Sample records for bubble volume fraction

  1. Visualization of the hot chocolate sound effect by spectrograms

    NASA Astrophysics Data System (ADS)

    Trávníček, Z.; Fedorchenko, A. I.; Pavelka, M.; Hrubý, J.

    2012-12-01

    We present an experimental and a theoretical analysis of the hot chocolate effect. The sound effect is evaluated using time-frequency signal processing, resulting in a quantitative visualization by spectrograms. This method allows us to capture the whole phenomenon, namely to quantify the dynamics of the rising pitch. A general form of the time dependence volume fraction of the bubbles is proposed. We show that the effect occurs due to the nonlinear dependence of the speed of sound in the gas/liquid mixture on the volume fraction of the bubbles and the nonlinear time dependence of the volume fraction of the bubbles.

  2. Electrical capacitance volume tomography (ECVT) applied to bubbling fluid beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, J., Mei, J.

    2012-01-01

    These presentation visuals illustrate the apparatus and method for applying Electrical Capacitance Volume Tomography (ECVT) to bubbling fluid beds to their solid fraction and bubble properties. Results are compared to estimated values.

  3. Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas-Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong

    2018-02-01

    The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.

  4. Prediction of Cavitation Depth in an Al-Cu Alloy Melt with Bubble Characteristics Based on Synchrotron X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Huang, Haijun; Shu, Da; Fu, Yanan; Zhu, Guoliang; Wang, Donghong; Dong, Anping; Sun, Baode

    2018-06-01

    The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.

  5. Prediction of Cavitation Depth in an Al-Cu Alloy Melt with Bubble Characteristics Based on Synchrotron X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Huang, Haijun; Shu, Da; Fu, Yanan; Zhu, Guoliang; Wang, Donghong; Dong, Anping; Sun, Baode

    2018-04-01

    The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.

  6. The rheology of three-phase suspensions at low bubble capillary number

    PubMed Central

    Truby, J. M.; Mueller, S. P.; Llewellin, E. W.; Mader, H. M.

    2015-01-01

    We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction (0≤ϕp≲0.5) and bubble volume fraction (0≤ϕb≲0.3). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases. PMID:25568617

  7. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    NASA Astrophysics Data System (ADS)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  8. Average properties of bidisperse bubbly flows

    NASA Astrophysics Data System (ADS)

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  9. Rheological flow laws for multiphase magmas: An empirical approach

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca

    2016-07-01

    The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as ;lubricant; objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to ;apparent shear-thickening; and ;apparent shear-thinning; for the behaviours observed at low and high crystallinity, respectively. At low crystallinity, increasing deformation rate favours the transfer of gas bubbles in regions of high strain localisation, which, in turn, leads to outgassing and the observed increase of viscosity with increasing strain-rate. At high crystallinity gas bubbles remain trapped within crystals and no outgassing occurs, leading to strain localisation in melt-rich shear bands and to a decrease of viscosity with increasing strain-rate, behaviour observed also in crystal-bearing suspensions. Increasing the volume fraction of weak phases induces limited variation of the stress exponent and pre-exponential factor in both apparent shear-thickening and apparent shear-thinning regimes; conversely, the activation energy is strongly dependent on gas bubble and melt volume fractions. A transient rheology from apparent shear-thickening to apparent shear-thinning behaviour is observed for a crystallinity of 44 vol.%. The proposed equations can be implemented in numerical models dealing with the flow of crystal- and bubble-bearing magmas. We present results of analytical simulations showing the effect of the rheology of three-phase magmas on conduit flow dynamics, and show that limited bubble volumes (< 10 vol.%) lead to strain localisation at the conduit margins during the ascent of crystal-rich lava domes and crystal-poor obsidian flows.

  10. Effect of flour minor components on bubble growth in bread dough during proofing assessed by magnetic resonance imaging.

    PubMed

    Rouillé, J; Bonny, J-M; Della Valle, G; Devaux, M F; Renou, J P

    2005-05-18

    Fermentation of dough made from standard flour for French breadmaking was followed by nuclear magnetic resonance imaging at 9.4 T. The growth of bubbles (size > 117 microm) was observed for dough density between 0.8 and 0.22 g cm(-3). Cellular structure was assessed by digital image analysis, leading to the definition of fineness and rate of bubble growth. Influence of composition was studied through fractionation by extraction of soluble fractions (6% db), by defatting (< 1% db) and by puroindolines (Pin) addition (< or = 0.1%). Addition of the soluble fraction increased the dough specific volume and bubble growth rate but decreased fineness, whereas defatting and Pin addition only increased fineness. The role of molecular components of each fraction could be related to dough elongational properties. A final comparison with baking results confirmed that the crumb cellular structure was largely defined after fermentation.

  11. Effect of Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.

    As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a continuous glass-forming melt where dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion as it occurs during melting. We studied the melter feed viscosity during heating and correlated it with volume fractions of dissolving quartz particles and gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles,more » gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases.« less

  12. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    PubMed

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  13. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  14. Robust acoustic wave manipulation of bubbly liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu; Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076; Akhatov, I. S.

    Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  15. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  16. An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.

    PubMed

    Jamshidi, Rashid; Brenner, Gunther

    2014-01-01

    Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation

    DOE PAGES

    Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane

    2017-06-02

    Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less

  18. Inviscid dynamics of a wet foam drop with monodisperse bubble size distribution

    NASA Astrophysics Data System (ADS)

    McDaniel, J. Gregory; Akhatov, Iskander; Holt, R. Glynn

    2002-06-01

    Motivated by recent experiments involving the acoustic levitation of foam drops, we develop a model for nonlinear oscillations of a spherical drop composed of monodisperse aqueous foam with void fraction below 0.1. The model conceptually divides a foam drop into many cells, each cell consisting of a spherical volume of liquid with a bubble at its center. By treating the liquid as incompressible and inviscid, a nonlinear equation is obtained for bubble motion due to a pressure applied at the outer radius of the liquid sphere. Upon linearizing this equation and connecting the cells at their outer radii, a wave equation is obtained with a dispersion relation for the sound waves in a bubbly liquid. For the spherical drop, this equation is solved by a normal mode expansion that yields the natural frequencies as functions of standard foam parameters. Numerical examples illustrate how the analysis may be used to extract foam parameters, such as void fraction and bubble radius, from the experimentally measured natural frequencies of a foam drop.

  19. Bubble breakup phenomena in a venturi tube

    NASA Astrophysics Data System (ADS)

    Fujiwara, Akiko

    2005-11-01

    Microbubble has distinguished characteristics of large surface area to unit volume and small buoyancy, and it has advantages in many engineering fields. Recently microbubble generators with low energy and high performance are required to wide applications. In the present study, we propose one new effective technique to generate tiny bubbles with less than 200 μm diameter utilizing venturi tube under high void fraction condition. The objective of the present study is to elucidate the mechanism of bubble breakup phenomena in the venturi tube and to clarify the effects of parameters which are necessary to realize an optimum system experimentally. Experiment was conducted with void fraction of 4% and variation of liquid velocity from 9 to 26 m/s at the throat. Under low velocity condition, bubbles which were observed with a high speed camera parted gradually in a wide region. On the contrary under high velocity condition, bubbles expanded after passing through the throat and shrank rapidly. Since the speed of sound in gas-liquid system is extremely lower than that of single-phase flow, the bubble breakup phenomenon in the venturi tube is explained as the supersonic flow in a Laval nozzle. By rapid pressure recovery in diverging area, expanding bubbles collapse violently. The tiny bubbles are generated due to the surface instability of shrinking bubbles.

  20. Bubble Augmented Propulsor Mixture Flow Simulation near Choked Flow Condition

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Hsiao, Chao-Tsung; Chahine, Georges

    2013-03-01

    The concept of waterjet thrust augmentation through bubble injection has been the subject of many patents and publications over the past several decades, and computational and experimental evidences of the augmentation of the jet thrust through bubble growth in the jet stream have been reported. Through our experimental studies, we have demonstrated net thrust augmentation as high as 70%for air volume fractions as high as 50%. However, in order to enable practical designs, an adequately validated modeling tool is required. In our previous numerical studies, we developed and validated a numerical code to simulate and predict the performance of a two-phase flow water jet propulsion system for low void fractions. In the present work, we extend the numerical method to handle higher void fractions to enable simulations for the high thrust augmentation conditions. At high void fractions, the speed of sound in the bubbly mixture decreases substantially and could be as low as 20 m/s, and the mixture velocity can approach the speed of sound in the medium. In this numerical study, we extend our numerical model, which is based on the two-way coupling between the mixture flow field and Lagrangian tracking of a large number of bubbles, to accommodate compressible flow regimes. Numerical methods used and the validation studies for various flow conditions in the bubble augmented propulsor will be presented. This work is supported by Office of Naval Research through contract N00014-11-C-0482 monitored by Dr. Ki-Han Kim.

  1. Simulation of gas bubbles in hypobaric decompressions: roles of O2, CO2, and H2O.

    PubMed

    Van Liew, H D; Burkard, M E

    1995-01-01

    To gain insight into the special features of bubbles that may form in aviators and astronauts, we simulated the growth and decay of bubbles in two hypobaric decompressions and a hyperbaric one, all with the same tissue ratio (TR), where TR is defined as tissue PN2 before decompression divided by barometric pressure after. We used an equation system which is solved by numerical methods and accounts for simultaneous diffusion of any number of gases as well as other major determinants of bubble growth and absorption. We also considered two extremes of the number of bubbles which form per unit of tissue. A) Because physiological mechanisms keep the partial pressures of the "metabolic" gases (O2, CO2, and H2O) nearly constant over a range of hypobaric pressures, their fractions in bubbles are inversely proportional to pressure and their large volumes at low pressure add to bubble size. B) In addition, the large fractions facilitate the entry of N2 into bubbles, and when bubble density is low, enhance an autocatalytic feedback on bubble growth due to increasing surface area. C) The TR is not closely related to bubble size; that is when two different decompressions have the same TR, metabolic gases cause bubbles to grow larger at lower hypobaric pressures. We conclude that the constancy of partial pressures of metabolic gases, unimportant in hyperbaric decompressions, affects bubble size in hypobaric decompressions in inverse relation to the exposure pressure.

  2. Modeling quiescent phase transport of air bubbles induced by breaking waves

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.

  3. Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls

    NASA Astrophysics Data System (ADS)

    Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.

    2018-06-01

    Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.

  4. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth

    PubMed Central

    Han, D.; Kedzierski, Mark A.

    2017-01-01

    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°–80°), the vibration displacement (10 µm–50 µm), the vibration frequency (5 Hz–25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described. PMID:28747812

  5. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  6. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.

    PubMed

    Xue, Zheng; Worthen, Andrew; Qajar, Ali; Robert, Isaiah; Bryant, Steven L; Huh, Chun; Prodanović, Maša; Johnston, Keith P

    2016-01-01

    To date, relatively few examples of ultra-high internal phase supercritical CO2-in-water foams (also referred to as macroemulsions) have been observed, despite interest in applications including "waterless" hydraulic fracturing in energy production. The viscosities and stabilities of foams up to 0.98 CO2 volume fraction were investigated in terms of foam bubble size, interfacial tension, and bulk and surface viscosity. The foams were stabilized with laurylamidopropyl betaine (LAPB) surfactant and silica nanoparticles (NPs), with and without partially hydrolyzed polyacrylamide (HPAM). For foams stabilized with mixture of LAPB and NPs, fine ∼70 μm bubbles and high viscosities on the order of 100 cP at>0.90 internal phase fraction were stabilized for hours to days. The surfactant reduces interfacial tension, and thus facilitates bubble generation and decreases the capillary pressure to reduce the drainage rate of the lamella. The LAPB, which is in the cationic protonated form, also attracts anionic NPs (and anionic HPAM in systems containing polymer) to the interface. The adsorbed NPs at the interface are shown to slow down Ostwald ripening (with or without polymer added) and increase foam stability. In systems with added HPAM, the increase in the bulk and surface viscosity of the aqueous phase further decreases the lamella drainage rate and inhibits coalescence of foams. Thus, the added polymer increases the foam viscosity by threefold. Scaling law analysis shows the viscosity of 0.90 volume fraction foams is inversely proportional to the bubble size. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Effect of Foaming and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.

    As the nuclear waste glass melter feed is converted to molten glass, the feed eventually becomes a continuous glass-forming melt in which dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the melter feed is crucial for understanding the feed-to-glass conversion as it occurs in the cold cap. We measured the viscosity during heating of the feed and correlated it with the independently determined volume fractions of dissolving quartz particles and the gas phase. The measurement was performed with a rotating spindle rheometer on the melter feed heated at 5 K/min starting at severalmore » different temperatures. The effect of quartz particles, gas bubbles, and compositional inhomogeneity on the glass-forming melt viscosity was determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases to data.« less

  8. An abrupt outgassing revealed by a slow decompression experiment of cristal-bearing syrup foam

    NASA Astrophysics Data System (ADS)

    Kanno, Y.; Namiki, A.

    2013-12-01

    Distribution of volcanic gasses in a conduit determines eruption style. Outgassing changes the distribution of volcanic gasses in a conduit.We here simulated the outgassing from ascending magma by slow decompression experiments. As molten magma ascends in a conduit, surrounding pressure becomes low and bubbles in magma expand. In our previous work, we found that the bubble expansion causes film rupturing and makes paths for outgassing. The crystals in magma may affect this newly found outgassing style. Accordingly, we slowly decompressed syrup foam including solid particles as a magma analogue. Experiments are conducted in an acrylic tank. We observed the expansion of three-phase magma analog from the front of the tank using a digital video camera. From the images and pressure measurements, we calculated time evolution of the syrup volume and permeability. We consider that there is no bubble segregation by the ascent of individual bubbles from the Stoke's velocity. We conducted our experiments with a viscosity range of 10-20 Pa s which is the same orders of magnitude of that of basaltic magma, 10-103 Pa s. At the beginning of the decompression, the volume change of the syrup foam is well explained by isothermal expansion. When the gas fractions reached to the 85-90%, we observed that deformations of bubble films caused film rupturing so that bubbles coalesce vertically to clear a path. As time elapsed, the measured gas volume in the foam becomes smaller than that estimated by the isothermal expansion, indicating the occurrence of outgassing. In the experiments with high volume fraction of solid particles (>30 vol.% for bubble-free liquid), we observed another new style of outgassing. Several large voids (> 10 mm in radius) appear at a middle height of the foam and connect each other to make a horizontally elongated cavity. The roof of the cavity collapses, and then massive outgassing occurs. At the beginning of the decompression until the foam collapses, outgassing occurs intermittently. We calculated the apparent permeability of the foam before the collapse occurs assuming the Darcy's law. Calculated permeability observed for the experiments with large volume fraction of solid particles has temporal variation and they varies from 10-7 -10-9. This value is quite larger than those measured for natural pumices and scoriae. From our experiments, we infer that there is a skin depth of the outgassing. At the beginning, the upper most part of the foam has a high apparent permeability to cause outgassing energetically. However, the gas within this region decreases eventually to be impermeable. Beneath the impermeable layer, the gas transported from a depth accumulates to make a cavity. The cavity is gravitationally unstable and collapses at the end. It has been widely recognized that the Vulcanian eruption occurs by a sudden expansion of the accumulated gas beneath an impermeable plug. Our experimental results may explain the mechanism generating an impermeable plug.

  9. Sound propagation in a monodisperse bubble cloud: from the crystal to the glass.

    PubMed

    Devaud, M; Hocquet, T; Leroy, V

    2010-05-01

    We present a theoretical study of the propagation of a monochromatic pressure wave in an unbounded monodisperse bubbly liquid. We begin with the case of a regular bubble array--a bubble crystal--for which we derive a dispersion relation. In order to interpret the different branches of this relation, we introduce a formalism, the radiative picture, which is the adaptation to acoustics of the standard splitting of the electric field in an electrostatic and a radiative part in Coulomb gauge. In the case of an irregular or completely random array--a bubble glass--and at wavelengths large compared to the size of the bubble array spatial inhomogeneities, the difference between order and disorder is not felt by the pressure wave: a dispersion relation still holds, coinciding with that of a bubble crystal with the same bubble size and air volume fraction at the centre of its first Brillouin zone. This relation is discussed and compared to that obtained by Foldy in the framework of his multiscattering approach.

  10. Trends in long-period seismicity related to magmatic fluid compositions

    USGS Publications Warehouse

    Morrissey, M.M.; Chouet, B.A.

    2001-01-01

    Sound speeds and densities are calculated for three different types of fluids: gas-gas mixture; ash-gas mixture; and bubbly liquid. These fluid properties are used to calculate the impedance contrast (Z) and crack stiffness (C) in the fluid-driven crack model (Chouet: J. Geophys. Res., 91 (1986) 13,967; 101 (1988) 4375; A seismic model for the source of long-period events and harmonic tremor. In: Gasparini, P., Scarpa, R., Aki, K. (Eds.), Volcanic Seismology, IAVCEI Proceedings in Volcanology, Springer, Berlin, 3133). The fluid-driven crack model describes the far-field spectra of long-period (LP) events as modes of resonance of the crack. Results from our calculations demonstrate that ash-laden gas mixtures have fluid to solid density ratios comparable to, and fluid to solid velocity ratios lower than bubbly liquids (gas-volume fractions 20% gas-volume fraction yields values of Q-1r similar to those for a rectangular crack. As with gas-gas and ash-gas mixtures, an increase in mass fraction narrows the bandwidth of the dominant mode and shifts the spectra to lower frequencies. Including energy losses due to dissipative processes in a bubbly liquid increases attenuation. Attenuation may also be higher in ash-gas mixtures and foams if the effects of momentum and mass transfer between the phases were considered in the calculations. ?? 2001 Elsevier Science B. V. All rights reserved.

  11. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.

    1999-01-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction can be measured, from which the bubble phase pressure gradient can be obtained and compared to theory and numerical simulations. The presence of bounding walls further complicates the experiments, since the detailed interactions of the bubbles with bounding walls is not well understood, especially in the presence of gravity, where the momentum and energy exchange depends on the inclination of the wall.

  12. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027

  13. Numerical investigation of shock induced bubble collapse in water

    NASA Astrophysics Data System (ADS)

    Apazidis, N.

    2016-04-01

    A semi-conservative, stable, interphase-capturing numerical scheme for shock propagation in heterogeneous systems is applied to the problem of shock propagation in liquid-gas systems. The scheme is based on the volume-fraction formulation of the equations of motion for liquid and gas phases with separate equations of state. The semi-conservative formulation of the governing equations ensures the absence of spurious pressure oscillations at the material interphases between liquid and gas. Interaction of a planar shock in water with a single spherical bubble as well as twin adjacent bubbles is investigated. Several stages of the interaction process are considered, including focusing of the transmitted shock within the deformed bubble, creation of a water-hammer shock as well as generation of high-speed liquid jet in the later stages of the process.

  14. Magnetite Scavenging and the Buoyancy of Bubbles in Magmas

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Ghiorso, M. S.

    2005-12-01

    It is generally assumed that when eruptions are triggered, magmas are bubble-free, and all the vesicularity observed in pumice is due to nucleation and growth during ascent. However, decompression experiments show that bubbles tend to nucleate on magnetite crystals at relatively low supersaturation, and there is convincing evidence that an exsolved gas phase was present during much of the evolution of the Bishop magma. The fate of pre-eruptive bubbles depends directly on their buoyancy, which can be strongly modified by the presence of crystals attached to the bubble-melt interface. That crystals tend to attach to bubbles is indicated by experiments and observations, and can be explained theoretically. Whether, however, crystals and bubbles can be held together by interface forces is yet uncertain, and we use the available knowledge on surface energies to explore this problem. We call adhesion energy the surface energy change due to attachment of a crystal to a bubble. We show that sticking a bubble to a mineral substrate is always energetically favored over keeping bubble and mineral separate. Because the adhesion energy is a strong function of the wetting angle, different minerals will be more strongly attached to bubbles than others. In particular, oxide minerals will attach to a given bubble much more strongly than any silicates. One interesting consequence of the attachment of grains to a bubble is that this can cause these bubble-crystal pairs to be neutrally buoyant, preventing bubble rise and crystal sinking. The criterion for buoyancy of a bubble-crystal pair can be calculated as the condition when the apparent weight of the crystal and the bubble are opposite and equal. If a bubble-mineral pair is to remain joined, the binding force has to be provided by the adhesion force, which is also a strong function of the wetting angle. Since the adhesion force is linear on R, and the buoyancy force is proportional to R cubed, there is a critical bubble radius below which the adhesion force will be strong enough to keep the pair together. Using the available experimental data, we show that crystals as large as 1 mm in diameter could be attached to bubbles and form neutrally buoyant pairs. The presence of multiple crystals in a single bubble would allow bubbles larger than the critical size to become neutrally buoyant. Under the limiting assumption that all magnetite crystals form neutrally buoyant pairs with bubbles, it is possible to compute the maximum gas volume fraction that can be stored as neutrally buoyant bubble-magnetite aggregates. The total abundance of magnetite is only ca. 0.1 vol. %, which yields maximum gas volume fractions on the order of 0.1-0.2 vol. %. About 2-3 vol % of gas can be accounted for if all minerals form neutrally-buoyant aggregates. These values are orders of magnitude lower than the abundance of exsolved gas inferred from melt inclusions in the Bishop magma. Nonetheless, our recent observation of one such aggregate in the early-erupted Bishop Tuff suggests that this is indeed a viable mechanism for storing exsolved gas in magmas. The inevitable conclusion is that a range of pre-eruptive bubbles existed, from magnetite-free, but only a very small fraction of them could have magnetite crystals attached to them. Our treatment shows that there should be an intrinsic association between magnetite crystals and bubbles. However, study our tomography datasets shows that most magnetite crystals are free of bubbles. Not only is this surprising; the puzzling conclusion is that nucleation away from crystals (homogeneous nucleation?) is favored over heterogeneous nucleation on crystal substrates.

  15. Nucleation and growth of sodium colloids in NaCl under irradiation: theory and experiment

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Turkin, A. A.; Abyzov, A. S.; Sugonyako, A. V.; Vainshtein, D. I.; den Hartog, H. W.

    2005-01-01

    A mechanism of radiation-induced emission of Schottky defects from extended defects proposed originally for metals has recently been applied to ionic crystals, where it is based on interactions of excitons with extended defects such as dislocations and colloids. Exciton trapping and decay at colloids may result in the emission of F centers and consequent shrinkage of the colloid. In the present paper, the radiation-induced emission of F centers is taken into account in the modeling of nucleation and growth of sodium colloids and chlorine bubbles in NaCl exposed to electron or gamma irradiation. The evolution of colloid and bubble number densities and volume fractions with increasing irradiation dose is modeled in the framework of a modified rate theory and compared with experimental data. Experimental values of the colloid volume fractions and number densities have been estimated on the basis of latent heat of melting of metallic Na obtained with combined differential scanning calorimetry experiments and atomic force microscopy investigations of metallic clusters.

  16. Can airborne ultrasound monitor bubble size in chocolate?

    NASA Astrophysics Data System (ADS)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  17. Completing the evolution of supernova remnants and their bubbles

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Cox, Donald P.

    1992-01-01

    The filling fraction of hot gas in the ISM is reexamined with new calculations of the very long term evolution of SNRs and their fossil hot bubbles. Results are presented of a 1D numerical solution of the evolution of an SNR in a homogeneous medium with a nonthermal pressure corresponding to a 5-micro-G magnetic field and density of 0.2/cu cm. Comparison is made with a control simulation having no magnetic field pressure. It is found that the evolutions, once they have become radiative, differ in several significant ways, while both differ appreciably from qualitative pictures presented in the past. Over most of the evolution of either case, the hot bubble in the interior occupies only a small fraction of the shocked volume, the remainder in a thick shell of slightly compressed material. Column densities and radial distributions of O VI, N V, C IV, and Si IV as well as examples of absorption profiles for their strong UV lines are presented.

  18. The sudden coalescene model of the boiling crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrica, P.M.; Clausse, A.

    1995-09-01

    A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.

  19. Bubble size statistics during reionization from 21-cm tomography

    NASA Astrophysics Data System (ADS)

    Giri, Sambit K.; Mellema, Garrelt; Dixon, Keri L.; Iliev, Ilian T.

    2018-01-01

    The upcoming SKA1-Low radio interferometer will be sensitive enough to produce tomographic imaging data of the redshifted 21-cm signal from the Epoch of Reionization. Due to the non-Gaussian distribution of the signal, a power spectrum analysis alone will not provide a complete description of its properties. Here, we consider an additional metric which could be derived from tomographic imaging data, namely the bubble size distribution of ionized regions. We study three methods that have previously been used to characterize bubble size distributions in simulation data for the hydrogen ionization fraction - the spherical-average (SPA), mean-free-path (MFP) and friends-of-friends (FOF) methods - and apply them to simulated 21-cm data cubes. Our simulated data cubes have the (sensitivity-dictated) resolution expected for the SKA1-Low reionization experiment and we study the impact of both the light-cone (LC) and redshift space distortion (RSD) effects. To identify ionized regions in the 21-cm data we introduce a new, self-adjusting thresholding approach based on the K-Means algorithm. We find that the fraction of ionized cells identified in this way consistently falls below the mean volume-averaged ionized fraction. From a comparison of the three bubble size methods, we conclude that all three methods are useful, but that the MFP method performs best in terms of tracking the progress of reionization and separating different reionization scenarios. The LC effect is found to affect data spanning more than about 10 MHz in frequency (Δz ∼ 0.5). We find that RSDs only marginally affect the bubble size distributions.

  20. Investigating the explosivity of shallow sub-aqueous basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Murtagh, R.; White, J. D. L.

    2009-04-01

    Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The diverse nature of the vesicularity is reflected also in SEM images. Dense clasts display textures with isolated, tiny, serrate-edged bubbles, while mean- and high-vesicularity clasts display more numerous, medium-sized, rounded bubbles. Based on these observations, fragmentation at various stages of a complex vesiculation history is suggested. The second site, Black Point, is situated in eastern California, U.S. Another emergent volcano, it was erupted into Lake Russell ~13,000 years ago. Similar to Pahvant Butte, its unconsolidated mound consists of glassy ash and lapilli and is topped by indurated, palagonitized tuff ring/cone deposits. A well exposed quarry section on the southeast slopes of the edifice is considered here. Sub-horizontal beds display pinch and swell structures and some cross-stratification. Vesicularity indices extend from 58.7% - 66.6% while vesicularity ranges are broad, 27.8% - 79.7% for example. The higher overall vesicularity implies higher rates of ascent and eruption discharge, a conclusion supported by textural features of bubbles in this section such as a population of uniformly sized small vesicles. Bubble nucleation and growth in an ascending parcel of magma is controlled both by decompression and diffusion of oversaturated volatiles as the magma rises. Bubble growth plays a major role in controlling eruption behaviour and we can obtain useful quantitative records of vesicle size data through thin section imaging and analysis. Vesicle size data can be expressed as number per area (NA), number per volume (NV), cumulative number density (N(>L)), volume fraction, cumulative volume fraction and vesicle size distribution (VSD). Not only can the trends and patterns of bubble size reveal insights into eruptive styles, intensity; bubble nucleation, growth, coalescence and deformation, they can also be analysed with other information to infer volatile content and degassing record. High vesicle number densities have been interpreted as being the result of rapid bubble nucleation at high supersaturations. Homogenous bubble nucleation is symptomatic of large supersaturations and high decompression values, whereas heterogeneous bubble nucleation on pre-existing microlites may occur at much lower saturation and decompression values. The spatial density of bubble nuclei controls the rate of diffusion-limited bubble growth and growth of volatile depletion shells around bubbles. Results thus far are restricted to the Pahvant Butte sample suite and indicate low bubble number densities, which could be reflecting a high connectivity of bubbles; polymodal volume fraction distributions, indicating bubble coalescence and multiple stages of bubble nucleation; VSD plots display curved trends further supporting the theory that bubble coalescence and other ripening processes have occurred. These vesicle-population characteristics are most similar to those reported from Stromboli. Despite this similarity, eruption style, energetics and dispersal are unique to subaqueous eruptions, and are inferred to be equivalent to those that formed the subaqueous base of Surtsey volcano.

  1. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-07-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.

  2. MOBI: Microgravity Observations of Bubble Interactions

    NASA Technical Reports Server (NTRS)

    Koch, Donald L.; Sangani, Ashok

    2004-01-01

    One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.

  3. CFD analysis of hydrodynamic studies of a bubbling fluidized bed

    NASA Astrophysics Data System (ADS)

    Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.

    2018-03-01

    Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights

  4. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  5. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  6. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.

  7. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  8. Laboratory experiments on fragmentation of highly-viscous bubbly syrup

    NASA Astrophysics Data System (ADS)

    Kurihara, H.; Kameda, M.; Ichihara, M.

    2006-12-01

    Fragmentation of vesicular magma by rapid decompression is a key process in explosive eruptions. To determine the fragmentation criteria, we carried out laboratory experiments on magma fragmentation using analogous materials. We used commercial syrup as an analogous material of magma, because the viscosity was widely altered by adding or subtracting water contents in the syrup. We made the bubbly syrup by adding hydrogen peroxide with manganese oxide in the syrup. The amount of hydrogen peroxide is proportional to the gas volume fraction in the syrup. We measured the rheological properties of the syrup. Zero shear viscosity η was measured by a rotating viscometer and a fiber elongation technique. Glass transition temperature was measured by differential scanning calorimetry. The measured data indicated that the temperature dependence of viscosity was described well using Williams-Landel-Ferry (WLF) equation. The solid content of syrup alters the viscosity as well as the glass transition temperature, though it may hardly affect the rigidity μ, which was measured by ultrasonic test in our previous work. We used a pressurized vertical tube with a large vacuum vessel to apply the rapid decompression on the material. An acrylic container, filled with the bubbly syrup, was placed in the bottom of the pressurized tube. By rupturing the diaphragms inserted between the tube and the vacuum vessel, the bubbly syrup is rapidly decompressed due to expansion of the pressurized gas in the tube. A high-speed video camera was used to obtain sequential images of the materials. Pressure transducers were mounted on the sidewall of the tube and the bottom of the container. The initial pressure was varied from 1 MPa to 5 MPa. The gas-volume fraction of the syrup under pressure was fixed as 2 % to 20%. The viscosity varied from 105 Pa·s to 108 Pa·s. We successfully observed three principal behaviors using the present analogous material; brittle fragmentation, partial fracture and ductile expansion without crack initiation. From all the experimental data, in conclusion, the fragmentation is observed when the pressure drop Δ p reaches a critical value within the order of relaxation time of syrup, which is defined as η/μ. Simultaneously, the initial gas volume fraction should be larger than a critical value, which decreases as the initial high-pressure is larger.

  9. Boiling of an emulsion in a yield stress fluid.

    PubMed

    Guéna, Geoffroy; Wang, Ji; d'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence

    2010-11-01

    We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.

  10. Damping and Amplification of Seismic Waves in Gas-Charged Magma

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.; Lensky, N. G.

    2001-12-01

    Low-frequency seismic signals are generated at the interface betweeen a solid medium and a magmatic melt. The existence of gas bubbles in the magma introduces a damping mechanism which depends mainly on the gas volume fraction and on the viscosity of the melt. However, in case of a sudden unloading (e.g. by lava dome failure) a decompressional wave propagates through the magma which becomes now supersaturated. Diffusion of gas into the bubbles leads to an exponential bubble growth which is in general frequency dependent. Such a system can be represented by a negative bulk viscosity which results in a net amplification rather than damping of the decompressional wave. Furthermore, the effects of a harmonically varying pressure on the supersaturated melt is explored, as it is caused by seismic tremor and prolongued conduit resonance.

  11. Hydrodynamic models for slurry bubble column reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore,more » the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.« less

  12. Rigid spherical particles in highly turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao

    2016-11-01

    Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.

  13. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  14. Bubble formation in water with addition of a hydrophobic solute.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2015-07-01

    We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.

  15. Characterizing the collapse of a cavitation bubble cloud in a focused ultrasound field

    NASA Astrophysics Data System (ADS)

    Maeda, Kazuki; Colonius, Tim

    2017-11-01

    We study the coherent collapse of clouds of cavitation bubbles generated by the passage of a pulse of ultrasound. In order to characterize such collapse, we conduct a parametric study on the dynamics of a spherical bubble cloud with a radius of r = O(1) mm interacting with traveling ultrasound waves with an amplitude of pa = O(102 -106) Pa and a wavelength of λ = O(1 - 10) mm in water. Bubbles with a radius of O(10) um are treated as spherical, radially oscillating cavities dispersed in continuous liquid phase. The volume of Lagrangian point bubbles is mapped with a regularization kernel as void fraction onto Cartesian grids that defines the Eulerian liquid phase. The flow field is solved using a WENO-based compressible flow solver. We identified that coherent collapse occurs when λ >> r , regardless of the value of pa, while it only occurs for sufficiently high pa when λ r . For the long wavelength case, the results agree with the theory on linearized dynamics of d'Agostino and Brennen (1989). We extend the theory to short wave length case. Finally, we analyze the far-field acoustics scattered by individual bubbles and correlate them with the cloud collapse, for applications to acoustic imaging of bubble cloud dynamics. Funding supported by NIH P01-DK043881.

  16. Isotopic fractionation of volatile species during bubble growth in magmas

    NASA Astrophysics Data System (ADS)

    Watson, E. B.

    2016-12-01

    Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.

  17. Detection and 3D representation of pulmonary air bubbles in HRCT volumes

    NASA Astrophysics Data System (ADS)

    Silva, Jose S.; Silva, Augusto F.; Santos, Beatriz S.; Madeira, Joaquim

    2003-05-01

    Bubble emphysema is a disease characterized by the presence of air bubbles within the lungs. With the purpose of identifying pulmonary air bubbles, two alternative methods were developed, using High Resolution Computer Tomography (HRCT) exams. The search volume is confined to the pulmonary volume through a previously developed pulmonary contour detection algorithm. The first detection method follows a slice by slice approach and uses selection criteria based on the Hounsfield levels, dimensions, shape and localization of the bubbles. Candidate regions that do not exhibit axial coherence along at least two sections are excluded. Intermediate sections are interpolated for a more realistic representation of lungs and bubbles. The second detection method, after the pulmonary volume delimitation, follows a fully 3D approach. A global threshold is applied to the entire lung volume returning candidate regions. 3D morphologic operators are used to remove spurious structures and to circumscribe the bubbles. Bubble representation is accomplished by two alternative methods. The first generates bubble surfaces based on the voxel volumes previously detected; the second method assumes that bubbles are approximately spherical. In order to obtain better 3D representations, fits super-quadrics to bubble volume. The fitting process is based on non-linear least squares optimization method, where a super-quadric is adapted to a regular grid of points defined on each bubble. All methods were applied to real and semi-synthetical data where artificial and randomly deformed bubbles were embedded in the interior of healthy lungs. Quantitative results regarding bubble geometric features are either similar to a priori known values used in simulation tests, or indicate clinically acceptable dimensions and locations when dealing with real data.

  18. Acoustic measurement of bubble size and position in a piezo driven inkjet printhead

    NASA Astrophysics Data System (ADS)

    van der Bos, Arjan; Jeurissen, Roger; de Jong, Jos; Stevens, Richard; Versluis, Michel; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Lohse, Detlef

    2008-11-01

    A bubble can be entrained in the ink channel of a piezo-driven inkjet printhead, where it grows by rectified diffusion. If large enough, the bubble counteracts the pressure buildup at the nozzle, resulting in nozzle failure. Here an acoustic sizing method for the volume and position of the bubble is presented. The bubble response is detected by the piezo actuator itself, operating in a sensor mode. The method used to determine the volume and position of the bubble is based on a linear model in which the interaction between the bubble and the channel are included. This model predicts the acoustic signal for a given position and volume of the bubble. The inverse problem is to infer the position and volume of the bubble from the measured acoustic signal. By solving it, we can thus acoustically measure size and position of the bubble. The validity of the presented method is supported by time-resolved optical observations of the dynamics of the bubble within an optically accessible ink-jet channel.

  19. Experimental constraints on the outgassing dynamics of basaltic magmas

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.

    2012-03-01

    The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.

  20. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.

    PubMed

    Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen

    2005-06-21

    The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.

  1. Dynamics of degassing at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Jaupart, Claude

    1990-03-01

    At Kilauea volcano, Hawaii, the recent long-lived eruptions of Mauna Ulu and Pu'u O'o have occurred in two major stages, defining a characteristic eruptive pattern. The first stage consists of cyclic changes of activity between episodes of "fire fountaining" and periods of quiescence or effusion of vesicular lava. The second stage consists only of continuous effusion of lava. We suggest that these features reflect the dynamics of magma degassing in a chamber which empties into a narrow conduit. In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The foam thickness is proportional to (μlQ/ɛ2 ρl g)1/4, where μ l and ρl are the viscosity and density of magma, ɛ is the gas volume fraction in the foam, g is the acceleration of gravity, and Q is the gas flux. The bubbles in the foam deform under the action of buoyancy, and the maximum permissible foam thickness is hc = 2σ/ɛρlgR, where σ is the coefficient of surface tension and R is the original bubble radius. If this critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, surface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. The essential result is that the continuous process of degassing can lead to discontinuous eruptive behavior. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna UIu and the 1983-1986 Pu'u O'o eruptions yield constraints on three key variables. The area of the chamber roof must be a few tens of square kilometers, with a minimum value of about 8 km2. Magma reservoirs of similar dimensions are imaged by seismic attenuation tomography below the east rift zone. Close to the roof, the gas volume fraction is a few percent, and the gas bubbles have diameters lying between 0.1 and 0.6 mm. These estimates are close to the predictions of models for bubble nucleation and growth in basaltic melts, as well as to the observations on deep submarine basalts. The transition between cyclic and continuous activity occurs when the mass flux of gas becomes lower than a critical value of the order of 103 kg/s. In this model, changes of eruptive regime reflect changes in the amount and size of bubbles which reach the chamber roof.

  2. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Bubble clustering in a glass of stout beer

    NASA Astrophysics Data System (ADS)

    Iwatsubo, Fumiya; Watamura, Tomoaki; Sugiyama, Kazuyasu

    2017-11-01

    To clarify why the texture in stout beer poured into a pint glass descends, we investigated local time development of the void fraction and velocity of bubbles. The propagation of the number density distribution, i.e. the texture, appearing near the inclined wall is observed. We visualized individual advective bubbles near the inclined wall by microscope and measured the local void fraction using brightness of images while the velocity of bubbles by means of Particle Tracking Velocimetry. As the result of measurements, we found the local void fraction and the bubbles advection velocity increase and decrease repeatedly with a time delay. We conclude the texture pattern is composed of fluid blobs which contain less bubbles; extruding and suction flows respectively toward and from the interior of the container form respectively in front and back of the blobs.

  4. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures.

    PubMed

    Randsoe, Thomas; Hyldegaard, Ole

    2012-08-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently until they disappeared from view at a net disappearance rate (0.02 mm(2) × min(-1)) significantly faster than for similar bubbles at 25 kPa altitude (0.01 mm(2) × min(-1)). At 25 kPa, most bubbles initially grew for 2-40 min, after which they shrank and disappeared. Four bubbles did not disappear while at 25 kPa. The results support bubble kinetic models based on Fick's first law of diffusion, Boyles law, and the oxygen window effect, predicting that oxygen contributes more to bubble volume and growth during hypobaric conditions. As the effect of oxygen increases, the lower the ambient pressure. The results indicate that recompression is instrumental in the treatment of aDCS.

  5. Jammed elastic shells - a 3D experimental soft frictionless granular system

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout

    2015-03-01

    We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.

  6. A fractional Fourier transform analysis of a bubble excited by an ultrasonic chirp.

    PubMed

    Barlow, Euan; Mulholland, Anthony J

    2011-11-01

    The fractional Fourier transform is proposed here as a model based, signal processing technique for determining the size of a bubble in a fluid. The bubble is insonified with an ultrasonic chirp and the radiated pressure field is recorded. This experimental bubble response is then compared with a series of theoretical model responses to identify the most accurate match between experiment and theory which allows the correct bubble size to be identified. The fractional Fourier transform is used to produce a more detailed description of each response, and two-dimensional cross correlation is then employed to identify the similarities between the experimental response and each theoretical response. In this paper the experimental bubble response is simulated by adding various levels of noise to the theoretical model output. The method is compared to the standard technique of using time-domain cross correlation. The proposed method is shown to be far more robust at correctly sizing the bubble and can cope with much lower signal to noise ratios.

  7. Bubble suspension rheology and implications for conduit flow

    NASA Astrophysics Data System (ADS)

    Llewellin, E. W.; Manga, M.

    2005-05-01

    Bubbles are ubiquitous in magma during eruption and influence the rheology of the suspension. Despite this, bubble-suspension rheology is routinely ignored in conduit-flow and eruption models, potentially impairing accuracy and resulting in the loss of important phenomenological richness. The omission is due, in part, to a historical confusion in the literature concerning the effect of bubbles on the rheology of a liquid. This confusion has now been largely resolved and recently published studies have identified two viscous regimes: in regime 1, the viscosity of the two-phase (magma-gas) suspension increases as gas volume fraction ϕ increases; in regime 2, the viscosity of the suspension decreases as ϕ increases. The viscous regime for a deforming bubble suspension can be determined by calculating two dimensionless numbers, the capillary number Ca and the dynamic capillary number Cd. We provide a didactic explanation of how to include the effect of bubble-suspension rheology in continuum, conduit-flow models. Bubble-suspension rheology is reviewed and a practical rheological model is presented, followed by an algorithmic, step-by-step guide to including the rheological model in conduit-flow models. Preliminary results from conduit-flow models which have implemented the model presented are discussed and it is concluded that the effect of bubbles on magma rheology may be important in nature and results in a decrease of at least 800 m in calculated fragmentation-depth and an increase of between 40% and 250% in calculated eruption-rate compared with the assumption of Newtonian rheology.

  8. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam

    PubMed Central

    Furuta, Yujiro; Oikawa, Noriko; Kurita, Rei

    2016-01-01

    Liquid foams are classified into a dry foam and a wet foam, empirically judging from the liquid fraction or the shape of the gas bubbles. It is known that physical properties such as elasticity and diffusion are different between the dry foam and the wet foam. Nevertheless, definitions of those states have been vague and the dry-wet transition of foams has not been clarified yet. Here we show that the dry-wet transition is closely related to rearrangement of the gas bubbles, by simultaneously analysing the shape change of the bubbles and that of the entire foam in two dimensional foam. In addition, we also find a new state in quite low liquid fraction, which is named “superdry foam”. Whereas the shape change of the bubbles strongly depends on the change of the liquid fraction in the superdry foam, the shape of the bubbles does not change with changing the liquid fraction in the dry foam. Our results elucidate the relationship between the transitions and the macroscopic mechanical properties. PMID:27874060

  9. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    PubMed

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  10. Aspherical bubble dynamics and oscillation times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godwin, R.P.; Chapyak, E.J.; Noack, J.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightlymore » from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.« less

  11. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer

    NASA Astrophysics Data System (ADS)

    Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh

    2008-12-01

    A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.

  12. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-21

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young's modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  13. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  14. Experimental investigation of cavitation induced air release

    NASA Astrophysics Data System (ADS)

    Kowalski, Karoline; Pollak, Stefan; Hussong, Jeanette

    Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.

  15. Bubble and Slug Flow at Microgravity Conditions: State of Knowledge and Open Questions

    NASA Technical Reports Server (NTRS)

    Colin, C.; Fabre, J.; McQuillen, J.

    1996-01-01

    Based on the experiments carried out over the past decade at microgravity conditions, an overview of our current knowledge of bubbly and slug flows is presented. The transition from bubble to slug flow, the void fraction and the pressure drop are discussed from the data collected in the literature. The transition from bubble to slug flow may be predicted by introducing a critical void fraction that depends on the fluid properties and the pipe diameter; however, the role of coalescence which controls this transition is not clearly understood. The void fraction may be accurately calculated using a drift-flux model. It is shown from local measurements that the drift of the gas with respect to the mixture is due to non-uniform radial distribution of void fraction. The pressure drop happens to be controlled by the liquid flow for bubbly flow whereas for slug flow the experimental results show that pressure drops is larger than expected. From this study, the guidelines for future research in microgravity are given.

