Science.gov

Sample records for bud dormancy entrance

  1. Bud Dormancy and Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly all land plants produce ancillary meristems in the form of axillary or adventitious buds in addition to the shoot apical meristem. Outgrowth of these buds has a significant impact on plant architecture and the ability of plants to compete with neighboring plants, as well as to respond to and ...

  2. Dormancy induction and release in buds and seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dormancy is a complex trait in both buds and seeds, which is an important mechanism for survival during the life cycle of plants. Over the years, a vast wealth of information has been generated on how environmental and developmental signals impact dormancy in buds and seeds. At the molecular level, ...

  3. Epigenetic regulation of bud dormancy events in perennial plants

    PubMed Central

    Ríos, Gabino; Leida, Carmen; Conejero, Ana; Badenes, María Luisa

    2014-01-01

    Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants. PMID:24917873

  4. [Natural inducing factors of grape bud dormancy and their regulation on respiratory metabolism during dormancy induction].

    PubMed

    Wang, Hai-bo; Wang, Xiao-di; Shi, Xiang-bin; Wang, Bao-liang; Zheng, Xiao-cui; Liu, Feng-zhi

    2015-12-01

    High chilling requirement grape (Vitis vinifera-V. labrusca cv. Summer Black) was used to evaluate its dormancy under short sunlight day (SD), long sunlight day (LD) and natural condition (CK). The results indicated that grape bud dormancy could be induced by natural low temperature and short sunlight alone or together. Short sunlight was the main contributor to the dormancy of grape bud, followed by natural low temperature. SD had more effect on dormancy induction under the same temperature when compared with LD. The grape dormancy induction stopped when the total respiratory rate reached the highest level. During the dormancy induction period, the proportion of pentose phosphate pathway (PPP) operation activity or capacity to total respiratory rate increased from 16.0% to 20.1% or 22.3% to 26.0%, respectively; similarly, the proportion of operation activity or capacity of alternate pathway to total respiratory rate rapidly increased, i.e., from 19.4% to 27.3% or 38.2% to 46.8%. Both low temperature and short sunlight could induce change of respiratory pathway on electron transport chain level. PMID:27112009

  5. Knowing when to grow: signals regulating bud dormancy.

    PubMed

    Horvath, David P; Anderson, James V; Chao, Wun S; Foley, Michael E

    2003-11-01

    Dormancy regulation in vegetative buds is a complex process necessary for plant survival, development and architecture. Our understanding of and ability to manipulate these processes are crucial for increasing the yield and availability of much of the world's food. In many cases, release of dormancy results in increased cell division and changes in developmental programs. Much can be learned about dormancy regulation by identifying interactions of signals in these crucial processes. Internal signals such as hormones and sugar, and external signals such as light act through specific, overlapping signal transduction pathways to regulate endo-, eco- and paradormancy. Epigenetic-like regulation of endodormancy suggests a possible role for chromatin remodeling similar to that known for the vernalization responses during flowering.

  6. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy

    PubMed Central

    Santamaría, María Estrella; Rodríguez, Roberto; Cañal, María Jesús; Toorop, Peter E.

    2011-01-01

    Background and Aims Recent papers indicated that epigenetic control is involved in transitions in bud dormancy, purportedly controlling gene expression. The present study aimed to identify genes that are differentially expressed in dormant and non-dormant Castanea sativa buds. Methods Two suppression subtractive hybridization cDNA libraries were constructed to characterize the transcriptomes of dormant apical buds of C. sativa, and buds in which dormancy was released. Key Results A total of 512 expressed sequence tags (ESTs) were generated in a forward and reverse subtractive hybridization experiment. Classification of these ESTs into functional groups demonstrated that dormant buds were predominantly characterized by genes associated with stress response, while non-dormant buds were characterized by genes associated with energy, protein synthesis and cellular components for development and growth. ESTs for a few genes involved in different forms of epigenetic modification were found in both libraries, suggesting a role for epigenetic control in bud dormancy different from that in growth. Genes encoding histone mono-ubiquitinase HUB2 and histone acetyltransferase GCN5L were associated with dormancy, while a gene encoding histone H3 kinase AUR3 was associated with growth. Real-time RT-PCR with a selection of genes involved in epigenetic modification and stress tolerance confirmed the expression of the majority of investigated genes in various stages of bud development, revealing a cyclical expression pattern concurring with the growth seasons for most genes. However, senescing leaves also showed an increased expression of several of the genes associated with dormancy, implying pleiotropy. Furthermore, a comparison between these subtraction cDNA libraries and the poplar bud dormancy transcriptome and arabidopsis transcriptomes for seed dormancy and non-dormancy indicated a common basis for dormancy in all three systems. Conclusions Bud dormancy and non-dormancy in C

  7. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica)

    PubMed Central

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2016-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach. PMID:26793222

  8. Expression of ABA Metabolism-Related Genes Suggests Similarities and Differences Between Seed Dormancy and Bud Dormancy of Peach (Prunus persica).

    PubMed

    Wang, Dongling; Gao, Zhenzhen; Du, Peiyong; Xiao, Wei; Tan, Qiuping; Chen, Xiude; Li, Ling; Gao, Dongsheng

    2015-01-01

    Dormancy inhibits seed and bud growth of perennial plants until the environmental conditions are optimal for survival. Previous studies indicated that certain co-regulation pathways exist in seed and bud dormancy. In our study, we found that seed and bud dormancy are similar to some extent but show different reactions to chemical treatments that induce breaking of dormancy. Whether the abscisic acid (ABA) regulatory networks are similar in dormant peach seeds and buds is not well known; however, ABA is generally believed to play a critical role in seed and bud dormancy. In peach, some genes putatively involved in ABA synthesis and catabolism were identified and their expression patterns were studied to learn more about ABA homeostasis and the possible crosstalk between bud dormancy and seed dormancy mechanisms. The analysis demonstrated that two 9-cis-epoxycarotenoid dioxygenase-encoding genes seem to be key in regulating ABA biosynthesis to induce seed and bud dormancy. Three CYP707As play an overlapping role in controlling ABA inactivation, resulting in dormancy-release. In addition, Transcript analysis of ABA metabolism-related genes was much similar demonstrated that ABA pathways was similar in the regulation of vegetative and flower bud dormancy, whereas, expression patterns of ABA metabolism-related genes were different in seed dormancy showed that ABA pathway maybe different in regulating seed dormancy in peach.

  9. A molecular timetable for apical bud formation and dormancy induction in poplar.

    PubMed

    Ruttink, Tom; Arend, Matthias; Morreel, Kris; Storme, Véronique; Rombauts, Stephane; Fromm, Jörg; Bhalerao, Rishikesh P; Boerjan, Wout; Rohde, Antje

    2007-08-01

    The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula x Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.

  10. Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds.

    PubMed

    Ibarra, Silvia E; Tognacca, Rocío S; Dave, Anuja; Graham, Ian A; Sánchez, Rodolfo A; Botto, Javier F

    2016-01-01

    As seasons change, dormant seeds cycle through dormant states until the environmental conditions are favourable for seedling establishment. Dormancy cycle is widespread in the plant kingdom allowing the seeds to display primary and secondary dormancy. Several reports in the last decade have focused on understanding the molecular mechanisms of primary dormancy, but our knowledge regarding secondary dormancy is limited. Here, we studied secondary dormancy induced in Arabidopsis thaliana by incubating seeds at 25 °C in darkness for 4 d. By physiological, pharmacological, expression and genetics approaches, we demonstrate that (1) the entrance in secondary dormancy involves changes in the content and sensitivity to GA, but the content and sensitivity to ABA do not change, albeit ABA is required; (2) RGL2 promotes the entrance in secondary dormancy through ABI5 action; and (3) multivariate analysis with 18 geographical and environmental parameters of accession collection place suggests that temperature is an important variable influencing the induction of secondary dormancy in nature.

  11. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism

    PubMed Central

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-01-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8’OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy. PMID:25560179

  12. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism.

    PubMed

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-03-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8'OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy.

  13. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud

    PubMed Central

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKCC-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in ‘Suli’ pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy. PMID:26466664

  14. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud.

    PubMed

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKC(C)-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in 'Suli' pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy.

  15. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium)

    PubMed Central

    Le Dantec, Loïck; Quero-García, José; Barreneche, Teresa; Wenden, Bénédicte; Dirlewanger, Elisabeth

    2015-01-01

    The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies ‘Regina’ × ‘Garnet’ and ‘Regina’ × ‘Lapins’, and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions. PMID:26587668

  16. Analysis of basic leucine zipper genes and their expression during bud dormancy in peach (Prunus persica).

    PubMed

    Sun, Ming-Yue; Fu, Xi-Ling; Tan, Qiu-Ping; Liu, Li; Chen, Min; Zhu, Cui-Ying; Li, Ling; Chen, Xiu-De; Gao, Dong-Sheng

    2016-07-01

    Dormancy is a biological characteristic developed to resist the cold conditions in winter. The bZIP transcription factors are present exclusively in eukaryotes and have been identified and classified in many species. bZIP proteins are known to regulate numerous biological processes, however, the role of bZIP in bud dodormancy has not been studied extensively. In total, 50 PpbZIP transcription factor-encoding genes were identified and categorized them into 10 groups (A-I and S). Similar intron/exon structures, additional conserved motifs, and DNA-binding site specificity supported our classification scheme. Additionally, chromosomal distribution and collinearity analyses suggested that expansion of the PpbZIP transcription factor family was due to segment/chromosomal duplications. We also predicted the dimerization properties based on characteristic features of the leucine zipper and classified PpbZIP proteins into 23 subfamilies. Furthermore, qRT-PCR results indicated that PpbZIPs genes may be involved in regulating dormancy. The same gene of different species might participate in different regulating networks through interactions with specific partners. Our expression profiling results complemented the microarray data, suggesting that co-expression patterns of bZIP transcription factors during dormancy differed among deciduous fruit trees. Our findings further clarify the molecular characteristics of the PpbZIP transcription factor family, including potential gene functions during dormancy. This information may facilitate further research on the evolutionary history and biological functions of bZIP proteins in peach and other rosaceae plants.

  17. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    PubMed

    Zhang, Y X; Yu, D; Tian, X L; Liu, C Y; Gai, S P; Zheng, G S

    2015-01-01

    Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony.

  18. Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq

    PubMed Central

    2012-01-01

    Background Bud dormancy is a critical developmental process that allows perennial plants to survive unfavorable environmental conditions. Pear is one of the most important deciduous fruit trees in the world, but the mechanisms regulating bud dormancy in this species are unknown. Because genomic information for pear is currently unavailable, transcriptome and digital gene expression data for this species would be valuable resources to better understand the molecular and biological mechanisms regulating its bud dormancy. Results We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of ‘Suli’ pear (Pyrus pyrifolia white pear group) using the Illumina RNA-seq system. RNA-Seq generated approximately 100 M high-quality reads that were assembled into 69,393 unigenes (mean length = 853 bp), including 14,531 clusters and 34,194 singletons. A total of 51,448 (74.1%) unigenes were annotated using public protein databases with a cut-off E-value above 10-5. We mainly compared gene expression levels at four time-points during bud dormancy. Between Nov. 15 and Dec. 15, Dec. 15 and Jan. 15, and Jan. 15 and Feb. 15, 1,978, 1,024, and 3,468 genes were differentially expressed, respectively. Hierarchical clustering analysis arranged 190 significantly differentially-expressed genes into seven groups. Seven genes were randomly selected to confirm their expression levels using quantitative real-time PCR. Conclusions The new transcriptomes offer comprehensive sequence and DGE profiling data for a dynamic view of transcriptomic variation during bud dormancy in pear. These data provided a basis for future studies of metabolism during bud dormancy in non-model but economically-important perennial species. PMID:23234335

  19. Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing

    PubMed Central

    2013-01-01

    Background In temperate regions, the time lag between vegetative bud burst and bud set determines the duration of the growing season of trees (i.e. the duration of wood biomass production). Dormancy, the period during which the plant is not growing, allows trees to avoid cold injury resulting from exposure to low temperatures. An understanding of the molecular machinery controlling the shift between these two phenological states is of key importance in the context of climatic change. The objective of this study was to identify genes upregulated during endo- and ecodormancy, the two main stages of bud dormancy. Sessile oak is a widely distributed European white oak species. A forcing test on young trees was first carried out to identify the period most likely to correspond to these two stages. Total RNA was then extracted from apical buds displaying endo- and ecodormancy. This RNA was used for the generation of cDNA libraries, and in-depth transcriptome characterization was performed with 454 FLX pyrosequencing technology. Results Pyrosequencing produced a total of 495,915 reads. The data were cleaned, duplicated reads removed, and sequences were mapped onto the oak UniGene data. Digital gene expression analysis was performed, with both R statistics and the R-Bioconductor packages (edgeR and DESeq), on 6,471 contigs with read numbers ≥ 5 within any contigs. The number of sequences displaying significant differences in expression level (read abundance) between endo- and ecodormancy conditions ranged from 75 to 161, depending on the algorithm used. 13 genes displaying significant differences between conditions were selected for further analysis, and 11 of these genes, including those for glutathione-S-transferase (GST) and dehydrin xero2 (XERO2) were validated by quantitative PCR. Conclusions The identification and functional annotation of differentially expressed genes involved in the “response to abscisic acid”, “response to cold stress” and “response to

  20. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus

    PubMed Central

    Howe, Glenn T.; Horvath, David P.; Dharmawardhana, Palitha; Priest, Henry D.; Mockler, Todd C.; Strauss, Steven H.

    2015-01-01

    To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with

  1. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus.

    PubMed

    Howe, Glenn T; Horvath, David P; Dharmawardhana, Palitha; Priest, Henry D; Mockler, Todd C; Strauss, Steven H

    2015-01-01

    To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with

  2. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Strauss, Steven H; Busov, Victor B

    2014-07-01

    Trees from temperate latitudes transition between growth and dormancy to survive dehydration and freezing stress during winter months. We used activation tagging to isolate a dominant mutation affecting release from dormancy and identified the corresponding gene EARLY BUD-BREAK 1 (EBB1). We demonstrate through positioning of the tag, expression analysis, and retransformation experiments that EBB1 encodes a putative APETALA2/Ethylene responsive factor transcription factor. Transgenic up-regulation of the gene caused early bud-flush, whereas down-regulation delayed bud-break. Native EBB1 expression was highest in actively growing apices, undetectable during the dormancy period, but rapidly increased before bud-break. The EBB1 transcript was localized in the L1/L2 layers of the shoot meristem and leaf primordia. EBB1-overexpressing transgenic plants displayed enlarged shoot meristems, open and poorly differentiated buds, and a higher rate of cell division in the apex. Transcriptome analyses of the EBB1 transgenics identified 971 differentially expressed genes whose expression correlated with the EBB1 expression changes in the transgenic plants. Promoter analysis among the differentially expressed genes for the presence of a canonical EBB1-binding site identified 65 putative target genes, indicative of a broad regulatory context of EBB1 function. Our results suggest that EBB1 has a major and integrative role in reactivation of meristem activity after winter dormancy.

  3. Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees

    NASA Astrophysics Data System (ADS)

    El Yaacoubi, Adnane; Malagi, Gustavo; Oukabli, Ahmed; Citadin, Idemir; Hafidi, Majida; Bonhomme, Marc; Legave, Jean-Michel

    2016-04-01

    Few studies have focused on the characterization of bud dormancy and growth dynamics for temperate fruit species in temperate and mild cropping areas, although this is an appropriate framework to anticipate phenology adaptation facing future warming contexts which would potentially combine chill declines and heat increases. To examine this issue, two experimental approaches and field observations were used for high- and low-chill apple cultivars in temperate climate of southern France and in mild climates of northern Morocco and southern Brazil. Low-chill almond cultivars offered an additional relevant plant material for comparison with apple in northern Morocco. Divergent patterns of dormancy and growth dynamics were clearly found in apple tree between southern France and southern Brazil. Divergences were less pronounced between France and Morocco. A global view outlined main differences in the dormancy chronology and intensity, the transition between endordormancy and ecodormancy and the duration of ecodormancy. A key role of bud rehydration in the transition period was shown. High-chill cultivars would be submitted in mild conditions to heterogeneous rehydration capacities linked to insufficient chill fulfillment and excessive forcing linked to high temperatures. This would favor bud competitions and consequently excessive flowering durations and weak flowering. Low chilling requirements in apple and almond would conversely confer biological capacities to tolerate superficial dormancy and abrupt transition from endordormancy to ecodormancy without important heterogeneous rehydration states within buds. It may also assume that low-chill cultivars can also tolerate high temperatures during ecodormancy as well as extended flowering durations.

  4. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens.

    PubMed

    Myking, T; Heide, O M

    1995-11-01

    Bud burst and dormancy release of latitudinal ecotypes of Betula pendula Roth and B. pubescens Ehrh. from Denmark ( approximately 56 degrees N), mid-Norway ( approximately 64 degrees N) and northern Norway ( approximately 69 degrees N) were studied in controlled environments. Dormant seedlings were chilled at 0, 5 or 10 degrees C from October 4 onward and then, at monthly intervals from mid-November to February, batches of seedlings were held at 15 degrees C in an 8-h (SD) or 24-h (LD) photoperiod to permit flushing. A decline in days to bud burst occurred with increasing chilling time in all ecotypes. In November, after 44 chilling days, time to bud burst was least in plants chilled at 0 and 5 degrees C. The difference diminished with increasing chilling time, and in February, after 136 chilling days, bud burst was earliest in plants chilled at 10 degrees C. Long photoperiods during flushing significantly reduced thermal time after short chilling periods (44 and 74 days), but had no effect when the chilling requirement was fully met after 105 or more chilling days. No significant difference in these responses was found between the two species. In both species, chilling requirement decreased significantly with increasing latitude of origin. Bud burst was normal in seedlings overwintered at 12 degrees C, but was erratic and delayed in seedlings overwintered at 15 and especially at 21 degrees C, indicating that the critical overwintering temperature is between 12 and 15 degrees C. We conclude that there is little risk of a chilling deficit in birch under Scandinavian winter conditions even with a climatic warming of 7-8 degrees C. The likely effects of a climatic warming include earlier bud burst, a longer growing season and increased risk of spring frost injury, especially in high latitude ecotypes. PMID:14965987

  5. Analysis of basic leucine zipper genes and their expression during bud dormancy in peach (Prunus persica).

    PubMed

    Sun, Ming-Yue; Fu, Xi-Ling; Tan, Qiu-Ping; Liu, Li; Chen, Min; Zhu, Cui-Ying; Li, Ling; Chen, Xiu-De; Gao, Dong-Sheng

    2016-07-01

    Dormancy is a biological characteristic developed to resist the cold conditions in winter. The bZIP transcription factors are present exclusively in eukaryotes and have been identified and classified in many species. bZIP proteins are known to regulate numerous biological processes, however, the role of bZIP in bud dodormancy has not been studied extensively. In total, 50 PpbZIP transcription factor-encoding genes were identified and categorized them into 10 groups (A-I and S). Similar intron/exon structures, additional conserved motifs, and DNA-binding site specificity supported our classification scheme. Additionally, chromosomal distribution and collinearity analyses suggested that expansion of the PpbZIP transcription factor family was due to segment/chromosomal duplications. We also predicted the dimerization properties based on characteristic features of the leucine zipper and classified PpbZIP proteins into 23 subfamilies. Furthermore, qRT-PCR results indicated that PpbZIPs genes may be involved in regulating dormancy. The same gene of different species might participate in different regulating networks through interactions with specific partners. Our expression profiling results complemented the microarray data, suggesting that co-expression patterns of bZIP transcription factors during dormancy differed among deciduous fruit trees. Our findings further clarify the molecular characteristics of the PpbZIP transcription factor family, including potential gene functions during dormancy. This information may facilitate further research on the evolutionary history and biological functions of bZIP proteins in peach and other rosaceae plants. PMID:27107182

  6. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release

    PubMed Central

    Zhuang, Weibing; Gao, Zhihong; Zhang, Zhen

    2013-01-01

    Hormones are closely associated with dormancy in deciduous fruit trees, and gibberellins (GAs) are known to be particularly important. In this study, we observed that GA4 treatment led to earlier bud break in Japanese apricot. To understand better the promoting effect of GA4 on the dormancy release of Japanese apricot flower buds, proteomic and transcriptomic approaches were used to analyse the mechanisms of dormancy release following GA4 treatment, based on two-dimensional gel electrophoresis (2-DE) and digital gene expression (DGE) profiling, respectively. More than 600 highly reproducible protein spots (P<0.05) were detected and, following GA4 treatment, 38 protein spots showed more than a 2-fold difference in expression, and 32 protein spots were confidently identified according to the databases. Compared with water treatment, many proteins that were associated with energy metabolism and oxidation–reduction showed significant changes after GA4 treatment, which might promote dormancy release. We observed that genes at the mRNA level associated with energy metabolism and oxidation–reduction also played an important role in this process. Analysis of the functions of the identified proteins and genes and the related metabolic pathways would provide a comprehensive proteomic and transcriptomic view of the coordination of dormancy release after GA4 treatment in Japanese apricot flower buds. PMID:24014872

  7. [Relationships between H2O2 metabolism and Ca2+ transport in dormancy-breaking process of nectarine floral buds].

