacturer. Simply, it is a field having the strongest reflecting region in the center, subsequently losing strength toward the ECC tubing's edge. The following set of experiments revealed that the supplementary software not only does not compensate for the ultrasonic field's inhomogeneity, but, furthermore, delivers results that are inappropriate to the applied calibration material. In the last set of experiments, we were able to demonstrate that the signals as recorded by the bubble detector heavily depend upon the circulating fluid's temperature, a fact that the manufacturer does not address. Therefore, it seems impossible to resolve all these sensor related problems by ever-increasing mathematical intervention. We believe it is more appropriate to develop a new kind of ultrasound device, free of these shortcomings. This seems to be particularly useful, because the problem of determining the size of gaseous bubbles in ECC is not yet solved.
Modeling quiescent phase transport of air bubbles induced by breaking waves
NASA Astrophysics Data System (ADS)
Shi, Fengyan; Kirby, James T.; Ma, Gangfeng
Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.
Local phase transitions in driven colloidal suspensions
NASA Astrophysics Data System (ADS)
Scacchi, A.; Brader, J. M.
2018-02-01
Using dynamical density functional theory and Brownian dynamics simulations, we investigate the influence of a driven tracer particle on the density distribution of a colloidal suspension at a thermodynamic state point close to the liquid side of the binodal. In bulk systems, we find that a localised region of the colloid-poor phase, a 'cavitation bubble', forms behind the moving tracer. The extent of the cavitation bubble is investigated as a function of both the size and velocity of the tracer. The addition of a confining boundary enables us to investigate the interaction between the local phase instability at the substrate and that at the particle surface. When both the substrate and tracer interact repulsively with the colloids we observe the formation of a colloid-poor bridge between the substrate and the tracer. When a shear flow is applied parallel to the substrate the bridge becomes distorted and, at sufficiently high shear-rates, disconnects from the substrate to form a cavitation bubble.
Time reversal technique for gas leakage detection.
Maksimov, A O; Polovinka, Yu A
2015-04-01
The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.
Bencsik, Martin; Al-Rwaili, Amgad; Morris, Robert; Fairhurst, David J; Mundell, Victoria; Cave, Gareth; McKendry, Jonathan; Evans, Stephen
2013-11-01
The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry. Copyright © 2012 Wiley Periodicals, Inc.
Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan
Chou, Chung-I; Li, Sai-Ping; Tee, Shang You; Cheong, Siew Ann
2016-01-01
The housing prices in many Asian cities have grown rapidly since mid-2000s, leading to many reports of bubbles. However, such reports remain controversial as there is no widely accepted definition for a housing bubble. Previous studies have focused on indices, or assumed that home prices are lognomally distributed. Recently, Ohnishi et al. showed that the tail-end of the distribution of (Japan/Tokyo) becomes fatter during years where bubbles are suspected, but stop short of using this feature as a rigorous definition of a housing bubble. In this study, we look at housing transactions for Singapore (1995 to 2014) and Taiwan (2012 to 2014), and found strong evidence that the equilibrium home price distribution is a decaying exponential crossing over to a power law, after accounting for different housing types. We found positive deviations from the equilibrium distributions in Singapore condominiums and Zhu Zhai Da Lou in the Greater Taipei Area. These positive deviations are dragon kings, which thus provide us with an unambiguous and quantitative definition of housing bubbles. Also, the spatial-temporal dynamics show that bubble in Singapore is driven by price pulses in two investment districts. This finding provides a valuable insight for policymakers on implementation and evaluation of cooling measures. PMID:27812187
Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan.
Tay, Darrell Jiajie; Chou, Chung-I; Li, Sai-Ping; Tee, Shang You; Cheong, Siew Ann
2016-01-01
The housing prices in many Asian cities have grown rapidly since mid-2000s, leading to many reports of bubbles. However, such reports remain controversial as there is no widely accepted definition for a housing bubble. Previous studies have focused on indices, or assumed that home prices are lognomally distributed. Recently, Ohnishi et al. showed that the tail-end of the distribution of (Japan/Tokyo) becomes fatter during years where bubbles are suspected, but stop short of using this feature as a rigorous definition of a housing bubble. In this study, we look at housing transactions for Singapore (1995 to 2014) and Taiwan (2012 to 2014), and found strong evidence that the equilibrium home price distribution is a decaying exponential crossing over to a power law, after accounting for different housing types. We found positive deviations from the equilibrium distributions in Singapore condominiums and Zhu Zhai Da Lou in the Greater Taipei Area. These positive deviations are dragon kings, which thus provide us with an unambiguous and quantitative definition of housing bubbles. Also, the spatial-temporal dynamics show that bubble in Singapore is driven by price pulses in two investment districts. This finding provides a valuable insight for policymakers on implementation and evaluation of cooling measures.
Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Arscott, Steve
2013-06-01
Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
A variety of dynamical features of sliding bubbles and their impact on wall heat transfer were observed at subcooled flow boiling conditions in a vertical square test channel. Among the wide range of parameters observed, we particularly focus in this paper on (i) the sliding bubbles’ effect on wall heat transfer (supplemantry discussion to the authors’ previous work in Yoo et al. (2016a,b)) and (ii) the wall area influenced by sliding bubbles in subcooled boiling flow. At first, this study reveals that the degree of wall heat transfer improvement due to sliding bubbles depended less on the wall superheat conditionmore » as the mass flux increased. Also, the sliding bubble trajectory was found to be one of the critical factors in order to properly describe the wall heat transfer associated with sliding bubbles. In particular, the wall area influenced by sliding bubbles depended strongly on both sliding bubble trajectory and sliding bubble size; the sliding bubble trajectory was also observed to be closely related to the sliding bubble size. Importantly, these results indicate the limitation of current approach in CFD analyses especially for the wall area of bubble influence. In addition, the analyses on the temporal fraction of bubbles’ residence (FR) along the heated wall show that the sliding bubbles typically travel through narrow path with high frequency while the opposite was observed downstream. That is, both FR and sliding bubble trajectory depended substantially on the distance from nucleation site, which is expected to be similar for the quenching heat transfer mode induced by sliding bubbles.« less
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2012-01-01
The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.
NASA Astrophysics Data System (ADS)
Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.
2018-04-01
The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.
Investigating the Existence of Bulk Nanobubbles with Ultrasound.
Leroy, Valentin; Norisuye, Tomohisa
2016-09-19
Nanobubbles are expected to dissolve in milliseconds. Experimental evidence of nanobubbles that were stable for days had thus been first received with circumspection. If the large number of experimental confirmations has now made clear that surface nanobubbles could exist, bulk nanobubbles are still subject to debate. When observations are reported, the main problem is to make sure the observed particles are really made of gas. We show that ultrasound is an ideal tool for investigating the existence of bulk nanobubbles: 1) it is sensitive to minute quantities of gas, 2) it allows one to determine the bubble size distribution, 3) it discriminates unambiguously between gaseous and solid/liquid inclusions. To illustrate the efficiency of ultrasonic detection, we performed size measurements of bubbles produced by a commercial nano-/microbubble generator. No nanobubble was detected with this device. It would be insightful to use ultrasonic detection in experimental situations for which stable nanobubbles were reported. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trapping, focusing, and sorting of microparticles through bubble streaming
NASA Astrophysics Data System (ADS)
Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha
2010-11-01
Ultrasound-driven oscillating microbubbles can set up vigorous steady streaming flows around the bubbles. In contrast to previous work, we make use of the interaction between the bubble streaming and the streaming induced around mobile particles close to the bubble. Our experiment superimposes a unidirectional Poiseuille flow containing a well-mixed suspension of neutrally buoyant particles with the bubble streaming. The particle-size dependence of the particle-bubble interaction selects which particles are transported and which particles are trapped near the bubbles. The sizes selected for can be far smaller than any scale imposed by the device geometry, and the selection mechanism is purely passive. Changing the amplitude and frequency of ultrasound driving, we can further control focusing and sorting of the trapped particles, leading to the emergence of sharply defined monodisperse particle streams within a much wider channel. Optimizing parameters for focusing and sorting are presented. The technique is applicable in important fields like cell sorting and drug delivery.
Removal of hydrogen bubbles from nuclear reactors
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1980-01-01
Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.
Primordial black hole formation by vacuum bubbles
NASA Astrophysics Data System (ADS)
Deng, Heling; Vilenkin, Alexander
2017-12-01
Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.
NASA Technical Reports Server (NTRS)
Khodadoust, Abdollah
1994-01-01
Wind tunnel experiments were conducted in order to study the effect of a simulated glaze ice accretion on the flowfield of a semispan, reflection-plane, rectangular wing at Re = 1.5 million and M = 0.12. A laser Doppler velocimeter was used to map the flowfield on the upper surface of the model in both the clean and iced configurations at alpha = 0, 4, and 8 degrees angle of attack. At low angles of attack, the massive separation bubble aft of the leading edge ice horn was found to behave in a manner similar to laminar separation bubbles. At alpha = 0 and 4 degrees, the locations of transition and reattachment, as deduced from momentum thickness distributions, were found to be in good agreement with transition and reattachment locations in laminar separation bubbles. These values at y/b = 0.470, the centerline measurement location, matched well with data obtained on a similar but two dimensional model. The measured velocity profiles on the iced wing compared reasonably with the predicted profiles from Navier-Stokes computations. The iced-induced separation bubble was also found to have features similar to the recirculating region aft of rearward-facing steps. At alpha = 0 degrees and 4 degrees, reverse flow magnitudes and turbulence intensity levels were typical of those found in the recirculating region aft of rearward-facing steps. The calculated separation streamline aft of the ice horn at alpha = 4 degrees, y/b = 0.470 coincided with the locus of the maximum Reynolds normal stress. The maximum Reynolds normal stress peaked at two locations along the separation streamline. The location of the first peak-value coincided with the transition location, as deduced from the momentum thickness distributions. The location of the second peak was just upstream of reattachment, in good agreement with measurements of flows over similar obstacles. The intermittency factor in the vicinity of reattachment at alpha = 4 degrees, y/b = 0.470, revealed the time-dependent nature of the reattachment process. The size and extent of the separation bubble were found to be a function of angle of attack and the spanwise location. Three dimensional effects were found to be strongest at alpha = 8 degrees. The calculated separation and stagnation streamlines were found to vary little with spanwise location at alpha = 0 degrees. The calculated separation streamlines at alpha = 4 degrees revealed that the bubble was largest near the centerline measurement plane, whereas the tip-induced vortex flow and the model root-tunnel wall boundary-layer interaction reduced the size of the bubble. These effects were found to be most dramatic at alpha = 8 degrees.
Influence of bubble size and thermal dissipation on compressive wave attenuation in liquid foams
NASA Astrophysics Data System (ADS)
Monloubou, M.; Saint-Jalmes, A.; Dollet, B.; Cantat, I.
2015-11-01
Acoustic or blast wave absorption by liquid foams is especially efficient and bubble size or liquid fraction optimization is an important challenge in this context. A resonant behavior of foams has recently been observed, but the main local dissipative process is still unknown. In this paper, we evidence the thermal origin of the dissipation, with an optimal bubble size close to the thermal boundary layer thickness. Using a shock tube, we produce typical pressure variation at time scales of the order of the millisecond, which propagates in the foam in linear and slightly nonlinear regimes.
Measurement of the Shear Lift Force on a Bubble in a Channel Flow
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Motil, Brian; Skor, Mark
2005-01-01
Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These values for the shear lift are then compared with the theoretical predictions from various published works on shear lift in the open literature, which include asymptotic solutions at low bubble Reynolds number, potential flow predictions and numerical studies that deal with intermediate bubble Reynolds numbers.
Transformer overload characteristics---Bubble evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, E.E.; Wendel, R.C.; Dresser, R.D.
1988-08-01
Project RP1289-3 explores significant parameters affecting bubble evolution from transformer oil under high temperature operating conditions to address the question: Does ''real life'' operation of a transformer cause harmful bubbling conditions. Studies outlined in the project are designed to determine when bubbling occurs in transformers and if bubbling can be harmful during the normal operation of these transformers. Data obtained from these studies should provide a basis for utilities to perform risk assessments in relation to their loading practices. The program is designed to demonstrate those conditions under which bubbling occurs in transformers by using controlled models and actual signalmore » phase transformers that were designed to give access to both high and low voltage windings for the purpose of viewing bubble generation. Results and observations from tests on the full-size transformers, thermal models, and electrical models have led to the conclusion that bubbles can occur under operating conditions. The electrical models show that dielectric strength can be reduced by as much as 40 percent due to the presence of bubbles. Because of factory safety considerations, the transformers could not be tested at hot spot temperatures greater than 140/degree/C. Therefore, there is no information on the dielectric strength of the full-size transformers under bubbling conditions. 4 refs., 28 figs., 45 tabs.« less
CO2 bubble generation and migration during magma-carbonate interaction
NASA Astrophysics Data System (ADS)
Blythe, L. S.; Deegan, F. M.; Freda, C.; Jolis, E. M.; Masotta, M.; Misiti, V.; Taddeucci, J.; Troll, V. R.
2015-04-01
We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions.
Detection of vapor nanobubbles by small angle neutron scattering (SANS)
NASA Astrophysics Data System (ADS)
Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri
2018-04-01
Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.
Ballistic heat transport in laser generated nano-bubbles
NASA Astrophysics Data System (ADS)
Lombard, Julien; Biben, Thierry; Merabia, Samy
2016-08-01
Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02144A
A study of the neutral hydrogen in direction to the GUM nebula
NASA Astrophysics Data System (ADS)
Dubner, G.; Giacani, E.; Cappa de Nicolau, C.; Reynoso, E.
1992-12-01
This paper presents 44 gray-scale maps at constant velocity of the distribution of H I in the direction of the Gum nebula. It is shown that there is no H I shell with a size comparable to the 36 deg diameter optical nebulosities and that there is a thick H I shell, about 7 deg in radius, shifted from the center of the optical nebula by more than 10 deg. The observations are consistent with a model in which the Gum nebula is the remnant of a supernova explosion that occurred about 2.6 million yr ago. The presence of two new H I bubbles associated with SWR 12 and 14, plus a possible one around WR 13, are disclosed from analysis of the H I gas distribution around the four WR star located beyond the Gum nebula. These H I bubbles have characteristics similar to those previously observed. Three shell-like objects probably related to OB stars and H II regions are also described.
Using Computer Simulations to Model Scoria Cone Growth
NASA Astrophysics Data System (ADS)
Bemis, K. G.; Mehta, R. D.
2016-12-01
Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.
Multivariate Visualization in Social Sciences and Survey Data
2013-09-01
uses bubbles indicating Walmart store locations. The bubble size is misleading as it does not reflect the amount of stores or the size of any store...displaying survey data, the bubbles’ exact location is relevant, indicating Walmart store locations. Yau’s choropleth (Figure 2.7, right chart) displays...is able to see the embedded image. 14 Figure 2.7: Point-based bubbles (left) display the the locations of Walmart stores at some point in the stores
Bubble-based acoustic swimmers: a dual micro/macro-fluidics study
NASA Astrophysics Data System (ADS)
Bertin, Nicolas; Spelman, Tamsin; StéPhan, Olivier; Lauga, Eric; Marmottant, Philippe
Without protection, a micron-sized free air bubble at room temperature in water has a life duration shorter than a few tens of seconds. Using two-photon lithography, which is similar to 3D printing at the micron scale, we can build ''armors'' for these bubbles: micro-capsules with an opening. These armors contain the bubble and extend its lifespan to several hours in biological buffer solutions. When excited by an external ultrasonic wave, the bubble performs large amplitude oscillations at the capsule opening and generates a powerful acoustic streaming flow (velocity up to dozens of mm/s). We show how to obtain blood-vessel-sized acoustic swimmers for drug-delivery applications. They contain multiple capsules of different aperture sizes: this makes them resonant at different frequencies. By adjusting the frequency, we can adjust the swimming direction. A micro/macro parallel study is also performed. On one hand, we study microswimmers on the 20-50 µm scale: propulsion forces are measured and predicted. On the other hand, we study macroscopic ''milliswimmers'' containing bubbles that are 2 to 10 mm in diameter, allowing us to understand in detail the modes of vibration, to quantitatively predict the swimming motions and inspire new designs for microswimmers.
NASA Astrophysics Data System (ADS)
van der Bos, Arjan; Segers, Tim; Jeurissen, Roger; van den Berg, Marc; Reinten, Hans; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2011-08-01
Piezo drop-on-demand inkjet printers are used in an increasing number of applications because of their reliable deposition of droplets onto a substrate. Droplets of a few picoliters are ejected from an inkjet nozzle at frequencies of up to 100 kHz. However, the entrapment of an air microbubble in the ink channel can severely impede the productivity and reliability of the printing system. The air bubble disturbs the channel acoustics, resulting in disrupted drop formation or failure of the jetting process. Here we study a micro-electro-mechanical systems-based printhead. By using the actuating piezo transducer in receive mode, the acoustical field inside the channel was monitored, clearly identifying the presence of an air microbubble inside the channel during failure of the jetting process. The infrared visualization technique allowed for the accurate sizing of the bubble, including its dynamics, inside the intact printhead. A model was developed to calculate the mutual interaction between the channel acoustics and the bubble dynamics. The model was validated by simultaneous acoustical and infrared detection of the bubble. The model can predict the presence and size of entrapped air bubbles inside an operating ink channel purely from the acoustic response.
The formation of soap bubbles created by blowing on soap films
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2015-11-01
Using either circular bubble wands or long-lasting vertically falling soap films having an adjustable steady state thickness, we study the formation of soap bubbles created when air is blown through a nozzle onto a soap film. We vary nozzle radius, film size, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are generated. The response is sensitive to confinement, that is, the ratio between film and jet sizes, and dissipation in the turbulent gas jet which is a function of the distance from the nozzle to the film. We observe four different regimes that we rationalize by comparing the dynamic pressure of a jet on the film and the Laplace pressure needed to create the curved surface of a bubble.
Microstreaming from Sessile Semicylindrical Bubbles
NASA Astrophysics Data System (ADS)
Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng
2014-03-01
Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.
Behavior of Rapidly Sheared Bubble Suspensions
NASA Technical Reports Server (NTRS)
Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.
2002-01-01
An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.
Lithotripter shock wave interaction with a bubble near various biomaterials.
Ohl, S W; Klaseboer, E; Szeri, A J; Khoo, B C
2016-10-07
Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone-water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (∼1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.
Lithotripter shock wave interaction with a bubble near various biomaterials
NASA Astrophysics Data System (ADS)
Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.
2016-10-01
Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.
NASA Astrophysics Data System (ADS)
Rathod, Maureen L.
Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.
Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha
2018-07-01
Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud
NASA Astrophysics Data System (ADS)
Chang, Sheng; Cao, Xiangkun; Zou, Zongshu
2018-03-01
Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.
Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud
NASA Astrophysics Data System (ADS)
Chang, Sheng; Cao, Xiangkun; Zou, Zongshu
2018-06-01
Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.
Experimental magma degassing: The revenge of the deformed bubbles
NASA Astrophysics Data System (ADS)
Marxer, H.; Bellucci, P.; Ulmer, S.; Nowak, M.