  16. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2018-01-01

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lyα-emitting galaxies as a probe of reionization: large-scale bubble morphology and small-scale absorbers

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Dijkstra, Mark; Ciardi, Benedetta; Graziani, Luca

    2016-12-01

    The visibility of Lyα-emitting galaxies during the Epoch of Reionization is controlled by both diffuse H I patches in large-scale bubble morphology and small-scale absorbers. To investigate their impacts on Lyα transfer, we apply a novel combination of analytic modelling and cosmological hydrodynamical, radiative transfer simulations to three reionization models: (I) the `bubble' model, where only diffuse H I outside ionized bubbles is present; (II) the `web' model, where H I exists only in overdense self-shielded gas; and (III) the hybrid `web-bubble' model. The three models can explain the observed Lyα luminosity function equally well, but with very different H I fractions. This confirms a degeneracy between the ionization topology of the intergalactic medium (IGM) and the H I fraction inferred from Lyα surveys. We highlight the importance of the clustering of small-scale absorbers around galaxies. A combined analysis of the Lyα luminosity function and the Lyα fraction can break this degeneracy and provide constraints on the reionization history and its topology. Constraints can be improved by analysing the full MUV-dependent redshift evolution of the Lyα fraction of Lyman break galaxies. We find that the IGM-transmission probability distribution function is unimodal for bubble models and bimodal in web models. Comparing our models to observations, we infer that the neutral fraction at z ˜ 7 is likely to be of the order of tens of per cent when interpreted with bubble or web-bubble models, with a conservative lower limit ˜1 per cent when interpreted with web models.

  18. Argonne Bubble Experiment Thermal Model Development II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Cynthia Eileen

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations.more » The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.« less

  19. Propagation of Pressure Waves, Caused by a Thermal Shock, in Liquid Metals Containing Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Takagi, Shu; Matsumoto, Yoichiro

    The propagation of pressure waves caused by a thermal shock in liquid mercury containing micro gas bubbles has been simulated numerically. In the present study, we clarify the influences of the introduced bubble size and void fraction on the absorption of thermal expansion of liquid mercury and attenuation of pressure waves. The mass, momentum and energy conservation equations for both bubbly mixture and gas inside each bubble are solved, in which the bubble dynamics is represented by the Keller equation. The results show that when the initial void fraction is larger than the rate of the thermal expansion of liquid mercury, the pressure rise caused by the thermal expansion decreases with decreasing the bubble radius, because of the increase of the natural frequency of bubbly mixture. On the other hand, as the bubble radius increases, the peak of pressure waves which propagate at the sound speed of mixture decreases gradually due to the dispersion effect of mixture. When the natural frequency of the mixture with large bubbles is lower than that of the thremal shock, the peak pressure at the wall increases because the pressure waves propagate through the mixture at the sound speed of liquid mercury. The comparison of the results with and without heat transfer through the gas liquid interface shows that the pressure waves are attenuated greatly by the thermal damping effect with the decrease of the void fraction which enhances the nonlinearity of bubble oscillation.

  20. Light Scattering by Ice Crystals Containing Air Bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  1. Quantitation of MRI sensitivity to quasi-monodisperse microbubble contrast agents for spatially resolved manometry.

    PubMed

    Bencsik, Martin; Al-Rwaili, Amgad; Morris, Robert; Fairhurst, David J; Mundell, Victoria; Cave, Gareth; McKendry, Jonathan; Evans, Stephen

    2013-11-01

    The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry. Copyright © 2012 Wiley Periodicals, Inc.

  2. A Philippinite with an Unusually Large Bubble: Gas Pressure and Noble Gas Composition

    NASA Astrophysics Data System (ADS)

    Matsuda, J.; Maruoka, T.; Pinti, D. L.; Koeberl, C.

    1995-09-01

    Bubbles are common in tektites, but usually their sizes range up to only a few mm. They are most abundant in Muong Nong-type tektites. The gases contained in these bubbles are of terrestrial atmospheric composition, with pressures below 1 atm (e.g., [1]). The abundances of light noble gases (He, Ne) are controlled by diffusion from the atmosphere [2], and noble gases dissolved in tektite glass indicate that the glass solidified at atmospheric pressures equivalent to about 40 km altitude [3]. Large bubbles in splash-form tektites are rather rare. Thus, the finding that a philippinite (size: 6.0 x 4.5 cm; weight: 199.6 g) contains an unusually large bubble justified a detailed study. The volume of the bubble, which was confirmed by X-ray photography, was estimated at 5.4 cm^3, by comparing the density of this tektite (2.288 g/cm^3) to that of normal philippinites (2.438 g/cm^3). A device was specifically constructed for crushing the present sample under vacuum. The 10x10 cm cylindrical device has a piston that allows to gently crush the sample by turning a handle. Various disk spacers can be used to adjust the inner height to that of the sample. The device is made of stainless steel, yielding a low noble gas blank. The crushing device is connected to a purification line and a noble gas sector-type mass spectrometer (VG 5400) [4]. Before crushing, the complete tektite was wrapped in aluminum foil. A first crushing attempt, using stainless steel disk spacers, failed and resulted in damage to the steel spacers, indicating a high strength of the tektite. Using iron disk spacers resulted in an ambient pressure increase (probably due to hydrogen from the Fe) in the sample chamber. However, the noble gas blanks were negligible. The background pressure, at 2 x 10-4 Torr, increased to 3 x 10-4 Torr when the sample was crushed. From the volume of the crushing device and that of the bubble in the tektite, the total gas pressure in the bubble was estimated at about 1 x 10-4 atm. Part of the extracted gas was kept for total gas analysis, while the remainder has been purified for the noble gas measurements. Total amounts and isotopic ratios of all noble gases were measured. The amounts of Ar, Kr, and Xe close to the blank level, while those of He and Ne were about 3 to 4 orders of magnitude larger than the blank. The ^20Ne/^36Ar ratio in the bubble gas is more than 4 orders of magnitude higher than the atmospheric value, which is similar to the pattern previously observed in tektites [2,3,5]. The isotopic ratios of Ar, Kr and Xe were, within uncertainties, similar to those of the terrestrial atmosphere. However, the Ne isotopic ratios were significantly different from atmospheric values, and differ from the results reported in previous studies [2,5]. The Ne isotope data seem to lie on the mass fractionation line from the atmosphere in a ^20Ne/^22Ne vs. ^21Ne/^22Ne three isotope plot, suggesting that the Ne in the bubble has diffused in from the atmosphere. However, it is generally believed that the isotopic fractionation during a steady state is very small, and the observed Ne values are higher than those calculated from simple mass fractionation [6]. The high isotopic fractionation is likely to be associated with the non-equilibrium conditions prevailing during tektite formation. Acknowledgments: We are grateful to D. Heinlein for bringing the precious sample to our attention and for allowing its analysis. References: [1] Jessberger E. K. and Gentner W. (1972) EPSL, 14, 221-225. [2] Matsubara K. and Matsuda J. (1991) Meteoritics, 26, 217-220. [3] Matsuda J. et al. (1993) Meteoritics, 28, 586-599. [4] Maruoka T. and Matsuda J. (1995) J. Mass Spectrom. Soc. Jpn., 43, 1-8. [5] Hennecke et al. (1975) JGR, 80, 2931-2934. [6] Kaneoka I., EPSL, 48, 284-292.

  3. Cardiopulmonary Changes with Moderate Decompression in Rats

    NASA Technical Reports Server (NTRS)

    Robinson, R.; Little, T.; Doursout, M.-F.; Butler, B. D.; Chelly, J. E.

    1996-01-01

    Sprague-Dawley rats were compressed to 616 kPa for 120 min then decompressed at 38 kPa/min to assess the cardiovascular and pulmonary responses to moderate decompression stress. In one series of experiments the rats were chronically instrumented with Doppler ultrasonic probes for simultaneous measurement of blood pressure, cardiac output, heart rate, left and right ventricular wall thickening fraction, and venous bubble detection. Data were collected at base-line, throughout the compression/decompression protocol, and for 120 min post decompression. In a second series of experiments the pulmonary responses to the decompression protocol were evaluated in non-instrumented rats. Analyses included blood gases, pleural and bronchoalveolar lavage (BAL) protein and hemoglobin concentration, pulmonary edema, BAL and lung tissue phospholipids, lung compliance, and cell counts. Venous bubbles were directly observed in 90% of the rats where immediate post-decompression autopsy was performed and in 37% using implanted Doppler monitors. Cardiac output, stroke volume, and right ventricular wall thickening fractions were significantly decreased post decompression, whereas systemic vascular resistance was increased suggesting a decrease in venous return. BAL Hb and total protein levels were increased 0 and 60 min post decompression, pleural and plasma levels were unchanged. BAL white blood cells and neutrophil percentages were increased 0 and 60 min post decompression and pulmonary edema was detected. Venous bubbles produced with moderate decompression profiles give detectable cardiovascular and pulmonary responses in the rat.

  4. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  5. The isotope mass effect on chlorine diffusion in dacite melt, with implications for fractionation during bubble growth

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-Antoine; Watson, E. Bruce; Stern, Richard

    2017-12-01

    Previous experimental studies have revealed that the difference in diffusivity of two isotopes can be significant in some media and can lead to an observable fractionation effect in silicate melts based on isotope mass. Here, we report the first characterization of the difference in diffusivities of stable isotopes of Cl (35Cl and 37Cl). Using a piston-cylinder apparatus, we generated quenched melts of dacitic composition enriched in Cl; from these we fabricated diffusion couples in which Cl atoms were induced to diffuse in a chemical gradient at 1200 to 1350 °C and 1 GPa. We analyzed the run products by secondary ion mass spectrometry (SIMS) for their isotopic compositions along the diffusion profiles, and we report a diffusivity ratio for 37Cl/35Cl of 0.995 ± 0.001 (β = 0.09 ± 0.02). No significant effect of temperature on the diffusivity ratio was discernable over the 150 °C range covered by our experiments. The observed 0.5% difference in diffusivity of the two isotopes could affect our interpretation of isotopic measurements of Cl isotopes in bubble-bearing or degassed magmas, because bubble growth is regulated in part by the diffusive supply of volatiles to the bubble from the surrounding melt. Through numerical simulations, we constrain the extent of Cl isotopic fractionation between bubble and host melt during this process. Bubble growth rates vary widely in nature-which implies a substantial range in the expected magnitude of isotopic fractionation-but plausible growth scenarios lead to Cl isotopic fractionations up to about 5‰ enrichment of 35Cl relative to 37Cl in the bubble. This effect should be considered when interpreting Cl isotopic measurements of systems that have experienced vapor exsolution.

  6. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment.

    PubMed

    Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2016-10-01

    Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the sharp lesions formed in histotripsy therapy localized to the regions directly exposed to the bubbles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Electrowetting of soap bubbles

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-07-01

    A proof-of-concept demonstration of the electrowetting-on-dielectric of a sessile soap bubble is reported here. The bubbles are generated using a commercial soap bubble mixture—the surfaces are composed of highly doped, commercial silicon wafers covered with nanometer thick films of Teflon®. Voltages less than 40 V are sufficient to observe the modification of the bubble shape and the apparent bubble contact angle. Such observations open the way to inter alia the possibility of bubble-transport, as opposed to droplet-transport, in fluidic microsystems (e.g., laboratory-on-a-chip)—the potential gains in terms of volume, speed, and surface/volume ratio are non-negligible.

  8. AN EFFICIENT TREATMENT STRATEGY FOR HISTOTRIPSY BY REMOVING CAVITATION MEMORY

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Cain, Charles A.

    2012-01-01

    Cavitation memory effects occur when remnants of cavitation bubbles (nuclei) persist in the host medium and act as seeds for subsequent events. In pulsed cavitational ultrasound therapy, or histotripsy, this effect may cause cavitation to repeatedly occur at these seeded locations within a target volume, producing inhomogeneous tissue fractionation or requiring an excess number of pulses to completely homogenize the target volume. We hypothesized that by removing the cavitation memory, i.e., the persistent nuclei, the cavitation bubbles could be induced at random locations in response to each pulse; therefore, complete disruption of a tissue volume may be achieved with fewer pulses. To test the hypothesis, the cavitation memory was passively removed by increasing the intervals between successive pulses, Δt, from 2, 10, 20, 50 and 100, to 200 ms. Histotripsy treatments were performed in red blood cell tissue phantoms and ex vivo livers using 1-MHz ultrasound pulses of 10 cycles at P−/P+ pressure of 21/59 MPa. The phantom study allowed for direct visualization of the cavitation patterns and the lesion development process in real time using high-speed photography; the ex vivo tissue study provided validation of the memory effect in real tissues. Results of the phantom study showed an exponential decrease in the correlation coefficient between cavitation patterns in successive pulses from 0.5 ± 0.1 to 0.1 ± 0.1 as Δt increased from 2–200 ms; correspondingly, the lesion was completely fractionated with significantly fewer pulses for longer Δts. In the tissue study, given the same number of therapy pulses, complete and homogeneous tissue fractionation with well-defined lesion boundaries was achieved only for Δt ≥ 100 ms. These results indicated that the removal of the cavitation memory resulted in more efficient treatments and homogeneous lesions. PMID:22402025

  9. Detecting vapour bubbles in simulations of metastable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less

  10. Acoustic measurement of bubble size in an inkjet printhead.

    PubMed

    Jeurissen, Roger; van der Bos, Arjan; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; de Jong, Jos; Versluis, Michel; Lohse, Detlef

    2009-11-01

    The volume of a bubble in a piezoinkjet printhead is measured acoustically. The method is based on a numerical model of the investigated system. The piezo not only drives the system but it is also used as a sensor by measuring the current it generates. The numerical model is used to predict this current for a given bubble volume. The inverse problem is to infer the bubble volume from an experimentally obtained piezocurrent. By solving this inverse problem, the size and position of the bubble can thus be measured acoustically. The method is experimentally validated with an inkjet printhead that is augmented with a glass connection channel, through which the bubble was observed optically, while at the same time the piezocurrent was measured. The results from the acoustical measurement method correspond closely to the results from the optical measurement.

  11. Do volcanic gases represent equilibrium volatile concentrations? Some insights from a model of diffusive fractionation during rapid bubble growth

    NASA Astrophysics Data System (ADS)

    Baker, D. R.

    2012-12-01

    Measurements of volcanic gas compositions are often presumed to be directly related to equilibrium compositions of fluids exsolved at depth in magmatic systems that rapidly escape into the atmosphere. In particular, changes in the ratios of volatile species concentrations in volcanic gases have been interpreted to reflect influx of new magma batches or changes in the degassing depth. However, other mechanisms can also yield changes in volcanic gas compositions. One such mechanism is diffusive fractionation during rapid bubble growth. Such fractionation can occur because radial growth rates of bubbles in magmas are estimated to be in the range of 10-6 to 10-3 m s-1 and diffusion coefficients of minor volatiles (e.g., Cl, F, S, CO2) are orders of magnitude slower, 10-12 to 10-9 m2 s-1. Thus a bubble that rapidly grows and subsequently loses its volatiles to the surface may contribute a fluid sample whose concentration is affected by the interplay between the kinetics of bubble growth and volatile diffusion in the melt. A finite difference code was developed to calculate the effects of rapid bubble growth on the concentration of minor elements in the bubble for a spherical growth geometry. The bubble is modeled with a fixed growth rate and a constant equilibrium fluid-melt partition coefficient, KD. Bubbles were modeled to grow to a radius of 50 μm, the size at which the dominant bubble growth mechanism appears to change from diffusion to coalescence. The critical variables that control the departure from equilibrium behavior are the K D and the ratio of the growth velocity, V, to the diffusivity, D. Modeling bubble growth in a magma chamber at 100 MPa demonstrates that when KD is in the range of 10 to 1000 at low V/D values (e.g., 103 m-1) the composition of the fluid is at, or near, equilibrium with the melt. However, as V/D increases the bubble composition deviates increasingly from equilibrium. For V/D ratios of 105 and equilibrium KD's of either 50 or 100 (similar to estimates for S), a bubble with a 50 μm radius will contain a fluid whose concentration was apparently determined by a KD of less than 10. These models also demonstrate that the combination of rapid bubble growth with slow diffusion can deplete the melt in the volatile species only within the immediate neighborhood, on the order of 100 μm. If bubbles are spaced further apart the melts may retain significant concentrations of dissolved volatiles, which could lead to secondary and tertiary nucleation events. These models for diffusive fractionation during rapid bubble growth suggest that changes in the ratios of minor elements in volcanic gases may be influenced by bubble growth rate changes. Volatiles with lower diffusivities and volatiles with very high or very low partition coefficients will be more influenced by this process. Diffusive fractionation may be responsible for the drop in the CO2/SO2 ratios sometimes observed prior to large eruptions of Stromboli volcano.

  12. Foamed emulsion drainage: flow and trapping of drops.

    PubMed

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-06-07

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.

  13. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  14. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.

    PubMed

    Xu, Zhen; Raghavan, M; Hall, T L; Mycek, M-A; Fowlkes, J B

    2008-05-01

    Mechanical tissue fractionation can be achieved using successive, high-intensity ultrasound pulses in a process termed histotripsy. Histotripsy has many potential clinical applications where noninvasive tissue removal is desired. The primary mechanism for histotripsy is believed to be cavitation. Using fast-gated imaging, this paper studies the evolution of a cavitating bubble cloud induced by a histotripsy pulse (10 and 14 cycles) at peak negative pressures exceeding 21MPa. Bubble clouds are generated inside a gelatin phantom and at a tissue-water interface, representing two situations encountered clinically. In both environments, the imaging results show that the bubble clouds share the same evolutionary trend. The bubble cloud and individual bubbles in the cloud were generated by the first cycle of the pulse, grew with each cycle during the pulse, and continued to grow and collapsed several hundred microseconds after the pulse. For example, the bubbles started under 10 microm, grew to 50 microm during the pulse, and continued to grow 100 microm after the pulse. The results also suggest that the bubble clouds generated in the two environments differ in growth and collapse duration, void fraction, shape, and size. This study furthers our understanding of the dynamics of bubble clouds induced by histotripsy.

  15. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    NASA Astrophysics Data System (ADS)

    Alavi Fazel, S. Ali

    2017-09-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  16. Volatile dynamics in crystal-rich magma bodies, perspectives from laboratory experiments and theory

    NASA Astrophysics Data System (ADS)

    Faroughi, S.; Parmigiani, A.; Huber, C.

    2013-12-01

    The amount of volatiles and the dynamics of bubbles play a significant role on the transition between different volcanic eruption behaviors. The transport of exsolved volatiles through zoned magma chambers is complex and remains poorly constrained. Here we focus on the different transport of volatiles under two end member regimes: crystal-poor systems (bubbles form a suspension) versus crystal-rich reservoirs (multiphase porous media flow). We present a combination of multiphase flow laboratory experiments (using silicon oil and water) and a theoretical argument based on Stokes flow streamfunctions to contrast the differences between the transport of exsolved volatiles in both regimes. The first set of experiments involves the buoyant migration of water droplets in silicon oil in the absence of glass beads. We measure the non-linear hydrodynamic interaction between bubbles and its effect on slowing down the average flux of water droplets as the water volume fraction increases. Our experimental results are compared to a theoretical argument in which a streamfunction formulation is used to estimate the effect of a suspension on bubble migration. We find a good agreement between the new theory and our experimental results. The second set of experiments focuses on the transport of water (non-wetting fluid) in porous media saturated with viscous silicon oils. Contrary to suspension dynamics, in multiphase porous media, an increase in the saturation of non-wetting fluid leads to a non-linear increase in its volumetric flux. The steady-state migration of non-wetting fluid is controlled by the formation of viscous fingering instability that greatly enhances transport. We propose that the regime of energy dissipation during the migration of bubbles in heterogeneous magma reservoirs can change, leading to bubble accumulation in crystal-poor regions as fingering becomes unstable and volatiles form a disperse bubble suspension.

  17. Bubble behavior characteristics based on virtual binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Xue, Ting; Xu, Ling-shuang; Zhang, Shang-zhen

    2018-01-01

    The three-dimensional (3D) behavior characteristics of bubble rising in gas-liquid two-phase flow are of great importance to study bubbly flow mechanism and guide engineering practice. Based on the dual-perspective imaging of virtual binocular stereo vision, the 3D behavior characteristics of bubbles in gas-liquid two-phase flow are studied in detail, which effectively increases the projection information of bubbles to acquire more accurate behavior features. In this paper, the variations of bubble equivalent diameter, volume, velocity and trajectory in the rising process are estimated, and the factors affecting bubble behavior characteristics are analyzed. It is shown that the method is real-time and valid, the equivalent diameter of the rising bubble in the stagnant water is periodically changed, and the crests and troughs in the equivalent diameter curve appear alternately. The bubble behavior characteristics as well as the spiral amplitude are affected by the orifice diameter and the gas volume flow.

  18. Hindrance Velocity Model for Phase Segregation in Suspensions of Poly-dispersed Randomly Oriented Spheroids

    NASA Astrophysics Data System (ADS)

    Faroughi, S. A.; Huber, C.

    2015-12-01

    Crystal settling and bubbles migration in magmas have significant effects on the physical and chemical evolution of magmas. The rate of phase segregation is controlled by the force balance that governs the migration of particles suspended in the melt. The relative velocity of a single particle or bubble in a quiescent infinite fluid (melt) is well characterized; however, the interplay between particles or bubbles in suspensions and emulsions and its effect on their settling/rising velocity remains poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions of nondeformable droplets, and suspensions of spherical solid particles in the creeping flow regime. The model is based on three sets of hydrodynamic corrections: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the mixture rheology to account for nonlocal interactions between particles. The model is then extended for mono-disperse non-spherical solid particles that are randomly oriented. The non-spherical particles are idealized as spheroids and characterized by their aspect ratio. The poly-disperse nature of natural suspensions is then taken into consideration by introducing an effective volume fraction of particles for each class of mono-disperse particles sizes. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratios between the constituents of dispersions. We find an excellent agreement between our model and experiments. We also show two significant applications for our model: (1) We demonstrate that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers. (2) We provide a model to correct for particle interactions in the conventional hydrometer test to estimate the particle size distribution in soils. Our model offers a greatly improved agreement with the results obtained with direct measurement methods such as laser diffraction.

  19. On the influence of surfactant on the coarsening of aqueous foams.

    PubMed

    Briceño-Ahumada, Zenaida; Langevin, Dominique

    2017-06-01

    We review the coarsening process of foams made with various surfactants and gases, focusing on physico-chemical aspects. Several parameters strongly affect coarsening: foam liquid fraction and foam film permeability, this permeability depending on the surfactant used. Both parameters may evolve with time: the liquid fraction, due to gravity drainage, and the film permeability, due to the decrease of capillary pressure during bubble growth, and to the subsequent increase in film thickness. Bubble coalescence may enhance the bubble's growth rate, in which case the bubble polydispersity increases. The differences found between the experiments reported in the literature and between experiments and theories are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  1. Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds

    NASA Astrophysics Data System (ADS)

    Bell, Thomas G.; Landwehr, Sebastian; Miller, Scott D.; de Bruyn, Warren J.; Callaghan, Adrian H.; Scanlon, Brian; Ward, Brian; Yang, Mingxi; Saltzman, Eric S.

    2017-07-01

    Simultaneous air-sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m s-1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.

  2. Application of the DART Code for the Assessment of Advanced Fuel Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Totev, T.

    2007-07-01

    The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2}more » fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)« less

  3. Microgravity foam structure and rheology

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Gopal, Anthony D.

    1994-01-01

    Our long-range objective is to establish the fundamental interrelationship between the microscopic structure and dynamics of foams and their macroscopic stability and rheology. Foam structure and dynamics are to be measured directly and noninvasively through the use and development of novel multiple light scattering techniques such as diffusing-wave spectroscopy (DWS). Foam rheology is to be measured in a custom rheometer which allows simultaneous optical access for multiple light drainage of liquid from in between gas bubbles as the liquid:gas volume fraction in increased towards the rigidity-loss transition.

  4. Behavior of bubbles in glassmelts. II - Dissolution of a stationary bubble containing a diffusing and a nondiffusing gas

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Onorato, P. I. K.; Uhlmann, D. R.

    1980-01-01

    The effect of a foreign nondiffusing gas on the rate of shrinkage of an oxygen bubble in a soda-lime-silica melt was studied. The rate of change of bubble radius with time was computed using the quasi-stationary approximation. The effects of melt undersaturation and initial fraction of foreign gas in the bubble are considered and compared with those calculated using previously derived expressions.

  5. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  6. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Conklin, Alfred R., Jr.; Kessinger, Angela

    1996-09-01

    Catalytic decomposition is demonstrated by placing hydrogen peroxide solutions in a one liter graduated cylinder and adding soap, food coloring, and potassium iodide. Released oxygen is trapped by the soap producing bubbles. The volume of bubbles is proportional to the concentration of hydrogen peroxide. Chloride and bromide do not cause decomposition. Increased reactant temperature increases the volume of bubbles formed.

  7. An iterative fullwave simulation approach to multiple scattering in media with randomly distributed microbubbles

    NASA Astrophysics Data System (ADS)

    Joshi, Aditya; Lindsey, Brooks D.; Dayton, Paul A.; Pinton, Gianmarco; Muller, Marie

    2017-05-01

    Ultrasound contrast agents (UCA), such as microbubbles, enhance the scattering properties of blood, which is otherwise hypoechoic. The multiple scattering interactions of the acoustic field with UCA are poorly understood due to the complexity of the multiple scattering theories and the nonlinear microbubble response. The majority of bubble models describe the behavior of UCA as single, isolated microbubbles suspended in infinite medium. Multiple scattering models such as the independent scattering approximation can approximate phase velocity and attenuation for low scatterer volume fractions. However, all current models and simulation approaches only describe multiple scattering and nonlinear bubble dynamics separately. Here we present an approach that combines two existing models: (1) a full-wave model that describes nonlinear propagation and scattering interactions in a heterogeneous attenuating medium and (2) a Paul-Sarkar model that describes the nonlinear interactions between an acoustic field and microbubbles. These two models were solved numerically and combined with an iterative approach. The convergence of this combined model was explored in silico for 0.5 × 106 microbubbles ml-1, 1% and 2% bubble concentration by volume. The backscattering predicted by our modeling approach was verified experimentally with water tank measurements performed with a 128-element linear array transducer. An excellent agreement in terms of the fundamental and harmonic acoustic fields is shown. Additionally, our model correctly predicts the phase velocity and attenuation measured using through transmission and predicted by the independent scattering approximation.

  8. Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2013-06-01

    A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become important for inclusion growth and removal. With the increase of the gas flow rate, the total removal ratio increases, but when the gas flow rate exceeds 200 NL/min in 150-ton ladle, the total removal ration almost does not change. For the larger size inclusions, the number density in bubbly plume zone is less than that in the sidewall recirculation zones, but for the small size inclusions, the distribution of number density shows the opposite trend.

  9. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    NASA Astrophysics Data System (ADS)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  10. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.

  11. A review of the feasibility of lightening structural polymeric composites with voids without compromising mechanical properties.

    PubMed

    Rutz, Benjamin H; Berg, John C

    2010-10-15

    High performance polymer-fiber composites are high strength, low weight materials that have many applications, many of which would benefit from a decrease in weight, without a decrease in material properties. Generally, the fibers serve as the main load carriers, while the matrix serves to distribute load and protect the fibers from the environment. Thus, it is postulated that if the volume fraction of matrix is reduced, while still ensuring complete wetting of the fibers by the matrix, the per unit weight, i.e., specific, mechanical properties could be improved. This can be done by introducing small, spherical bubbles. Given the small average inter-fiber distance and assuming that the bubbles must not interact with the surface of the reinforcements the bubble diameter would need to be less than 1 μm. Introducing bubbles this small and ensuring that they do not form, or become attached, on the surface of the reinforcement are significant challenges. Two methods to produce such bubbles and the effect of these bubbles on mechanical properties of neat resins are reviewed: the addition of hollow spherical fillers, called microballoons, and the creation of bubbles from blowing agents. Microballoons in resins are a class of materials called syntactic foams. Although commercial microballoons are too large, smaller diameters can be made and could be used to reduce the weight of a reinforced composite on the order of 10%. The use of a physical blowing agent to produce bubbles in a composite is also considered. However, traditional polymer foaming techniques may be inadequate, as nucleation on the reinforcing phase is likely, and the bubbles formed are generally too large, so the use of blowing agent wells is considered. Blowing agent wells are discontinuous regions made from copolymer micelles or immiscible polymers that act as reservoirs of blowing agent. Additionally, the use of nano-sized materials for use as heterogeneous nucleation sites and secondary reinforcement of the matrix is also considered. Bubbles made from blowing agent could reduce the weight slightly more than using hollow spheres, but the reduction would also be of the order of 10%. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J. (Inventor); Kline-Schoder, Robert (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  13. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  14. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.

    PubMed

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-09-17

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  15. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    PubMed Central

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206

  16. Outgassing From Open And Closed Magma Foams

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  17. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  18. A new source process for evolving repetitious earthquakes at Ngauruhoe volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Neuberg, J.; Jousset, P.; Sherburn, S.

    2012-02-01

    Since early 2005, Ngauruhoe volcano has produced repeating low-frequency earthquakes with evolving waveforms and spectral features which become progressively enriched in higher frequency energy during the period 2005 to 2009, with the trend reversing after that time. The earthquakes also show a seasonal cycle since January 2006, with peak numbers of events occurring in the spring and summer period and lower numbers of events at other times. We explain these patterns by the excitation of a shallow two-phase water/gas or water/steam cavity having temporal variations in volume fraction of bubbles. Such variations in two-phase systems are known to produce a large range of acoustic velocities (2-300 m/s) and corresponding changes in impedance contrast. We suggest that an increasing bubble volume fraction is caused by progressive heating of melt water in the resonant cavity system which, in turn, promotes the scattering excitation of higher frequencies, explaining both spectral shift and seasonal dependence. We have conducted a constrained waveform inversion and grid search for moment, position and source geometry for the onset of two example earthquakes occurring 17 and 19 January 2008, a time when events showed a frequency enrichment episode occurring over a period of a few days. The inversion and associated error analysis, in conjunction with an earthquake phase analysis show that the two earthquakes represent an excitation of a single source position and geometry. The observed spectral changes from a stationary earthquake source and geometry suggest that an evolution in both near source resonance and scattering is occurring over periods from days to months.

  19. Perturbation theory and numerical modelling of weakly and moderately nonlinear incompressible Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Herrmann, M.; Velikovich, A. L.; Abarzhi, S. I.

    2014-10-01

    A study of incompressible two-dimensional Richtmyer-Meshkov instability by means of high-order Eulerian perturbation theory and numerical simulations is reported. Nonlinear corrections to Richtmyer's impulsive formula for the bubble and spike growth rates have been calculated analytically for arbitrary Atwood number and an explicit formula has been obtained for it in the Boussinesq limit. Conditions for early-time acceleration and deceleration of the bubble and the spike have been derived. In our simulations we have solved 2D unsteady Navier-Stokes equations for immiscible incompressible fluids using the finite volume fractional step flow solver NGA developed by, coupled to the level set based interface solver LIT,. The impact of small amounts of viscosity and surface tension on the RMI flow dynamics is studied numerically. Simulation results are compared to the theory to demonstrate successful code verification and highlight the influence of the theory's ideal inviscid flow assumption. Theoretical time histories of the interface curvature at the bubble and spike tip and the profiles of vertical and horizontal velocities have been favorably compared to simulation results, which converge to the theoretical predictions as the Reynolds and Weber numbers are increased. Work supported by the US DOE/NNSA.

  20. Kinetics-based phase change approach for VOF method applied to boiling flow

    NASA Astrophysics Data System (ADS)

    Cifani, Paolo; Geurts, Bernard; Kuerten, Hans

    2014-11-01

    Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.

  1. Acoustic Probe for Solid-Gas-Liquid Suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, L.L.; Sangani, Ashok

    The primary objective of the research project during the first funding period was to develop an acoustic probe to measure volume percent solids in solid-liquid slurries in the presence of small amounts of gas bubbles. This problem was addressed because of the great need for a non-invasive, accurate and reliable method for solids monitoring in liquid slurries in the presence of radiolytically generated gases throughout the DOE complex. These measurements are necessary during mobilization of salts and sediments in tanks, transport of these slurries in transfer lines to processing facilities across a site, and, in some instances, during high levelmore » waste processing. Although acoustic probes have been commonly used for monitoring flows in single-phase fluids (McLeod, 1967), their application to monitor two-phase mixtures has not yet fully realized its potential. A number of investigators in recent years have therefore been involved in developing probes for measuring the volume fractions in liquid solid suspensions (Atkinson and Kytomaa, 1993; Greenwood et al., 1993; Martin et al., 1995) and in liquid-liquid suspensions (Bonnet and Tavlarides, 1987; Tavlarides and Bonnet, 1988, Yi and Tavlarides, 1990; Tsouris and Tavlarides, 1993, Tsouris et al., 1995). In particular, Atkinson and Kytomaa (1993) showed that the acoustic technique can be used to determine both the velocity and the volume fraction of solids while Martin et al. (1995) and Spelt et al. (1999) showed that the acoustic probe can also be used to obtain information on the size distribution of the particles. In a recent testing of in-line slurry monitors with radioactive slurries suspended with Pulsair Mixers (Hylton & Bayne, 1999), an acoustic probe did not compare well with other instruments most probably due to presence of entrained gases and improper acoustic frequency range of interrogation. The work of the investigators cited has established the potential of the acoustic probe for characterizing/monitoring two-phase flows in relatively ideal, well-characterized suspensions. Two major factors which we judge has prevented its wide-spread use in the processing industry, particularly for dilute suspensions, is careful selection of the frequency range for interrogation and quantification and removal of the noise introduced by bubbles from the acoustic signal obtained from the suspension. Our research during the first funding period to develop an acoustic probe for solid-gas liquid suspensions has resulted in a theory, supported by our experiments, to describe small amplitude dilute suspensions (Norato, 1999, Spelt et al., 1999, Spelt et al., 2001). The theory agrees well with experimental data of sound attenuation up to 45 {approx}01% suspensions of 0.11 and 77 micron radius polystyrene particles in water and 0.4 to 40 vol %, suspensions of 32 micron soda-lime glass particles in water. Also, analyses of our attenuation experiments for solid-gas liquid experiments suggest the theory can be applied to correct for signal interference due to the presence of bubbles over a selected frequency range to permit determination of the solid-liquid volume fraction. Further, we show experimentally that a reliable linear dependency of weight percent solids with attenuation is obtained for low weight fractions at high frequencies of interrogation where bubble interference is minimal. There was a collaborative effort during the first funding period with the Pacific Northwest National Laboratories in that Dr. Margaret Greenwood was a co-investigator on the project. Dr. Greenwood provided a high level of experimental knowledge and techniques on ultrasound propagation, measurement and data processing. During the second funding period the slurry test loop at Oak Ridge National Laboratories under the direction of Mr. Tom Hylton will be employed to demonstrate the measurement capabilities of the prototype acoustic monitor.« less

  2. Transport of Gas and Solutes in Permeable Estuarine Sediments

    DTIC Science & Technology

    2009-01-01

    seagrass . 2) To quantify the size range and composition of the gas bubbles in the sediment and the overlying water. 3) To determine the volume change and...from sand containing natural bubbles produced by photosynthesis and control sediment without bubbles. Set up of the pressure tank experiments. The...above the tank will permit bubble growth in the incubated sediment by photosynthesis . RESULTS Fieldwork and bubble production. At CML, ample bubbles

  3. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    NASA Astrophysics Data System (ADS)

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-06-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field.

  4. The bubble method of water purification

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.; Babaeva, N. Yu.; Naidis, G. V.; Panov, V. A.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2018-02-01

    The processes of water purification from admixture molecules are analyzed. The purification rate is limited due to a low diffusion coefficient of the admixture molecules in water. At non-small concentrations of the admixture molecules, the water purication can proceed through association of molecules in condensed nanoparticles which fall on the bottom of the water volume. The rate of association may be increased in an external electric field, but in reality this cannot change significantly the rate of the purification process. The bubble method of water purification is considered, where air bubbles formed at the bottom of the water volume, transfer admixture molecules to the interface. This method allows one to clean small water volumes fast. This mechanism of water purification is realized experimentally and exhibits the promises of the bubble purification method.

  5. Modelling compressible dense and dilute two-phase flows

    NASA Astrophysics Data System (ADS)

    Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin

    2017-06-01

    Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various test problems ranging from separated phases in a shock tube to shock-particle cloud interaction. Its predictions are compared to BN and Marble models as well as against experimental data showing clear improvements.

  6. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Collins, Douglas B.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.

    2017-07-01

    The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate.

  7. A Theoretical Investigation of Acoustic Cavitation.

    DTIC Science & Technology

    1985-07-15

    program generates. One needs to know what fraction of the bubble’s volume reaches the critical temperature for free radical formation and how long it...MACH-UST/C DRIVER=PFPO*( 1 .O.EPS*SIN(T+DT+RST/DUME)) DUM1=1 .O+(DT/(2 .Q*RST*( 1.0-MACH)) )*(l1.5*UST*( 1 .- MACH/3 .O)+CAPP* 1(1 .O+MACH)* CAPM /RST...UPR--1 .5*U*U*(1 .-MACH/3. )+CAPP*( (P-DRIVER-(CAPW+ CAPM *U)/R) 1*(1. O+MACH )+( 1. 0+0 .0 )*R*PPR/C)/R*( 1. 0-MACH) ) UTL=U+DT*UPR * PTLPR=3.O*(GM1

  8. Passive acoustic records of two vigorous bubble-plume methane seeps on the Oregon continental margin

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Matsumoto, H.; Merle, S. G.; Embley, R. W.; Baumberger, T.; Hammond, S. R.

    2016-12-01

    We present preliminary analysis of the acoustic records of two bubble-plume methane seeps recorded by an autonomous hydrophone deployed during the E/V Nautilus expedition (NA072) in June 2016. The goal of the NA072 expedition was to use the Simrad 302 as a survey tool to map bubble plumes at a regional scale along the Oregon and northern California margins, followed by in situ investigation of bubble-plume sites using the ROV Hercules. The exploration carried out during NA072 resulted in the discovery of hundreds of new individual methane seep sites in water depths ranging from 125 to 1725 m depth. A Greenridge Acousonde 3B™ hydrophone was deployed via ROV within two vigorous bubble-plume sites. Despite persistent ship and ROV propeller noise, the acoustic signature of the bubble-plume can be seen in the hydrophone record as a broadband (0.5 - 4.5 kHz) series of short duration ( 0.2-0.5 msec) pulses that occur in clusters of dozens of pulses lasting 2-3 secs. Previous studies of the passive acoustics of seep bubble-plumes indicate sound is generated during bubble formation, where detachment of the gas bubble from the end of a tube or conduit causes the bubble to oscillate, producing sound. The peak frequency f (the zeroth oscillatory mode) and the bubble equivalent spherical radius r for a given pressure P are: f = (2πr)-1 [(3γP/ρ)]1/2 where γ is the ratio of gas specific heat at constant pressure to constant volume and ρ is the water density (Leifer and Tang, 2006). Thus the frequency of a bubble's oscillation is proportional to the bubble's volume, and therefore it may be possible to use our acoustic data to obtain an estimate of the volume of methane being released at these seafloor plume sites.

  9. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.

    PubMed

    Katgert, Gijs; Latka, Andrzej; Möbius, Matthias E; van Hecke, Martin

    2009-06-01

    We probe the flow of two-dimensional (2D) foams, consisting of a monolayer of bubbles sandwiched between a liquid bath and glass plate, as a function of driving rate, packing fraction, and degree of disorder. First, we find that bidisperse, disordered foams exhibit strongly rate-dependent and inhomogeneous (shear-banded) velocity profiles, while monodisperse ordered foams are also shear banded but essentially rate independent. Second, we adapt a simple model [E. Janiaud, D. Weaire, and S. Hutzler, Phys. Rev. Lett. 97, 038302 (2006)] based on balancing the averaged drag forces between the bubbles and the top plate F[over ]_{bw} and the averaged bubble-bubble drag forces F[over ]_{bb} by assuming that F[over ]_{bw} approximately v;{2/3} and F[over ]_{bb} approximately ( partial differential_{y}v);{beta} , where v and ( partial differential_{y}v) denote average bubble velocities and gradients. This model captures the observed rate-dependent flows for beta approximately 0.36 , and the rate independent flows for beta approximately 0.67 . Third, we perform independent rheological measurements of F[over ]_{bw} and F[over ]_{bb} , both for ordered and disordered systems, and find these to be fully consistent with the forms assumed in the simple model. Disorder thus leads to a modified effective exponent beta . Fourth, we vary the packing fraction phi of the foam over a substantial range and find that the flow profiles become increasingly shear banded when the foam is made wetter. Surprisingly, the model describes flow profiles and rate dependence over the whole range of packing fractions with the same power-law exponents-only a dimensionless number k that measures the ratio of the prefactors of the viscous drag laws is seen to vary with packing fraction. We find that k approximately (phi-phi_{c});{-1} , where phi_{c} approximately 0.84 corresponds to the 2D jamming density, and suggest that this scaling follows from the geometry of the deformed facets between bubbles in contact. Overall, our work shows that the presence of disorder qualitatively changes the effective bubble-bubble drag forces and suggests a route to rationalize aspects of the ubiquitous Herschel-Bulkley (power-law) rheology observed in a wide range of disordered materials.

  10. Convective mass transfer around a dissolving bubble

    NASA Astrophysics Data System (ADS)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  11. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a forming bubble decreases, as the superficial liquid velocity is in-creased. Furthermore, it is shown that the void fraction of the resulting two-phase flow increases with volumetric gas flow rate Q(sub d), pipe diameter and gas injection nozzle diameter, while they decrease with surrounding liquid flow. The important role played by flowing liquid in detaching bubbles in a reduced gravity environment is thus emphasized. We observe that the void fraction can be accurately controlled by using single nozzle gas injection, rather than by employing multiple port injection, since the later system gives rise to unpredictable coalescence of adjacent bubbles. It is of interest to note that empirical bubble size and corresponding void fraction are somewhat smaller for the co-flow geometry than the cross-flow configuration at similar flow conditions with similar pipe and nozzle diameters. In order to supplement the empirical data, a theoretical model is employed to study single bubble generation in the dynamic (Q(sub d) = 1 - 1000 cu cm/s) and bubbly flow regime within the framework of the co-flow configuration. This theoretical model is based on an overall force balance acting on the bubble during the two stages of generation, namely the expansion and the detachment stage. Two sets of forces, one aiding and the other inhibiting bubble detachment are identified. Under conditions of reduced gravity, gas momentum flux enhances, while the surface tension force at the air injection nozzle tip inhibits bubble detachment. In parallel, liquid drag and inertia can act as both attaching and detaching forces, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with our experimental results. However, at higher superficial liquid velocities, as the bubble loses its spherical form, empirical bubble size no longer matches the theoretical predictions. In summary, we have developed a combined experimental and theoretical work, which describes the complex process of bubble generation and resulting two-phase flow in a microgravity environment. Results of the present study can be used in a wide range of space-based applications, such as thermal energy and power generation, propulsion, cryogenic storage and long duration life support systems, necessary for programs such as NASA's Human Exploration for the Development of Space (HEDS).

  12. 3D bubble reconstruction using multiple cameras and space carving method

    NASA Astrophysics Data System (ADS)

    Fu, Yucheng; Liu, Yang

    2018-07-01

    An accurate measurement of bubble shape and size has a significant value in understanding the behavior of bubbles that exist in many engineering applications. Past studies usually use one or two cameras to estimate bubble volume, surface area, among other parameters. The 3D bubble shape and rotation angle are generally not available in these studies. To overcome this challenge and obtain more detailed information of individual bubbles, a 3D imaging system consisting of four high-speed cameras is developed in this paper, and the space carving method is used to reconstruct the 3D bubble shape based on the recorded high-speed images from different view angles. The proposed method can reconstruct the bubble surface with minimal assumptions. A benchmarking test is performed in a 3 cm  ×  1 cm rectangular channel with stagnant water. The results show that the newly proposed method can measure the bubble volume with an error of less than 2% compared with the syringe reading. The conventional two-camera system has an error around 10%. The one-camera system has an error greater than 25%. The visualization of a 3D bubble rising demonstrates the wall influence on bubble rotation angle and aspect ratio. This also explains the large error that exists in the single camera measurement.

  13. Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  14. Volume I: fluidized-bed code documentation, for the period February 28, 1983-March 18, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piperopoulou, H.; Finson, M.; Bloomfield, D.

    1983-03-01

    This documentation supersedes the previous documentation of the Fluidized-Bed Gasifier code. Volume I documents a simulation program of a Fluidized-Bed Gasifier (FBG), and Volume II documents a systems model of the FBG. The FBG simulation program is an updated version of the PSI/FLUBED code which is capable of modeling slugging beds and variable bed diameter. In its present form the code is set up to model a Westinghouse commercial scale gasifier. The fluidized bed gasifier model combines the classical bubbling bed description for the transport and mixing processes with PSI-generated models for coal chemistry. At the distributor plate, the bubblemore » composition is that of the inlet gas and the initial bubble size is set by the details of the distributor plate. Bubbles grow by coalescence as they rise. The bubble composition and temperature change with height due to transport to and from the cloud as well as homogeneous reactions within the bubble. The cloud composition also varies with height due to cloud/bubble exchange, cloud/emulsion, exchange, and heterogeneous coal char reactions. The emulsion phase is considered to be well mixed.« less

  15. Compositional effects on the chemorheological properties and forming behavior of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions

    NASA Astrophysics Data System (ADS)

    Morissette, Sherry L.