    PubMed

    Tan, Yue; Gao, Dong-sheng; Li, Ling; Wei, Hai-rong; Wang, Jia-wei; Liu, Qing-zhong

    2015-02-01

    In order to explore regulatory function of H2O2 in bud dormancy release, main effects of three dormancy-breaking treatments (high temperature, hydrogen cyanamide and TDZ) on H2O2 metabolism were determined, and impacts of H2O2 on Ca2+ transport were tested using non-invasive micro-test technique. The results showed that both high temperature and hydrogen cyanamide induced H2O2 accumulation and CAT inhibition were efficient in breaking dormancy during deep dormancy period. However, TDZ showed little impacts on H2O2 metabolism and was much less effective in breaking dormancy. Dormant floral primordium was absorbing state to exogenous Ca2+ due to active calcium channels. The Ca2+ transport could be changed by exogenous H2O2. H2O2 of low concentration reduced the absorption rate of Ca2+, and at high concentration, it changed the Ca2+ transport direction from absorption to release. The results indicated that H2O2 signals were related with Ca2+ signals in dormant buds. Ca2+ signal regulated by H2O2 accumulation might be important in the dormancy-breaking signal transduction process induced by high temperature and hydrogen cyanamide.

  8. Transcriptomic analysis of the underground renewal buds during dormancy transition and release in 'Hangbaishao' peony (Paeonia lactiflora).

    PubMed

    Zhang, Jiaping; Wu, Yun; Li, Danqing; Wang, Guanqun; Li, Xin; Xia, Yiping

    2015-01-01

    Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora 'Hangbaishao' to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named "Trinity" and "Trinity+PRICE", respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be highly

  9. Transcriptomic analysis of the underground renewal buds during dormancy transition and release in 'Hangbaishao' peony (Paeonia lactiflora).

    PubMed

    Zhang, Jiaping; Wu, Yun; Li, Danqing; Wang, Guanqun; Li, Xin; Xia, Yiping

    2015-01-01

    Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora 'Hangbaishao' to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named "Trinity" and "Trinity+PRICE", respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be highly

  10. Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation?

    PubMed Central

    Brunner, Amy M.; Evans, Luke M.; Hsu, Chuan-Yu; Sheng, Xiaoyan

    2014-01-01

    Similarities have long been recognized between vernalization, the prolonged exposure to cold temperatures that promotes the floral transition in many plants, and the chilling requirement to release bud dormancy in woody plants of temperate climates. In both cases the extended chilling period occurring during winter is used to coordinate developmental events to the appropriate seasonal time. However, whether or not these processes share common regulatory components and molecular mechanisms remain largely unknown. Both gene function and association genetics studies in Populus are beginning to answer this question. In Populus, studies have revealed that orthologs of the antagonistic flowering time genes FT and CEN/TFL1 might have central roles in both processes. We review Populus seasonal shoot development related to dormancy release and the floral transition and evidence for FT/TFL1-mediated regulation of these processes to consider the question of regulatory overlap. In addition, we discuss the potential for and challenges to integrating functional and population genomics studies to uncover the regulatory mechanisms underpinning these processes in woody plant systems. PMID:25566302

  11. The Gentio-Oligosaccharide Gentiobiose Functions in the Modulation of Bud Dormancy in the Herbaceous Perennial Gentiana[C][W

    PubMed Central

    Takahashi, Hideyuki; Imamura, Tomohiro; Konno, Naotake; Takeda, Takumi; Fujita, Kohei; Konishi, Teruko; Nishihara, Masahiro; Uchimiya, Hirofumi

    2014-01-01

    Bud dormancy is an adaptive strategy that perennials use to survive unfavorable conditions. Gentians (Gentiana), popular alpine flowers and ornamentals, produce overwintering buds (OWBs) that can persist through the winter, but the mechanisms regulating dormancy are currently unclear. In this study, we conducted targeted metabolome analysis to obtain clues about the metabolic mechanisms involved in regulating OWB dormancy. Multivariate analysis of metabolite profiles revealed metabolite patterns characteristic of dormant states. The concentrations of gentiobiose [β-d-Glcp-(1→6)-d-Glc] and gentianose [β-d-Glcp-(1→6)-d-Glc-(1→2)-d-Fru] significantly varied depending on the stage of OWB dormancy, and the gentiobiose concentration increased prior to budbreak. Both activation of invertase and inactivation of β-glucosidase resulted in gentiobiose accumulation in ecodormant OWBs, suggesting that gentiobiose is seldom used as an energy source but is involved in signaling pathways. Furthermore, treatment with exogenous gentiobiose induced budbreak in OWBs cultured in vitro, with increased concentrations of sulfur-containing amino acids, GSH, and ascorbate (AsA), as well as increased expression levels of the corresponding genes. Inhibition of GSH synthesis suppressed gentiobiose-induced budbreak accompanied by decreases in GSH and AsA concentrations and redox status. These results indicate that gentiobiose, a rare disaccharide, acts as a signal for dormancy release of gentian OWBs through the AsA-GSH cycle. PMID:25326293

  12. The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    PubMed

    Huang, Xin; Zhu, Wei; Dai, Silan; Gai, Shupeng; Zheng, Guosheng; Zheng, Chengchao

    2008-09-01

    A cDNA clone was isolated from tree peony (Paeonia suffruticosa) subtractive cDNA library of burst buds and characterized with regard to its sequence, expression in response to chilling treatment during the release of bud dormancy, and its function in transgenic Arabidopsis thaliana. The clone, designated as PsMPT, contains 1,615 nucleotides with an open reading frame of 1,119 nucleotides, and the deduced amino acid sequence shows high homology with mitochondrial phosphate transporters (MPTs) from various organisms. The mRNA accumulation of PsMPT in tree peony was strongly induced by chilling treatment during the release of bud dormancy. When the treated plants were transferred to normal growth conditions, the level of PsMPT transcripts induced by sufficient chilling could be maintained high, whereas that induced by insufficient chilling decreased sharply. The transgenic Arabidopsis plants that overexpress PsMPT showed rapid growth and earlier flowering than wild-type plants. ATP contents in the transgenic plants were much higher than that in wild-type plants through various developmental stages. Together, these results suggest that the product of PsMPT is a MPT and might play an important role during the release of bud dormancy in tree peony.

  13. Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes.

    PubMed

    Thirugnanasambantham, Krishnaraj; Prabu, Gajjeraman; Palanisamy, Senthilkumar; Chandrabose, Suresh Ramraj Subhas; Mandal, Abul Kalam Azad

    2013-02-01

    Bud dormancy is of ecological and economical interest due to its impact on tea (Camellia sinensis (L.) O. Kuntze) plant growth and yield. Growth regulation associated with dormancy is an essential element in plant's life cycle that leads to changes in expression of large number of genes. In order to identify and provide a picture of the transcriptome profile, cDNA library was constructed from dormant bud (banjhi) of tea. Sequence and gene ontology analysis of 3,500 clones, in many cases, enabled their functional categorization concerning the bud growth. Based on the cDNA library data, the putative role of identified genes from tea is discussed in relation to growth and dormancy, which includes morphogenesis, cellular differentiation, tropism, cell cycle, signaling, and various metabolic pathways. There was a higher representation of unknown processes such as unknown molecular functions (65.80 %), unknown biological processes (62.46 %), and unknown cellular components (67.42 %). However, these unknown transcripts represented a novel component of transcripts in tea plant bud growth and/or dormancy development. The identified transcripts and expressed sequence tags provides a valuable public resource and preliminary insights into the molecular mechanisms of bud dormancy regulation. Further, the findings will be the target of future expression experiments, particularly for further identification of dormancy-related genes in this species.

  14. Transcriptomic Analysis of the Underground Renewal Buds during Dormancy Transition and Release in ‘Hangbaishao’ Peony (Paeonia lactiflora)

    PubMed Central

    Zhang, Jiaping; Wang, Guanqun; Li, Xin; Xia, Yiping

    2015-01-01

    Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora ‘Hangbaishao’ to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named “Trinity” and “Trinity+PRICE”, respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset

  15. Extensive transcriptome changes during natural onset and release of vegetative bud dormancy in Populus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To survive winter conditions, axillary buds of poplar transition from paradormancy to endodormancy. Following sufficient chilling, endodormant axillary buds will transition from endodormancy to ecodormancy. We utilized the near whole genome NimbleGen poplar microarrays to follow transcriptome diff...

  16. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees

    SciTech Connect

    Potkar, Rewati; Recla, Jill; Busov, Victor

    2013-02-15

    Highlights: ► We show a novel microRNA-mediated mechanism for control of bud dormancy in trees. ► ptr-MIR169a and PtrHAP2–5 gene showed inverse expression during dormancy period. ► The PtrHAP2–5 decline in abundance correlated with high ptr-MIR169a levels. ► PtrHAP2–5 cleavage occurred at the miR169 site during PtrHAP2–5 transcript decline. ► Our results show that miR169 attenuates PtrHAP2–5 transcript during dormancy. -- Abstract: Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed in dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2–5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2–5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2–5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2–5 transcript. We experimentally verified the cleavage of PtrHAP2–5 at the predicted miR169a site at the time when PtrHAP2–5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.

  17. BRANCHED1 Promotes Axillary Bud Dormancy in Response to Shade in Arabidopsis[C][W

    PubMed Central

    González-Grandío, Eduardo; Poza-Carrión, César; Sorzano, Carlos Oscar S.; Cubas, Pilar

    2013-01-01

    Plants interpret a decrease in the red to far-red light ratio (R:FR) as a sign of impending shading by neighboring vegetation. This triggers a set of developmental responses known as shade avoidance syndrome. One of these responses is reduced branching through suppression of axillary bud outgrowth. The Arabidopsis thaliana gene BRANCHED1 (BRC1), expressed in axillary buds, is required for branch suppression in response to shade. Unlike wild-type plants, brc1 mutants develop several branches after a shade treatment. BRC1 transcription is positively regulated 4 h after exposure to low R:FR. Consistently, BRC1 is negatively regulated by phytochrome B. Transcriptional profiling of wild-type and brc1 buds of plants treated with simulated shade has revealed groups of genes whose mRNA levels are dependent on BRC1, among them a set of upregulated abscisic acid response genes and two networks of cell cycle– and ribosome-related downregulated genes. The downregulated genes have promoters enriched in TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) binding sites, suggesting that they could be transcriptionally regulated by TCP factors. Some of these genes respond to BRC1 in seedlings and buds, supporting their close relationship with BRC1 activity. This response may allow the rapid adaptation of plants to fluctuations in the ratio of R:FR light. PMID:23524661

  18. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis.

    PubMed

    González-Grandío, Eduardo; Poza-Carrión, César; Sorzano, Carlos Oscar S; Cubas, Pilar

    2013-03-01

    Plants interpret a decrease in the red to far-red light ratio (R:FR) as a sign of impending shading by neighboring vegetation. This triggers a set of developmental responses known as shade avoidance syndrome. One of these responses is reduced branching through suppression of axillary bud outgrowth. The Arabidopsis thaliana gene BRANCHED1 (BRC1), expressed in axillary buds, is required for branch suppression in response to shade. Unlike wild-type plants, brc1 mutants develop several branches after a shade treatment. BRC1 transcription is positively regulated 4 h after exposure to low R:FR. Consistently, BRC1 is negatively regulated by phytochrome B. Transcriptional profiling of wild-type and brc1 buds of plants treated with simulated shade has revealed groups of genes whose mRNA levels are dependent on BRC1, among them a set of upregulated abscisic acid response genes and two networks of cell cycle- and ribosome-related downregulated genes. The downregulated genes have promoters enriched in TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) binding sites, suggesting that they could be transcriptionally regulated by TCP factors. Some of these genes respond to BRC1 in seedlings and buds, supporting their close relationship with BRC1 activity. This response may allow the rapid adaptation of plants to fluctuations in the ratio of R:FR light.

  19. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees.

    PubMed

    Potkar, Rewati; Recla, Jill; Busov, Victor

    2013-02-15

    Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed in dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2-5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2-5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2-5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2-5 transcript. We experimentally verified the cleavage of PtrHAP2-5 at the predicted miR169a site at the time when PtrHAP2-5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.

  20. The dormancy-breaking stimuli "chilling, hypoxia and cyanamide exposure" up-regulate the expression of α-amylase genes in grapevine buds.

    PubMed

    Rubio, Sebastián; Donoso, Amanda; Pérez, Francisco J

    2014-03-15

    It has been suggested that respiratory stress is involved in the mechanism underlying the dormancy-breaking effect of hydrogen cyanamide (H2CN2) and sodium azide in grapevine buds; indeed, reductions in oxygen levels (hypoxia) and inhibitors of respiration promote bud-break in grapevines. In this study, we showed that, hypoxia increased starch hydrolysis soluble sugar consumption and up-regulated the expression of α-amylase genes (Vvα-AMYs) in grapevine buds, suggesting that these biochemical changes induced by hypoxia, may play a relevant role in the release of buds from endodormancy (ED). Three of the four Vvα-AMY genes that are expressed in grapevine buds were up-regulated by hypoxia and a correlation between changes in sugar content and level of Vvα-AMY gene expression during the hypoxia treatment was found, suggesting that soluble sugars mediate the effect of hypoxia on Vvα-AMY gene expression. Exogenous applications of soluble sugars and sugar analogs confirmed this finding and revealed that osmotic stress induces the expression of Vvα-AMY1 and Vvα-AMY3 and that soluble sugars induces Vvα-AMY2 and Vvα-AMY4 gene expression. Interestingly, the plant hormone gibberellic acid (GA3) induced the expression of Vvα-AMY3 and Vvα-AMY4 genes, while dormancy breaking stimuli, chilling and cyanamide exposure, mainly induced the expression of Vvα-AMY1 and Vvα-AMY2 genes, suggesting that these two α-amylase genes might be involved in the release of grapevine buds from the ED. PMID:24594388

  1. The dormancy-breaking stimuli "chilling, hypoxia and cyanamide exposure" up-regulate the expression of α-amylase genes in grapevine buds.

    PubMed

    Rubio, Sebastián; Donoso, Amanda; Pérez, Francisco J

    2014-03-15

    It has been suggested that respiratory stress is involved in the mechanism underlying the dormancy-breaking effect of hydrogen cyanamide (H2CN2) and sodium azide in grapevine buds; indeed, reductions in oxygen levels (hypoxia) and inhibitors of respiration promote bud-break in grapevines. In this study, we showed that, hypoxia increased starch hydrolysis soluble sugar consumption and up-regulated the expression of α-amylase genes (Vvα-AMYs) in grapevine buds, suggesting that these biochemical changes induced by hypoxia, may play a relevant role in the release of buds from endodormancy (ED). Three of the four Vvα-AMY genes that are expressed in grapevine buds were up-regulated by hypoxia and a correlation between changes in sugar content and level of Vvα-AMY gene expression during the hypoxia treatment was found, suggesting that soluble sugars mediate the effect of hypoxia on Vvα-AMY gene expression. Exogenous applications of soluble sugars and sugar analogs confirmed this finding and revealed that osmotic stress induces the expression of Vvα-AMY1 and Vvα-AMY3 and that soluble sugars induces Vvα-AMY2 and Vvα-AMY4 gene expression. Interestingly, the plant hormone gibberellic acid (GA3) induced the expression of Vvα-AMY3 and Vvα-AMY4 genes, while dormancy breaking stimuli, chilling and cyanamide exposure, mainly induced the expression of Vvα-AMY1 and Vvα-AMY2 genes, suggesting that these two α-amylase genes might be involved in the release of grapevine buds from the ED.

  2. Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases.

    PubMed

    Rentzsch, Sonja; Podzimska, Dagmara; Voegele, Antje; Imbeck, Madeleine; Müller, Kerstin; Linkies, Ada; Leubner-Metzger, Gerhard

    2012-01-01

    Gibberellins (GA) are involved in bud dormancy release in several species. We show here that GA-treatment released bud dormancy, initiated bud sprouting and promoted sprout growth of excised potato tuber bud discs ('eyes'). Monoterpenes from peppermint oil (PMO) and S-(+)-carvone (CAR) interact with the GA-mediated bud dormancy release in a hormesis-type response: low monoterpene concentrations enhance dormancy release and the initiation of bud sprouting, whereas high concentrations inhibit it. PMO and CAR did, however, not affect sprout growth rate after its onset. We further show that GA-induced dormancy release is associated with tissue-specific regulation of α- and β-amylases. Molecular phylogenetic analysis shows that potato α-amylases cluster into two distinct groups: α-AMY1 and α-AMY2. GA-treatment induced transcript accumulation of members of both α-amylase groups, as well as α- and β-amylase enzyme activity in sprout and 'sub-eye' tissues. In sprouts, CAR interacts with the GA-mediated accumulation of α-amylase transcripts in an α-AMY2-specific and dose-dependent manner. Low CAR concentrations enhance the accumulation of α-AMY2-type α-amylase transcripts, but do not affect the α-AMY1-type transcripts. Low CAR concentrations also enhance the accumulation of α- and β-amylase enzyme activity in sprouts, but not in 'sub-eye' tissues. In contrast, high CAR concentrations have no appreciable effect in sprouts on the enzyme activities and the α-amylase transcript abundances of either group. The dose-dependent effects on the enzyme activities and the α-AMY2-type α-amylase transcripts in sprouts are specific for CAR but not for PMO. Different monoterpenes therefore may have specific targets for their interaction with hormone signalling pathways.

  3. Extended Low Temperature Impacts Dormancy Status, Flowering Competence, and Transcript Profiles in Crown Buds of Leafy Spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge (Euphorbia esula) is an herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds. In this study we report the effects of different growth conditions on vegetative reproduction and flowering competence, and determine molecular mechanisms a...

  4. A rapid transcriptional activation is induced by the dormancy-breaking chemical hydrogen cyanamide in kiwifruit (Actinidia deliciosa) buds.

    PubMed

    Walton, Eric F; Wu, Rong-Mei; Richardson, Annette C; Davy, Marcus; Hellens, Roger P; Thodey, Kate; Janssen, Bart J; Gleave, Andrew P; Rae, Georgina M; Wood, Marion; Schaffer, Robert J

    2009-01-01

    Budbreak in kiwifruit (Actinidia deliciosa) can be poor in locations that have warm winters with insufficient winter chilling. Kiwifruit vines are often treated with the dormancy-breaking chemical hydrogen cyanamide (HC) to increase and synchronize budbreak. This treatment also offers a tool to understand the processes involved in budbreak. A genomics approach is presented here to increase our understanding of budbreak in kiwifruit. Most genes identified following HC application appear to be associated with responses to stress, but a number of genes appear to be associated with the reactivation of growth. Three patterns of gene expression were identified: Profile 1, an HC-induced transient activation; Profile 2, an HC-induced transient activation followed by a growth-related activation; and Profile 3, HC- and growth-repressed. One group of genes that was rapidly up-regulated in response to HC was the glutathione S-transferase (GST) class of genes, which have been associated with stress and signalling. Previous budbreak studies, in three other species, also report up-regulated GST expression. Phylogenetic analysis of these GSTs showed that they clustered into two sub-clades, suggesting a strong correlation between their expression and budbreak across species.

  5. Short day transcriptomic programming during induction of dormancy in grapevine

    PubMed Central

    Fennell, Anne Y.; Schlauch, Karen A.; Gouthu, Satyanarayana; Deluc, Laurent G.; Khadka, Vedbar; Sreekantan, Lekha; Grimplet, Jerome; Cramer, Grant R.; Mathiason, Katherine L.

    2015-01-01

    Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING

  6. Short day transcriptomic programming during induction of dormancy in grapevine.

    PubMed

    Fennell, Anne Y; Schlauch, Karen A; Gouthu, Satyanarayana; Deluc, Laurent G; Khadka, Vedbar; Sreekantan, Lekha; Grimplet, Jerome; Cramer, Grant R; Mathiason, Katherine L

    2015-01-01

    Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING

  7. Physiological differences between bud breaking and flowering after dormancy completion revealed by DAM and FT/TFL1 expression in Japanese pear (Pyrus pyrifolia).

    PubMed

    Ito, Akiko; Saito, Takanori; Sakamoto, Daisuke; Sugiura, Toshihiko; Bai, Songling; Moriguchi, Takaya

    2016-01-01

    The regulatory mechanisms underlying bud breaking (scale leaf elongation) and flowering in the lateral flower buds of Japanese pear (Pyrus pyrifolia Nakai 'Kosui') are unknown. To more fully characterize these processes, we treated pear trees with different amounts of chilling initiated at different times. Chilling for ∼900 h at 6 °C always induced bud breaking (scale elongation in ≥70% lateral flower bud) when provided between October and February, whereas chilling provided earlier (between October and December) was less effective on flowering (floret growth and development) than later chilling and the flowering rate increased with longer chilling durations. During chilling, the expression of pear DAMs (PpMADS13-1, 13-2 and 13-3) in lateral flower buds decreased as chilling accumulated irrespective of the timing of chilling. In addition, pear TFL1 (PpTFL1-1a) in the lateral flower buds was expressed at higher levels when the time interval for chilling was earlier. On the other hand, during forcing at 15 °C after chilling, the expression pattern of all three PpMADS13 genes was similar among the treatments, and the expression levels seemed lower in the treatment where scale leaves of the lateral flower bud elongated faster, whereas pear FT (PpFT2a) was expressed at higher levels in the buds whose flower clusters elongated more vigorously during forcing. From these results, we infer that flowering time may be mediated via the balance of flowering-related genes FT and TFL1, whereas bud breaking may be regulated via the DAM genes in Japanese pear.

  8. On the language and physiology of dormancy and quiescence in plants.

    PubMed

    Considine, Michael J; Considine, John A

    2016-05-01

    The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being

  9. Stamen development and winter dormancy in apricot (Prunus armeniaca)

    PubMed Central

    Julian, C.; Rodrigo, J.; Herrero, M.