2013-12-01
We performed decompression experiments with a hydrated phonolitic melt at a T of 1323 K in an internally heated pressure vessel to investigate the effect of decompression method and rate on melt degassing. Samples were decompressed from 200 to 75 MPa with step-wise and continuous decompression (SD/CD) at nominal decompression rates (DRs) of 0.0028-1.7 MPa/s. At target P the samples were quenched rapidly under isobaric conditions with 150 K/s. The vesiculated glass products were compared in terms of bubble number density (BND), bubble size distribution (BSD) and residual H2O content. Almost all capsules were deformed after decompression: the initially crimped headspaces were expanded and the walls were inflexed in the capsule center. We postulate that the deformation is primarily due to the change in molar volume V(m) of exsolved H2O during rapid quench. Bubble growth in the melt contributes to the deformation by capsule expansion, but the main problem is the shrinkage and collapse of bubbles during cooling. In first approximation, the texture of the vesiculated melt is not frozen until the glass transition T (~773 K for this composition, [1]) is reached. From 1323 K to T(g) the melt will display viscous behavior. For a final P of 75 MPa, V(m) of the exsolved H2O at T(g) is only ~25% of V(m) at 1323 K [2]. The fluid P in the bubbles is therefore continuously decreasing during quench. In combination with constant external P, the bubbles can either contract isometrically, get deformed (flattened) or even become dented by sucking melt inwards, which can be observed in some glass products. The shrinkage of bigger bubbles in the capsules is sometimes affecting the whole vesicle texture in a sample. FPA-FTIR measurements did not reveal H2O diffusion profiles towards bubbles [3]. H2O concentration gradients around bubbles are expected to be disturbed or annihilated due to melt transport. All derived BSDs of our samples were corrected to resemble the bubble sizes prior to rapid quench. For a volumetric loss of 75% at a final P of 75 MPa, the initial diameter of a bubble in the melt has to be ~1.5x the diameter of a bubble in the glass. At DRs of >0.17 MPa/s the decompression method has only minor influence on melt degassing. SD and CD result in BNDs of 10^4-10^5 mm^-3. Fast P drop leads to immediate super-saturation with H2O in the melt. At high DRs, the diffusional transport of H2O is very limited and therefore bubble nucleation is the predominant degassing process. CD rates of ≤0.17 MPa/s provide sufficient time for H2O diffusion into existing bubbles. BNDs of CD samples with low DRs are several orders of magnitude lower than for SD experiments. In contrast to SD, bubble growth is the favored degassing mechanism. CD samples quenched at different target P at 0.024 MPa/s trace an equilibrium degassing path in terms of residual H2O content in the glass. SD techniques, as used in many studies before, are therefore not suitable to simulate melt degassing at continuous magma ascent. [1] Giordano, D; Russell, JK; Dingwell, DB; 2008. EPSL, 271: 123-134. [2] Duan, ZH; Zhang, ZG; 2006. GCA, 70: 2311-2324. [3] Marxer, H; Nowak, M; 2013. EJM, in press.
Air bubble migration is a random event post embryo transfer.
Confino, E; Zhang, J; Risquez, F
2007-06-01
Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.
Physical properties of the WAIS Divide ice core
Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.
2014-01-01
The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.
Study on effect of microparticle's size on cavitation erosion in solid-liquid system
NASA Astrophysics Data System (ADS)
Chen, Haosheng; Liu, Shihan; Wang, Jiadao; Chen, Darong
2007-05-01
Five different solutions containing microparticles in different sizes were tested in a vibration cavitation erosion experiment. After the experiment, the number of erosion pits on sample surfaces, free radicals HO• in solutions, and mass loss all show that the cavitation erosion strength is strongly related to the particle size, and 500nm particles cause more severe cavitation erosion than other smaller or larger particles do. A model is presented to explain such result considering both nucleation and bubble-particle collision effects. Particle of a proper size will increase the number of heterogeneous nucleation and at the same time reduce the number of bubble-particle combinations, which results in more free bubbles in the solution to generate stronger cavitation erosion.
Influence of mass transfer on bubble plume hydrodynamics.
Lima Neto, Iran E; Parente, Priscila A B
2016-03-01
This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities), both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes.
Visualization of the wake behind a sliding bubble
NASA Astrophysics Data System (ADS)
O'Reilly Meehan, R.; Grennan, K.; Davis, I.; Nolan, K.; Murray, D. B.
2017-10-01
In this work, Schlieren measurements are presented for the wake of an air bubble sliding under a heated, inclined surface in quiescent water to provide new insights into the intricate sliding bubble wake structure and the associated convective cooling process. This is a two-phase flow configuration that is pertinent to thermal management solutions, where the fundamental flow physics have yet to be fully described. In this work, we present an experimental apparatus that enables high-quality Schlieren images for different bubble sizes and measurement planes. By combining these visualizations with an advanced bubble tracking technique, we can simultaneously quantify the symbiotic relationship that exists between the sliding bubble dynamics and its associated wake. An unstable, dynamic wake structure is revealed, consisting of multiple hairpin-shaped vortex structures interacting within the macroscopic area affected by the bubble. As vorticity is generated in the near wake, the bubble shape is observed to recoil and rebound. This also occurs normal to the surface and is particularly noticeable for larger bubble sizes, with a periodic ejection of material from the near wake corresponding to significant shape changes. These findings, along with their implications from a thermal management perspective, provide information on the rich dynamics of this natural flow that cannot be obtained using alternate experimental techniques.
Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio
2013-01-01
The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499
A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools
NASA Astrophysics Data System (ADS)
Pizzocri, D.; Pastore, G.; Barani, T.; Magni, A.; Luzzi, L.; Van Uffelen, P.; Pitts, S. A.; Alfonsi, A.; Hales, J. D.
2018-04-01
The description of intra-granular fission gas behaviour is a fundamental part of any model for the prediction of fission gas release and swelling in nuclear fuel. In this work we present a model describing the evolution of intra-granular fission gas bubbles in terms of bubble number density and average size, coupled to gas release to grain boundaries. The model considers the fundamental processes of single gas atom diffusion, gas bubble nucleation, re-solution and gas atom trapping at bubbles. The model is derived from a detailed cluster dynamics formulation, yet it consists of only three differential equations in its final form; hence, it can be efficiently applied in engineering fuel performance codes while retaining a physical basis. We discuss improvements relative to previous single-size models for intra-granular bubble evolution. We validate the model against experimental data, both in terms of bubble number density and average bubble radius. Lastly, we perform an uncertainty and sensitivity analysis by propagating the uncertainties in the parameters to model results.
NASA Technical Reports Server (NTRS)
Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.
1988-01-01
The experimental and analytical work that was done to establish justification and feasibility for a shuttle middeck experiment involving mass transfer between a gas bubble and a liquid is described. The experiment involves the observation and measurement of the dissolution of an isolated immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble were successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration was accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model was developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity.
Visual analysis of flow boiling at different gravity levels in 4.0 mm tube
NASA Astrophysics Data System (ADS)
Valencia-Castillo, C. M.; Celata, G. P.; Saraceno, L.; Zummo, G.
2014-11-01
The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed during the parabolic flight campaign of October-November 2013. The paper will show the analysis of differences between the heat transfer coefficients and vapour bubble parameters at normal and at zero gravity. The results of 4.0 mm tube are presented and discussed. With respect to terrestrial gravity, heat transfer is systematically lower at microgravity in the range of the experimental conditions. Heat transfer differences for the two gravity conditions are related to the different bubble size in each of them. The size of a bubble in flow boiling is affected by the gravity level, being larger at low gravity, unless inertial forces are largely predominant over buoyancy and other forces acting on the bubble itself when detaching from a heated wall. Vapour bubble parameters (bubble diameter, bubble length, width, and nose velocity) have been measured.
NASA Astrophysics Data System (ADS)
Vékony, Klára; Kiss, László I.
2012-10-01
The bubble layer formed under an anode and the bubble-induced flow play a significant role in the aluminum electrolysis process. The bubbles covering the anode bottom reduce the efficient surface that can carry current. In our experiments, we filmed and studied the bubble layer under the anode in a real-size air-water electrolysis cell model. Three different flow regimes were found depending on the gas generation rate. The covering factor was found to be proportional to the gas generation rate and inversely proportional to the angle of inclination. A correlation between the average height of the entire bubble layer and the position under the anode was determined. From this correlation and the measured contact sizes, the volume of the accumulated gas was calculated. The sweeping effect of large bubbles was observed. Moreover, the small bubbles under the inner edge of the anode were observed to move backward as a result of the escape of huge gas pockets, which means large momentum transport occurs in the bath.
A radio characterization of Galactic compact bubbles
NASA Astrophysics Data System (ADS)
Ingallinera, A.; Trigilio, C.; Umana, G.; Leto, P.; Noriega-Crespo, A.; Flagey, N.; Paladini, R.; Agliozzo, C.; Buemi, C. S.
2014-02-01
We report the radio observations of a subsample of the 428 Galactic compact bubbles discovered at 24 μm with the MIPSGAL survey. Pervasive through the entire Galactic plane, these objects are thought to be different kinds of evolved stars. The very large majority of the bubbles (˜70 per cent) are however not yet classified. We conducted radio observations with the Expanded Very Large Array at 6 and 20 cm in order to obtain the spectral index of 55 bubbles. We found that at least 70 per cent of the 31 bubbles for which we were effectively able to compute the spectral index (or its lower limit) are likely to be thermal emitters. We were also able to resolve some bubbles, obtaining that the size of the radio nebula is usually similar to the IR size, although our low resolution (with respect to IR images) did not allow further morphological studies. Comparisons between radio flux densities and IR archive data from Spitzer and IRAS suggest that at least three unclassified bubbles can be treated as planetary nebula candidates.
Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue.
Canchi, Saranya; Kelly, Karen; Hong, Yu; King, Michael A; Subhash, Ghatu; Sarntinoranont, Malisa
2017-10-01
Multiscale damage due to cavitation is considered as a potential mechanism of traumatic brain injury (TBI) associated with explosion. In this study, we employed a TBI relevant hippocampal ex vivo slice model to induce bubble cavitation. Placement of single reproducible seed bubbles allowed control of size, number, and tissue location to visualize and measure deformation parameters. Maximum strain value was measured at 45 µs after bubble collapse, presented with a distinct contour and coincided temporally and spatially with the liquid jet. Composite injury maps combined this maximum strain value with maximum measured bubble size and location along with histological injury patterns. This facilitated the correlation of bubble location and subsequent jet direction to the corresponding regions of high strain which overlapped with regions of observed injury. A dynamic threshold strain range for tearing of cerebral cortex was estimated to be between 0.5 and 0.6. For a seed bubble placed underneath the hippocampus, cavitation induced damage was observed in hippocampus (local), proximal cerebral cortex (marginal) and the midbrain/forebrain (remote) upon histological evaluation. Within this test model, zone of cavitation injury was greater than the maximum radius of the bubble. Separation of apposed structures, tissue tearing, and disruption of cellular layers defined early injury patterns that were not detected in the blast-exposed half of the brain slice. Ultrastructural pathology of the neurons exposed to cavitation was characterized by disintegration of plasma membrane along with loss of cellular content. The developed test system provided a controlled experimental platform to study cavitation induced high strain deformations on brain tissue slice. The goal of the future studies will be to lower underpressure magnitude and cavitation bubble size for more sensitive evaluation of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.
2012-12-01
Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<˜0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.
Bubble colloidal AFM probes formed from ultrasonically generated bubbles.
Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz
2008-02-05
Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.
NASA Astrophysics Data System (ADS)
Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.
2015-12-01
Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number of individual flares detected acoustically and extracted to estimate gas flux from the survey area. The gas flux estimate from the water column filtering and ROV observations yields a range of 2.2 - 6.6 mol CH4 / min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendel, Mark W; Felde, David K; Sangrey, Robert L
2014-01-01
Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubblermore » provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.« less
Lin, Kuang-Wei; Kim, Yohan; Maxwell, Adam D.; Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.
2014-01-01
Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. Conventional histotripsy treatments have used longer pulses from 3 to 10 cycles wherein the lesion-producing bubble cloud generation depends on the pressure-release scattering of very high peak positive shock fronts from previously initiated, sparsely distributed bubbles (the “shock-scattering” mechanism). In our recent work, the peak negative pressure (P−) for generation of dense bubble clouds directly by a single negative half cycle, the “intrinsic threshold,” was measured. In this paper, the dense bubble clouds and resulting lesions (in RBC phantoms and canine tissues) generated by these supra-intrinsic threshold pulses were studied. A 32-element, PZT-8, 500 kHz therapy transducer was used to generate very short (< 2 cycles) histotripsy pulses at a pulse repetition frequency (PRF) of 1 Hz and P− from 24.5 to 80.7 MPa. The results showed that the spatial extent of the histotripsy-induced lesions increased as the applied P− increased, and the sizes of these lesions corresponded well to the estimates of the focal regions above the intrinsic cavitation threshold, at least in the lower pressure regime (P− = 26–35 MPa). The average sizes for the smallest reproducible lesions were approximately 0.9 × 1.7 mm (lateral × axial), significantly smaller than the −6dB beamwidth of the transducer (1.8 × 4.0 mm). These results suggest that, using the intrinsic threshold mechanism, well-confined and microscopic lesions can be precisely generated and their spatial extent can be estimated based on the fraction of the focal region exceeding the intrinsic cavitation threshold. Since the supra-threshold portion of the negative half cycle can be precisely controlled, lesions considerably less than a wavelength are easily produced, hence the term “microtripsy.” PMID:24474132
Generating Soap Bubbles by Blowing on Soap Films
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2016-02-01
Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.
Generating Soap Bubbles by Blowing on Soap Films.
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2016-02-19
Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.
Rutz, Benjamin H; Berg, John C
2010-10-15
High performance polymer-fiber composites are high strength, low weight materials that have many applications, many of which would benefit from a decrease in weight, without a decrease in material properties. Generally, the fibers serve as the main load carriers, while the matrix serves to distribute load and protect the fibers from the environment. Thus, it is postulated that if the volume fraction of matrix is reduced, while still ensuring complete wetting of the fibers by the matrix, the per unit weight, i.e., specific, mechanical properties could be improved. This can be done by introducing small, spherical bubbles. Given the small average inter-fiber distance and assuming that the bubbles must not interact with the surface of the reinforcements the bubble diameter would need to be less than 1 μm. Introducing bubbles this small and ensuring that they do not form, or become attached, on the surface of the reinforcement are significant challenges. Two methods to produce such bubbles and the effect of these bubbles on mechanical properties of neat resins are reviewed: the addition of hollow spherical fillers, called microballoons, and the creation of bubbles from blowing agents. Microballoons in resins are a class of materials called syntactic foams. Although commercial microballoons are too large, smaller diameters can be made and could be used to reduce the weight of a reinforced composite on the order of 10%. The use of a physical blowing agent to produce bubbles in a composite is also considered. However, traditional polymer foaming techniques may be inadequate, as nucleation on the reinforcing phase is likely, and the bubbles formed are generally too large, so the use of blowing agent wells is considered. Blowing agent wells are discontinuous regions made from copolymer micelles or immiscible polymers that act as reservoirs of blowing agent. Additionally, the use of nano-sized materials for use as heterogeneous nucleation sites and secondary reinforcement of the matrix is also considered. Bubbles made from blowing agent could reduce the weight slightly more than using hollow spheres, but the reduction would also be of the order of 10%. Copyright © 2010 Elsevier B.V. All rights reserved.
Equatorial Plasma Bubbles: Effect of Thermospheric Winds Modulated by DE3 Tidal Waves
NASA Astrophysics Data System (ADS)
Sidorova, L. N.; Filippov, S. V.
2018-03-01
A hypothesis about the effect of the tropospheric source on the longitudinal distributions of the equatorial plasma bubbles observed in the topside ionosphere was proposed earlier. It was supposed that this influence is transferred mainly by the thermospheric winds modulated by the DE3 tropospheric tidal waves. This conclusion was based on the discovered high degree correlation ( R ≅ 0.79) between the variations of the longitudinal distribution of the plasma bubbles and the neutral atmospheric density. In this work, the hypothesis of the effect of the thermospheric tidal waves on the plasma bubbles at the stage of their generation is subjected to further verification. With this purpose, the longitudinal distributions of the frequency of the plasma bubble observations at the different ionospheric altitudes ( 600 km, ROCSAT-1; 1100 km, ISS-b) are analyzed; their principal similarity is revealed. Comparative analysis of these distributions with the longitudinal profile of the deviations of the zonal thermospheric wind ( 400 km, CHAMP) modulated by the DE3 tidal wave is carried out; their considerable correlation ( R ≅ 0.69) is revealed. We conclude that the longitudinal variations of the zonal wind associated with DE3 tidal waves can effect the longitudinal variations in the appearance frequency of the initial "seeding" perturbations, which further evolve into the plasma bubbles.
German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S
2016-12-12
In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (<100 nm radius), and weakly dependent on the nature of the gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.
Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M
2002-01-01
To study the structure-function relationship of pulmonary surfactant under conditions close to nature, molecular films of a model system consisting of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, and surfactant-associated protein C were prepared at the air-water interface of air bubbles about the size of human alveoli (diameter of 100 microm). The high mechanical stability as well as the absence of substantial film flow, inherent to small air bubbles, allowed for scanning force microscopy (SFM) directly at the air-water interface. The SFM topographical structure was correlated to the local distribution of fluorescent-labeled dipalmitoylphosphatidylcholine, as revealed from fluorescence light microscopy of the same bubbles. Although SFM has proven before to be exceptionally well suited to probe the structure of molecular films of pulmonary surfactant, the films so far had to be transferred onto a solid support from the air-water interface of a film balance, where they had been formed. This made them prone to artifacts imposed by the transfer. Moreover, the supported monolayers disallowed the direct observation of the structural dynamics associated with expansion and compression of the films as upon breathing. The current findings are compared in this respect to our earlier findings from films, transferred onto a solid support. PMID:11751334
A numerical model to simulate foams during devolatilization of polymers
NASA Astrophysics Data System (ADS)
Khan, Irfan; Dixit, Ravindra
2014-11-01
Customers often demand that the polymers sold in the market have low levels of volatile organic compounds (VOC). Some of the processes for making polymers involve the removal of volatiles to the levels of parts per million (devolatilization). During this step the volatiles are phase separated out of the polymer through a combination of heating and applying lower pressure, creating foam with the pure polymer in liquid phase and the volatiles in the gas phase. The efficiency of the devolatilization process depends on predicting the onset of solvent phase change in the polymer and volatiles mixture accurately based on the processing conditions. However due to the complex relationship between the polymer properties and the processing conditions this is not trivial. In this work, a bubble scale model is coupled with a bulk scale transport model to simulate the processing conditions of polymer devolatilization. The bubble scale model simulates the nucleation and bubble growth based on the classical nucleation theory and the popular ``influence volume approach.'' As such it provides the information of bubble size distribution and number density inside the polymer at any given time and position. This information is used to predict the bulk properties of the polymer and its behavior under the applied processing conditions. Initial results of this modeling approach will be presented.
Coastal Benthic Boundary Layer (CBBL) Research Program
1998-09-01
of gas volume and bubble size distribution on the basis of field seismo-acoustic signature remains . Indirect seismic evidence (large scale) of gas...regime was dominated by reversing tidal currents with typical speeds of 10-cm s -1 or less. Maximum bed shear stresses remained too low to resuspend or...Waals attractive force are assumed to remain unchanged for separations less than the cut-off distance, and (2) the mechanical interparticle normal force
Study on ambient noise generated from breaking waves simulated by a wave maker in a tank
NASA Astrophysics Data System (ADS)
Wei, Ruey-Chang; Chan, Hsiang-Chih
2002-11-01
This paper studies ambient noise in the surf zone that was simulated by a piston-type wave maker in a tank. The experiment analyzed the bubbles of a breaking wave by using a hydrophone to receive the acoustic signal, and the images of bubbles were recorded by a digital video camera to observe the distribution of the bubbles. The slope of the simulated seabed is 1:5, and the dimensions of the water tank are 35 m x1 m x1.2 m. The studied parameters of ambient noise generated by breaking wave bubbles were wave height, period, and water depth. Short-time Fourier transform was applied to obtain the acoustic spectrum of bubbles, MATLAB programs were used to calculate mean sound pressure level, and determine the number of bubbles. Bubbles with resonant frequency from 0.5 to 10 kHz were studied, counted from peaks in the spectrum. The number of bubbles generated by breaking waves could be estimated by the bubbles energy distributions. The sound pressure level of ambient noise was highly related to the wave height and period, with correlation coefficient 0.7.
NASA Astrophysics Data System (ADS)
KIM, E.; Jung, J.; Kang, S.; Choi, Y.
2016-12-01
In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.
Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru
2006-01-01
We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.
Exploding and Imaging of Electron Bubbles in Liquid Helium
NASA Astrophysics Data System (ADS)
Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish
2017-06-01
An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.
Role of entrapped vapor bubbles during microdroplet evaporation
NASA Astrophysics Data System (ADS)
Putnam, Shawn A.; Byrd, Larry W.; Briones, Alejandro M.; Hanchak, Michael S.; Ervin, Jamie S.; Jones, John G.