    A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).

  16. Permeability of a bubble assembly: From the very dry to the wet limit

    NASA Astrophysics Data System (ADS)

    Rouyer, Florence; Pitois, Olivier; Lorenceau, Elise; Louvet, Nicolas

    2010-04-01

    Bubble assemblies offer the remarkable property of adjusting their packing fraction over three orders of magnitude, thus providing an interesting system for the study of liquid flows through granular matter. Although significant work has been done in several fields of research, e.g., foams, porous media, and suspensions, a complete set of data over such a wide range of porosity ɛ is still lacking. In this paper, we measure the permeability of a bubbly system in the range 0.1<ɛ<0.8 and we connect these new data with a recently published set obtained for foams corresponding to ɛ <0.2 [E. Lorenceau et al., Eur. Phys. J. E 28, 293 (2009)]. Moreover, measurements performed with two different surfactants, the so-called "mobile" and "nonmobile" interfaces, allow us to determine the influence of the bubbles' surface mobility, which is proved to be a significant parameter up to ɛ ≈0.6, thus well above the bubbles packing fraction. Above ɛ ≈0.6, surface elasticity is fully mobilized over the bubbles' surface and the behavior of rigid spheres is observed for both solutions. We show that all the permeability values obtained for the bubble assembly with "nonmobile" interfaces are properly described with the Carman-Kozeny model.

  17. High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy.

    PubMed

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J Brian; Cain, Charles A

    2007-10-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (< 20 micros), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: (1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; (2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and (3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions.

  18. High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy—Histotripsy

    PubMed Central

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L.; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (<20 μs), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: 1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; 2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and 3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions. PMID:18019247

  19. Microscopic reversibility and memory in soft crystals undergoing large deformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Liat; Stan, Claudiu; Tang, Sindy K. Y.

    2014-11-01

    In this study, we explore the transition from reversible to chaotic behavior in an oscillatory shear flow of water-in-oil emulsions. The emulsion was injected through a microchannel and was forced to rearrange due to a central constriction in the channel. We study the motion of the individual droplets and their neighbors in order to determine their ability to retain their original position after several cycles of oscillations. We have found that the emulsion exhibit behaviors that vary from complete reversibility to complete irreversibility depending on the volume fraction, velocity and strain rate. The reversibility, both in the trajectory and the deformation of every drop, is reproducible even when the drops undergo many rearrangement events over distances of >150 droplet diameters. Moreover, the deformability of the drops and the high volume fraction are crucial conditions for the onset of reversibility. We provide here the first direct visualization and physical analysis of this phenomenon. This work is an important step in describing the flow of concentrated emulsions and suspensions in microchannels and is therefore crucial for understanding the behavior of droplets, bubbles and particles in droplet microfluidic applications.

  20. Bursts of CO2 released during freezing offer a new perspective on avoidance of winter embolism in trees.

    PubMed

    Lintunen, A; Lindfors, L; Kolari, P; Juurola, E; Nikinmaa, E; Hölttä, T

    2014-12-01

    Woody plants can suffer from winter embolism as gas bubbles are formed in the water-conducting conduits when freezing occurs: gases are not soluble in ice, and the bubbles may expand and fill the conduits with air during thawing. A major assumption usually made in studies of winter embolism formation is that all of the gas dissolved in the xylem sap is trapped within the conduits and forms bubbles during freezing. The current study tested whether this assumption is actually valid, or whether efflux of gases from the stem during freezing reduces the occurrence of embolism. CO2 efflux measurements were conducted during freezing experiments for saplings of three Scots pine (Pinus sylvestris) and three Norway spruce (Picea abies) trees under laboratory conditions, and the magnitudes of the freezing-related bursts of CO2 released from the stems were analysed using a previously published mechanistic model of CO2 production, storage, diffusion and efflux from a tree stem. The freezing-related bursts of CO2 released from a mature Scots pine tree growing in field conditions were also measured and analysed. Substantial freezing-related bursts of CO2 released from the stem were found to occur during both the laboratory experiments and under field conditions. In the laboratory, the fraction of CO2 released from the stem ranged between 27 and 96 % of the total CO2 content within the stem. All gases dissolved in the xylem sap are not trapped within the ice in the stem during freezing, as has previously been assumed, thus adding a new dimension to the understanding of winter embolism formation. The conduit water volume not only determines the volume of bubbles formed during freezing, but also the efficiency of gas efflux out of the conduit during the freezing process. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Current Status in Cavitation Modeling

    NASA Technical Reports Server (NTRS)

    Singhal, Ashok K.; Avva, Ram K.

    1993-01-01

    Cavitation is a common problem for many engineering devices in which the main working fluid is in liquid state. In turbomachinery applications, cavitation generally occurs on the inlet side of pumps. The deleterious effects of cavitation include: lowered performance, load asymmetry, erosion and pitting of blade surfaces, vibration and noise, and reduction of the overall machine life. Cavitation models in use today range from rather crude approximations to sophisticated bubble dynamics models. Details about bubble inception, growth and collapse are relevant to the prediction of blade erosion, but are not necessary to predict the performance of pumps. An engineering model of cavitation is proposed to predict the extent of cavitation and performance. The vapor volume fraction is used as an indicator variable to quantify cavitation. A two-phase flow approach is employed with the assumption of the thermal equilibrium between liquid and vapor. At present velocity slip between the two phases is selected. Preliminary analyses of 2D flows shows qualitatively correct results.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tammas-Williams, S., E-mail: Samuel.tammas-wiliams@manchester.ac.uk; Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD; Zhao, H.

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship wasmore » found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population.« less

  3. On the spatial stability of a liquid jet in the presence of vapor cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Ming; Ning, Zhi, E-mail: zhining@bjtu.edu.cn; Lu, Mei

    2013-11-15

    A dispersion equation describing the effect of temperature differences on the stability of three-dimensional cylindrical liquid jets in the presence of vapor cavities is presented by the use of linear stability analysis. The mathematical model and its solving method are verified by comparing them with the data in the literature, and then the effect of temperature differences between jet and surrounding gas on the spatial stability of liquid jet is investigated. Some conclusions can be drawn from the results of this investigation: (1) the temperature difference destabilizes the liquid jet when the jet liquid is cooler than the surrounding gas,more » (2) the smallest atomized droplet without taking into account the effect of temperature differences is significantly larger than that when the effect of temperature differences is taken into account, (3) the effect of temperature differences on the stability of liquid jet has little relationship with azimuthal wave modes, (4) cavitation destabilizes the liquid jet when the value of the bubble volume fraction is not greater than 0.1 (0 ≤ α ≤ 0.1), and the temperature difference can weaken this effect of cavitation on the stability of liquid jet, and (5) cavitation is responsible for generating smaller droplets, the effect of cavitation on the critical wave number with and without taking into account the effect of temperature differences is quite different, and temperature difference is likely to fully restrain the effect of cavitation on the critical wave number; however, cavitation is again responsible for generating smaller droplets despite the effect of temperature differences when the bubble volume fraction α = 0.1. These findings may explain some observations of practical atomizer performance.« less

  4. Final bubble lengths for aqueous foam coarsened in a horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Sebag, V.; Roth, A. E.; Durian, D. J.

    2011-12-01

    We report on length statistics measured for bubbles in the equilibrium bamboo state, achieved by the coarsening of aqueous foam in long cylindrical tubes, such that the soap films are all flat and perpendicular to the axis of the tube. The average bubble length is found to be 0.88 times the tube diameter, independent of variation of the liquid filling fraction by a factor of nearly three. The actual distribution is well-approximated by a shifted Rayleigh form, with a minimum bubble size of 0.28 tube diameters. And, perhaps surprisingly, no correlations are found in the lengths of neighboring bubbles. The observed length distribution agrees with that of Fortes et al. for short bubbles, but not for long bubbles.

  5. An experimental investigation of bubble splitting through multiple bifurcations

    NASA Astrophysics Data System (ADS)

    Bull, Joseph L.; Eshpuniyani, Brijesh; Fowlkes, J. Brian

    2004-11-01

    A bench top vascular bifurcation model is used to investigate the splitting of long bubbles in a series of liquid-filled bifurcations. These experiments are motivated by a gas embolotherapy technique for the potential treatment of cancer by using gas emboli to infarct tumors. The gas bubbles originate as perfluorocarbon droplets that are small enough to pass through capillaries and are injected into the bloodstream. Low intensity ultrasound is used to track their motion, and they are vaporized at the desired location for treatment via high intensity ultrasound to produce gas bubbles whose volumes are approximately 125 to 150 times the droplet volume. Achieving complete tumor necrosis requires infarction of most of the tumor. Understanding the transport and splitting of the gas bubbles, which can be long enough to extend through more than one bifurcation, is necessary to design delivery strategies. The current experiments investigate the behavior of a bubble as it passes through a series of two geometrically symmetric bifurcations, for different values of effective Bond number, which depends on gravity and the positioning of the bifurcation, capillary number, and bubble volume. The experiments are designed to match the Reynolds, Bond and capillary numbers to the physiological values for arterioles, and to provide guidance in achieving uniform tumor infarction. This work is supported by NSF grant BES-0301278 and NIH grant EB003541-01.

  6. Factors That Modulate Properties of Primary Marine Aerosol Generated From Ambient Seawater on Ships at Sea

    NASA Astrophysics Data System (ADS)

    Keene, William C.; Long, Michael S.; Reid, Jeffrey S.; Frossard, Amanda A.; Kieber, David J.; Maben, John R.; Russell, Lynn M.; Kinsey, Joanna D.; Quinn, Patricia K.; Bates, Timothy S.

    2017-11-01

    Model primary marine aerosol (mPMA) was produced by bubbling clean air through flowing natural seawater in a high-capacity generator deployed on ships in the eastern North Pacific and western North Atlantic Oceans. Physicochemical properties of seawater and mPMA were quantified to characterize factors that modulated production. Differences in surfactant organic matter (OM) and associated properties including surface tension sustained plumes with smaller bubble sizes, slower rise velocities, larger void fractions, and older surface ages in biologically productive relative to oligotrophic seawater. Production efficiencies for mPMA number (PEnum) and mass (PEmass) per unit air detrained from biologically productive seawater during daytime were greater and mass median diameters smaller than those in the same seawater at night and in oligotrophic seawater during day and night. PEmass decreased with increasing air detrainment rate suggesting that surface bubble rafts suppressed emission of jet droplets and associated mPMA mass. Relative to bubbles emitted at 60 cm depth, PEnum for bubbles emitted from 100 cm depth was approximately 2 times greater. mPMA OM enrichment factors (EFs) and mass fractions based on a coarse frit, fine frits, and a seawater jet exhibited similar size-dependent variability over a wide range in chlorophyll a concentrations. Results indicate that the physical production of PMA number and mass from the ocean surface varies systematically as interrelated functions of seawater type and, in biologically productive waters, time of day; bubble injection rate, depth, size, and surface age; and physical characteristics of the air-water interface whereas size-resolved OM EFs and mass fractions are relatively invariant.

  7. Influence of Syringe Volume on Foam Stability in Sclerotherapy for Varicose Vein Treatment.

    PubMed

    Bai, Taoping; Jiang, Wentao; Fan, Yubo

    2018-05-01

    Despite the popularity of sclerotherapy for treating varicose veins, it still exhibits various problems, such as pulmonary embolism, deep-vein thrombosis, phlebitis, and visual disorders. To investigate syringe volume influence on foam stability, obtain the foam decay rule, and provide a reference for clinics. Five types of syringes are used to prepare foam at room temperature with various liquid-gas ratios. Foam decay process experiments were performed 5 times and recorded by video. The stability indices used include drainage time, half-life, bubble diameter, bubble surface density, and drainage rate. The 30 and 2-mL syringes, respectively, recorded the highest and lowest drainage speeds. Foam drainage time and half-life, differences varied between 15 and 70 seconds, and 20 and 100 seconds, respectively. Foam bubble diameters were distributed over 0.1 to 2.0 mm with roughly 200 to 700 bubbles per square centimeter. Increased syringe volume causes the bubble diameter to increase. Thus, foam dispersion increases and foam half-life decreases; hence, foam becomes unstable. It is, thus, better to use a small syringe several times to prepare foam in clinics using segmented injections.

  8. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  9. Bubble Dynamics and Resulting Noise from Traveling Bubble Cavitation.

    DTIC Science & Technology

    1982-04-13

    proportional to the gas content. The subjectivity of visual cavitation determination is evidenced by the maximum standard deviation. As mentioned before...bubble radii at the maximum radius position on the model. The point on the model where the bubble will be at its maximum volume was determined by...48 3.7 Recording Bubble Dynamics . • . * . . . . 52 3.8 Measurement of Gas Nuclei in Water 0 • 52 3 TABLE OF CONTENTS (continued) Paqe

  10. Numerical investigations on unstable direct contact condensation of cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Jayachandran, K. N.; Arnab, Roy; Parthasarathi, Ghosh

    2017-02-01

    A typical problem of Direct Contact Condensation (DCC) occurs at the liquid oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts of combustion products) that runs the turbine mixes with LOX from the pump exit. This complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is undesirable for the functioning of the main LOX turbopump. As a starting point for solving this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is employed for capturing the heat and mass transfer effects. The study mainly focuses on the subsonic DCC bubbling regime, which is reported as unstable with bubble formation, elongation, necking and collapsing effects. The heat transfer coefficients over a period of time have been computed and the various stages of bubbling have been analysed with the help of vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-water mixtures.

  11. Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass

    NASA Astrophysics Data System (ADS)

    Fotovat, Farzam

    This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (U<0.6 m/s), while at high velocities, the bubbling trend of beds containing different fractions of biomass is comparable. The addition of biomass particles to a bed of sand leads to an increase in the mean voidage of the bed; however, the voidage of each phase remains unaffected. It is observed that large biomass particles trigger a break-up of the bubbles, which results in boosting bubbling frequency. The fraction of bubbles at the center of the bed increases with the load of biomass. At the wall region, however, it starts to decrease by adding 2% wt. biomass to pure sand and then increases with the further addition of biomass. The Radioactive Particle Tracking (RPT) technique is implemented in the second section of this work to study the motion and distribution of biomass particles at U=0.36 m/s and U=0.64 m/s. In this regard, an active biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced segregation of sand and biomass. The opposite trend is observed at U=0.64 m/s. This prompts a more uniform distribution of particles along the bed and brings about a higher degree of mixing. The average rise velocity of biomass is 0.2 times the bubble velocity, regardless of the biomass load or fluidization velocity. A one-dimensional model is proposed to predict the volume fraction of biomass along the bed. Some of the terms of this model are linked to the fluidizing behavior of biomass particles as deduced from the RPT findings. The fluidization of sand and cylindrical biomass particles is also simulated using the BARRACUDA CPFD software, which is based on the Lagrangian-Eulerian approach. Simulation and experimental results are compared in order to evaluate the capability of the numerical approach to predict the bubbling characteristics of the sand-biomass mixture for systems differing in composition and fluidization velocity. The last part of this thesis is devoted to the separation of the main components of the shredded bulky waste. A step-wise process has been developed based on the elutriation and density segregation techniques. After removal of the light and interwoven species of the shredded waste by elutriation, the nonelutriated materials are further separated into two successive fluidization columns. Polypropylene and glass beads are introduced as the fluidization media in these columns in order to make density segregation of the target and not-target components possible. Hence, undesirable combustible matters and hard plastic are separated as the overflow of the first and second fluidization steps. A second elutriation column is also devised to separate and recover fiber and soft plastic. To determine optimal operating conditions, several influential parameters, such as the elutriation velocity and time, the size and density of the fluidization media, and the initial configuration of the feedstock and bed material, are explored. The kinetics of segregation is also derived for both fluidization steps. (Abstract shortened by UMI.).

  12. Volumes of critical bubbles from the nucleation theorem

    NASA Astrophysics Data System (ADS)

    Wilemski, Gerald

    2006-09-01

    A corollary of the nucleation theorem due to Kashchiev [Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)] allows the volume V* of a critical bubble to be determined from nucleation rate measurements. The original derivation was limited to one-component, ideal gas bubbles with a vapor density much smaller than that of the ambient liquid. Here, an exact result is found for multicomponent, nonideal gas bubbles. Provided a weak density inequality holds, this result reduces to Kashchiev's simple form which thus has a much broader range of applicability than originally expected. Limited applications to droplets are also mentioned, and the utility of the pT,x form of the nucleation theorem as a sum rule is noted.

  13. A theoretical method for selecting space craft and space suit atmospheres.

    PubMed

    Vann, R D; Torre-Bueno, J R

    1984-12-01

    A theoretical method for selecting space craft and space suit atmospheres assumes that gas bubbles cause decompression sickness and that the risk increases when a critical bubble volume is exceeded. The method is consistent with empirical decompression exposures for humans under conditions of nitrogen equilibrium between the lungs and tissues. Space station atmospheres are selected so that flight crews may decompress immediately from sea level to station pressure without preoxygenation. Bubbles form as a result of this decompression but are less than the critical volume. The bubbles are absorbed during an equilibration period after which immediate transition to suit pressure is possible. Exercise after decompression and incomplete nitrogen equilibrium are shown to increase bubble size, and limit the usefulness of one previously tested stage decompression procedure for the Shuttle. The method might be helpful for evaluating decompression procedures before testing.

  14. Observation of Mass Transport Stability and Faraday Instability: Why Stable Single Bubble Sonoluminescence is Possible

    NASA Technical Reports Server (NTRS)

    Holt, R. G.; Gaitan, D. F.

    1996-01-01

    Teh region of parameter space (acoustic pressure P(sub a), bubble radius R(sub 0)) in which stable single bubble sonoluminescence (SBSL) occurs in an air-water system is a small fraction of that which is accesible. This is due ot the existence of an island of dissolution at high P(sub a) and small R(sub 0).

  15. Doughnut-shaped soap bubbles.

    PubMed

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V<αL(3)/6π(2), with α≈0.21, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance.

  16. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  17. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    PubMed Central

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.

    2017-01-01

    The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate. PMID:28630346

  18. A monolithic mass tracking formulation for bubbles in incompressible flow

    NASA Astrophysics Data System (ADS)

    Aanjaneya, Mridul; Patkar, Saket; Fedkiw, Ronald

    2013-08-01

    We devise a novel method for treating bubbles in incompressible flow that relies on the conservative advection of bubble mass and an associated equation of state in order to determine pressure boundary conditions inside each bubble. We show that executing this algorithm in a traditional manner leads to stability issues similar to those seen for partitioned methods for solid-fluid coupling. Therefore, we reformulate the problem monolithically. This is accomplished by first proposing a new fully monolithic approach to coupling incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions, and then subsequently making a number of simplifying assumptions on the air flow removing not only the nonlinearities but also the spatial variations of both the density and the pressure. The resulting algorithm is quite robust, has been shown to converge to known solutions for test problems, and has been shown to be quite effective on more realistic problems including those with multiple bubbles, merging and pinching, etc. Notably, this approach departs from a standard two-phase incompressible flow model where the air flow preserves its volume despite potentially large forces and pressure differentials in the surrounding incompressible fluid that should change its volume. Our bubbles readily change volume according to an isothermal equation of state.

  19. Numerical simulation of a bubble rising in an environment consisting of Xanthan gum

    NASA Astrophysics Data System (ADS)

    Aguirre, Víctor A.; Castillo, Byron A.; Narvaez, Christian P.

    2017-09-01

    An improved numerical algorithm for front tracking method is developed to simulate a bubble rising in viscous liquid. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble's rising and deforming. Volume flux conservation is adopted to solve the Navier-Stokes equation for fluid flow using finite volume method. Non-Newtonian fluids are widely used in industry such as feed and energy industries. In this research we used Xanthan gum which is a microbiological polysaccharide. In order to obtain the properties of the Xanthan gum, such as viscosity, storage and loss modulus, shear rate, etc., it was necessary to do an amplitude sweep and steady flow test in a rheometer with a concentric cylinder as geometry. Based on the data given and using a numerical regression, the coefficients required by Giesekus model are obtained. With these coefficients, it is possible to simulate the comportment of the fluid by the use of the developed algorithm. Once the data given by OpenFOAM is acquired, it is compared with the experimental data.

  20. Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor.

    PubMed

    Jeon, Jin Hee; Kim, Sang Done; Lim, Tak Hyoung; Lee, Dong Hyun

    2005-08-01

    The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.

  1. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F.; Blondel, Sophie; Bernholdt, David E.

    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics callsmore » for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.« less

  2. Determination of Magma Ascent Rates From D/H Fractionation in Olivine-Hosted Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Gaetani, G. A.; Bucholz, C. E.; Le Roux, V.; Klein, F.; Ghiorso, M. S.; Wallace, P. J.; Sims, K. W. W.

    2016-12-01

    The depths at which magmas are stored and the rates at which they ascend to Earth's surface are important controls on the dynamics of volcanic eruptions. Eruptive style is influenced by the rate at which magma ascends from the reservoir to the surface through its effect on vapor bubble nucleation, growth, and coalescence. However, ascent rates are difficult to quantify because few accurate geospeedometers are appropriate for a process occurring on such short timescales. We developed a new approach to determining ascent rates on the basis of D/H fraction associated with diffusive H2O loss from olivine-hosted melt inclusions. The utility of this approach was demonstrated on olivine-hosted melt inclusions in a hyaloclastite recovered from within Dry Valley Drilling Project core 3 from Hut Point Peninsula, Antarctica. All of the melt inclusions are glassy and contain vapor bubbles. The volumes of melt inclusions and vapor bubbles were determined by X-ray microtomography, and the density of CO2 within each bubble was determined using Raman spectroscopy. Olivines were then polished to expose individual inclusions and analyzed for volatiles and dDVSMOW by secondary ion mass spectrometry. Total CO2 was reconstructed by summing CO2 in the included glass and vapor bubble. Entrapment pressures calculated on the basis of reconstructed CO2 and maximum H2O concentrations using the MagmaSat solubility model [1] indicate a depth of origin of 24 km - in good agreement with the seismically determined depth to the Moho beneath Ross Island [2]. Magma ascent rates were determined using a finite difference model for melt inclusion dehydration during magma ascent. The positive correlation between H2O and CO2 is consistent with diffusive loss during ascent, but does not provide direct information on magma ascent rate. In contrast, the slope of the negative correlation between H2O and dDVSMOW is a reflection of transport time and, therefore, ascent rate. If it is assumed that magmas did not stall between the Moho and the surface, our results indicate an ascent rate of 0.1 m/s. Our new approach has broad applicability to determining magma ascent rates for both active and extinct volcanic centers in all tectonic environments. References: [1] Ghiorso and Gualda (2015) Cont Miner Pet 169; [2] Finotello et al. (2011) Geophys J Int 185:85-92.

  3. A simple bubble-flowmeter with quasicontinuous registration.

    PubMed

    Ludt, H; Herrmann, H D

    1976-07-22

    The construction of a simple bubble-flow-meter is described. The instrument has the following features: 1. automatic bubble injection, 2. precise measurement of the bubble passage time by a digital counter, 3. quasicontinuous registration of the flow rate, 4. alternative run with clear fluid (water) and coloured fluid (blood), 5. low volume, 6. closed measuring system for measurements in low and high pressure systems.

  4. Anterior Chamber Air Bubble to Achieve Graft Attachment After DMEK: Is Bigger Always Better?

    PubMed

    Ćirković, Aleksandar; Beck, Christina; Weller, Julia M; Kruse, Friedrich E; Tourtas, Theofilos

    2016-04-01

    To analyze the influence of the size of the air bubble subsequent to Descemet membrane endothelial keratoplasty (DMEK) surgery on the rate of graft detachment and need for rebubbling, the incidence of pupillary block, and the observed endothelial cell loss. This is a single-center, retrospective, consecutive case series of 74 cases undergoing DMEK and fulfilling the inclusion criteria concerning the size of the air bubble at the end of surgery. Based on the medical records, patients were divided into 2 groups (n = 37, respectively). The first group had an air bubble with a volume of approximately 50% and the second group of approximately 80% of the anterior chamber (AC) volume, respectively. Patients who did not comply with instructions to remain in the supine position until complete resorption of AC air or cases in which difficulties in graft preparation (eg, radial breaks) occurred were excluded from data analysis. The central corneal thickness and endothelial cell density were measured 6 months after surgery. Ten of 37 patients (27.0%) in the 50% air bubble group and 3 of 37 patients (8.1%) in the 80% air bubble group needed 1 rebubbling procedure (P = 0.032). There was no difference between the groups after 6 months regarding endothelial cell density and central corneal thickness. No pupillary block was observed. Larger air bubbles of 80% anterior chamber volume decrease the risk of graft detachment after DMEK with no detrimental effect on the outcome and risk for pupillary block.

  5. Bubble Continuous Positive Airway Pressure Enhances Lung Volume and Gas Exchange in Preterm Lambs

    PubMed Central

    Pillow, J. Jane; Hillman, Noah; Moss, Timothy J. M.; Polglase, Graeme; Bold, Geoff; Beaumont, Chris; Ikegami, Machiko; Jobe, Alan H.

    2007-01-01

    Rationale: The technique used to provide continuous positive airway pressure (CPAP) to the newborn may influence lung function and breathing efficiency. Objectives: To compare differences in gas exchange physiology and lung injury resulting from treatment of respiratory distress with either bubble or constant pressure CPAP and to determine if the applied flow influences short-term outcomes. Methods: Lambs (133 d gestation; term is 150 d) born via cesarean section were weighed, intubated, and treated with CPAP for 3 hours. Two groups were treated with 8 L/minute applied flow using the bubble (n = 12) or the constant pressure (n = 12) technique. A third group (n = 10) received the bubble method with 12 L/minute bias flow. Measurements at study completion included arterial blood gases, oxygraphy, capnography, tidal flow, multiple breath washout, lung mechanics, static pressure–volume curves, and bronchoalveolar lavage fluid protein. Measurements and Main Results: Birth weight and arterial gas variables at 15 minutes were comparable. Flow (8 or 12 L/min) did not influence the 3-hour outcomes in the bubble group. Bubble technique was associated with a higher pH, PaO2, oxygen uptake, and area under the flow–volume curve, and a decreased alveolar protein, respiratory quotient, PaCO2, and ventilation inhomogeneity compared with the constant pressure group. Conclusions: Compared with constant pressure technique, bubble CPAP promotes enhanced airway patency during treatment of acute postnatal respiratory disease in preterm lambs and may offer protection against lung injury. PMID:17431223

  6. Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects

    PubMed Central

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2009-01-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible. PMID:18851139

  7. Cryosurgery Planning Using Bubble Packing in 3D

    PubMed Central

    Tanaka, Daigo; Shimada, Kenji; Rossi, Michael R.; Rabin, Yoed

    2008-01-01

    As part of an ongoing project to develop automated tools for cryosurgery planning, the current study focuses on the development of a 3D bubble packing method. A proof-of-concept for the new method is demonstrated on five prostate models, reconstructed from ultrasound images. The new method is a modification of an established method in 2D. Ellipsoidal bubbles are packed in the volume of the prostate in the current study; such bubbles can be viewed as a first-order approximation of a frozen region around a single cryoprobe. When all cryoprobes are inserted to the same depth, optimum planning was found to occur at about 60% of the length of the prostate (measured from its apex), which leads to cooling of approximately 75% of the prostate volume below a specific temperature threshold of −22°C. Bubble packing has the potential to dramatically reduce the run time for automated planning. PMID:17963095

  8. Cryosurgery planning using bubble packing in 3D.

    PubMed

    Tanaka, Daigo; Shimada, Kenji; Rossi, Michael R; Rabin, Yoed

    2008-04-01

    As part of an ongoing project to develop automated tools for cryosurgery planning, the current study focuses on the development of a 3D bubble packing method. A proof-of-concept for the new method is demonstrated on five prostate models, reconstructed from ultrasound images. The new method is a modification of an established method in 2D. Ellipsoidal bubbles are packed in the volume of the prostate in the current study; such bubbles can be viewed as a first-order approximation of a frozen region around a single cryoprobe. When all cryoprobes are inserted to the same depth, optimum planning was found to occur at about 60% of the length of the prostate (measured from its apex), which leads to cooling of approximately 75% of the prostate volume below a specific temperature threshold of - 22 degrees C. Bubble packing has the potential to dramatically reduce the run time for automated planning.

  9. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  10. A numerical framework for bubble transport in a subcooled fluid flow

    NASA Astrophysics Data System (ADS)

    Jareteg, Klas; Sasic, Srdjan; Vinai, Paolo; Demazière, Christophe

    2017-09-01

    In this paper we present a framework for the simulation of dispersed bubbly two-phase flows, with the specific aim of describing vapor-liquid systems with condensation. We formulate and implement a framework that consists of a population balance equation (PBE) for the bubble size distribution and an Eulerian-Eulerian two-fluid solver. The PBE is discretized using the Direct Quadrature Method of Moments (DQMOM) in which we include the condensation of the bubbles as an internal phase space convection. We investigate the robustness of the DQMOM formulation and the numerical issues arising from the rapid shrinkage of the vapor bubbles. In contrast to a PBE method based on the multiple-size-group (MUSIG) method, the DQMOM formulation allows us to compute a distribution with dynamic bubble sizes. Such a property is advantageous to capture the wide range of bubble sizes associated with the condensation process. Furthermore, we compare the computational performance of the DQMOM-based framework with the MUSIG method. The results demonstrate that DQMOM is able to retrieve the bubble size distribution with a good numerical precision in only a small fraction of the computational time required by MUSIG. For the two-fluid solver, we examine the implementation of the mass, momentum and enthalpy conservation equations in relation to the coupling to the PBE. In particular, we propose a formulation of the pressure and liquid continuity equations, that was shown to correctly preserve mass when computing the vapor fraction with DQMOM. In addition, the conservation of enthalpy was also proven. Therefore a consistent overall framework that couples the PBE and two-fluid solvers is achieved.

  11. Expansion of a compressible gas bubble in Stokes flow

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2001-09-01

    The flow-induced deformation of an inviscid bubble occupied by a compressible gas and suspended in an ambient viscous liquid is considered at low Reynolds numbers with particular reference to the pressure developing inside the bubble. Ambient fluid motion alters the bubble pressure with respect to that established in the quiescent state, and requires the bubble to expand or contract according to an assumed equation of state. When changes in the bubble volume are prohibited by a global constraint on the total volume of the flow, the ambient pressure is modified while the bubble pressure remains constant during the deformation. A numerical method is developed for evaluating the pressure inside a two-dimensional bubble in an ambient Stokes flow on the basis of the normal component of the interfacial force balance involving the capillary pressure, the normal viscous stress, and the pressure at the free surface on the side of the liquid; the last is computed by evaluating a strongly singular integral. Dynamical simulations of bubble deformation are performed using the boundary integral method properly implemented to remove the multiplicity of solutions due to the a priori unknown rate of expansion, and three particular problems are discussed in detail: the shrinkage of a bubble at a specified rate, the deformation of a bubble subject to simple shear flow, and the deformation of a bubble subject to a purely elongational flow. In the case of shrinkage, it is found that the surface tension plays a critical role in determining the behaviour of the bubble pressure near the critical time when the bubble disappears. In the case of shear or elongational flow, it is found that the bubble contracts during an initial period of deformation from the circular shape, and then it expands to obtain a stationary shape whose area is higher than that assumed in the quiescent state. Expansion may destabilize the bubble by raising the capillary number above the critical threshold under which stationary shapes can be found.

  12. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.

    2012-01-01

    Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812

  13. TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosten, M; Michael Morgan, M

    2008-12-12

    A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similarmore » in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.« less

  14. Reheating-volume measure in the string theory landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winitzki, Sergei

    2008-12-15

    I recently proposed the ''reheating-volume'' (RV) prescription as a possible solution to the measure problem in ''multiverse'' cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measuremore » is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.« less

  15. The Effective Dynamics of the Volume Preserving Mean Curvature Flow

    NASA Astrophysics Data System (ADS)

    Chenn, Ilias; Fournodavlos, G.; Sigal, I. M.

    2018-04-01

    We consider the dynamics of small closed submanifolds (`bubbles') under the volume preserving mean curvature flow. We construct a map from (n+1 )-dimensional Euclidean space into a given (n+1 )-dimensional Riemannian manifold which characterizes the existence, stability and dynamics of constant mean curvature submanifolds. This is done in terms of a reduced area function on the Euclidean space, which is given constructively and can be computed perturbatively. This allows us to derive adiabatic and effective dynamics of the bubbles. The results can be mapped by rescaling to the dynamics of fixed size bubbles in almost Euclidean Riemannian manifolds.

  16. Pinched flow fractionation of microbubbles for ultrasound contrast agent enrichment

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Kok, Maarten; Segers, Tim

    2014-11-01

    An ultrasound contrast agent (UCA) suspension contains a wide size distribution of encapsulated microbubbles (typically 1-10 μm in diameter) that resonate to the driving ultrasound field by the intrinsic relationship between bubble size and ultrasound frequency. Medical transducers, however, operate in a narrow frequency range, which severely limits the number of bubbles that contribute to the echo signal. Thus, the sensitivity can be improved by narrowing down the size distribution of the bubble suspension. Here, we present a novel, low-cost, lab-on-a-chip method for the sorting of contrast microbubbles by size, based on a microfluidic separation technique known as pinched flow fractionation (PFF). We show by experimental and numerical investigation that the inclusion of particle rotation is essential for an accurate physical description of the sorting behavior of the larger bubbles. Successful sorting of a bubble suspension with a narrow size distribution (3.0 +/- 0.6 μm) has been achieved with a PFF microdevice. This sorting technique can be easily parallelized, and may lead to a significant improvement in the sensitivity of contrast-enhanced medical ultrasound. This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

  17. Cyclic deformation of bidisperse two-dimensional foams

    NASA Astrophysics Data System (ADS)

    Fátima Vaz, M.; Cox, S. J.; Teixeira, P. I. C.

    2011-12-01

    In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to measure the characteristics of the foams, including the number of edges separating small from large bubbles N sl , the perimeter (surface energy), the distribution of the number of sides of the bubbles, and the topological disorder μ2(N). Foams that were initially mixed were found to remain mixed after the deformation. The response of sorted foams, however, depended on the initial geometry, including the area fraction of small bubbles and the total number of bubbles. For a given experiment we found that (i) the perimeter of a sorted foam varied little; (ii) each foam tended towards a mixed state, measured through the saturation of N sl ; and (iii) the topological disorder μ2(N) increased up to an "equilibrium" value. The results of different experiments showed that (i) the change in disorder, ? decreased with the area fraction of small bubbles under iso-strain, but was independent of it under iso-stress; and (ii) ? increased with ? under iso-strain, but was again independent of it under iso-stress. We offer explanations for these effects in terms of elementary topological processes induced by the deformations that occur at the bubble scale.

  18. Characterization of nano-bubbles as an oxygen carrier for in-situ bioremediation of organic pollutants in the subsurface

    NASA Astrophysics Data System (ADS)

    KIM, E.; Jung, J.; Kang, S.; Choi, Y.

    2016-12-01

    In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.

  19. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    PubMed

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1 Hz. Altogether, bubble cavitation and thermal field vary with the progress of HIFU treatment with different sonication parameters, which provide insights into the interaction of ultrasound burst with the induced bubbles for both soft tissue fractionation and enhancement in thermal accumulation. Appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.

  20. Light scattering by hexagonal ice crystals with distributed inclusions

    NASA Astrophysics Data System (ADS)

    Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin

    2016-07-01

    Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.

  1. Integrated microfluidic system with simultaneous emulsion generation and concentration.

    PubMed

    Koppula, Karuna S; Fan, Rong; Veerapalli, Kartik R; Wan, Jiandi

    2016-03-15

    Because the size, size distribution, and concentration of emulsions play an important role in most of the applications, controlled emulsion generation and effective concentration are of great interest in fundamental and applied studies. While microfluidics has been demonstrated to be able to produce emulsion drops with controlled size, size distribution, and hierarchical structures, progress of controlled generation of concentrated emulsions is limited. Here, we present an effective microfluidic emulsion generation system integrated with an orifice structure to separate aqueous droplets from the continuous oil phase, resulting in concentrated emulsion drops in situ. Both experimental and simulation results show that the efficiency of separation is determined by a balance between pressure drop and droplet accumulation near the orifice. By manipulating this balance via changing flow rates and microfluidic geometry, we can achieve monodisperse droplets on chip that have a concentration as high as 80,000 drops per microliter (volume fraction of 66%). The present approach thus provides insights to the design of microfluidic device that can be used to concentrate emulsions (drops and bubbles), colloidal particles (drug delivery polymer particles), and biological particles (cells and bacteria) when volume fractions as high as 66% are necessary. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less

  3. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol.

    PubMed

    Mason-Smith, Nicholas; Duke, Daniel J; Kastengren, Alan L; Traini, Daniela; Young, Paul M; Chen, Yang; Lewis, David A; Edgington-Mitchell, Daniel; Honnery, Damon

    2017-04-01

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second with 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. The flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.

  4. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol

    DOE PAGES

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.; ...

    2017-01-17

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less

  5. Physics of beer tapping.

    PubMed

    Rodríguez-Rodríguez, Javier; Casado-Chacón, Almudena; Fuster, Daniel

    2014-11-21

    The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for a long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bubbles by breaking them up, the subtle mechanism by which this happens remains unknown. Here, we show that the overall foaming-over process can be divided into three stages where different physical phenomena take place in different time scales: namely, the bubble-collapse (or cavitation) stage, the diffusion-driven stage, and the buoyancy-driven stage. In the bubble-collapse stage, the impact generates a train of expansion-compression waves in the liquid that leads to the fragmentation of preexisting gas cavities. Upon bubble fragmentation, the sudden increase of the interface-area-to-volume ratio enhances mass transfer significantly, which makes the bubble volume grow by a large factor until CO2 is locally depleted. At that point buoyancy takes over, making the bubble clouds rise and eventually form buoyant vortex rings whose volume grows fast due to the feedback between the buoyancy-induced rising speed and the advection-enhanced CO2 transport from the bulk liquid to the bubble. The physics behind this explosive process sheds insight into the dynamics of geological phenomena such as limnic eruptions.

  6. Physics of Beer Tapping

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Javier; Casado-Chacón, Almudena; Fuster, Daniel

    2014-11-01

    The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for a long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bubbles by breaking them up, the subtle mechanism by which this happens remains unknown. Here, we show that the overall foaming-over process can be divided into three stages where different physical phenomena take place in different time scales: namely, the bubble-collapse (or cavitation) stage, the diffusion-driven stage, and the buoyancy-driven stage. In the bubble-collapse stage, the impact generates a train of expansion-compression waves in the liquid that leads to the fragmentation of preexisting gas cavities. Upon bubble fragmentation, the sudden increase of the interface-area-to-volume ratio enhances mass transfer significantly, which makes the bubble volume grow by a large factor until CO2 is locally depleted. At that point buoyancy takes over, making the bubble clouds rise and eventually form buoyant vortex rings whose volume grows fast due to the feedback between the buoyancy-induced rising speed and the advection-enhanced CO2 transport from the bulk liquid to the bubble. The physics behind this explosive process sheds insight into the dynamics of geological phenomena such as limnic eruptions.

  7. Light Microscopy Module: On-Orbit Microscope Planned for the Fluids Integrated Rack on the International Space Station

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.

  8. Spreading of Emulsions on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Kavehpour, Pirouz

    2012-11-01

    The wettability of emulsions is an important factor with explicit influence in an extensive variety of industrial applications ranging from the petroleum to food industries. Surprisingly, there is no comprehensive study of emulsion spreading to date; this is due to the complexity of the structure of the emulsions and non-homogeneity of the dispersed phase bubbles in size as well as distribution through the emulsion. The spreading of water/silicone oil emulsions on glass substrates was investigated. The emulsions were prepared with varying volume fractions of water dispersed in silicone oil, with addition of small amounts of surfactant to stabilize the emulsion structure. The time dependent variation of dynamic contact angle, base diameter, and the spreading rate of the droplets of an emulsion are different from a pure substance. The effect of water/silicone oil weight percentage as well as the droplet size and dispersed phase bubble size were also investigated. The weight percentage of water/silicone oil emulsion and droplet size did not have significant influence on the spreading dynamics; however the dispersed phase drop size affected the spreading dynamics substantially.

  9. Singular effective slip length for longitudinal flow over a dense bubble mattress

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory

    2016-09-01

    We consider the effective hydrophobicity of a periodically grooved surface immersed in liquid, with trapped shear-free bubbles protruding between the no-slip ridges at a π /2 contact angle. Specifically, we carry out a singular-perturbation analysis in the limit ɛ ≪1 where the bubbles are closely spaced, finding the effective slip length (normalized by the bubble radius) for longitudinal flow along the ridges as π /√{2 ɛ }-(12 /π ) ln2 +(13 π /24 ) √{2 ɛ }+o (√{ɛ }) , the small parameter ɛ being the planform solid fraction. The square-root divergence highlights the strong hydrophobic character of this configuration; this leading singular term (along with the third term) follows from a local lubrication-like analysis of the gap regions between the bubbles, together with general matching considerations and a global conservation relation. The O (1 ) constant term is found by matching with a leading-order solution in the outer region, where the bubbles appear to be touching. We find excellent agreement between our slip-length formula and a numerical scheme recently derived using a unified-transform method [Crowdy, IMA J. Appl. Math. 80, 1902 (2015), 10.1093/imamat/hxv019]. The comparison demonstrates that our asymptotic formula, together with the diametric dilute-limit approximation [Crowdy, J. Fluid Mech. 791, R7 (2016), 10.1017/jfm.2016.88], provides an elementary analytical description for essentially arbitrary no-slip fractions.

  10. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  11. Bubble-Induced Color Doppler Feedback for Histotripsy Tissue Fractionation.

    PubMed

    Miller, Ryan M; Zhang, Xi; Maxwell, Adam D; Cain, Charles A; Xu, Zhen

    2016-03-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high-intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with two-cycle histotripsy pulses at [Formula: see text] using a 500-kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression.

  12. Bubble-induced Color Doppler Feedback for Histotripsy Tissue Fractionation

    PubMed Central

    Miller, Ryan M.; Zhang, Xi; Maxwell, Adam; Cain, Charles; Xu, Zhen

    2016-01-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with 2-cycle histotripsy pulses at > 30 MPa using a 500 kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression. PMID:26863659

  13. Simulations of Bubble Motion in an Oscillating Liquid

    NASA Astrophysics Data System (ADS)

    Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.

    2010-11-01

    Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    NASA Astrophysics Data System (ADS)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of the characteristics of land-excited large volume air-gun can help to better use of the air-gun source.

  15. Cardiovascular microbubble transport in vessel bifurcations with pulsatile flow: experimental model and theory

    NASA Astrophysics Data System (ADS)

    Valassis, Doug; Dodde, Robert; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph

    2008-11-01

    The behavior of long gas bubbles suspended in liquid flowing through successive bifurcations was investigated experimentally and theoretically as a model of cardiovascular bubble transport in gas embolotherapy. In this developmental cancer therapy, perflurocarbon droplets are vaporized in the vasculature and travel through a bifurcating network of vessels before lodging. The homogeneity of tumor necrosis is directly correlated with the transport and lodging of the emboli. An experimental model was used to explore the effects of flow pulsatility, frequency, gravity, and bifurcation roll angle on bubble splitting and lodging. At a bifurcation roll angle of 45-degrees, the most distinct difference in splitting ratios between three physiologic frequencies (1, 1.5, 2 Hz) was observed. As roll angle increased, lodged bubble volume in the first generation channel increased while bubble volume beyond the second bifurcation proportionately decreased. A corresponding time-dependent one-dimensional theoretical model was also developed. The results elucidate the effects of pulsatile flow and suggest the potential of gas embolotherapy to occlude blood flow to tumors.

  16. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.