    2011-01-01

    Background and Aims In temperate woody perennials, flower bud development is halted during the winter, when the buds enter dormancy. This dormant period is a prerequisite for adequate flowering, is genetically regulated, and plays a clear role in possibly adapting species and cultivars to climatic areas. However, information on the biological events underpinning dormancy is lacking. Stamen development, with clear differentiated stages, appears as a good framework to put dormancy in a developmental context. Here, stamen developmental changes are characterized in apricot (Prunus armeniaca) and are related to dormancy. Methods Stamen development was characterized cytochemically from the end of August to March, over 4 years. Developmental changes were related to dormancy, using the existing empirical information on chilling requirements. Key Results Stamen development continued during the autumn, and the flower buds entered dormancy with a fully developed sporogenous tissue. Although no anatomical changes were observed during dormancy, breaking of dormancy occurred following a clear sequence of events. Starch accumulated in particular places, pre-empting further development in those areas. Vascular bundles developed and pollen mother cells underwent meiosis followed by microspore development. Conclusions Dormancy appears to mark a boundary between the development of the sporogenous tissue and the occurrence of meiosis for further microspore development. Breaking of dormancy occurs following a clear sequence of events, providing a developmental context in which to study winter dormancy and to evaluate differences in chilling requirements among genotypes. PMID:21474504

  10. Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa.

    PubMed

    Santamaría, Ma Estrella; Hasbún, Rodrigo; Valera, Ma José; Meijón, Mónica; Valledor, Luis; Rodríguez, Jose L; Toorop, Peter E; Cañal, Ma Jesús; Rodríguez, Roberto

    2009-09-01

    The relationships between genomic DNA cytosine methylation, histone H4 acetylation and bud dormancy in Castanea sativa are described. Acetylated H4 histone and genomic DNA methylation patterns showed opposite abundance patterns during bud set and bud burst. Increased and decreased methylation levels in the apical buds coincided with bud set and bud burst, respectively. Intermediate axillary buds were characterized by constant levels of DNA methylation during burst of apical buds and reduced fluctuation in DNA methylation throughout the year, which coincided with the absence of macro-morphological changes. Furthermore, acetylated histone H4 (AcH4) levels from apical buds were higher during bud burst than during bud set, as was demonstrated by immunodetection. Results were validated with three additional C. sativa provenances. Thus, global DNA methylation and AcH4 levels showed opposite patterns and coincided with changes in bud dormancy in C. sativa.

  11. Detection of seed dormancy QTL in three F2 families of peach (Prunus persica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dormancy is a condition that delays or inhibits growth in seed, vegetative buds, and floral buds. In peach, seed germination occurs when seed accumulate sufficient stratification and growing degree hours to break dormancy and begin growing. Correlations have been reported between mean seed stratifi...

  12. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    PubMed

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. PMID:26949231

  13. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here. PMID:24713858

  14. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  15. The resemblance and disparity of gene expression in dormant and non-dormant seeds and crown buds of leafy spurge (Euphorbia esula)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overlaps in transcriptome profiles between different phases of bud and seed dormancy have not been determined. Thus, we compared various phases of dormancy between seeds and buds to identify common genes and molecular processes. Cluster analysis of expression profiles for 201 selected genes indicate...

  16. Cryotolerance of apple tree bud is independent of endodormancy.

    PubMed

    Bilavcik, Alois; Zamecnik, Jiri; Faltus, Milos

    2015-01-01

    Increasing interest in cryopreservation of dormant buds reveals the need for better understanding of the role of dormancy in cryotolerance. Dormancy stage and low-temperature survival of vegetative apple buds (Malus domestica Borkh.), cultivars 'Sampion' and 'Spartan', collected from orchard were evaluated during three seasons contrasting in temperature and precipitation throughout the arrested plant growth period. During each season, the cultivars differed either in the onset of the endodormancy or in the length of the endodormant period. A simple relation between endodormancy of the buds and their water content was not detected. The cryosurvival of vegetative apple buds of both cultivars correlated with their cold hardening without direct regard to their particular phase of dormancy. The period of the highest bud cryotolerance after low-temperature exposure overlapped with the endodormant period in some evaluated seasons. Both cultivars had the highest cryosurvival in December and January. The presented data were compared with our previous results from a dormancy study of in vitro apple culture. Endodormancy coincided with the period of successful cryosurvival of apple buds after liquid nitrogen exposure, but as such, it was not decisive for their survival and did not limit their successful cryopreservation.

  17. Dehydration and vernalization treatments identify overlapping molecular networks impacting endodormancy maintenance in leafy spurge crown buds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds (UABs), which undergo well-defined phases of seasonal dormancy (para-, endo- and eco-dormancy). In this study, the effects of dehydration-stress on vegeta...

  18. Seed Dormancy and Germination

    PubMed Central

    Bentsink, Leónie; Koornneef, Maarten

    2008-01-01

    Seed dormancy allows seeds to overcome periods that are unfavourable for seedling established and is therefore important for plant ecology and agriculture. Several processes are known to be involved in the induction of dormancy and in the switch from the dormant to the germinating state. The role of plant hormones, the different tissues and genes involved, including newly identified genes in dormancy and germination are described in this chapter, as well as the use transcriptome, proteome and metabolome analyses to study these mechanistically not well understood processes. PMID:22303244

  19. [Bud population dynamics of Phragmites australis in heterogeneous habitats of Northeast grassland, China].

    PubMed

    2015-02-01

    To adapt ecological environment, typical clonal plants can occur continuously by means of buds. The changes in the bud bank and bud flow in the heterogeneous habitats become the foundation for deep understanding the characteristics of vegetative propagation. By sampling soil from the unit area, a comparative analysis was performed for rhizome bud population dynamics of Phragmites australis community in both meadow soil and saline-alkali soil habitats in meadow grassland of Northeast China. The one-age class rhizome buds formed in the current year were used as input, with the other age classes rhizome buds as output, counting the dormancy buds and death buds. The results showed that the storage, input, output, dormancy, death and the input rates of P. australis rhizome bud populations in meadow soil habitat were significantly higher than that in saline-alkali habitat. There was no significant difference in output rate between the two habitats. The dormant rate in saline-alkali habitat was significantly greater than that in meadow soil habitat. The death rates remained at relatively low levels in both, less than 2%. With the going of growing season, the input buds and input rate of bud bank increased in the two habitats, while the output buds remained relatively stable. The output rate increased first and decreased later, the dormancy buds and dormant rate decreased. Bud bank and bud flow were positively related to soil moisture, soil organic matter and soil available nitrogen content. However, they were negatively related to soil pH value and soil available phosphorus content. Bud bank and bud flow had a similar seasonal variation. Constantly for both habitats, P. australis populations generated new rhizome buds supplied to the bud bank and kept a stable output to maintain their vegetative propagation.

  20. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees.

    PubMed

    Borchert, R; Rivera, G

    2001-03-01

    Tropical stem-succulent trees store large quantities of water in their trunks yet remain leafless during the early and mid dry season. In contrast to most other tropical trees, bud break of vegetative buds is not induced in fully hydrated stem succulents between the winter solstice and the spring equinox by leaf abscission, abnormal rain showers or irrigation. Vegetative buds of leafless trees are therefore in a state of endo-dormancy similar to that of temperate perennial plants during early winter. Highly synchronous bud break regularly occurs soon after the spring equinox, often weeks before the first rainfalls of the wet season. These observations suggested that endo-dormancy and bud break might be induced by declining and increasing photoperiods after the autumn and spring equinoxes, respectively. In phenological field observations, we confirmed highly synchronous bud break after the spring equinox in many trees of five stem-succulent species in the northern and southern hemispheres. Shoot growth of potted saplings of Plumeria rubra L. was arrested by a decline in day length below 12 h after the autumn equinox, but continued in saplings maintained in a 13-h photoperiod. Conversely, exposure to a 13-h photoperiod induced bud break of dormant apical buds in saplings and cuttings in January, whereas plants maintained in the natural day length of < 11.7 h remained dormant. Photoperiodic control of endo-dormancy of vegetative buds in stem succulents is thus supported by field observations and experimental variation of the photoperiod. At low latitudes, where annual variation of day length is less than 1 h, bud dormancy is induced and broken by variations in photoperiod of less than 30 min.

  1. Cold Treatment Breaks Dormancy but Jeopardizes Flower Quality in Camellia japonica L.

    PubMed

    Berruti, Andrea; Christiaens, Annelies; Keyser, Ellen De; Labeke, Marie-Christine Van; Scariot, Valentina

    2015-01-01

    Camellia japonica L. is an evergreen shrub whose cultivars are of great ornamental value. In autumn, after flower bud differentiation, dormancy is initiated. As in many other spring flowering woody ornamentals, winter low temperatures promote dormancy release of both flower and vegetative buds. However, warm spells during late autumn and winter can lead to unfulfilled chilling requirements leading to erratic and delayed flowering. We hypothesized that storing plants at no light and low temperature could favor dormancy breaking and lead to early and synchronized flowering in response to forcing conditions in C. japonica 'Nuccio's Pearl'. Plants with fully developed floral primordia were stored at dark, 7°C, and RH > 90% for up to 8 weeks. To monitor endodormancy release during the storage, we evaluated the content of abscisic acid (ABA) in flower buds and the expression profiles of five putative genes related to dormancy and cold acclimation metabolism in leaves and flower buds. In addition, the expression of four anthocyanin biosynthesis pathway genes was profiled in flower buds to assess the effect of the treatment on flower pigment biosynthesis. At 0, 4, 6, and 8 weeks of cold treatment, 10 plants were transferred to the greenhouse and forced to flower. Forced plant flower qualities and growth were observed. The ABA content and the expression profiles of two dormancy-related genes (CjARP and CjDEH) suggested that dormancy breaking occurred after 6-8 weeks of cold treatment. Overall, plants treated for 6-8 weeks showed earlier vegetative sprouting, enhanced, and homogeneous flowering with reduced forcing time. Prolonged cold treatments also reduced flower size and longevity, anthocyanin content, and pigment biosynthesis-related gene transcripts. In conclusion, the cold treatment had a promotive effect on dormancy breaking but caused severe drawbacks on flower quality. PMID:26617623

  2. Cold Treatment Breaks Dormancy but Jeopardizes Flower Quality in Camellia japonica L.

    PubMed Central

    Berruti, Andrea; Christiaens, Annelies; Keyser, Ellen De; Labeke, Marie-Christine Van; Scariot, Valentina

    2015-01-01

    Camellia japonica L. is an evergreen shrub whose cultivars are of great ornamental value. In autumn, after flower bud differentiation, dormancy is initiated. As in many other spring flowering woody ornamentals, winter low temperatures promote dormancy release of both flower and vegetative buds. However, warm spells during late autumn and winter can lead to unfulfilled chilling requirements leading to erratic and delayed flowering. We hypothesized that storing plants at no light and low temperature could favor dormancy breaking and lead to early and synchronized flowering in response to forcing conditions in C. japonica ‘Nuccio’s Pearl’. Plants with fully developed floral primordia were stored at dark, 7°C, and RH > 90% for up to 8 weeks. To monitor endodormancy release during the storage, we evaluated the content of abscisic acid (ABA) in flower buds and the expression profiles of five putative genes related to dormancy and cold acclimation metabolism in leaves and flower buds. In addition, the expression of four anthocyanin biosynthesis pathway genes was profiled in flower buds to assess the effect of the treatment on flower pigment biosynthesis. At 0, 4, 6, and 8 weeks of cold treatment, 10 plants were transferred to the greenhouse and forced to flower. Forced plant flower qualities and growth were observed. The ABA content and the expression profiles of two dormancy-related genes (CjARP and CjDEH) suggested that dormancy breaking occurred after 6–8 weeks of cold treatment. Overall, plants treated for 6–8 weeks showed earlier vegetative sprouting, enhanced, and homogeneous flowering with reduced forcing time. Prolonged cold treatments also reduced flower size and longevity, anthocyanin content, and pigment biosynthesis-related gene transcripts. In conclusion, the cold treatment had a promotive effect on dormancy breaking but caused severe drawbacks on flower quality. PMID:26617623

  3. Potato tuber cytokinin oxidase/dehydrogenase genes: biochemical properties, activity, and expression during tuber dormancy progression.

    PubMed

    Suttle, Jeffrey C; Huckle, Linda L; Lu, Shunwen; Knauber, Donna C

    2014-03-15

    The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [(3)H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression.

  4. Potato tuber cytokinin oxidase/dehydrogenase genes: biochemical properties, activity, and expression during tuber dormancy progression.

    PubMed

    Suttle, Jeffrey C; Huckle, Linda L; Lu, Shunwen; Knauber, Donna C

    2014-03-15

    The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [(3)H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression. PMID:24594397

  5. Seed dormancy in alpine species

    PubMed Central

    Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta

    2011-01-01

    In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after cold-wet storage, and scarification. We also tested the light requirement for germination in some species. Germination behavior was characterized using the final germination percentage and the mean germination time. Considering the effects of the pretreatments, a refined classification of the prevailing dormancy types was constructed based on the results of our pretreatments. Only two out of the 28 species that we evaluated had predominantly non-dormant seeds. Physiological dormancy was prevalent in 20 species, with deep physiological dormancy being the most abundant, followed by non-deep and intermediate physiological dormancy. Seeds of four species with underdeveloped embryos were assigned to the morphophysiologial dormancy class. An impermeable seed coat was identified in two species, with no additional physiological germination block. We defined these species as having physical dormancy. Light promoted the germination of seeds without storage in all but one species with physiological dormancy. In species with physical dormancy, light responses were of minor importance. We discuss our new classification in the context of former germination studies and draw implications for the timing of germination in the field. PMID:24415831

  6. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum.

    PubMed

    Kebrom, Tesfamichael H; Mullet, John E

    2015-08-01

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Bud outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h post-defoliation of the second leaf. At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.

  7. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy.

    PubMed

    Falavigna, Vítor da Silveira; Miotto, Yohanna Evelyn; Porto, Diogo Denardi; Anzanello, Rafael; Santos, Henrique Pessoa dos; Fialho, Flávio Bello; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís Fernando

    2015-11-01

    Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple.

  8. Preformation in vegetative buds of Prunus persica: factors influencing number of leaf primordia in overwintering buds.

    PubMed

    Gordon, D; Damiano, C; DeJong, T M

    2006-04-01

    We investigated the influence of bud position, cultivar, tree age, tree carbohydrate status, sampling date, drought and light exposure on the number of leaf primordia formed in dormant vegetative peach buds (Prunus persica (L.) Batsch) relative to the number of primordia formed after bud break (neoformed). During winter dormancy, vegetative peach buds from California and Italy were dissected and the number of leaf primordia recorded. Between leaf drop and bud break, the number of leaf primordia doubled from about five to about 10. Parent shoot length, number of nodes on the parent shoot, cross-sectional area of the parent shoot, bud position along the parent shoot and bud cross-sectional area were correlated with the number of leaf primordia. Previous season light exposure, drought and tree carbohydrate status did not affect the number of leaf primordia present. The number of leaf primordia differed significantly among peach varieties and tree ages at leaf drop, but not at bud break. Our results indicate that neoformation accounted for all shoot growth beyond about 10 nodes. The predominance of neoformed shoot growth in peach allows this species great plasticity in its response to current-season conditions. PMID:16414932

  9. Criticality and Cancer Dormancy

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Liao, David; Kirlin, Vladimir; Tamita, Corina; Levin, Simon; Sturm, James; Austin, Robert

    The presence of driver mutations and subsequent clonal expansion by Darwinian evolution does not explain dormancy and re-emergence of cancer from a community of cancer and stromal cells. Dormancy appears to be a collective property of multiple cell communities including non-cancerous cells. At the simplest level, we view cancer cells interacting with stromal cells via complex, non-linear population dynamics, dynamics which can lead to very non-intuitive but perhaps deterministic and understandable progression dynamics of cancer. We explore here the dynamics of stromal-cancer cell populations in the presence of a chemotherapy drug gradient to determine to what extent the time-dependence of the populations can be quantitively understood in spite of the underlying complexity of the individual agents. The surprising result is that a basic understanding, in a quantitive and predictive manner, can be achieved. It will be intriguing to move to predictive drug dosages, the population dynamics presented here provide a model system for the clinic.

  10. Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach.

    PubMed

    Krishnaraj, Thirugnanasambantham; Gajjeraman, Prabu; Palanisamy, Senthilkumar; Subhas Chandrabose, Suresh Ramraj; Azad Mandal, Abul Kalam

    2011-06-01

    Growth regulation associated with dormancy is an essential element in plant's life cycle that leads to changes in expression of large number of genes. Forward and reverse suppression subtractive hybridization (SSH) libraries were developed to identify and characterize the genes associated with bud (banjhi) dormancy in tea (Camellia sinensis (L.) O. Kuntze). Efficiency of subtraction was confirmed by comparing the abundance of β-actin gene. A total of 17 and 45 unique sequences were obtained from forward and reverse SSH library respectively. Many of the differentially regulated genes have unknown (41.1% and 26.7%) or hypothetical functions (11.7% and 2.2%) in forward and reverse SSH library respectively, while others have a role in cell growth and metabolism. Further, semi-quantitative RT-PCR was carried out for selected genes to validate the quality of ESTs from SSH library. Gene Ontology analysis identified a greater association of these ESTs in cellular metabolic pathways and their relevance to bud dormancy. Based on the EST data, the putative role of identified genes from tea is discussed in relation to dormancy, which includes various metabolic and signalling pathways. We demonstrated that SSH is an efficient tool for enriching up- and down-regulated genes related to bud dormancy in tea. This study represents an attempt to investigate banjhi dormancy in tea under field conditions, and the findings indicate that there is a potential to develop new approaches to modulate dormancy in this species.

  11. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  12. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.).

    PubMed

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  13. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  14. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  15. A molecular framework for seasonal growth-dormancy regulation in perennial plants

    PubMed Central

    Shim, Donghwan; Ko, Jae-Heung; Kim, Won-Chan; Wang, Qijun; Keathley, Daniel E; Han, Kyung-Hwan

    2014-01-01

    The timing of the onset and release of dormancy impacts the survival, productivity and spatial distribution of temperate horticultural and forestry perennials and is mediated by at least three main regulatory programs involving signal perception and processing by phytochromes (PHYs) and PHY-interacting transcription factors (PIFs). PIF4 functions as a key regulator of plant growth in response to both external and internal signals. In poplar, the expression of PIF4 and PIF3-LIKE1 is upregulated in response to short days, while PHYA and PHYB are not regulated at the transcriptional level. Integration of light and environmental signals is achieved by gating the expression and transcriptional activity of PIF4. During this annual cycle, auxin promotes the degradation of Aux/IAA transcriptional repressors through the SKP–Cullin-F–boxTIR1 complex, relieving the repression of auxin-responsive genes by allowing auxin response factors (ARFs) to activate the transcription of auxin-responsive genes involved in growth responses. Analyses of transcriptome changes during dormancy transitions have identified MADS-box transcription factors associated with endodormancy induction. Previous studies show that poplar dormancy-associated MADS-box (DAM) genes PtMADS7 and PtMADS21 are differentially regulated during the growth-dormancy cycle. Endodormancy may be regulated by internal factors, which are specifically localized in buds. PtMADS7/PtMADS21 may function as an internal regulator in poplar. The control of flowering time shares certain regulatory hierarchies with control of the dormancy/growth cycle. However, the particularities of different stages of the dormancy/growth cycle warrant comprehensive approaches to identify the causative genes for the entire cycle. A growing body of knowledge also indicates epigenetic regulation plays a role in these processes in perennial horticultural and forestry plants. The increased knowledge contributes to better understanding of the dormancy

  16. Transcriptomic changes during tuber dormancy release process revealed by RNA sequencing in potato.

    PubMed

    Liu, Bailin; Zhang, Ning; Wen, Yikai; Jin, Xin; Yang, Jiangwei; Si, Huaijun; Wang, Di

    2015-03-20

    Potato tuber dormancy release is a critical development process that allows potato to produce new plant. The first Illumina RNA sequencing to generate the expressed mRNAs at dormancy tuber (DT), dormancy release tuber (DRT) and sprouting tuber (ST) was performed. We identified 26,639 genes including 5,912 (3,450 up-regulated while 2,462 down-regulated) and 3,885 (2,141 up-regulated while 1,744 down-regulated) genes were differentially expressed from DT vs DRT and DRT vs ST. The RNA-Seq results were further verified using qRT-PCR. We found reserve mobilization events were activated before the bud emergence (DT vs DRT) and highlighted after dormancy release (DRT vs ST). Overexpressed genes related to metabolism of auxin, gibberellic acid, cytokinin and barssinosteriod were dominated in DT vs DRT, whereas overexpressed genes involved in metabolism of ethylene, jasmonate and salicylate were prominent in DRT vs ST. Various histone and cyclin isoforms associated genes involved in cell division/cycle were mainly up-regulated in DT vs DRT. Dormancy release process was also companied by stress response and redox regulation, those genes related to biotic stress, cell wall and second metabolism was preferentially overexpressed in DRT vs ST, which might accelerate dormancy breaking and sprout outgrowth. The metabolic processes activated during tuber dormancy release were also supported by plant seed models. These results represented the first comprehensive picture of a large number of genes involved in tuber dormancy release process.

  17. Physiological processes during winter dormancy and their ecological significance

    SciTech Connect

    Havranek, W.M.; Tranquillini, W.

    1995-07-01

    Lengthy and severe winters require that trees in the forests of boreal and mountain zones undergo winter dormancy. Physiologically, a high resistance to subfreezing temperatures and concomitant dehydration are necessary. To accomplish this dormancy, both physiological and structural changes are needed at the cellular level that require induction by endogenous and photoperiodic control early in autumn. Endogenous rhythmicity promotes cold hardening in early autumn and the persistence of hardiness throughout the winter. Numerous physiological functions are maintained at a reduced level, or become completely inhibited during true winter dormancy. Winter hardiness also includes the capability to minimize water loss effectively when water uptake is severely impeded or impossible. Anatomical features such as tracheids act to minimize xylem embolism during frequent freeze-thaw cycles, and {open_quotes}crown{close_quotes} tissues enable buds to stay in a dehydrated and, thus, more resistant state during winter. Both these structural features are adaptations that contribute to the dominance of conifers in cold climates. Interestingly, deciduous tree species rather than evergreen conifers dominate in the most severe winter climates, although it is not clear whether limitations during winter, during the summer growth period, or during both are most limiting to conifer tree ecology. Additional work that evaluates the importance of winter and summer growth restriction, and their interaction, is needed before a comprehensive understanding of conifer tree ecophysiology will be possible.