2012-08-01
On superheated surfaces, the air bubble trapped during impingement grows into a larger vapor bubble and oscillates at the frequency predicted for thermally induced capillary waves. In some cases, the entrapped vapor bubble penetrates the droplet interface, leaving a micron-sized coffee-ring pattern of pure fluid. Vapor bubble entrapment, however, does not influence the evaporation rate. This is also true on laser heated surfaces, where a laser can thermally excite capillary waves and induce bubble oscillations over a broad range of frequencies, suggesting that exciting perturbations in a pinned droplets interface is not an effective avenue for enhancing evaporative heat transfer.
NASA Technical Reports Server (NTRS)
Cheng, R. J.
1982-01-01
Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.
Size of the top jet drop produced by bubble bursting
NASA Astrophysics Data System (ADS)
Berny, Alexis; Deike, Luc; Popinet, Stéphane; Seon, Thomas
2017-11-01
When a bubble is located on a liquid-air interface, it eventually bursts. First, the bubble cap shatters and produces film drops. Then, the cavity collapses, a tiny liquid jet rises and, depending on bubble radius and liquid parameters, it can eventually break-up and release the so-called jet drops. We perform numerical simulations, using the free software basilisk, to determine and discuss the regime of existence and the size of the first liquid jet droplets. We first validate the numerical scheme by comparing our results with recent experimental data. We then extend our numerical study to a wider range of control parameters in order to enrich our knowledge of the jet drops production. Finally, we show and interpret our results using a scaling law approach and basic physical arguments. This allows us to untangle the intricate roles of viscosity, gravity, and surface tension in the end pinching of the bubble bursting jet.
On the shape of giant soap bubbles.
Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe
2017-03-07
We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.
Effect of an entrained air bubble on the acoustics of an ink channel.
Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2008-05-01
Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya
2015-05-07
We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less
Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming
NASA Astrophysics Data System (ADS)
Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.
2011-12-01
Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.
Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel
2017-01-01
This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility. PMID:28632158
Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M
2015-06-25
An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.
Photothermal generation of microbubbles on plasmonic nanostructures inside microfluidic channels
NASA Astrophysics Data System (ADS)
Li, Jingting; Li, Ming; Santos, Greggy M.; Zhao, Fusheng; Shih, Wei-Chuan
2016-03-01
Microbubbles have been utilized as micro-pumps, micro-mixers, micro-valves, micro-robots and surface cleaners. Various generation techniques can be found in the literature, including resistive heating, hydrodynamic methods, illuminating patterned metal films and noble metal nanoparticles of Au or Ag. We present photothermal microbubble generation by irradiating nanoporous gold disk covered microfluidic channels. The size of the microbubble can be controlled by adjusting the laser power. The dynamics of both bubble growth and shrinkage are studied. The advantages of this technique are flexible bubble generation locations, long bubble lifetimes, no need for light-adsorbing dyes, high controllability over bubble size, low power consumption, etc. This technique has the potential to provide new flow control functions in microfluidic devices.
Migration of air bubbles in ice under a temperature gradient, with application to “Snowball Earth”
NASA Astrophysics Data System (ADS)
Dadic, Ruzica; Light, Bonnie; Warren, Stephen G.
2010-09-01
To help characterize the albedo of "sea glaciers" on Snowball Earth, a study of the migration rates of air bubbles in freshwater ice under a temperature gradient was carried out in the laboratory. The migration rates of air bubbles in both natural glacier ice and laboratory-grown ice were measured for temperatures between -36°C and -4°C and for bubble diameters of 23-2000 μm. The glacier ice was sampled from a depth near close-off (74 m) in the JEMS2 ice core from Summit, Greenland. Migration rates were measured by positioning thick sections of ice on a temperature gradient stage mounted on a microscope inside a freezer laboratory. The maximum and minimum migration rates were 5.45 μm h-1 (K cm-1)-1 at -4°C and 0.03 μm h-1 (K cm-1)-1 at -36°C. Besides a strong dependence on temperature, migration rates were found to be proportional to bubble size. We think that this is due to the internal air pressure within the bubbles, which may correlate with time since close-off and therefore with bubble size. Migration rates show no significant dependence on bubble shape. Estimates of migration rates computed as a function of bubble depth within sea glaciers indicate that the rates would be low relative to the predicted sublimation rates, such that the ice surface would not lose its air bubbles to net downward migration. It is therefore unlikely that air bubble migration could outrun the advancing sublimation front, transforming glacial ice to a nearly bubble-free ice type, analogous to low-albedo marine ice.
Nanoscale dynamics of Joule heating and bubble nucleation in a solid-state nanopore.
Levine, Edlyn V; Burns, Michael M; Golovchenko, Jene A
2016-01-01
We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including bubble nucleation kinetics, relaxation oscillation, and bubble dynamics.
Bubble pinch-off and scaling during liquid drop impact on liquid pool
NASA Astrophysics Data System (ADS)
Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh
2012-08-01
Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.
Ultrasonic simulation of MSBLS multipath fading for orbiter landing configuration
NASA Technical Reports Server (NTRS)
Hayre, H. S.
1978-01-01
The on-shuttle antenna pattern of the MSBLS receiver, and the azimuth and elevation beamwidths were simulated by their corresponding ultrasonic transducer beams. The scanning rate for the azimuth and elevation beams was 1.75 degrees/second. The results were adjusted for full-scale maximum sinusoidal scan rates of 691 and 377 deg/sec for AZ and EL respectively. The rain drops were simulated by air bubbles, with a similar size distribution, in water. The rain volume was created along a part of the propagation path, and not on the runway, because it was found difficult to avoid an accumulation of bubbles on the runway surface and surroundings simulated by the model surface. Multipath fading from the ground, and its possible degrading effect on the orbiter received beam shape and the associated landing guidance parameters is discussed.
Ventilation of an hydrofoil wake
NASA Astrophysics Data System (ADS)
Arndt, Roger; Lee, Seung Jae; Monson, Garrett
2013-11-01
Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.
NASA Astrophysics Data System (ADS)
Keene, William C.; Long, Michael S.; Reid, Jeffrey S.; Frossard, Amanda A.; Kieber, David J.; Maben, John R.; Russell, Lynn M.; Kinsey, Joanna D.; Quinn, Patricia K.; Bates, Timothy S.
2017-11-01
Model primary marine aerosol (mPMA) was produced by bubbling clean air through flowing natural seawater in a high-capacity generator deployed on ships in the eastern North Pacific and western North Atlantic Oceans. Physicochemical properties of seawater and mPMA were quantified to characterize factors that modulated production. Differences in surfactant organic matter (OM) and associated properties including surface tension sustained plumes with smaller bubble sizes, slower rise velocities, larger void fractions, and older surface ages in biologically productive relative to oligotrophic seawater. Production efficiencies for mPMA number (PEnum) and mass (PEmass) per unit air detrained from biologically productive seawater during daytime were greater and mass median diameters smaller than those in the same seawater at night and in oligotrophic seawater during day and night. PEmass decreased with increasing air detrainment rate suggesting that surface bubble rafts suppressed emission of jet droplets and associated mPMA mass. Relative to bubbles emitted at 60 cm depth, PEnum for bubbles emitted from 100 cm depth was approximately 2 times greater. mPMA OM enrichment factors (EFs) and mass fractions based on a coarse frit, fine frits, and a seawater jet exhibited similar size-dependent variability over a wide range in chlorophyll a concentrations. Results indicate that the physical production of PMA number and mass from the ocean surface varies systematically as interrelated functions of seawater type and, in biologically productive waters, time of day; bubble injection rate, depth, size, and surface age; and physical characteristics of the air-water interface whereas size-resolved OM EFs and mass fractions are relatively invariant.
Collective dissolution of microbubbles
NASA Astrophysics Data System (ADS)
Michelin, Sébastien; Guérin, Etienne; Lauga, Eric
2018-04-01
A microscopic bubble of soluble gas always dissolves in finite time in an undersaturated fluid. This diffusive process is driven by the difference between the gas concentration near the bubble, whose value is governed by the internal pressure through Henry's law, and the concentration in the far field. The presence of neighboring bubbles can significantly slow down this process by increasing the effective background concentration and reducing the diffusing flux of dissolved gas experienced by each bubble. We develop theoretical modeling of such diffusive shielding process in the case of small microbubbles whose internal pressure is dominated by Laplace pressure. We first use an exact semianalytical solution to capture the case of two bubbles and analyze in detail the shielding effect as a function of the distance between the bubbles and their size ratio. While we also solve exactly for the Stokes flow around the bubble, we show that hydrodynamic effects are mostly negligible except in the case of almost-touching bubbles. In order to tackle the case of multiple bubbles, we then derive and validate two analytical approximate yet generic frameworks, first using the method of reflections and then by proposing a self-consistent continuum description. Using both modeling frameworks, we examine the dissolution of regular one-, two-, and three-dimensional bubble lattices. Bubbles located at the edge of the lattices dissolve first, while innermost bubbles benefit from the diffusive shielding effect, leading to the inward propagation of a dissolution front within the lattice. We show that diffusive shielding leads to severalfold increases in the dissolution time, which grows logarithmically with the number of bubbles in one-dimensional lattices and algebraically in two and three dimensions, scaling respectively as its square root and 2 /3 power. We further illustrate the sensitivity of the dissolution patterns to initial fluctuations in bubble size or arrangement in the case of large and dense lattices, as well as nonintuitive oscillatory effects.
Noise analysis of nucleate boiling
NASA Technical Reports Server (NTRS)
Mcknight, R. D.; Ram, K. S.
1971-01-01
The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.
Transport of Gas and Solutes in Permeable Estuarine Sediments
2010-09-30
inhabited by microphytobenthos and seagrass . 2) To quantify the size range and composition of the gas bubbles in the sediment and the overlying water...characteristics of bubble ebullition in a shallow coastal environment with strong benthic photosynthesis (May 26-28). The goal was to determine the spatial and...each 50 μL air injection. Detection of small bubbles produced by benthic photosynthesis The goal was to assess whether the small bubbles
NASA Technical Reports Server (NTRS)
Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)
1995-01-01
A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.
Observation of high-temperature bubbles in an ECR plasma
NASA Astrophysics Data System (ADS)
Terasaka, K.; Yoshimura, S.; Tanaka, M. Y.
2018-05-01
Creation and annihilation of high-temperature bubbles have been observed in an electron cyclotron resonance plasma. The electron temperature in the bubble core is three times higher than that in the ambient region, and the size perpendicular to the magnetic field is much smaller than the plasma diameter. Formation of a bubble accompanies large negative spikes in the floating potential of a Langmuir probe, and the spatiotemporal behavior of the bubble has been visualized with a high-impedance wire grid detector. It is found that the bubble is in a prolate spheroidal shape with the axis along the magnetic field and occurs randomly in time and independently in space.
Vapor bubble generation around gold nano-particles and its application to damaging of cells
Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.
2011-01-01
We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875
Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat
2008-01-15
Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less
Measures for a multidimensional multiverse
NASA Astrophysics Data System (ADS)
Chung, Hyeyoun
2015-04-01
We explore the phenomenological implications of generalizing the causal patch and fat geodesic measures to a multidimensional multiverse, where the vacua can have differing numbers of large dimensions. We consider a simple model in which the vacua are nucleated from a D -dimensional parent spacetime through dynamical compactification of the extra dimensions, and compute the geometric contribution to the probability distribution of observations within the multiverse for each measure. We then study how the shape of this probability distribution depends on the time scales for the existence of observers, for vacuum domination, and for curvature domination (tobs,tΛ , and tc, respectively.) In this work we restrict ourselves to bubbles with positive cosmological constant, Λ . We find that in the case of the causal patch cutoff, when the bubble universes have p +1 large spatial dimensions with p ≥2 , the shape of the probability distribution is such that we obtain the coincidence of time scales tobs˜tΛ˜tc . Moreover, the size of the cosmological constant is related to the size of the landscape. However, the exact shape of the probability distribution is different in the case p =2 , compared to p ≥3 . In the case of the fat geodesic measure, the result is even more robust: the shape of the probability distribution is the same for all p ≥2 , and we once again obtain the coincidence tobs˜tΛ˜tc . These results require only very mild conditions on the prior probability of the distribution of vacua in the landscape. Our work shows that the observed double coincidence of time scales is a robust prediction even when the multiverse is generalized to be multidimensional; that this coincidence is not a consequence of our particular Universe being (3 +1 )-dimensional; and that this observable cannot be used to preferentially select one measure over another in a multidimensional multiverse.
Phase Transitions of Nanoemulsions Using Ultrasound: Experimental Observations
Singh, Ram; Husseini, Ghaleb A.; Pitt, William G.
2012-01-01
The ultrasound-induced transformation of perfluorocarbon liquids to gases is of interest in the area of drug and gene delivery. In this study, three independent parameters (temperature, size, and perfluorocarbon species) were selected to investigate the effects of 476-kHz and 20-kHz ultrasound on nanoemulsion phase transition. Two levels of each factor (low and high) were considered at each frequency. The acoustic intensities at gas bubble formation and at the onset of inertial cavitation were recorded and subsequently correlated with the acoustic parameters. Experimental data showed that low frequencies are more effective in forming and collapsing a bubble. Additionally, as the size of the emulsion droplet increased, the intensity required for bubble formation decreased. As expected, perfluorohexane emulsions require greater intensity to form cavitating bubbles than perfluoropentane emulsions. PMID:22444691
NASA Astrophysics Data System (ADS)
Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.
2017-12-01
Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may potentially alter bubble sizes, thus bubble storage in peats.
Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids.
Chu, Guang; Vilensky, Rita; Vasilyev, Gleb; Deng, Shengwei; Qu, Dan; Xu, Yan; Zussman, Eyal
2017-07-17
The structural transition in micrometer-sized liquid crystal bubbles (LCBs) derived from rod-like cellulose nanocrystals (CNCs) was studied. The CNC-based LCBs were suspended in nematic or chiral nematic liquid-crystalline CNCs, which generated topological defects and distinct birefringent textures around them. The ordering and structure of the LCBs shifted from a nematic to chiral nematic arrangement as water evaporation progressed. These packed LCBs exhibited a specific photonic cross-communication property that is due to a combination of Bragg reflection and bubble curvature and size. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J; Johnsen, Eric; Cain, Charles; Xu, Zhen
2015-03-21
Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young's modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.
NASA Astrophysics Data System (ADS)
Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen
2015-03-01
Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.
Bubble dynamics and bubble-induced turbulence of a single-bubble chain
NASA Astrophysics Data System (ADS)
Lee, Joohyoung; Park, Hyungmin
2016-11-01
In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.
The collapse of a cavitation bubble in a corner
NASA Astrophysics Data System (ADS)
Peters, Ivo; Tagawa, Yoshiyuki
2017-11-01
The collapse of cavitation bubbles is influenced by the surrounding geometry. A classic example is the collapse of a bubble near a solid wall, where a fast jet is created towards the wall. The addition of a second wall creates a non-axisymmetric flow field, which influences the displacement and jet formation during the collapse of a bubble. In this experimental study we generate mm-sized vapor bubbles using a focused pulsed laser, giving us full control over the position of the bubble. The corner geometry is formed by two glass slides. High-speed imaging reveals the directional motion of the bubble during the collapse. We find that the bubble displacement cannot be fully described by a simple superposition of the bubble dynamics of the two walls individually. Comparison of our experimental results to a model based on potential flow shows a good agreement for the direction of displacement.
Senthilkumar, D V; Srinivasan, K; Thamilmaran, K; Lakshmanan, M
2008-12-01
We identify an unconventional route to the creation of a strange nonchaotic attractor (SNA) in a quasiperiodically forced electronic circuit with a nonsinusoidal (square wave) force as one of the quasiperiodic forces through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled (while the remaining parts of the strands of the torus remain largely unaffected) resulting in the creation of the SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps, Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA via the bubbling route by the distribution of the finite-time Lyapunov exponents.
Numerical simulation of the distribution of individual gas bubbles in shaped sapphire crystals
NASA Astrophysics Data System (ADS)
Borodin, A. V.; Borodin, V. A.
2017-11-01
The simulation of the effective density of individual gas bubbles in a two-phase melt, consisting of a liquid and gas bubbles, is performed using the virtual model of the thermal unit. Based on the studies, for the first time the theoretically and experimentally grounded mechanism of individual gas bubbles formation in shaped sapphire is proposed. It is shown that the change of the melt flow pattern in crucible affects greatly the bubble density at the crystallization front, and in the crystal. The obtained results allowed reducing the number of individual gas bubbles in sapphire sheets.
NASA Astrophysics Data System (ADS)
German, Sean R.
This dissertation presents experimental and computational studies of individual nanobubbles electrochemically generated at platinum nanoelectrodes. Chapter 1 provides an overview of the physics governing bubble dynamics and a brief summary of the literature regarding nanobubbles. Chapter 2 describes a fast scan voltammetric method for measurement of nanobubble dissolution rates. After a nanobubble is nucleated from gas generated via an electrode reaction, the electrode potential is rapidly stepped to a value where the bubble is unstable and begins to dissolve. The electrode potential is immediately scanned back to values where the bubble was initially stable. Depending on the rate of this second voltammetric scan, the initial bubble may or may not have time to dissolve. The fastest scan rate at which the bubble dissolves is used to determine the bubble's lifetime. The results indicate that dissolution of a H2 or N2 nanobubble is, in part, limited by the transfer of molecules across the gas/water interface. Chapter 3 presents electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of a nanobubble of H 2, N2, or O2 at a Pt nanodisk electrode. The results are analyzed using classical thermodynamic relationships to provide an estimate of the size of the critical gas nucleus that grows into a stable bubble. This critical nucleus size is independent of the radius of the Pt nanodisk employed and weakly dependent on the nature of the gas. Chapter 4 reports electrochemical measurements of Laplace pressures within single H2 bubbles between 7 and 200 nm radius (corresponding, respectively, to between 200 and 7 atmospheres). The current, associated with H2 gas generation, supporting a steady-state nanobubble is modulated by application of external pressure. The slope of the current-pressure response allows extrapolation of the bubble's curvature-dependent internal pressure. The results demonstrate a linear relationship between a bubble's Laplace pressure and its reciprocal radius, verifying the classical thermodynamic description of H2 nanobubbles as small as 10 nm. Chapter 5 summarizes these results and places them in the context of current research. Future directions for further studies are suggested.
Atomistic simulations of dislocation dynamics in δ-Pu-Ga alloys
NASA Astrophysics Data System (ADS)
Karavaev, A. V.; Dremov, V. V.; Ionov, G. V.
2017-12-01
Molecular dynamics with the modified embedded atom model (MEAM) for interatomic interaction is applied to direct simulations of dislocation dynamics in fcc δ-phase Pu-Ga alloys. First, parameters of the MEAM potential are fitted to accurately reproduce experimental phonon dispersion curves and phonon density of states at ambient conditions. Then the stress-velocity dependence for edge dislocations as well as Pierls stress are obtained in direct MD modeling of dislocation motion using the shear stress relaxation technique. The simulations are performed for different gallium concentrations and the dependence of static yield stress on Ga concentration derived demonstrates good agreement with experimental data. Finally, the influence of radiation defects (primary radiation defects, nano-pores, and radiogenic helium bubbles) on dislocation dynamics is investigated. It is demonstrated that uniformly distributed vacancies and nano-pores have little effect on dislocation dynamics in comparison with that of helium bubbles. The results of the MD simulations evidence that the accumulation of the radiogenic helium in the form of nanometer-sized bubbles is the main factor affecting strength properties during long-term storage. The calculated dependence of static yield stress on helium bubbles concentration for fcc Pu 1 wt .% Ga is in good agreement with that obtained in experiments on accelerated aging. The developed technique of static yield stress evaluation is applicable to δ-phase Pu-Ga alloys with arbitrary Ga concentrations.
Size-selective sorting in bubble streaming flows: Particle migration on fast time scales
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha
2015-11-01
Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.; Gaby, Joseph D., Jr.; Sinacore, Steven A., Jr.