    PubMed

    Kodama, Tetsuya; Tomita, Yukio; Koshiyama, Ken-Ichiro; Blomley, Martin J K

    2006-06-01

    The combination of ultrasound and ultrasound contrast agents (UCAs) is able to induce transient membrane permeability leading to direct delivery of exogenous molecules into cells. Cavitation bubbles are believed to be involved in the membrane permeability; however, the detailed mechanism is still unknown. In the present study, the effects of ultrasound and the UCAs, Optison on transfection in vitro for different medium heights and the related dynamic behaviors of cavitation bubbles were investigated. Cultured CHO-E cells mixed with reporter genes (luciferase or beta-gal plasmid DNA) and UCAs were exposed to 1 MHz ultrasound in 24-well plates. Ultrasound was applied from the bottom of the well and reflected at the free surface of the medium, resulting in the superposition of ultrasound waves within the well. Cells cultured on the bottom of 24-well plates were located near the first node (displacement node) of the incident ultrasound downstream. Transfection activity was a function determined with the height of the medium (wave traveling distance), as well as the concentration of UCAs and the exposure time was also determined with the concentration of UCAs and the exposure duration. Survival fraction was determined by MTT assay, also changes with these values in the reverse pattern compared with luciferase activity. With shallow medium height, high transfection efficacy and high survival fraction were obtained at a low concentration of UCAs. In addition, capillary waves and subsequent atomized particles became significant as the medium height decreased. These phenomena suggested cavitation bubbles were being generated in the medium. To determine the effect of UCAs on bubble generation, we repeated the experiments using crushed heat-treated Optison solution instead of the standard microbubble preparation. The transfection ratio and survival fraction showed no additional benefit when ultrasound was used. These results suggested that cavitation bubbles created by the collapse of UCAs were a key factor for transfection, and their intensities were enhanced by the interaction of the superpose ultrasound with the decreasing the height of the medium. Hypothesizing that free cavitation bubbles were generated from cavitation nuclei created by fragmented UCA shells, we carried out numerical analysis of a free spherical bubble motion in the field of ultrasound. Analyzing the interaction of the shock wave generated by a cavitation bubble and a cell membrane, we estimated the shock wave propagation distance that would induce cell membrane damage from the center of the cavitation bubble.

  17. An analytical approach to the rise velocity of periodic bubble trains in non-Newtonian fluids.

    PubMed

    Frank, X; Li, H Z; Funfschilling, D

    2005-01-01

    The present study aims at providing insight into the acceleration mechanism of a bubble chain rising in shear-thinning viscoelastic fluids. The experimental investigation by the Particle Image Velocimetry (PIV), birefringence visualisation and rheological simulation shows that two aspects are central to bubble interactions in such media: the stress creation by the passage of bubbles, and their relaxation due to the fluid's memory forming an evanescent corridor of reduced viscosity. Interactions between bubbles were taken into account mainly through a linear superposition of the stress evolution behind each bubble. An analytical approach together with the rheological consideration was developed to compute the rise velocity of a bubble chain in function of the injection period and bubble volume. The model predictions compare satisfactorily with the experimental investigation.

  18. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  19. 1998 Physical Acoustics Summer School (PASS 98). Volume 1: Transcripts.

    DTIC Science & Technology

    1998-01-01

    just simple adiabatic heating , the temperature also goes up a lot. I ask you, if you went back to your lab, built a levitator, put a bubble in there...radial pulsations of the bubble similar to the second graph on Transparency 10. Now turn up the amplitude. The first thing you notice is that the...region called non-spherical pulsations . The bubble is going crazy. Turn the amplitude up more and the bubble stabilizes rock solid, gets really small

  20. Numerical Modeling of Nanocellular Foams Using Classical Nucleation Theory and Influence Volume Approach

    NASA Astrophysics Data System (ADS)

    Khan, Irfan; Costeux, Stephane; Bunker, Shana; Moore, Jonathan; Kar, Kishore

    2012-11-01

    Nanocellular porous materials present unusual optical, dielectric, thermal and mechanical properties and are thus envisioned to find use in a variety of applications. Thermoplastic polymeric foams show considerable promise in achieving these properties. However, there are still considerable challenges in achieving nanocellular foams with densities as low as conventional foams. Lack of in-depth understanding of the effect of process parameters and physical properties on the foaming process is a major obstacle. A numerical model has been developed to simulate the simultaneous nucleation and bubble growth during depressurization of thermoplastic polymers saturated with supercritical blowing agents. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The model is modified to include mechanisms for Joule-Thompson cooling during depressurization and secondary foaming. Simulation results for polymer with and without nucleating agents will be discussed and compared with experimental data.

  1. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk; Department of Chemistry, Imperial College London, London SW7 2AZ; Abascal, José L. F.

    2015-04-21

    In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain themore » free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.« less

  2. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    NASA Technical Reports Server (NTRS)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  3. Contortionist bubbles in andesitic enclaves: implications for gas migration and phase segregation in crystal-rich magmas.

    NASA Astrophysics Data System (ADS)

    Oppenheimer, J. C.; Cashman, K. V.; Rust, A.; Dobson, K. J.; Bacon, C. R.; Dingwell, D. B.

    2016-12-01

    In order to constrain gas migration behaviors in crystal-rich magmas, we compare results of analogue experiments to frozen structures in andesitic enclaves. In the analogue experiments air was injected into mixtures of syrup and particles sandwiched between glass plates. We observed a significant increase in bubble deformation and coalescence when particle fractions increased beyond a critical value (the random loose packing). At high particle fractions, bubble growth re-organized (compacted) the particles adjacent to the bubble walls. This caused liquid segregation into patches within the particle suspension and into large void spaces near the outer edge of experiments. We compare these experiments to void morphologies in a 58 x 70 x 73 cm andesitic enclave from silicic-andesite lava flows of Mt Mazama, Oregon (Bacon, 1986). This enclave is zoned, with a vesicle-rich center and a glass-rich rim, suggesting gas-driven melt segregation from the center to the rim. We use both 2D (optical microscopy and SEM) and 3D (X-ray tomography) techniques to image crystal textures and bubble shapes. The center of the enclave bears scattered patches of groundmass in the main phenocryst framework. These patches are similar to those observed in experiments, and thus melt segregation in the enclave may have occurred both toward the rim and toward these patches. Bubble morphologies reveal two main types of bubbles. (1) Lobate and finger-like bubbles, similar to the deformed bubbles in experiments, are found exclusively in the groundmass patches. They are also often associated with compacted crystal structures at the bubble walls. (2) Diktytaxitic textures - angular bubbles flattened against phenocrysts - are abundant in the crystal networks. These voids are entirely connected in 3D and formed the gas-rich center of the enclave. They likely represent a gas migration regime where the expanding gas front cannot deform the crystal structure but instead invades the pore-space between crystals, pushing out residual melt (filter pressing). The switch between regimes appears to depend on crystal size and aspect ratio. The similar features between bubbles in the enclave and in experiments are encouraging, and suggest that crystal-induced bubble deformation, and gas-driven melt segregation, may be common in crystal-rich magmas.

  4. Phenylethynyl Containing Polyarylene Ethers/Polyimides Resin Infiltration of Composites

    NASA Technical Reports Server (NTRS)

    Dunn, DeRome O.

    1998-01-01

    The following tasks were performed at NCA&TSU during the second year in performance of the grant. LaRC-LV-1 13 resin was synthesized at NCA&TSU. In order to perform the synthesis, glassware and needed apparatus were purchased with grant funds along with the appropriate monomers. It was found that the LaRC-LV-1 13 resin was easily synthesized by the NMP solvent/toluene imminization/distilled water precipitation process. However, in use this resin exhibited a bubbling/foaming behavior during cure that was detrimental leading to the production of composite panels having a high void content. Composite panels were fabricated using compression molding and resin transfer molding (RTM) techniques. Initial fiber volume determinations were computed at NCA&TSU along with NASA-Langley measured c-scans on the panels produced. The initial results indicated a unsatisfactory level of approximately 20% by volume of voids. Testing of uniaxial coupons in compression to failure also agreed with these results. The uniaxial coupons delaminated as the major mode of failure indicative of an unacceptably low level of resin and to much void content in the final composites produced. In discussions with Dr. Brian Jensen, it was suggested the void fraction needs to be reduced to at least 2% by volume for a useful composite. The panels produced used both resin synthesized at NASA-Langley and NCA&TSU. In reviewing our progress over the past year, it was noted that the resin as formulated by the current synthesis process bubbled at elevated temperature. This was especially observed in neat resin slugs cured at the recommended one, four and eight hour cure temperatures. Pressurized cures where then performed with pressures up to 200 psi and simultaneously the lowest eight hour cure temperatures. Although this procedure reduced the amount of bubbles to some extent in the neat resin slugs it did not completely eliminate them. The cure reaction appears to be very energetic even at the lowest recommended cure temperature. Currently, the pressurized cure apparatus developed at NCA&TSU is limited to 200 psi.

  5. Bubble number saturation curve and asymptotics of hypobaric and hyperbaric exposures.

    PubMed

    Wienke, B R

    1991-12-01

    Within bubble number limits of the varying permeability and reduced gradient bubble models, it is shown that a linear form of the saturation curve for hyperbaric exposures and a nearly constant decompression ratio for hypobaric exposures are simultaneously recovered from the phase volume constraint. Both limits are maintained within a single bubble number saturation curve. A bubble term, varying exponentially with inverse pressure, provides closure. Two constants describe the saturation curve, both linked to seed numbers. Limits of other decompression models are also discussed and contrasted for completeness. It is suggested that the bubble number saturation curve thus provides a consistent link between hypobaric and hyperbaric data, a link not established by earlier decompression models.

  6. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Betti, R.; Sanz, J.

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  7. High-performance colorimeter with an electronic bubble gate for use in miniaturized continuous-flow analyzers.

    PubMed

    Neeley, W E; Wardlaw, S C; Yates, T; Hollingsworth, W G; Swinnen, M E

    1976-02-01

    We describe a high-performance colorimeter with an electronic bubble gate for use with miniaturized continuous-flow analyzers. The colorimeter has a flow-through cuvette with optically flat quartz windows that allows a bubbled stream to pass freely without any breakup or retention of bubbles. The fluid volume in the light path is only 1.8 mul. The electronic bubble gate selectively removes that portion of the photodector signal produced by the air bubbles passing through the flow cell and allows that portion of the signal attributable to the fluid segment to pass to the recorder. The colorimeter is easy to use, rugged, inexpensive, and requires minimal adjustments.

  8. A New 4D Imaging Method for Three-Phase Analogue Experiments in Volcanology (and Other Three-Phase Systems)

    NASA Astrophysics Data System (ADS)

    Oppenheimer, J.; Patel, K. B.; Lev, E.; Hillman, E. M. C.

    2017-12-01

    Bubbles and crystals suspended in magmas interact with each other on a small scale, which affects large-scale volcanic processes. Studying these interactions on relevant scales of time and space is a long-standing challenge. Therefore, the fundamental explanations for the behavior of bubble- and crystal-rich magmas are still largely speculative. Recent application of X-ray tomography to experiments with synthetic magmas has already improved our understanding of small-scale 4D (3D + time) phenomena. However, this technique has low imaging rates < 20 volumes per second (vps) and does not work well with analogues, making experiments costly and slow. We demonstrate a novel methodology for imaging bubble-particle interactions in analogue suspensions by utilizing Swept Confocally Aligned Planar Excitation (SCAPE) microscopy. This method based on laser-fluorescence has been used to image live biological processes at high speed and in 3D. It allows imaging rates of up to several hundred vps and image volumes up to 1 x 1 x 0.5 mm3, with a trade-off between speed and spatial resolution. We ran two sets of experiments with silicone oil and soda-lime glass beads of <50 µm diameter, contained within a vertical glass casing 50 x 5 x 4 mm3. We used two different bubble generation methods. In the first set of experiments, small air bubbles (< 1 mm) were introduced through a hole at the bottom of the sample and allowed to rise through a suspension with low-viscosity oil. We successfully imaged bubble rise and particle movements around the bubble. In the second set, bubbles were generated by mixing acetone into the suspension and decreasing the surface pressure to cause a phase change to gaseous acetone. This bubble generation method compared favorably with previous gum rosin-acetone experiments: they provided similar degassing behaviors, along with more control on suspension viscosity and optimal optical properties for laser transmission. Large volumes of suspended bubbles, however, interfered with the laser path. In this set, we were able to track bubble nucleation sites and nucleation rates in 4D. This promising technique allows the study of small-scale interactions in two- and three-phase systems, at high imaging rates and at low cost.

  9. The alveolar surface network: a new anatomy and its physiological significance.

    PubMed

    Scarpelli, E M

    1998-08-01

    It is generally held that the terminal lung unit (TLU) is an agglomeration of alveoli that opens into the branching air spaces of respiratory bronchioles, alveolar ducts, and alveolar sacs and that these structures are covered by a continuous thin liquid layer bearing a monomolecular film of surfactants at the open gas-liquid interface. The inherent structural and functional instability given TLUs by a broad liquid surface layer of this nature has been mitigated by the discovery that the TLU surface is in fact an agglomeration of bubbles, a foam (the alveolar surface network) that fills the TLU space and forms ultrathin foam films that 1) impart infrastructural stability to sustain aeration, 2) modulate circulation of surface liquid, both in series and in parallel, throughout the TLU and between TLUs and the liquid surface of conducting airways, 3) modulate surface liquid volume and exchange with interstitial liquid, and 4) sustain gas transfer between conducting airways and pulmonary capillaries throughout the respiratory cycle. The experimental evidence, from discovery to the present, is addressed in this report. Lungs were examined in thorax by stereomicroscopy immediately from the in vivo state at volumes ranging from functional residual capacity to maximal volume (Vmax). Lungs were then excised; bubble topography of all anterior and anterolateral surfaces was reaffirmed and also confirmed for all posterior and posterolateral surfaces. The following additional criteria verify the ubiquitous presence of normal intraalveolar bubbles. 1) Bubbles are absent in conducting airways. 2) Bubbles are stable and stationary in TLUs but can be moved individually by gentle microprobe pressure. 3) Adjoining bubbles move into the external medium through subpleural microincisions; there is no free gas, and vacated spaces are rendered airless. Adjacent bubbles may shift position in situ, while more distal bubbles remain stationary. 4) The position and movement of "large" bubbles identifies them as intraductal bubbles. 5) Transection of the lung reveals analogous bubble occurrence and history in central lung regions. 6) Bubbles become fixed in place and change shape when the lung is dried in air; the original shape and movement are restored when the lung is rewet. 7) All exteriorized bubbles are stable with lamellar (film) surface tension near zero. 8) Intact lungs prepared and processed by the new double-embedding technique reveal the intact TLU bubbles and bubble films. Lungs were also monitored directly by stereomicroscopy to establish their presence, transformations, and apparent function from birth through adulthood, as summarized in the following section. Intraalveolar bubbles and bubble films (the unit structures of the alveolar surface network) have been found in all mammalian species examined to date, including lambs, kids, and rabbit pups and adult mice, rats, rabbits, cats, and pigs. Rabbits were used for the definitive studies. 1) A unit bubble occupies each alveolus and branching airway of the TLU; unit bubbles in clusters correspond with alveolar clusters. 2) The appositions of unit bubble lamellae (films) form a network of liquid channels within the TLUs. The appositions are bubble to bubble (near alveolar entrances, at pores of Kohn, and between ductal bubbles), bubble to epithelial cell surface, and bubble to surface liquid of conducting airways. They rapidly form stable Newtonian black foam films (approximately 7 nm thick) under hydrodynamic conditions expected in vivo. 3) Lamellae of the foam films and bubbles tend to exclude bulk liquid and thus maintain near-zero surface tension. At the same time, the foam film formations--abetted by the constant but small retractive force of tissue recoil--stabilize unit bubble position within the network. 4) Unit bubble mobility in response to applied force increases as liquid accumulates within the network (e.g. (ABSTRACT TRUNCATED)

  10. Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams.

    PubMed

    Gay, C; Rognon, P; Reinelt, D; Molino, F

    2011-01-01

    Up to a global scaling, the geometry of foams squeezed between two solid plates (2D GG foams) essentially depends on two independent parameters: the liquid volume fraction and the degree of squeezing (bubble thickness to diameter ratio). We describe it in two main asymptotic regimes: fully dry floor tiles, where the Plateau border radius is smaller than the distance between the solid plates, and dry pancakes, where it is larger. We predict a rapid variation of the Plateau border radius in one part of the pancake regime, namely when the Plateau border radius is larger than the inter-plate distance but smaller than the geometric mean of that distance and the bubble perimeter. This rapid variation is not related to any topological change in the foam: in all the regimes we consider, the bubbles remain in mutual lateral contact through films located at mid-height between both plates. We provide asymptotic predictions in different types of experiments on such 2D GG foams: when foam is being progressively dried or wetted, when it is being squeezed further or stretched, when it coarsens through film breakage or through inter-bubble gas diffusion. Our analysis is restricted to configurations close to equilibrium, as we do not include stresses resulting from bulk viscous flow or from non-homogeneous surfactant concentrations. We also assume that the inter-plate distance is sufficiently small for gravity to be negligible. The present work does not provide a method for measuring small Plateau border radii experimentally, but it indicates that large (and easily observable) Plateau borders should appear or disappear rather suddenly in some types of experiments with small inter-plate gaps. It also gives expected orders of magnitude that should be helpful for designing experiments on 2D GG foams.

  11. Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents

    NASA Astrophysics Data System (ADS)

    Steele-MacInnis, Matthew; Esposito, Rosario; Moore, Lowell R.; Hartley, Margaret E.

    2017-04-01

    Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2-H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.

  12. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    PubMed

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  13. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.

    PubMed

    Lukač, Nejc; Jezeršek, Matija

    2018-05-01

    When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

  14. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation

    PubMed Central

    van den Bos, Renate R.; van Ruijven, Peter W. M.; Nijsten, Tamar; Neumann, H. A. Martino; van Gemert, Martin J. C.

    2010-01-01

    Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a constant temperature, the saturation temperature of 100°C, over the volume where these non-condensing bubbles exist. During EVLA the above-mentioned observations indicate that a venous cylindrical volume with a length of about 20 mm is kept at 100°C. Pullback velocities of a few mm/s then cause at least the upper part of the treated vein wall to remain close to 100°C for a time sufficient to cause irreversible injury. In conclusion, we propose that the mechanism of action of boiling bubbles during EVLA is an efficient heat-pipe resembling way of heating of the vein wall. PMID:20644976

  15. Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.

    2017-12-01

    The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.

  16. Formation and evolution of bubbly screens in confined oscillating bubbly liquids.

    PubMed

    Shklyaev, Sergey; Straube, Arthur V

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  17. Formation and evolution of bubbly screens in confined oscillating bubbly liquids

    NASA Astrophysics Data System (ADS)

    Shklyaev, Sergey; Straube, Arthur V.

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  18. Bubbling at high flow rates in inviscid and viscous liquids (slags)

    NASA Astrophysics Data System (ADS)

    Engh, T. Abel; Nilmani, M.

    1988-02-01

    The behavior of gas discharging into melts at high velocities but still in the bubbling regime has been investigated in a laboratory modeling study for constant flow conditions. Air or helium was injected through a vertical tuyere into water, zinc-chloride, and aqueous glycerol solutions. High speed cinematography and pressure measurements in the tuyere have been carried out simultaneously. Pressure fluctuations at the injection point were monitored and correlated to the mode of bubble formation. The effects of high gas flow rates and high liquid viscosities have been examined in particular. Flow rates were employed up to 10-3 m3/s and viscosity to 0.5 Ns/m2. In order to attain a high gas momentum, the tuyere diameter was only 3 x 10-3 m. The experimental conditions and modeling liquids were chosen with special reference to the established practice of submerged gas injection to treat nonferrous slags. Such slags can be highly viscous. Bubble volume is smaller than that calculated from existing models such as those given by Davidson and Schüler10,11 due to the effect of gas momentum elongating the bubbles. On the other hand, viscosity tends to retard the bubble rise velocity, thus increasing volumes. To take elongation into account, a mathematical model is presented that assumes a prolate ellipsoidal shape of the bubbles. The unsteady potential flow equations for the liquid are solved for this case. Viscous effects are taken into account by noting that flow deviates from irrotational motion only in a thin boundary layer along the surface of the bubble. Thus, drag on the bubble can be obtained by calculating the viscous energy dissipation for potential flow past an ellipse. The time-dependent inertia coefficient for the ellipsoid is found by equating the vertical pressure increase inside and outside the bubble. This pressure change in the bubble is obtained by assuming that gas enters as a homogeneous jet and then calculating the stagnation pressure at the apex of the bubble.

  19. Evolution of Vapor Bubbles Nucleation Sites in Low Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1995-01-01

    When liquid is expelled by a vapor bubble growing at a nucleation site on a superheated surface, a thin microlayer underneath the bubble is left behind. It is evaporated from the free microlayer surface that provides for bubble growth. The average thickness of the microlayer determining the evaporation rate increases with time if the latter does not exceed a threshold value associated with the burn-out crisis. The bubble is described as a spherical segment with its flattened part adjoining the microlayer. This introduces two independent variables - the radius of the spherical part of the bubble surface and the polar angle that defines the relative area of the flattened part. They are to be found out from a set of two strongly nonlinear equations resulting from mass and momentum conservation laws. The first one depends on both microlayer thickness and nonmonotonously changing bubble base area. The second involves two major factors favoring bubble detachment - the buoyancy and a force due to the initial momentum of vapor input into the bubble. The former force depends on gravity whereas the latter one does not. It is why the limiting regimes of bubble evolution that correspond to normal or moderately reduced gravity and to microgravity feature drastically different properties. In the first case, the buoyancy dominates and the bubble evolves in such a manner as to become a full sphere at a moment that can be viewed as that of detachment. The detachment volume grows as gravity decreases. In the second case, the buoyancy is negligible and the bubble stays near the surface, while its volume continues to increase for a sufficiently long time. The findings are discussed in connection with experimental data obtained under different gravity conditions, some unpublished experiments being included. They help to understand why the pool boiling heat transfer coefficient frequently increases as gravity falls down and eventually vanishes.

  20. Effect of metabolic gases and water vapor, perfluorocarbon emulsions, and nitric oxide on tissue bubbles during decompression sickness.

    PubMed

    Randsøe, Thomas

    2016-05-01

    In aviation and diving, fast decrease in ambient pressure, such as during accidental loss of cabin pressure or when a diver decompresses too fast to sea level, may cause nitrogen (N2) bubble formation in blood and tissue resulting in decompression sickness (DCS). Conventional treatment of DCS is oxygen (O2) breathing combined with recompression.  However, bubble kinetic models suggest, that metabolic gases, i.e. O2 and carbon dioxide (CO2), and water vapor contribute significantly to DCS bubble volume and growth at hypobaric altitude exposures. Further, perfluorocarbon emulsions (PFC) and nitric oxide (NO) donors have, on an experimental basis, demonstrated therapeutic properties both as treatment and prophylactic intervention against DCS. The effect was ascribed to solubility of respiratory gases in PFC, plausible NO elicited nuclei demise and/or N2 washout through enhanced blood flow rate. Accordingly, by means of monitoring injected bubbles in exposed adipose tissue or measurements of spinal evoked potentials (SEPs) in anaesthetized rats, the aim of this study was to: 1) evaluate the contribution of metabolic gases and water vapor to bubble volume at different barometrical altitude exposures, 2) clarify the O2 contribution and N2 solubility from bubbles during administration of PFC at normo- and hypobaric conditions and, 3) test the effect of different NO donors on SEPs during DCS upon a hyperbaric air dive and, to study the influence of  NO on tissue bubbles at high altitude exposures. The results support the bubble kinetic models and indicate that metabolic gases and water vapor contribute significantly to bubble volume at 25 kPa (~10,376 m above sea level) and constitute a threshold for bubble stabilization or decay at the interval of 47-36 kPa (~6,036 and ~7,920 m above sea level). The effect of the metabolic gases and water vapor seemed to compromise the therapeutic properties of both PFC and NO at altitude, while PFC significantly increased bubble disappearance rate at sea level following a hyperbaric airdive. We found no protective effect of NO donors during DCS from diving. On the contrary, there was a tendency towards a poorer outcome when decompression was combined with NO donor administration. This observation is seemingly contradictive to recent publications and may be explained by the multifactorial effect of NO in combination with a fast decompression profile, speeding up the N2 release from tissues and thereby aggravating the DCS symptoms.

  1. Viscoelastic Tamponade Applied to the Ocular Surface for Enhanced Control of Gaseous Egress From the Anterior Chamber During Final Bubble Titration in DMEK Surgery: The "Polite" Burp.

    PubMed

    Sales, Christopher S; Fernandez, Ana Alzaga; Anwar, Zane

    2018-07-01

    To present a novel technique for enhancing the surgeon's control over the volume of air or gas that is "burped" from the anterior chamber during final bubble and intraocular pressure (IOP) titration in Descemet membrane endothelial keratoplasty. After ascertaining that the intracameral bubble is either too large and/or has rendered IOP too high, a bead of ophthalmic viscoelastic is applied to the ocular surface over a paracentesis incision, which is then depressed in the usual fashion to burp gas from the anterior chamber. The weight and viscosity of the viscoelastic create a tamponade that slows the egress of gas from the anterior chamber, thereby making it more controllable. If the bubble size or IOP needs to be reduced at the conclusion of the Descemet membrane endothelial keratoplasty procedure, application of ophthalmic viscoelastic over the paracentesis can enhance the surgeon's control over the volume of gas burped from the anterior chamber, thereby reducing the tendency to swing between a bubble that is too large or too small.

  2. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder

    PubMed Central

    Mukundakrishnan, Karthik; Quan, Shaoping; Eckmann, David M.; Ayyaswamy, Portonovo S.

    2009-01-01

    The wall effects on the axisymmetric rise and deformation of an initially spherical gas bubble released from rest in a liquid-filled, finite circular cylinder are numerically investigated. The bulk and gas phases are considered incompressible and immiscible. The bubble motion and deformation are characterized by the Morton number (Mo), Eötvös number (Eo), Reynolds number (Re), Weber number (We), density ratio, viscosity ratio, the ratios of the cylinder height and the cylinder radius to the diameter of the initially spherical bubble (H* = H/d0, R* = R/d0). Bubble rise in liquids described by Eo and Mo combinations ranging from (1,0.01) to (277.5,0.092), as appropriate to various terminal state Reynolds numbers (ReT) and shapes have been studied. The range of terminal state Reynolds numbers includes 0.02 < ReT < 70. Bubble shapes at terminal states vary from spherical to intermediate spherical-cap–skirted. The numerical procedure employs a front tracking finite difference method coupled with a level contour reconstruction of the front. This procedure ensures a smooth distribution of the front points and conserves the bubble volume. For the wide range of Eo and Mo examined, bubble motion in cylinders of height H* = 8 and R* ≥ 3, is noted to correspond to the rise in an infinite medium, both in terms of Reynolds number and shape at terminal state. In a thin cylindrical vessel (small R*), the motion of the bubble is retarded due to increased total drag and the bubble achieves terminal conditions within a short distance from release. The wake effects on bubble rise are reduced, and elongated bubbles may occur at appropriate conditions. For a fixed volume of the bubble, increasing the cylinder radius may result in the formation of well-defined rear recirculatory wakes that are associated with lateral bulging and skirt formation. The paper includes figures of bubble shape regimes for various values of R*, Eo, Mo, and ReT. Our predictions agree with existing results reported in the literature. PMID:17930342

  3. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    NASA Astrophysics Data System (ADS)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  4. Numerical analysis of bubble-cluster formation in an ultrasonic field

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Son, Gihun

    2016-11-01

    Bubble-cluster formation in an ultrasonic field is investigated numerically solving the conservation equations of mass, momentum and energy. The liquid-gas interface is calculated using the volume-of-fluid method with variable gas density to consider the bubble compressibility. The effect of liquid-gas phase change is also included as the interface source terms of the mass and energy equations. The numerical approach is tested through the simulation of the expansion and contraction motion of a compressed bubble adjacent to a wall. When the bubble is placed in an ultrasonic field, it oscillates radially and then collapses violently. Numerical simulation is also performed for bubble-cluster formation induced by an ultrasonic generator, where the generated bubbles are merged into a macrostructure along the acoustic flow field. The effects of ultrasonic power and frequency, liquid properties and pool temperature on the bubble-cluster formation are investigated. This work was supported by the Korea Institute of Energy Research.

  5. Orbital motions of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Ko; Inamura, Takao

    2012-09-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.

  6. Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability

    PubMed Central

    Sarkar, Kausik; Katiyar, Amit; Jain, Pankaj

    2009-01-01

    Gas diffusion from an encapsulated microbubble is modeled using an explicit linear relation for gas permeation through the encapsulation. Both the cases of single gas (air) and multiple gases (perfluorocarbon inside the bubble and air dissolved in surrounding liquid) are considered. An analytical expression for the dissolution time for an encapsulated air bubble is obtained; it showed that for small permeability the dissolution time increases linearly with decreasing permeability. A perfluorocarbon-filled contrast microbubble such as Definity was predicted to experience a transient growth due to air infusion before it dissolves in conformity with previous experimental findings. The growth phase occurs only for bubbles with a critical value of initial partial mole fraction of perfluorocarbon relative to air. With empirically obtained property values, the dissolution time of a 2.5 micron diameter (same as that of Definity) lipid coated octafluoropropane bubble with surface tension 25 mN/m predicts a lifetime of 42 minutes in an air saturated medium. The properties such as shell permeability, surface tension, relative mole fraction of octafluoropropane are varied to investigate their effects on the time scales of bubble growth and dissolution including their asymptotic scalings where appropriate. The dissolution dynamics scales with permeability, in that when the time is nondimensioanlized with permeability, curves for different permeabilities collapse on a single curve. Investigation of bubbles filled with other gases (non-octafluoropropane perfluorocarbon and sulfur hexafluoride) indicates longer dissolution time due to lower solubility and lower diffusivity for larger gas molecules. For such micron size encapsulated bubbles, lifetime of hours is possible only at extremely low surface tension (<1mN/m) or at extreme oversaturation. PMID:19616160

  7. Light Microscopy Module: An On-Orbit Microscope Planned for the Fluids and Combustion Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.

    2001-01-01

    The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.

  8. Abrupt transitions during sustained explosive eruptions: Examples from the 1912 eruption of Novarupta, Alaska

    USGS Publications Warehouse

    Adams, N.K.; Houghton, Bruce F.; Hildreth, W.

    2006-01-01

    Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 ??m vesicle diameter and cumulative number densities ranging from 107-109 cm-3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h. ?? Springer-Verlag 2006.

  9. Counteracting negative venous line pressures to avoid arterial air bubbles: an experimental study comparing two different types of miniaturized extracorporeal perfusion systems.

    PubMed

    Aboud, Anas; Mederos-Dahms, Hendrikje; Liebing, Kai; Zittermann, Armin; Schubert, Harald; Murray, Edward; Renner, Andre; Gummert, Jan; Börgermann, Jochen

    2015-05-29

    Because of its low rate of clinical complications, miniaturized extracorporeal perfusion systems (MEPS) are frequently used in heart centers worldwide. However, many recent studies refer to the higher probability of gaseous microemboli formation by MEPS, caused by subzero pressure values. This is the main reason why various de-airing devices were developed for today's perfusion systems. In the present study, we investigated the potential benefits of a simple one-way-valve connected to a volume replacement reservoir (OVR) for volume and pressure compensation. In an experimental study on 26 pigs, we compared MEPS (n = 13) with MEPS plus OVR (n = 13). Except OVR, perfusion equipment was identical in both groups. Primary endpoints were pressure values in the venous line and the right atrium as well as the number and volume of air bubbles. Secondary endpoints were biochemical parameters of systemic inflammatory response, ischemia, hemodilution and hemolysis. One animal was lost in the MEPS + OVR group. In the MEPS + OVR group no pressure values below -150 mmHg in the venous line and no values under -100 mmHg in right atrium were noticed. On the contrary, nearly 20% of venous pressure values in the MEPS group were below -150 and approximately 10% of right atrial pressure values were below -100 mmHg. Compared with the MEPS group, the bubble counter device showed lower numbers of arterial air bubbles in the MEPS + OVR group (mean ± SD: 13444 ± 5709 vs. 1 ± 2, respectively; p < 0.001). In addition, bubble volume was significantly lower in the MEPS + OVR group than in the MEPS group (mean ± SD: 1522 ± 654 μl vs. 4 ± 6 μl, respectively; p < 0.001). The proinflammatory cytokine interleukin-6 and biochemical indices of cardiac ischemia (creatine kinase, and troponin I) were comparable between both groups. The use of a miniaturized perfusion system with a volume replacement reservoir is able to counteract excessive negative venous line pressures and to reduce the number and volume of arterial air bubbles. This approach may lead to a lower rate of neurological complications.

  10. Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.

    PubMed

    Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin

    2015-07-28

    Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated.

  11. A Statistical Study of the Southern Fermi Bubble in UV Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Karim, Md. Tanveer; Fox, Andrew; Jenkins, Edward; Bordoloi, Rongmon; Wakker, Bart; Savage, Blair D.; Lockman, Felix; Crawford, Steve; Bland-Hawthorn, Joss; Jorgenson, Regina A.

    2018-01-01

    The Fermi Bubbles are two giant lobes of plasma situated at the center of the Milky Way, extending 55° above and below the Galactic Midplane. Although the Bubbles have been widely studied in multiple wavelengths, few studies have been done in UV absorption. Here we present a statistical study of the Southern Fermi Bubble using 17 QSO sightlines — 6 inside the Bubble, 11 outside — using UV absorption spectra from the Hubble Space Telescope Cosmic Origins Spectrograph (HST/COS). We searched for high-velocity clouds (HVCs) in 11 metal lines from ions of Aluminium, Carbon and Silicon. We detected HVCs in 83% of the sightlines inside the Bubble and 64% outside the Bubble, showing an enhancement in the covering fraction of HVCs in the Southern Bubble region. We also observed a decrease in vLSR of the HVCs as a function of the galactic latitude, consistent with a scenario where the identified HVCs trace the Galactic nuclear outflow, as sightlines closer to the central engine are expected to show a higher velocity. Combined with previous studies, our analysis indicates that the Southern Fermi Bubble is a dynamic environment giving rise to complex absorption features.

  12. A simple bubbling system for measuring radon (222Rn) gas concentrations in water samples based on the high solubility of radon in olive oil.

    PubMed

    Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T

    2004-01-01

    Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).

  13. PROPANE BUBBLE CHAMBER (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loria, A.; Mittner, P.; Scotoni, I.

    1959-03-01

    A propane bubble chamber of about two liters volume is described: details concerning the membrane expansion mechanism, the structure of the windows and the illuminating system are given. Some features of the use of it, recently made at the CERN synchrocyclotron, are indicated. (auth)

  14. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  15. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion. The aim of our future microgravity experiment is to assess the direct effects of gravity on cavitation bubble collapse through a comparison of single cavitation bubbles collapsing in mi-crogravity, normal gravity, and hypergravity. In particular, we shall investigate the shape of the bubble in its final collapse stage and the amount of energy dissipated in the dominant collapse channels, such as liquid jet, shock wave, and rebound bubble. The highly spherical bubbles will be produced via a point-like plasma generated by a high power laser beam. One major hypothesis that we will test is an increase in shock wave energy with decreasing gravity as a consequence of the higher final sphericity and suppression of liquid jets. To support this, we introduce an analytical model for the gravity-perturbed asymmetric collapse of spherical bubbles, and demonstrate that all initially spherical bubbles develop a gravity-related vertical jet along their collapse.

  16. The bubble-dependent mechanism of FUS-induced blood-brain barrier opening in mice and in monkeys in vivo

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Marquet, Fabrice; Vlachos, Fotios; Feshitan, Jameel A.; Borden, Mark A.; Konofagou, Elisa E.

    2012-10-01

    The blood-brain barrier (BBB) prevents most neurological drugs from traversing from the cerebral microvasculature into the brain parenchyma. Previous studies have shown that the presence of bubbles in an acoustic field temporarily opens the BBB. The BBB opening pressure threshold was previously identified to lie between 0.30 and 0.46 MPa in the case of the smaller bubbles and between 0.15 and 0.30 MPa in the larger bubble case. However, the physical effects responsible for BBB opening remain unknown. In addition, the noninvasive in vivo cavitation detection with mono-dispersed microbubbles has not been studied as of yet. The purpose of this study is to unveil the physical mechanism of the FUS-induced BBB opening with monodispersed microbubbles. Lipid-shelled microbubbles with three different diameters (1-2, 4-5 and 6-8 μm) were manufactured in-house and size-isolated using differential centrifugation. Sixty-seven (n=67) mice were each injected intravenously with bubbles of either 1-2, 4-5 or 6-8 μm in diameter and the concentration of 107 numbers/mL. The right hippocampus of each mouse was then sonicated using focused ultrasound (1.5 MHz frequency; 100 cycles (67 μs) pulse length; 10 Hz pulse repetition frequency; 1 minute sonication duration) while the left hippocampus served as the control. A 10-MHz transducer was used as a passive cavitation detector (PCD) to determine the threshold of inertial cavitation (IC). Each mouse was sonicated at a specific acoustic peak-rarefactional pressure at 0.15, 0.30, 0.45 or 0.60 MPa in order to identify the threshold of BBB opening and IC. T1-weighted MRI was used to verify the BBB opening and spectrograms were generated in order to detect the IC onset and duration. Our results suggest that the BBB opens as a result of nonlinear (harmonic) bubble oscillation when the bubble diameter is similar to the capillary diameter and with inertial cavitation when it is not. The bubble may thus have to be in contact with the capillary wall to induce BBB opening without inertial cavitation. The BBB opening volume was found to increase with both pressure and bubble size. Good correlation between the ICD and the BBB opening volume at distinct bubble diameters was established. No damage was induced at the BBB opening threshold in all bubble cases. The BBB opening was thus shown capable of being induced safely with nonlinear bubble oscillation at the pressure threshold and its volume was highly dependent on both the pressure and bubble diameter. The preliminary results of cavitation detection during BBB opening in monkeys are also provided.

  17. Wall function treatment for bubbly boundary layers at low void fractions.

    PubMed

    Soares, Daniel V; Bitencourt, Marcelo C; Loureiro, Juliana B R; Silva Freire, Atila P

    2018-01-01

    The present work investigates the role of different treatments of the lower boundary condition on the numerical prediction of bubbly flows. Two different wall function formulations are tested against experimental data obtained for bubbly boundary layers: (i) a new analytical solution derived through asymptotic techniques and (ii) the previous formulation of Troshko and Hassan (IJHMT, 44, 871-875, 2001a). A modified k-e model is used to close the averaged Navier-Stokes equations together with the hypothesis that turbulence can be modelled by a linear superposition of bubble and shear induced eddy viscosities. The work shows, in particular, how four corrections must the implemented in the standard single-phase k-e model to account for the effects of bubbles. The numerical implementation of the near wall functions is made through a finite elements code.

  18. Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.

    PubMed

    Poli, Jonathan A; Richardson, C Peter; DiBlasi, Robert M

    2015-03-01

    High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P < .05). The Fisher & Paykel Healthcare and Babi.Plus systems generally provided ΔV at lower frequencies than the other bubble CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems. Copyright © 2015 by Daedalus Enterprises.

  19. Wall Area of Influence and Growing Wall Heat Transfer due to Sliding Bubbles in Subcooled Boiling Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    A variety of dynamical features of sliding bubbles and their impact on wall heat transfer were observed at subcooled flow boiling conditions in a vertical square test channel. Among the wide range of parameters observed, we particularly focus in this paper on (i) the sliding bubbles’ effect on wall heat transfer (supplemantry discussion to the authors’ previous work in Yoo et al. (2016a,b)) and (ii) the wall area influenced by sliding bubbles in subcooled boiling flow. At first, this study reveals that the degree of wall heat transfer improvement due to sliding bubbles depended less on the wall superheat conditionmore » as the mass flux increased. Also, the sliding bubble trajectory was found to be one of the critical factors in order to properly describe the wall heat transfer associated with sliding bubbles. In particular, the wall area influenced by sliding bubbles depended strongly on both sliding bubble trajectory and sliding bubble size; the sliding bubble trajectory was also observed to be closely related to the sliding bubble size. Importantly, these results indicate the limitation of current approach in CFD analyses especially for the wall area of bubble influence. In addition, the analyses on the temporal fraction of bubbles’ residence (FR) along the heated wall show that the sliding bubbles typically travel through narrow path with high frequency while the opposite was observed downstream. That is, both FR and sliding bubble trajectory depended substantially on the distance from nucleation site, which is expected to be similar for the quenching heat transfer mode induced by sliding bubbles.« less

  20. Odds of observing the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlen, A.

    2010-03-15

    Eternal inflation predicts that our observable universe lies within a bubble (or pocket universe) embedded in a volume of inflating space. The interior of the bubble undergoes inflation and standard cosmology, while the bubble walls expand outward and collide with other neighboring bubbles. The collisions provide either an opportunity to make a direct observation of the multiverse or, if they produce unacceptable anisotropy, a threat to inflationary theory. The probability of an observer in our bubble detecting the effects of collisions has an absolute upper bound set by the odds of being in the part of our bubble that liesmore » in the forward light cone of a collision; in the case of collisions with bubbles of identical vacua, this bound is given by the bubble nucleation rate times (H{sub O}/H{sub I}){sup 2}, where H{sub O} is the Hubble scale outside the bubbles and H{sub I} is the scale of the second round of inflation that occurs inside our bubble. Similar results were obtained by Freigovel et al. using a different method for the case of collisions with bubbles of much larger cosmological constant; here, it is shown to hold in the case of collisions with identical bubbles as well.« less

  1. Resonance Tube Phonation in Water-the Effect of Tube Diameter and Water Depth on Back Pressure and Bubble Characteristics at Different Airflows.

    PubMed

    Wistbacka, Greta; Andrade, Pedro Amarante; Simberg, Susanna; Hammarberg, Britta; Södersten, Maria; Švec, Jan G; Granqvist, Svante

    2018-01-01

    Resonance tube phonation with tube end in water is a voice therapy method in which the patient phonates through a glass tube, keeping the free end of the tube submerged in water, creating bubbles. The purpose of this experimental study was to determine flow-pressure relationship, flow thresholds between bubble types, and bubble frequency as a function of flow and back volume. A flow-driven vocal tract simulator was used for recording the back pressure produced by resonance tubes with inner diameters of 8 and 9 mm submerged at water depths of 0-7 cm. Visual inspection of bubble types through video recording was also performed. The static back pressure was largely determined by the water depth. The narrower tube provided a slightly higher back pressure for a given flow and depth. The amplitude of the pressure oscillations increased with flow and depth. Depending on flow, the bubbles were emitted from the tube in three distinct types with increasing flow: one by one, pairwise, and in a chaotic manner. The bubble frequency was slightly higher for the narrower tube. An increase in back volume led to a decrease in bubble frequency. This study provides data on the physical properties of resonance tube phonation with the tube end in water. This information will be useful in future research when looking into the possible effects of this type of voice training. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Temperature change rate actuated bubble mixing for homogeneous rehydration of dry pre-stored reagents in centrifugal microfluidics.

    PubMed

    Hin, S; Paust, N; Keller, M; Rombach, M; Strohmeier, O; Zengerle, R; Mitsakakis, K

    2018-01-16

    In centrifugal microfluidics, dead volumes in valves downstream of mixing chambers can hardly be avoided. These dead volumes are excluded from mixing processes and hence cause a concentration gradient. Here we present a new bubble mixing concept which avoids such dead volumes. The mixing concept employs heating to create a temperature change rate (TCR) induced overpressure in the air volume downstream of mixing chambers. The main feature is an air vent with a high fluidic resistance, representing a low pass filter with respect to pressure changes. Fast temperature increase causes rapid pressure increase in downstream structures pushing the liquid from downstream channels into the mixing chamber. As air further penetrates into the mixing chamber, bubbles form, ascend due to buoyancy and mix the liquid. Slow temperature/pressure changes equilibrate through the high fluidic resistance air vent enabling sequential heating/cooling cycles to repeat the mixing process. After mixing, a complete transfer of the reaction volume into the downstream fluidic structure is possible by a rapid cooling step triggering TCR actuated valving. The new mixing concept is applied to rehydrate reagents for loop-mediated isothermal amplification (LAMP). After mixing, the reaction mix is aliquoted into several reaction chambers for geometric multiplexing. As a measure for mixing efficiency, the mean coefficient of variation (C[combining macron]V[combining macron], n = 4 LabDisks) of the time to positivity (t p ) of the LAMP reactions (n = 11 replicates per LabDisk) is taken. The C[combining macron]V[combining macron] of the t p is reduced from 18.5% (when using standard shake mode mixing) to 3.3% (when applying TCR actuated bubble mixing). The bubble mixer has been implemented in a monolithic fashion without the need for any additional actuation besides rotation and temperature control, which are needed anyhow for the assay workflow.

  3. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, R.; Baten, J.M. van

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions.more » The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.« less

  4. Dynamics of investor spanning trees around dot-com bubble.

    PubMed

    Ranganathan, Sindhuja; Kivelä, Mikko; Kanniainen, Juho

    2018-01-01

    We identify temporal investor networks for Nokia stock by constructing networks from correlations between investor-specific net-volumes and analyze changes in the networks around dot-com bubble. The analysis is conducted separately for households, financial, and non-financial institutions. Our results indicate that spanning tree measures for households reflected the boom and crisis: the maximum spanning tree measures had a clear upward tendency in the bull markets when the bubble was building up, and, even more importantly, the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time, we find less clear reactions in the minimal and maximal spanning trees of non-financial and financial institutions around the bubble, which suggests that household investors can have a greater herding tendency around bubbles.