  18. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction.

    PubMed

    Tanino, Karen K; Kalcsits, Lee; Silim, Salim; Kendall, Edward; Gray, Gordon R

    2010-05-01

    The role of temperature during dormancy development is being reconsidered as more research emerges demonstrating that temperature can significantly influence growth cessation and dormancy development in woody plants. However, there are seemingly contradictory responses to warm and low temperature in the literature. This research/review paper aims to address this contradiction. The impact of temperature was examined in four poplar clones and two dogwood ecotypes with contrasting dormancy induction patterns. Under short day (SD) conditions, warm night temperature (WT) strongly accelerated timing of growth cessation leading to greater dormancy development and cold hardiness in poplar hybrids. In contrast, under long day (LD) conditions, low night temperature (LT) can completely bypass the short photoperiod requirement in northern but not southern dogwood ecotypes. These findings are in fact consistent with the literature in which both coniferous and deciduous woody plant species' growth cessation, bud set or dormancy induction are accelerated by temperature. The contradictions are addressed when photoperiod and ecotypes are taken into account in which the combination of either SD/WT (northern and southern ecotypes) or LD/LT (northern ecotypes only) are separated. Photoperiod insensitive types are driven to growth cessation by LT. Also consistent is the importance of night temperature in regulating these warm and cool temperature responses. However, the physiological basis for these temperature effects remain unclear. Changes in water content, binding and mobility are factors known to be associated with dormancy induction in woody plants. These were measured using non-destructive magnetic resonance micro-imaging (MRMI) in specific regions within lateral buds of poplar under SD/WT dormancing inducing conditions. Under SD/WT, dormancy was associated with restrictions in inter- or intracellular water movement between plant cells that reduces water mobility during dormancy

  19. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment.

    PubMed

    Yamane, Hisayo; Ooka, Tomomi; Jotatsu, Hiroaki; Hosaka, Yukari; Sasaki, Ryuta; Tao, Ryutaro

    2011-06-01

    The present study investigated the expressional regulation of PpDAM5 and PpDAM6, two of the six peach (Prunus persica) dormancy-associated MADS-box genes, in relation to lateral bud endodormancy. PpDAM5 and PpDAM6 were originally identified as homologues of Arabidopsis SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 identified in the EVERGROWING locus of peach. Furthermore, PpDAM5 and PpDAM6 have recently been suggested to be involved in terminal bud dormancy. In this study, seasonal expression analyses using leaves, stems, and lateral buds of high-chill and low-chill peaches in field conditions indicated that both genes were up-regulated during the endodormancy period and down-regulated with endodormancy release. Controlled environment experiments showed that the expression of both PpDAM5 and PpDAM6 were up-regulated by ambient cool temperatures in autumn, while they were down-regulated by the prolonged period of cold temperatures in winter. A negative correlation between expression levels of PpDAM5 and PpDAM6 and bud burst percentage was found in the prolonged cold temperature treatment. Application of the dormancy-breaking reagent cyanamide to endo/ecodormant lateral buds induced early bud break and down-regulation of PpDAM5 and PpDAM6 expression at the same time. These results collectively suggest that PpDAM5 and PpDAM6 may function in the chilling requirement of peach lateral buds through growth-inhibiting functions for bud break.

  20. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes.

    PubMed

    Porto, Diogo Denardi; Bruneau, Maryline; Perini, Pâmela; Anzanello, Rafael; Renou, Jean-Pierre; dos Santos, Henrique Pessoa; Fialho, Flávio Bello; Revers, Luís Fernando

    2015-05-01

    Apple production depends on the fulfilment of a chilling requirement for bud dormancy release. Insufficient winter chilling results in irregular and suboptimal bud break in the spring, with negative impacts on apple yield. Trees from apple cultivars with contrasting chilling requirements for bud break were used to investigate the expression of the entire set of apple genes in response to chilling accumulation in the field and controlled conditions. Total RNA was analysed on the AryANE v.1.0 oligonucleotide microarray chip representing 57,000 apple genes. The data were tested for functional enrichment, and differential expression was confirmed by real-time PCR. The largest number of differentially expressed genes was found in samples treated with cold temperatures. Cold exposure mostly repressed expression of transcripts related to photosynthesis, and long-term cold exposure repressed flavonoid biosynthesis genes. Among the differentially expressed selected candidates, we identified genes whose annotations were related to the circadian clock, hormonal signalling, regulation of growth, and flower development. Two genes, annotated as FLOWERING LOCUS C-like and MADS AFFECTING FLOWERING, showed strong differential expression in several comparisons. One of these two genes was upregulated in most comparisons involving dormancy release, and this gene's chromosomal position co-localized with the confidence interval of a major quantitative trait locus for the timing of bud break. These results indicate that photosynthesis and auxin transport are major regulatory nodes of apple dormancy and unveil strong candidates for the control of bud dormancy.

  1. Seed dormancy in Mexican teosinte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy in wild Zea species may affect fitness and relate to ecological adaptation. The primary objective of this study was to characterize the variation in seed germination of the wild species of the genus Zea that currently grow in Mexico, and to relate this variation to their ecological zon...

  2. Roles of endoplasmic reticulum stress and unfolded protein response associated genes in seed stratification and bud endodormancy during chilling accumulation in Prunus persica.

    PubMed

    Fu, Xi Ling; Xiao, Wei; Wang, Dong Ling; Chen, Min; Tan, Qiu Ping; Li, Ling; De Chen, Xiu; Gao, Dong Sheng

    2014-01-01

    Dormancy mechanisms in seeds and buds arrest growth until environmental conditions are optimal for development. A genotype-specific period of chilling is usually required to release dormancy, but the underlying molecular mechanisms are still not fully understood. To discover transcriptional pathways associated with dormancy release common to seed stratification and bud endodormancy, we explored the chilling-dependent expression of 11 genes involved in endoplasmic reticulum stress and the unfolded protein response signal pathways. We propose that endoplasmic reticulum stress and the unfolded protein response impact on seed as well as bud germination and development by chilling-dependent mechanisms. The emerging discovery of similarities between seed stratification and bud endodormancy status indicate that these two processes are probably regulated by common endoplasmic reticulum stress and unfolded protein response signalling pathways. Clarification of regulatory pathways common to both seed and bud dormancy may enhance understanding of the mechanisms underlying dormancy and breeding programs may benefit from earlier prediction of chilling requirements for uniform blooming of novel genotypes of deciduous fruit tree species.

  3. Release of Apical Dominance in Potato Tuber Is Accompanied by Programmed Cell Death in the Apical Bud Meristem[C][W

    PubMed Central

    Teper-Bamnolker, Paula; Buskila, Yossi; Lopesco, Yael; Ben-Dor, Shifra; Saad, Inbal; Holdengreber, Vered; Belausov, Eduard; Zemach, Hanita; Ori, Naomi; Lers, Amnon; Eshel, Dani

    2012-01-01

    Potato (Solanum tuberosum) tuber, a swollen underground stem, is used as a model system for the study of dormancy release and sprouting. Natural dormancy release, at room temperature, is initiated by tuber apical bud meristem (TAB-meristem) sprouting characterized by apical dominance (AD). Dormancy is shortened by treatments such as bromoethane (BE), which mimics the phenotype of dormancy release in cold storage by inducing early sprouting of several buds simultaneously. We studied the mechanisms governing TAB-meristem dominance release. TAB-meristem decapitation resulted in the development of increasing numbers of axillary buds with time in storage, suggesting the need for autonomous dormancy release of each bud prior to control by the apical bud. Hallmarks of programmed cell death (PCD) were identified in the TAB-meristems during normal growth, and these were more extensive when AD was lost following either extended cold storage or BE treatment. Hallmarks included DNA fragmentation, induced gene expression of vacuolar processing enzyme1 (VPE1), and elevated VPE activity. VPE1 protein was semipurified from BE-treated apical buds, and its endogenous activity was fully inhibited by a cysteinyl aspartate-specific protease-1-specific inhibitor N-Acetyl-Tyr-Val-Ala-Asp-CHO (Ac-YVAD-CHO). Transmission electron microscopy further revealed PCD-related structural alterations in the TAB-meristem of BE-treated tubers: a knob-like body in the vacuole, development of cytoplasmic vesicles, and budding-like nuclear segmentations. Treatment of tubers with BE and then VPE inhibitor induced faster growth and recovered AD in detached and nondetached apical buds, respectively. We hypothesize that PCD occurrence is associated with the weakening of tuber AD, allowing early sprouting of mature lateral buds. PMID:22362870

  4. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).

    PubMed

    Zhu, Youyin; Li, Yongqiang; Xin, Dedong; Chen, Wenrong; Shao, Xu; Wang, Yue; Guo, Weidong

    2015-01-25

    Bud dormancy is a critical biological process allowing Chinese cherry (Prunus pseudocerasus) to survive in winter. Due to the lake of genomic information, molecular mechanisms triggering endodormancy release in flower buds have remained unclear. Hence, we used Illumina RNA-Seq technology to carry out de novo transcriptome assembly and digital gene expression profiling of flower buds. Approximately 47million clean reads were assembled into 50,604 sequences with an average length of 837bp. A total of 37,650 unigene sequences were successfully annotated. 128 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of second metabolite and plant hormone signal transduction accounted for higher percentage in flower bud. In critical period of endodormancy release, 1644, significantly differentially expressed genes (DEGs) were identified from expression profile. DEGs related to oxidoreductase activity were especially abundant in Gene Ontology (GO) molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. Quantitative real-time PCR (qRT-PCR) analysis indicated that levels of DEGs for abscisic acid and gibberellin biosynthesis decreased while the abundance of DEGs encoding their degradation enzymes increased and GID1 was down-regulated. Concomitant with endodormancy release, MADS-box transcription factors including P. pseudocerasus dormancy-associated MADS-box (PpcDAM), Agamous-like2, and APETALA3-like genes, shown remarkably epigenetic roles. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during bud dormancy in Chinese cherry. The uncovered data should be useful for future studies of bud dormancy in Prunus fruit trees lacking genomic information.

  5. Defining dormancy in mycobacterial disease.

    PubMed

    Lipworth, S; Hammond, R J H; Baron, V O; Hu, Yanmin; Coates, A; Gillespie, S H

    2016-07-01

    Tuberculosis remains a threat to global health and recent attempts to shorten therapy have not succeeded mainly due to cases of clinical relapse. This has focussed attention on the importance of "dormancy" in tuberculosis. There are a number of different definitions of the term and a similar multiplicity of different in vitro and in vivo models. The danger with this is the implicit assumption of equivalence between the terms and models, which will make even more difficult to unravel this complex conundrum. In this review we summarise the main models and definitions and their impact on susceptibility of Mycobacterium tuberculosis. We also suggest a potential nomenclature for debate. Dormancy researchers agree that factors underpinning this phenomenon are complex and nuanced. If we are to make progress we must agree the terms to be used and be consistent in using them. PMID:27450015

  6. Summer Dormancy in Perennial Temperate Grasses

    PubMed Central

    VOLAIRE, FLORENCE; NORTON, MARK

    2006-01-01

    • Background and Aims Dormancy has been extensively studied in plants which experience severe winter conditions but much less so in perennial herbaceous plants that must survive summer drought. This paper reviews the current knowledge on summer dormancy in both native and cultivated perennial temperate grasses originating from the Mediterranean Basin, and presents a unified terminology to describe this trait. • Scope Under severe drought, it is difficult to separate the responses by which plants avoid and tolerate dehydration from those associated with the expression of summer dormancy. Consequently, this type of endogenous (endo-) dormancy can be tested only in plants that are not subjected to moisture deficit. Summer dormancy can be defined by four criteria, one of which is considered optional: (1) reduction or cessation of leaf production and expansion; (2) senescence of mature foliage; (3) dehydration of surviving organs; and (4, optional) formation of resting organs. The proposed terminology recognizes two levels of summer dormancy: (a) complete dormancy, when cessation of growth is associated with full senescence of foliage and induced dehydration of leaf bases; and (b) incomplete dormancy, when leaf growth is partially inhibited and is associated with moderate levels of foliage senescence. Summer dormancy is expressed under increasing photoperiod and temperature. It is under hormonal control and usually associated with flowering and a reduction in metabolic activity in meristematic tissues. Dehydration tolerance and dormancy are independent phenomena and differ from the adaptations of resurrection plants. • Conclusions Summer dormancy has been correlated with superior survival after severe and repeated summer drought in a large range of perennial grasses. In the face of increasing aridity, this trait could be used in the development of cultivars that are able to meet agronomic and environmental goals. It is therefore important to have a better

  7. Seed dormancy and ABA signaling

    PubMed Central

    del Carmen Rodríguez-Gacio, María; Matilla-Vázquez, Miguel A

    2009-01-01

    The seed is an important organ in higher plants, it is an important organ for plant survival and species dispersion. The transition between seed dormancy and germination represents a critical stage in the plant life cycle and it is an important ecological and commercial trait. A dynamic balance of synthesis and catabolism of two antagonistic hormones, abscisic acid (ABA) and giberellins (GAs), controls the equilibrium between seed dormancy and germination. Embryonic ABA plays a central role in induction and maintenance of seed dormancy and also inhibits the transition from embryonic to germination growth. Therefore, the ABA metabolism must be highly regulated at both temporal and spatial levels during phase of dessication tolerance. On the other hand, the ABA levels do not depend exclusively on the seeds because sometimes it becomes a strong sink and imports it from the roots and rhizosphere through the xylem and/or phloem. These events are discussed in depth here. Likewise, the role of some recently characterized genes belonging to seeds of woody species and related to ABA signaling are also included. Finally, although four possible ABA receptors have been reported, not much is known about how they mediate ABA signaling transduction. However, new publications seem to show that almost all these receptors lack several properties to consider them as such. PMID:19875942

  8. Detail of secondary entrance south of main entrance on east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of secondary entrance south of main entrance on east elevation; camera facing west. - Mare Island Naval Shipyard, Mechanics Shop, Waterfront Avenue, west side between A Street & Third Street, Vallejo, Solano County, CA

  9. 8. WEST ENTRANCE TO CATWALK LOOKING TOWARDS EASTERN ENTRANCE. STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. WEST ENTRANCE TO CATWALK LOOKING TOWARDS EASTERN ENTRANCE. STORAGE TANKS LOCATED BELOW CATWALK. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO

  10. Statistics of entrance times

    NASA Astrophysics Data System (ADS)

    Talkner, Peter

    2003-03-01

    The statistical properties of discrete Markov processes are investigated in terms of entrance times. Simple relations are given for their density and higher order distributions. These quantities are used for introducing a generalized Rice phase and for characterizing the synchronization of a process with an external driving force. For the McNamara Wiesenfeld model of stochastic resonance parameter regions (spanned by the noise strength, driving frequency and strength) are identified in which the process is locked with the frequency of the external driving and in which the diffusion of the Rice phase becomes minimal. At the same time the Fano factor of the number of entrances per period of the driving force has a minimum.

  11. Statistics of entrance times

    NASA Astrophysics Data System (ADS)

    Talkner, Peter

    2003-07-01

    The statistical properties of the transitions of a discrete Markov process are investigated in terms of entrance times. A simple formula for their density is given and used to measure the synchronization of a process with a periodic driving force. For the McNamara-Wiesenfeld model of stochastic resonance we find parameter regions in which the transition frequency of the process is locked with the frequency of the external driving.

  12. [Study on winter dormancy of Thesium chinense and its phenological phase].

    PubMed

    Song, Ling-shan; Zhang, Xiao-ming; Guo, Qiao-sheng; Chen, Lu; Wang, Chang-lin

    2015-12-01

    In order to explore reasonable artificial cultivation pattern of Thesium chinense, the biological characteristics and nutrients change in the process of winter dormancy of T. chinense was studied. The phenological period of T. chinense was observed by using fixed-point notation and the starch grains changes were determined dynamically by PAS-vanadium iron hematoxylin staixjing method. Soluble sugar and starch content were measured by anthrone-sulfuric acid method and amylase activity was determined by DN'S method. The results showed that the normal life cycle of T. chinense was two years. T. chinense was growing by seed in the first year, but growing by the root neck bud in the second year. During the process of dormancy, starch and soluble sugar could mutual transformation in different periods. T. chinense had sufficient carbohydrate to maintain growth and also a lot of small molecules to improve their ability to fight against adversity. PMID:27141667

  13. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea

    PubMed Central

    Fan, Zhengqi; Li, Jiyuan; Li, Xinlei; Wu, Bin; Wang, Jiangying; Liu, Zhongchi; Yin, Hengfu

    2015-01-01

    The transition from vegetative to reproductive growth in woody perennials involves pathways controlling flowering timing, bud dormancy and outgrowth in responses to seasonal cues. However little is known about the mechanism governing the adaptation of signaling pathways to environmental conditions in trees. Camellia azalea is a rare species in this genus flowering during summer, which provides a unique resource for floral timing breeding. Here we reported a comprehensive transcriptomics study to capture the global gene profiles during floral bud development in C. azalea. We examined the genome-wide gene expression between three developmental stages including floral bud initiation, floral organ differentiation and bud outgrowth, and identified nine co-expression clusters with distinctive patterns. Further, we identified the differential expressed genes (DEGs) during development and characterized the functional properties of DEGs by Gene Ontology analysis. We showed that transition from floral bud initiation to floral organ differentiation required changes of genes in flowering timing regulation, while transition to floral bud outgrowth was regulated by various pathways such as cold and light signaling, phytohormone pathways and plant metabolisms. Further analyses of dormancy associated MADS-box genes revealed that SVP- and AGL24- like genes displayed distinct expression patterns suggesting divergent roles during floral bud development. PMID:25978548

  14. Tropical Storm Bud

    Atmospheric Science Data Center

    2013-04-19

    article title:  A Strengthening Eastern Pacific Storm     View Larger Image ... Imaging SpectroRadiometer (MISR) show then Tropical Storm Bud as it was intensifying toward hurricane status, which it acquired ...

  15. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control.

  16. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  17. Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4

    PubMed Central

    Zhuang, Weibing; Gao, Zhihong; Wen, Luhua; Huo, Ximei; Cai, Binhua; Zhang, Zhen

    2015-01-01

    Gibberellin (GA4) has a significant effect on promoting dormancy release in flower buds of Japanese apricot (Prunus mume Sieb. et Zucc). The transcriptomic and proteomic changes that occur after GA4 treatment have been reported previously; however, the metabolic changes brought about by GA4 remain unknown. The present study was undertaken to assess changes in metabolites in response to GA4 treatment, as determined using gas chromatography–mass spectrometry and principal component analysis. Fifty-five metabolites that exhibited more than two-fold differences in abundance (P < 0.05) between samples collected over time after a given treatment or between samples exposed to different treatments were studied further. These metabolites were categorized into six main groups: amino acids and their isoforms (10), amino acid derivatives (7), sugars and polyols (14), organic acids (12), fatty acids (4), and others (8). All of these groups are involved in various metabolic pathways, in particular galactose metabolism, glyoxylate and dicarboxylate metabolism, and starch and sucrose metabolism. These results suggested that energy metabolism is important at the metabolic level in dormancy release following GA4 treatment. We also found that more than 10-fold differences in abundance were observed for many metabolites, including sucrose, proline, linoleic acid, and linolenic acid, which might play important roles during the dormancy process. The current research extends our understanding of the mechanisms involved in budburst and dormancy release in response to GA4 and provides a theoretical basis for applying GA4 to release dormancy. PMID:26504583

  18. Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4.

    PubMed

    Zhuang, Weibing; Gao, Zhihong; Wen, Luhua; Huo, Ximei; Cai, Binhua; Zhang, Zhen

    2015-01-01

    Gibberellin (GA4) has a significant effect on promoting dormancy release in flower buds of Japanese apricot (Prunus mume Sieb. et Zucc). The transcriptomic and proteomic changes that occur after GA4 treatment have been reported previously; however, the metabolic changes brought about by GA4 remain unknown. The present study was undertaken to assess changes in metabolites in response to GA4 treatment, as determined using gas chromatography-mass spectrometry and principal component analysis. Fifty-five metabolites that exhibited more than two-fold differences in abundance (P < 0.05) between samples collected over time after a given treatment or between samples exposed to different treatments were studied further. These metabolites were categorized into six main groups: amino acids and their isoforms (10), amino acid derivatives (7), sugars and polyols (14), organic acids (12), fatty acids (4), and others (8). All of these groups are involved in various metabolic pathways, in particular galactose metabolism, glyoxylate and dicarboxylate metabolism, and starch and sucrose metabolism. These results suggested that energy metabolism is important at the metabolic level in dormancy release following GA4 treatment. We also found that more than 10-fold differences in abundance were observed for many metabolites, including sucrose, proline, linoleic acid, and linolenic acid, which might play important roles during the dormancy process. The current research extends our understanding of the mechanisms involved in budburst and dormancy release in response to GA4 and provides a theoretical basis for applying GA4 to release dormancy. PMID:26504583

  19. [Seed dormancy alleviation and oxidative signaling].