2009-01-01
Liquid acquisition devices (LADs) can be utilized within a propellant tank in space to deliver single-phase liquid to the engine in low gravity. One type of liquid acquisition device is a screened gallery whereby a fine mesh screen acts as a 'bubble filter' and prevents the gas bubbles from passing through until a crucial pressure differential condition across the screen, called the bubble point, is reached. This paper presents data for LAD bubble point data in liquid methane (LCH4) for stainless steel Dutch twill screens with mesh sizes of 325 by 2300. These tests represent the first known nonproprietary effort to collect bubble point data for LCH4.
Hendrix, Maurice H W; Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C; Ohl, Claus-Dieter
2012-06-15
Collisions between millimeter-size bubbles in water against a glass plate are studied using high-speed video. Bubble trajectory and shape are tracked simultaneously with laser interferometry between the glass and bubble surfaces that monitors spatial-temporal evolution of the trapped water film. Initial bubble bounces and the final attachment of the bubble to the surface have been quantified. While the global Reynolds number is large (∼10(2)), the film Reynolds number remains small and permits analysis with lubrication theory with tangentially immobile boundary condition at the air-water interface. Accurate predictions of dimple formation and subsequent film drainage are obtained.
Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine
NASA Technical Reports Server (NTRS)
Sohn, Ki Hyeon; DeWitt, Kenneth J.
1998-01-01
A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000 and 250,000 with four levels of freestream turbulence ranging from 1% to 4%. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000 and 100,000. Spectral data show no evidence of Kelvin-Helmholtz or Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transitional flows over the separation bubble for certain conditions. Transition onset and end locations and length determined from intermittency profiles decrease as Reynolds number and freestream turbulence levels increase.
Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J
2015-02-01
Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.
Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine
NASA Technical Reports Server (NTRS)
Sohn, Ki Hyeon; DeWitt, Kenneth J.
2007-01-01
A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000, and 250,000 with four levels of freestream turbulence ranging from 1 to 4 percent. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000, and 100,000. Spectral data show no evidence of Kelvin-Helmholtz of Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transition flows over the separation bubble of certain conditions. Transition onset and end locations and length determined from intermittency profiles decreased as Reynolds number and freestream turbulence levels increase.
Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects
Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.
2009-01-01
We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible. PMID:18851139
Stability and Decay Properties of Foam in Seawater.
1987-04-24
DECAY PROPERTIES OF FOAM IN SEAWATER FMRODUCTION Foam is formed by the entrainment of air in the form of small bubbles at and just beneath the...181 has examined how the size distributions of foam patches formed by wave action on a sandy beach vary with time. It was found that the mean diameter...typical foam patch was 25 seconds. Zheng et al [25] also measured the average lifetime of a foam layer formed at the surface by wave breaking on a
Blast wave attenuation in liquid foams: role of gas and evidence of an optimal bubble size.
Monloubou, Martin; Bruning, Myrthe A; Saint-Jalmes, Arnaud; Dollet, Benjamin; Cantat, Isabelle
2016-09-28
Liquid foams are excellent systems to mitigate pressure waves such as acoustic or blast waves. The understanding of the underlying dissipation mechanisms however still remains an active matter of debate. In this paper, we investigate the attenuation of a weak blast wave by a liquid foam. The wave is produced with a shock tube and impacts a foam, with a cylindrical geometry. We measure the wave attenuation and velocity in the foam as a function of bubble size, liquid fraction, and the nature of the gas. We show that the attenuation depends on the nature of the gas and we experimentally evidence a maximum of dissipation for a given bubble size. All features are qualitatively captured by a model based on thermal dissipation in the gas.
Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.
Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert
2017-12-01
The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.
Nonlinear activity of acoustically driven gas bubble near a rigid boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksimov, Alexey
2015-10-28
The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and themore » boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.« less
Photothermally controlled Marangoni flow around a micro bubble
NASA Astrophysics Data System (ADS)
Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi
2015-01-01
We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size.
Perturbations of the magnetic induction in a bubbly liquid metal flow
NASA Astrophysics Data System (ADS)
Guichou, Rafael; Tordjeman, Philippe; Bergez, Wladimir; Zamansky, Remi; Paumel, Kevin
2017-11-01
The presence of bubbles in liquid metal flow subject to AC magnetic field modifies the distribution of eddy currents in the fluid. This situation is encountered in metallurgy and nuclear industry for Sodium Fast Reactors. We will show that the perturbation of the eddy currents can be measured by an Eddy Current Flowmeter coupled with a lock-in amplifier. The experiments point out that the demodulated signal allows to detect the presence of a single bubble in the flow. The signal is sensitive both to the diameter and the relative position of the bubble. Then, we will present a model of a potential perturbation of the current density caused by a bubble and the distortion of the magnetic field. The eddy current distribution is calculated from the induction equation. This model is derived from a potential flow around a spherical particle. The total vector potential is the sum of the vector potential in the liquid metal flow without bubbles and the perturbated vector potential due to the presence of a bubble. The model is then compared to the experimental measurements realized with the eddy current flow meter for various bubble diameters in galinstan. The very good agreement between model and experiments validates the relevance of the perturbative approach.
de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio
2012-01-01
Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306
Nonspherical laser-induced cavitation bubbles
NASA Astrophysics Data System (ADS)
Lim, Kang Yuan; Quinto-Su, Pedro A.; Klaseboer, Evert; Khoo, Boo Cheong; Venugopalan, Vasan; Ohl, Claus-Dieter
2010-01-01
The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40μm . In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles. The bubble dynamics is recorded with a high-speed camera at framing rates of up to 300000 frames per second. The observed bubble evolution is compared to predictions from an axisymmetric boundary element simulation which provides good qualitative agreement. Interesting dynamic features that are observed in both the experiment and simulation include the inversion of the major and minor axis for elliptical bubbles, the rotation of the shape for square bubbles, and the formation of a unidirectional jet for V-shaped bubbles. Further we demonstrate that specific bubble shapes can either be formed directly through the intensity distribution of a single laser focus, or indirectly using secondary bubbles that either confine the central bubble or coalesce with the main bubble. The former approach provides the ability to generate in principle any complex bubble geometry.
Application of the DART Code for the Assessment of Advanced Fuel Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Totev, T.
2007-07-01
The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2}more » fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)« less
Sonar gas seepage characterization using high resolution systems at short ranges
NASA Astrophysics Data System (ADS)
Schneider von Deimling, J.; Lohrberg, A.; Mücke, I.
2017-12-01
Sonar is extremely sensitive in regard to submarine remote sensing of free gas bubbles. Known reasons for this are (1) high impedance contrast between water and gas, holding true also at larger depths with higher hydrostatic pressures and thus greater mole density in a gas bubble; (2) resonating behavior at a specific depth-frequency-size/shape relation with highly non-linear behavior; (3) an overlooked property being valuable for gas seepage detection and characterization is the movement of bubbles controlled by their overall trajectory governed by buoyancy, upwelling effects, tides, eddies, and currents. Moving objects are an unusual seismo-acoustic target in solid earth geophysics, and most processors hardly consider such short term movement. However, analyzing movement pattern over time and space highly improves human and algorithmic bubble detection and helps mitigation of false alarms often caused by fish's swim bladders. We optimized our sonar surveys for gas bubble trajectory analyses using calibrated split-beam and broadband/short pulse multibeam to gather very high quality sonar images. Thus we present sonar data patterns of gas seepage sites recorded at shorter ranges showing individual bubbles or groups of bubbles. Subsequent analyses of bubble trajectories and sonar strength can be used to quantify minor gas fluxes with high accuracy. Moreover, we analyzed strong gas bubble seepage sites with significant upwelling. Acoustic inversion of such major seep fluxes is extremely challenging if not even impossible given uncertainties in bubble size spectra, upwelling velocities, and beam geometry position of targets. Our 3D analyses of the water column multibeam data unraveled that some major bubble flows prescribe spiral vortex trajectories. The phenomenon was first found at an abandoned well site in the North Sea, but our recent investigations confirm such complex bubble trajectories exist at natural seeps, i.e. at the CO2 seep site Panarea (Italy). We hypothesize that accurate 3D analyses of plume shape and trajectory analyses might help to estimate threshold for fluxes.
Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.
Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin
2015-07-28
Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated.
Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.
Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G
2008-05-12
In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.
NASA Technical Reports Server (NTRS)
Dewitt, K. J.; Brockwell, J. L.
1985-01-01
The long term objective of the experiment is to observe the dissolution of isolated, immobile gas bubbles of specified size and composition in a solvent liquid of known concentration in the reduced gravity environment of earth orbit. Preliminary bubble dissolution experiment conducted both in the NASA Lewis 2.2 sec drop tower and in normal gravity using SO2 - Toluene system were not completely successful in their objective. The method of gas injection and lack of bubble interface stabiliy experienced due to the extreme solubility of SO in Toluene has the effects of changing the problem from that of bubble dissolution to one of bubble formation stability and subsequent dissolution in a liquid of unknown initial solute concentration. Current work involves further experimentation in order to refine the bubble injection system and to investigate the concept of having a bubble with a critical radius in a state of unstable equilibrium.
Numerical simulation of superheated vapor bubble rising in stagnant liquid
NASA Astrophysics Data System (ADS)
Samkhaniani, N.; Ansari, M. R.
2017-09-01
In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.
Morphology of Two-Phase Layers with Large Bubbles
NASA Astrophysics Data System (ADS)
Vékony, Klára; Kiss, László I.
2010-10-01
The understanding of formation and movement of bubbles nucleated during aluminum reduction is essential for a good control of the electrolysis process. In our experiments, we filmed and studied the formation of a bubble layer under the anode in a real-size air-water electrolysis cell model. The maximum height of the bubbles was found to be up to 2 cm because of the presence of the so-called Fortin bubbles. Also, the mean height of the bubble layer was found to be much higher than published previously. The Fortin bubbles were investigated more closely, and their shape was found to be induced by a gravity wave formed at the gas-liquid interface. In addition, large bubbles were always observed to break up into smaller parts right before escaping from under the anode. This breakup and escape led to a large momentum transfer in the bath.
On the effect of irradiation-induced resolution in modelling fission gas release in UO2 LWR fuel
NASA Astrophysics Data System (ADS)
Lösönen, Pekka
2017-12-01
Irradiation resolution of gas atoms and vacancies from intra- and intergranular bubbles in sintered UO2 fuel was studied by comparing macroscopic models with a more mechanistic approach. The applied macroscopic models imply the resolution rate of gas atoms to be proportional to gas concentration in intragranular bubbles and at grain boundary (including intergranular bubbles). A relation was established between the macroscopic models and a single encounter of an energetic fission fragment with a bubble. The effect of bubble size on resolution was quantified. The number of resoluted gas atoms per encounter of a fission fragment per bubble was of the same order of magnitude for intra- and intergranular bubbles. However, the resulting macroscopic resolution rate of gas atoms was about two orders of magnitude larger from intragranular bubbles. The number of vacancies resoluted from a grain face bubble by a passing fission fragment was calculated. The obtained correlations for resolution of gas atoms from intragranular bubbles and grain boundaries and for resolution of vacancies from grain face bubbles were used to demonstrate the effect of irradiation resolution on fission gas release.
Nanoscale Dynamics of Joule heating and Bubble Nucleation in a Solid-State Nanopore
Levine, Edlyn V.; Burns, Michael M.; Golovchenko, Jene A.
2016-01-01
We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including bubble nucleation kinetics, relaxation oscillation, and bubble dynamics. PACS numbers 47.55.dp, 47.55.db, 85.35.-p, 05.70Fh PMID:26871171
Reducing financial avalanches by random investments
NASA Astrophysics Data System (ADS)
Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk
2013-12-01
Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.
Reducing financial avalanches by random investments.
Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk
2013-12-01
Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.
Sintering of polydisperse viscous droplets
NASA Astrophysics Data System (ADS)
Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Dingwell, Donald B.
2017-03-01
Sintering—or coalescence—of compacts of viscous droplets is driven by the interfacial tension between the droplets and the interstitial gas phase. The process, which occurs in a range of industrial and natural settings, such as the manufacture of ceramics and the welding of volcanic ash, causes the compact to densify, to become stronger, and to become less permeable. We investigate the role of droplet polydispersivity in sintering dynamics by conducting experiments in which populations of glass spheres with different size distributions are heated to temperatures above the glass transition interval. We quantify the progress of sintering by tracking changes in porosity with time. The sintering dynamics is modeled by treating the system as a random distribution of interstitial gas bubbles shrinking under the action of interfacial tension only. We identify the scaling between the polydispersivity of the initial droplets and the dynamics of bulk densification. The framework that we develop allows the sintering dynamics of arbitrary polydisperse populations of droplets to be predicted if the initial droplet (or particle) size distribution is known.
Characteristics of low-latitude ionospheric depletions and enhancements during solar minimum
NASA Astrophysics Data System (ADS)
Haaser, R. A.; Earle, G. D.; Heelis, R. A.; Klenzing, J.; Stoneback, R.; Coley, W. R.; Burrell, A. G.
2012-10-01
Under the waning solar minimum conditions during 2009 and 2010, the Ion Velocity Meter, part of the Coupled Ion Neutral Dynamics Investigation aboard the Communication/Navigation Outage Forecasting System satellite, is used to measure in situ nighttime ion densities and drifts at altitudes between 400 and 550 km during the hours 21:00-03:00 solar local time. A new approach to detecting and classifying well-formed ionospheric plasma depletions and enhancements (bubbles and blobs) with scale sizes between 50 and 500 km is used to develop geophysical statistics for the summer, winter, and equinox seasons during the quiet solar conditions. Some diurnal and seasonal geomagnetic distribution characteristics confirm previous work on equatorial irregularities and scintillations, while other elements reveal new behaviors that will require further investigation before they may be fully understood. Events identified in the study reveal very different and often opposite behaviors of bubbles and blobs during solar minimum. In particular, more bubbles demonstrating deeper density fluctuations and faster perturbation plasma drifts typically occur earlier near the magnetic equator, while blobs of similar magnitude occur more often far away from the geomagnetic equator closer to midnight.
The motion of bubbles inside drops in containerless processing
NASA Technical Reports Server (NTRS)
Shankar, N.; Annamalai, P.; Cole, R.; Subramanian, R. S.
1982-01-01
A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory.
X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses
Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; ...
2017-05-10
The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less
X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav
The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less
Doig, Steven D; Ortiz-Ochoa, Kenny; Ward, John M; Baganz, Frank
2005-01-01
This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization.
NASA Astrophysics Data System (ADS)
Beaubien, Stan; De Vittor, Cinzia; McGinnis, Dan; Bigi, Sabina; Comici, Cinzia; Ingrosso, Gianmarco; Lombardi, Salvatore; Ruggiero, Livio
2014-05-01
Carbon capture and storage is expected to provide an important, short-term contribution to mitigate global climate change due to anthropogenic emissions of CO2. Offshore reservoirs are particularly favourable, however concerns exist regarding the potential for CO2 leakage into the water column (with possible ecosystem impacts) and the atmosphere. Although laboratory experiments and modelling can examine these issues, the study of natural systems can provide a more complete and realistic understanding. For this reason the natural CO2 emission site off the coast of Panarea Island (Italy) was chosen for study within the EC-funded ECO2 project. The present paper discusses the results of field experiments conducted at this site to better understand the fate of CO2 gas bubbles as they rise through the water column, and to use this real-world data as input to test the predictive capabilities of a bubble model. Experiments were conducted using a 1m wide x 1m deep x 3m tall, hollow-tube structure equipped with a vertical guide on the front face and a dark, graduated cloth for contrast and depth reference on the back. A Plexiglas box was filled with the naturally emitted gas and fixed on the seafloor inside the structure. Tubes exit the top of the box to make bubbles of different diameters, while valves on each tube control bubble release rate. Bubble rise velocity was measured by tracking each bubble with a HD video camera mounted in the guide and calculating values over 20 cm intervals. Bubble diameter was measured by filming the bubbles as they collide with a graduated Plexiglas sheet deployed horizontally at the measurement height. Bubble gas was collected at different heights using a funnel and analysed in the laboratory for CO2, O2+Ar, N2, and CH4. Water parameters were measured by performing a CTD cast beside the structure and collecting water samples at four depths using a Niskin bottle; samples were analysed in the laboratory for all carbonate system species, DO, and dissolved gases. An in-house developed GasPro sensor was also mounted on the structure to monitor pCO2 over the entire 2.5 hour duration of the experiment. The obtained data were used as input into the Discrete Bubble Model (DBM) (e.g., McGinnis et al., 2011, doi:10.1029/2010JC006557). The DBM uses mass balance to predict the gas flux across the bubble surface, whereby gas flux direction depends on internal bubble gas concentration and ambient concentration, and considering the Henry's coefficient and partial pressure of the gas. The model uses bubble-size dependent relationships for the mass transfer rate and the bubble rise velocity. Important model input parameters include: bubble size; depth; ambient dissolved gas concentrations, temperature and salinity; and initial bubble gas concentrations. Measured and modelled results are compared, showing good general agreement. Based on the concentrations measured at the lowest level, the modelled and measured bubble concentrations match very closely. Bubble size values do not match as well if this initial concentration is used, however they improve as a value closer to 100% CO2 is applied. This preliminary study has shown promising results and highlight areas where experimental design and data quality should be improved in the next phase of the study.
Preparation and characterization of a novel silicon-modified nanobubble
Li, Maotong; Zhou, Meijun; Li, Fei; Huang, Xiuxian; Pan, Min; Xue, Li
2017-01-01
Nanobubbles (NBs) opened a new field of ultrasound imaging. There is still no practical method to control the diameter of bubbles. In this study, we developed a new method to control the size by incorporating of silicon hybrid lipids into the bubble membrane. The range of particle size of resulting NBs is between 523.02 ± 46.45 to 857.18 ± 82.90, smaller than the conventional microbubbles. The size of resulting NBs increased with the decrease in amount of silicon hybrid lipids, indicating the diameter of NBs can be regulated through modulating the ratio of silicon hybrid lipids in the bubble shell. Typical harmonic signals could be detected. The in vitro and in vivo ultrasound imaging experiments demonstrated these silicon-modified NBs had significantly improved ultrasound contrast enhancement abilities. Cytotoxicity assays revealed that these NBs had no obvious cytotoxicity to the 293 cell line at the tested bubble concentration. Our results showed that the novel NBs could use as nanoscale ultrasound contrast agents, providing the foundation for NBs in future applications including contrast-enhanced imaging and drug/gene delivery. PMID:28557995
On the generation of a bubbly universe - A quantitative assessment of the CfA slice
NASA Technical Reports Server (NTRS)
Ostriker, J. P.; Strassler, M. J.
1989-01-01
A first attempt is made to calculate the properties of the matter distribution in a universe filled with overlapping bubbles produced by multiple explosions. Each spherical shell follows the cosmological Sedov-Taylor solution until it encounters another shell. Thereafter, mergers are allowed to occur in pairs on the basis of N-body results. At the final epoch, the matrix of overlapping shells is populated with 'galaxies' and the properties of slices through the numerically constructed cube compare well with CfA survey results for specified initial conditions. A statistic is found which measures the distance distribution from uniformly distributed points to the nearest galaxies on the projected plane which appears to provide a good measure of the bubbly character of the galaxy distribution. In a quantitative analysis of the CfA 'slice of the universe', a very good match is found between simulation and the real data for final average bubble radii of (13.5 + or - 1.5)/h Mpc with formal filling factor 1.0-1.5 or actual filling factor of 65-80 percent.
Use of a bubble tiltmeter as a horizontal seismometer
NASA Technical Reports Server (NTRS)
Miller, W. F.; Geller, R. J.; Stein, S.
1978-01-01
A bubble tiltmeter has been used as a horizontal seismometer. With the appropriate filters, the bubble system has good response for displacement over the passband of conventional seismometers (from about 10 Hz to 200 s), and for tilt from about 1 Hz to DC. The accuracy of the response is confirmed by comparing the filtered bubble output to conventional seismic instruments. The agreement between the filtered bubble records and broad band and short period conventional records is extremely good in every case. The small size, broad-band response, and lack of moving parts make the bubble ideal as an instrument for remote environments. In particular, the instrument seems ideal for the ocean bottom, land and marine boreholes and planetary missions.
Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Nannan; Fu, Benwei; Key Laboratory of Marine, Mechanical and Manufacturing Engineering of the Ministry of Transport, Dalian 116026
Ultrasonic sound effect on bubble nucleation, oscillating motion activated by bubble formation, and its heat transfer enhancement of nanofluid was experimentally investigated. Nanofluid consists of distilled water and dysprosium (III) oxide (Dy{sub 2}O{sub 3}) nanoparticles with an average size of 98 nm and a mass ratio of 0.5%. Visualization results demonstrate that when the nanoparticles are added in the fluid influenced by the ultrasonic sound, bubble nucleation can be significantly enhanced. The oscillating motion initiated by the bubble formation of nanofluid under the influence of ultrasonic sound can significantly enhance heat transfer of nanofluid in an interconnected capillary loop.
A computationally efficient modelling of laminar separation bubbles
NASA Technical Reports Server (NTRS)
Dini, Paolo; Maughmer, Mark D.
1989-01-01
The goal is to accurately predict the characteristics of the laminar separation bubble and its effects on airfoil performance. Toward this end, a computational model of the separation bubble was developed and incorporated into the Eppler and Somers airfoil design and analysis program. Thus far, the focus of the research was limited to the development of a model which can accurately predict situations in which the interaction between the bubble and the inviscid velocity distribution is weak, the so-called short bubble. A summary of the research performed in the past nine months is presented. The bubble model in its present form is then described. Lastly, the performance of this model in predicting bubble characteristics is shown for a few cases.
Vanhille, Christian
2017-01-01
This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs). PMID:28106748
Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles
Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2011-01-01
Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027
Inertial collapse of bubble pairs near a solid surface
NASA Astrophysics Data System (ADS)
Alahyari Beig, Shahaboddin; Johnsen, Eric
2017-11-01
Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.
Vanhille, Christian
2017-01-17
This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs).
Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A
2000-10-01
The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena.
A comparative study on the breakup of Newtonian and viscoelastic liquid films
NASA Astrophysics Data System (ADS)
Qian, Lijuan; Song, Shaobo; Jiang, Lisha; Li, Xiaolu; Lin, Jianzhong
2018-05-01
The breakup of viscoelastic liquid films are investigated experimentally and analytically. The breakup phenomena of viscoelastic liquid film are recorded by the time resolved high speed camera. Video images reveal the difference behavior of liquid bubble breakup for Newtonian and viscoelastic liquid. For the Newtonian liquid, cylindrical ligaments are stretched into droplets with large distributions of drop size. For the viscoelastic liquid, the pinch-off point is located on the liquid connections to the nozzle and finally the main part of the ligament no longer elongates. Furthermore, a dispersion relation based on the stability analysis is involved to predict the ligament length and drop mean size after breakup for liquid film. The calculated ligament length is validated by the measured drop mean size at higher air-to-liquid mass flow ratio.
Proceedings of the Second International Colloquium on Drops and Bubbles
NASA Technical Reports Server (NTRS)
Lecroissette, D. H. (Editor)
1982-01-01
Applications of bubble and drop technologies are discussed and include: low gravity manufacturing, containerless melts, microballoon fabrication, ink printers, laser fusion targets, generation of organic glass and metal shells, and space processing. The fluid dynamics of bubbles and drops were examined. Thermomigration, capillary flow, and interfacial tension are discussed. Techniques for drop control are presented and include drop size control and drop shape control.
A geometrical optics approach for modeling atmospheric turbulence
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Atia, Walid; Davis, Christopher C.
2005-08-01
Atmospheric turbulence has a significant impact on the quality of a laser beam propagating through the atmosphere over long distances. Turbulence causes the optical phasefront to become distorted from propagation through turbulent eddies of varying sizes and refractive index. Turbulence also results in intensity scintillation and beam wander, which can severely impair the operation of target designation and free space optical (FSO) communications systems. We have developed a new model to assess the effects of turbulence on laser beam propagation in such applications. We model the atmosphere along the laser beam propagation path as a spatial distribution of spherical bubbles or curved interfaces. The size and refractive index discontinuity represented by each bubble are statistically distributed according to various models. For each statistical representation of the atmosphere, the path of a single ray, or a bundle of rays, is analyzed using geometrical optics. These Monte Carlo techniques allow us to assess beam wander, beam spread, and phase shifts along the path. An effective Cn2 can be determined by correlating beam wander behavior with the path length. This model has already proved capable of assessing beam wander, in particular the (Range)3 dependence of mean-squared beam wander, and in estimating lateral phase decorrelations that develop across the laser phasefront as it propagates through turbulence. In addition, we have developed efficient computational techniques for various correlation functions that are important in assessing the effects of turbulence. The Monte Carlo simulations are compared and show good agreement with the predictions of wave theory.
Bubble measuring instrument and method
NASA Technical Reports Server (NTRS)
Magari, Patrick J. (Inventor); Kline-Schoder, Robert (Inventor)
2003-01-01
Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.
Bubble Measuring Instrument and Method
NASA Technical Reports Server (NTRS)
Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)
2002-01-01
Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.
Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.
2012-01-01
Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812
Alavi Tamaddoni, Hedieh; Roberts, William W; Duryea, Alexander P; Cain, Charles A; Hall, Timothy L
2016-12-01
Cavitation plays a significant role in the efficacy of stone comminution during shockwave lithotripsy (SWL). Although cavitation on the surface of urinary stones helps to improve fragmentation, cavitation bubbles along the propagation path may shield or block subsequent shockwaves (SWs) and potentially induce collateral tissue damage. Previous in vitro work has shown that applying low-amplitude acoustic waves after each SW can force bubbles to consolidate and enhance SWL efficacy. In this study, the feasibility of applying acoustic bubble coalescence (ABC) in vivo was tested. Model stones were percutaneously implanted and treated with 2500 lithotripsy SWs at 120 SW/minute with or without ABC. Comparing the results of stone comminution, a significant improvement was observed in the stone fragmentation process when ABC was used. Without ABC, only 25% of the mass of the stone was fragmented to particles <2 mm in size. With ABC, 75% of the mass was fragmented to particles <2 mm in size. These results suggest that ABC can reduce the shielding effect of residual bubble nuclei, resulting in a more efficient SWL treatment.
Use of ultrasound in altitude decompression modeling
NASA Technical Reports Server (NTRS)
Olson, Robert M.; Pilmanis, Andrew A.
1993-01-01
A model that predicts the probability of developing decompression sickness (DCS) with various denitrogenation schedules is being developed by the Armstrong Laboratory, using human data from previous exposures. It was noted that refinements are needed to improve the accuracy and scope of the model. A commercially developed ultrasonic echo imaging system is being used in this model development. Using this technique, bubbles images from a subject at altitude can be seen in the gall bladder, hepatic veins, vena cava, and chambers of the heart. As judged by their motion and appearance in the vena cava, venous bubbles near the heart range in size from 30 to 300 M. The larger bubbles skim along the top, whereas the smaller ones appear as faint images near the bottom of the vessel. Images from growing bubbles in a model altitude chamber indicate that they grow rapidly, going from 20 to 100 M in 3 sec near 30,000 ft altitude. Information such as this is valuable in verifying those aspects of the DCS model dealing with bubble size, their growth rate, and their site of origin.
Large Scale Behavior and Droplet Size Distributions in Crude Oil Jets and Plumes
NASA Astrophysics Data System (ADS)
Katz, Joseph; Murphy, David; Morra, David
2013-11-01
The 2010 Deepwater Horizon blowout introduced several million barrels of crude oil into the Gulf of Mexico. Injected initially as a turbulent jet containing crude oil and gas, the spill caused formation of a subsurface plume stretching for tens of miles. The behavior of such buoyant multiphase plumes depends on several factors, such as the oil droplet and bubble size distributions, current speed, and ambient stratification. While large droplets quickly rise to the surface, fine ones together with entrained seawater form intrusion layers. Many elements of the physics of droplet formation by an immiscible turbulent jet and their resulting size distribution have not been elucidated, but are known to be significantly influenced by the addition of dispersants, which vary the Weber Number by orders of magnitude. We present experimental high speed visualizations of turbulent jets of sweet petroleum crude oil (MC 252) premixed with Corexit 9500A dispersant at various dispersant to oil ratios. Observations were conducted in a 0.9 m × 0.9 m × 2.5 m towing tank, where large-scale behavior of the jet, both stationary and towed at various speeds to simulate cross-flow, have been recorded at high speed. Preliminary data on oil droplet size and spatial distributions were also measured using a videoscope and pulsed light sheet. Sponsored by Gulf of Mexico Research Initiative (GoMRI).
GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM
NASA Astrophysics Data System (ADS)
Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac
2016-05-01
Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.
Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K
2006-04-15
Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble.
Formation and evolution of bubbly screens in confined oscillating bubbly liquids.
Shklyaev, Sergey; Straube, Arthur V
2010-01-01
We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
Formation and evolution of bubbly screens in confined oscillating bubbly liquids
NASA Astrophysics Data System (ADS)
Shklyaev, Sergey; Straube, Arthur V.
2010-01-01
We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)
1995-01-01
The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme
Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.
Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.
2012-06-06
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumptionmore » that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.« less
Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C
2012-01-01
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.
Fission of Multielectron Bubbles in Liquid Helium Under Electric Fields
NASA Astrophysics Data System (ADS)
Vadakkumbatt, V.; Ghosh, A.
2017-06-01
Multielectron bubbles (MEBs) are cavities in liquid helium which contain a layer of electrons trapped within few nanometres from their inner surfaces. These bubbles are promising candidates to probe a system of interacting electrons in curved geometries, but have been subjected to limited experimental investigation. Here, we report on the observation of fission of MEBs under strong electric fields, which arises due to fast rearrangement of electrons inside the bubbles, leading to their deformation and eventually instability. We measured the electrons to be distributed unequally between the daughter bubbles which could be used to control the charge density inside MEBs.
Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity
NASA Technical Reports Server (NTRS)
Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.
1999-01-01
The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a forming bubble decreases, as the superficial liquid velocity is in-creased. Furthermore, it is shown that the void fraction of the resulting two-phase flow increases with volumetric gas flow rate Q(sub d), pipe diameter and gas injection nozzle diameter, while they decrease with surrounding liquid flow. The important role played by flowing liquid in detaching bubbles in a reduced gravity environment is thus emphasized. We observe that the void fraction can be accurately controlled by using single nozzle gas injection, rather than by employing multiple port injection, since the later system gives rise to unpredictable coalescence of adjacent bubbles. It is of interest to note that empirical bubble size and corresponding void fraction are somewhat smaller for the co-flow geometry than the cross-flow configuration at similar flow conditions with similar pipe and nozzle diameters. In order to supplement the empirical data, a theoretical model is employed to study single bubble generation in the dynamic (Q(sub d) = 1 - 1000 cu cm/s) and bubbly flow regime within the framework of the co-flow configuration. This theoretical model is based on an overall force balance acting on the bubble during the two stages of generation, namely the expansion and the detachment stage. Two sets of forces, one aiding and the other inhibiting bubble detachment are identified. Under conditions of reduced gravity, gas momentum flux enhances, while the surface tension force at the air injection nozzle tip inhibits bubble detachment. In parallel, liquid drag and inertia can act as both attaching and detaching forces, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with our experimental results. However, at higher superficial liquid velocities, as the bubble loses its spherical form, empirical bubble size no longer matches the theoretical predictions. In summary, we have developed a combined experimental and theoretical work, which describes the complex process of bubble generation and resulting two-phase flow in a microgravity environment. Results of the present study can be used in a wide range of space-based applications, such as thermal energy and power generation, propulsion, cryogenic storage and long duration life support systems, necessary for programs such as NASA's Human Exploration for the Development of Space (HEDS).
Models and observations of foam coverage and bubble content in the surf zone
NASA Astrophysics Data System (ADS)
Kirby, J. T.; Shi, F.; Holman, R. A.
2010-12-01
Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.
Bubble production using a Non-Newtonian fluid in microfluidic flow focusing device
NASA Astrophysics Data System (ADS)
Wang, Yi-Lin; Ward, Thomas; Grant, Christine
2012-02-01
We experimentally study the production of micrometer-sized bubbles using microfluidic technology and a flow-focusing geometry. Bubbles are produced by using a mixture containing aqueous polyacrylamide of concentrations ranging from 0.01-0.10% by weight and several solution also containing a sodium-lauryl-sulfate (SLS) surfactant at concentrations ranging 0.01-0.1% by weight. The fluids are driven by controlling the static pressure above a hydrostatic head of the liquid while the disperse phase fluid static pressure is held constant (air). In the absence of surfactant the bubble production is discontinuous. The addition of surfactant stabilizes the bubble production. In each type of experiment, the bubble length l, velocity U and production frequency φ are measured and compared as a function of the inlet pressure ratio. The bubbles exhibit a contraction in their downstream length as a function of the polymer concentration which is investigated.
Arita, Y.; Antkowiak, M.; Venugopalan, V.; Gunn-Moore, F. J.; Dholakia, K.
2012-01-01
Laser-induced breakdown of an optically trapped nanoparticle is a unique system for studying cavitation dynamics. It offers additional degrees of freedom, namely the nanoparticle material, its size, and the relative position between the laser focus and the center of the optically trapped nanoparticle. We quantify the spatial and temporal dynamics of the cavitation and secondary bubbles created in this system and use hydrodynamic modeling to quantify the observed dynamic shear stress of the expanding bubble. In the final stage of bubble collapse, we visualize the formation of multiple submicrometer secondary bubbles around the toroidal bubble on the substrate. We show that the pattern of the secondary bubbles typically has its circular symmetry broken along an axis whose unique angle rotates over time. This is a result of vorticity along the jet towards the boundary upon bubble collapse near solid boundaries. PMID:22400669
NASA Astrophysics Data System (ADS)
Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin
2018-02-01
The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.
Understanding the effect of emulsifiers on bread aeration during breadmaking.
Garzón, Raquel; Hernando, Isabel; Llorca, Empar; Rosell, Cristina M
2018-04-24
Much research has been done to explain the action of emulsifiers during breadmaking, but there is still plenty unknown to elucidate their functionality despite their diverse chemical structure. The aim of the present study was to provide some light on the role of emulsifiers on air incorporation into the dough and gas bubbles progress during baking and their relationship with bread features. Emulsifiers like diacetyl tartaric acid ester of monoglycerides (DATEM), sodium stearoyl lactylate (SSL), distilled monoglyceride (DMG-45 and DMG-75), lecithin and polyglycerol esters of fatty acids (PGEF) were tested in very hydrated doughs. Emulsifiers increase the maximum dough volume during proofing. Emulsifiers increase the number of bubbles incorporated during mixing, observing higher number of bubbles, particularly with PGEF. Major changes in dough occurred at 70 K when bubble size augmented, becoming more heterogeneous. DMG-75 produced the biggest bubbles. As a consequence, emulsifiers tend to increase the number of gas cells with lower size in the bread crumb, but led to greater crumb firmness, which suggested different interactions between emulsifiers and gluten, affecting protein polymerization during baking. The progress of the bubbles during baking allowed the differentiation of emulsifiers, which could explain their performance in breadmaking. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Consistent cosmic bubble embeddings
NASA Astrophysics Data System (ADS)
Haque, S. Shajidul; Underwood, Bret
2017-05-01
The Raychaudhuri equation for null rays is a powerful tool for finding consistent embeddings of cosmological bubbles in a background spacetime in a way that is largely independent of the matter content. We find that spatially flat or positively curved thin wall bubbles surrounded by a cosmological background must have a Hubble expansion that is either contracting or expanding slower than the background, which is a more stringent constraint than those obtained by the usual Israel thin-wall formalism. Similarly, a cosmological bubble surrounded by Schwarzschild space, occasionally used as a simple "swiss cheese" model of inhomogenities in an expanding universe, must be contracting (for spatially flat and positively curved bubbles) and bounded in size by the apparent horizon.
Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation
Sun, Cheng; Sprouster, David J.; Hattar, K.; ...
2018-02-09
In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.
Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Cheng; Sprouster, David J.; Hattar, K.
In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.
Scaling and Instabilities in Bubble Pinch-Off
NASA Astrophysics Data System (ADS)
Burton, J. C.; Waldrep, R.; Taborek, P.
2005-05-01
We have used a 100 000 frame-per-second video to analyze the pinch-off of nitrogen gas bubbles in fluids with a wide range of viscosity. If the external fluid is highly viscous (ηext>100 cP), the bubble neck radius is proportional to the time before break, τ, and decreases smoothly to zero. If the external fluid has low viscosity (ηext<10 cP), the radius scales as τ1/2 until an instability develops in the gas bubble, which causes the neck to rupture and tear apart. Finally, if the viscosity of the external fluid is in an intermediate range, an elongated thread is formed, which breaks apart into micron-sized bubbles.
Movement of fine particles on an air bubble surface studied using high-speed video microscopy.
Nguyen, Anh V; Evans, Geoffrey M
2004-05-01
A CCD high-speed video microscopy system operating at 1000 frames per second was used to obtain direct quantitative measurements of the trajectories of fine glass spheres on the surface of air bubbles. The glass spheres were rendered hydrophobic by a methylation process. Rupture of the intervening water film between a hydrophobic particle and an air bubble with the consequent formation of a three-phase contact was observed. The bubble-particle sliding attachment interaction is not satisfactorily described by the available theories. Surface forces had little effect on the particle sliding with a water film, which ruptured probably due to the submicrometer-sized gas bubbles existing at the hydrophobic particle-water interface.
Generation of Microbubbles with Applications to Industry and Medicine
NASA Astrophysics Data System (ADS)
Rodríguez-Rodríguez, Javier; Sevilla, Alejandro; Martínez-Bazán, Carlos; Gordillo, José Manuel
2015-01-01
We provide a comprehensive and systematic description of the diverse microbubble generation methods recently developed to satisfy emerging technological, pharmaceutical, and medical demands. We first introduce a theoretical framework unifying the physics of bubble formation in the wide variety of existing types of generators. These devices are then classified according to the way the bubbling process is controlled: outer liquid flows (e.g., coflows, cross flows, and flow-focusing flows), acoustic forcing, and electric fields. We also address modern techniques developed to produce bubbles coated with surfactants and liquid shells. The stringent requirements to precisely control the bubbling frequency, the bubble size, and the properties of the coating make microfluidics the natural choice to implement such techniques.
Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J
2012-01-01
Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.
Hydrodynamic Forces on Microbubbles under Ultrasound Excitation
NASA Astrophysics Data System (ADS)
Clark, Alicia; Aliseda, Alberto
2014-11-01
Ultrasound (US) pressure waves exert a force on microbubbles that can be used to steer them in a flow. To control the motion of microbubbles under ultrasonic excitation, the coupling between the volume oscillations induced by the ultrasound pressure and the hydrodynamic forces needs to be well understood. We present experimental results for the motion of small, coated microbubbles, with similar sizes and physico-chemical properties as clinically-available ultrasound contrast agents (UCAs). The size distribution for the bubbles, resulting from the in-house manufacturing process, was characterized by analysis of high magnification microscopic images and determined to be bimodal. More than 99% of the volume is contained in microbubbles less than 10 microns in diameter, the size of a red blood cell. The motion of the microbubbles in a pulsatile flow, at different Reynolds and Womersley numbers, is studied from tracking of high-speed shadowgraphy. The influence of ultrasound forcing, at or near the resonant frequency of the bubbles, on the hydrodynamic forces due to the pulsatile flow is determined from the experimental measurements of the trajectories. Previous evidence of a sign reversal in Saffman lift is the focus of particular attention, as this is frequently the only hydrodynamic force acting in the direction perpendicular to the flow pathlines. Application of the understanding of this physical phenomenon to targeted drug delivery is analyzed in terms of the transport of the microbubbles. NSF GRFP.
Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten
El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...
2017-02-21
Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.