  5. Dynamics of investor spanning trees around dot-com bubble

    PubMed Central

    Kivelä, Mikko; Kanniainen, Juho

    2018-01-01

    We identify temporal investor networks for Nokia stock by constructing networks from correlations between investor-specific net-volumes and analyze changes in the networks around dot-com bubble. The analysis is conducted separately for households, financial, and non-financial institutions. Our results indicate that spanning tree measures for households reflected the boom and crisis: the maximum spanning tree measures had a clear upward tendency in the bull markets when the bubble was building up, and, even more importantly, the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time, we find less clear reactions in the minimal and maximal spanning trees of non-financial and financial institutions around the bubble, which suggests that household investors can have a greater herding tendency around bubbles. PMID:29897973

  6. Experimental study on the void fraction of air-water two-phase flow in a horizontal circular minichannel

    NASA Astrophysics Data System (ADS)

    Sudarja, Indarto, Deendarlianto, Haq, Aqli

    2016-06-01

    Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.

  7. Eight-Liter Hydrogen-Deuterium Bubble Chamber in Magnetic Field; VOS MILITROVAYA VODORODNO-DEITERIEVAYA PUZYR'KOVAYA KAMERA V MAGNITNOM POLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokhintseva, T.D.; Vasilenko, A.T.; Grebinnik, V.G.

    1961-01-01

    A design of an 8-liter hydrogen-deuterium bubble chamber is described, and its operating characteristics are given. The chamber is a metal-glass device with the vertical location of its working volume. The chamber is illuminated by means of a lens. In the expansion system the bellows are used. The magnetic field is 12000 oersted in the working volume. The operating cycle of the chamber does not exceed 2 secs. (auth)

  8. The Collapse of Vapor Bubbles in a Spatially Non-Uniform Flow

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    2000-01-01

    Pressure gradients act differently on liquid particles and suspended bubbles and are, therefore, capable of inducing a relative motion between the phases even when no relative velocity initially exists. As a consequence of the enhanced heat transfer in the presence of convection, this fact may have a major impact on the evolution of a vapor bubble. The effect is particularly strong in the case of a collapsing bubble for which, due to the conservation of the system's impulse, the induced relative velocity tends to be magnified when the bubble volume shrinks. A practical application could be, for instance, the enhancement of the condensation rate of bubbles downstream of a heated region, thereby reducing the quality of a flowing liquid-vapor mixture. A simple model of the process, in which the bubble is assumed to be spherical and the flow potential, is developed in the paper.

  9. Low Frequency Ocean Ambient Noise: Measurements and Theory,

    DTIC Science & Technology

    1987-12-14

    entrained gas bubbles which result from wave breaking and which are forced by intense velocity of the gravity-capil- lary waves. For wind speeds with a...ternal force acting on the volume and has a dipole character. These two terms could be important in the incorporation of entrained bubble oscil- lation and...Applied Research Lab, Penn. State Univ., State College, PA 16804 Mellen, R.H., 1987: private communication. Minnaert, M., 1933: ’ Musical Air-Bubbles

  10. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  11. Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.

    PubMed

    Gumerov, Nail A; Akhatov, Iskander S

    2017-02-01

    The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.

  12. Gas Bubble Dynamics under Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  13. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.

    PubMed

    Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter

    2015-06-07

    Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.

  14. Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants

    NASA Astrophysics Data System (ADS)

    Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.

    2013-03-01

    Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL

  15. Direct observation of individual particle armored bubble interaction, stability, and coalescence dynamics.

    PubMed

    Tan, Sin-Ying; Ata, Seher; Wanless, Erica J

    2013-07-18

    The interactions between two individual particle-stabilized bubbles were investigated, in the absence of surfactant, using a combination of coalescence rig and high-speed video camera. This combination allows the visualization of bubble coalescence dynamics which provide information on bubble stability. Experimental data suggested that bubble stability is enhanced by both the adsorption of particles at the interface as indicated by the long induction time and the increase in damping coefficient at high surface coverage. The interaction between an armored bubble and a bare bubble (asymmetric interaction) can be destabilized through the addition of a small amount of salt, which suggested that electrostatic interactions play a significant role in bubble stability. Interestingly, the DLVO theory cannot be used to describe the bubble stability in the case of a symmetric interaction as coalescence was inhibited at 0.1 M KCl in both the absence and presence of particles at the interfaces. Furthermore, bubbles can also be destabilized by increasing the particle hydrophobicity. This behavior is due to thinner liquid films between bubbles and an increase in film drainage rate. The fraction of particles detached from the bubble surface after film rupture was found to be very similar within the range of solution ionic strength, surface coverage, and particle hydrophobicity studied. This lack of dependence implies that the kinetic energy generated by the coalescing bubbles is larger than the attachment energy of the particles and dominates the detachment process. This study illuminates the stability behavior of individual particle-stabilized bubbles and has potential impact on processes which involve their interaction.

  16. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.

    Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumedmore » that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.« less

  17. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds.

    PubMed

    Costantini, Marco; Colosi, Cristina; Jaroszewicz, Jakub; Tosato, Alessia; Święszkowski, Wojciech; Dentini, Mariella; Garstecki, Piotr; Barbetta, Andrea

    2015-10-28

    Ordered porous polymeric materials can be engineered to present highly ordered pore arrays and uniform and tunable pore size. These features prompted a number of applications in tissue engineering, generation of meta materials, and separation and purification of biomolecules and cells. Designing new and efficient vistas for the generation of ordered porous materials is an active area of research. Here we investigate the potential of microfluidic foaming within a flow-focusing (FF) geometry in producing 3D regular sponge-like polymeric matrices with tailored morphological and permeability properties. The challenge in using microfluidic systems for the generation of polymeric foams is in the high viscosity of the continuous phase. We demonstrate that as the viscosity of the aqueous solution increases, the accessible range of foam bubble fraction (Φb) and bubble diameter (Db) inside the microfluidic chip tend to narrow progressively. This effect limits the accessible range of geometric properties of the resulting materials. We further show that this problem can be rationally tackled by appropriate choice of the concentration of the polymer. We demonstrate that via such optimization, the microfluidic assisted synthesis of porous materials becomes a facile and versatile tool for generation of porous materials with a wide range of pore size and pore volume. Moreover, we demonstrate that the size of interconnects among pores-for a given value of the gas fraction-can be tailored through the variation of surfactant concentration. This, in turn, affects the permeability of the materials, a factor of key importance in flow-through applications and in tissue engineering.

  18. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    DOE PAGES

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; ...

    2017-06-19

    Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumedmore » that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.« less

  19. Using a Novel Optical Sensor to Characterize Methane Ebullition Processes

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.; Senft-Grupp, S.

    2015-12-01

    We have built a novel bubble size sensor that is rugged, economical to build, and capable of accurately measuring methane bubble sizes in aquatic environments over long deployment periods. Accurate knowledge of methane bubble size is important to calculating atmospheric methane emissions from in-land waters. By routing bubbles past pairs of optical detectors, the sensor accurately measures bubbles sizes for bubbles between 0.01 mL and 1 mL, with slightly reduced accuracy for bubbles from 1 mL to 1.5 mL. The sensor can handle flow rates up to approximately 3 bubbles per second. Optional sensor attachments include a gas collection chamber for methane sampling and volume verification, and a detachable extension funnel to customize the quantity of intercepted bubbles. Additional features include a data-cable running from the deployed sensor to a custom surface buoy, allowing us to download data without disturbing on-going bubble measurements. We have successfully deployed numerous sensors in Upper Mystic Lake at depths down to 18 m, 1 m above the sediment. The resulting data gives us bubble size distributions and the precise timing of bubbling events over a period of several months. In addition to allowing us to characterize typical bubble size distributions, this data allows us to draw important conclusions about temporal variations in bubble sizes, as well as bubble dissolution rates within the water column.

  20. Soap bubbles in analytical chemistry. Conductometric determination of sub-parts per million levels of sulfur dioxide with a soap bubble.

    PubMed

    Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K

    2006-04-15

    Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble.

  1. A bubble detection system for propellant filling pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It canmore » generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.« less

  2. Influence of bubble size and thermal dissipation on compressive wave attenuation in liquid foams

    NASA Astrophysics Data System (ADS)

    Monloubou, M.; Saint-Jalmes, A.; Dollet, B.; Cantat, I.

    2015-11-01

    Acoustic or blast wave absorption by liquid foams is especially efficient and bubble size or liquid fraction optimization is an important challenge in this context. A resonant behavior of foams has recently been observed, but the main local dissipative process is still unknown. In this paper, we evidence the thermal origin of the dissipation, with an optimal bubble size close to the thermal boundary layer thickness. Using a shock tube, we produce typical pressure variation at time scales of the order of the millisecond, which propagates in the foam in linear and slightly nonlinear regimes.

  3. Dynamic film thickness between bubbles and wall in a narrow channel

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Damsohn, Manuel; Prasser, Horst-Michael; Aritomi, Masanori

    2011-09-01

    The present paper describes a novel technique to characterize the behavior of the liquid film between gas bubbles and the wall in a narrow channel. The method is based on the electrical conductance. Two liquid film sensors are installed on both opposite walls in a narrow rectangular channel. The liquid film thickness underneath the gas bubbles is recorded by the first sensor, while the void fraction information is obtained by measuring the conductance between the pair of opposite sensors. Both measurements are taken on a large two-dimensional domain and with a high speed. This makes it possible to obtain the two-dimensional distribution of the dynamic liquid film between the bubbles and the wall. In this study, this method was applied to an air-water flow ranging from bubbly to churn regimes in the narrow channel with a gap width of 1.5 mm.

  4. Attenuation of low-frequency underwater sound using an array of air-filled balloons and comparison to effective medium theory.

    PubMed

    Lee, Kevin M; Wilson, Preston S; Wochner, Mark S

    2017-12-01

    The ultimate goal of this work is to accurately predict the attenuation through a collection of large (on the order of 10-cm-radius) tethered encapsulated bubbles used in underwater noise abatement systems. Measurements of underwater sound attenuation were performed during a set of lake experiments, where a low-frequency compact electromechanical sound source was surrounded by different arrays of encapsulated bubbles with various individual bubbles sizes and void fractions. The measurements were compared with an existing predictive model [Church, J. Acoust. Soc. Am. 97, 1510-1521 (1995)] of the dispersion relation for linear propagation in liquid containing encapsulated bubbles. Although the model was originally intended to describe ultrasound contrast agents, it is evaluated here for large bubbles, and hence low frequencies, as a design tool for future underwater noise abatement systems, and there is good quantitative agreement between the observations and the model.

  5. Linear Instability Analysis of non-uniform Bubbly Mixing layer with Two-Fluid model

    NASA Astrophysics Data System (ADS)

    Sharma, Subash; Chetty, Krishna; Lopez de Bertodano, Martin

    We examine the inviscid instability of a non-uniform adiabatic bubbly shear layer with a Two-Fluid model. The Two-Fluid model is made well-posed with the closure relations for interfacial forces. First, a characteristic analysis is carried out to study the well posedness of the model over range of void fraction with interfacial forces for virtual mass, interfacial drag, interfacial pressure. A dispersion analysis then allow us to obtain growth rate and wavelength. Then, the well-posed two-fluid model is solved using CFD to validate the results obtained with the linear stability analysis. The effect of the void fraction and the distribution profile on stability is analyzed.

  6. Orbital revolution of a pair of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Kou; Inamura, Takao

    2011-11-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging; the cyclic bubble oscillation was appeared to slow down by capturing images at the framing rate close to the forcing frequency. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along a circular orbit around the center of mass of the orbiting two bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force. The angular velocity of orbital revolution increases linearly with the increase in Bjerknes force.

  7. Bubble performance of a novel dissolved air flotation(DAF) unit.

    PubMed

    Chen, Fu-tai; Peng, Feng-xian; Wu, Xiao-qing; Luan, Zhao-kun

    2004-01-01

    ES-DAF, a novel DAF with low cost, high reliability and easy controllability, was studied. Without a costly air saturator, ES-DAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with M-DAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.

  8. Oscillating microbubbles for selective particle sorting in acoustic microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rogers, Priscilla; Xu, Lin; Neild, Adrian

    2012-05-01

    In this study, acoustic waves were used to excite a microbubble for selective particle trapping and sorting. Excitation of the bubble at its volume resonance, as necessary to drive strong fluid microstreaming, resulted in the particles being either selectively attracted to the bubble or continuing to follow the local microstreamlines. The operating principle exploited two acoustic phenomena acting on the particle suspension: the drag force arising from the acoustic microstreaming and the secondary Bjerknes force, i.e. the attractive radiation force produced between an oscillating bubble and a non-buoyant particle. It was also found that standing wave fields within the fluid chamber could be used to globally align bubbles and particles for local particle sorting by the bubble.

  9. Pressure increases, the for­mation of chromite seams, and the development of the ultramafic series in the Stillwater Complex, Montana

    USGS Publications Warehouse

    Lipin, Bruce R.

    1993-01-01

    This paper explores the hypothesis that chromite seams in the Stillwater Complex formed in response to periodic increases in total pressure in the chamber. Total pressure increased because of the positive δV of nucleation of CO2 bubbles in the melt and their subsequent rise through the magma chamber, during which the bubbles increased in volume by a factor of 4–6. By analogy with the pressure changes in the summit chambers of Kilauea and Krafla volcanoes, the maximum variation was 0⋅2–0⋅25 kbar, or 5–10% of the total pressure in the Stillwater chamber. An evaluation of the likelihood of fountaining and mixing of a new, primitive liquid that entered the chamber with the somewhat more evolved liquid already in the chamber is based upon calculations using observed and inferred velocities and flow rates of basaltic magmas moving through volcanic fissures. The calculations indicate that hot, dense magma would have oozed, rather than fountained into the chamber, and early mixing of the new and residual magmas that could have resulted in chromite crystallizing alone did not take place.Mixing was an important process in the Stillwater magma chamber, however. After the new magma in the chamber underwent ˜5% fractional crystallization, its composition, temperature, and density approached those of the overlying liquid in the chamber and the liquids then mixed. If this process occurred many times over the course of the development of the Ultramafic series, a thick column of magma with orthopyroxene on its liquidus would have been the result. Thus, the sequence of multiple injections, fractionation, and mixing with previously fractionated magma could have been the mechanism that produced the thick bronzite cumulate layer (the Bronzitite zone) above the cyclic units.

  10. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection

    NASA Astrophysics Data System (ADS)

    Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan

    2017-03-01

    To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.

  11. Model of Fluidized Bed Containing Reacting Solids and Gases

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.

  12. Evolution of the scattering anisotropy of aged foams in the wet-to-dry transition

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Yuvchenko, S. A.; Isaeva, A. A.; Isaeva, E. A.; Samorodina, T. V.

    2018-04-01

    Empirical data on the diffuse and collimated transmittance of aged liquid foams are discussed in terms of influence of mutual correlations in the scatter positions. This influence can be described introducing the static structure factor of a scattering system and occurs remarkable in the case of wet foams with gas bubbles as the basic scattering units. On the contrary, mutual correlations of basic scattering units (Plateau-Gibbs channels and vertices) in dry foams are negligible due to low values of their volume fraction. This causes dramatic changes of the scattering anisotropy of foam layers in the vicinity of the wet-to-dry transition. Some analogies can be drawn between this effect and a previously reported "optical inversion" of densely packed random media.

  13. On the structure of nonlinear waves in liquids with gas bubbles

    NASA Astrophysics Data System (ADS)

    Beylich, Alfred E.; Gülhan, Ali

    1990-08-01

    Transient wave phenomena in two-phase mixtures with a liquid as the matrix and gas bubbles as the dispersed phase have been studied in a shock tube using glycerine as the liquid and He, N2, and SF6 as gases having a large variation in the ratio of specific heats and the thermal diffusivity. Two different sizes of bubble radii have been produced , R0=1.15 and 1.6 mm, with a dispersion in size of less than 5%. The void fraction was varied over one order of magnitude, φ0=0.2%-2%. The measured pressure profiles were averaged by superimposing many shots, typically 20. Speeds and profiles were measured for shock waves and for wave packets. Investigation of the wave structure allows one to approach the fundamental question of how the physics on the level of the microstructure influences the behavior on the macroscale. In the theoretical work, modeling on the basis of a hierarchy of characteristic length scales is developed. Bubble interactions, transient heat transfer, and dissipation due to molecular and bulk viscosities are included. Solutions for small void fractions and moderate amplitudes are obtained for the steady cases of shock waves and solitons and are compared with the experimental results.

  14. Modelling cavitation erosion using fluid–material interaction simulations

    PubMed Central

    Chahine, Georges L.; Hsiao, Chao-Tsung

    2015-01-01

    Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  16. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype.

    PubMed

    Herbst, Daniel P

    2014-09-01

    Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient's systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26-33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique.

  17. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype

    PubMed Central

    Herbst, Daniel P.

    2014-01-01

    Abstract: Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient’s systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26–33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique. PMID:26357790

  18. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Socolofsky, Scott A.; Breier, John A.; Seewald, Jeffrey S.

    2016-04-01

    This paper reports the results of quantitative imaging using a stereoscopic, high-speed camera system at two natural gas seep sites in the northern Gulf of Mexico during the Gulf Integrated Spill Research G07 cruise in July 2014. The cruise was conducted on the E/V Nautilus using the ROV Hercules for in situ observation of the seeps as surrogates for the behavior of hydrocarbon bubbles in subsea blowouts. The seeps originated between 890 and 1190 m depth in Mississippi Canyon block 118 and Green Canyon block 600. The imaging system provided qualitative assessment of bubble behavior (e.g., breakup and coalescence) and verified the formation of clathrate hydrate skins on all bubbles above 1.3 m altitude. Quantitative image analysis yielded the bubble size distributions, rise velocity, total gas flux, and void fraction, with most measurements conducted from the seafloor to an altitude of 200 m. Bubble size distributions fit well to lognormal distributions, with median bubble sizes between 3 and 4.5 mm. Measurements of rise velocity fluctuated between two ranges: fast-rising bubbles following helical-type trajectories and bubbles rising about 40% slower following a zig-zag pattern. Rise speed was uncorrelated with hydrate formation, and bubbles following both speeds were observed at both sites. Ship-mounted multibeam sonar provided the flare rise heights, which corresponded closely with the boundary of the hydrate stability zone for the measured gas compositions. The evolution of bubble size with height agreed well with mass transfer rates predicted by equations for dirty bubbles.

  19. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  20. Acoustic observations of gas bubble streams in the NW Black Sea as a method for estimation of gas flux from vent sites

    NASA Astrophysics Data System (ADS)

    Artemov, Yu. G.

    2003-04-01

    Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the water column due to a certain bubble stream, 2) how much amount of gas comes into the water column due to a certain seepage area of the see floor, 3) how much amount of gas diffuses into the water and how much gas phase enters the atmosphere. Echo-sounder is the habitual equipment for detecting gas plumes (flares) in the water column. To provide observations of gas seeps with bubbles tracking, single target and volume backscattering strength measurements, we use installed on board the R/V "Professor Vodyanitskiy" dual frequency (38 and 120 kHz) split-beam scientific echo-sounder SIMRAD EK-500. Dedicated software is developed to extract from the raw echo data and to handle the definite information for analyses of gas bubble streams features. This improved hydroacoustic techniques allows to determine gas bubbles size spectrum at different depths through the water column as well as rise velocity of bubbles of different sizes. For instance, bubble of 4.5 mm diameter has rising speed of 25.8 cm/sec at 105 m depth, while bubble of 1.7 mm diameter has rising speed of 16.3 cm/sec at 32 m depth. Using volume backscattering measurements in addition, it is possible to evaluate flux of the gas phase produced by methane bubble streams and to learn of its fate in the water column. Ranking of various gas plumes by flux rate value is available also. In this presentation results of acoustic observations at the shallow NW Black Sea seepage area are given.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeishi, T.; Kotoh, K.; Kawabata, Y.

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontaminationmore » was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.« less

  2. Small-bubble transport and splitting dynamics in a symmetric bifurcation.

    PubMed

    Qamar, Adnan; Warnez, Matthew; Valassis, Doug T; Guetzko, Megan E; Bull, Joseph L

    2017-08-01

    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  3. Ultrasound-induced oscillations of gas bubbles in contact with gelatin gel surfaces

    NASA Astrophysics Data System (ADS)

    Fukui, Sosuke; Ando, Keita

    2017-11-01

    Ultrasound-induced dynamics of gas bubbles in the vicinity of deformable boundaries are studied experimentally, as a simplified model of sonoporation in medicine. In our experiment, 28-kHz underwater ultrasound was irradiated to a gas bubble nuclei (of radius from 60 μm to 200 μm) sitting at gel surfaces (of gelatin concentration from 6 wt% to 16 wt%) and the bubble dynamics were recorded by a high-speed camera. The repeated deformation of the gel surface was found to be in phase with volumetric oscillation of the bubble. A liquid jet, which can appear toward the collapse phase in the bubble oscillation in volume, produced localized surface deformation, which is an important observation in the context of sonoporation. We characterize the maximum displacement of the gel surface with varying the bubble nuclei radius (in comparison to the resonant radius fixed approximately at 117 μm). We also examine the phase difference between the ultrasound and the bubble dynamics under the influence of the deformable boundary. The Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  4. In vitro and in vivo evaluation of Dideco's paediatric cardiopulmonary circuit for neonates weighing less than five kilograms.

    PubMed

    Thiara, A S; Eggereide, V; Pedersen, T; Lindberg, H; Fiane, A E

    2010-07-01

    The neonate cardiopulmonary bypass (CPB) circuit, including a KIDS D100 oxygenator (The Sorin Group, Mirandola, Italy) and a D130 arterial filter (The Sorin Group), was evaluated in vitro with respect to the removal of free micro gas bubbles. No gas bubbles > 40microm were measured after the arterial filter D130 upon manual introduction of 10 ml of air into the venous line or during the use of vacuum-assisted venous drainage (VAVD). The D130 arterial filter removed 88 % of gas bubbles < 40 microm during manual introduction of air into the venous line; however, only 50 % of gas bubbles < 40 microm were removed during the use of VAVD. The same CPB circuit was evaluated in vivo to compare with another CPB circuit, including a D901 oxygenator (The Sorin Group) and arterial filter D736 (The Sorin Group), in 155 neonates weighing < or =5 kg. The D100 circuit required significantly less priming volume than the D901 circuit. Postoperative haemoglobin was significantly higher, artificial ventilation time was significantly shorter and postoperative bleeding was significantly less in the D100 group. This neonate CPB circuit effectively removed the gas bubbles and required up to 37% less priming volume and, thus, decreased the need for blood transfusion.

  5. Sound propagation in water containing large tethered spherical encapsulated gas bubbles with resonance frequencies in the 50 Hz to 100 Hz range.

    PubMed

    Lee, Kevin M; Hinojosa, Kevin T; Wochner, Mark S; Argo, Theodore F; Wilson, Preston S; Mercier, Richard S

    2011-11-01

    The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.

  6. Current Perspectives in Hyperbaric Physiology, Ultrasonic Doppler Bubble Detection, and Mass Spectrometry,

    DTIC Science & Technology

    1979-12-28

    Doppler sound made by a bubble passing through the inson- ified volume blood vessel resembles a very sharp truncated whistle , chirp or click depending...the Doppler ultrasound , suffered the "slings and arrows of outrageous criticism" to borrow and beat a phrase. It is not appropriate to go into this

  7. Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

    NASA Technical Reports Server (NTRS)

    Hazen-Bosveld, April; Lipert, Robert J.; Nordling, John; Shih, Chien-Ju; Siperko, Lorraine; Porter, Marc D.; Gazda, Daniel B.; Rutz, Jeff A.; Straub, John E.; Schultz, John R.; hide

    2007-01-01

    Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples. The ground and flight results showed excellent agreement, demonstrating that manual manipulation is an effective means for collecting bubble-free water samples in microgravity.

  8. Surface properties of liquid In-Zn alloys

    NASA Astrophysics Data System (ADS)

    Pstruś, J.; Moser, Z.; Gąsior, W.

    2011-02-01

    The measurements of surface tension and density of zinc, indium and liquid In-Zn alloys containing 0.9, 0.85, 0.75, 0.70, 0.60, 0.40, 0.25 and 0.10 mole fraction of In were carried out using the method of maximum pressure in gaseous bubbles (MBP) as well as dilatometric technique. The technique of sessile drop was additionally applied in the measurements of surface tension for pure indium and zinc. The measurements were performed at temperature range 474-1151 K. The isotherms of surface tension calculated based on Butler's equation at 700 and 1100 K corresponded well with the experimental values for zinc content lower than 0.6 mole fraction. The surface tension calculated for alloys of higher zinc concentrations (0.6 < XZn < 0.95) had a positive value of the surface tension temperature coefficient (dσ/dT), which did not coincide with the experimental results. The density as well as molar volume of liquid In-Zn alloys showed almost identical behaviour like the ideal solutions. The observed little deviations were contained within assessed experimental errors.

  9. New insights into modeling an organic mass fraction of sea spray aerosol

    NASA Astrophysics Data System (ADS)

    Meskhidze, N.; Gantt, B.

    2010-12-01

    As the study of climate change progresses, a need to separate the effects of natural and anthropogenic processes becomes essential in order to correctly forecast the future climate. Due to their massive source regions underlying an atmosphere with low aerosol concentration, marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) are extremely important for the Earth’s radiative budget, regional air quality and biogeochemical cycling of elements. Measurements of freshly-emitted sea spray have revealed that bubble bursting processes, largely responsible for the production of sea salt aerosol, also control sea-to-air transfer of marine organic matter. It has been established that the organic mass fraction of sea spray can be a function of sea-water composition (e.g., concentrations of Chlorophyll-a, [Chl-a], dissolved organic carbon, [DOC], particulate organic carbon, [POC], types of organic carbon, and the amount of surfactants). Current paramaterizations of marine primary organic aerosol emissions use remotely sensed [Chl-a] data as a proxy for oceanic biological activity. However, it has also been shown that the path length, size, and lifetime of bubbles in seawater as well as spatial coverage of seawater surface by streaks or slicks (visible film of a roughly 50 μm thick layer, highly enriched in organics) can have dramatic effect on organic mass fraction of sea spray (OCss). Dynamics of bubble entrainment and the level of microlayer enrichment by organics relative to the underlying bulk water can be controlled by surface wind speed. For bubble entrainment, high winds can increase rising bubble path length and therefore the amount of organics scavenged by the bubble. However, when the surface wind speeds exceed 8 m s-1 breaking of ocean waves can entirely destroy surface organic films and diminish the amount of organics leaving the sea. Despite the probable impact of wind speed, existing parameterizations do not consider the wind speed dependence of OCss. In this study we use remotely sensed data for ocean slick coverage and surface wind speed in conjunction with an upwind averaged concentrations of [Chl-a], [DOC] and [POC] to derive marine primary organic aerosol emission function. Derived empirical relationships between the aerosol and ocean/meteorological data are then compared to observed OCss at Mace Head and Point Reyes National Seashore. MATLAB curve fitting tool revealed that multi-variable regression analysis (with both wind speed and [Chl-a]) yields a significant improvement between model predicted and observed submicron fraction of OCss. The coefficient of determination increased from R2=0.1 for previous parameterizations to R2=0.6. Based on the results of this study we propose that in addition to sea-water composition, future parameterizations of marine primary organic aerosol emissions should include sea spray organic mass fraction dependence on surface wind speed.

  10. Study of the physicochemical effects on the separation of the non-metallic fraction from printed circuit boards by inverse flotation.

    PubMed

    Flores-Campos, R; Estrada-Ruiz, R H; Velarde-Sánchez, E J

    2017-11-01

    Recycling printed circuit boards using green technology is increasingly important due to the metals these contain and the environmental care that must be taken when separating the different materials. Inverse flotation is a process that can be considered a Green Technology, which separates metallic from non-metallic fractions. The degree of separation depends on how much material is adhered to air bubbles. The contact angle measurement allows to determine, in an easy way, whether the flotation process will occur or not and thus establish a material as hydrophobic or not. With the material directly obtained from the milling process, it was found that the contact angle of the non-metallic fraction-liquid-air system increases as temperature increases. In the same way, the increments in concentration of frother in the liquid increase the contact angle of the non-metallic fraction-liquid-air system. 10ppm of Methyl Isobutyl Carbinol provides the highest contact angle as well as the highest material charging in the bubble. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of condensate in the exhalation limb of neonatal circuits on airway pressure during bubble CPAP.

    PubMed

    Youngquist, Tiffany M; Richardson, C Peter; Diblasi, Robert M

    2013-11-01

    Bubble CPAP is frequently used in spontaneously breathing infants with lung disease. Often bubble CPAP systems lack pressure alarms and pressure-release valves. We observed a large volume of condensate in the exhalation limb of a patient circuit and conducted a series of experiments to test the hypothesis that accumulated condensate could affect delivered pressures. An anatomically accurate nasal airway model of a preterm infant was attached to a spontaneously breathing lung model. A bubble CPAP system was attached to the nasal airway with bi-nasal short prongs, and the rate of fluid condensation was measured. Next, tracheal pressures were monitored digitally to detect changes in airway pressure related to condensate accumulation. Measurements were obtained with volumes of 0, 5, 10, 15, and 20 mL of water in the exhalation limb, at flows of 4, 6, 8, and 10 L/min. Measurements with 20 mL in the exhalation limb were recorded with and without a pressure-relief valve in the circuit. The rate of condensate accumulation was 3.8 mL/h. At volumes of ≥ 10 mL, noticeable alterations in the airway pressure waveforms and significant increases in mean tracheal pressure were observed. The pressure-relief valve effectively attenuated peak tracheal pressure, but only decreased mean pressure by 0.5-1.5 cm H2O. Condensate in the exhalation limb of the patient circuit during bubble CPAP can significantly increase pressure delivered to the patient. The back and forth movement of this fluid causes oscillations in airway pressure that are much greater than the oscillations created by gas bubbling out the exhalation tube into the water bath. We recommend continuously monitoring pressure at the nasal airway interface, placing an adjustable pressure-relief valve in the circuit, set to 5 cm H2O above the desired mean pressure, and emptying fluid from the exhalation limb every 2-3 hours.

  12. Selective detection of cavitation bubbles by triplet pulse sequence in high-intensity focused ultrasound treatment

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Nagaoka, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2018-07-01

    Acoustic cavitation bubbles are known to enhance the heating effect in high-intensity focused ultrasound (HIFU) treatment. The detection of cavitation bubbles with high sensitivity and selectivity is required to predict the therapeutic and side effects of cavitation, and ensure the efficacy and safety of the treatment. A pulse inversion (PI) technique has been widely used for imaging microbubbles through enhancing the second-harmonic component of echo signals. However, it has difficulty in separating the nonlinear response of microbubbles from that due to nonlinear propagation. In this study, a triplet pulse (3P) method was investigated to specifically image cavitation bubbles by extracting the 1.5th fractional harmonic component. The proposed 3P method depicted cavitation bubbles with a contrast ratio significantly higher than those in conventional imaging methods with and without PI. The results suggest that the 3P method is effective for specifically detecting microbubbles in cavitation-enhanced HIFU treatment.

  13. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    PubMed

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    PubMed

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-05-22

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  15. A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow

    PubMed Central

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.

    2014-01-01

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961

  16. Numerical study of ambient pressure for laser-induced bubble near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Li, BeiBei; Zhang, HongChao; Han, Bing; Lu, Jian

    2012-07-01

    The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.

  17. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  18. Cryogenic Liquid Experiments in Orbit. Volume 2. Bubble Mechanics, Boiling Heat Transfer, and Propellant Tank Venting in a Zero-Gravity Environment

    DTIC Science & Technology

    1966-12-01

    26] /2 where equals b 2g Ap/y. Note that subscripts on W indicate dif- ferentiation. If one were to solve Eq [26] by finite differences , the re- sults...of f only requires about 0.5-minute machine time. Finite difference solutions are generated using dependent variables V and Q where: V - W Q = [29...of heat transfer rate and the migration of bubbles in the bulk liq- uid in low gravity. Assuming that the bubble might depart from the heating

  19. Mathematical and experimental modelling of the dynamic bubble processes occurring in a two-phase cyclonic separation device

    NASA Astrophysics Data System (ADS)

    Schrage, Dean Stewart

    1998-11-01

    This dissertation presents a combined mathematical and experimental analysis of the fluid dynamics of a gas- liquid, dispersed-phase cyclonic separation device. The global objective of this research is to develop a simulation model of separation process in order to predict the void fraction field within a cyclonic separation device. The separation process is approximated by analyzing the dynamic motion of many single-bubbles, moving under the influence of the far-field, interacting with physical boundaries and other bubbles. The dynamic motion of the bubble is described by treating the bubble as a point-mass and writing an inertial force balance, equating the force applied to the bubble-point-location to the inertial acceleration of the bubble mass (also applied to the point-location). The forces which are applied to the bubble are determined by an integration of the surface pressure over the bubble. The surface pressure is coupled to the intrinsic motion of the bubble, and is very difficult to obtain exactly. However, under moderate Reynolds number, the wake trailing a bubble is small and the near-field flow field can be approximated as an inviscid flow field. Unconventional potential flow techniques are employed to solve for the surface pressure; the hydrodyamic forces are described as a hydrodynamic mass tensor operating on the bubble acceleration vector. The inviscid flow model is augmented with adjunct forces which describe: drag forces, dynamic lift, far-field pressure forces. The dynamic equations of motion are solved both analytically and numerically for the bubble trajectory in specific flow field examples. A validation of these equations is performed by comparing to an experimentally-derived trajectory of a single- bubble, which is released into a cylindrical Couette flow field (inner cylinder rotating) at varying positions. Finally, a simulation of a cyclonic separation device is performed by extending the single-bubble dynamic model to a multi-bubble ensemble. A simplified model is developed to predict the effects of bubble-interaction. The simulation qualitatively depicts the separation physics encountered in an actual cyclonic separation device, supporting the original tenet that the separation process can be approximated by the collective motions of single- bubbles.

  20. Bubble collisions and measures of the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salem, Michael P., E-mail: salem@cosmos.phy.tufts.edu

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placingmore » the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.« less

  1. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.

  2. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.« less

  3. Two-Phase Flow Model and Experimental Validation for Bubble Augmented Waterjet Propulsion Nozzle

    NASA Astrophysics Data System (ADS)

    Choi, J.-K.; Hsiao, C.-T.; Wu, X.; Singh, S.; Jayaprakash, A.; Chahine, G.

    2011-11-01

    The concept of thrust augmentation through bubble injection into a waterjet has been the subject of many patents and publications over the past several decades, and there are simplified computational and experimental evidence of thrust increase. In this work, we present more rigorous numerical and experimental studies which aim at investigating two-phase water jet propulsion systems. The numerical model is based on a Lagrangian-Eulerian method, which considers the bubbly mixture flow both in the microscopic level where individual bubble dynamics are tracked and in the macroscopic level where bubbles are collectively described by the local void fraction of the mixture. DYNAFLOW's unsteady RANS solver, 3DYNAFS-Vis is used to solve the macro level variable density mixture medium, and a fully unsteady two-way coupling between this and the bubble dynamics/tracking code 3DYNAFS-DSM is utilized. Validation studies using measurements in a half 3-D experimental setup composed of divergent and convergent sections are presented. Visualization of the bubbles, PIV measurements of the flow, bubble size and behavior are observed, and the measured flow field data are used to validate the models. Thrust augmentation as high as 50% could be confirmed both by predictions and by experiments. This work was supported by the Office of Naval Research under the contract N00014-07-C-0427, monitored by Dr. Ki-Han Kim.

  4. A viscous-to-brittle transition in eruptions through clay suspensions

    NASA Astrophysics Data System (ADS)

    Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben M.; Jolly, Arthur; Dingwell, Donald B.

    2017-05-01

    Volcanic lakes are often associated with active geothermal circulation, mineral alteration, and precipitation, each of which can complicate the analysis of shallow magma physics, geophysical signals, and chemical signals. The rheology of the lake and associated hydrothermal system affects the eruptive activity as bubbles ascend and burst through the lake producing distinct ejection behavior. We investigate such phenomena by conducting scaled experiments in which heated water-clay suspensions are decompressed rapidly from relevant pressures. After a jet phase of expanding vapor, the suspensions break up into ejecta that are either angular or droplet geometry. We parameterize these regimes and find a universal clay volume fraction of 0.28 below which the ejecta are form droplets and above which the ejecta are angular. We propose a regime diagram for optical observations of active lakes, which allows rheological characterization and informs volcanic monitoring.

  5. Foam structure :from soap froth to solid foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less

  6. Effects of Particle Size and Bubble Characteristics on Transport of Micro- and Nano-Bubbles in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Nihei, N.; Ueda, Y.; Moldrup, P.; Nishimura, T.

    2016-12-01

    The micro- and nano-bubbles (MNBs) have considerable potentials for the remediation of soil contaminated by organic compounds when used in conjunction with bioremediation technology. Understanding a transport mechanism of MNBs in soils is essential to optimize remediation techniques using MNBs. In this study, column transport experiments using glass beads with different size fractions (average particles size: 0.1 mm and 0.4 mm) were conducted, where MNBs created by oxygen gas were injected to the column with different flow rates. Effects of particle size and bubble characteristics on MNB transport in porous media were investigated based on the column experiments. The results showed that attachments of MNBs were enhanced under lower flow rate. Under higher flow rate condition, there were not significant differences of MNBs transport in porous media with different particle size. A convection-dispersion model including bubble attachment, detachment, and straining terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data. Further investigations will be conducted to understand bubble characteristics including bubble size and zeta potential on MNB transport in porous media. Relations between in model parameters in the transport model and physical and chemical properties in porous media and MNBs will be discussed.

  7. Experimental Study of the Morphology and Dynamics of Gas-Laden Layers Under the Anodes in an Air-Water Model of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Vékony, Klára; Kiss, László I.

    2012-10-01

    The bubble layer formed under an anode and the bubble-induced flow play a significant role in the aluminum electrolysis process. The bubbles covering the anode bottom reduce the efficient surface that can carry current. In our experiments, we filmed and studied the bubble layer under the anode in a real-size air-water electrolysis cell model. Three different flow regimes were found depending on the gas generation rate. The covering factor was found to be proportional to the gas generation rate and inversely proportional to the angle of inclination. A correlation between the average height of the entire bubble layer and the position under the anode was determined. From this correlation and the measured contact sizes, the volume of the accumulated gas was calculated. The sweeping effect of large bubbles was observed. Moreover, the small bubbles under the inner edge of the anode were observed to move backward as a result of the escape of huge gas pockets, which means large momentum transport occurs in the bath.

  8. Using Improved Equation of State to Model Simultaneous Nucleation and Bubble Growth in Thermoplastic Foams

    NASA Astrophysics Data System (ADS)

    Khan, Irfan; Costeux, Stephane; Adrian, David; Cristancho, Diego

    2013-11-01

    Due to environmental regulations carbon-dioxide (CO2) is increasingly being used to replace traditional blowing agents in thermoplastic foams. CO2 is dissolved in the polymer matrix under supercritical conditions. In order to predict the effect of process parameters on foam properties using numerical modeling, the P-V-T relationship of the blowing agents should accurately be represented at the supercritical state. Previous studies in the area of foam modeling have all used ideal gas equation of state to predict the behavior of the blowing agent. In this work the Peng-Robinson equation of state is being used to model the blowing agent during its diffusion into the growing bubble. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The effect of the improved model on the bubble growth and foam properties are discussed.

  9. Transcranial Doppler ultrasound and the etiology of neurologic decompression sickness during altitude decompression

    NASA Technical Reports Server (NTRS)

    Norfleet, W. T.; Powell, M. R.; Kumar, K. Vasantha; Waligora, J.

    1993-01-01

    The presence of gas bubbles in the arterial circulation can occur from iatrogenic mishaps, cardiopulmonary bypass devices, or following decompression, e.g., in deep-sea or SCUBA diving or in astronauts during extravehicular activities (EVA). We have examined the pathophysiology of neurological decompression sickness in human subjects who developed a large number of small gas bubbles in the right side of the heart as a result of hypobaric exposures. In one case, gas bubbles were detected in the middle cerebral artery (MCA) and the subject developed neurological symptoms; a 'resting' patent foramen ovalae (PFO) was found upon saline contrast echocardiography. A PFO was also detected in another individual who developed Spencer Grade 4 precordial Doppler ultrasound bubbles, but no evidence was seen of arterialization of bubbles upon insonation of either the MCA or common carotid artery. The reason for this difference in the behavior of intracardiac bubbles in these two individuals is not known. To date, we have not found evidence of right-to-left shunting of bubbles through pulmonary vasculature. The volume of gas bubbles present following decompression is examined and compared with the number arising from saline contrast injection. The estimates are comparable.

  10. The Fate of Volatiles in Subaqueous Explosive Eruptions: An Analysis of Steam Condensation in the Water Column

    NASA Astrophysics Data System (ADS)

    Cahalan, R. C.; Dufek, J.

    2015-12-01

    A model has been developed to determine the theoretical limits of steam survival in a water column during a subaqueous explosive eruption. Understanding the role of steam dynamics in particle transport and the evolution of the thermal budget is critical to addressing the first order questions of subaqueous eruption mechanics. Ash transport in subaqueous eruptions is initially coupled to the fate of volatile transport. The survival of steam bubbles to the water surface could enable non-wetted ash transport from the vent to a subaerial ash cloud. Current eruption models assume a very simple plume mixing geometry, that cold water mixes with the plume immediately after erupting, and that the total volume of steam condenses in the initial phase of mixing. This limits the survival of steam to within tens of meters above the vent. Though these assumptions may be valid, they are unproven, and the calculations based on them do not take into account any kinetic constraints on condensation. The following model has been developed to evaluate the limits of juvenile steam survival in a subaqueous explosive eruption. This model utilizes the analytical model for condensation of steam injected into a sub-cooled pool produced in Park et al. (2007). Necessary parameterizations require an iterative internal calculation of the steam saturation temperature and vapor density for each modeled time step. The contribution of volumetric expansion due to depressurization of a rising bubble is calculated and used in conjunction with condensation rate to calculate the temporal evolution of bubble volume and radius. Using steam bubble volume with the BBO equation for Lagrangian transport in a fluid, the bubble rise velocity is calculated and used to evaluate the rise distance. The steam rise model proves a useful tool to compare the effects of steam condensation, volumetric expansion, volume flux, and water depth on the dynamics of juvenile steam. The modeled results show that a sufficiently high volatile flux could lead to the survival of steam bubbles from >1km depths to the ocean surface, though low to intermediate fluxes lead to fairly rapid condensation. Building on this result we also present the results of simulations of multiphase steam jets and consider the likelihood of collapse inside a vapor envelope.

  11. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. CO2 bubble generation and migration during magma-carbonate interaction

    NASA Astrophysics Data System (ADS)

    Blythe, L. S.; Deegan, F. M.; Freda, C.; Jolis, E. M.; Masotta, M.; Misiti, V.; Taddeucci, J.; Troll, V. R.

    2015-04-01

    We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions.

  13. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution

    NASA Astrophysics Data System (ADS)

    Senavirathne, Gayan; Bertram, Jeffrey G.; Jaszczur, Malgorzata; Chaurasiya, Kathy R.; Pham, Phuong; Mak, Chi H.; Goodman, Myron F.; Rueda, David

    2015-12-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ~5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.

  14. Surfactant effects on alpha-factors in aeration systems.

    PubMed

    Rosso, Diego; Stenstrom, Michael K

    2006-04-01

    Aeration in wastewater treatment processes accounts for the largest fraction of plant energy costs. Aeration systems function by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactant accumulation on gas-liquid interfaces reduces mass transfer rates, and this reduction in general is larger for fine-bubble aerators. This study evaluates mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes show higher gas transfer depression for lower turbulence regimes. Contamination effects can be offset at the expense of operating efficiency, which is characteristic of surface aerators and coarse-bubble diffusers. Results describe the variability of alpha-factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations describing mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.

  15. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    DOE PAGES

    Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; ...

    2017-05-10

    The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less

  16. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.

  17. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav

    The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less

  18. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.

  19. A novel technique for finding gas bubbles in the nuclear waste containers using Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Dobrowolska, M.; Velthuis, J.; Frazão, L.; Kikoła, D.

    2018-05-01

    Nuclear waste is deposited for many years in the concrete or bitumen-filled containers. With time hydrogen gas is produced, which can accumulate in bubbles. These pockets of gas may result in bitumen overflowing out of the waste containers and could result in spread of radioactivity. Muon Scattering Tomography is a non-invasive scanning method developed to examine the unknown content of nuclear waste drums. Here we present a method which allows us to successfully detect bubbles larger than 2 litres and determine their size with a relative uncertainty resolution of 1.55 ± 0.77%. Furthermore, the method allows to make a distinction between a conglomeration of bubbles and a few smaller gas volumes in different locations.