    PubMed

    Bailly, Christophe; El Maarouf Bouteau, Hayat; Corbineau, Françoise

    2008-01-01

    Recent advances in plant physiology signaling pathways have led to consider reactive oxygen species (ROS) as being key actors in the regulation of germination and dormancy. ROS accumulation during seed dry storage or during their imbibition would trigger cellular events controlling the realization of germination. We show that ROS accumulation triggers specific carbonylation of proteins thus modifying the occurrence of enzyme-mediated reactions during germination or facilitating reserve protein degradation through the proteasome. This suggests that dormancy is in part controlled by protein oxidation. ROS can also act as a positive signal in seed dormancy release through their effect on other mechanisms such as the control of the cellular redox status and the activation of transcription factors. Their interaction with abscisic acid and gibberellins is also evoked and a new mechanism of dormancy regulation in which ROS crosstalk with hormonal pathways is proposed.

  20. Studies in Wild Oat Seed Dormancy

    PubMed Central

    Adkins, Stephen W.; Ross, James D.

    1981-01-01

    A selected strain of wild oat (Avena fatua L.) seed has been shown to lose dormancy rapidly during moist soil incubation at 25 C, whereas seed kept similarly at 5 C maintained a high level of dormancy. The activities of cytosolic dehydrogenase enzymes of the pentose phosphate pathway were assayed throughout a period of moist soil incubation at these two temperatures. A distinction was made between extractable dehydrogenases from the embryo and the endosperm regions of the caryopsis. Dehydrogenase activities monitored in seeds incubated at 25 C gradually increased over the course of the investigation. The largest increases in activity occurred during incubation at 5 C, the situation in which dormancy is maintained. No obvious connection could be found between dormancy breakage and increased activity of the pentose phosphate pathway dehydrogenases. PMID:16661860

  1. Genetic analysis of embryo dormancy. Final report

    SciTech Connect

    Galau, G.

    1998-09-01

    Primary dormancy is the inability of mature seed to immediately germinate until specific environmental stimuli are perceived that predict that future conditions will support plant growth and seed set. The analysis of abscisic acid deficient and insensitive mutants, in particular in Arabidopsis, suggests that embryo abscisic acid may be directly involved in the development of primary dormancy. Other studies implicate the continued accumulation of LEA proteins as inhibiting germination in dormant embryos. The results of these physiological, molecular and genetic approaches are complex and equivocal. There is a real need for approaches that test the separate nature of vivipary inhibition and primary dormancy and deliberately seed to decouple and dissect them. These approaches should be of help in understanding both late embryo development and primary dormancy. The approach taken here is to directly isolate mutants of Arabidopsis that appear to be deficient only in primary dormancy, that is fresh seed that germinate rapidly without the normally-required cold-stratification. The authors have isolated at least 8 independent, rapidly germinating RGM mutants of Arabidopsis. All others aspects of plant growth and development appear normal in these lines, suggesting that the rgm mutants are defective only in the establishment or maintenance of primary dormancy. At least one of these may be tagged with T-DNA. In addition, about 50 RGM isolates have been recovered from EMS-treated seed.

  2. Induction of endodormancy in crown buds of leafy spurge (Euphorbia esula L.) implicates a role for ethylene and cross-talk between photoperiod and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge is a model for studying well-defined phases of dormancy in underground adventitious buds (UABs) of herbaceous perennial weeds, which is a primary factor facilitating their escape from conventional control measures. A 12-week ramp down in both temperature (27°C ' 10°C) and photoperiod (1...

  3. "Bud, Not Buddy."

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2002-01-01

    Discusses the award-winning book "Bud, Not Buddy" written by Christopher Paul Curtis. Lists different versions of the book; suggests learning activities; lists sources for biographical information and interviews with Curtis, teacher guides, professional articles, and other Depression era novels; and provides a citation for the author's Newberry…

  4. Berkeley UXO Discriminator (BUD)

    SciTech Connect

    Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank; Becker, Alex

    2007-01-01

    The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve. Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.

  5. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

    2001-02-15

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  6. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Fred Brent; Ming He; Jimmy O. Ong; Mike K. Porter; Randy Roberts; Charles H. Schrader; Lalit S. Shah; Kenneth A. Yackly

    2002-11-22

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  7. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

    2001-05-17

    The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

  8. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Mushtaq Ahmed; John H. Anderson; Charles Benham; Earl R. Berry; Fred Brent; Belma Demirel; Ming He; Troy Raybold; Manuel E. Quintana; Lalit S. Shah; Kenneth A. Yackly

    2003-06-09

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  9. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

    2000-10-26

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  10. Studies in Wild Oat Seed Dormancy

    PubMed Central

    Adkins, Stephen W.; Ross, James D.

    1981-01-01

    Seed of Avena fatua were shown to exhibit a characteristic loss of dormancy during dry storage at 25 C, whereas similar seed stored at 5 C maintained dormancy. 2-Chloroethylphosphonic acid was shown to increase germination of partly dormant seed imbibed under certain temperature regimes; a similar effect could not be established for fully dormant or fully nondormant seed. Using gas-liquid chromatography, natural ethylene levels were followed during imbibition of fully dormant and nondormant seed. A large peak in production was observed in the period prior to radicle emergence in the case of the nondormant seed. Measurements of ethylene production taken at 15 C, following periods of after-ripening in moist soil at either 5 or 25 C, indicated that endogenous production was unlikely to be a main cause of dormancy breakage in this species. The possibility that endogenous ethylene could play a role in natural dormancy breakage in aged seeds is discussed. The practical possibilities of 2-chloroethylphosphonic acid as a dormancy breaking agent in a field situation are outlined. PMID:16661675

  11. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John H. Anderson; William K. Davis; Thomas W. Sloop

    2001-03-21

    As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

  12. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida.

    PubMed

    Barbier, François; Péron, Thomas; Lecerf, Marion; Perez-Garcia, Maria-Dolores; Barrière, Quentin; Rolčík, Jakub; Boutet-Mercey, Stéphanie; Citerne, Sylvie; Lemoine, Remi; Porcheron, Benoît; Roman, Hanaé; Leduc, Nathalie; Le Gourrierec, José; Bertheloot, Jessica; Sakr, Soulaiman

    2015-05-01

    Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar.

  13. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida.

    PubMed

    Barbier, François; Péron, Thomas; Lecerf, Marion; Perez-Garcia, Maria-Dolores; Barrière, Quentin; Rolčík, Jakub; Boutet-Mercey, Stéphanie; Citerne, Sylvie; Lemoine, Remi; Porcheron, Benoît; Roman, Hanaé; Leduc, Nathalie; Le Gourrierec, José; Bertheloot, Jessica; Sakr, Soulaiman

    2015-05-01

    Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar. PMID:25873679

  14. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Charles Schrader

    2004-01-26

    In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental

  15. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

    2004-01-27

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture

  16. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important

  17. On dormancy strategies in tardigrades.

    PubMed

    Guidetti, Roberto; Altiero, Tiziana; Rebecchi, Lorena

    2011-05-01

    In this review we analyze the dormancy strategies of metazoans inhabiting "hostile to life" habitats, which have a strong impact on their ecology and in particular on the traits of their life history. Tardigrades are here considered a model animal, being aquatic organisms colonizing terrestrial habitats. Tardigrades evolved a large variety of dormant stages that can be ascribed to diapause (encystment, cyclomorphosis, resting eggs) and cryptobiosis (anhydrobiosis, cryobiosis, anoxibiosis). In tardigrades, diapause and cryptobiosis can occur separately or simultaneously, consequently the adoption of one adaptive strategy is not necessarily an alternative to the adoption of the other. Encystment and cyclomorphosis are characterized by seasonal cyclic changes in morphology and physiology of the animals. They share several common features and their evolution is strictly linked to the molting process. A bet-hedging strategy with different patterns of egg hatching time has been observed in a tardigrade species. Four categories of eggs have been identified: subitaneous, delayed-hatching, abortive and diapause resting eggs, which needs a stimulus to hatch (rehydration after a period of desiccation). Cryptobiotic tardigrades are able to withstand desiccation (anhydrobiosis) and freezing (cryobiosis) at any stage of their life-cycle. This ability involves a complex array of factors working at molecular (bioprotectans), physiological and structural levels. Animal survival and the accumulation of molecular damage are related to the time spent in the cryptobiotic state, to the abiotic parameters during the cryptobiotic state, and to the conditions during initial and final phases of the process. Cryptobiosis evolved independently at least two times in tardigrades, in eutardigrades and in echiniscoids. Within each evolutionary line, the absence of cryptobiotic abilities is more related to selective pressures to local habitat adaptation than to phylogenetic relationships. The

  18. On dormancy strategies in tardigrades.

    PubMed

    Guidetti, Roberto; Altiero, Tiziana; Rebecchi, Lorena

    2011-05-01

    In this review we analyze the dormancy strategies of metazoans inhabiting "hostile to life" habitats, which have a strong impact on their ecology and in particular on the traits of their life history. Tardigrades are here considered a model animal, being aquatic organisms colonizing terrestrial habitats. Tardigrades evolved a large variety of dormant stages that can be ascribed to diapause (encystment, cyclomorphosis, resting eggs) and cryptobiosis (anhydrobiosis, cryobiosis, anoxibiosis). In tardigrades, diapause and cryptobiosis can occur separately or simultaneously, consequently the adoption of one adaptive strategy is not necessarily an alternative to the adoption of the other. Encystment and cyclomorphosis are characterized by seasonal cyclic changes in morphology and physiology of the animals. They share several common features and their evolution is strictly linked to the molting process. A bet-hedging strategy with different patterns of egg hatching time has been observed in a tardigrade species. Four categories of eggs have been identified: subitaneous, delayed-hatching, abortive and diapause resting eggs, which needs a stimulus to hatch (rehydration after a period of desiccation). Cryptobiotic tardigrades are able to withstand desiccation (anhydrobiosis) and freezing (cryobiosis) at any stage of their life-cycle. This ability involves a complex array of factors working at molecular (bioprotectans), physiological and structural levels. Animal survival and the accumulation of molecular damage are related to the time spent in the cryptobiotic state, to the abiotic parameters during the cryptobiotic state, and to the conditions during initial and final phases of the process. Cryptobiosis evolved independently at least two times in tardigrades, in eutardigrades and in echiniscoids. Within each evolutionary line, the absence of cryptobiotic abilities is more related to selective pressures to local habitat adaptation than to phylogenetic relationships. The

  19. Cold storage to overcome dormancy affects the carbohydrate status and photosynthetic capacity of Rhododendron simsii.

    PubMed

    Christiaens, A; De Keyser, E; Lootens, P; Pauwels, E; Roldán-Ruiz, I; De Riek, J; Gobin, B; Van Labeke, M-C

    2015-01-01

    Global warming leads to increasing irregular and unexpected warm spells during autumn, and therefore natural chilling requirements to break dormancy are at risk. Controlled cold treatment can provide an answer to this problem. Nevertheless, artificial cold treatment will have consequences for carbon reserves and photosynthesis. In this paper, the effect of dark cold storage at 7 °C to break flower bud dormancy in the evergreen Rhododendron simsii was quantified. Carbohydrate and starch content in leaves and flower buds of an early ('Nordlicht'), semi-early ('M. Marie') and late ('Mw. G. Kint') flowering cultivar showed that carbon loss due to respiration was lowest in 'M. Marie', while 'Mw. G. Kint' was completely depleted of starch reserves at the end of cold treatment. Gene isolation resulted in a candidate gene for sucrose synthase (SUS) RsSus, which appears to be homologous to AtSus3 and had a clear increase in expression in leaves during cold treatment. Photosynthesis measurements on 'Nordlicht' and the late-flowering cultivar 'Thesla' showed that during cold treatment, dark respiration decreased 58% and 63%, respectively. Immediately after cold treatment, dark respiration increased and stabilised after 3 days. The light compensation point followed the same trend as dark respiration. Quantum efficiency showed no significant changes during the first days after cold treatment, but was significantly higher than in plants with dormant flower buds at the start of cold treatment. In conclusion, photosynthesis stabilised 3 days after cold treatment and was improved compared to the level before cold treatment.

  20. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

    2003-08-21

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and

  1. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for

  2. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the

  3. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs

  4. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

    2003-09-15

    The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making

  5. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Randy Roberts

    2003-04-25

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In

  6. Potato tuber dormancy and postharvest sprout control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For an indeterminate period of time following harvest, potatoes will not sprout and are physiologically dormant. Dormancy is gradually lost during postharvest storage and the resultant sprouting is detrimental to the nutritional and processing qualities of potatoes. Because of this, sprouting resu...

  7. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

    2004-01-12

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels

  8. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect

    Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific

  9. Differential dormancy of co-occurring copepods

    NASA Astrophysics Data System (ADS)

    Ohman, Mark D.; Drits, Aleksandr V.; Elizabeth Clarke, M.; Plourde, Stéphane

    1998-08-01

    Four species of planktonic calanoid copepods that co-occur in the California Current System ( Eucalanus californicus Johnson, Rhincalanus nasutus Giesbrecht, Calanus pacificus californicus Brodsky, and Metridia pacifica Brodsky) were investigated for evidence of seasonal dormancy in the San Diego Trough. Indices used to differentiate actively growing from dormant animals included developmental stage structure and vertical distribution; activity of aerobic metabolic enzymes (Citrate Synthase and the Electron Transfer System complex); investment in depot lipids (wax esters and triacylglycerols); in situ grazing activity from gut fluorescence; and egg production rates in simulated in situ conditions. None of the 4 species exhibited a canonical calanoid pattern of winter dormancy - i.e., synchronous developmental arrest as copepodid stage V, descent into deep waters, reduced metabolism, and lack of winter reproduction. Instead, Calanus pacificus californicus has a biphasic life history in this region, with an actively reproducing segment of the population in surface waters overlying a deep dormant segment in winter. Eucalanus californicus is dormant as both adult females and copepodid V's, although winter females respond relatively rapidly to elevated food and temperature conditions; they begin feeding and producing eggs within 2-3 days. Rhincalanus nasutus appears to enter dormancy as adult females, although the evidence is equivocal. Metridia pacifica shows no evidence of dormancy, with sustained active feeding, diel vertical migration behavior, and elevated activity of metabolic enzymes in December as well as in June. The four species also differ markedly in water content, classes of storage lipids, and specific activity of Citrate Synthase. These results suggest that copepod dormancy traits and structural composition reflect diverse adaptations to regional environmental conditions rather than a uniform, canonical series of traits that remain invariant among taxa

  10. Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum.

    PubMed

    Kebrom, Tesfamichael H; Mullet, John E

    2016-04-01

    Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 d after planting when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1, GA2oxidase, and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. After bud growth arrest in phyB-1, expression of dormancy-associated genes such as DRM1, GT1, AF1, and CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, CGA1, and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate Suc unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants. PMID:26893475

  11. Sequence Polymorphisms at the REDUCED DORMANCY5 Pseudophosphatase Underlie Natural Variation in Arabidopsis Dormancy1[OPEN

    PubMed Central

    Xiang, Yong; Song, Baoxing; Née, Guillaume; Kramer, Katharina; Soppe, Wim J.J.

    2016-01-01

    Seed dormancy controls the timing of germination, which regulates the adaptation of plants to their environment and influences agricultural production. The time of germination is under strong natural selection and shows variation within species due to local adaptation. The identification of genes underlying dormancy quantitative trait loci is a major scientific challenge, which is relevant for agricultural and ecological goals. In this study, we describe the identification of the DELAY OF GERMINATION18 (DOG18) quantitative trait locus, which was identified as a factor in natural variation for seed dormancy in Arabidopsis (Arabidopsis thaliana). DOG18 encodes a member of the clade A of the type 2C protein phosphatases family, which we previously identified as the REDUCED DORMANCY5 (RDO5) gene. DOG18/RDO5 shows a relatively high frequency of loss-of-function alleles in natural accessions restricted to northwestern Europe. The loss of dormancy in these loss-of-function alleles can be compensated for by genetic factors like DOG1 and DOG6, and by environmental factors such as low temperature. RDO5 does not have detectable phosphatase activity. Analysis of the phosphoproteome in dry and imbibed seeds revealed a general decrease in protein phosphorylation during seed imbibition that is enhanced in the rdo5 mutant. We conclude that RDO5 acts as a pseudophosphatase that inhibits dephosphorylation during seed imbibition. PMID:27288362

  12. Dormancy activation mechanism of tracheal stem cells

    PubMed Central

    Li, Xin; Xu, Jing-xian; Jia, Xin-Shan; Li, Wen-ya; Han, Yi-chen; Wang, En-hua; Li, Fang

    2016-01-01

    Accurate markers and molecular mechanisms of stem cell dormancy and activation are poorly understood. In this study, the anti-cancer drug, 5-fluorouracil, was used to selectively kill proliferating cells of human bronchial epithelial (HBE) cell line. This method can enrich and purify stem cell population. The dormant versus active status of stem cells was determined by phosphorylation of RNAp II Ser2. The surviving stem cells were cultured to form stem cell spheres expressing stem cell markers and transplanted into nude mice to form a teratoma. The results demonstrated the properties of stem cells and potential for multi-directional differentiation. Bisulfite sequencing polymerase chain reaction showed that demethylation of the Sox2 promoter by 5-FU resulted in Sox2 expression in the dormant stem cells. This study shows that the dormancy and activation of HBE stem cells is closely related to epigenetic modification. PMID:27009861

  13. Seed Dormancy in Red Rice 1

    PubMed Central

    Cohn, Marc Alan; Jones, Karen L.; Chiles, Lisa A.; Church, Daniel F.

    1989-01-01

    Many chemically dissimilar substances break dormancy of seeds, but the relationship between chemical structure and physiological activity is unknown. In this study, the concentrations of organic acids, esters, aldehydes, alcohols, and inorganic weak acids required to elicit 50% germination of initially dormant, dehulled red rice seeds (Oryza sativa) were determined. The activity of most substances was very highly and inversely correlated to lipophilicity as measured by octanol/water partition coefficients; chemicals with the highest partition coefficients required the lowest concentrations to elicit the germination response. Relative efficacy was also dependent upon the functional group; generally, monocarboxylic acids were more effective than aldehydes, esters, hydroxyacids, and alcohols. Relative hydrophobicity plots supported a modulating role of the functional group. Dormancy-breaking activity of methyl formate, formic acid, nitrite, azide, and cyanide was higher than predicted based on lipophilicity and apparently was related to molecular size; compounds with smaller molecular widths were required at lower concentrations to achieve the 50% germination response. PMID:16666635

  14. [Effects of low temperature on dormancy breaking and growth after planting in bulbs of Tulipa edulis].

    PubMed

    Yang, Ying; Zhu, Zai-Biao; Guo, Qiao-Sheng; Miao, Yuan-Yuan; Ma, Hong-Liang; Yang, Xiao-Hua

    2015-01-01

    The effect of low temperature storage on dormancy breaking, sprouting and growth after planting of Tulipa edulis was studied. The results showed that starch content and activity of amylases significantly decreased during 10 weeks of cold storage, soluble protein content raised at first then decreased, and the peak appeared at the 6th week. However, total soluble sugar content which in- creased slowly at first than rose sharply and reducing sugar content increased during the storage duration. The bulbs with cold storage treatment rooted in the 6th week, which was about 2 weeks earlier than room temperature storage, but there were less new roots in the late period of storage. After stored at a low temperature, bud lengths were longer than that with room temperature treatment. Cold storage treatment could promote earlier emergence, shorten germination time, prolong growth period and improve the yield of bulb, but rarely affect the emergence rate. It was not beneficial to flowering and fruiting. The results indicated that 6-8 weeks of cold storage was deemed to be the key period of dormancy breaking preliminary. PMID:25993786

  15. [Effects of low temperature on dormancy breaking and growth after planting in bulbs of Tulipa edulis].

    PubMed

    Yang, Ying; Zhu, Zai-Biao; Guo, Qiao-Sheng; Miao, Yuan-Yuan; Ma, Hong-Liang; Yang, Xiao-Hua

    2015-01-01

    The effect of low temperature storage on dormancy breaking, sprouting and growth after planting of Tulipa edulis was studied. The results showed that starch content and activity of amylases significantly decreased during 10 weeks of cold storage, soluble protein content raised at first then decreased, and the peak appeared at the 6th week. However, total soluble sugar content which in- creased slowly at first than rose sharply and reducing sugar content increased during the storage duration. The bulbs with cold storage treatment rooted in the 6th week, which was about 2 weeks earlier than room temperature storage, but there were less new roots in the late period of storage. After stored at a low temperature, bud lengths were longer than that with room temperature treatment. Cold storage treatment could promote earlier emergence, shorten germination time, prolong growth period and improve the yield of bulb, but rarely affect the emergence rate. It was not beneficial to flowering and fruiting. The results indicated that 6-8 weeks of cold storage was deemed to be the key period of dormancy breaking preliminary.

  16. Development of flower buds in the Japanese pear (Pyrus pyrifolia) from late autumn to early spring.

    PubMed

    Saito, Takanori; Tuan, Pham Anh; Katsumi-Horigane, Akemi; Bai, Songling; Ito, Akiko; Sekiyama, Yasuyo; Ono, Hiroshi; Moriguchi, Takaya

    2015-06-01

    We periodically investigated the lateral flower bud morphology of 1-year shoots of 'Kosui' pears (Pyrus pyrifolia Nakai) in terms of dormancy progression, using magnetic resonance imaging. The size of flower buds did not change significantly during endodormancy, but rapid enlargement took place at the end of the ecodormancy stage. To gain insight into the physiological status during this period, we analyzed gene expression related to cell cycle-, cell expansion- and water channel-related genes, namely cyclin (CYC), expansin (EXPA), tonoplast intrinsic proteins (TIP) and plasma membrane intrinsic proteins (PIP). Constant but low expression of pear cyclin genes (PpCYCD3s) was observed in the transition phase from endodormancy to ecodormancy. The expression levels of PpCYCD3s were consistent with few changes in flower bud size, but up-regulated before the sprouting stage. In contrast, the expression of pear expansin and water channel-related genes (PpEXPA2, PpPIP2A, PpPIP2B, PpIδTIP1A and PpIδTIP1B) were low until onset of the rapid enlargement stage of flower buds. However, expression of these genes rapidly increased during sprouting along with a gradual increase of free water content in the floral primordia of buds. Taken together, these results suggest that flower bud size tends to stay constant until the endodormancy phase transition. Rapid enlargement of flower buds observed in March is partly due to the enhancement of the cell cycle. Then, sprouting takes place concomitant with the increase in cell expansion and free water movement.