Agitation, Mixing, and Transfers Induced by Bubbles
NASA Astrophysics Data System (ADS)
Risso, Frédéric
2018-01-01
Bubbly flows involve bubbles randomly distributed within a liquid. At large Reynolds number, they experience an agitation that can combine shear-induced turbulence (SIT), large-scale buoyancy-driven flows, and bubble-induced agitation (BIA). The properties of BIA strongly differ from those of SIT. They have been determined from studies of homogeneous swarms of rising bubbles. Regarding the bubbles, agitation is mainly caused by the wake-induced path instability. Regarding the liquid, two contributions must be distinguished. The first one corresponds to the anisotropic flow disturbances generated near the bubbles, principally in the vertical direction. The second one is the almost isotropic turbulence induced by the flow instability through a population of bubbles, which turns out to be the main cause of horizontal fluctuations. Both contributions generate a k-3 spectral subrange and exponential probability density functions. The subsequent issue will be to understand how BIA interacts with SIT.
Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.
These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for modelmore » and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.« less
Patchy screening of the cosmic microwave background by inhomogeneous reionization
NASA Astrophysics Data System (ADS)
Gluscevic, Vera; Kamionkowski, Marc; Hanson, Duncan
2013-02-01
We derive a constraint on patchy screening of the cosmic microwave background from inhomogeneous reionization using off-diagonal TB and TT correlations in WMAP-7 temperature/polarization data. We interpret this as a constraint on the rms optical-depth fluctuation Δτ as a function of a coherence multipole LC. We relate these parameters to a comoving coherence scale, of bubble size RC, in a phenomenological model where reionization is instantaneous but occurs on a crinkly surface, and also to the bubble size in a model of “Swiss cheese” reionization where bubbles of fixed size are spread over some range of redshifts. The current WMAP data are still too weak, by several orders of magnitude, to constrain reasonable models, but forthcoming Planck and future EPIC data should begin to approach interesting regimes of parameter space. We also present constraints on the parameter space imposed by the recent results from the EDGES experiment.
DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski
The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overallmore » model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.« less
Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.
2015-01-01
Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.
Coupled LBM-DEM Three-phase Simulation on Seepage of CO2 Stored under the Seabed.
NASA Astrophysics Data System (ADS)
Kano, Y.; Sato, T.
2017-12-01
Concerning the seepage of CO2 stored in a subsea formation, CO2 bubble/droplet rises to the sea-surface dissolving into the seawater, and the acidification of local seawater will be a problem. Previous research indicated that seepage rate and bubble size significantly affect its behaviour (Kano et al., 2009; Dewar et al., 2013). On the other hand, Kawada's experiments (2014) indicated that grain size affects formation of gas channels and bubbles through granular media. CO2 seepage through marine sediments probably shows similar behaviour. Additionally, such mobilisation and displacement of sand grains by gas migration may also cause capillary fracturing of CO2 in the reservoir and seal. To predict these phenomena, it is necessary to reveal three-phase behaviour of gas-water-sediment grains. We built gas-liquid-solid three-phase flow 3D simulator by coupling LBM-DEM program, and simulation results showed that the mobilisation of sand grain forms gas channels and affects bubble formation compared with that through solid porous media (Kano and Sato, 2017). In this presentation, we will report simulation results on effects of porosity, grain size and gas flow rate on the formation of gas channels and bubble and their comparison with laboratory experimental data. The results indicate that porosity and grain size of sand gravels affect the width of formed gas channels and resulting formed bubble size on the order of supposed seepage rate in the CO2 storage and that in most of experiment's conditions. References: Abe, S., Place, D., Mora, P., 2004. Pure. Appl. Geophys., 161, 2265-2277. (accessed Aug 01, 2017). Dewar, M., Wei, W., McNeil, D., Chen, B., 2013. Marine Pollution Bulletin 73(2), 504-515. Kano, Y., Sato, T., Kita, J., Hirabayashi, S., Tabeta, S., 2009. Int. J. Greenhouse Gas Control, Vol. 3(5), 617-625. Kano, Y. and Sato, T., 2017. In Proceeding of GHGT-13, Lausanne, Switzerland, Nov. 14-18, 2016. Kawada, R. 2014. Graduation thesis. Faculty of Engineering, The University of Tokyo. (in Japanese).
NASA Astrophysics Data System (ADS)
Combriat, Thomas; Mekki-Berrada, Flore; Thibault, Pierre; Marmottant, Philippe
2018-01-01
Pulsating bubbles have proved to be a versatile tool for trapping and sorting particles. In this article, we investigate the different streaming patterns that can be obtained with a group of bubbles in a confined geometry under ultrasound. In the presence of an external flow strong enough to oppose the streaming velocities but not drag the trapped bubbles, we observe either the appearance of exclusion zones near the bubbles or asymmetric streaming patterns that we interpret as the superposition of a two-dimensional (2D) streaming function and of a potential flow. When studying a lattice of several bubbles, we show that the streaming pattern can be accurately predicted by superimposing the contributions of every pair of bubbles present in the lattice, thus allowing one to predict the sizes and the shapes of exclusion zones created by a group of bubbles under acoustic excitation. We suggest that such systems could be used to enhance mixing at a small scale or to catch and release chemical species initially trapped in vortices created around bubble pairs.
Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation
NASA Astrophysics Data System (ADS)
Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan
2018-05-01
Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.
Dynamics of hydrocarbon vents: Focus on primary porosity
NASA Astrophysics Data System (ADS)
Johansen, C.; Shedd, W.; Abichou, T.; Pineda-Garcia, O.; Silva, M.; MacDonald, I. R.
2012-12-01
This study investigated the dynamics of hydrocarbon release by monitoring activity of a single vent at a 1215m deep site in the Gulf of Mexico (GC600). An autonomous camera, deployed by the submersible ALVIN, was programmed to capture a close-up image every 4 seconds for approximately 3.5 hours. The images provided the ability to study the gas hydrate outcrop site (that measured 5.2x16.3cm3) in an undisturbed state. The outcrop included an array of 38 tube-like vents through which dark brown oil bubbles are released at a rate ranging from 8 bubbles per minute to 0 bubbles per minute. The average release of bubbles from all the separate vents was 59.5 bubbles per minute, equating the total volume released to 106.38cm per minute. The rate of bubble release decreased toward the end of the observation interval, which coincided approximately with the tidal minimum. Ice worms (Hesiocaeca methanicola, Desbruyères & Toulmond, 1998) were abundant at the vent site. The image sequence showed the ice-worms actively moving in and out of burrows in the mound. It has been speculated that Hesiocaeca methanicola contribute to gas hydrate decomposition by creating burrows and depressions in the gas hydrate matrix (Fisher et al, 2000). Ice worm burrows could generate pathways for the passage of oil and gas through the gas hydrate mound. Gas hydrates commonly occur along active and/or passive continental margins (Kennicutt et al, 1988a). The release of oil and gas at this particular hydrocarbon seep site is along a passive continental margin, and controlled primarily by active salt tectonics as opposed to the movement of continental tectonic plates (Salvador, 1987). We propose a descriptive model governing the release of gas and oil from deep sub-bottom reservoirs at depths of 3000-5000m (MacDonald, 1998), through consolidated and unconsolidated sediments, and finally through gas hydrate deposits at the sea floor. The oil and gas escape from the source rock and/or reservoir through at least three degrees of porosity (i.e. traveling through faulted consolidated sediment, unconsolidated sediment, and finally the gas hydrate outcroppings as described here). The oil and gas travel from the sub-bottom reservoir along, what is thought, an interface between the salt and sediment, and then up a fault in the consolidated sediment. When it reaches the unconsolidated sediments, vertical pathways bifurcate due to lack of sediment strength to allow for the oil and gas to reach different clusters of hydrocarbon vents at the sea floor. Hydrocarbon vents are formed and sustained by a combination of pressure, temperature, and gas solubility (Peltzer & Brewer, 2000) creating persistent primary porosity conduits, from which the bubbles escape at different rates depending on the size of the tubes. Previous research has been carried out in order to determine the effect of temperature fluxes on hydrocarbon outcroppings (MacDonald et al, 2005), however, a focus on the dynamics at this level of primary porosity is lacking. By determining the rate and size of bubbles and pore size distribution of the hydrocarbon outcropping, we can explore the hydraulic properties. Therefore, examination of biological and physical effects, such as the role of ice-worms, and the effect of tides, allow for a better understanding of the dynamics and persistency of hydrocarbon vent outcroppings.
Convective Instabilities in Liquid Foams
NASA Technical Reports Server (NTRS)
Veretennikov, Igor; Glazier, James A.
2004-01-01
The main goal of this work is to better understand foam behavior both on the Earth and in microgravity conditions and to determine the relation between a foam's structure and wetness and its rheological properties. Our experiments focused on the effects of the bubble size distribution (BSD) on the foam behavior under gradual or stepwise in the liquid flow rate and on the onset of the convective instability. We were able to show experimentally, that the BSD affects foam rheology very strongly so any theory must take foam texture into account.
Apparatus for measuring the local void fraction in a flowing liquid containing a gas
Dunn, P.F.
1979-07-17
The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.
Apparatus for measuring the local void fraction in a flowing liquid containing a gas
Dunn, Patrick F.
1981-01-01
The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.
Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters.
Pierre, Juliette; Giraudet, Brice; Chasle, Patrick; Dollet, Benjamin; Saint-Jalmes, Arnaud
2015-04-01
We present experimental results on the propagation of an ultrasonic wave (40 kHz) in liquid foams, as a function of the foam physical and chemical parameters. We have first implemented an original setup, using transducers in a transmission configuration. The foam coarsening was used to vary the bubble size (remaining in the submillimeter range), and we have made foams with various chemical formulations, to investigate the role of the chemicals at the bubble interfaces or in bulk. The results are compared with recently published theoretical works, and good agreements are found. In particular, for all the foams, we have evidenced two asymptotic limits, at small and large bubble size, connected by a nontrivial resonant behavior, associated to an effective negative density. These qualitative features are robust whatever the chemical formulation; we discuss the observed differences between the samples, in relation to the interfacial and bulk viscoelasticity. These results demonstrate the rich and complex acoustic behavior of foams. While the bubble size remain here always smaller than the sound wavelength, it turns out that one must go well beyond mean-field modeling to describe the foam acoustic properties.
Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters
NASA Astrophysics Data System (ADS)
Pierre, Juliette; Giraudet, Brice; Chasle, Patrick; Dollet, Benjamin; Saint-Jalmes, Arnaud
2015-04-01
We present experimental results on the propagation of an ultrasonic wave (40 kHz) in liquid foams, as a function of the foam physical and chemical parameters. We have first implemented an original setup, using transducers in a transmission configuration. The foam coarsening was used to vary the bubble size (remaining in the submillimeter range), and we have made foams with various chemical formulations, to investigate the role of the chemicals at the bubble interfaces or in bulk. The results are compared with recently published theoretical works, and good agreements are found. In particular, for all the foams, we have evidenced two asymptotic limits, at small and large bubble size, connected by a nontrivial resonant behavior, associated to an effective negative density. These qualitative features are robust whatever the chemical formulation; we discuss the observed differences between the samples, in relation to the interfacial and bulk viscoelasticity. These results demonstrate the rich and complex acoustic behavior of foams. While the bubble size remain here always smaller than the sound wavelength, it turns out that one must go well beyond mean-field modeling to describe the foam acoustic properties.
Anterior Chamber Air Bubble to Achieve Graft Attachment After DMEK: Is Bigger Always Better?
Ćirković, Aleksandar; Beck, Christina; Weller, Julia M; Kruse, Friedrich E; Tourtas, Theofilos
2016-04-01
To analyze the influence of the size of the air bubble subsequent to Descemet membrane endothelial keratoplasty (DMEK) surgery on the rate of graft detachment and need for rebubbling, the incidence of pupillary block, and the observed endothelial cell loss. This is a single-center, retrospective, consecutive case series of 74 cases undergoing DMEK and fulfilling the inclusion criteria concerning the size of the air bubble at the end of surgery. Based on the medical records, patients were divided into 2 groups (n = 37, respectively). The first group had an air bubble with a volume of approximately 50% and the second group of approximately 80% of the anterior chamber (AC) volume, respectively. Patients who did not comply with instructions to remain in the supine position until complete resorption of AC air or cases in which difficulties in graft preparation (eg, radial breaks) occurred were excluded from data analysis. The central corneal thickness and endothelial cell density were measured 6 months after surgery. Ten of 37 patients (27.0%) in the 50% air bubble group and 3 of 37 patients (8.1%) in the 80% air bubble group needed 1 rebubbling procedure (P = 0.032). There was no difference between the groups after 6 months regarding endothelial cell density and central corneal thickness. No pupillary block was observed. Larger air bubbles of 80% anterior chamber volume decrease the risk of graft detachment after DMEK with no detrimental effect on the outcome and risk for pupillary block.
Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation
NASA Astrophysics Data System (ADS)
Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.
2018-04-01
Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.
NASA Astrophysics Data System (ADS)
Wong, Zheng Zheng
This work was motivated by an ongoing development of a potential embolotherapy technique to occlude blood flow to tumors using gas bubbles selectively formed by in vivo acoustic droplet vaporization (ADV) of liquid perfluorocarbon droplets. Mechanisms behind the ADV, transport and lodging of emboli need to be understood before gas embolotherapy can translate to the clinic. Evolution of a bubble from acoustic droplet vaporization in a rigid tube, under physiological and room temperature conditions, was observed via ultra-high speed imaging. Effective radii and radial expansion ratios were obtained by processing the images using Image] software. At physiological temperature, a radial expansion ratio of 5.05 was attained, consistent with theoretical prediction. The initial radial growth rate was linear, after which the growth rate increased proportionally with square root of time. Nondimensionalization revealed that the subsequent growth rate also varied inversely with square root of initial radius. Eventually growth became asymptotic. No collapse was observed. A theoretical model derived from a modified Bernoulli equation, and a computational model by Ye & Bull (2004), were compared respectively with experimental results. Initial growth rates were predicted correctly by both models. Experimental results showed heavy damping of growth rate as the bubble grew towards the wall, whereas both models predicted an overshoot in growth followed by multiple oscillations. The theoretical model broke down near the wall; the computational model gave a reasonable bubble shape near the wall but would require correct initial pressure values to be accurate. At room temperature, the expansion ratio shot to 1.43 initially and oscillated down to 1.11, far below the theoretical prediction. Failure of the bubble to expand fully could be due to unconsumed or condensed liquid perfluorocarbon. A new fabrication method via non-lithographic means was devised to make a circular-lumen microchannel out of PDMS, with a diameter as small as 80 microns to mimic the size of a medium arteriole. The microchannel was endothelialized successfully, with a fairly homogeneous distribution along the length. Cell viability assays confirmed the viability of cells maintained in the microchannel. Bubble motion experiments performed with the benchtop microvascular model demonstrated its feasibility.
Effects of Intergranular Gas Bubbles on Thermal Conductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Chockalingam; Paul C. Millett; M. R. Tonks
2012-11-01
Model microstructures obtained from phase-field simulations are used to study the effective heat transfer across bicrys- tals with stationary grain boundary bubble populations. We find that the grain boundary coverage, irrespective of the intergranular bubble radii, is the most relevant parameter to the thermal resistance, which we use to derive effec- tive Kapitza resistances that are dependent on the grain boundary coverage and Kaptiza resistance of the intact grain boundary. We propose a model to predict thermal conductivity as a function of porosity, grain-size, Kaptiza resistance of the intact grain boundary, and grain boundary bubble coverage.
The dynamics of histotripsy bubbles
NASA Astrophysics Data System (ADS)
Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.
2011-09-01
Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.
On the Distribution of Ion Density Depletion Along Magnetic Field Lines as Deduced Using C-NOFS
NASA Technical Reports Server (NTRS)
Dao, E.; Kelley, M. C.; Hysell, D. L.; Retterer, J. M.; Su, Y.-J.; Pfaff, Robert F.; Roddy, P. A.; Ballenthin, J. O.
2012-01-01
To investigate ion density depletion along magnetic field lines, we compare in situ-measured ion density fluctuations as seen from C/NOFS and compare them to the field-line-integrated depletion of the whole bubble as inferred from electric field measurements. Results show that, within C/NOFS' range, local measurement of the normalized density depletion, (Delta)n/n(sub 0), near the apex may be far less than at other points on the same field line. We argue that the distribution of (Delta)n/n(sub 0) is a weighted distribution concentrated at latitudes of the Appleton anomalies and becomes more heavily weighted the closer the field-aligned bubble rises to the peak of the anomalies. A three-dimensional simulation of an ionospheric bubble verifies our arguments.
The effect of gravity-induced pressure gradient on bubble luminescence
NASA Astrophysics Data System (ADS)
Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Tinguely, Marc; Farhat, Mohamed
2014-11-01
The violent collapse of a bubble can heat up its gaseous contents to temperatures exceeding those on the sun's surface, resulting in a short luminescence flash. Occurring at the very moment of the collapse, luminescence must be highly sensitive to the bubble geometry at the preceding final stage. This represents an important feature as any pressure anisotropy in the surrounding liquid will result in a deformation of an initially spherical bubble, inducing a micro-jet that pierces the bubble and makes it experience a toroidal collapse. We therefore present these as complementary phenomena by investigating the link between jets and luminescence of laser-generated single bubbles. Through ultra-high-speed imaging, the micro-jet formation and evolution of a single bubble are observed with unprecedented detail, whilst the bubble light emission is analyzed by means of a spectrometer. The bubble energy and the micro-jet size are controlled by adjusting the laser-pulse and by varying the gravity level aboard ESA parabolic flights, respectively. We here provide systematic evidence on how bubble-jets suppress luminescence in a considerable manner, even in normal gravity where the jet is barely observable. We conclude that gravity must be accounted for in accurate models of luminescence.
Detecting vapour bubbles in simulations of metastable water
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es
2014-11-14
The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.
Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less
Modelling cavitation erosion using fluid–material interaction simulations
Chahine, Georges L.; Hsiao, Chao-Tsung
2015-01-01
Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140
Formation of electron energy spectra during magnetic reconnection in laser-produced plasma
NASA Astrophysics Data System (ADS)
Huang, Kai; Lu, Quanming; Huang, Can; Dong, Quanli; Wang, Huanyu; Fan, Feibin; Sheng, Zhengming; Wang, Shui; Zhang, Jie
2017-10-01
Energetic electron spectra formed during magnetic reconnection between two laser-produced plasma bubbles are investigated by the use of two-dimensional particle-in-cell simulations. It is found that the evolution of such an interaction between the two plasma bubbles can be separated into two distinct stages: squeezing and reconnection stages. In the squeezing stage, when the two plasma bubbles expand quickly and collide with each other, the magnetic field in the inflow region is greatly enhanced. In the second stage, a thin current sheet is formed between the two plasma bubbles, and then, magnetic reconnection occurs therein. During the squeezing stage, electrons are heated in the perpendicular direction by betatron acceleration due to the enhancement of the magnetic field around the plasma bubbles. Meanwhile, non-thermal electrons are generated by the Fermi mechanism when these electrons bounce between the two plasma bubbles approaching quickly and get accelerated mainly by the convective electric field associated with the plasma bubbles. During the reconnection stage, electrons get further accelerated mainly by the reconnection electric field in the vicinity of the X line. When the expanding speed of the plasma bubbles is sufficiently large, the formed electron energy spectra have a kappa distribution, where the lower energy part satisfies a Maxwellian function and the higher energy part is a power-law distribution. Moreover, the increase in the expanding speed will result in the hardening of formed power-law spectra in both the squeezing and reconnection stages.
Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments
NASA Technical Reports Server (NTRS)
Annamalai, P.; Subramanian, R. S.; Cole, R.
1982-01-01
The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.
Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan
2013-01-01
Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and flexibility to fit around columns of various shapes and sizes. ECVT is also safer than other commonly used imaging modalities as it operates in the range of low frequencies (1 MHz) and does not radiate radioactive energy. In this effort, ECVT is being used to image flow parameters in a packed bed reactor for an ISS flight experiment.
Microgravity Passive Phase Separator
NASA Technical Reports Server (NTRS)
Paragano, Matthew; Indoe, William; Darmetko, Jeffrey
2012-01-01
A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface area of the separating screen. Additionally, there are no moving parts, and there are no failure modes that involve fluid loss. A patent application has been filed.