  20. Numerical Modeling of Three-Dimensional Fluid Flow with Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat

    1999-01-01

    We present a numerical method to compute phase change dynamics of three-dimensional deformable bubbles. The full Navier-Stokes and energy equations are solved for both phases by a front tracking/finite difference technique. The fluid boundary is explicitly tracked by discrete points that are connected by triangular elements to form a front that is used to keep the stratification of material properties sharp and to calculate the interfacial source terms. Two simulations are presented to show robustness of the method in handling complex phase boundaries. In the first case, growth of a vapor bubble in zero gravity is studied where large volume increase of the bubble is managed by adaptively increasing the front resolution. In the second case, growth of a bubble under high gravity is studied where indentation at the rear of the bubble results in a region of large curvature which challenges the front tracking in three dimensions.

  1. Two-phase flow patterns of a top heat mode closed loop oscillating heat pipe with check valves (THMCLOHP/CV)

    NASA Astrophysics Data System (ADS)

    Thongdaeng, S.; Bubphachot, B.; Rittidech, S.

    2016-11-01

    This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.

  2. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  3. Assessment of shock wave lithotripters via cavitation potential

    PubMed Central

    Iloreta, Jonathan I.; Zhou, Yufeng; Sankin, Georgy N.; Zhong, Pei; Szeri, Andrew J.

    2008-01-01

    A method to characterize shock wave lithotripters by examining the potential for cavitation associated with the lithotripter shock wave (LSW) has been developed. The method uses the maximum radius achieved by a bubble subjected to a LSW as a representation of the cavitation potential for that region in the lithotripter. It is found that the maximum radius is determined by the work done on a bubble by the LSW. The method is used to characterize two reflectors: an ellipsoidal reflector and an ellipsoidal reflector with an insert. The results show that the use of an insert reduced the −6 dB volume (with respect to peak positive pressure) from 1.6 to 0.4 cm3, the −6 dB volume (with respect to peak negative pressure) from 14.5 to 8.3 cm3, and reduced the volume characterized by high cavitation potential (i.e., regions characterized by bubbles with radii larger than 429 µm) from 103 to 26 cm3. Thus, the insert is an effective way to localize the potentially damaging effects of shock wave lithotripsy, and suggests an approach to optimize the shape of the reflector. PMID:19865493

  4. Jets from pulsed-ultrasound-induced cavitation bubbles near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-06-01

    The dynamics of cavitation bubbles, generated from short (microsecond) pulses of ultrasound and situated near a rigid boundary, are investigated numerically. The temporal development of the bubble shape, bubble migration, formation of the liquid jet during bubble collapse, and the kinetic energy of the jet are investigated as a function of the distance between bubble and boundary. During collapse, the bubble migrates towards the boundary and the liquid jet reaches a maximum velocity between 80 m s-1 and 120 m s-1, depending on the distance between bubble and boundary. The conversion of bubble energy to kinetic energy of the jet ranges from 16% to 23%. When the bubble is situated in close proximity to the boundary, the liquid jet impacts the boundary with its maximum velocity, resulting in an impact pressure of the order of tens of MPa. The rapid expansion of the bubble, the impact of the liquid jet onto the nearby boundary material, and the high pressure developed inside the bubble at its minimum volume can all contribute to the boundary material damage. The high pressure developed during the impact of the liquid jet onto the biological material and the shearing forces acting on the material surface as a consequence of the radial flow of the jet outward from the impact site are the main damage mechanisms of rigid biological materials. The results are discussed with respect to cavitation damage of rigid biological materials, such as disintegration of renal stones and calcified tissue and collateral effects in pulsed ultrasound surgery.

  5. Subsonic evolution of the radio bubbles in the nearby massive early-type galaxy NGC 4472: uplift, buoyancy, and heating

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph P.; Gendron Marsolais, Marie-Lou; Bogdan, Akos; Su, Yuanyuan; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke

    2017-01-01

    We present results from a deep (380 ks) Chandra observation of the hot gas in the nearby massive early-type galaxy NGC 4472. X-ray cavities were previously reported coincident with the radio lobes (Biller et al. 2004). In our deeper observation, we confirm the presence of the cavities and detect rims of enhanced emission surrounding the bubbles. The temperature of the gas in these rims is less than that of the ambient medium, demonstrating that they cold, low entropy material that has been drawn up from the group center by the buoyant rise of the bubbles and not shocks from supersonic inflation of the lobes. Interestingly, the gravitational energy required to lift these lobes from the group center is a significant fraction of the bubble enthalpy. This suggests that uplift by AGN bubbles may play an important role in some cases in offsetting the radiative cooling at cluster and group centers. This uplift also provides an efficient means of transporting enriched material from the group center to large radii.

  6. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  7. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  8. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Sun, Meijia; Li, Baokuan; Li, Linmin; Wang, Qiang; Peng, Jianping; Wang, Yaowu; Cheung, Sherman C. P.

    2017-12-01

    In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)-molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O'Rourke's algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble's residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

  9. Statistical mechanics of two-dimensional shuffled foams: Geometry-topology correlation in small or large disorder limits

    NASA Astrophysics Data System (ADS)

    Durand, Marc; Kraynik, Andrew M.; van Swol, Frank; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Ataei Talebi, Shirin; Graner, François

    2014-06-01

    Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010), 10.1209/0295-5075/90/60002] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011), 10.1103/PhysRevLett.107.168304]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.

  10. Foam flow in a model porous medium: II. The effect of trapped gas.

    PubMed

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to gas trapping. However, gas trapping mechanisms are poorly understood. Some studies have been performed during corefloods, but little work has been carried out to describe the bubble trapping behaviour at the pore scale. We have carried out foam flow tests in a micromodel etched with an irregular hexagonal pattern. Image analysis of the foam flow allowed the bubble centres to be tracked and local velocities to be obtained. It was found that the flow in the micromodel is dominated by intermittency and localized zones of trapped gas. The quantity of trapped gas was measured both by considering the fraction of bubbles that were trapped (via velocity thresholding) and by measuring the area fraction containing immobile gas (via image analysis). A decrease in the quantity of trapped gas was observed for both increasing total velocity and increasing foam quality. Calculations of the gas relative permeability were made with the Brooks Corey equation, using the measured trapped gas saturations. The results showed a decrease in gas relative permeabilities, and gas mobility, for increasing fractions of trapped gas. It is suggested that the shear thinning behaviour of foam could be coupled to the saturation of trapped gas.

  11. Sonic wave separation of invertase from a dilute solution to generated droplets.

    PubMed

    Tanner, R D; Ko, S; Loha, V; Prokop, A

    2000-01-01

    It has previously been shown that a droplet fractionation process, simulated by shaking a separatory funnel containing a dilute protein solution, can generate droplets richer in protein than present in the original dilute solution. In this article, we describe an alternative method that can increase the amount of protein transferred to the droplets. The new method uses ultrasonic waves, enhanced by a bubble gas stream to create the droplets. The amount of protein in these droplets increases by about 50%. In this method, the top layer of the dilute protein solution (of the solution-air interface) becomes enriched in protein when air is bubbled into the solution. This concentrating procedure is called bubble fractionation. Once the protein has passed through the initial buildup, this enriched protein layer is transferred into droplets with the aid of a vacuum above the solution at the same time that ultrasonic waves are introduced. The droplets are then carried over to a condenser and coalesced. We found that this new method provides an easier way to remove the protein-enriched top layer of the dilute solution and generates more droplets within a shorter period than the separatory funnel droplet generation method. The added air creates the bubbles and carries the droplets, and the vacuum helps remove the effluent airstream from the condenser. The maximum partition coefficient, the ratio of the protein concentration in the droplets to that in the residual solution (approx 8.5), occurred at pH 5.0.

  12. The shape and motion of gas bubbles in a liquid flowing through a thin annulus

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Veltin, Jeremy; Muggeridge, Ann; Pain, Christopher C.; Matar, Omar K.; Jackson, Matthew; Arland, Kristine; Gyllensten, Atle

    2017-11-01

    We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly-inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ``tadpole'' shape with an elliptical cap and a highly-stretched tail, due to the confinement between the closely-spaced channel walls. As the annulus is inclined, the bubble tail tends to decrease in length, while the geometry of the cap remains almost invariant. To model the bubble evolution, the thin annulus is conceptualised as a ``Hele-Shaw'' cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model constrained by the same dimensionless quantities. The complex bubble dynamics are solved using a mixed control-volume finite-element method combined with interface-capturing and mesh adaptation techniques. A close match to the experimental data is achieved, both qualitatively and quantitatively, by the numerical simulations. The mechanism for the elliptical cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder. The shape regimes of bubbles flowing through the thin annulus are further explored based on the simulation results. Funding from STATOIL gratefully acknowledged.

  13. Simulation of bubble expansion and collapse in the vicinity of a free surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koukouvinis, P., E-mail: foivos.koukouvinis.1@city.ac.uk; Gavaises, M.; Supponen, O.

    The present paper focuses on the numerical simulation of the interaction of laser-generated bubbles with a free surface, including comparison of the results with instances from high-speed videos of the experiment. The Volume Of Fluid method was employed for tracking liquid and gas phases while compressibility effects were introduced with appropriate equations of state for each phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh Plesset equation. The simulated bubble expands in a non-spherically symmetric way due to the interference of the free surface, obtaining an oval shape at the maximum size. During collapse, a jetmore » with mushroom cap is formed at the axis of symmetry with the same direction as the gravity vector, which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation results are in agreement with the experimental images, both quantitatively and qualitatively, while pressure waves are predicted both during the expansion and the collapse of the bubble. Minor discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic closure of the gas inside the bubble.« less

  14. Dynamics of the liquid film around elongated bubbles rising in vertical capillaries

    NASA Astrophysics Data System (ADS)

    Magnini, Mirco; Khodaparast, Sepideh; Matar, Omar K.; Stone, Howard A.; Thome, John R.

    2017-11-01

    We performed a theoretical, numerical and experimental study on elongated bubbles rising in vertical tubes in co-current liquid flows. The flow conditions were characterized by capillary, Reynolds and Bond numbers within the range of Ca = 0.005 - 0.1 , Re = 1 - 2000 and Bo = 0 - 20 . Direct numerical simulations of the two-phase flows are run with a self-improved version of OpenFOAM, implementing a coupled Level Set and Volume of Fluid method. A theoretical model based on an extension of the traditional Bretherton theory, accounting for inertia and the gravity force, is developed to obtain predictions of the profiles of the front and rear menisci of the bubble, liquid film thickness and bubble velocity. Different from the traditional theory for bubbles rising in a stagnant liquid, the gravity force impacts the flow already when Bo < 4 . Gravity effects speed up the bubble compared to the Bo = 0 case, making the liquid film thicker and reducing the amplitude of the undulation on the surface of the bubble near its tail. Gravity effects are more apparent in the visco-capillary regime, i.e. when the Reynolds number is below 1.

  15. A measurement of the holographic minimum-observable beam branching ratio in the FERMILAB 15-ft bubble chamber

    NASA Astrophysics Data System (ADS)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Baton, J. P.; Bingham, H. H.; Bjelkhagen, H.; Brucker, E. B.; Burnstein, R. A.; Campbell, J. R.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; DeProspo, D.; Devanand; De Wolf, E. A.; Faulkner, P. J. W.; Foeth, H.; Fretter, W. B.; Geissler, K.; Gupta, V. K.; Hanlon, J.; Harigel, G. G.; Harris, F. A.; Hawkins, J.; Jabiol, M. A.; Jacques, P.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R. O.; Myatt, G.; Naon, R.; Napier, A.; Naylor, P.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Sekulin, R. L.; Sewell, S.; Singh, J. B.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Williams, W.; Willocq, S.; Yost, G. P.; E-632 Collaboration

    1999-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-foot bubble chamber at Fermilab, during a physics run. The innovative system combined the reference beam with the object beam, irradiating a conical volume of ˜1.4 m 3. Bubble tracks from neutrino interactions with a width of ˜120 μm have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio. We obtained in our experiment an exceedingly small minimum-observable ratio of (0.54±0.21)×10 -7. The technology has the potential for a wide range of applications.

  16. Experimental and numerical study on bubble-sphere interaction near a rigid wall

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, A. M.; Han, R.; Liu, Y. Q.

    2017-09-01

    This study is concerned with the interaction between a violently oscillating bubble and a movable sphere with comparable size near a rigid wall, which is an essential physical phenomenon in many applications such as cavitation, underwater explosion, ultrasonic cleaning, and biomedical treatment. Experiments are performed in a cubic water tank, and the underwater electric discharge technique (580 V DC) is employed to generate a bubble that is initiated between a rigid wall and a sphere in an axisymmetric configuration. The bubble-sphere interactions are captured using a high-speed camera operating at 52 000 frames/s. A classification of the bubble-sphere interaction is proposed, i.e., "weak," "intermediate," and "strong" interactions, identified with three distinct bubble shapes at the maximum volume moment. In the numerical simulations, the boundary integral method and the auxiliary function method are combined to establish a full coupling model that decouples the mutual dependence between the force and the sphere motion. The main features of bubble dynamics in different experiments are well reproduced by our numerical model. Meanwhile, the pressure and velocity fields are also provided for clarifying the associated mechanisms. The effects of two dimensionless standoff parameters, namely, γs (defined as ds/Rm, where ds is the minimum distance between the initial bubble center and the sphere surface and Rm is the maximum bubble radius) and γw (defined as dw/Rm, where dw is the distance between the initial bubble center and the rigid wall), are also discussed.

  17. Plasma density injection and flow during coaxial helicity injection in a tokamak

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.

    2018-02-01

    Whole device, resistive MHD simulations of spheromaks and tokamaks have used a large diffusion coefficient that maintains a nearly constant density throughout the device. In the present work, helicity and plasma are coinjected into a low-density plasma in a tokamak with a small diffusion coefficient. As in previous simulations [Hooper et al., Phys. Plasmas 20, 092510 (2013)], a flux bubble is formed, which expands to fill the tokamak volume. The injected plasma is non-uniform inside the bubble. The flow pattern is analyzed; when the simulation is not axisymmetric, an n = 1 mode on the surface of the bubble generates leakage of plasma into the low-density volume. Closed flux is generated following injection, as in experiments and previous simulations. The result provides a more detailed physics analysis of the injection, including density non-uniformities in the plasma that may affect its use as a startup plasma [Raman et al., Phys. Rev. Lett. 97, 175002 (2006)].

  18. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less

  20. Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.

  1. A Rate-Theory-Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels

    NASA Astrophysics Data System (ADS)

    Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.

    2017-12-01

    In this work, we developed a recrystallization model to study the effect of microstructures and radiation conditions on recrystallization kinetics in UMo fuels. The model integrates the rate theory of intragranular gas bubble and interstitial loop evolutions and a phase-field model of recrystallization zone evolution. A first passage method is employed to describe one-dimensional diffusion of interstitials with a diffusivity value several orders of magnitude larger than that of fission gas xenons. With the model, the effect of grain sizes on recrystallization kinetics is simulated. The results show that (1) recrystallization in large grains starts earlier than that in small grains, (2) the recrystallization kinetics (recrystallization volume fraction) decrease as the grain size increases, (3) the predicted recrystallization kinetics are consistent with the experimental results, and (4) the recrystallization kinetics can be described by the modified Avrami equation, but the parameters of the Avrami equation strongly depend on the grain size.

  2. Sizes of nanobubbles from nucleation rate measurements

    NASA Astrophysics Data System (ADS)

    Wilemski, G.

    2003-03-01

    In homogeneous bubble nucleation, the critical nucleus typically has nanometer dimensions. The volume V of a critical bubble can be determined from the simple equation (partial W/partial p)_T=V, where W is the reversible work of nucleus formation and p is the ambient pressure of the liquid phase in which bubble formation is occurring. The relation, W/kT=-ln J+ln A, where J is the steady state nucleation rate and A is the weakly pressure-dependent kinetic prefactor, allows V to be determined from rate measurements. The original derivation of this equation for V from the nucleation theorem was limited to one-component, ideal gas bubbles with a gas density much smaller than that of the ambient liquid. [D. Kashchiev, Nucleation: basic theory with applications (Butterworth-Heinemann, Oxford, 2000) p. 226.] The result is actually much more general, and it will be shown that it applies to multi-component, nonideal gas bubbles, provided the same density inequality holds. When the bubble phase and liquid densities are comparable, a more complicated, but also general and rigorous result is found.

  3. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Gas-Liquid Separation Strategies in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Reiss, Donald A.; Lehman, Daniel

    2006-01-01

    Bubble entrainment in liquids represents a serious problem in the microgravity environment. Whenever bubbles are entrained in a liquid,they tend to remain stationary in the liquid bulk in the absence of any external forcing. This is due to the reduction or complete absence of the buoyancy force in the microgravity environment, Thus the buoyancy force can not the be exploited to place the bubbles at the top of the liquid volume as in Ig(sub o) conditions. This situation represents a serious drawback in many space based engineering and scientific applications. We have demonstrated in a series of low gravity experiments conducted during parabolic flight on board aircraft that bubbles can be controlled in such a manner as to increase,the probability of their expulsion from a liquid bulk. In these tests the liquid'bulk was made either to be contained within, or to flow through specially designed containers using capillary force alone. Such containers appear to facilitate bubble removal, from the liquid bulk. Different successful liquid flow configurations will be discussed and the efficacy of the resulting bubble expulsion mechanisms will be demonstrated.

  5. Development of fluorous lipid-based nanobubbles for efficiently containing perfluoropropane.

    PubMed

    Oda, Yusuke; Suzuki, Ryo; Mori, Tatsuya; Takahashi, Hideyo; Natsugari, Hideaki; Omata, Daiki; Unga, Johan; Uruga, Hitoshi; Sugii, Mutsumi; Kawakami, Shigeru; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru; Maruyama, Kazuo

    2015-06-20

    Nano-/microbubbles are expected not only to function as ultrasound contrast agents but also as ultrasound-triggered enhancers in gene and drug delivery. Notably, nanobubbles have the ability to pass through tumor vasculature and achieve passive tumor targeting. Thus, nanobubbles would be an attractive tool for use as ultrasound-mediated cancer theranostics. However, the amounts of gas carried by nanobubbles are generally lower than those carried by microbubbles because nanobubbles have inherently smaller volumes. In order to reduce the injection volume and to increase echogenicity, it is important to develop nanobubbles with higher gas content. In this study, we prepared 5 kinds of fluoro-lipids and used these reagents as surfactants to generate "Bubble liposomes", that is, liposomes that encapsulate nanobubbles such that the lipids serve as stabilizers between the fluorous gas and water phases. Bubble liposome containing 1-stearoyl-2-(18,18-difluoro)stearoyl-sn-glycero-3-phosphocholine carried 2-fold higher amounts of C3F8 compared to unmodified Bubble liposome. The modified Bubble liposome also exhibited increased echogenicity by ultrasonography. These results demonstrated that the inclusion of fluoro-lipid is a promising tool for generating nanobubbles with increased efficiency of fluorous gas carrier. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fabricated nanogap-rich plasmonic nanostructures through an optothermal surface bubble in a droplet.

    PubMed

    Karim, Farzia; Vasquez, Erick S; Zhao, Chenglong

    2018-01-15

    A rapid and cost-effective method for the fabrication of nanogap-rich structures is demonstrated in this Letter. The method utilizes the Marangoni convection around an optothermal surface bubble inside a liquid droplet with a nanoliter volume. The liquid droplet containing metallic nanoparticles reduces the sample consumption and confines the liquid flow. The optothermal surface bubble creates a strong convective flow that allows for the rapid deposition of the metallic nanoparticles to form nanogap-rich structures on any substrate under ambient conditions. This method will enable a broad range of applications such as biosensing, environmental analysis, and nonlinear optics.

  7. Turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air-bubbles clustered near the wall

    NASA Astrophysics Data System (ADS)

    Lakehal, D.; Métrailler, D.; Reboux, S.

    2017-06-01

    This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which confirms that the bubbles increase the energy at smaller scales. The coherent structures in the boundary layer are broken by the bubbles, which disrupts the formation of long structures, reducing the streamwise integral length scale.

  8. Mmmagma: Edible Demonstrations of Magmatic Processes

    NASA Astrophysics Data System (ADS)

    Rust, A. C.; Cashman, K. V.; Wright, H. M.

    2005-12-01

    We present a collection of demonstrations using common foods to illustrate factors that influence bubble and crystal nucleation and growth in magmas, and consequences for volcanic processes. Using foods such as soda water, raisins, fudge, popcorn and cake, ensures that the demonstration are safe, cheap and can be repeated by students (with variations) in their own kitchens. From these experiments students learn about the influence of crystals and bubbles on magma rheology and permeability, and how these properties in turn affect lava flow morphologies, crystal fractionation, the formation of breadcrust bombs, and styles of volcanic eruptions.

  9. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution

    PubMed Central

    Senavirathne, Gayan; Bertram, Jeffrey G.; Jaszczur, Malgorzata; Chaurasiya, Kathy R.; Pham, Phuong; Mak, Chi H.; Goodman, Myron F.; Rueda, David

    2015-01-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ∼5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer. PMID:26681117

  10. Blast wave attenuation in liquid foams: role of gas and evidence of an optimal bubble size.

    PubMed

    Monloubou, Martin; Bruning, Myrthe A; Saint-Jalmes, Arnaud; Dollet, Benjamin; Cantat, Isabelle

    2016-09-28

    Liquid foams are excellent systems to mitigate pressure waves such as acoustic or blast waves. The understanding of the underlying dissipation mechanisms however still remains an active matter of debate. In this paper, we investigate the attenuation of a weak blast wave by a liquid foam. The wave is produced with a shock tube and impacts a foam, with a cylindrical geometry. We measure the wave attenuation and velocity in the foam as a function of bubble size, liquid fraction, and the nature of the gas. We show that the attenuation depends on the nature of the gas and we experimentally evidence a maximum of dissipation for a given bubble size. All features are qualitatively captured by a model based on thermal dissipation in the gas.

  11. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    DOEpatents

    Klunder, Edgar B [Bethel Park, PA

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  12. Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    NASA Astrophysics Data System (ADS)

    KM3NeT Collaboration; Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.; Aubert, J.-J.; Bakker, R.; Ball, A. E.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; de Bel, M.; Belias, A.; Bellou, N.; Berbee, E.; Berkien, A.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Bigourdan, B.; Billault, M.; de Boer, R.; Boer Rookhuizen, H.; Bonori, M.; Borghini, M.; Bou-Cabo, M.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bradbury, S.; Brown, A.; Bruni, F.; Brunner, J.; Brunoldi, M.; Busto, J.; Cacopardo, G.; Caillat, L.; Calvo Díaz-Aldagalán, D.; Calzas, A.; Canals, M.; Capone, A.; Carr, J.; Castorina, E.; Cecchini, S.; Ceres, A.; Cereseto, R.; Chaleil, Th.; Chateau, F.; Chiarusi, T.; Choqueuse, D.; Christopoulou, P. E.; Chronis, G.; Ciaffoni, O.; Circella, M.; Cocimano, R.; Cohen, F.; Colijn, F.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Costa, M.; Coyle, P.; Craig, J.; Creusot, A.; Curtil, C.; D'Amico, A.; Damy, G.; De Asmundis, R.; De Bonis, G.; Decock, G.; Decowski, P.; Delagnes, E.; De Rosa, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drogou, J.; Drouhin, D.; Druillole, F.; Drury, L.; Durand, D.; Durand, G. A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Espinosa, V.; Etiope, G.; Favali, P.; Felea, D.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fotiou, A.; Fritsch, U.; Gajanana, D.; Garaguso, R.; Gasparini, G. P.; Gasparoni, F.; Gautard, V.; Gensolen, F.; Geyer, K.; Giacomelli, G.; Gialas, I.; Giordano, V.; Giraud, J.; Gizani, N.; Gleixner, A.; Gojak, C.; Gómez-González, J. P.; Graf, K.; Grasso, D.; Grimaldi, A.; Groenewegen, R.; Guédé, Z.; Guillard, G.; Guilloux, F.; Habel, R.; Hallewell, G.; van Haren, H.; van Heerwaarden, J.; Heijboer, A.; Heine, E.; Hernández-Rey, J. J.; Herold, B.; Hillebrand, T.; van de Hoek, M.; Hogenbirk, J.; Hößl, J.; Hsu, C. C.; Imbesi, M.; Jamieson, A.; Jansweijer, P.; de Jong, M.; Jouvenot, F.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karolak, M.; Katz, U. F.; Kavatsyuk, O.; Keller, P.; Kiskiras, Y.; Klein, R.; Kok, H.; Kontoyiannis, H.; Kooijman, P.; Koopstra, J.; Kopper, C.; Korporaal, A.; Koske, P.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Laan, M.; La Fratta, C.; Lagier, P.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Leisos, A.; Lenis, D.; Leonora, E.; Le Provost, H.; Lim, G.; Llorens, C. D.; Lloret, J.; Löhner, H.; Lo Presti, D.; Lotrus, P.; Louis, F.; Lucarelli, F.; Lykousis, V.; Malyshev, D.; Mangano, S.; Marcoulaki, E. C.; Margiotta, A.; Marinaro, G.; Marinelli, A.; Mariş, O.; Markopoulos, E.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marvaldi, J.; Masullo, R.; Maurin, G.; Migliozzi, P.; Migneco, E.; Minutoli, S.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Monmarthe, E.; Morganti, M.; Mos, S.; Motz, H.; Moudden, Y.; Mul, G.; Musico, P.; Musumeci, M.; Naumann, Ch.; Neff, M.; Nicolaou, C.; Orlando, A.; Palioselitis, D.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Papazoglou, I. A.; Păvălaş, G. E.; Peek, H. Z.; Perkin, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Priede, I. G.; Psallidas, A.; Rabouille, C.; Racca, C.; Radu, A.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Reed, C.; Reito, S.; Resvanis, L. K.; Riccobene, G.; Richter, R.; Roensch, K.; Rolin, J.; Rose, J.; Roux, J.; Rovelli, A.; Russo, A.; Russo, G. V.; Salesa, F.; Samtleben, D.; Sapienza, P.; Schmelling, J.-W.; Schmid, J.; Schnabel, J.; Schroeder, K.; Schuller, J.-P.; Schussler, F.; Sciliberto, D.; Sedita, M.; Seitz, T.; Shanidze, R.; Simeone, F.; Siotis, I.; Sipala, V.; Sollima, C.; Sparnocchia, S.; Spies, A.; Spurio, M.; Staller, T.; Stavrakakis, S.; Stavropoulos, G.; Steijger, J.; Stolarczyk, Th.; Stransky, D.; Taiuti, M.; Taylor, A.; Thompson, L.; Timmer, P.; Tonoiu, D.; Toscano, S.; Touramanis, C.; Trasatti, L.; Traverso, P.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Urbano, F.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Viola, S.; Vivolo, D.; Wagner, S.; Werneke, P.; White, R. J.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zhukov, V.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.

    2013-02-01

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.

  13. INVESTIGATION INTO THE MECHANISMS OF TISSUE ATOMIZATION BY HIGH INTENSITY FOCUSED ULTRASOUND

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Wang, Yak-Nam; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2014-01-01

    Ultrasonic atomization, or the emission of a fog of droplets, was recently proposed to explain tissue fractionation in boiling histotripsy. However, even though liquid atomization has been studied extensively, the mechanisms of tissue atomization remain unclear. In this paper, high-speed photography and overpressure were used to evaluate the role of bubbles in tissue atomization. As the static pressure increased, the degree of fractionation decreased, and the ex vivo tissue became thermally denatured. The effect of surface wetness on atomization was also evaluated in vivo and in tissue-mimicking gels where surface wetness was found to enhance atomization by forming surface instabilities that augment cavitation. In addition, experimental results indicated that wetting collagenous tissues, such as the liver capsule, allowed atomization to breach such barriers. These results highlight the importance of bubbles and surface instabilities in atomization and could be used to enhance boiling histotripsy for transition to clinical use. PMID:25662182

  14. A Measurement of the holographic minimum observable beam branching ratio in the Fermilab 15-foot bubble chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderholz, M.; Aggarwal, M.M.; Akbari, H.

    1997-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at Fermilab, during a physics run. The innovative system combined the reference beam with the object beam, illuminating a conical volume of {approx} 1.4 m{sup 3}. Bubble tracks from neutrino interactions with a width of {approx} 120 {micro}m have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the Beam Branching Ratio. We obtained in our experiment an exceedingly small minimum-observable ratio ofmore » (0.54 {+-} 0.21) x 10{sup -7}. The technology has the potential for a wide range of applications.« less

  15. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  16. Observing eruptions of gas-rich compressible magmas from space

    PubMed Central

    Kilbride, Brendan McCormick; Edmonds, Marie; Biggs, Juliet

    2016-01-01

    Observations of volcanoes from space are a critical component of volcano monitoring, but we lack quantitative integrated models to interpret them. The atmospheric sulfur yields of eruptions are variable and not well correlated with eruption magnitude and for many eruptions the volume of erupted material is much greater than the subsurface volume change inferred from ground displacements. Up to now, these observations have been treated independently, but they are fundamentally linked. If magmas are vapour-saturated before eruption, bubbles cause the magma to become more compressible, resulting in muted ground displacements. The bubbles contain the sulfur-bearing vapour injected into the atmosphere during eruptions. Here we present a model that allows the inferred volume change of the reservoir and the sulfur mass loading to be predicted as a function of reservoir depth and the magma's oxidation state and volatile content, which is consistent with the array of natural data. PMID:28000791

  17. [Measurement of air leak volume after lung surgery using web-camera].

    PubMed

    Onuki, Takamasa; Matsumoto, T

    2005-05-01

    Persistent air leak from the lung is one of the major complications after lung operations, especially in the latest thoracic surgery, where a shorter hospital stay tends to be necessary. However, air leak volume has been rarely measured clinically because accustomed tools of gas flow meter were types which needed contact measure, and those were unstable in long-term use and high cost. We tried to measure air leak volume as follows: (1) Bubble was made in the water seal part of a drain bag. (2) The movement of bubbles was recorded with a web-camera. (3) The data from the movie was analyzed by Linux computer on-line. We believe this method is clinically applicable as a routine work after lung surgery because of non-contact type of measurements, its stableness in long-term, easiness to be handled, and reasonable in cost.

  18. Effect of the Inhomogeneity of Ice Crystals on Retrieving Ice Cloud Optical Thickness and Effective Particle Size

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping

    2008-01-01

    Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.

  19. Effects of floc and bubble size on the efficiency of the dissolved air flotation (DAF) process.

    PubMed

    Han, Mooyoung; Kim, Tschung-il; Kim, Jinho

    2007-01-01

    Dissolved air flotation (DAF) is a method for removing particles from water using micro bubbles instead of settlement. The process has proved to be successful and, since the 1960s, accepted as an alternative to the conventional sedimentation process for water and wastewater treatment. However, limited research into the process, especially the fundamental characteristics of bubbles and particles, has been carried out. The single collector collision model is not capable of determining the effects of particular characteristics, such as the size and surface charge of bubbles and particles. Han has published a set of modeling results after calculating the collision efficiency between bubbles and particles by trajectory analysis. His major conclusion was that collision efficiency is maximum when the bubbles and particles are nearly the same size but have opposite charge. However, experimental verification of this conclusion has not been carried out yet. This paper describes a new method for measuring the size of particles and bubbles developed using computational image analysis. DAF efficiency is influenced by the effect of the recycle ratio on various average floc sizes. The larger the recycle ratio, the higher the DAF efficiency at the same pressure and particle size. The treatment efficiency is also affected by the saturation pressure, because the bubble size and bubble volume concentration are controlled by the pressure. The highest efficiency is obtained when the floc size is larger than the bubble size. These results, namely that the highest collision efficiency occurs when the particles and bubbles are about the same size, are more in accordance with the trajectory model than with the white water collector model, which implies that the larger the particles, the higher is the collision efficiency.

  20. Separated two-phase flow and basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Jaupart, Claude

    1986-11-01

    Fluid dynamical models of volcanic eruptions are usually made in the homogeneous approximation where gas and liquid are constrained to move at the same velocity. Basaltic eruptions exhibit the characteristics of separated flows, including transitions in their flow regime, from bubbly to slug flow in Strombolian eruptions and from bubbly to annular flow in Hawaiian ones. These regimes can be characterized by a parameter called the melt superficial velocity, or volume flux per unit cross section, which takes values between 10-3 and 10-2 m/s for bubbly and slug flow, and about 1 m/s for annular flow. We use two-phase flow equations to determine under which conditions the homogeneous approximation is not valid. In the bubbly regime, in which many bubbles rise through the moving liquid, there are large differences between the two-phase and homogeneous models, especially in the predictions of gas content and pressure. The homogeneous model is valid for viscous lavas such as dacites because viscosity impedes bubble motion. It is not valid for basaltic lavas if bubble sizes are greater than 1 cm, which is the case. Accordingly, basaltic eruptions should be characterized by lower gas contents and lower values of the exit pressure, and they rarely erupt in the mist and froth regimes, which are a feature of more viscous lavas. The two-phase flow framework allows for the treatment of different bubble populations, including vesicles due to exsolution by pressure release in the volcanic conduit and bubbles from the magma chamber. This yields information on poorly constrained parameters including the effective friction coefficient for the conduit, gas content, and bubble size in the chamber. We suggest that the observed flow transitions record changes in the amount and size of gas bubbles in the magma chamber at the conduit entry.

  1. Optimisation of the formulation of a bubble bath by a chemometric approach market segmentation and optimisation.

    PubMed

    Marengo, Emilio; Robotti, Elisa; Gennaro, Maria Carla; Bertetto, Mariella

    2003-03-01

    The optimisation of the formulation of a commercial bubble bath was performed by chemometric analysis of Panel Tests results. A first Panel Test was performed to choose the best essence, among four proposed to the consumers; the best essence chosen was used in the revised commercial bubble bath. Afterwards, the effect of changing the amount of four components (the amount of primary surfactant, the essence, the hydratant and the colouring agent) of the bubble bath was studied by a fractional factorial design. The segmentation of the bubble bath market was performed by a second Panel Test, in which the consumers were requested to evaluate the samples coming from the experimental design. The results were then treated by Principal Component Analysis. The market had two segments: people preferring a product with a rich formulation and people preferring a poor product. The final target, i.e. the optimisation of the formulation for each segment, was obtained by the calculation of regression models relating the subjective evaluations given by the Panel and the compositions of the samples. The regression models allowed to identify the best formulations for the two segments ofthe market.

  2. Degassing of H2O in a phonolitic melt: A closer look at decompression experiments

    NASA Astrophysics Data System (ADS)

    Marxer, Holger; Bellucci, Philipp; Nowak, Marcus

    2015-05-01

    Melt degassing during magma ascent is controlled by the decompression rate and can be simulated in decompression experiments. H2O-bearing phonolitic melts were decompressed at a super-liquidus T of 1323 K in an internally heated argon pressure vessel, applying continuous decompression (CD) as well as to date commonly used step-wise decompression (SD) techniques to investigate the effect of decompression method on melt degassing. The hydrous melts were decompressed from 200 MPa at nominal decompression rates of 0.0028-1.7 MPa·s- 1. At final pressure (Pfinal), the samples were quenched rapidly at isobaric conditions with ~ 150 K·s- 1. The bubbles in the quenched samples are often deformed and dented. Flow textures in the glass indicate melt transport at high viscosity. We suggest that this observation is due to bubble shrinkage during quench. This general problem was mostly overlooked in the interpretation of experimentally degassed samples to date. Bubble shrinkage due to decreasing molar volume (Vm) of the exsolved H2O in the bubbles occurs during isobaric rapid quench until the melt is too viscous too relax. The decrease of Vm(H2O) during cooling at Pfinal of the experiments results in a decrease of the bubble volume by a shrinking factor Bs: At nominal decompression rates > 0.17 MPa·s- 1 and a Pfinal of 75 MPa, the decompression method has only minor influence on melt degassing. SD and CD result in high bubble number densities of 104-105 mm- 3. Fast P drop leads to immediate supersaturation with H2O in the melt. At such high nominal decompression rates, the diffusional transport of H2O is limited and therefore bubble nucleation is the predominant degassing process. The residual H2O contents in the melts decompressed to 75 MPa increase with nominal decompression rate. After homogeneous nucleation is triggered, CD rates ≤ 0.024 MPa·s- 1 facilitate continuous reduction of the supersaturation by H2O diffusion into previously nucleated bubbles. Bubble number densities of CD samples with low nominal decompression rates are several orders of magnitude lower than for SD experiments and the bubble diameters are larger. The reproducibility of MSD experiments with low nominal decompression rates is worse than for CD runs. Commonly used SD techniques are therefore not suitable to simulate melt degassing during continuous magma ascent with low ascent rates.

  3. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, P.F.

    1979-07-17

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  4. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, Patrick F.

    1981-01-01

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  5. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    NASA Astrophysics Data System (ADS)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  6. Measurements of Volume Reverberation Off the Coasts of Southern California and Northern Mexico

    DTIC Science & Technology

    1993-04-01

    day, while at night levels are highest at the more inshore locations. Mesopelagic fish, siphonophores , and possibly, deep sea shrimp are suspected to be...California and northern Mexico, physonect siphonophores containing air bubbles can also be a significant source of reverberation 131. Also, at the higher...equations should also hold for siphonophore air bubbles except the damping coefficients will differ. At frequencies well below resonance, in the Rayleigh

  7. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: laboratory experimental demonstration of the transport pathway.

    PubMed

    Ehrenhauser, Franz S; Avij, Paria; Shu, Xin; Dugas, Victoria; Woodson, Isaiah; Liyana-Arachchi, Thilanga; Zhang, Zenghui; Hung, Francisco R; Valsaraj, Kalliat T

    2014-01-01

    Oil spills in the deep-sea environment such as the 2010 Deep Water Horizon oil spill in the Gulf of Mexico release vast quantities of crude oil into the sea-surface environment. Various investigators have discussed the marine transport and fate of the oil into different environmental compartments (air, water, sediment, and biota). The transport of the oil into the atmosphere in these previous investigations has been limited to only evaporation, a volatility dependent pathway. In this work, we studied the aerosolization of oil spill matter via bursting bubbles as they occur during whitecaps in a laboratory aerosolization reactor. By evaluating the alkane content in oil mousse, crude oil, the gas phase, and particulate matter we clearly demonstrate that aerosolization via bursting bubbles is a solubility and volatility independent transport pathway for alkanes. The signature of alkane fractions in the native oil and aerosolized matter matched well especially for the less volatile alkanes (C20-C29). Scanning electron microscope interfaced with energy dispersive X-ray images identified the carbon fractions associated with salt particles of aerosols. Theoretical molecular dynamics simulations in the accompanying paper lend support to the observed propensity for alkanes at air-salt water interfaces of breaking bubbles and the produced droplets. The presence of a dispersant in the aqueous phase increased the oil ejection rate at the surface especially for the C20-C29 alkanes. The information presented here emphasizes the need to further study sea-spray aerosols as a possible transport vector for spilled oil in the sea surface environment.

  8. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  9. RNA-DNA and DNA-DNA base-pairing at the upstream edge of the transcription bubble regulate translocation of RNA polymerase and transcription rate.

    PubMed

    KIreeva, Maria; Trang, Cyndi; Matevosyan, Gayane; Turek-Herman, Joshua; Chasov, Vitaly; Lubkowska, Lucyna; Kashlev, Mikhail

    2018-06-20

    Translocation of RNA polymerase (RNAP) along DNA may be rate-limiting for transcription elongation. The Brownian ratchet model posits that RNAP rapidly translocates back and forth until the post-translocated state is stabilized by NTP binding. An alternative model suggests that RNAP translocation is slow and poorly reversible. To distinguish between these two models, we take advantage of an observation that pyrophosphorolysis rates directly correlate with the abundance of the pre-translocated fraction. Pyrophosphorolysis by RNAP stabilized in the pre-translocated state by bacteriophage HK022 protein Nun was used as a reference point to determine the pre-translocated fraction in the absence of Nun. The stalled RNAP preferentially occupies the post-translocated state. The forward translocation rate depends, among other factors, on melting of the RNA-DNA base pair at the upstream edge of the transcription bubble. DNA-DNA base pairing immediately upstream from the RNA-DNA hybrid stabilizes the post-translocated state. This mechanism is conserved between E. coli RNAP and S. cerevisiae RNA polymerase II and is partially dependent on the lid domain of the catalytic subunit. Thus, the RNA-DNA hybrid and DNA reannealing at the upstream edge of the transcription bubble emerge as targets for regulation of the transcription elongation rate.

  10. Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field

    NASA Technical Reports Server (NTRS)

    Chang, Shinan; Herman, Cila; Iacona, Estelle

    2002-01-01

    The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.

  11. Interpretation of high-speed flows in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Chen, C. X.; Wolf, R. A.

    1993-01-01

    Pursuing an idea suggested by Pontius and Wolf (1990), we propose that the `bursty bulk flows' observed by Baumjohann et al. (1990) and Angelopoulos et al. (1992) are `bubbles' in the Earth's plasma sheet. Specifically, they are flux tubes that have lower values of pV(exp 5/3) than their neighbors, where p is the thermal pressure of the particles and V is the volume of a tube containing one unit of magnetic flux. Whether they are created by reconnection or some other mechanism, the bubbles are propelled earthward by a magnetic buoyancy force, which is related to the interchange instability. Most of the major observed characteristics of the bursty bulk flows can be interpreted naturally in terms of the bubble picture. We propose a new `stratified fluid' picture of the plasma sheet, based on the idea that bubbles constitute the crucial transport mechanism. Results from simple mathematical models of plasma sheet transport support the idea that bubbles can resolve the pressure balance inconsistency, particularly in cases where plasma sheet ions are lost by gradient/curvature drift out the sides of the tail or bubbles are generated by reconnection in the middle of plasma sheet.

  12. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Experimental and Computational Investigation of Microbubble Production in Microfluidic Flow-Focusing Devices

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Shandas, Robin

    2005-11-01

    Micron-sized bubbles have been effectively used as contrast agents in ultrasound imaging systems and have the potential for many other applications including targeted drug delivery and tumor destruction. The further development of these applications is dependent on precise control of bubble size. Recently, microfluidic flow-focusing systems have emerged as a viable means of producing microbubbles with monodisperse size distributions. These systems focus co-flowing liquid streams surrounding a gas stream through a narrow orifice, producing bubbles in very reproducible manner. In this work, a photopolymerization technique has been used to produce microfludicic flow-focusing devices which were successfully used to produce micron-sized bubbles. The flow dynamics involved in these devices has also been simulated using a volume-of-fluid approach to simultaneously solve the equations of motion for both the gas and liquid phases. Simulations were run with several variations of the flow-focuser geometry (gas inlet width, orifice length, gas-liquid approach angle, etc.) in an effort to produce smaller bubbles and increase the working range of liquid and gas flow rates. These findings are being incorporated into the production of actual devices in an effort to improve the overall effectiveness of the bubble production process.

  14. Pressure-dependent attenuation with microbubbles at low mechanical index.

    PubMed

    Tang, Meng-Xing; Eckersley, Robert J; Noble, J Alison

    2005-03-01

    It has previously been shown that the attenuation of ultrasound (US) by microbubble contrast agents is dependent on acoustic pressure (Chen et al. 2002). Although previous studies have modelled the pressure-dependence of attenuation in single bubbles, this paper investigates this subject by considering a bulk volume of bubbles together with other linear attenuators. Specifically, a new pressure-dependent attenuation model for an inhomogeneous volume of attenuators is proposed. In this model, the effect of the attenuation on US propagation is considered. The model was validated using experimental measurements on the US contrast agent Sonovue. The results indicate, at low acoustic pressures, a linear relationship between the attenuation of Sonovue, measured in dB, and the insonating acoustic pressure.

  15. Propulsion of Bubble-Based Acoustic Microswimmers

    NASA Astrophysics Data System (ADS)

    Bertin, Nicolas; Spelman, Tamsin A.; Stephan, Olivier; Gredy, Laetitia; Bouriau, Michel; Lauga, Eric; Marmottant, Philippe

    2015-12-01

    Acoustic microswimmers present a great potential for microfluidic applications and targeted drug delivery. Here, we introduce armored microbubbles (size range, 10 - 20 μ m ) made by three-dimensional microfabrication, which allows the bubbles to last for hours even under forced oscillations. The acoustic resonance of the armored microbubbles is found to be dictated by capillary forces and not by gas volume, and its measurements agree with a theoretical calculation. We further measure experimentally and predict theoretically the net propulsive flow generated by the bubble vibration. This flow, due to steady streaming in the fluid, can reach 100 mm /s , and is affected by the presence of nearby walls. Finally, microswimmers in motion are shown, either as spinning devices or free swimmers.