  17. 30 CFR 18.37 - Lead entrances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lead entrances. 18.37 Section 18.37 Mineral... § 18.37 Lead entrances. (a) Insulated cable(s), which must extend through an outside wall of an explosion-proof enclosure, shall pass through a stuffing-box lead entrance. All sharp edges that...

  18. 30 CFR 18.37 - Lead entrances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lead entrances. 18.37 Section 18.37 Mineral... § 18.37 Lead entrances. (a) Insulated cable(s), which must extend through an outside wall of an explosion-proof enclosure, shall pass through a stuffing-box lead entrance. All sharp edges that...

  19. 30 CFR 18.37 - Lead entrances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lead entrances. 18.37 Section 18.37 Mineral... § 18.37 Lead entrances. (a) Insulated cable(s), which must extend through an outside wall of an explosion-proof enclosure, shall pass through a stuffing-box lead entrance. All sharp edges that...

  20. 30 CFR 18.37 - Lead entrances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lead entrances. 18.37 Section 18.37 Mineral... § 18.37 Lead entrances. (a) Insulated cable(s), which must extend through an outside wall of an explosion-proof enclosure, shall pass through a stuffing-box lead entrance. All sharp edges that...

  1. 30 CFR 18.37 - Lead entrances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lead entrances. 18.37 Section 18.37 Mineral... § 18.37 Lead entrances. (a) Insulated cable(s), which must extend through an outside wall of an explosion-proof enclosure, shall pass through a stuffing-box lead entrance. All sharp edges that...

  2. Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes

    PubMed Central

    Rinne, Päivi L.H.; Paul, Laju K.; Vahala, Jorma; Ruonala, Raili; Kangasjärvi, Jaakko; van der Schoot, Christiaan

    2015-01-01

    Tree architecture develops over time through the collective activity of apical and axillary meristems. Although the capacity of both meristems to form buds is crucial for perennial life, a comparative analysis is lacking. As shown here for hybrid aspen, axillary meristems engage in an elaborate process of axillary bud (AXB) formation, while apical dominance prevents outgrowth of branches. Development ceased when AXBs had formed an embryonic shoot (ES) with a predictable number of embryonic leaves at the bud maturation point (BMP). Under short days, terminal buds (TBs) formed an ES similar to that of AXBs, and both the TB and young AXBs above the BMP established dormancy. Quantitative PCR and in situ hybridizations showed that this shared ability and structural similarity was reflected at the molecular level. TBs and AXBs similarly regulated expression of meristem-specific and bud/branching-related genes, including CENTRORADIALIS-LIKE1 (CENL1), BRANCHED1 (BRC1), BRC2, and the strigolactone biosynthesis gene MORE AXILLARY BRANCHES1 (MAX1). Below the BMP, AXBs maintained high CENL1 expression at the rib meristem, suggesting that it serves to maintain poise for growth. In support of this, decapitation initiated outgrowth of CENL1-expressing AXBs, but not of dormant AXBs that had switched CENL1 off. This singles out CENL1 as a rib meristem marker for para-dormancy. BRC1 and MAX1 genes, which may counterbalance CENL1, were down-regulated in decapitation-activated AXBs. The results showed that removal of apical dominance shifted AXB gene expression toward that of apices, while developing TBs adopted the expression pattern of para-dormant AXBs. Bud development thus follows a shared developmental pattern at terminal and axillary positions, despite being triggered by short days and apical dominance, respectively. PMID:26248666

  3. Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes.

    PubMed

    Rinne, Päivi L H; Paul, Laju K; Vahala, Jorma; Ruonala, Raili; Kangasjärvi, Jaakko; van der Schoot, Christiaan

    2015-11-01

    Tree architecture develops over time through the collective activity of apical and axillary meristems. Although the capacity of both meristems to form buds is crucial for perennial life, a comparative analysis is lacking. As shown here for hybrid aspen, axillary meristems engage in an elaborate process of axillary bud (AXB) formation, while apical dominance prevents outgrowth of branches. Development ceased when AXBs had formed an embryonic shoot (ES) with a predictable number of embryonic leaves at the bud maturation point (BMP). Under short days, terminal buds (TBs) formed an ES similar to that of AXBs, and both the TB and young AXBs above the BMP established dormancy. Quantitative PCR and in situ hybridizations showed that this shared ability and structural similarity was reflected at the molecular level. TBs and AXBs similarly regulated expression of meristem-specific and bud/branching-related genes, including CENTRORADIALIS-LIKE1 (CENL1), BRANCHED1 (BRC1), BRC2, and the strigolactone biosynthesis gene MORE AXILLARY BRANCHES1 (MAX1). Below the BMP, AXBs maintained high CENL1 expression at the rib meristem, suggesting that it serves to maintain poise for growth. In support of this, decapitation initiated outgrowth of CENL1-expressing AXBs, but not of dormant AXBs that had switched CENL1 off. This singles out CENL1 as a rib meristem marker for para-dormancy. BRC1 and MAX1 genes, which may counterbalance CENL1, were down-regulated in decapitation-activated AXBs. The results showed that removal of apical dominance shifted AXB gene expression toward that of apices, while developing TBs adopted the expression pattern of para-dormant AXBs. Bud development thus follows a shared developmental pattern at terminal and axillary positions, despite being triggered by short days and apical dominance, respectively.

  4. Entrance

    ERIC Educational Resources Information Center

    Kallan, Richard A.

    1975-01-01

    Provides a brief sketch of the essential characteristics of new journalism, offers a rationale for calling it "new," and differentiates the new nonfiction from the broader concept of new journalism. See CS 702 359 for availability information.(RB)

  5. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn.

    PubMed

    Asante, Daniel K A; Yakovlev, Igor A; Fossdal, Carl Gunnar; Timmerhaus, Gerrit; Partanen, Jouni; Johnsen, Oystein

    2009-08-01

    Expression of selected genes in needles of Norway spruce (Picea abies [L.] Karst) was investigated by following their transcription levels during late autumn. Transcription was assessed in mature needles which likely serve as sensor of environmental cues that enable trees in the temperate and boreal regions to change between stages of growth, frost tolerance and bud dormancy. Samples were collected from grafts kept under outdoor conditions and after bud burst forcing in greenhouse at 20 degrees C (12 h darkness) for one week. Transcription was assayed with real-time RT-PCR. During the sampling period, chilling requirement was partially fulfilled, and time to bud burst after forcing was decreased. Of the 27 transcripts studied, expression of 16 was significantly affected either by forcing, sampling time, or interaction between them. PaSAP, PaACP, PaSGS3, PaWRKY, PaDIR9, PaCCCH and dehydrin genes responded drastically to forcing temperatures at all sampling points, showing no correlation with readiness for bud burst. Expression patterns of some vernalization pathway gene homologs PaVIN3, and also of PaMDC, PaLOV1 and PaDAL3 had a clear opposite trends between forcing and outdoor conditions, which could imply their role in chilling accumulation and bud burst regulation/cold acclimation. These genes could constitute putative candidates for further detailed study, whose regulation in needles may be involved in preparation towards bud burst and chilling accumulation sensing.

  6. Effect of Growth Regulators on CO2 Assimilation in Leaves, and its Correlation with the Bud Break Response in Photosynthesis 1

    PubMed Central

    Bidwell, R. G. S.; Turner, Wendy B.

    1966-01-01

    Experiments have been done to confirm the previously reported effect of indoleacetic acid (IAA) on the rate of CO2 assimilation in bean leaves. It was shown that spraying the leaves of a variety of plants caused an increase in the rate of CO2 assimilation from 30% to 100% during the half-hour to 1 hour period following spraying. The only plant tested which did not show such an effect was corn. The breaking of dormancy of axial buds in the bean plant was correlated with an increase in the rate of CO2 assimilation in adjacent leaves for a brief period of time. It has been shown that IAA solution sprayed on 1 leaflet of a leaf can cause an increase in the rate of CO2 assimilation in the other leaflets, and that IAA applied to the cut stem of a leaflet or a developing bud can be transported to adjacent leaves and cause an increase in the CO2 assimilation rate. The reaction caused by IAA is very similar to that caused by the breaking of dormancy of a bud. This indicates that the bud break response in CO2 assimilation in leaves is caused by auxin synthesized in a bud as it begins to grow, and exported into adjacent leaves. PMID:16656249

  7. Seed dormancy and germination—emerging mechanisms and new hypotheses

    PubMed Central

    Nonogaki, Hiroyuki

    2014-01-01

    Seed dormancy has played a significant role in adaptation and evolution of seed plants. While its biological significance is clear, molecular mechanisms underlying seed dormancy induction, maintenance and alleviation still remain elusive. Intensive efforts have been made to investigate gibberellin and abscisic acid metabolism in seeds, which greatly contributed to the current understanding of seed dormancy mechanisms. Other mechanisms, which might be independent of hormones, or specific to the seed dormancy pathway, are also emerging from genetic analysis of “seed dormancy mutants.” These studies suggest that chromatin remodeling through histone ubiquitination, methylation and acetylation, which could lead to transcription elongation or gene silencing, may play a significant role in seed dormancy regulation. Small interfering RNA and/or long non-coding RNA might be a trigger of epigenetic changes at the seed dormancy or germination loci, such as DELAY OF GERMINATION1. While new mechanisms are emerging from genetic studies of seed dormancy, novel hypotheses are also generated from seed germination studies with high throughput gene expression analysis. Recent studies on tissue-specific gene expression in tomato and Arabidopsis seeds, which suggested possible “mechanosensing” in the regulatory mechanisms, advanced our understanding of embryo-endosperm interaction and have potential to re-draw the traditional hypotheses or integrate them into a comprehensive scheme. The progress in basic seed science will enable knowledge translation, another frontier of research to be expanded for food and fuel production. PMID:24904627

  8. Chemical Manipulation of Meristem Dormancy Alters Transcript Profiles in Potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dormancy status of potato tuber meristems can be manipulated by a variety of chemical treatments. The application of bromoethane (BE) results in dormancy cessation, while chlorpropham (CIPC), and 1,4-dimethyl naphthalene (DMN) are used commercially to prolong the dormant state. Transcript analys...

  9. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud site selection in budding yeast.

    PubMed

    Wu, Huan; Guo, Jia; Zhou, Ya-Ting; Gao, Xiang-Dong

    2015-03-01

    The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4's function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3.

  10. Dormancy-breaking requirements of Sophora tomentosa and Erythrina speciosa (Fabaceae) seeds.

    PubMed

    Luzia Delgado, Carolina Maria; Souza de Paula, Alexandre; Santos, Marisa; Silveira Paulilo, Maria Terezinha

    2015-03-01

    The physical dormancy of seeds has been poorly studied in species from tropical forests, such as the Atlantic Forest. This study aimed to examine the effect of moderate alternating temperatures on breaking the physical dormancy of seeds, the morphoanatomy and histochemistry of seed coats, and to locate the structure/region responsible for water entrance into the seed, after breaking the physical dormancy of seeds of two woody Fabaceae (subfamily Faboideae) species that occur in the Brazilian Atlantic Forest: Sophora tomentosa and Erythrina speciosa. To assess temperature effect, seeds were incubated in several temperature values that occur in the Atlantic Forest. For morphological and histochemical studies, sections of fixed seeds were subjected to different reagents, and were observed using light or epifluorescence microscopy, to analyze the anatomy and histochemistry of the seed coat. Treated and nonreated seeds were also analyzed using a scanning electron microscope (SEM) to observe the morphology of the seed coat. To localize the specific site of water entrance, the seeds were blocked with glue in different regions and also immersed in ink. In the present work a maximum temperature fluctuation of 15 degrees C was applied during a period of 20 days and these conditions did not increase the germination of S. tomentosa or E. speciosa. These results may indicate that these seeds require larger fluctuation of temperature than the applied or/and longer period of exposition to the temperature fluctuation. Blocking experiments water inlet combined with SEM analysis of the structures of seed coat for both species showed that besides the lens, the hilum and micropyle are involved in water absorption in seeds scarified with hot water. In seeds of E. speciosa the immersion of scarified seeds into an aniline aqueous solution showed that the solution first entered the seed through the hilum. Both species showed seed morphological and anatomical features for seed coats of the

  11. Dormancy-breaking requirements of Sophora tomentosa and Erythrina speciosa (Fabaceae) seeds.

    PubMed

    Luzia Delgado, Carolina Maria; Souza de Paula, Alexandre; Santos, Marisa; Silveira Paulilo, Maria Terezinha

    2015-03-01

    The physical dormancy of seeds has been poorly studied in species from tropical forests, such as the Atlantic Forest. This study aimed to examine the effect of moderate alternating temperatures on breaking the physical dormancy of seeds, the morphoanatomy and histochemistry of seed coats, and to locate the structure/region responsible for water entrance into the seed, after breaking the physical dormancy of seeds of two woody Fabaceae (subfamily Faboideae) species that occur in the Brazilian Atlantic Forest: Sophora tomentosa and Erythrina speciosa. To assess temperature effect, seeds were incubated in several temperature values that occur in the Atlantic Forest. For morphological and histochemical studies, sections of fixed seeds were subjected to different reagents, and were observed using light or epifluorescence microscopy, to analyze the anatomy and histochemistry of the seed coat. Treated and nonreated seeds were also analyzed using a scanning electron microscope (SEM) to observe the morphology of the seed coat. To localize the specific site of water entrance, the seeds were blocked with glue in different regions and also immersed in ink. In the present work a maximum temperature fluctuation of 15 degrees C was applied during a period of 20 days and these conditions did not increase the germination of S. tomentosa or E. speciosa. These results may indicate that these seeds require larger fluctuation of temperature than the applied or/and longer period of exposition to the temperature fluctuation. Blocking experiments water inlet combined with SEM analysis of the structures of seed coat for both species showed that besides the lens, the hilum and micropyle are involved in water absorption in seeds scarified with hot water. In seeds of E. speciosa the immersion of scarified seeds into an aniline aqueous solution showed that the solution first entered the seed through the hilum. Both species showed seed morphological and anatomical features for seed coats of the

  12. Perception of photoperiod in individual buds of mature trees regulates leaf-out.

    PubMed

    Zohner, Constantin M; Renner, Susanne S

    2015-12-01

    Experimental data on the perception of day length and temperature in dormant temperate zone trees are surprisingly scarce. In order to investigate when and where these environmental signals are perceived, we carried out bagging experiments in which buds on branches of Fagus sylvatica, Aesculus hippocastanum and Picea abies trees were exposed to natural light increase or kept at constant 8-h days from December until June. Parallel experiments used twigs cut from the same trees, harvesting treated and control twigs seven times and then exposing them to 8- or 16-h days in a glasshouse. Under 8-h days, budburst in Fagus outdoors was delayed by 41 d and in Aesculus by 4 d; in Picea, day length had no effect. Buds on nearby branches reacted autonomously, and leaf primordia only reacted to light cues in late dormancy after accumulating warm days. Experiments applying different wavelength spectra and high-resolution spectrometry to buds indicate a phytochrome-mediated photoperiod control. By demonstrating local photoperiodic control of buds, revealing the time when these signals are perceived, and showing the interplay between photoperiod and chilling, this study contributes to improved modelling of the impact of climate warming on photosensitive species.

  13. Dormancy models for Mycobacterium tuberculosis: A minireview

    PubMed Central

    Alnimr, Amani M.

    2015-01-01

    Dormancy models for Mycobacterium tuberculosis play important roles in understanding various aspects of tuberculosis pathogenesis and in the testing of novel therapeutic regimens. By simulating the latent tuberculosis infection, in which the bacteria exist in a non-replicative state, the models demonstrate reduced susceptibility to antimycobacterial agents. This minireview outlines the models available for simulating latent tuberculosis both in vitro and in several animal species. Additionally, this minireview discusses the advantages and disadvantages of these models for investigating the bacterial subpopulations and susceptibilities to sterilization by various antituberculosis drugs. PMID:26413043

  14. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting

    PubMed Central

    2014-01-01

    Background In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. Results The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. Conclusions We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm. PMID:24947472

  15. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy.

    PubMed

    Voogd, Charlotte; Wang, Tianchi; Varkonyi-Gasic, Erika

    2015-08-01

    The MADS-domain transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is one of the key integrators of endogenous and environmental signals that promote flowering in the annual species Arabidopsis thaliana. In the deciduous woody perennial vine kiwifruit (Actinidia spp.), environmental signals are integrated to regulate annual cycles of growth and dormancy. Accumulation of chilling during winter is required for dormancy break and flowering in spring. In order to understand the regulation of dormancy and flowering in kiwifruit, nine kiwifruit SOC1-like genes were identified and characterized. All genes affected flowering time of A. thaliana Col-0 and were able to rescue the late flowering phenotype of the soc1-2 mutant when ectopically expressed. A differential capacity for homodimerization was observed, but all proteins were capable of strong interactions with SHORT VEGETATIVE PHASE (SVP) MADS-domain proteins. Largely overlapping spatial domains but distinct expression profiles in buds were identified between the SOC1-like gene family members. Ectopic expression of AcSOC1e, AcSOC1i, and AcSOC1f in Actinidia chinensis had no impact on establishment of winter dormancy and failed to induce precocious flowering, but AcSOC1i reduced the duration of dormancy in the absence of winter chilling. These findings add to our understanding of the SOC1-like gene family and the potential diversification of SOC1 function in woody perennials.

  16. Starvation-induced dormancy in E. coli

    NASA Astrophysics Data System (ADS)

    Simsek, Emrah; Kim, Minsu

    Isogenic bacterial populations can exhibit phenotypic heterogeneity. Phenotypic heterogeneity is often viewed as a bet-hedging strategy to cope with environmental fluctuations, and believed to be under genetic control. The experimental evidence of this view, however, is limited. Here, we report experimental evidence that prompts reconsideration of this view. Observing how starved E. coli cells resume growth upon nutrient upshift at the single-cell level in real time, we revealed that physiological and metabolic state of starved cells, as well as growth resumption kinetics, vary from cell to cell. Upon nutrient upshift, a majority of cells resume growth instantly, but a small fraction maintain a non-growth state for several hours or days (i.e., long lag time). Hence they are dormant cells. The fraction strongly depends on the duration of starvation. The dormancy does not confer resistance to starvation. Oxidative damage accumulated during starvation leads to the appearance of dormant cells. Taken together, our data suggests that a dormant subpopulation appears as an inevitable consequence of starvation, rather than cellular decision to cope with starvation. Hence, the existence of a genetic program and adaptive value as a bet-hedging strategy to cope with starvation stress may not be needed to explain the emergence of bacterial dormancy.

  17. Microbial dormancy improves development and experimental validation of ecosystem model

    DOE PAGESBeta

    Wang, Gangsheng; Jagadamma, Sindhu; Mayes, Melanie; Schadt, Christopher Warren; Steinweg, Jessica M.; Gu, Lianhong; Post, Wilfred M.

    2014-07-11

    Climate feedbacks from soils can result from environmental change followed by response of plant and microbial communities, and/or associated changes in nutrient cycling. Explicit consideration of microbial life history traits and functions may be necessary to predict climate feedbacks due to changes in the physiology and community composition of microbes and their associated effect on carbon cycling. Here, we enhanced the Microbial-Enzyme-mediated Decomposition (MEND) model by incorporating microbial dormancy and the ability to track multiple isotopes of carbon. We tested two versions of MEND, i.e., MEND with dormancy and MEND without dormancy, against long-term (270 d) lab incubations of fourmore » soils with isotopically-labeled substrates. MEND without dormancy adequately fitted multiple observations (total and 14C respiration, and dissolved organic carbon), but at the cost of significantly underestimating the total microbial biomass. The MEND with dormancy improved estimates of microbial biomass by 20 71% over the MEND without dormancy. We observed large differences for two fitted model parameters, the specific maintenance and growth rates for active microbes, depending on whether dormancy was considered. Together our model extrapolations of the incubation study show that long-term soil incubations with observations in multiple carbon pools are necessary to estimate both decomposition and microbial parameters. These efforts should provide essential support to future field- and global-scale simulations and enable more confident predictions of feedbacks between environmental change and carbon cycling.« less

  18. Microbial dormancy improves development and experimental validation of ecosystem model

    SciTech Connect

    Wang, Gangsheng; Jagadamma, Sindhu; Mayes, Melanie; Schadt, Christopher Warren; Steinweg, Jessica M.; Gu, Lianhong; Post, Wilfred M.

    2014-07-11

    Climate feedbacks from soils can result from environmental change followed by response of plant and microbial communities, and/or associated changes in nutrient cycling. Explicit consideration of microbial life history traits and functions may be necessary to predict climate feedbacks due to changes in the physiology and community composition of microbes and their associated effect on carbon cycling. Here, we enhanced the Microbial-Enzyme-mediated Decomposition (MEND) model by incorporating microbial dormancy and the ability to track multiple isotopes of carbon. We tested two versions of MEND, i.e., MEND with dormancy and MEND without dormancy, against long-term (270 d) lab incubations of four soils with isotopically-labeled substrates. MEND without dormancy adequately fitted multiple observations (total and 14C respiration, and dissolved organic carbon), but at the cost of significantly underestimating the total microbial biomass. The MEND with dormancy improved estimates of microbial biomass by 20 71% over the MEND without dormancy. We observed large differences for two fitted model parameters, the specific maintenance and growth rates for active microbes, depending on whether dormancy was considered. Together our model extrapolations of the incubation study show that long-term soil incubations with observations in multiple carbon pools are necessary to estimate both decomposition and microbial parameters. These efforts should provide essential support to future field- and global-scale simulations and enable more confident predictions of feedbacks between environmental change and carbon cycling.