NASA Astrophysics Data System (ADS)
Hu, Lin; Wirth, Brian D.; Maroudas, Dimitrios
2017-08-01
We report results on the lattice thermal conductivities of tungsten single crystals containing nanoscale-sized pores or voids and helium (He) nanobubbles as a function of void/bubble size and gas pressure in the He bubbles based on molecular-dynamics simulations. For reference, we calculated lattice thermal conductivities of perfect tungsten single crystals along different crystallographic directions at room temperature and found them to be about 10% of the overall thermal conductivity of tungsten with a weak dependence on the heat flux direction. The presence of nanoscale voids in the crystal causes a significant reduction in its lattice thermal conductivity, which decreases with increasing void size. Filling the voids with He to form He nanobubbles and increasing the bubble pressure leads to further significant reduction of the tungsten lattice thermal conductivity, down to ˜20% of that of the perfect crystal. The anisotropy in heat conduction remains weak for tungsten single crystals containing nanoscale-sized voids and He nanobubbles throughout the pressure range examined. Analysis of the pressure and atomic displacement fields in the crystalline region that surrounds the He nanobubbles reveals that the significant reduction of tungsten lattice thermal conductivity in this region is due to phonon scattering from the nanobubbles, as well as lattice deformation around the nanobubbles and formation of lattice imperfections at higher bubble pressure.
Streeter, Jason E.; Gessner, Ryan; Miles, Iman; Dayton, Paul A.
2010-01-01
Molecular imaging with ultrasound relies on microbubble contrast agents (MCAs) selectively adhering to a ligand-specific target. Prior studies have shown that only small quantities of microbubbles are retained at their target sites, therefore, enhancing contrast sensitivity to low concentrations of microbubbles is essential to improve molecular imaging techniques. In order to assess the effect of MCA diameter on imaging sensitivity, perfusion and molecular imaging studies were performed with microbubbles of varying size distributions. To assess signal improvement and MCA circulation time as a function of size and concentration, blood perfusion was imaged in rat kidneys using nontargeted size-sorted MCAs with a Siemens Sequoia ultrasound system (Siemans, Mountain View, CA) in cadence pulse sequencing (CPS) mode. Molecular imaging sensitivity improvements were studied with size-sorted αvβ3-targeted bubbles in both fibrosarcoma and R3230 rat tumor models. In perfusion imaging studies, video intensity and contrast persistence was ≈8 times and ≈3 times greater respectively, for “sorted 3-micron” MCAs (diameter, 3.3 ± 1.95 μm) when compared to “unsorted” MCAs (diameter, 0.9 ± 0.45 μm) at low concentrations. In targeted experiments, application of sorted 3-micron MCAs resulted in a ≈20 times video intensity increase over unsorted populations. Tailoring size-distributions results in substantial imaging sensitivity improvement over unsorted populations, which is essential in maximizing sensitivity to small numbers of MCAs for molecular imaging. PMID:20236606
Bubble Point Measurements with Liquid Methane of a Screen Capillary Liquid Acquisition Device
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.
2009-01-01
Liquid acquisition devices (LADs) can be utilized within a propellant tank in space to deliver single-phase liquid to the engine in low gravity. One type of liquid acquisition device is a screened gallery whereby a fine mesh screen acts as a bubble filter and prevents the gas bubbles from passing through until a crucial pressure differential condition across the screen, called the bubble point, is reached. This paper presents data for LAD bubble point data in liquid methane (LCH4) for stainless steel Dutch twill screens with mesh sizes of 325 by 2300 and 200 by 1400 wires per inch. Data is presented for both saturated and sub-cooled LCH4, and is compared with predicted values.
Number of Transition Frequencies of a System Containing an Arbitrary Number of Gas Bubbles
NASA Astrophysics Data System (ADS)
Ida, Masato
2002-05-01
“Transition frequencies” of a system containing an arbitrary number of bubbles levitated in a liquid are discussed. Using a linear coupled-oscillator model, it is shown theoretically that when the system contains N bubbles of different sizes, each bubble has 2N - 1 (or less) transition frequencies which make the phase difference between an external sound and a bubble’s pulsation π / 2. Furthermore, we discuss a discrepancy appearing between the present result regarding the transition frequencies and existing ones for the resonance frequencies in a two-bubble case, and show that the transition frequency, defined as above, and the resonance frequency have a different physical meaning when N ≥ 2, while they are consistent for N = 1.
Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble
NASA Astrophysics Data System (ADS)
Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra
2018-04-01
The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.
Massover, William H
2010-06-01
Irradiation of an amorphous layer of dried sodium phosphate buffer (pH = 7.0) by transmission electron microscopy (100-120 kV) causes rapid formation of numerous small spherical bubbles [10-100 A (= 1-10 nm)] containing an unknown gas. Bubbling is detected even with the first low-dose exposure. In a thin layer (ca. 100-150 A), bubbling typically goes through nucleation, growth, possible fusion, and end-state, after which further changes are not apparent; co-irradiated adjacent areas having a slightly smaller thickness never develop bubbles. In moderately thicker regions (ca. over 200 A), there is no end-state. Instead, a complex sequence of microstructural changes is elicited during continued intermittent high-dose irradiation: nucleation, growth, early simple fusions, a second round of extensive multiple fusions, general reduction of matrix thickness (producing flattening and expansion of larger bubbles, occasional bubble fission, and formation of very large irregularly-shaped bubbles by a third round of compound fusion events), and slow shrinkage of all bubbles. The ongoing lighter appearance of bubble lumens, maintenance of their rounded shape, and extensive changes in size and form indicate that gas content continues throughout their surprisingly long lifetime; the thin dense boundary layer surrounding all bubbles is proposed to be the main mechanism for their long lifetime.
NASA Astrophysics Data System (ADS)
Tsuda, Shin-Ichi; Nakano, Yuta; Watanabe, Satoshi
2017-11-01
Recently, several studies using Molecular Dynamics (MD) simulation have been conducted for investigation of Ostwald ripening of cavitation bubbles in a finite space. The previous studies focused a characteristic length of bubbles as one of the spatially-averaged quantities, but each bubble behavior was not been investigated in detail. The objective of this study is clarification of the characteristics of each bubble behavior in Ostwald ripening, and we conducted MD simulation of a Lennard-Jones fluid in a semi-confined space. As a result, the time dependency of the characteristic length of bubbles as a spatially-averaged quantity suggested that the driving force of the Ostwald ripening is Evaporation/Condensation (EC) across liquid-vapor surface, which is the same result as the previous works. The radius change of the relatively larger bubbles also showed the same tendency to a classical EC model. However, the sufficiently smaller bubbles than the critical size, e.g., the bubbles just before collapsing, showed a different characteristic from the classical EC model. Those smaller bubbles has a tendency to be limited by mechanical non-equilibrium in which viscosity of liquid is dominant rather than by EC across liquid-vapor surface. This work was supported by JSPS KAKENHI Grant Number JP16K06085.
3D bubble reconstruction using multiple cameras and space carving method
NASA Astrophysics Data System (ADS)
Fu, Yucheng; Liu, Yang
2018-07-01
An accurate measurement of bubble shape and size has a significant value in understanding the behavior of bubbles that exist in many engineering applications. Past studies usually use one or two cameras to estimate bubble volume, surface area, among other parameters. The 3D bubble shape and rotation angle are generally not available in these studies. To overcome this challenge and obtain more detailed information of individual bubbles, a 3D imaging system consisting of four high-speed cameras is developed in this paper, and the space carving method is used to reconstruct the 3D bubble shape based on the recorded high-speed images from different view angles. The proposed method can reconstruct the bubble surface with minimal assumptions. A benchmarking test is performed in a 3 cm × 1 cm rectangular channel with stagnant water. The results show that the newly proposed method can measure the bubble volume with an error of less than 2% compared with the syringe reading. The conventional two-camera system has an error around 10%. The one-camera system has an error greater than 25%. The visualization of a 3D bubble rising demonstrates the wall influence on bubble rotation angle and aspect ratio. This also explains the large error that exists in the single camera measurement.
Inhibition of bubble coalescence: effects of salt concentration and speed of approach.
Del Castillo, Lorena A; Ohnishi, Satomi; Horn, Roger G
2011-04-01
Bubble coalescence experiments have been performed using a sliding bubble apparatus, in which mm-sized bubbles in an aqueous electrolyte solution without added surfactant rose toward an air meniscus at different speeds obtained by varying the inclination of a closed glass cylinder containing the liquid. The coalescence times of single bubbles contacting the meniscus were monitored using a high speed camera. Results clearly show that stability against coalescence of colliding air bubbles is influenced by both the salt concentration and the approach speed of the bubbles. Contrary to the widespread belief that bubbles in pure water are unstable, we demonstrate that bubbles formed in highly purified water and colliding with the meniscus at very slow approach speeds can survive for minutes or even hours. At higher speeds, bubbles in water only survive for a few seconds, and at still higher speeds they coalesce instantly. Addition of a simple electrolyte (KCl) removes the low-speed stability and shifts the transition between transient stability and instant coalescence to higher approach speeds. At high electrolyte concentration no bubbles were observed to coalesce instantly. These observations are consistent with recent results of Yaminsky et al. (Langmuir 26 (2010) 8061) and the transitions between different regions of behavior are in semi-quantitative agreement with Yaminsky's model. Copyright © 2010 Elsevier Inc. All rights reserved.
Engineered bio-inspired coating for passive flow control
Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Castillo, Luciano
2018-01-01
Flow separation and vortex shedding are some of the most common phenomena experienced by bluff bodies under relative motion with the surrounding medium. They often result in a recirculation bubble in regions with adverse pressure gradient, which typically reduces efficiency in vehicles and increases loading on structures. Here, the ability of an engineered coating to manipulate the large-scale recirculation region was tested in a separated flow at moderate momentum thickness Reynolds number, Reθ=1,200. We show that the coating, composed of uniformly distributed cylindrical pillars with diverging tips, successfully reduces the size of, and shifts downstream, the separation bubble. Despite the so-called roughness parameter, k+≈1, falling within the hydrodynamic smooth regime, the coating is able to modulate the large-scale recirculating motion. Remarkably, this modulation does not induce noticeable changes in the near-wall turbulence levels. Supported with experimental data and theoretical arguments based on the averaged equations of motion, we suggest that the inherent mechanism responsible for the bubble modulation is essentially unsteady suction and blowing controlled by the increasing cross-section of the tips. The coating can be easily fabricated and installed and works under dry and wet conditions, increasing its potential impact on a diverse range of applications. PMID:29367420
Experimental investigation of cavitation induced air release
NASA Astrophysics Data System (ADS)
Kowalski, Karoline; Pollak, Stefan; Hussong, Jeanette
Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.
Application of ozone micro-nano-bubbles to groundwater remediation.
Hu, Liming; Xia, Zhiran
2018-01-15
Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, B.; Thondapu, V.; Barlis, P.; Poon, E. K. W.; Ooi, A. S. H.
2017-04-01
Incomplete stent apposition (ISA) is sometimes found in stent deployment at complex lesions, and it is considered to be one of the causes of post-stenting complications, such as late stent thrombosis and restenosis. The presence of ISA leads to large recirculation bubbles behind the stent struts, which can reduce shear stress at the arterial wall that retards neointimal formation process and thus lead to complications. Computational fluid dynamics (CFD) simulations are performed on simplified two-dimensional axisymmetric arterial models with stents struts of square and circular cross-sectional shapes at a malapposition distance of 120 μm from the arterial wall. To investigate the effects of pulsatile flow period on the dynamics of the recirculation bubbles, high fidelity simulations are carried out with pulsatile flows of period 0.4 s and 0.8 s. Under the condition of the same flow rate, both square and circular strut cases show that shorter period provides greater flow deceleration, leading to the formation of a larger recirculation bubble. With the same thickness, circular strut has a significant improvement over the square strut in terms of the size of the recirculation bubble, and therefore less likely to lead to complications.
Using micro-3D printing to build acoustically driven microswimmers.
NASA Astrophysics Data System (ADS)
Bertin, Nicolas; Stephan, Olivier; Marmottant, Philippe; Spelman, Tamsin; Lauga, Eric; Dyfcom Team; Complex; Biological Fluids Team
2015-11-01
With no protection, a micron-sized free air bubble at room temperature in water has a life span shorter than a few tens of seconds. Using two-photon lithography, which is similar to 3D printing at the micron scale, we can build ``armors'' for these bubbles: micro-capsules with an opening to contain the bubble and extend its life to several hours in biological buffer solutions. When excited by an ultrasound transducer, a 20 μm bubble performs large amplitude oscillations in the capsule opening and generates a powerful acoustic streaming flow (velocity up to dozens of mm/s). A collaboration with the Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, is helping us predict the true resonance of these capsules and the full surrounding streaming flow. The present Bubbleboost project aims at creating red blood cell sized capsules (~ 10-20 μm) that can move on their own with a non-contact acoustic excitation for drug delivery applications. Another application of this research is in microfluidics: we are able to fabricate fields of capsules able to generate mixing effects in microchannels, or use the bubble-generated flow to guide passing objects at a junction. ERC Grant Agreement Bubbleboost no. 614655.
HFSB-seeding for large-scale tomographic PIV in wind tunnels
NASA Astrophysics Data System (ADS)
Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio
2016-12-01
A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.
NASA Technical Reports Server (NTRS)
Mord, Allan J.; Snyder, Howard A.; Kilpatrick, Kathleen A.; Hermanson, Lynn A.; Hopkins, Richard A.; Vangundy, Donald A.
1988-01-01
A system for measuring the mass of liquid in a tank on orbit with 1 percent accuracy was developed and demonstrated. An extensive tradeoff identified adiabatic compression as the only gaging technique that is independent of gravity or its orientation, and of the size and distribution of bubbles in the tank. This technique is applicable to all Earth-storable and cryogenic liquids of interest for Space Station use, except superfluid helium, and can be applied to tanks of any size, shape, or internal structure. Accuracy of 0.2 percent was demonstrated in the laboratory, and a detailed analytical model was developed and verified by testing. A flight system architecture is presented that allows meeting the needs of a broad range of space fluid systems without custom development for each user.
Design of an Improved Heater Array to Measure Microscale Wall Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; Chng, Choon Ping; Kalkur, T. S.
1996-01-01
An improved array of microscale heaters is being developed to measure the heat transfer coefficient at many points underneath individual bubbles during boiling as a function of space and time. This heater array enables the local heat transfer from a surface during the bubble growth and departure process to be measured with very high temporal and spatial resolution, and should allow better understanding of the boiling heat transfer mechanisms by pin-pointing when and where in the bubble departure cycle large amounts of wall heat transfer occur. Such information can provide much needed data regarding the important heat transfer mechanisms during the bubble departure cycle, and can serve as benchmarks to validate many of the analytical and numerical models used to simulate boiling. The improvements to the heater array include using a silicon-on-quartz substrate to reduce thermal cross-talk between the heaters, decreased space between the heaters, increased pad sizes on the heaters, and progressive heater sizes. Some results using the present heater array are discussed.
Wang, Binbin; Socolofsky, Scott A; Lai, Chris C K; Adams, E Eric; Boufadel, Michel C
2018-06-01
Subsea oil well blowouts and pipeline leaks release oil and gas to the environment through vigorous jets. Predicting the breakup of the released fluids in oil droplets and gas bubbles is critical to predict the fate of petroleum compounds in the marine water column. To predict the gas bubble size in oil well blowouts and pipeline leaks, we observed and quantified the flow behavior and breakup process of gas for a wide range of orifice diameters and flow rates. Flow behavior at the orifice transitions from pulsing flow to continuous discharge as the jet crosses the sonic point. Breakup dynamics transition from laminar to turbulent at a critical value of the Weber number. Very strong pure gas jets and most gas/liquid co-flowing jets exhibit atomization breakup. Bubble sizes in the atomization regime scale with the jet-to-plume transition length scale and follow -3/5 power-law scaling for a mixture Weber number. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rod-shaped cavitation bubble structure in ultrasonic field.
Bai, Lixin; Wu, Pengfei; Liu, Huiyu; Yan, Jiuchun; Su, Chang; Li, Chao
2018-06-01
Rod-shaped cavitation bubble structure in thin liquid layers in ultrasonic field is investigated experimentally. It is found that cavitation structure successively experiences several stages with the change of the thickness of the thin liquid layer. Rod-shaped structure is a stable structure of the boundary between the cavitation cloud region and the non-cavitation liquid region, which can be formed in two different ways. Cavitation bubbles in a thin liquid layer have a distribution in the thickness direction. The rod-shaped structures tend to crosslink with each other to form stable Y-branch structures. The angle of the Y-branch structure is Gauss distribution with mathematical expectation μ = 119.93. A special rod-shaped cavitation structure with source is also investigated in detail. Due to the pressure gradient in the normal direction, the primary Bjerknes force causes the bubbles in the rod-shaped structure on both sides to converge to the axis. The secondary Bjerknes forces between the bubbles also make the cluster converge, so the large bubbles which are attached to the radiating surface tend to align themselves along the central line. According to the formula deduced in this paper, the variation of curvature of curved rod-shaped structure is qualitatively analyzed. The Y-branch structure of cavitation cloud and Plateau boundary of soap bubbles are compared. Copyright © 2018 Elsevier B.V. All rights reserved.
One-way-coupling simulation of cavitation accompanied by high-speed droplet impact
NASA Astrophysics Data System (ADS)
Kondo, Tomoki; Ando, Keita
2016-03-01
Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.
One-way-coupling simulation of cavitation accompanied by high-speed droplet impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Tomoki; Ando, Keita, E-mail: kando@mech.keio.ac.jp
Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s ismore » inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh–Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.« less
“Slimming” of power-law tails by increasing market returns
NASA Astrophysics Data System (ADS)
Sornette, D.
2002-06-01
We introduce a simple generalization of rational bubble models which removes the fundamental problem discovered by Lux and Sornette (J. Money, Credit and Banking, preprint at http://xxx.lanl.gov/abs/cond-mat/9910141) that the distribution of returns is a power law with exponent <1, in contradiction with empirical data. The idea is that the price fluctuations associated with bubbles must on average grow with the mean market return r. When r is larger than the discount rate rδ, the distribution of returns of the observable price, sum of the bubble component and of the fundamental price, exhibits an intermediate tail with an exponent which can be larger than 1. This regime r> rδ corresponds to a generalization of the rational bubble model in which the fundamental price is no more given by the discounted value of future dividends. We explain how this is possible. Our model predicts that, the higher is the market remuneration r above the discount rate, the larger is the power-law exponent and thus the thinner is the tail of the distribution of price returns.
Integrated microfluidic system with simultaneous emulsion generation and concentration.
Koppula, Karuna S; Fan, Rong; Veerapalli, Kartik R; Wan, Jiandi
2016-03-15
Because the size, size distribution, and concentration of emulsions play an important role in most of the applications, controlled emulsion generation and effective concentration are of great interest in fundamental and applied studies. While microfluidics has been demonstrated to be able to produce emulsion drops with controlled size, size distribution, and hierarchical structures, progress of controlled generation of concentrated emulsions is limited. Here, we present an effective microfluidic emulsion generation system integrated with an orifice structure to separate aqueous droplets from the continuous oil phase, resulting in concentrated emulsion drops in situ. Both experimental and simulation results show that the efficiency of separation is determined by a balance between pressure drop and droplet accumulation near the orifice. By manipulating this balance via changing flow rates and microfluidic geometry, we can achieve monodisperse droplets on chip that have a concentration as high as 80,000 drops per microliter (volume fraction of 66%). The present approach thus provides insights to the design of microfluidic device that can be used to concentrate emulsions (drops and bubbles), colloidal particles (drug delivery polymer particles), and biological particles (cells and bacteria) when volume fractions as high as 66% are necessary. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan
2017-11-01
The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.
Foam flotation as a separation process
NASA Technical Reports Server (NTRS)
Currin, B. L.
1986-01-01
The basic principles of foam separation techniques are discussed. A review of the research concerning bubble-particle interaction and its role in the kinetics of the flotation process is given. Most of the research in this area deals with the use of theoretical models to predict the effects of bubble and particle sizes, of liquid flow, and of various forces on the aperture and retention of particles by bubbles. A discussion of fluid mechanical aspects of particle flotation is given.