  16. Collapse of an antibubble

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Ji, Chen; Yuan, BaoGang; Ruan, XiaoDong; Fu, Xin

    2013-06-01

    In contrast to a soap bubble, an antibubble is a liquid globule surrounded by a thin film of air. The collapse behavior of an antibubble is studied using a high-speed video camera. It is found that the retraction velocity of the thin air film of antibubbles depends on the thickness of the air film, e, the surface tension coefficient σ, etc., and varies linearly with (σ/ρe)1/2, according to theoretical analysis and experimental observations. During the collapse of the antibubble, many tiny bubbles can be formed at the rim of the air film due to the Rayleigh instability. In most cases, a larger bubble will emerge finally, which holds most of the volume of the air film.

  17. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendel, Mark W; Felde, David K; Sangrey, Robert L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubblermore » provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.« less

  18. Histotripsy beyond the “Intrinsic” Cavitation Threshold using Very Short Ultrasound Pulses: “Microtripsy”

    PubMed Central

    Lin, Kuang-Wei; Kim, Yohan; Maxwell, Adam D.; Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.

    2014-01-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. Conventional histotripsy treatments have used longer pulses from 3 to 10 cycles wherein the lesion-producing bubble cloud generation depends on the pressure-release scattering of very high peak positive shock fronts from previously initiated, sparsely distributed bubbles (the “shock-scattering” mechanism). In our recent work, the peak negative pressure (P−) for generation of dense bubble clouds directly by a single negative half cycle, the “intrinsic threshold,” was measured. In this paper, the dense bubble clouds and resulting lesions (in RBC phantoms and canine tissues) generated by these supra-intrinsic threshold pulses were studied. A 32-element, PZT-8, 500 kHz therapy transducer was used to generate very short (< 2 cycles) histotripsy pulses at a pulse repetition frequency (PRF) of 1 Hz and P− from 24.5 to 80.7 MPa. The results showed that the spatial extent of the histotripsy-induced lesions increased as the applied P− increased, and the sizes of these lesions corresponded well to the estimates of the focal regions above the intrinsic cavitation threshold, at least in the lower pressure regime (P− = 26–35 MPa). The average sizes for the smallest reproducible lesions were approximately 0.9 × 1.7 mm (lateral × axial), significantly smaller than the −6dB beamwidth of the transducer (1.8 × 4.0 mm). These results suggest that, using the intrinsic threshold mechanism, well-confined and microscopic lesions can be precisely generated and their spatial extent can be estimated based on the fraction of the focal region exceeding the intrinsic cavitation threshold. Since the supra-threshold portion of the negative half cycle can be precisely controlled, lesions considerably less than a wavelength are easily produced, hence the term “microtripsy.” PMID:24474132

  19. Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1995-01-01

    A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced by gravity are discussed in connection with experimental evidence, both available in current and in as yet unpublished literature.

  20. Coalescence preference in densely packed microbubbles

    DOE PAGES

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; ...

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  1. Coalescence preference in densely packed microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  2. Importance of acoustic shielding in sonochemistry.

    PubMed

    van Iersel, Maikel M; Benes, Nieck E; Keurentjes, Jos T F

    2008-04-01

    It is well known that sonochemistry is less efficient at high acoustic intensities. Many authors have attributed this effect to decoupling losses and shielding of the acoustic wave. In this study we investigate both phenomena for a 20 kHz ultrasound field with an intensity ranging from 40 to 150 W/cm2. Visualization of the bubble cloud has demonstrated that the void fraction below the ultrasound horn increases more than proportional with increasing power input. Nevertheless, the energy coupling between the horn and the liquid remains constant; this implies that decoupling losses are not reinforced for larger bubble clouds. On the contrary, microphone measurements have shown that due to the larger bubble cloud a substantial part of the supplied energy is lost at high power inputs. In striving towards more efficient sonochemistry, reduction of shielding appears as one of the major challenges.

  3. Air pressure changes in the creation and bursting of the type-1 big bubble in deep anterior lamellar keratoplasty: an ex vivo study.

    PubMed

    AlTaan, S L; Mohammed, I; Said, D G; Dua, H S

    2018-01-01

    PurposeTo measure the pressure and volume of air required to create a big bubble (BB) in simulated deep anterior lamellar keratoplasty (DALK) in donor eyes and ascertain the bursting pressure of the BB.Patients and methodsTwenty-two human sclera-corneal discs were used. Air was injected into the corneal stroma to create a BB and the pressure measured by means of a pressure converter attached to the system via a side port. A special clamp was designed to prevent air leak from the periphery of the discs. The pressure at which air emerged in the corneal tissue; the bursting pressure measured after advancing the needle into the bubble cavity and injecting more air; the volume of air required to create a BB and the volume of the BB were ascertained.ResultsType-1 BB were achieved in 19 and type-2 BB in 3 eyes. The maximum pressure reached to create a BB was 96.25+/- 21.61 kpa; the mean type-1 intrabubble pressure was 10.16 +/- 3.65 kpa. The mean bursting pressure of a type-1 BB was 66.65 +/- 18.65 kpa, while that of a type-2 BB was 14.77 +/- 2.44 kpa. The volume of air required to create a type-1 BB was 0.54 ml and the volume of a type-1 BB was consistently 0.1 ml.ConclusionsDua's layer baring DALK can withstand high intraoperative pressures compared to Descemet's membrane baring DALK. The study suggests that it could be safe to undertake procedures such as DALK-triple with a type-1 BB but not with a type-2 BB.

  4. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  5. A Tissue-Mimicking Ultrasound Test Object Using Droplet Vaporization to Create Point Targets

    PubMed Central

    Carneal, Catherine M.; Kripfgans, Oliver D.; Krücker, Jochen; Carson, Paul L.; Fowlkes, J. Brian

    2012-01-01

    Ultrasound test objects containing reference point targets could be useful for evaluating ultrasound systems and phase aberration correction methods. Polyacrylamide gels containing albumin-stabilized droplets (3.6 µm mean diameter) of dodecafluoropentane (DDFP) are being developed for this purpose. Perturbation by ultrasound causes spontaneous vaporization of the superheated droplets to form gas bubbles, a process termed acoustic droplet vaporization (ADV). The resulting bubbles (20 to 160 µm diameter) are small compared with acoustic wavelengths in diagnostic ultrasound and are theoretically suitable for use as point targets (phase errors <20° for typical f-numbers). Bubbles distributed throughout the material are convenient for determining the point spread function in an imaging plane or volume. Cooling the gel causes condensation of the DDFP droplets, which may be useful for storage. Studying ADV in such viscoelastic media could provide insight into potential bioeffects from rapid bubble formation. PMID:21937339

  6. Development of One-Group and Two-Group Interfacial Area Transport Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, M.; Kim, S.

    A dynamic approach employing the interfacial area transport equation is presented to replace the static flow regime dependent correlations for the interfacial area concentration. The current study derives the transport equations for the bubble number, volume, and interfacial area concentration. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, both one-group and two-group interfacial area transport equations are developed along with the necessary constitutive relations. The framework for the complicated source and sink terms in the two-group transport equation is also presented by identifying the major intragroup and intergroup bubble interaction mechanisms. In view ofmore » evaluating the theoretical model, the one-group interfacial area transport equation is benchmarked based on the available data obtained in a wide range of air-water bubbly flow in round tubes of various diameters. In general, the results show good agreement within the measurement error of {+-}10%.« less

  7. International Symposium on Acoustic Remote Sensing of the Atmosphere and Oceans (2nd).

    DTIC Science & Technology

    1983-09-26

    work to develop a model the volume wave to form the boundary which relates hydrodynamical features of 6 ~A the ocean-air interface to ambient noise...is my belief oscillating bubbles, splashing waves and that the sodar work is not well known in water droplets, bubble cavitation , the Navy acoustics...Temperature," in accumulate in the same locations. Major Proceedings, InternationaZ Symposi- pollutants include oil spills, drilling w on Remote Sensing of

  8. Aero-Hydroacoustics for Ships. Volume 1

    DTIC Science & Technology

    1984-06-01

    as 10 and bubble radii as small as 20 t.m. Thl’ use of acoustic a) sorption (it is also possible to measure the reduction of 5-,L’nd sJ L~d in bubbly... pFA -(2,0 1 0 12 3 456 km V’,r~ (20") *Figure 6.20 -Wave Number Locus for 1.5 x 0.6 x 0.0254 Meter Panel at f= 4180 Hertz; Half-Integer Modes are those

  9. Bubble Formation at a Submerged Orifice in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1994-01-01

    The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.

  10. Capillary Channel Flow (CCF) EU2-02 on the International Space Station (ISS): An Experimental Investigation of Passive Bubble Separations in an Open Capillary Channel

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.; Wollman, Andrew P.; Jenson, Ryan M.; Geile, John T.; Tucker, John F.; Wiles, Brentley M.; Trattner, Andy L.; DeVoe, Claire; Sharp, Lauren M.; Canfield, Peter J.; hide

    2015-01-01

    It would be signicantly easier to design fluid systems for spacecraft if the fluid phases behaved similarly to those on earth. In this research an open 15:8 degree wedge-sectioned channel is employed to separate bubbles from a two-phase flow in a microgravity environment. The bubbles appear to rise in the channel and coalesce with the free surface in much the same way as would bubbles in a terrestrial environment, only the combined effects of surface tension, wetting, and conduit geometry replace the role of buoyancy. The host liquid is drawn along the channel by a pump and noncondensible gas bubbles are injected into it near the channel vertex at the channel inlet. Control parameters include bubble volume, bubble frequency, liquid volumetric flow rate, and channel length. The asymmetrically confined bubbles are driven in the cross-flow direction by capillary forces until they at least become inscribed within the section or until they come in contact with the free surface, whereupon they usually coalesce and leave the flow. The merging of bubbles enhances, but does not guarantee, the latter. The experiments are performed aboard the International Space Station as a subset of the Capillary Channel Flow experiments. The flight hardware is commanded remotely and continuously from ground stations during the tests and an extensive array of experiments is conducted identifying numerous bubble flow regimes and regime transitions depending on the ratio and magnitude of the gas and liquid volumetric flow rates. The breadth of the publicly available experiments is conveyed herein primarily by narrative and by regime maps, where transitions are approximated by simple expressions immediately useful for the purposes of design and deeper analysis.

  11. Beer tapping: dynamics of bubbles after impact

    NASA Astrophysics Data System (ADS)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  12. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.

    PubMed

    Wang, Kevin G

    2017-10-01

    A novel multiphase fluid-solid-coupled computational framework is applied to investigate the interaction of a kidney stone immersed in liquid with a lithotripsy shock wave (LSW) and a gas bubble near the stone. The main objective is to elucidate the effects of a bubble in the shock path to the elastic and fracture behaviors of the stone. The computational framework couples a finite volume 2-phase computational fluid dynamics solver with a finite element computational solid dynamics solver. The surface of the stone is represented as a dynamic embedded boundary in the computational fluid dynamics solver. The evolution of the bubble surface is captured by solving the level set equation. The interface conditions at the surfaces of the stone and the bubble are enforced through the construction and solution of local fluid-solid and 2-fluid Riemann problems. This computational framework is first verified for 3 example problems including a 1D multimaterial Riemann problem, a 3D shock-stone interaction problem, and a 3D shock-bubble interaction problem. Next, a series of shock-bubble-stone-coupled simulations are presented. This study suggests that the dynamic response of a bubble to LSW varies dramatically depending on its initial size. Bubbles with an initial radius smaller than a threshold collapse within 1 μs after the passage of LSW, whereas larger bubbles do not. For a typical LSW generated by an electrohydraulic lithotripter (p max  = 35.0MPa, p min  =- 10.1MPa), this threshold is approximately 0.12mm. Moreover, this study suggests that a noncollapsing bubble imposes a negative effect on stone fracture as it shields part of the LSW from the stone. On the other hand, a collapsing bubble may promote fracture on the proximal surface of the stone, yet hinder fracture from stone interior. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms

    NASA Technical Reports Server (NTRS)

    Thomas, Charles R.; Holt, R. Glynn; Roy, Ronald A.

    2002-01-01

    Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM, and temperatures of at least 10,000K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence (SBSL), yet there remain at least four unexplained phenomena associated with SBSL in 1g: the light emission mechanism itself, the existence of anisotropies in the emitted light, the disappearance of the bubble at some critical acoustic pressure, and the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these. We are developing KC-135 experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the predictions of existing theories.

  14. Counter-current thermocapillary migration of bubbles in self-rewetting liquids

    NASA Astrophysics Data System (ADS)

    Nazareth, R.; Saenz, P.; Sefiane, K.; Kim, J.; Valluri, P.

    2016-11-01

    In this work, we study the counter-current thermocapillary propulsion of a suspended bubble in the fluid flowing inside a channel subject to an axial temperature gradient when the surface tension dependence on temperature is non-monotonic. We use direct numerical simulations to address the two-phase conservation of mass, momentum and energy with a volume-of-fluid method to resolve the deformable interface. Two distinct regimes of counter-current bubble migration are characterized: i) "exponential decay" where the bubble decelerates rapidly until it comes to a halt at the spatial position corresponding to the minimum surface tension and ii) "sustained oscillations" where the bubble oscillates about the point of minimum surface tension. We illustrate how these sustained oscillations arise at low capillary number O(10-5) and moderate Reynolds number O(10) and, they are dampened by viscosity at lower Reynolds number. These results are in agreement with the experiments by Shanahan and Sefiane (Sci. Rep. 4, 2014). The work was supported by the Science without Borders program from CAPES agency of Brazilian Ministry of Education and the European Commission's Thermapower Project (294905).

  15. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.

  16. Dynamics and detection of laser induced microbubbles in the retinal pigment epithelium (RPE)

    NASA Astrophysics Data System (ADS)

    Fritz, Andreas; Ptaszynski, Lars; Stoehr, Hardo; Brinkmann, Ralf

    2007-07-01

    Selective Retina Treatment (SRT) is a new method to treat eye diseases associated with disorders of the RPE. Selective RPE cell damage is achieved by applying a train of 1.7 μs laser pulses at 527 nm. The treatment of retinal diseases as e.g. diabetic maculopathy (DMP), is currently investigated within clinical studies, however 200 ns pulse durations are under investigation. Transient micro bubbles in the retinal pigment epithelium (RPE) are expected to be the origin of cell damage due to irradiation with laser pulses shorter than 50 μs. The bubbles emerge at the strongly absorbing RPE melanosomes. Cell membrane disruption caused by the transient associated volume increase is expected to be the origin of the angiographically observed RPE leakage. We investigate micro bubble formation and dynamics in porcine RPE using pulse durations of 150 ns. A laser interferometry system at 830 nm with the aim of an online dosimetry control for SRT was developed. Bubble formation was detected interferometrically and by fast flash photography. A correlation to cell damage observed with a vitality stain is found. A bubble detection algorithm is presented.

  17. Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004-2008 history of dome growth and deformation

    USGS Publications Warehouse

    Mastin, Larry G.; Lisowski, Mike; Roeloffs, Evelyn; Beeler, Nick

    2009-01-01

    The history of dome growth and geodetic deflation during the 2004-2008 Mount St. Helens eruption can be fit to theoretical curves with parameters such as reservoir volume, bubble content, initial overpressure, and magma rheology, here assumed to be Newtonian viscous, with or without a solid plug in the conduit center. Data from 2004-2008 are consistent with eruption from a 10-25 km3 reservoir containing 0.5-2% bubbles, an initial overpressure of 10-20 MPa, and no significant, sustained recharge. During the eruption we used curve fits to project the eruption's final duration and volume. Early projections predicted a final volume only about half of the actual value; but projections increased with each measurement, implying a temporal increase in reservoir volume or compressibility. A simple interpretation is that early effusion was driven by a 5-10 km3, integrated core of fluid magma. This core expanded with time through creep of semi-solid magma and host rock.

  18. Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004-2008 history of dome growth and deformation

    USGS Publications Warehouse

    Mastin, L.G.; Lisowski, M.; Roeloffs, E.; Beeler, N.

    2009-01-01

    The history of dome growth and geodetic deflation during the 2004-2008 Mount St. Helens eruption can be fit to theoretical curves with parameters such as reservoir volume, bubble content, initial overpressure, and magma rheology, here assumed to be Newtonian viscous, with or without a solid plug in the conduit center. Data from 2004-2008 are consistent with eruption from a 10-25 km3 reservoir containing 0.5-2% bubbles, an initial overpressure of 10-20 MPa, and no significant, sustained recharge. During the eruption we used curve fits to project the eruption's final duration and volume. Early projections predicted a final volume only about half of the actual value; but projections increased with each measurement, implying a temporal increase in reservoir volume or compressibility. A simple interpretation is that early effusion was driven by a 5-10 km3, integrated core of fluid magma. This core expanded with time through creep of semi-solid magma and host rock. Copyright 2009 by the American Geophysical Union.

  19. Modeling of sonochemistry in water in the presence of dissolved carbon dioxide.

    PubMed

    Authier, Olivier; Ouhabaz, Hind; Bedogni, Stefano

    2018-07-01

    CO 2 capture and utilization (CCU) is a process that captures CO 2 emissions from sources such as fossil fuel power plants and reuses them so that they will not enter the atmosphere. Among the various ways of recycling CO 2 , reduction reactions are extensively studied at lab-scale. However, CO 2 reduction by standard methods is difficult. Sonochemistry may be used in CO 2 gas mixtures bubbled through water subjected to ultrasound waves. Indeed, the sonochemical reduction of CO 2 in water has been already investigated by some authors, showing that fuel species (CO and H 2 ) are obtained in the final products. The aim of this work is to model, for a single bubble, the close coupling of the mechanisms of bubble dynamics with the kinetics of gas phase reactions in the bubble that can lead to CO 2 reduction. An estimation of time-scales is used to define the controlling steps and consequently to solve a reduced model. The calculation of the concentration of free radicals and gases formed in the bubble is undertaken over many cycles to look at the effects of ultrasound frequency, pressure amplitude, initial bubble radius and bubble composition in CO 2 . The strong effect of bubble composition on the CO 2 reduction rate is confirmed in accordance with experimental data from the literature. When the initial fraction of CO 2 in the bubble is low, bubble growth and collapse are slightly modified with respect to simulation without CO 2 , and chemical reactions leading to CO 2 reduction are promoted. However, the peak collapse temperature depends on the thermal properties of the CO 2 and greatly decreases as the CO 2 increases in the bubble. The model shows that initial bubble radius, ultrasound frequency and pressure amplitude play a critical role in CO 2 reduction. Hence, in the case of a bubble with an initial radius of around 5 μm, CO 2 reduction appears to be more favorable at a frequency around 300 kHz than at a low frequency of around 20 kHz. Finally, the industrial application of ultrasound to CO 2 reduction in water would be largely dependent on sonochemical efficiency. Under the conditions tested, this process does not seem to be sufficiently efficient. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Rodney O.; Passalacqua, Alberto

    2016-02-01

    Computational fluid dynamics (CFD) has been widely studied and used in the scientific community and in the industry. Various models were proposed to solve problems in different areas. However, all models deviate from reality. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated with the prediction of quantities of interest. In particular it studies the propagation of input uncertainties to the outputs of the models so that confidence intervals can be provided for the simulation results. In the present work, a non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The probability distribution function (PDF) of the system response can bemore » then reconstructed using extended quadrature method of moments (EQMOM) and extended conditional quadrature method of moments (ECQMOM). The report first explains the theory of QBUQ approach, including methods to generate samples for problems with single or multiple uncertain input parameters, low order statistics, and required number of samples. Then methods for univariate PDF reconstruction (EQMOM) and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ approach is demonstrated in several applications. The method is first applied to two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock problem with uncertain upstream Mach number. The error in the prediction of the moment response is studied as a function of the number of samples, and the accuracy of the moments required to reconstruct the PDF of the system response is discussed. The QBUQ approach is then demonstrated by considering a bubbling fluidized bed as example application. The mean particle size is assumed to be the uncertain input parameter. The system is simulated with a standard two-fluid model with kinetic theory closures for the particulate phase implemented into MFIX. The effect of uncertainty on the disperse-phase volume fraction, on the phase velocities and on the pressure drop inside the fluidized bed are examined, and the reconstructed PDFs are provided for the three quantities studied. Then the approach is applied to a bubbling fluidized bed with two uncertain parameters, particle-particle and particle-wall restitution coefficients. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities and gas pressure are provided. The PDFs of the response are reconstructed using EQMOM with appropriate kernel density functions. The simulation results are compared to experimental data provided by the 2013 NETL small-scale challenge problem. Lastly, the proposed procedure is demonstrated by considering a riser of a circulating fluidized bed as an example application. The mean particle size is considered to be the uncertain input parameter. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities, and granular temperature are provided. Mean values and confidence intervals of the quantities of interest are compared to the experiment results. The univariate and bivariate PDF reconstructions of the system response are performed using EQMOM and ECQMOM.« less

  1. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the basis for a follow up research scheduled for August 2016 with the R/V POSEIDON with the aim to better constrain their mechanisms and to quantify their overall importance.

  2. Surfactant effects on alpha factors in full-scale wastewater aeration systems.

    PubMed

    Rosso, D; Larson, L E; Stenstrom, M K

    2006-01-01

    Aeration is an essential process in the majority of wastewater treatment processes, and accounts for the largest fraction of plant energy costs. Aeration systems can achieve wastewater oxygenation by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactants accumulate on gas-liquid interfaces and reduce mass transfer rates. This reduction in general is larger for fine-bubble aerators. This study was conducted to evaluate mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes were analysed, showing higher gas transfer depression for lower turbulence regimes. Higher turbulence regimes can offset contamination effects, at the expense of operating efficiency. This phenomenon is characteristic of surface aerators and coarse bubble diffusers and is here discussed. The results explain the variability of alpha factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations that describe mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.

  3. Gas separation and bubble behavior at a woven screen

    NASA Astrophysics Data System (ADS)

    Conrath, Michael; Dreyer, Michael E.

    Gas-liquid two phase flows are widespread and in many applications the separation of both phases is necessary. Chemical reactors, water treatment devices or gas-free delivery of liquids like propellant are only some of them. We study the performance of a woven metal screen in respect to its phase separation behavior under static and dynamic conditions. Beside hydraulic screen resistance and static bubble point, our study also comprises the bubble detachment from the screen upon gas breakthrough. Since a woven screen is essentially an array of identical pores, analogies to bubble detachment from a needle can be established. While the bubble point poses an upper limit for pressurized gas at a wetted screen to preclude gas breakthrough, the necessary pressure for growing bubbles to detach from the screen pores a lower limit when breakthrough is already in progress. Based on that inside, the dynamic bubble point effects were constituted that relate to a trapped bubble at such a screen in liquid flow. A trapped is caused to break through the screen by the flow-induced pressure drop across it. Our model includes axially symmetric bubble shapes, degree of coverage of the screen and bubble pressurization due to hydraulic losses in the rest of the circuit. We have built an experiment that consists of a Dutch Twilled woven screen made of stainless steel in a vertical acrylic glass tube. The liquid is silicon oil SF0.65. The screen is suspended perpendicular to the liquid flow which is forced through it at variable flow rate. Controlled injection of air from a needle allows us to examine the ability of the screen to separate gas and liquid along the former mentioned effects. We present experimental data on static bubble point and detachment pressure for breakthrough at different gas supply rates that suggest a useful criterion for reliable static bubble point measurements. Results for the dynamic bubble point are presented that include i) screen pressure drop for different trapped bubble volumes, liquid flow rates and flow-induced compression, ii) typical breakthrough of a trapped bubble at rising liquid flow rate and iii) steady gas supply in steady liquid flow. It shows that our model can explain the experimental observations. One of the interesting findings for the dynamic bubble point is that hydraulic losses in the rest of the circuit will shift the breakthrough of gas to higher liquid flow rates.

  4. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    PubMed Central

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Keszthelyi, Laszlo P.

    2017-01-01

    The Athabasca Valles flood lava is among the most recent (<50 Ma) and best preserved effusive lava flows on Mars and was probably emplaced turbulently. The Williams et al. [2005] model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3 and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol% bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol% ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles. PMID:29082120

  5. Insights in the laser induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part II: Plasma emission intensity as a function of interpulse delay

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Laserna, J. J.; Jovicevic, S.

    2013-04-01

    Influence of time delay between two laser pulses on the LIBS (laser induced breakdown spectroscopy) signal inside liquids was investigated and the results are compared with data from literature. Plasma was produced by laser ablation (LA) of aluminum inside water and its emission after the second laser pulse was characterized by spectrally and time resolved detection. Light propagation through the vapor bubble formed by the first laser pulse was studied by measurements of beam scattering and transmission. Optical absorption by the evolving bubble is not significant, but its growth is accompanied by lowering of its refraction index nb with respect to surrounding liquid; this effect increases defocusing both of the incident beam and of the out-coming plasma radiation. Collection efficiency of the secondary plasma emission rapidly degrades with the cavity growth, but close to its full expansion the LIBS signal partially recovers through Snell's reflections at the liquid-vapor interface, which produce a bright spot close to the bubble center. Such a light redistribution allows detecting of the emission from external plasma volume, otherwise deflected out of the collection system. Except for strong line transitions from the main sample constituents, self-absorbed inside the high-pressure cavity, we observed the highest LIBS signal when sending the second pulse well before the bubble is fully expanded. Transitions of the pressure wave through the focal volume, formed by the first laser pulse and reflected from the cell's walls and sample back-plane, enhances the LIBS signal importantly. The measured lifetime of the secondary plasma rapidly decreases with the bubble expansion. Here, we also discuss the optimization of the optical collection system and some analytical aspects of double-pulse (DP) LIBS inside liquids.

  6. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    USGS Publications Warehouse

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Kestay, Laszlo P.

    2015-01-01

    The Athabasca Valles flood lava is among the most recent (<50 Ma) and best preserved effusive lava flows on Mars and was probably emplaced turbulently. The Williams et al. (2005) model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol % bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol % ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles.

  7. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chemerisov, Sergey; Gromov, Roman; Makarashvili, Vakho

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects ofmore » convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.« less

  8. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    DTIC Science & Technology

    2014-09-19

    the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to

  9. Prediction of Susceptibility to Acute Mountain Sickness Using Hypoxia-Induced Intrapulmonary Arteriovenous Shunt and Intracardiac Shunt Fractions

    DTIC Science & Technology

    2013-10-01

    echocardiography to determine bubble/shunt scores. We will also use nuclear medicine imaging to determine shunt fractions following acute exposures to... echocardiography while breathing hypoxic gas mixtures. – TASK COMPLETED. For Task #1.3 “Quantify shunt during hypoxic exposure with SPECT CT – PFO...subjects.” 19 PFO+ subjects have completed saline contrast echocardiography while breathing hypoxic gas mixtures for 30 min. One PFO+ subject that had

  10. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  11. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows inmore » the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)« less

  12. Lack of thermal energy in superbubbles: hint of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Gupta, Siddhartha; Nath, Biman B.; Sharma, Prateek; Eichler, David

    2018-01-01

    Using analytic methods and 1D two-fluid simulations, we study the effect of cosmic rays (CRs) on the dynamics of interstellar superbubbles (ISBs) driven by multiple supernovae (SNe)/stellar winds in OB associations. In addition to CR advection and diffusion, our models include thermal conduction and radiative cooling. We find that CR injection at the reverse shock or within a central wind-driving region can affect the thermal profiles of ISBs and hence their X-ray properties. Even if a small fraction (10-20 per cent) of the total mechanical power is injected into CRs, a significant fraction of the ram pressure at the reverse shock can be transferred to CRs. The energy transfer becomes efficient if (1) the reverse shock gas Mach number exceeds a critical value (Mth ≳ 12) and (2) the CR acceleration time-scale τacc ∼ κcr/v2 is shorter than the dynamical time, where κcr is a CR diffusion coefficient and v is the upstream velocity. We show that CR affected bubbles can exhibit a volume-averaged hot gas temperature 1-5 × 106 K, lower by a factor of 2 - 10 than without CRs. Thus, CRs can potentially solve the long-standing problem of the observed low ISB temperatures.

  13. Absorbance and fluorometric sensing with capillary wells microplates.

    PubMed

    Tan, Han Yen; Cheong, Brandon Huey-Ping; Neild, Adrian; Liew, Oi Wah; Ng, Tuck Wah

    2010-12-01

    Detection and readout from small volume assays in microplates are a challenge. The capillary wells microplate approach [Ng et al., Appl. Phys. Lett. 93, 174105 (2008)] offers strong advantages in small liquid volume management. An adapted design is described and shown here to be able to detect, in a nonimaging manner, fluorescence and absorbance assays minus the error often associated with meniscus forming at the air-liquid interface. The presence of bubbles in liquid samples residing in microplate wells can cause inaccuracies. Pipetting errors, if not adequately managed, can result in misleading data and wrong interpretations of assay results; particularly in the context of high throughput screening. We show that the adapted design is also able to detect for bubbles and pipetting errors during actual assay runs to ensure accuracy in screening.

  14. Accuracy of cancellous bone volume fraction measured by micro-CT scanning.

    PubMed

    Ding, M; Odgaard, A; Hvid, I

    1999-03-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.

  15. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Hussain, Alamin; Fsadni, Andrew M.

    2016-03-01

    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  16. Vapor-liquid equilibria for an R134a/lubricant mixture: Measurements and equation-of-state modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, M.L.; Holcomb, C.D.; Outcalt, S.L.

    2000-07-01

    The authors measured bubble point pressures and coexisting liquid densities for two mixtures of R-134a and a polyolester (POE) lubricant. The mass fraction of the lubricant was approximately 9% and 12%, and the temperature ranged from 280 K to 355 K. The authors used the Elliott, Suresh, and Donohue (ESD) equation of state to model the bubble point pressure data. The bubble point pressures were represented with an average absolute deviation of 2.5%. A binary interaction parameter reduced the deviation to 1.4%. The authors also applied the ESD model to other R-134a/POE lubricant data in the literature. As the concentrationmore » of the lubricant increased, the performance of the model deteriorated markedly. However, the use of a single binary interaction parameter reduced the deviations significantly.« less

  17. Understanding the effect of emulsifiers on bread aeration during breadmaking.

    PubMed

    Garzón, Raquel; Hernando, Isabel; Llorca, Empar; Rosell, Cristina M

    2018-04-24

    Much research has been done to explain the action of emulsifiers during breadmaking, but there is still plenty unknown to elucidate their functionality despite their diverse chemical structure. The aim of the present study was to provide some light on the role of emulsifiers on air incorporation into the dough and gas bubbles progress during baking and their relationship with bread features. Emulsifiers like diacetyl tartaric acid ester of monoglycerides (DATEM), sodium stearoyl lactylate (SSL), distilled monoglyceride (DMG-45 and DMG-75), lecithin and polyglycerol esters of fatty acids (PGEF) were tested in very hydrated doughs. Emulsifiers increase the maximum dough volume during proofing. Emulsifiers increase the number of bubbles incorporated during mixing, observing higher number of bubbles, particularly with PGEF. Major changes in dough occurred at 70 K when bubble size augmented, becoming more heterogeneous. DMG-75 produced the biggest bubbles. As a consequence, emulsifiers tend to increase the number of gas cells with lower size in the bread crumb, but led to greater crumb firmness, which suggested different interactions between emulsifiers and gluten, affecting protein polymerization during baking. The progress of the bubbles during baking allowed the differentiation of emulsifiers, which could explain their performance in breadmaking. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  18. Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Roy, Ronald A.

    1999-01-01

    Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM. and temperatures of at least 10,000 K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence. Yet there remain four fundamental mysteries associated with this phenomenon: 1) the light emission mechanism itself; 2) the mechanism for anomalous mass flux stability; 3) the disappearance of the bubble at some critical acoustic pressure; and 4) the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these unexplained phenomena. We are developing microgravity experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the unambiguous predictions of existing theories. By exploiting the microgravity environment we will gain new knowledge impossible to obtain in earth-based labs which will enable explanations for the above mysteries. We will also be in a position to make new discoveries about bubbles which emit light.

  19. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.

    2016-09-01

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong ["Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," Int. J. Therm. Sci. 47, 221-228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.

  20. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, K.; Kumar, P.; Vanka, S. P., E-mail: spvanka@illinois.edu

    2016-09-15

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gasmore » bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.« less

  1. What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation.

    PubMed

    Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Frenkel, Daan; Dobnikar, Jure; Zhang, Xianren

    2017-12-22

    The process of homogeneous bubble nucleation is almost impossible to probe experimentally, except near the critical point or for liquids under large negative tension. Elsewhere in the phase diagram, the bubble nucleation barrier is so high as to be effectively insurmountable. Consequently, there is a severe lack of experimental studies of homogenous bubble nucleation under conditions of practical importance (e.g., cavitation). Here we use a simple geometric relation to show that we can obtain information about the homogeneous nucleation process from Molecular Dynamics studies of bubble formation in solvophobic nanopores on a solid surface. The free energy of pinned nanobubbles has two extrema as a function of volume: one state corresponds to a free-energy maximum ("the critical nucleus"), the other corresponds to a free-energy minimum (the metastable, pinned nanobubble). Provided that the surface tension does not depend on nanobubble curvature, the radius of the curvature of the metastable surface nanobubble is independent of the radius of the pore and is equal to the radius of the critical nucleus in homogenous bubble nucleation. This observation opens the way to probe the parameters that determine homogeneous bubble nucleation under experimentally accessible conditions, e.g. with AFM studies of metastable nanobubbles. Our theoretical analysis also indicates that a surface with pores of different sizes can be used to determine the curvature corrections to the surface tension. Our conclusions are not limited to bubble nucleation but suggest that a similar approach could be used to probe the structure of critical nuclei in crystal nucleation.

  2. Two-photon optical microscopy imaging of endothelial keratoplasty grafts.

    PubMed

    Lombardo, Marco; Parekh, Mohit; Serrao, Sebastiano; Ruzza, Alessandro; Ferrari, Stefano; Lombardo, Giuseppe

    2017-03-01

    To investigate the microstructure of endothelial keratoplasty grafts using two-photon optical microscopy. Six endothelial keratoplasty grafts obtained from human donor corneoscleral tissues and prepared by submerged hydrodissection technique were imaged by two-photon optical microscopy. In each graft, two liquid bubbles were created in order to investigate the presence of a conserved cleavage plane regardless of the volume of posterior stroma that remained attached to Descemet's membrane (DM); the first bubble (bubble A) was generated under DM and the second bubble (bubble B) injection was done in order to obtain a layer of deep stroma that kept the two bubbles separated. Six human donor corneoscleral tissues were used as controls. Second harmonic generation and two-photon emitted fluorescence signals were collected from each specimen. Dissection of stroma occurred along the posterior collagen lamellae at variable distance from DM, which ranged between 3 and 16 μm in bubble A and between 23 and 41 μm in bubble B. The residual stroma included, anteriorly, bands of collagen lamellae, and thin bundles of stromal collagen fibrils, posteriorly, which were tightly intertwining with the underlying DM. There was no anatomically distinct plane of separation between these pre-Descemetic stromal collagen bundles and the overlying collagen lamellae with this hydrodissection technique. Two-photon optical microscopy provided label-free high-resolution imaging of endothelial keratoplasty grafts, showing that the most posterior stroma changes organization at approximately 10 μm above the DM. The pre-Descemetic stromal collagen fibrils form an intertwined complex with DM, which cannot be separated using hydrodissection.

  3. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less

  4. Effect of cold drawing ratio on γ′ precipitation in Inconel X-750

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Jeong Won; Research and Development Center, KOS Limited, Yangsan 626-230; Seong, Baek Seok

    2014-10-15

    Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawingmore » ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.« less

  5. Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow.

    PubMed

    Adair, Alexander; Mastikhin, Igor V; Newling, Benedict

    2018-06-01

    The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation). Due to the nature of the bubble cloud, it is ideally measured through the use of non-optical and non-invasive techniques; therefore, it is well-suited for study by magnetic resonance imaging. This paper demonstrates the use of Conical SPRITE (a 3D, centric-scan, pure phase-encoding pulse sequence) to acquire time-averaged void fraction and velocity information about hydrodynamic cavitation for water flowing through a pipe constriction. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Mesoscale model for fission-induced recrystallization in U-7Mo alloy

    DOE PAGES

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo; ...

    2016-08-09

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less

  7. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  8. Microwave vector radiative transfer equation of a sea foam layer by the second-order Rayleigh approximation

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo

    2011-10-01

    The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.

  9. In the making: SA-PIV applied to swimming practice

    NASA Astrophysics Data System (ADS)

    van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    To understand and optimize the propulsion in human swimming, a deep understanding of the hydrodynamics of swimming is required. This is usually based on experiments and numerical simulations under laboratory conditions.. In this study, we bring basic fluid mechanics knowledge and experimental measurement techniques to analyze the flow towards the swimming practice itself. A flow visualization setup is build and placed in a regular swimming pool. The measurement volume contains five homogeneous air bubble curtains illuminated by ambient light. The bubbles in these curtains act as tracer particles. The bubble motion is captured by six cameras placed in the side wall of the pool. It is intended to apply SA-PIV (synthetic aperture PIV) for analyzing the flow structures on multiple planes in the measurement volume. The system has been calibrated and the calibration data are used to refocus on the planes of interest. Multiple preprocessing steps need to be executed to obtain the proper quality of images before applying PIV. With a specially programmed video card to process and analyze the images in real-time feedback about swimming performance will become possible. We report on the first experimental data obtained by this system.

  10. The effects of a decompression on seismic parameter profiles in a gas-charged magma

    NASA Astrophysics Data System (ADS)

    Sturton, Susan; Neuberg, Jürgen

    2003-11-01

    Seismic velocities in a gas-charged magma vary with depth and time. Relationships between pressure, density, exsolved gas content, and seismic velocity are derived and used in conjunction with expressions describing diffusive bubble growth to find a series of velocity profiles which depend on time. An equilibrium solution is obtained by considering a column of magma in which the gas distribution corresponds to the magmastatic pressure profile with depth. Decompression events of various sizes are simulated, and the resulting disequilibrium between the gas pressure and magmastatic pressure leads to bubble growth and therefore to a change of seismic velocity and density with time. Bubble growth stops when the system reaches a new equilibrium. The corresponding volume increase is accommodated by accelerating the magma column upwards and an extrusion of lava. A timescale for the system to return to equilibrium can be obtained. The effect of changes in magma viscosity and bubble number density is examined.

  11. Jetting of a ultrasound contrast microbubble near a rigid wall

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik; Mobadersany, Nima

    2017-11-01

    Micron sized gas-bubbles coated with a stabilizing shell of lipids or proteins, are used as contrast enhancing agents for ultrasound imaging. However, they are increasingly being explored for novel applications in drug delivery through a process called sonoporation, the reversible permeabilization of the cell membrane. Under sufficiently strong acoustic excitations, bubbles form a jet and collapse near a wall. The jetting of free bubbles has been extensively studied by boundary element method (BEM). Here, for the first time, we implemented a rigorous interfacial rheological model of the shell into BEM and investigated the jet formation. The code has been carefully validated against past results. Increasing shell elasticity decreases the maximum bubble volume and the collapse time, while the jet velocity increases. The shear stress on the wall is computed and analyzed. A phase diagram as functions of excitation pressure and wall separation describes jet formation. Effects of shell elasticity and frequency on the phase diagram are investigated. Partially supported by National Science Foundation.

  12. Thermal and ultrasonic evaluation of porosity in composite laminates

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.

    1992-01-01

    The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.

  13. Single Bubble Sonoluminescence in Low Gravity and Optical Radiation Pressure Positioning of the Bubble

    NASA Technical Reports Server (NTRS)

    Thiessen, D. B.; Young, J. E.; Marr-Lyon, M. J.; Richardson, S. L.; Breckon, C. D.; Douthit, S. G.; Jian, P. S.; Torruellas, W. E.; Marston, P. L.

    1999-01-01

    Several groups of researchers have demonstrated that high frequency sound in water may be used to cause the regular repeated compression and luminescence of a small bubble of gas in a flask. The phenomenon is known as single bubble sonoluminescence (SBSL). It is potentially important because light emitted by the bubble appears to be associated with a significant concentration of energy within the volume of the bubble. Unfortunately, the detailed physical mechanisms causing the radiation of light by oscillating bubbles are poorly understood and there is some evidence that carrying out experiments in a weightless environment may provide helpful clues. In addition, the radiation pressure of laser beams on the bubble may provide a way of simulating weightless experiments in the laboratory. The standard model of SBSL attributes the light emission to heating within the bubble by a spherically imploding shock wave to achieve temperatures of 50,000 K or greater. In an alternative model, the emission is attributed to the impact of a jet of water which is required to span the bubble and the formation of the jet is linked to the buoyancy of the bubble. The coupling between buoyancy and jet formation is a consequence of the displacement of the bubble from a velocity node (pressure antinode) of the standing acoustic wave that drives the radial bubble oscillations. One objective of this grant is to understand SBSL emission in reduced buoyancy on KC-135 parabolic flights. To optimize the design of those experiments and for other reasons which will help resolve the role of buoyancy, laboratory experiments are planned in simulated low gravity in which the radiation pressure of laser light will be used to position the bubble at the acoustic velocity node of the ultrasonic standing wave. Laser light will also be used to push the bubble away from the velocity node, increasing the effective buoyancy. The original experiments on the optical levitation and radiation pressure on bubbles in water by Unger and Marston noted above were carried out using a continuous wave (CW) beam of an Argon laser. For lateral stability the beam had a intensity minimum along its axis. Calculations of the optical radiation force on an SBSL bubble indicate that ion laser technology is a poor choice for providing the magnitude of the average optical radiation force required. Consequently it is necessary to examine various diode-pumped solid state laser technologies. The approach for this part of the research will be to achieve optical levitation of a quiescent bubble based on contemporary laser technology and then to strobe the laser synchronously with the SBSL bubble oscillations.

  14. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.

  15. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-08-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.

  16. Generation of Internal Waves by Buoyant Bubbles in Galaxy Clusters and Heating of Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Zhang, Congyao; Churazov, Eugene; Schekochihin, Alexander A.

    2018-05-01

    Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the cluster's core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number Fr ≲ 1. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. Clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is ˜100 - 200 km s-1 near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.

  17. Spreading of nanofluids driven by the structural disjoining pressure gradient.

    PubMed

    Chengara, Anoop; Nikolov, Alex D; Wasan, Darsh T; Trokhymchuk, Andrij; Henderson, Douglas

    2004-12-01

    This paper discusses the role of the structural disjoining pressure exerted by nanoparticles on the spreading of a liquid film containing these particles. The origin of the structural disjoining pressure in a confined geometry is due to the layering of the particles normal to the confining plane and has already been traced to the net increase in the entropy of the system in previous studies. In a recent paper, Wasan and Nikolov (Nature, 423 (2003) 156) pointed out that the structural component of the disjoining pressure is strong enough to move a liquid wedge; this casts a new light on many applications-most notably, detergency. While the concept of spreading driven by the disjoining pressure is not new, the importance of the structural disjoining pressure arises from its long-range nature (as compared to the van der Waals' force), making it an important component of the overall force balance near the contact line. In this paper, we report on a parametric study of the spreading phenomena by examining the effects of nanoparticle size, concentration and polydispersity on the displacement of an oil-aqueous interface with the aqueous bulk containing nanoparticles. The solution of the extended Laplace-Young equations for the profile of the meniscus yields the position of the nominal contact line under the action of the structural disjoining pressure. Simulations show that the displacement of the contact line is greater with a high nanoparticle volume fraction, small particles for the same volume fraction, monodispersed (in size) particles rather than polydispersed particles and when the resisting capillary pressure is small, i.e., when the interfacial tension is low and/or the radius of the dispersed phase drop/bubble is large.

  18. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  19. Bubble fusion: Preliminary estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1995-02-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure {much_lt} external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ``sling shot`` that is ``loaded`` tomore » an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10{sup {minus}5}--10{sup {minus}6} are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted.« less

  20. In vivo droplet vaporization for occlusion therapy and phase aberration correction.

    PubMed

    Kripfgans, Oliver D; Fowlkes, J Brian; Woydt, Michael; Eldevik, Odd P; Carson, Paul L

    2002-06-01

    The objective was to determine whether a transpulmonary droplet emulsion (90%, <6 microm diameter) could be used to form large gas bubbles (>30 microm) temporarily in vivo. Such bubbles could occlude a targeted capillary bed when used in a large number density. Alternatively, for a very sparse population of droplets, the resulting gas bubbles could serve as point beacons for phase aberration corrections in ultrasonic imaging. Gas bubbles can be made in vivo by acoustic droplet vaporization (ADV) of injected, superheated, dodecafluoropentane droplets. Droplets vaporize in an acoustic field whose peak rarefactional pressure exceeds a well-defined threshold. In this new work, it has been found that intraarterial and intravenous injections can be used to introduce the emulsion into the blood stream for subsequent ADV (B- and M-mode on a clinical scanner) in situ. Intravenous administration results in a lower gas bubble yield, possibly because of filtering in the lung, dilution in the blood volume, or other circulatory effects. Results show that for occlusion purposes, a reduction in regional blood flow of 34% can be achieved. Individual point beacons with a +24 dB backscatter amplitude relative to white matter were created by intravenous injection and ADV.