  19. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed.

  20. The roles of auxin in seed dormancy and germination.

    PubMed

    Haiwei, Shuai; Yongjie, Meng; Xiaofeng, Luo; Feng, Chen; Ying, Qi; Wenyu, Yang; Kai, Shu

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions. PMID:27103455

  1. The roles of auxin in seed dormancy and germination.

    PubMed

    Haiwei, Shuai; Yongjie, Meng; Xiaofeng, Luo; Feng, Chen; Ying, Qi; Wenyu, Yang; Kai, Shu

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions.

  2. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. PMID:26095078

  3. Stratification Requirements for Seed Dormancy Alleviation in a Wetland Weed

    PubMed Central

    Boddy, Louis G.; Bradford, Kent J.; Fischer, Albert J.

    2013-01-01

    Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (Ψ) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base Ψ and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at Ψ = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that Ψ contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence. PMID:24039714

  4. Functional genomics of seed dormancy in wheat: advances and prospects

    PubMed Central

    Gao, Feng; Ayele, Belay T.

    2014-01-01

    Seed dormancy is a mechanism underlying the inability of viable seeds to germinate under optimal environmental conditions. To achieve rapid and uniform germination, wheat and other cereal crops have been selected against dormancy. As a result, most of the modern commercial cultivars have low level of seed dormancy and are susceptible to preharvest sprouting when wet and moist conditions occur prior to harvest. As it causes substantial loss in grain yield and quality, preharvest sprouting is an ever-present major constraint to the production of wheat. The significance of the problem emphasizes the need to incorporate an intermediate level of dormancy into elite wheat cultivars, and this requires detailed dissection of the mechanisms underlying the regulation of seed dormancy and preharvest sprouting. Seed dormancy research in wheat often involves after-ripening, a period of dry storage during which seeds lose dormancy, or comparative analysis of seeds derived from dormant and non-dormant cultivars. The increasing development in wheat genomic resources along with the application of transcriptomics, proteomics, and metabolomics approaches in studying wheat seed dormancy have extended our knowledge of the mechanisms acting at transcriptional and post-transcriptional levels. Recent progresses indicate that some of the molecular mechanisms are associated with hormonal pathways, epigenetic regulations, targeted oxidative modifications of seed mRNAs and proteins, redox regulation of seed protein thiols, and modulation of translational activities. Given that preharvest sprouting is closely associated with seed dormancy, these findings will significantly contribute to the designing of efficient strategies for breeding preharvest sprouting tolerant wheat. PMID:25309557

  5. 7. WALKWAY/ENTRANCE TO ADMINSITRATIVE SITE ADJACENT TO ENTRANCE ROAD AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WALKWAY/ENTRANCE TO ADMINSITRATIVE SITE ADJACENT TO ENTRANCE ROAD AND INTERNAL POLICE POST, LOOKING SOUTHEAST - Manzanar War Relocation Center, Owens Valley off U.S. Highway 395, 6 miles South of Independence, Independence, Inyo County, CA

  6. Foamy Virus Budding and Release

    PubMed Central

    Hütter, Sylvia; Zurnic, Irena; Lindemann, Dirk

    2013-01-01

    Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems. PMID:23575110

  7. Bud-Neck Scaffolding as a Possible Driving Force in ESCRT-Induced Membrane Budding

    PubMed Central

    Mercker, Moritz; Marciniak-Czochra, Anna

    2015-01-01

    Membrane budding is essential for processes such as protein sorting and transport. Recent experimental results with ESCRT proteins reveal a novel budding mechanism, with proteins emerging in bud necks but separated from the entire bud surface. Using an elastic model, we show that ESCRT protein shapes are sufficient to spontaneously create experimentally observed structures, with protein-membrane interactions leading to protein scaffolds in bud-neck regions. Furthermore, the model reproduces experimentally observed budding directions and bud sizes. Finally, our results reveal that membrane-mediated sorting has the capability of creating structures more complicated than previously assumed. PMID:25692588

  8. "PROBATION AT ENTRANCE"--A STUDY.

    ERIC Educational Resources Information Center

    LUKE, ORRAL S.

    PERSISTENCY AND SUCCESS OF 200 FALL, 1962, "PROBATION AT ENTRANCE" STUDENTS (WITH LESS THAN 2.0 GRADE POINT AVERAGE) WAS STUDIED. PERCENTAGE OF MEN AND WOMEN FROM VARIOUS HIGH SCHOOLS, MEDIAN ENTRANCE TEST SCORES, MAJOR FIELDS CHOSEN, AND EXTRACURRICULAR ACTIVITIES WERE ENUMERATED. THE MAJORITY OF STUDENTS CHOSE GOALS WITHIN THEIR ABILITY LEVELS,…

  9. Oxidative signaling in seed germination and dormancy

    PubMed Central

    El-Maarouf-Bouteau, Hayat

    2008-01-01

    Reactive Oxygen Species (ROS) play a key role in various events of seed life. In orthodox seeds, ROS are produced from embryogenesis to germination, i.e., in metabolically active cells, but also in quiescent dry tissues during after ripening and storage, owing various mechanisms depending on the seed moisture content. Although ROS have been up to now widely considered as detrimental to seeds, recent advances in plant physiology signaling pathways has lead to reconsider their role. ROS accumulation can therefore be also beneficial for seed germination and seedling growth by regulating cellular growth, ensuring a protection against pathogens or controlling the cell redox status. ROS probably also act as a positive signal in seed dormancy release. They interact with abscisic acid and gibberellins transduction pathway and are likely to control numerous transcription factors and properties of specific protein through their carbonylation. PMID:19513212

  10. Using Generic Data to Establish Dormancy Failure Rates

    NASA Technical Reports Server (NTRS)

    Reistle, Bruce

    2014-01-01

    Many hardware items are dormant prior to being operated. The dormant period might be especially long, for example during missions to the moon or Mars. In missions with long dormant periods the risk incurred during dormancy can exceed the active risk contribution. Probabilistic Risk Assessments (PRAs) need to account for the dormant risk contribution as well as the active contribution. A typical method for calculating a dormant failure rate is to multiply the active failure rate by a constant, the dormancy factor. For example, some practitioners use a heuristic and divide the active failure rate by 30 to obtain an estimate of the dormant failure rate. To obtain a more empirical estimate of the dormancy factor, this paper uses the recently updated database NPRD-2011 [1] to arrive at a set of distributions for the dormancy factor. The resulting dormancy factor distributions are significantly different depending on whether the item is electrical, mechanical, or electro-mechanical. Additionally, this paper will show that using a heuristic constant fails to capture the uncertainty of the possible dormancy factors.

  11. Candidate cave entrances on Mars

    USGS Publications Warehouse

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  12. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast.

    PubMed

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  13. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast

    PubMed Central

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  14. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team

  15. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.

    The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.

    The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.

    Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.

    Each image covers a swath approximately 380 kilometers wide.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. Review of Tumor Dormancy Therapy Using Traditional Oriental Herbal Medicine

    PubMed Central

    Lee, Jong-Ho; Koung, Fan-Pei; Cho, Chong-Kwan; Lee, Yeon-Weol; Yoo, Hwa-Seung

    2013-01-01

    Objective: Standard cancer therapy prolongs survival, but can be detrimental to the quality of life, compromise the immune system, and leave residual disease that can cause recurrence years or decades in the future. Tumor dormancy therapy is a novel therapeutic approach that may improve these shortcomings, promote quality of life, and prolong survival. The aim of this study was to analyze studies on dormancy therapy, especially studies using traditional Oriental herbal medicine, so as to evaluate the efficacy of dormancy therapy with traditional oriental herbal medicine. Methods: We conducted a systematic literature review using Scientific and Technical Information Integration Services (NDSL), PubMed, and RISS. We searched for clinical reports, papers, and books related to tumor metastasis, recurrence, immunotherapy, tumor dormancy, and traditional oriental herbal medicine with anticancer effects. Seventy-nine (79) experimental and clinical articles in both Korean and English were reviewed. This study was conducted from March 1, 2012 to May 31, 2012. Results: This approach, Tumor dormancy therapy, rather than seeking to remove the tumor, includes combination of low-dose chemotherapy, immunotherapy, immunosurveillance, and other methods to stabilize tumor growth and to enhance the host is immunity against disseminated tumor cells and thus to manage cancer as a chronic disease while maintaining quality of life. In particular, integrative use of Oriental herbal medicine has been shown to induce or maintain tumor dormancy, increase the effectiveness of conventional chemotherapy, improve quality of life, and prolong survival. Conclusion: Tumor dormancy therapy is a promising novel therapeutic approach that may be especially effective with Oriental herbal medicine. Further research is needed to determine its potential mechanisms and therapeutic applications. PMID:25780657

  17. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation*

    PubMed Central

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  18. Coevolutionary patterning of teeth and taste buds

    PubMed Central

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  19. Coevolutionary patterning of teeth and taste buds.

    PubMed

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  20. Wil Wheaton and the Grand Entrance

    NASA Video Gallery

    As NASA prepares for Curiosity rover landing on Mars, Wil Wheaton shares this thrilling story of NASA's hardest planetary science mission to date. The video titled, "Grand Entrance," guides viewers...

  1. William Shatner and the Grand Entrance

    NASA Video Gallery

    As NASA prepares for Curiosity rover landing on Mars, William Shatner shares this thrilling story of NASA's hardest planetary science mission to date. The video titled, "Grand Entrance," guides vie...

  2. Abscisic Acid Levels and Seed Dormancy

    PubMed Central

    Sondheimer, E.; Tzou, D. S.; Galson, Eva C.

    1968-01-01

    Dormant seeds from Fraxinus species require cold-temperature after-ripening prior to germination. Earlier, we found that abscisic acid (ABA) will inhibit germination of excised nondormant embryos and that this can be reversed with a combination of gibberellic acid and kinetin. Using Milborrow's quantitative “racemate dilution” method the ABA concentration in 3 types of Fraxinus seed and pericarp were determined. While ABA was present in all tissues, the highest concentration was found in the seed and pericarp of dormant F. americana. During the chilling treatment of F. americana the ABA levels decreased 37% in the pericarp and 68% in the seed. The ABA concentration of the seed of the nondormant species, F. ornus, is as low as that found in F. americana seeds after cold treatment. Experiments with exogenously added ABA solutions indicate that it is unlikely that the ABA in the pericarp functions in the regulation of seed dormancy. However, the ABA in the seed does seem to have a regulatory role in germination. Images PMID:16656935

  3. The perivascular niche regulates breast tumor dormancy

    PubMed Central

    Peinado, Héctor; Mori, Hidetoshi; Matei, Irina R.; Evason, Kimberley J.; Brazier, Hélène; Almeida, Dena; Koller, Antonius; Hajjar, Katherine A.; Stainier, Didier Y.R.; Chen, Emily I.; Lyden, David

    2013-01-01

    In a significant fraction of breast cancer patients, distant metastases emerge after years or even decades of latency. How disseminated tumor cells (DTCs) are kept dormant, and what ‘wakes them up’, are fundamental problems in tumor biology. To address these questions, we utilized metastasis assays in mice to show that dormant DTCs reside upon microvasculature of lung, bone marrow and brain. We then engineered organotypic microvascular niches to determine whether endothelial cells directly influence breast cancer cell (BCC) growth. These models demonstrated that endothelial-derived thrombospondin-1 induces sustained BCC quiescence. This suppressive cue was lost in sprouting neovasculature; time-lapse analysis showed that sprouting vessels not only permit, but accelerate BCC outgrowth. We confirmed this surprising result in dormancy models and in zebrafish, and identified active TGF-β1 and periostin as tumor-promoting, endothelial tip cell-derived factors. Our work reveals that stable microvasculature constitutes a ‘dormant niche,’ whereas sprouting neovasculature sparks micrometastatic outgrowth. PMID:23728425

  4. New entrance shade design for SIRTF

    NASA Technical Reports Server (NTRS)

    Davis, Paul K.

    1989-01-01

    A new design for the entrance shade for the Space Infrared Telescope Facility (SIRTF) is presented. The evolution of the entrance shade began with a simple frustum, symmetrical about the telescope axis, when SIRTF was expected to be Shuttle-attached. With the change to a free-flying SIRTF this frustum was cut off at an angle. The telescope will be operated so that whenever not in the earth's shadow the high side is kept toward the sun. However, the entrance shade interior itself will be so warm that the optics, including the secondary mirror and its mechanisms and support structure, will be restricted to the rear part of the barrel, termed the aftbaffle, which is shaded from the interior of the entrance shade by the forebaffle. This is best accomplished by the most recent design in which the axis of the entrance shade is offset from the telescope axis. This results in a shorter entrance shade, shorter forebaffle, and a shaded region within the barrel which is symmetrical about the telescope axis. All of these are advantageous.

  5. Breaking seed dormancy of three orthodox Mediterranean Rosaceae species.

    PubMed

    Iakovoglou, Valasia; Radoglou, Kalliopi

    2015-03-01

    Biodiversity levels could be enhanced when regenerating a site by seed-derived seedlings. However, seed dormancy poses limitations for many species. As a result, nurseries either produce seedlings from species where dormancy is not an obstacle, or they propagate through cuttings with the risk of decreasing the genetic diversity within and among species at the regenerated sites. In the present study, breaking of seed dormancy was investigated in valuable Mediterranean species of Prunus avium, Prunus spinosa and Rosa canina Specifically, in order to break dormancy, seeds of those species were warm-, cold-stratified and chemically treated. Based on the results, maximum germination for P. avium was 12% when seeds were warm stratified for four weeks altered with eight weeks of cold stratification. For P. spinosa, maximum percent germination was 26% when seeds were warm stratified for two weeks and continuously altered for eight weeks of cold stratification. Finally, for R. canina maximum percent germination was 40% under four weeks of warm stratification altered with twenty weeks of cold stratification, when seeds were pretreated with H2SO4 for 15 min. A maximum of twelve weeks of cold stratification for P. avium, P. spinosa and 20 weeks for R. canina provided almost zero percent germination. The results indicated that all three species experienced intense dormancy levels suggesting that those species need to be treated properly prior to sowing. Nonetheless, additional experiments are needed to achieve greater germination percentage of highly valuable species in orderto encourage seed derived seedling production. PMID:25895254

  6. Breaking seed dormancy of three orthodox Mediterranean Rosaceae species.

    PubMed

    Iakovoglou, Valasia; Radoglou, Kalliopi

    2015-03-01

    Biodiversity levels could be enhanced when regenerating a site by seed-derived seedlings. However, seed dormancy poses limitations for many species. As a result, nurseries either produce seedlings from species where dormancy is not an obstacle, or they propagate through cuttings with the risk of decreasing the genetic diversity within and among species at the regenerated sites. In the present study, breaking of seed dormancy was investigated in valuable Mediterranean species of Prunus avium, Prunus spinosa and Rosa canina Specifically, in order to break dormancy, seeds of those species were warm-, cold-stratified and chemically treated. Based on the results, maximum germination for P. avium was 12% when seeds were warm stratified for four weeks altered with eight weeks of cold stratification. For P. spinosa, maximum percent germination was 26% when seeds were warm stratified for two weeks and continuously altered for eight weeks of cold stratification. Finally, for R. canina maximum percent germination was 40% under four weeks of warm stratification altered with twenty weeks of cold stratification, when seeds were pretreated with H2SO4 for 15 min. A maximum of twelve weeks of cold stratification for P. avium, P. spinosa and 20 weeks for R. canina provided almost zero percent germination. The results indicated that all three species experienced intense dormancy levels suggesting that those species need to be treated properly prior to sowing. Nonetheless, additional experiments are needed to achieve greater germination percentage of highly valuable species in orderto encourage seed derived seedling production.

  7. Cotton buds, momentum, and impulse

    NASA Astrophysics Data System (ADS)

    van den Berg, Ed; Nuñez, Jover; Guirit, Alfredo; van Huis, Cor

    2000-01-01

    Here is a simple experiment demonstrating impulse and momentum that was picked up from a Japanese presenter at a physics teacher conference held in Cebu City. We have not been able to trace the experiment farther and have never seen it in print. After student-author Nuñez demonstrated it during an exam on conducting demonstrations, we converted the qualitative idea into a quanitative experiment and even discovered some possibilities for student research. The lab is also suitable as homework, since it uses universally available "equipment" — cotton buds (swabs), drinking straws, and a ruler.

  8. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium

    PubMed Central

    Liu, Hua; Sun, Ming; Du, Dongliang; Pan, Huitang; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-01-01

    Background Chrysanthemum morifolium is an important floral crop that is cultivated worldwide. However, due to a lack of genomic resources, very little information is available concerning the molecular mechanisms of flower development in chrysanthemum. Results The transcriptomes of chrysanthemum vegetative buds, floral buds and buds were sequenced using Illumina paired-end sequencing technology. A total of 15.4 Gb of reads were assembled into 91,367 unigenes with an average length of 739 bp. A total of 43,137 unigenes showed similarity to known proteins in the Swissprot or NCBI non-redundant protein databases. Additionally, 25,424, 24,321 and 13,704 unigenes were assigned to 56 gene ontology (GO) categories, 25 EuKaryotic Orthologous Groups (KOG) categories, and 285 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 1,876 differentially expressed genes (DEGs) (1,516 up-regulated, 360 down-regulated) were identified between vegetative buds and floral buds, and 3,300 DEGs (1,277 up-regulated, 1,706 down-regulated) were identified between floral buds and buds. Many genes encoding important transcription factors (e.g., AP2, MYB, MYC, WRKY, NAC and CRT) as well as proteins involved in carbohydrate metabolism, protein kinase activity, plant hormone signal transduction, and the defense responses, among others, were considerably up-regulated in floral buds. Genes involved in the photoperiod pathway and flower organ determination were also identified. These genes represent important candidate genes for molecular cloning and functional analysis to study flowering regulation in chrysanthemum. Conclusion This comparative transcriptome analysis revealed significant differences in gene expression and signaling pathway components between the vegetative buds, floral buds and buds of Chrysanthemum morifolium. A wide range of genes was implicated in regulating the phase transition from vegetative to reproductive growth. These results should aid

  9. Coordination of seed dormancy and germination processes by MYB96.

    PubMed

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination.

  10. Coordination of seed dormancy and germination processes by MYB96

    PubMed Central

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    The transition between seed dormancy and germination is an important stage that initiates plant life cycle. Hormonal balances of abscisic acid (ABA) and gibberellin (GA) contribute to determining the proper timing to germinate. Here, we demonstrate that the R2R3-type MYB96 transcription factor, a key ABA signaling mediator, coordinates seed dormancy and germination processes through distinct downstream events. This transcription factor controls ABA-INSENSITIVE 4 (ABI4) expression to inhibit seed germination by suppressing breakdown of lipid reserves in embryo. In addition, it also induces seed dormancy by stimulating ABA biosynthesis in an ABI4-independent manner. We propose that MYB96 integrates a multitude of environmental stress signals and acts as a master regulator in the determination of timing for seed germination. PMID:26313409

  11. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established. PMID:25509282

  12. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  13. Pollen development in Rhododendron in relation to winter dormancy and bloom time.

    PubMed

    Mirgorodskaya, Olga E; Koteyeva, Nuria K; Volchanskaya, Alexandra V; Miroslavov, Evgeny A

    2015-09-01

    Microsporogenesis and microgametogenesis of Rhododendron ledebourii (semi-deciduous), Rhododendron luteum (deciduous), and Rhododendron catawbiense (evergreen) were studied by light and electron microscopies in order to determine the stages of pollen development in relation to period of winter dormancy and bloom time throughout an annual growth cycle. Development of generative organs starts in June in R. ledebourii and in July in R. luteum and R. catawbiense and reaches completion about 11 months later. R. luteum and R. catawbiense microspores undergo meiosis at the end of the August and spend winter at the vacuolization stage. Mitosis with the formation of bicellular pollen grain occurs shortly before flowering at the beginning of June. R. ledebourii develops two types of flowers which differ in the timing of microgametogenesis. The first type is characterized by early microspore meiosis and mitosis leading to development of bicellular pollen grains by the end of August, and is prone to fall blooming during warm autumn temperatures. Microspores of the second flower type have a more prolonged vacuolization stage with mitosis and subsequent bicellular pollen grains occurring in November. By winter, flower buds in R. ledebourii are more advanced developmentally than in R. catawbiense and R. luteum, and bloom about 1 month earlier. The different strategies of pollen development identified both within and between these three Rhododendron species were recognized which are not associated with leaf drop during winter but appear to be related to the time of spring flowering and the frequency of autumn flowering. PMID:25643916

  14. Pollen development in Rhododendron in relation to winter dormancy and bloom time.

    PubMed

    Mirgorodskaya, Olga E; Koteyeva, Nuria K; Volchanskaya, Alexandra V; Miroslavov, Evgeny A

    2015-09-01

    Microsporogenesis and microgametogenesis of Rhododendron ledebourii (semi-deciduous), Rhododendron luteum (deciduous), and Rhododendron catawbiense (evergreen) were studied by light and electron microscopies in order to determine the stages of pollen development in relation to period of winter dormancy and bloom time throughout an annual growth cycle. Development of generative organs starts in June in R. ledebourii and in July in R. luteum and R. catawbiense and reaches completion about 11 months later. R. luteum and R. catawbiense microspores undergo meiosis at the end of the August and spend winter at the vacuolization stage. Mitosis with the formation of bicellular pollen grain occurs shortly before flowering at the beginning of June. R. ledebourii develops two types of flowers which differ in the timing of microgametogenesis. The first type is characterized by early microspore meiosis and mitosis leading to development of bicellular pollen grains by the end of August, and is prone to fall blooming during warm autumn temperatures. Microspores of the second flower type have a more prolonged vacuolization stage with mitosis and subsequent bicellular pollen grains occurring in November. By winter, flower buds in R. ledebourii are more advanced developmentally than in R. catawbiense and R. luteum, and bloom about 1 month earlier. The different strategies of pollen development identified both within and between these three Rhododendron species were recognized which are not associated with leaf drop during winter but appear to be related to the time of spring flowering and the frequency of autumn flowering.