Power Laws and Market Crashes ---Empirical Laws on Bursting Bubbles---
NASA Astrophysics Data System (ADS)
Kaizoji, T.
In this paper, we quantitatively investigate the statistical properties of a statistical ensemble of stock prices. We selected 1200 stocks traded on the Tokyo Stock Exchange, and formed a statistical ensemble of daily stock prices for each trading day in the 3-year period from January 4, 1999 to December 28, 2001, corresponding to the period of the forming of the internet bubble in Japn, and its bursting in the Japanese stock market. We found that the tail of the complementary cumulative distribution function of the ensemble of stock prices in the high value of the price is well described by a power-law distribution, P (S > x) ˜ x^{-α}, with an exponent that moves in the range of 1.09 < α < 1.27. Furthermore, we found that as the power-law exponents α approached unity, the bubbles collapsed. This suggests that Zipf's law for stock prices is a sign that bubbles are going to burst.
Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring
NASA Astrophysics Data System (ADS)
Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.
2017-12-01
The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.
Depicting Changes in Multiple Symptoms Over Time.
Muehrer, Rebecca J; Brown, Roger L; Lanuza, Dorothy M
2015-09-01
Ridit analysis, an acronym for Relative to an Identified Distribution, is a method for assessing change in ordinal data and can be used to show how individual symptoms change or remain the same over time. The purposes of this article are to (a) describe how to use ridit analysis to assess change in a symptom measure using data from a longitudinal study, (b) give a step-by-step example of ridit analysis, (c) show the clinical relevance of applying ridit analysis, and (d) display results in an innovative graphic. Mean ridit effect sizes were calculated for the frequency and distress of 64 symptoms in lung transplant patients before and after transplant. Results were displayed in a bubble graph. Ridit analysis allowed us to maintain the specificity of individual symptoms and to show how each symptom changed or remained the same over time. The bubble graph provides an efficient way for clinicians to identify changes in symptom frequency and distress over time. © The Author(s) 2014.
Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.
2003-01-01
The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.
Bubble-induced microstreaming: guiding and destroying lipid vesicles
NASA Astrophysics Data System (ADS)
Marmottant, Philippe; Hilgenfeldt, Sascha
2002-11-01
Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.
NASA Astrophysics Data System (ADS)
Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh
2008-12-01
A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.
Interaction of lithotripter shockwaves with single inertial cavitation bubbles
Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei
2008-01-01
The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296
Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei
2007-01-01
The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.
A precursor of market crashes: Empirical laws of Japan's internet bubble
NASA Astrophysics Data System (ADS)
Kaizoji, T.
2006-03-01
In this paper, we quantitatively investigate the properties of a statistical ensemble of stock prices. We focus attention on the relative price defined as X(t) = S(t)/S(0), where S(0), is the stock price for an onset time of the bubble. We selected approximately 3200 stocks traded on the Japanese Stock Exchange, and formed a statistical ensemble of daily relative prices for each trading day in the 3-year period from January 4, 1999 to December 28, 2001, corresponding to the period in which internet Bubble formed and crashed in the Japanese stock market. We found that the upper tail of the complementary cumulative distribution function of the ensemble of the relative prices in the high value of the price is well described by a power-law distribution, P(S>x) ˜x-α , with an exponent that moves over time. Furthermore we found that as the power-law exponents α approached two, the bubble burst. It is reasonable to suppose that it indicates that internet bubble is about to burst.
Numerical study of the impact of a drop containing a bubble
NASA Astrophysics Data System (ADS)
Wei, Yu; Thoraval, Marie-Jean
2017-11-01
The impact of a drop has many applications from inkjet printing to the spreading of crops diseases. This fundamental phenomenon has therefore attracted a lot of interest from different fields. However, they have mostly focused on the simplest case of a drop containing a single fluid. In inkjet printing and in the deposition process of thermal barrier coatings, some bubbles can be present in the drop when it impacts on the solid surface. The presence of the bubble can produce some additional splashing, and affect the quality of the deposited material. Only a few studies have looked at this problem, and many questions still need to be investigated. Generally, there are three possibilities when a drop containing a bubble impacts onto a solid surface, namely the bubble stays in drop, the bubble bursts and a counter jet forms. We have performed axisymmetric numerical simulations with the open source code Gerris to study this vertical jet. We have systematically varied several parameters, including the impact velocity, the bubble size, the vertical position of the bubble, and the liquid properties. We were thus able to characterize under which condition the bubble leads to splashing and the velocity of the produced jet.
Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.
Xu, Zhen; Raghavan, M; Hall, T L; Mycek, M-A; Fowlkes, J B
2008-05-01
Mechanical tissue fractionation can be achieved using successive, high-intensity ultrasound pulses in a process termed histotripsy. Histotripsy has many potential clinical applications where noninvasive tissue removal is desired. The primary mechanism for histotripsy is believed to be cavitation. Using fast-gated imaging, this paper studies the evolution of a cavitating bubble cloud induced by a histotripsy pulse (10 and 14 cycles) at peak negative pressures exceeding 21MPa. Bubble clouds are generated inside a gelatin phantom and at a tissue-water interface, representing two situations encountered clinically. In both environments, the imaging results show that the bubble clouds share the same evolutionary trend. The bubble cloud and individual bubbles in the cloud were generated by the first cycle of the pulse, grew with each cycle during the pulse, and continued to grow and collapsed several hundred microseconds after the pulse. For example, the bubbles started under 10 microm, grew to 50 microm during the pulse, and continued to grow 100 microm after the pulse. The results also suggest that the bubble clouds generated in the two environments differ in growth and collapse duration, void fraction, shape, and size. This study furthers our understanding of the dynamics of bubble clouds induced by histotripsy.
Influence of cavitation bubble growth by rectified diffusion on cavitation-enhanced HIFU
NASA Astrophysics Data System (ADS)
Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro
2017-11-01
Cavitation is becoming increasingly important in therapeutic ultrasound applications such as diagnostic, tumor ablation and lithotripsy. Mass transfer through gas-liquid interface due to rectified diffusion is important role in an initial stage of cavitation bubble growth. In the present study, influences of the rectified diffusion on cavitation-enhanced high-intensity focused ultrasound (HIFU) was investigated numerically. Firstly, the mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the result, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Next, the cavitation-enhanced HIFU, which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves, was reproduced by the present simulation. The heating region obtained by the simulation is agree to the treatment region of an in vitro experiment. Additionally, the simulation result shows that the localized heating is enhanced by the increase of the equilibrium bubble size due to the rectified diffusion. This work was supported by JSPS KAKENHI Grant Numbers JP26420125,JP17K06170.
Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water
NASA Astrophysics Data System (ADS)
Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier
2014-11-01
Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.
Numerical simulation of single bubble dynamics under acoustic travelling waves.
Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu
2018-04-01
The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.
Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell.
Haudin, Florence; Noblin, Xavier; Bouret, Yann; Argentina, Médéric; Raufaste, Christophe
2016-08-01
We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size.
Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel
NASA Astrophysics Data System (ADS)
Oguri, Ryota; Ando, Keita
2018-05-01
An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.
Probing the Bioeffects of Cavitation at the Single-Cell Level
NASA Astrophysics Data System (ADS)
Yuan, Fang
The primary goal of this dissertation research is to develop an experimental system and associated techniques that can be used to investigate the bioeffects produced by cavitation bubbles at the single cell level. Such information has been lacking due to the randomness and complexity in cavitation inception and subsequent bubble-bubble interaction generated by an acoustic field typically used in therapeutic ultrasound applications. Connection between cavitation activities and bioeffects produced in cells nearby presents another challenge that has not been resolved satisfactorily. In this work, we developed a laser-based system for generating tandem bubbles with a maximum diameter about 50 microm (i.e., on the scale of a single cell) in a microfluidic channel of 25 microm in height and 800 microm in width. We further developed techniques for micropatterning of individual gold dots (15 nm thick and 6 microm in diameter) used for bubble generation, which are precisely aligned at various stand-off distances (SD) from individual islands (32 x 32 microm2) coated with fibronectin used for cell adhesion. The dynamics of tandem bubble interaction with resultant jet formation, microstreaming and vortex flow in the microfluidic channel were captured by high-speed imaging and particle image velocimetry (PIV). The deformation of the target cell was recorded by high-speed imaging as well (using a second camera) immediately after the tandem bubble interaction and assessment of membrane strain was aided with 2 microm sized polystyrene beads attached to the cell membrane. Membrane poration was characterized by uptake of fluorescent propodium iodide (PI) into the target cell, from which the normalized maximum pore size was estimated. Using this experimental system, we have observed the complete process of bubble-bubble interaction with resultant jetting flow, cell deformation, and localized pinpoint membrane rupture with progressive diffusion of macromolecules into the target cell. Furthermore, we observed a clear SD dependence in the treatment outcome produced by the tandem bubbles. At short SD of 10 microm, all treated cells underwent necrosis with high yet unsaturated level of PI uptake, indicating that the cell could not reseal the poration site. At intermediate SD of 20 ˜ 30 microm, 58% to 80% of the cells were observed to have repairable membrane poration with low to medium but saturated level of PI uptake. At long SD of 40 microm, no detectable PI uptake was observed, corresponding to no membrane compromise. Within the repairable membrane poration group, the sub-population of cells that eventually survived without apoptosis increased from about 9% at SD of 20 microm with strong adhesion to about 70% at SD of 30 microm with no adhesion at the leading edge facing the jetting flow. The maximum PI uptake, pore size, and membrane strain estimated could vary by more than an order of magnitude, which is similar to the magnitude of variations in pore size (0.2 ˜ 2 microm) produced by tandem bubbles observed by SEM. The large principal strain (> 500%) with associated high strain-rate (> 106·s -1) produced by the tandem bubbles provide a unique tool to examine the bioeffects of cavitation at the single cell level and potentially a diverse range of applications to be explored.
1985-08-08
The lack of normal convection in microgravity is demonstrated by a carbonated soft drink floating in the middeck of the Space Shuttle. While the droplet is oscillating slightly and starting to assume a spherical shape, it is filled with carbon dioxide bubbles in a range of sizes. On Earth, the bubbles would quickly foat up to form a head. In space, they are suspended. They may drift with time and eventually the surface tension between individual bubbles breaks, allowing larger bubbles to form. This image was taken during STS-51F mission (Spacelab 2) which carried test models of dispensers from two pupular soft drink manufacturers. Photo credit: NASA/Johnson Space Center (JSC)
NASA Astrophysics Data System (ADS)
Dietrich, Nicolas; Hebrard, Gilles
2018-02-01
An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.
NASA Astrophysics Data System (ADS)
Dietrich, Nicolas; Hebrard, Gilles
2018-07-01
An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.
Bubble masks for time-encoded imaging of fast neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Erik; Brennan, James S.; Marleau, Peter
2013-09-01
Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixedmore » blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.« less
NASA Astrophysics Data System (ADS)
Artemov, Yu. G.
2003-04-01
Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the water column due to a certain bubble stream, 2) how much amount of gas comes into the water column due to a certain seepage area of the see floor, 3) how much amount of gas diffuses into the water and how much gas phase enters the atmosphere. Echo-sounder is the habitual equipment for detecting gas plumes (flares) in the water column. To provide observations of gas seeps with bubbles tracking, single target and volume backscattering strength measurements, we use installed on board the R/V "Professor Vodyanitskiy" dual frequency (38 and 120 kHz) split-beam scientific echo-sounder SIMRAD EK-500. Dedicated software is developed to extract from the raw echo data and to handle the definite information for analyses of gas bubble streams features. This improved hydroacoustic techniques allows to determine gas bubbles size spectrum at different depths through the water column as well as rise velocity of bubbles of different sizes. For instance, bubble of 4.5 mm diameter has rising speed of 25.8 cm/sec at 105 m depth, while bubble of 1.7 mm diameter has rising speed of 16.3 cm/sec at 32 m depth. Using volume backscattering measurements in addition, it is possible to evaluate flux of the gas phase produced by methane bubble streams and to learn of its fate in the water column. Ranking of various gas plumes by flux rate value is available also. In this presentation results of acoustic observations at the shallow NW Black Sea seepage area are given.
Jiao, Junjie; He, Yong; Leong, Thomas; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy
2013-10-17
When subjected to an ultrasonic standing-wave field, cavitation bubbles smaller than the resonance size migrate to the pressure antinodes. As bubbles approach the antinode, they also move toward each other and either form a cluster or coalesce. In this study, the translational trajectory of two bubbles moving toward each other in an ultrasonic standing wave at 22.4 kHz was observed using an imaging system with a high-speed video camera. This allowed the speed of the approaching bubbles to be measured for much closer distances than those reported in the prior literature. The trajectory of two approaching bubbles was modeled using coupled equations of radial and translational motions, showing similar trends with the experimental results. We also indirectly measured the secondary Bjerknes force by monitoring the acceleration when bubbles are close to each other under different acoustic pressure amplitudes. Bubbles begin to accelerate toward each other as the distance between them gets shorter, and this acceleration increases with increasing acoustic pressure. The current study provides experimental data that validates the theory on the movement of bubbles and forces acting between them in an acoustic field that will be useful in understanding bubble coalescence in an acoustic field.
Decentralized safety concept for closed-loop controlled intensive care.
Kühn, Jan; Brendle, Christian; Stollenwerk, André; Schweigler, Martin; Kowalewski, Stefan; Janisch, Thorsten; Rossaint, Rolf; Leonhardt, Steffen; Walter, Marian; Kopp, Rüdger
2017-04-01
This paper presents a decentralized safety concept for networked intensive care setups, for which a decentralized network of sensors and actuators is realized by embedded microcontroller nodes. It is evaluated for up to eleven medical devices in a setup for automated acute respiratory distress syndrome (ARDS) therapy. In this contribution we highlight a blood pump supervision as exemplary safety measure, which allows a reliable bubble detection in an extracorporeal blood circulation. The approach is validated with data of animal experiments including 35 bubbles with a size between 0.05 and 0.3 ml. All 18 bubbles with a size down to 0.15 ml are successfully detected. By using hidden Markov models (HMMs) as statistical method the number of necessary sensors can be reduced by two pressure sensors.
NASA Astrophysics Data System (ADS)
Liu, W. B.; Zhang, J. H.; Ji, Y. Z.; Xia, L. D.; Liu, H. P.; Yun, D.; He, C. H.; Zhang, C.; Yang, Z. G.
2018-03-01
High temperature (550 °C) He ions irradiation was performed on nanostructured (NS) and coarsen-grained (CG) reduced activation steel to investigate the effects of GBs/interfaces on the formation of bubbles during irradiation. Experimental results showed that He bubbles were preferentially trapped at dislocations and/or grain boundaries (GBs) for both of the samples. Void denuded zones (VDZs) were observed in the CG samples, while VDZs near GBs were unobvious in NS sample. However, both the average bubble size and the bubble density in peak damage region of the CG sample were significantly larger than that observed in the NS sample, which indicated that GBs play an important role during the irradiation, and the NS steel had better irradiation resistance than its CG counterpart.
Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid
Chaari, Anis; Giraud-Moreau, Laurence
2014-01-01
An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced. PMID:24795538
Bubble column and CFD simulation for chemical recycling of polyethylene terephthalate
NASA Astrophysics Data System (ADS)
Alzuhairi, Mohammed
2018-05-01
Computational Fluid Dynamics (CFD) is an important simulation tool, which uses powerful computer to get optimal design in industrial processes. New approach technique of bubble column for three phases has been used with respect to chemical recycling of Polyethylene Terephthalate (PET). The porous ceramic has been used in thin plate (5 mm) with a narrow pore size distribution. Excellent agreement between CFD has been predicted and experimental profiles of hold-up and velocity close to wall have been observed for a column diameter 0.08 m, column height 0.15 m (HD), and superficial gas velocity (VG) 0.05 m/s. The main purpose of the current study is to highlight depolymerization of PET chemically by using the close system of Ethylene Glycol, PET-Catalyzed, and Nitrogen glycolysis process in bubble column of three phases technique by using Nano catalyst, SiO2 with various weight percent (0.01, 0.02, 0.05, 0.1, 0.2, and 0.5) based on PET weight and preheated Nitrogen up to 100° C by extra heater in bubble column reactor. The depolymerization time could be reduced in order to improve heat and mass transfer in comparison with the traditional methods. Little amount not exceeding 0.01% of Nano SiO2 is enough for completing depolymerization. The final product of PET depolymerization has full characterization by FTIR, AFM, CHN tests and has been used as a vital additive for Bitumen, it has been investigated as a moisture-proof, water seepage-proof material, and as a tough resistant to environmental conditions.
NASA Astrophysics Data System (ADS)
Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.
2010-12-01
The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.
Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M
2002-01-01
The structural dynamics of pulmonary surfactant was studied by epifluorescence light microscopy at the air-water interface of a bubble as a model close to nature for an alveolus. Small unilamellar vesicles of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, a small amount of a fluorescent dipalmitoylphosphatidylcholine-analog, and surfactant-associated protein C were injected into the buffer solution. They aggregated to large clusters in the presence of Ca(2+) and adsorbed from these units to the interface. This gave rise to an interfacial film that eventually became fully condensed with dark, polygonal domains in a fluorescent matrix. When now the bubble size was increased or decreased, respectively, the film expanded or contracted. Upon expansion of the bubble, the dark areas became larger to the debit of the bright matrix and reversed upon contraction. We were able to observe single domains during the whole process. The film remained condensed, even when the interface was increased to twice its original size. From comparison with scanning force microscopy directly at the air-water interface, the fluorescent areas proved to be lipid bilayers associated with the (dark) monolayer. In the lung, such multilayer phase acts as a reservoir that guarantees a full molecular coverage of the alveolar interface during the breathing cycle and provides mechanical stability to the film. PMID:12080141
Selective particle trapping using an oscillating microbubble.
Rogers, Priscilla; Neild, Adrian
2011-11-07
The ability to isolate and sort analytes within complex microfluidic volumes is essential to the success of lab-on-a-chip (LOC) devices. In this study, acoustically-excited oscillating bubbles are used to selectively trap particles, with the selectivity being a function of both particle size and density. The operating principle is based on the interplay between the strong microstreaming-induced drag force and the attractive secondary Bjerknes force. Depending upon the size of the bubble, and thus its resonant frequency, it is possible to cause one force to dominate over the other, resulting in either particle attraction or repulsion. A theoretical analysis reveals the extent of the contribution of each force for a given particle size; in close agreement with experimental findings. Density-based trapping is also demonstrated, highlighting that denser particles experience a larger secondary Bjerknes force resulting in their attraction. This study showcases the excellent applicability and versatility of using oscillating bubbles as a trapping and sorting mechanism within LOC devices. This journal is © The Royal Society of Chemistry 2011
New solutions for steady bubbles in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanveer, S.
1987-03-01
Exact solutions are presented for steadily moving bubbles in a Hele--Shaw cell when the effect of surface tension is neglected. These solutions form a three-parameter family. For specified area, both the speed of the bubble and the distance of its centroid from the channel centerline remain arbitrary when surface tension is ignored. However, numerical evidence suggests that this twofold arbitrariness is removed by the effect of surface tension, i.e., for given bubble area and surface tension, solutions exist only when the bubble velocity and the centroid distance from the channel centerline attain one or more isolated values. From a limitedmore » numerical search, no nonsymmetric solutions could be found; however, a branch of symmetric bubble solutions that was not found in earlier work was found. This branch corresponds to one of the Romero-Vanden-Broeck branch of finger solutions when the bubble size is large. A new procedure for numerical calculations of bubble solutions in the presence of surface tension is presented and is found to work very well for reasonably large bubbles, unlike the previous method of Tanveer (Phys. Fluids 29, 3537 (1986)). The precise power law dependence of bubble velocity on surface tension for small surface tension is explored for bubbles of different area. Agreement is noted with recent analytical results for a finger.« less
Luminescence from cavitation bubbles deformed in uniform pressure gradients
NASA Astrophysics Data System (ADS)
Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed
2017-09-01
Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.