  1. HFSB-seeding for large-scale tomographic PIV in wind tunnels

    NASA Astrophysics Data System (ADS)

    Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio

    2016-12-01

    A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.

  2. The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiro; Sussman, Mark

    2012-11-01

    The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.

  3. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  4. Absorbance and fluorometric sensing with capillary wells microplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Han Yen; Cheong, Brandon Huey-Ping; Neild, Adrian

    2010-12-15

    Detection and readout from small volume assays in microplates are a challenge. The capillary wells microplate approach [Ng et al., Appl. Phys. Lett. 93, 174105 (2008)] offers strong advantages in small liquid volume management. An adapted design is described and shown here to be able to detect, in a nonimaging manner, fluorescence and absorbance assays minus the error often associated with meniscus forming at the air-liquid interface. The presence of bubbles in liquid samples residing in microplate wells can cause inaccuracies. Pipetting errors, if not adequately managed, can result in misleading data and wrong interpretations of assay results; particularly inmore » the context of high throughput screening. We show that the adapted design is also able to detect for bubbles and pipetting errors during actual assay runs to ensure accuracy in screening.« less

  5. A numerical study of the phase behaviors of drug particle/star triblock copolymer mixtures in dilute solutions for drug carrier application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less

  6. Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation.

    PubMed

    Uddin, M; Coombe, D

    2014-03-20

    Molecular dynamics simulations of gas hydrate dissociation comparing the behavior of CH4 and CO2 hydrates are presented. These simulations were based on a structurally correct theoretical gas hydrate crystal, coexisting with water. The MD system was first initialized and stabilized via a thorough energy minimization, constant volume-temperature ensemble and constant volume-energy ensemble simulations before proceeding to constant pressure-temperature simulations for targeted dissociation pressure and temperature responses. Gas bubble evolution mechanisms are demonstrated as well as key investigative properties such as system volume, density, energy, mean square displacements of the guest molecules, radial distribution functions, H2O order parameter, and statistics of hydrogen bonds. These simulations have established the essential similarities between CH4 and CO2 hydrate dissociation. The limiting behaviors at lower temperature (no dissociation) and higher temperature (complete melting and formation of a gas bubble) have been illustrated for both hydrates. Due to the shift in the known hydrate stability curves between guest molecules caused by the choice of water model as noted by other authors, the intermediate behavior (e.g., 260 K) showed distinct differences however. Also, because of the more hydrogen-bonding capability of CO2 in water, as reflected in its molecular parameters, higher solubility of dissociated CO2 in water was observed with a consequence of a smaller size of gas bubble formation. Additionally, a novel method for analyzing hydrate dissociation based on H-bond breakage has been proposed and used to quantify the dissociation behaviors of both CH4 and CO2 hydrates. Activation energies Ea values from our MD studies were obtained and evaluated against several other published laboratory and MD values. Intrinsic rate constants were estimated and upscaled. A kinetic reaction model consistent with macroscale fitted kinetic models has been proposed to indicate the macroscopic consequences of this analysis.

  7. Bubble composition of natural gas seeps discovered along the Cascadia Continental Margin

    NASA Astrophysics Data System (ADS)

    Baumberger, T.; Merle, S. G.; Embley, R. W.; Seabrook, S.; Raineault, N.; Lilley, M. D.; Evans, L. J.; Walker, S. L.; Lupton, J. E.

    2016-12-01

    Gas hydrates and gas-filled pockets present in sedimentary deposits have been recognized as large reservoirs for reduced carbon in the Earth's crust. This is particularly relevant in geological settings with high carbon input, such as continental margins. During expedition NA072 on the E/V Nautilus (operated by the Ocean Exploration Trust Inc.) in June 2016, the U.S. Cascadia Continental Margin (Washington, Oregon and northern California) was explored for gas seepage from sediments. During this expedition, over 400 bubble plumes at water depths ranging from 125 and 1640 m were newly discovered, and five of them were sampled for gas bubble composition using specially designed gas tight fluid samplers mounted on the Hercules remotely operated vehicle (ROV). These gas bubble samples were collected at four different depths, 494 m (rim of Astoria Canyon), 615 and 620 m (SW Coquille Bank), 849 m (floor of Astoria Canyon) and 1227 m (Heceta SW). At the two deeper sites, exposed hydrate was present in the same area where bubbles were seeping out from the seafloor. Other than the escaping gas bubbles, no other fluid flow was visible. However, the presence of bacterial mats point to diffuse fluid flow present in the affected area. In this study we present the results of the currently ongoing geochemical analysis of the gas bubbles released at the different sites and depths. Noble gas analysis, namely helium and neon, will give information about the source of the helium as well as about potential fractionation between helium and neon associated with gas hydrates. The characterization of these gas samples will also include total gas (CO2, H2, N2, O2, Ar, CH4 and other hydrocarbons) and stable isotope analysis (C and H). This dataset will reveal the chemical composition of the seeping bubbles as well as give information about the possible sources of the carbon contained in the seeping gas.

  8. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  9. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.

    PubMed

    Arora, M; Junge, L; Ohl, C D

    2005-06-01

    The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30 MPa and 15 MPa, respectively, and -10 MPa negative amplitude. The time interval between the launch of the shock waves was varied from 0 and 0.1 s, covering the regimens of pulse-modification (regimen A, delay 0 to 4 micros), shock wave-cavitation cluster interaction (B, 4 micros to 64 micros) and shock wave-gas bubble interaction (C, 256 micros to 0.1 s). The time-integrated cavitation activity was most strongly influenced in regimen A and, in regimen B, the spatial distribution of bubbles was altered, whereas enhancement of cavitation activity was observed in regimen C. Quantitative measurements of the spatial- and time-integrated void fractions were obtained with a photographic and light-scattering technique. The preconditions for a reproducible experiment are explained, with the existence of two distinct types of cavitation nuclei, small particles suspended in the liquid and residuals of bubbles from prior cavitation clusters.

  10. Investigating the emission, dissolution, and oxidation of CH4 within and around a seep bubble plume in the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Leonte, M.; Kessler, J. D.; Socolofsky, S. A.

    2016-02-01

    One of the largest carbon reservoirs on the planet is stored as methane (CH4) in and below the seafloor. However, a large discrepancy exists between estimated fluxes of CH4 into the water column and CH4 fluxes from the sea surface to the atmosphere, suggesting that a significant fraction of CH4 released from seafloor seeps is dissolved and potentially removed through microbial oxidation. Here we present data investigating the fate of CH4 released from the Sleeping Dragon seep site in the Gulf of Mexico. The bubble plume was followed from the seafloor until it fully dissolved using a remotely operated vehicle (ROV). Water samples were collected by the ROV at different depths as well as lateral transects through the bubble plume. These samples were analyzed for dissolved concentrations of methane, ethane, propane, and butane as well as the 13C isotopic ratio of methane. Furthermore, seep bubbles from the seafloor were also collected and analyzed for the same properties. Based on these chemical data, the rate of CH4 emission from the seafloor, oxidation in the water column, and dissolution are investigated.

  11. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system.

  12. Formation of a nanobubble and its effect on the structural ordering of water in a CH4-N2-CO2-H2O mixture.

    PubMed

    Kaur, Surinder Pal; Sujith, K S; Ramachandran, C N

    2018-04-04

    The replacement of methane (CH4) from its hydrate by a mixture of nitrogen (N2) and carbon dioxide (CO2) involves the dissociation of methane hydrate leading to the formation of a CH4-N2-CO2-H2O mixture that can significantly influence the subsequent steps of the replacement process. In the present work, we study the evolution of dissolved gas molecules in this mixture by applying classical molecular dynamics simulations. Our study shows that a higher CO2 : N2 ratio in the mixture enhances the formation of nanobubbles composed of N2, CH4 and CO2 molecules. To understand how the CO2 : N2 ratio affects nanobubble nucleation, the distribution of molecules in the bubble formed is examined. It is observed that unlike N2 and CH4, the density of CO2 in the bubble reaches a maximum at the surface of the bubble. The accumulation of CO2 molecules at the surface makes the bubble more stable by decreasing the excess pressure inside the bubble as well as surface tension at its interface with water. It is found that a frequent exchange of gas molecules takes place between the bubble and the surrounding liquid and an increase in concentration of CO2 in the mixture leads to a decrease in the number of such exchanges. The effect of nanobubbles on the structural ordering of water molecules is examined by determining the number of water rings formed per unit volume in the mixture. The role of nanobubbles in water structuring is correlated to the dynamic nature of the bubble arising from the exchange of gas molecules between the bubble and the liquid.

  13. A bubble-based microfluidic gas sensor for gas chromatographs.

    PubMed

    Bulbul, Ashrafuzzaman; Kim, Hanseup

    2015-01-07

    We report a new proof-of-concept bubble-based gas sensor for a gas chromatography system, which utilizes the unique relationship between the diameters of the produced bubbles with the gas types and mixture ratios as a sensing element. The bubble-based gas sensor consists of gas and liquid channels as well as a nozzle to produce gas bubbles through a micro-structure. It utilizes custom-developed software and an optical camera to statistically analyze the diameters of the produced bubbles in flow. The fabricated gas sensor showed that five types of gases (CO2, He, H2, N2, and CH4) produced (1) unique volumes of 0.44, 0.74, 1.03, 1.28, and 1.42 nL (0%, 68%, 134%, 191%, and 223% higher than that of CO2) and (2) characteristic linear expansion coefficients (slope) of 1.38, 2.93, 3.45, 5.06, and 5.44 nL/(kPa (μL s(-1))(-1)). The gas sensor also demonstrated that (3) different gas mixture ratios of CO2 : N2 (100 : 0, 80 : 20, 50 : 50, 20 : 80 and 0 : 100) generated characteristic bubble diameters of 48.95, 77.99, 71.00, 78.53 and 99.50 μm, resulting in a linear coefficient of 10.26 μm (μL s(-1))(-1). It (4) successfully identified an injection (0.01 μL) of pentane (C5) into a continuous carrier gas stream of helium (He) by monitoring bubble diameters and creating a chromatogram and demonstrated (5) the output stability within only 5.60% variation in 67 tests over a month.

  14. Joint pain and Doppler-detectable bubbles in altitude (Hypobaric) decompression

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.

    1993-01-01

    The observation that altitude decompression sickness (DCS) is associated with pain in the lower extremities is not new, although it is not a consistent finding. DCS in divers is generally in the upper body, an effect often attributed to non-loading of the body while immersed. In caisson workers, DCS is reported more in the lower extremities. Surprisingly, many researchers do not mention the location of DCS joint pain, apparently considering it to be random. This is not the case for the tissue ratios encountered in studying decompression associated with simulated EVA. In NASA/JSC tests, altitude DCS generally presented first in either the ankle, knee, or hip (83 percent = 73/88). There was a definite statistical relation between the maximum Spencer precordial Doppler Grade and the incidence of DCS in the extremity, although this is not meant to imply a casual relation between circulating gas bubbles and joint pain. The risk of DCS with Grade 4 was considerably higher than that of Grades 0 to 3. The DCS risk was independent of the 'tissue ratio.' There was a predominance of lower extremity DCS even when exercise was performed with the upper body. The reason for these locations we hypothesize to be attributed to the formation of tissue gas micronuclei from kinetic and tensile forces (stress-assisted nucleation) and are the result of the individuals ambulating in a 1g environment. Additionally, since these showers of Doppler bubbles can persist for hours, it is difficult to imagine that they are emanating solely from tendons and ligaments, the supposed site of joint pain. This follows from Henry's law linking the volume of joint tissue (the solvent) and the solubility coefficient of inert gas; there is volumetrically insufficient connective tissue to produce the prolonged release of gas bubbles. If gas bubbles are spawned and released from connective tissue, their volume is increased by those from muscle tissue. Therefore, the nexus between Doppler-detectable gas bubbles and joint-pain decompression sickness is essentially a statistical, rather than a direct, one.

  15. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    PubMed

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Investigation of C-O-H-S fluids directly exsolved from melts associated with the Mt. Somma-Vesuvius magmas

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Esposito, R.; Lamadrid, H. M.; Redi, D.; Steele-MacInnis, M. J.; Bodnar, R. J.; De Vivo, B.; Cannatelli, C.; Lima, A.

    2016-12-01

    Undegassed deep melts can be trapped as melt inclusions (MI) hosted in phenocrysts growing in magma reservoirs. The host crystal acts as a pressure capsule, ideally preventing the melt from degassing. Sometimes, MI often contain a vapor bubble when observed at ambient conditions. Bubble-bearing MI represent a natural sample with which to investigate magmatic fluids that directly exsolve from a silicate melt. Some recent studies reported that most of the CO2 in bubble-bearing MI hosted in mafic minerals is stored in the vapor bubble. However, despite the detection of CO2 in bubbles, the expected accompanying H2O has not been found in mafic MI hosted in olivine. In this presentation, we describe the discovery of H2O in MI hosted in olivine associated with the Mt. Somma-Vesuvius (Italy) magmas. We reheated crystallized (or partially crystallized) olivine-hosted MI from various eruptions at Mt. Somma-Vesuvius. We quenched bubble-bearing MI from high T (1143-1238°C) to produce a bubble-bearing glass at room T. Using Raman spectroscopy, we detected liquid H2O at room T, vapor H2O at 150°C in the vapor bubbles of reheated MI, and native S and gypsum, in addition to CO2. In most MI, the H2O is hosted in sub-micron scale hydrous phases at the interface between the bubble and the glass and would not be detected during routine analysis. During MI heating experiments, the H2O is redissolved into the melt and then exsolves from the melt into the vapor bubble, where it remains after quenching, at least on the relatively short time scales of our observations. Our results suggest that a significant amount of H2O may be stored in vapor bubbles of bubble-bearing MI, especially for MI with (1) relatively low H2O content in the originally trapped melt, (2) relatively high proportion of H2O in the exsolved fluid, (3) relatively large volume % vapor bubble. In addition, we calculated that the composition of magmatic fluids directly exsolving from mafic melts associated with Mt. Somma-Vesuvius may contain up to 47 mole% H2O and up to 60 mole% S.

  17. A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda

    2014-12-19

    The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel frameworkmore » for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical parameterizations, but can vary between biologically productive and non-productive regions, and seasonally within a given region. Major uncertainties include the bubble film thickness at bursting and the variability of organic surfactant activity in the ocean, which is poorly constrained. In addition, marine colloids and cooperative adsorption of polysaccharides may make important contributions to the aerosol, but are not included here. This organic fractionation framework is an initial step towards a closer linking of ocean biogeochemistry and aerosol chemical composition in Earth system models. Future work should focus on improving constraints on model parameters through new laboratory experiments or through empirical fitting to observed relationships in the real ocean and atmosphere, as well as on atmospheric implications of the variable composition of organic matter in sea spray.« less

  18. Quantitative tomographic measurements of opaque multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less

  19. Volume Fraction Determination in Cast Superalloys and DS Eutectic Alloys by a New Practice for Manual Point Counting

    NASA Technical Reports Server (NTRS)

    Andrews, C. W.

    1976-01-01

    Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.

  20. Tutorial for Collecting and Processing Images of Composite Structures to Determine the Fiber Volume Fraction

    NASA Technical Reports Server (NTRS)

    Conklin, Lindsey

    2017-01-01

    Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.

  1. Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.

    2007-08-01

    Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.

  2. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    DOE PAGES

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less

  3. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  4. Homogenate-assisted Vacuum-powered Bubble Extraction of Moso Bamboo Flavonoids for On-line Scavenging Free Radical Capacity Analysis.

    PubMed

    Sun, Yinnan; Yang, Kui; Cao, Qin; Sun, Jinde; Xia, Yu; Wang, Yinhang; Li, Wei; Ma, Chunhui; Liu, Shouxin

    2017-07-11

    A homogenate-assisted vacuum-powered bubble extraction (HVBE) method using ethanol was applied for extraction of flavonoids from Phyllostachys pubescens (P. pubescens) leaves. The mechanisms of homogenate-assisted extraction and vacuum-powered bubble generation were discussed in detail. Furthermore, a method for the rapid determination of flavonoids by HPLC was established. HVBE followed by HPLC was successfully applied for the extraction and quantification of four flavonoids in P. pubescens , including orientin, isoorientin, vitexin, and isovitexin. This method provides a fast and effective means for the preparation and determination of plant active components. Moreover, the on-line antioxidant capacity, including scavenging positive ion and negative ion free radical capacity of different fractions from the bamboo flavonoid extract was evaluated. Results showed that the scavenging DPPH ˙ free radical capacity of vitexin and isovitexin was larger than that of isoorientin and orientin. On the contrary, the scavenging ABTS⁺ ˙ free radical capacity of isoorientin and orientin was larger than that of vitexin and isovitexin.

  5. Transport of Gas and Solutes in Permeable Estuarine Sediments

    DTIC Science & Technology

    2011-09-30

    shallow sand sediments colonized by photosynthetizing diatoms and cyanobacteria . Photosynthetically active radiation at the water surface raged from...explained with the reduction of the compressible gas volume. Fig. 6. Left graph: Hysteresis in small bubble

  6. Compatibility of refrigerants and lubricants with motor materials. Volume 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerr, R.; Kujak, S.

    This volume contains the abstract, scope, discussion of results, charts of motor material compatibility, test procedures, material identifications, and 84 pages of data summary tables. Compatibility test results for 11 pure refrigerants and 17 refrigerant-lubricant combinations with 24 motor materials are included. The greatest effect on the motor materials was caused by adsorption followed by desorption of refrigerants at higher temperatures. High internal pressure of the adsorbed refrigerants and their tendency to evolve from the materials resulted in blisters, cracks, internal bubbles in the varnish, and delamination or bubbles in the sheet insulations. The second effect was extraction or dissolutionmore » of materials that lead to embrittlement of some sheet insulations. HCFC-22 and HCFC- 22/mineral oil had the most deleterious effects; the materials are expected to be reliable when used with most of the new refrigerants and lubricants. Tables.« less

  7. Predicting the fate of methane emanating from the seafloor using a marine two-phase gas model in one dimension (M2PG1) - Example from a known Arctic methane seep site offshore Svalbard

    NASA Astrophysics Data System (ADS)

    Jansson, Pär; Ferré, Benedicte

    2017-04-01

    Transport of methane in seawater occurs by diffusion and advection in the dissolved phase, and/or as free gas in form of bubbles. The fate of methane in bubbles emitted from the seafloor depends on both bubble size and ambient conditions. Larger bubbles can transport methane higher into the water column, potentially reaching the atmosphere and contributing to greenhouse gas concentrations and impacts. Single bubble or plume models have been used to predict the fate of bubble mediated methane gas emissions. Here, we present a new process based two-phase (free and dissolved) gas model in one dimension, which has the capability to dynamically couple water column properties such as temperature, salinity and dissolved gases with the free gas species contained in bubbles. The marine two-phase gas model in one dimension (M2PG1) uses a spectrum of bubbles and an Eulerian formulation, discretized on a finite-volume grid. It employs the most up-to-date equations for solubility and compressibility of the included gases, nitrogen, oxygen, carbon dioxide and methane. M2PG1 is an extension of PROBE (Omstedt, 2011), which facilitates atmospheric coupling and turbulence closures to realistically predict vertical mixing of all properties, including dissolved methane. This work presents the model's first application in an Arctic Ocean environment at the landward limit of the methane-hydrate stability zone west of Svalbard, where we observe substantial methane bubble release over longer time periods. The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT. Omstedt, A. (2011). Guide to process based modeling of lakes and coastal seas: Springer.

  8. Shock-induced collapse of a bubble inside a deformable vessel

    PubMed Central

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  9. The impact of vaporized nanoemulsions on ultrasound-mediated ablation

    PubMed Central

    2013-01-01

    Background The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. Methods PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm2) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Results Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating. Broadband emissions detected during HIFU exposure coincided in time with measured accelerated heating, which suggested that IC played an important role in bubble-enhanced heating. In the presence of bubbles, the acoustic power required for the formation of a 9-mm3 lesion was reduced by 72% and the exposure time required for the onset of albumin denaturation was significantly reduced (by 4 s), provided that the PSNE volume fraction in the polyacrylamide gel was at least 0.008%. Conclusions The time or acoustic power required for lesion formation in gel phantoms was dramatically reduced by vaporizing PSNE into bubbles. These results suggest that PSNE may improve the efficiency of HIFU-mediated thermal ablation of solid tumors; thus, further investigation is warranted to determine whether bubble-enhanced HIFU may potentially become a viable option for cancer therapy. PMID:24761223

  10. The impact of vaporized nanoemulsions on ultrasound-mediated ablation.

    PubMed

    Zhang, Peng; Kopechek, Jonathan A; Porter, Tyrone M

    2013-01-01

    The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating. Broadband emissions detected during HIFU exposure coincided in time with measured accelerated heating, which suggested that IC played an important role in bubble-enhanced heating. In the presence of bubbles, the acoustic power required for the formation of a 9-mm(3) lesion was reduced by 72% and the exposure time required for the onset of albumin denaturation was significantly reduced (by 4 s), provided that the PSNE volume fraction in the polyacrylamide gel was at least 0.008%. The time or acoustic power required for lesion formation in gel phantoms was dramatically reduced by vaporizing PSNE into bubbles. These results suggest that PSNE may improve the efficiency of HIFU-mediated thermal ablation of solid tumors; thus, further investigation is warranted to determine whether bubble-enhanced HIFU may potentially become a viable option for cancer therapy.

  11. Acoustic Droplet Vaporization for the Enhancement of Ultrasound Thermal Therapy.

    PubMed

    Zhang, Man; Fabiilli, Mario; Carson, Paul; Padilla, Frederic; Swanson, Scott; Kripfgans, Oliver; Fowlkes, Brian

    2010-10-11

    Acoustic droplet vaporization (ADV) is an ultrasound method for converting biocompatible microdroplets into microbubbles. The objective is to demonstrate that ADV bubbles can enhance high intensity focused ultrasound (HIFU) therapy by controlling and increasing energy absorption at the focus. Thermal phantoms were made with or without droplets. Compound lesions were formed in the phantoms by 5-second exposures with 5-second delays. Center to center spacing of individual lesions was 5.5 mm in either a linear pattern or a spiral pattern. Prior to the HIFU, 10 cycle tone bursts with 0.25% duty cycle were used to vaporize the droplets, forming an "acoustic trench" within 30 seconds. The transducer was then focused in the middle of the back bubble wall to form thermal lesions in the trench. All lesions were imaged optically and with 2T MRI. With the use of ADV and the acoustic trench, a uniform thermal ablation volume of 15 cm(3) was achieved in 4 minutes; without ADV only less than 15% of this volume was filled. The commonly seen tadpole shape characteristic of bubble-enhanced HIFU lesions was not evident with the acoustic trench. In conclusion, ADV shows promise for the spatial control and dramatic acceleration of thermal lesion production by HIFU.

  12. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy.

    PubMed

    Garcia, David; Tessone, Claudio J; Mavrodiev, Pavlin; Perony, Nicolas

    2014-10-06

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy

    PubMed Central

    Garcia, David; Tessone, Claudio J.; Mavrodiev, Pavlin; Perony, Nicolas

    2014-01-01

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. PMID:25100315

  14. Insight into interfacial effect on effective physical properties of fibrous materials. I. The volume fraction of soft interfaces around anisotropic fibers.

    PubMed

    Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao

    2016-01-07

    With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.

  15. Simulating Gas-Liquid-Water Partitioning and Fluid Properties of Petroleum under Pressure: Implications for Deep-Sea Blowouts.

    PubMed

    Gros, Jonas; Reddy, Christopher M; Nelson, Robert K; Socolofsky, Scott A; Arey, J Samuel

    2016-07-19

    With the expansion of offshore petroleum extraction, validated models are needed to simulate the behaviors of petroleum compounds released in deep (>100 m) waters. We present a thermodynamic model of the densities, viscosities, and gas-liquid-water partitioning of petroleum mixtures with varying pressure, temperature, and composition based on the Peng-Robinson equation-of-state and the modified Henry's law (Krychevsky-Kasarnovsky equation). The model is applied to Macondo reservoir fluid released during the Deepwater Horizon disaster, represented with 279-280 pseudocomponents, including 131-132 individual compounds. We define >n-C8 pseudocomponents based on comprehensive two-dimensional gas chromatography (GC × GC) measurements, which enable the modeling of aqueous partitioning for n-C8 to n-C26 fractions not quantified individually. Thermodynamic model predictions are tested against available laboratory data on petroleum liquid densities, gas/liquid volume fractions, and liquid viscosities. We find that the emitted petroleum mixture was ∼29-44% gas and ∼56-71% liquid, after cooling to local conditions near the broken Macondo riser stub (∼153 atm and 4.3 °C). High pressure conditions dramatically favor the aqueous dissolution of C1-C4 hydrocarbons and also influence the buoyancies of bubbles and droplets. Additionally, the simulated densities of emitted petroleum fluids affect previous estimates of the volumetric flow rate of dead oil from the emission source.

  16. Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant

    PubMed Central

    Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A. Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B.

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L−1 Hg2+) resulted in better separation (36.4%), while concentrated solutions (100 mg L−1) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions. PMID:22174661

  17. Removal of mercury by foam fractionation using surfactin, a biosurfactant.

    PubMed

    Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L(-1) Hg(2+)) resulted in better separation (36.4%), while concentrated solutions (100 mg L(-1)) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.

  18. Advanced readout methods for superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Di Fulvio, A.

    2018-05-01

    Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.

  19. Bubble Dynamics on a Heated Surface

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Rashidnia, Nasser

    1996-01-01

    In this work, we study the combined thermocapillary and natural convective flow generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. On earth, the volumetric forces are dominant, especially, in apparatuses with large volume to surface ratio. But in the reduced gravity environment of orbiting spacecraft, surface forces become more important and the effects of Marangoni convection are easily unmasked. In order to delineate the roles of the various interacting phenomena, a combined numerical-experimental approach is adopted. The temperature field is visualized using Mach-Zehnder interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the two-dimensional momentum and energy equations and includes the effects of bubble surface deformation. Steady state temperature and velocity fields predicted by the finite element model are in excellent qualitative agreement with the experimental results. A parametric study of the interaction between Marangoni and natural convective flows including conditions pertinent to microgravity space experiments is presented. Numerical simulations clearly indicate that there is a considerable difference between 1-g and low-g temperature and flow fields induced by the bubble.

  20. Sensitivity of a bubble growth to the cheese material properties during ripening

    NASA Astrophysics Data System (ADS)

    Fokoua, G.; Grenier, D.; Lucas, T.

    2016-10-01

    In this study, a model of transport phenomena describes a single bubble growth in semi-hard cheese. Carbon dioxide production, its transport to the bubble interface, equilibrium laws and mechanics were coupled. Semi-hard cheese mainly behaves as elastic when loads are quickly applied to a piece of cheese like during chewing (few seconds). However, when slowly loaded with increasing gas pressure during ripening in warm room, the mechanical cheese behavior can be simply modelled as a viscous material (Grenier et al. [9]). It is true, as long as viscosity remains low compared to the rate of gas production. This paper investigates a wider range of viscosity (from core η = 6.32 × 107 Pa.s to rind η = 2.88 × 108 Pa.s) than that used in previous studies. FEM simulations have shown that higher viscosities encountered close to the rind of a cheese block can partly explain the increase in gas pressure within bubbles from the core to the rind (up to 3.4 kPa). These results confirm that mechanics does not really control the evolution of bubble volume in cheese. However, mechanics can explain greater pressure observed close to the rind even if gas production is lower than at core.

  1. A Study of Cavitation-Ignition Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Jacqmin, David A.

    2005-01-01

    We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

  2. The 10 to the 8th power bit solid state spacecraft data recorder. [utilizing bubble domain memory technology

    NASA Technical Reports Server (NTRS)

    Murray, G. W.; Bohning, O. D.; Kinoshita, R. Y.; Becker, F. J.

    1979-01-01

    The results are summarized of a program to demonstrate the feasibility of Bubble Domain Memory Technology as a mass memory medium for spacecraft applications. The design, fabrication and test of a partially populated 10 to the 8th power Bit Data Recorder using 100 Kbit serial bubble memory chips is described. Design tradeoffs, design approach and performance are discussed. This effort resulted in a 10 to the 8th power bit recorder with a volume of 858.6 cu in and a weight of 47.2 pounds. The recorder is plug reconfigurable, having the capability of operating as one, two or four independent serial channel recorders or as a single sixteen bit byte parallel input recorder. Data rates up to 1.2 Mb/s in a serial mode and 2.4 Mb/s in a parallel mode may be supported. Fabrication and test of the recorder demonstrated the basic feasibility of Bubble Domain Memory technology for such applications. Test results indicate the need for improvement in memory element operating temperature range and detector performance.

  3. Air entrapment under an impacting drop

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.

    2003-03-01

    When a drop impacts on a liquid surface it entraps a small amount of air under its centre as the two liquid surfaces meet. The contact occurs along a ring enclosing a thin disk of air. We use the next-generation ultra-high-speed video camera, capable of 1 million f.p.s. (Etoh et al. 2002), to study the dynamics of this air sheet as it contracts due to surface tension, to form a bubble or, more frequently, splits into two bubbles. During the contraction of the air disk an azimuthal undulation, resembling a pearl necklace, develops along its edge. The contraction speed of the sheet is accurately described by a balance between inertia and surface tension. The average initial thickness of the air sheet decreases with higher impact Reynolds numbers, becoming less than one micron. The total volume of air entrapped depends strongly on the bottom curvature of the drop at impact. A sheet of micro-bubbles is often observed along the original interface. Oguz Prosperetti bubble rings are also observed. For low Weber numbers (We<20) a variety of other entrapment phenomena appear.

  4. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  5. Flowfield measurements in a separated and reattached flat plate turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Patrick, William P.

    1987-01-01

    The separation and reattachment of a large-scale, two-dimensional turbulent boundary layer at low subsonic speed on a flat plate has been studied experimentally. The separation bubble was 55 cm long and had a maximum bubble thickness, measured to the height of the mean dividing streamline, of 17 cm, which was twice the thickness of the inlet boundary layer. A combination of laser velocimetry, hot-wire anemometry, pneumatic probing techniques, and flow visualization were used as diagnostics. Principal findings were that an outer inviscid rotational flow was defined which essentially convected over the blockage associated with the inner, viscously dominated bubble recirculation region. A strong backflow region in which the flow moved upstream 100 percent of the time was measured near the test surface over the central 35 percent of the bubble. A laminar backflow boundary layer having pseudo-turbulent characteristics including a log-linear velocity profile was generated under the highly turbulent backflow. Velocity profile shapes in the reversed flow region matched a previously developed universal backflow profile at the upstream edge of the separation region but not in the steady backflow region downstream. A smoke flow visualization movie and hot-film measurements revealed low frequency nonperiodic flapping at reattachment. However, forward flow fraction data at reattachment and mean velocity profiles in the redeveloping boundary layer downstream of reattachment correlated with backward-facing step data when the axial dimension was scaled by the distance from the maximum bubble thickness to reattachment.

  6. Generalized Rate Theory for Void and Bubble Swelling and its Application to Delta-Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, P. G.; Wall, M. A.; Wolfer, W. G.

    2016-10-04

    A rate theory for void and bubble swelling is derived that allows both vacancies and self-interstitial atoms to be generated by thermal activation at all sinks. In addition, they can also be produced by displacement damage from external and internal radiation. This generalized rate theory (GRT) is applied to swelling of gallium-stabilized δ-plutonium in which α-decay causes the displacement damage. Since the helium atoms produced also become trapped in vacancies, a distinction is made between empty and occupied vacancies. The growth of helium bubbles observed by transmission electron microscopy (TEM) in weapons-grade and in material enriched with Pu238 is analyzed,more » using different values for the formation energy of self-interstitial atoms (SIA) and two different sets of relaxation volumes for the vacancy and for the SIA. One set allows preferential capture of SIA at dislocations, while the other set gives equal preference to both vacancy and SIA. It is found that the helium bubble diameters observed are in better agreement with GRT predictions if no preferential capture occurs at dislocations. Therefore, helium bubbles in δ-plutonium will not evolve into voids. The helium density within the bubbles remains sufficiently high to cause thermal emission of SIA. Based on a helium density between two to three helium atoms per vacant site, the sum of formation and migration energies must be around 2.0 eV for SIA in δ-plutonium.« less

  7. INTERACTIONS OF THE INFRARED BUBBLE N4 WITH ITS SURROUNDINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hong-Li; Li, Jin-Zeng; Yuan, Jing-Hua

    The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with H ii regions have been considered to be good samples for investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the H ii region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a widemore » wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 × 10{sup 22} cm{sup −2}, mean volume density of about 4.4 × 10{sup 4} cm{sup −3}, and a mean mass of 320 M{sub ⊙}. In addition, from PAH emission seen at 8 μm, free–free emission detected at 20 cm, and a probability density function in special regions, we could identify clear signatures of the influence of the H ii region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.« less

  8. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  9. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Schwartz, J; Mayr, N

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less

  10. Argon Bubble Transport and Capture in Continuous Casting with an External Magnetic Field Using GPU-Based Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Jin, Kai

    Continuous casting produces over 95% of steel in the world today, hence even small improvements to this important industrial process can have large economic impact. In the continuous casting of steel process, argon gas is usually injected at the slide gate or stopper rod to prevent clogging, but entrapped bubbles may cause defects in the final product. Many defects in this process are related to the transient fluid flow in the mold region of the caster. Electromagnetic braking (EMBr) device is often used at high casting speed to modify the mold flow, reduce the surface velocity and fluctuation. This work studies the physics in continuous casting process including effects of EMBr on the motion of fluid flow in the mold region, and transport and capture of bubbles in the solidification processes. A computational effective Reynolds-averaged Navier-Stokes (RANS) model and a high fidelity Large Eddy Simulation (LES) model are used to understand the motion of the molten steel flow. A general purpose multi-GPU Navier-Stokes solver, CUFLOW, is developed. A Coherent-Structure Smagorinsky LES model is implemented to model the turbulent flow. A two-way coupled Lagrangian particle tracking model is added to track the motion of argon bubbles. A particle/bubble capture model based on force balance at dendrite tips is validated and used to study the capture of argon bubbles by the solidifying steel shell. To investigate the effects of EMBr on the turbulent molten steel flow and bubble transport, an electrical potential method is implemented to solve the magnetohydrodynamics equations. Volume of Fluid (VOF) simulations are carried out to understand the additional resistance force on moving argon bubbles caused by adding transverse magnetic field. A modified drag coefficient is extrapolated from the results and used in the two-way coupled Eulerian-Lagrangian model to predict the argon bubble transport in a caster with EMBr. A hook capture model is developed to understand the effects of hooks on argon bubble capture.

  11. The effect of particle volume fraction and temperature on the enhancement of thermal conductivity of maghemite (γ-Fe2O3) water-based nanofluids

    NASA Astrophysics Data System (ADS)

    Nurdin, Irwan; Satriananda

    2017-03-01

    Thermal conductivity of maghemite nanofluids were experimentally investigated at different maghemite nanoparticles volume fraction and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. The thermal conductivity ratio of maghemite nanofluids was linearly increase with increasing particle volume fraction and temperature. The highest enhancement of thermal conductivity is 42.5% which is obtained at particle volume fraction 2.5% and temperature 60 °C.

  12. Phase-field simulations of coherent precipitate morphologies and coarsening kinetics

    NASA Astrophysics Data System (ADS)

    Vaithyanathan, Venugopalan

    2002-09-01

    The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)

  13. Analysis of White Matter Damage in Patients with Multiple Sclerosis via a Novel In Vivo MR Method for Measuring Myelin, Axons, and G-Ratio.

    PubMed

    Hagiwara, A; Hori, M; Yokoyama, K; Nakazawa, M; Ueda, R; Horita, M; Andica, C; Abe, O; Aoki, S

    2017-10-01

    Myelin and axon volume fractions can now be estimated via MR imaging in vivo, as can the g-ratio, which equals the ratio of the inner to the outer diameter of a nerve fiber. The purpose of this study was to evaluate WM damage in patients with MS via this novel MR imaging technique. Twenty patients with relapsing-remitting MS with a combined total of 149 chronic plaques were analyzed. Myelin volume fraction was calculated based on simultaneous tissue relaxometry. Intracellular and CSF compartment volume fractions were quantified via neurite orientation dispersion and density imaging. Axon volume fraction and g-ratio were calculated by combining these measurements. Myelin and axon volume fractions and g-ratio were measured in plaques, periplaque WM, and normal-appearing WM. All metrics differed significantly across the 3 groups ( P < .001, except P = .027 for g-ratio between periplaque WM and normal-appearing WM). Those in plaques differed most from those in normal-appearing WM. The percentage changes in plaque and periplaque WM metrics relative to normal-appearing WM were significantly larger in absolute value for myelin volume fraction than for axon volume fraction and g-ratio ( P < .001, except P = .033 in periplaque WM relative to normal-appearing WM for comparison between myelin and axon volume fraction). In this in vivo MR imaging study, the myelin of WM was more damaged than axons in plaques and periplaque WM of patients with MS. Myelin and axon volume fractions and g-ratio may potentially be useful for evaluating WM damage in patients with MS. © 2017 by American Journal of Neuroradiology.

  14. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Wang; X. Sun; H. Zhao

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.« less

  15. Interactions between individual ultrasound-stimulated microbubbles and fibrin clots.

    PubMed

    Acconcia, Christopher; Leung, Ben Y C; Manjunath, Anoop; Goertz, David E

    2014-09-01

    The use of ultrasound-stimulated microbubbles (USMBs) to promote thrombolysis is well established, but there remains considerable uncertainty about the mechanisms of this process. Here we examine the microscale interactions between individual USMBs and fibrin clots as a function of bubble size, exposure conditions and clot type. Microbubbles (n = 185) were placed adjacent to clot boundaries ("coarse" or "fine") using optical tweezers and exposed to 1-MHz ultrasound as a function of pressure (0.1-0.39 MPa). High-speed (10 kfps) imaging was employed, and clots were subsequently assessed with 2-photon microscopy. For fine clots, 46% of bubbles "embedded" within 10 μm of the clot boundary at pressures of 0.1 and 0.2 MPa, whereas at 0.39 MPa, 53% of bubbles penetrated and transited into the clots with an incidence inversely related to their diameter. A substantial fraction of penetrating bubbles induced fibrin network damage and promoted the uptake of nanobeads. In coarse clots, penetration occurred more readily and at lower pressures than in fine clots. The results therefore provide direct evidence of therapeutically relevant effects of USMBs and indicate their dependence on size, exposure conditions and clot properties. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C

    NASA Astrophysics Data System (ADS)

    Deng, Yuying; Li, Yingzhou; Li, Long

    2018-04-01

    Ammonia degassing is a common process in natural alkaline waters and in the atmosphere. To quantitatively assess the nitrogen cycle in these systems, the essential parameter of nitrogen isotope fractionation factors associated with ammonia degassing is required, but still not constrained yet. In this study, we carried out laboratory experiments to examine the nitrogen isotope behavior during ammonia degassing in alkaline conditions. The experiments started with ammonium sulfate solution with excess sodium hydroxide. The reaction can be described as: NH4+ + OH- (excess) → NH3·nH2O → NH3 (g)↑. Two sets of experiments, one with ammonia degassing under static conditions and the other with ammonia degassing by bubbling of N2 gas, were carried out at 2, 21, 50, and 70 °C. The results indicate that kinetic isotopic effects are dominated during efficient degassing of ammonia in the bubbling experiments, which yielded kinetic nitrogen isotope fractionation factors αNH3(g)-NH3(aq) of 0.9898 at 2 °C, 0.9918 at 21 °C, 0.9935 at 50 °C and 0.9948 at 70 °C. These values show a good relationship with temperature as 103lnαNH3(g)-NH3(aq) = 14.6 - 6.8 × 1000/T. In contrast, isotopic effects during less efficient degassing of ammonia in the static experiments are more complicated. The results do not match either kinetic isotope fractionation or equilibrium isotope fractionation but sit between these two. The most likely cause is that back dissolution of the degassed ammonia occurred in these experiments and consequently shifted kinetic isotope fractionation toward equilibrium isotope fractionation. Our experimental results highlight complicated isotopic effects may occur in natural environments, and need to be fully considered in the interpretation of field data.

  17. A synchronized particle image velocimetry and infrared thermography technique applied to convective mass transfer in champagne glasses

    NASA Astrophysics Data System (ADS)

    Beaumont, Fabien; Liger-Belair, Gérard; Bailly, Yannick; Polidori, Guillaume

    2016-05-01

    In champagne glasses, it was recently suggested that ascending bubble-driven flow patterns should be involved in the release of gaseous carbon dioxide (CO2) and volatile organic compounds. A key assumption was that the higher the velocity of the upward bubble-driven flow patterns in the liquid phase, the higher the volume fluxes of gaseous CO2 desorbing from the supersaturated liquid phase. In the present work, simultaneous monitoring of bubble-driven flow patterns within champagne glasses and gaseous CO2 escaping above the champagne surface was performed, through particle image velocimetry and infrared thermography techniques. Two quite emblematic types of champagne drinking vessels were investigated, namely a long-stemmed flute and a wide coupe. The synchronized use of both techniques proved that the cloud of gaseous CO2 escaping above champagne glasses strongly depends on the mixing flow patterns found in the liquid phase below.

  18. Quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1998-04-01

    We show that a large class of two-field models of single-bubble open inflation does not lead to infinite open universes, as was previously thought, but to an ensemble of very large but finite inflating ``islands.'' The reason is that the quantum tunneling responsible for the nucleation of the bubble does not occur simultaneously along both field directions and equal-time hypersurfaces in the open universe are not synchronized with equal-density or fixed-field hypersurfaces. The most probable tunneling trajectory corresponds to a zero value of the inflaton field; large values, necessary for the second period of inflation inside the bubble, only arise as localized fluctuations. The interior of each nucleated bubble will contain an infinite number of such inflating regions of comoving size of order γ-1, where γ is the supercurvature eigenvalue, which depends on the parameters of the model. Each one of these islands will be a quasi-open universe. Since the volume of the hyperboloid is infinite, inflating islands with all possible values of the field at their center will be realized inside of a single bubble. We may happen to live in one of those patches of comoving size d<~γ-1, where the universe appears to be open. In particular, we consider the ``supernatural'' model proposed by Linde and Mezhlumian. There, an approximate U(1) symmetry is broken by a tunneling field in a first order phase transition, and slow-roll inflation inside the nucleated bubble is driven by the pseudo Goldstone field. We find that the excitations of the pseudo Goldstone field produced by the nucleation and subsequent expansion of the bubble place severe constraints on this model. We also discuss the coupled and uncoupled two-field models.

  19. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble growth, coalescence and permeability development. This sequence of events is best explained by nucleation in response to a downward-propagating decompression wave, followed by rapid bubble growth and coalescence prior to magma disruption by fragmentation. The heterogeneity of vesicle sizes and shapes, and the absence of differential expansion across individual clasts, suggest that post-fragmentation expansion played a limited role in the development of pumice structure. The higher vesicle number densities and lower permeabilities of pyroclastic-flow clasts indicate limited coalescence and suggest that fragmentation occurred shortly after decompression. Either increased eruption velocities or increased depth of fragmentation accompanying caldera collapse could explain compression of the pre-fragmentation vesiculation interval.

  20. Efficiencies of Tritium (3H) bubbling systems.

    PubMed

    Duda, Jean-Marie; Le Goff, Pierre; Leblois, Yoan; Ponsard, Samuel

    2018-09-01

    Bubbling systems are among the devices most used by nuclear operators to measure atmospheric tritium activity in their facilities or the neighbouring environment. However, information about trapping efficiency and bubbling system oxidation is not accessible and/or, at best, only minimally supported by demonstrations in actual operating conditions. In order to evaluate easily these parameters and thereby meet actual normative and regulatory requirements, a statistical study was carried out over 2000 monitoring records from the CEA Valduc site. From this data collection obtained over recent years of monitoring the CEA Valduc facilities and environment, a direct relation was highlighted between the 3H-samplers trapping efficiency of tritium as tritiated water and the sampling time and conditions of use: temperature and atmospheric moisture. It was thus demonstrated that this efficiency originated from two sources. The first one is intrinsic to the bubbling system operating parameters and the sampling time. That part applies equally to all four bubblers. The second part, however, is specific to the first bubbler. In essence, it depends on the sampling time and the sampled air characteristics. It was also highlighted that the water volume variation in the first bubbler, between the beginning and the end of the sampling process, is directly related to the average water concentration of the sampled air. In this way, it was possible to model the variations in trapping efficiency of the 3H-samplers relative to the sampling time and the water volume variation in the first bubbler. This model makes it possible to obtain the quantities required to comply with the current standards governing the monitoring of radionuclides in the environment and to associate an uncertainty concerning the measurements as well as the sampling parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

Top