  15. Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers.

    PubMed

    Oribe, Y; Kubo, T

    1997-02-01

    Responses of cambium to warming were recorded three times (December 14-27, 1990, January 18-February 3 and February 27-March 13, 1991) on 14-year-old Cryptomeria japonica D. Don and four times (December 12-26, 1990, January 18-February 2, February 26-March 12 and March 28-April 13, 1991) on 27-year-old Larix leptolepis Gord., during a period of winter cambial dormancy. Stem surfaces at breast height, mid-tree height and the crown base were warmed to 25-30 degrees C for 2 weeks. After heat treatment, cambia in the treated regions and in untreated regions 1 m above each treated area were examined by optical and transmission electron microscopy (TEM). In C. japonica, heat treatment often resulted in cambial reactivation in the treated regions, and this response to heat gradually increased as the dormant season passed from winter to spring. Conversely, in L. leptolepis, no cell division was observed in the cambial region of warmed stems until natural resumption of cambial activity, which occurred after bud break.

  16. Dormancy within Staphylococcus epidermidis biofilms: a transcriptomic analysis by RNA-seq.

    PubMed

    Carvalhais, Virginia; França, Angela; Cerca, Filipe; Vitorino, Rui; Pier, Gerald B; Vilanova, Manuel; Cerca, Nuno

    2014-03-01

    The proportion of dormant bacteria within Staphylococcus epidermidis biofilms may determine its inflammatory profile. Previously, we have shown that S. epidermidis biofilms with higher proportions of dormant bacteria have reduced activation of murine macrophages. RNA-sequencing was used to identify the major transcriptomic differences between S. epidermidis biofilms with different proportions of dormant bacteria. To accomplish this goal, we used an in vitro model where magnesium allowed modulation of the proportion of dormant bacteria within S. epidermidis biofilms. Significant differences were found in the expression of 147 genes. A detailed analysis of the results was performed based on direct and functional gene interactions. Biological processes among the differentially expressed genes were mainly related to oxidation-reduction processes and acetyl-CoA metabolic processes. Gene set enrichment revealed that the translation process is related to the proportion of dormant bacteria. Transcription of mRNAs involved in oxidation-reduction processes was associated with higher proportions of dormant bacteria within S. epidermidis biofilm. Moreover, the pH of the culture medium did not change after the addition of magnesium, and genes related to magnesium transport did not seem to impact entrance of bacterial cells into dormancy.

  17. Embryonic origin of amphibian taste buds.

    PubMed

    Barlow, L A; Northcutt, R G

    1995-05-01

    Despite numerous descriptive studies, the embryonic origin of vertebrate taste buds has never been experimentally determined. A number of different alternatives have been suggested for taste bud origins, including epibranchial placodes, the neural crest, and the local epithelium of the oropharyngeal cavity. The role of a series of epibranchial placodes and the cephalic neural crest, which together give rise to the cranial nerves innervating taste buds, was examined with regard to the development of oropharyngeal taste buds in an ambystomatid salamander, the axolotl. When pigmented placodal ectoderm or neural folds were grafted isotopically and isochronically into nonpigmented host embryos, known derivatives of each tissue contained pigmented cells, but labeled taste buds were never encountered. Thus, neither epibranchial placodes nor neural crest contribute cells to taste buds during embryogenesis. The majority of the oropharyngeal cavity of ambystomatid salamanders is lined by an endodermal epithelium. In order to demonstrate conclusively that taste buds arise from this local epithelium, the presumptive cephalic endoderm of early axolotl gastrulae was microinjected with the lipophilic dye, DiI. In the oropharyngeal epithelium of all larvae examined, both taste buds and general epithelial cells were labeled with DiI, indicating their common endodermal origin. Our findings are novel in that this is the first experimental demonstration of the endodermal origin of a vertebrate sensory receptor cell class. PMID:7750643

  18. Bacterial Dormancy Is More Prevalent in Freshwater than Hypersaline Lakes

    PubMed Central

    Aanderud, Zachary T.; Vert, Joshua C.; Lennon, Jay T.; Magnusson, Tylan W.; Breakwell, Donald P.; Harker, Alan R.

    2016-01-01

    Bacteria employ a diverse array of strategies to survive under extreme environmental conditions but maintaining these adaptations comes at an energetic cost. If energy reserves drop too low, extremophiles may enter a dormant state to persist. We estimated bacterial dormancy and identified the environmental variables influencing our activity proxy in 10 hypersaline and freshwater lakes across the Western United States. Using ribosomal RNA:DNA ratios as an indicator for bacterial activity, we found that the proportion of the community exhibiting dormancy was 16% lower in hypersaline than freshwater lakes. Based on our indicator variable multiple regression results, saltier conditions in both freshwater and hypersaline lakes increased activity, suggesting that salinity was a robust environmental filter structuring bacterial activity in lake ecosystems. To a lesser degree, higher total phosphorus concentrations reduced dormancy in all lakes. Thus, even under extreme conditions, the competition for resources exerted pressure on activity. Within the compositionally distinct and less diverse hypersaline communities, abundant taxa were disproportionately active and localized in families Microbacteriaceae (Actinobacteria), Nitriliruptoraceae (Actinobacteria), and Rhodobacteraceae (Alphaproteobacteria). Our results are consistent with the view that hypersaline communities are able to capitalize on a seemingly more extreme, yet highly selective, set of conditions and finds that extremophiles may need dormancy less often to thrive and survive. PMID:27375575

  19. Bacterial Dormancy Is More Prevalent in Freshwater than Hypersaline Lakes.

    PubMed

    Aanderud, Zachary T; Vert, Joshua C; Lennon, Jay T; Magnusson, Tylan W; Breakwell, Donald P; Harker, Alan R

    2016-01-01

    Bacteria employ a diverse array of strategies to survive under extreme environmental conditions but maintaining these adaptations comes at an energetic cost. If energy reserves drop too low, extremophiles may enter a dormant state to persist. We estimated bacterial dormancy and identified the environmental variables influencing our activity proxy in 10 hypersaline and freshwater lakes across the Western United States. Using ribosomal RNA:DNA ratios as an indicator for bacterial activity, we found that the proportion of the community exhibiting dormancy was 16% lower in hypersaline than freshwater lakes. Based on our indicator variable multiple regression results, saltier conditions in both freshwater and hypersaline lakes increased activity, suggesting that salinity was a robust environmental filter structuring bacterial activity in lake ecosystems. To a lesser degree, higher total phosphorus concentrations reduced dormancy in all lakes. Thus, even under extreme conditions, the competition for resources exerted pressure on activity. Within the compositionally distinct and less diverse hypersaline communities, abundant taxa were disproportionately active and localized in families Microbacteriaceae (Actinobacteria), Nitriliruptoraceae (Actinobacteria), and Rhodobacteraceae (Alphaproteobacteria). Our results are consistent with the view that hypersaline communities are able to capitalize on a seemingly more extreme, yet highly selective, set of conditions and finds that extremophiles may need dormancy less often to thrive and survive.

  20. Bacterial Dormancy Is More Prevalent in Freshwater than Hypersaline Lakes.

    PubMed

    Aanderud, Zachary T; Vert, Joshua C; Lennon, Jay T; Magnusson, Tylan W; Breakwell, Donald P; Harker, Alan R

    2016-01-01

    Bacteria employ a diverse array of strategies to survive under extreme environmental conditions but maintaining these adaptations comes at an energetic cost. If energy reserves drop too low, extremophiles may enter a dormant state to persist. We estimated bacterial dormancy and identified the environmental variables influencing our activity proxy in 10 hypersaline and freshwater lakes across the Western United States. Using ribosomal RNA:DNA ratios as an indicator for bacterial activity, we found that the proportion of the community exhibiting dormancy was 16% lower in hypersaline than freshwater lakes. Based on our indicator variable multiple regression results, saltier conditions in both freshwater and hypersaline lakes increased activity, suggesting that salinity was a robust environmental filter structuring bacterial activity in lake ecosystems. To a lesser degree, higher total phosphorus concentrations reduced dormancy in all lakes. Thus, even under extreme conditions, the competition for resources exerted pressure on activity. Within the compositionally distinct and less diverse hypersaline communities, abundant taxa were disproportionately active and localized in families Microbacteriaceae (Actinobacteria), Nitriliruptoraceae (Actinobacteria), and Rhodobacteraceae (Alphaproteobacteria). Our results are consistent with the view that hypersaline communities are able to capitalize on a seemingly more extreme, yet highly selective, set of conditions and finds that extremophiles may need dormancy less often to thrive and survive. PMID:27375575

  1. Summer dormancy in edible dormice ( Glis glis) without energetic constraints

    NASA Astrophysics Data System (ADS)

    Bieber, Claudia; Ruf, Thomas

    2009-01-01

    Average longevity in free-living edible dormice ( Glis glis) can reach 9 years, which is extremely high for a small rodent. This remarkable life span has been related to a peculiar life history strategy and the rarity of reproductive bouts in these seed eaters. Most females (96%) reproduce only once or twice in their lifetime, predominantly during years of mast seeding of, e.g., beech, but entire populations can skip reproduction in years of low seed availability. Surprisingly, in non-reproductive years, large fractions of populations apparently vanished and were never captured above ground. Therefore, we determined the duration of above-ground activity, and body temperature profiles in a subset of animals, of dormice under semi-natural conditions in outdoor enclosures. We found that non-reproductive dormice returned to dormancy in underground burrows throughout summer after active seasons as short as <2 weeks. Thus, animals spent up to >10 months per year in dormancy. This exceeds dormancy duration of any other mammal under natural conditions. Summer dormancy was not caused by energy constraints, as it occurred in animals in good condition, fed ad libitum and without climatic stress. We suggest that almost year-round torpor has evolved as a strategy to escape birds of prey, the major predators of this arboreal mammal. This unique predator-avoidance strategy clearly helps in explaining the unusually high longevity of dormice.

  2. Perspectives of biotechnologies based on dormancy phenomenon for space researches

    NASA Astrophysics Data System (ADS)

    Alekseev, V.; Sychev, V.; Layus, D.; Levinsky, M.; Novikova, N.; Zakhodnova, T.

    Long term space missions will require a renewable source of food and an efficient method to recycle oxygen Plants especially aquatic micro algae provide an obvious solution to these problems However long duration plant growth and reproduction in space that is necessary for transportation of a control ecological life support system CELSS from Earth to other planets are problematic The introduction of heterotrophs in space CELSS is a more formidable problem as the absence of gravity creates additional difficulties for their life Dormancy phenomenon protected a great many animals and plants in harsh environmental conditions within a special resting phases of life cycle lasting from months up to hundred years This phenomenon can be quite perspective as a tool to overcome difficulties with CELSS transportation in space missions Cryptobiotic stages of microbes fungi unicellular algae and protists can survive in open space conditions that is important for interplanetary quarantine and biological security inside spacecraft Searching for life outside the Earth at such planet like Mars with extremely variable environment should be oriented on dormancy as crucial phases of a life cycle in such organisms Five major research programs aimed on study dormancy phenomenon for exobiology purposes and creation of new biotechnologies are discussed List of species candidate components of CELSS with dormancy in their life cycle used in space experiments at the Russian segment of International Space Station now includes 26 species from bacteria to fish The

  3. Ethylene, a key factor in the regulation of seed dormancy

    PubMed Central

    Corbineau, Françoise; Xia, Qiong; Bailly, Christophe

    2014-01-01

    Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA) and gibberellins (GAs). Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L-1. Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1) demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS) may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a crosstalk between hormones and other signals will be discussed. PMID:25346747

  4. Ethylene, a key factor in the regulation of seed dormancy.

    PubMed

    Corbineau, Françoise; Xia, Qiong; Bailly, Christophe; El-Maarouf-Bouteau, Hayat

    2014-01-01

    Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA) and gibberellins (GAs). Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L(-1). Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1) demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS) may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a crosstalk between hormones and other signals will be discussed.

  5. Scarification and Germination Treatments Break Dormancy of Rubus Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Rubus exhibits morphological diversity and a wide range of reproductive systems and habitats. Seeds of blackberry (subgenus Rubus) and raspberry (subg. Idaeobatus) have a deep dormancy caused by one or more mechanisms. Rubus seeds are normally enclosed in a hard schlerenchymatous endocar...

  6. Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum

    PubMed Central

    Dierck, Robrecht; De Keyser, Ellen; De Riek, Jan; Dhooghe, Emmy; Van Huylenbroeck, Johan; Prinsen, Els; Van Der Straeten, Dominique

    2016-01-01

    In the production and breeding of Chrysanthemum sp., shoot branching is an important quality aspect as the outgrowth of axillary buds determines the final plant shape. Bud outgrowth is mainly controlled by apical dominance and the crosstalk between the plant hormones auxin, cytokinin and strigolactone. In this work the hormonal and genetic regulation of axillary bud outgrowth was studied in two differently branching cut flower Chrysanthemum morifolium (Ramat) genotypes. C17 is a split-type which forms an inflorescence meristem after a certain vegetative period, while C18 remains vegetative under long day conditions. Plant growth of both genotypes was monitored during 5 subsequent weeks starting one week before flower initiation occurred in C17. Axillary bud outgrowth was measured weekly and samples of shoot apex, stem and axillary buds were taken during the first two weeks. We combined auxin and cytokinin measurements by UPLC-MS/MS with RT-qPCR expression analysis of genes involved in shoot branching regulation pathways in chrysanthemum. These included bud development genes (CmBRC1, CmDRM1, CmSTM, CmLsL), auxin pathway genes (CmPIN1, CmTIR3, CmTIR1, CmAXR1, CmAXR6, CmAXR2, CmIAA16, CmIAA12), cytokinin pathway genes (CmIPT3, CmHK3, CmRR1) and strigolactone genes (CmMAX1 and CmMAX2). Genotype C17 showed a release from apical dominance after floral transition coinciding with decreased auxin and increased cytokinin levels in the subapical axillary buds. As opposed to C17, C18 maintained strong apical dominance with vegetative growth throughout the experiment. Here high auxin levels and decreasing cytokinin levels in axillary buds and stem were measured. A differential expression of several branching genes accompanied the different hormonal change and bud outgrowth in C17 and C18. This was clear for the strigolactone biosynthesis gene CmMAX1, the transcription factor CmBRC1 and the dormancy associated gene CmDRM1, that all showed a decreased expression in C17 at floral

  7. Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum.

    PubMed

    Dierck, Robrecht; De Keyser, Ellen; De Riek, Jan; Dhooghe, Emmy; Van Huylenbroeck, Johan; Prinsen, Els; Van Der Straeten, Dominique

    2016-01-01

    In the production and breeding of Chrysanthemum sp., shoot branching is an important quality aspect as the outgrowth of axillary buds determines the final plant shape. Bud outgrowth is mainly controlled by apical dominance and the crosstalk between the plant hormones auxin, cytokinin and strigolactone. In this work the hormonal and genetic regulation of axillary bud outgrowth was studied in two differently branching cut flower Chrysanthemum morifolium (Ramat) genotypes. C17 is a split-type which forms an inflorescence meristem after a certain vegetative period, while C18 remains vegetative under long day conditions. Plant growth of both genotypes was monitored during 5 subsequent weeks starting one week before flower initiation occurred in C17. Axillary bud outgrowth was measured weekly and samples of shoot apex, stem and axillary buds were taken during the first two weeks. We combined auxin and cytokinin measurements by UPLC-MS/MS with RT-qPCR expression analysis of genes involved in shoot branching regulation pathways in chrysanthemum. These included bud development genes (CmBRC1, CmDRM1, CmSTM, CmLsL), auxin pathway genes (CmPIN1, CmTIR3, CmTIR1, CmAXR1, CmAXR6, CmAXR2, CmIAA16, CmIAA12), cytokinin pathway genes (CmIPT3, CmHK3, CmRR1) and strigolactone genes (CmMAX1 and CmMAX2). Genotype C17 showed a release from apical dominance after floral transition coinciding with decreased auxin and increased cytokinin levels in the subapical axillary buds. As opposed to C17, C18 maintained strong apical dominance with vegetative growth throughout the experiment. Here high auxin levels and decreasing cytokinin levels in axillary buds and stem were measured. A differential expression of several branching genes accompanied the different hormonal change and bud outgrowth in C17 and C18. This was clear for the strigolactone biosynthesis gene CmMAX1, the transcription factor CmBRC1 and the dormancy associated gene CmDRM1, that all showed a decreased expression in C17 at floral

  8. An Entrance Region Mass Transfer Experiment.

    ERIC Educational Resources Information Center

    Youngquist, G. R.

    1979-01-01

    This paper describes an experiment designed to reveal the consequences of the development of a concentration boundary layer. The rate of a mass transfer limited electrochemical reaction is measured and used to obtain the dependence of average Sherwood number on Reynolds number and entrance length. (Author/BB)

  9. Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus.

    PubMed

    Kozarewa, Iwanka; Ibáñez, Cristian; Johansson, Mikael; Ogren, Erling; Mozley, David; Nylander, Eva; Chono, Makiko; Moritz, Thomas; Eriksson, Maria E

    2010-05-01

    In many temperate woody species, dormancy is induced by short photoperiods. Earlier studies have shown that the photoreceptor phytochrome A (phyA) promotes growth. Specifically, Populus plants that over-express the oat PHYA gene (oatPHYAox) show daylength-independent growth and do not become dormant. However, we show that oatPHYAox plants could be induced to set bud and become cold hardy by exposure to a shorter, non-24 h diurnal cycle that significantly alters the relative position between endogenous rhythms and perceived light/dark cycles. Furthermore, we describe studies in which the expression of endogenous Populus tremula x P. tremuloides PHYTOCHROME A (PttPHYA) was reduced in Populus trees by antisense inhibition. The antisense plants showed altered photoperiodic requirements, resulting in earlier growth cessation and bud formation in response to daylength shortening, an effect that was explained by an altered innate period that leads to phase changes of clock-associated genes such as PttCO2. Moreover, gene expression studies following far-red light pulses show a phyA-mediated repression of PttLHY1 and an induction of PttFKF1 and PttFT. We conclude that the level of PttPHYA expression strongly influences seasonally regulated growth in Populus and is central to co-ordination between internal clock-regulated rhythms and external light/dark cycles through its dual effect on the pace of clock rhythms and in light signaling.

  10. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns.

    PubMed

    Li, Zhigang; Reighard, Gregory Lynn; Abbott, Albert Glenn; Bielenberg, Douglas Gary

    2009-01-01

    Mapping and sequencing of the non-dormant evg mutant in peach [Prunus persica (L.) Batsch] identified six tandem-arrayed DAM (dormancy-associated MADS-box) genes as candidates for regulating growth cessation and terminal bud formation. To narrow the list of candidate genes, an attempt was made to associate bud phenology with the seasonal and environmental patterns of expression of the candidates in wild-type trees. The expression of the six peach DAM genes at the EVG locus of peach was characterized throughout an annual growing cycle in the field, and under controlled conditions in response to a long day-short day photoperiod transition. DAM1, 2, 4, 5, and 6 were responsive to a reduction in photoperiod in controlled conditions and the direction of response correlated with the seasonal timing of expression in field-grown trees. DAM3 did not respond to photoperiod and may be regulated by chilling temperatures. The DAM genes in peach appear to have at least four distinct patterns of expression. DAM1, 2, and 4 are temporally associated with seasonal elongation cessation and bud formation and are the most likely candidates for control of the evg phenotype.

  11. Mitochondrial network size scaling in budding yeast.

    PubMed

    Rafelski, Susanne M; Viana, Matheus P; Zhang, Yi; Chan, Yee-Hung M; Thorn, Kurt S; Yam, Phoebe; Fung, Jennifer C; Li, Hao; Costa, Luciano da F; Marshall, Wallace F

    2012-11-01

    Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria-to-cell size ratio continually decreased in aging mothers over successive generations. However, regardless of the mother's age or mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.

  12. Necessity of high temperature for the dormancy release of Narcissus tazetta var. chinensis.

    PubMed

    Li, Xiao-Fang; Shao, Xing-Hua; Deng, Xin-Jie; Wang, Yang; Zhang, Xue-Ping; Jia, Lin-Yan; Xu, Jing; Zhang, Dong-Mei; Sun, Yue; Xu, Ling

    2012-09-15

    Winter dormancy has been extensively studied in many plants, while much less information is available for summer dormancy. Narcissus tazetta var. chinensis is characterized by a prolonged period of summer dormancy during the annual cycle. In the present study, we characterized the nature of dormancy in the controlled growth conditions and investigated the effects of temperature and ethylene on dormancy release. Cessation of growth and senescence of aerial tissues occurred even under conditions favorable for growth, suggesting an endo-dormancy process. Bulbs failed to sprout when they were exposed to low storage temperatures, while high temperature treatment preceding low storage temperatures, or heating interruption during low storage temperatures, could make bulbs sprouting. These results suggest that high temperatures are necessary for endo-dormancy release. Ethylene application during a later storage stage showed an obvious accelerative effect on bulb sprouting, whereas ethylene application during the middle stage had no effect on sprouting. The biological progression of dormancy was further studied through cytological and physiological analyses. Under natural conditions, the ethylene level was reduced to trace amounts with the transition and progression of dormancy. A transient peak in ethylene release was found when the plugged plasmodesmata (PD) began to re-open and flower initiation began. The most common PD possessed electron-dense deposits in endo-dormancy. These data indicate that endo-dormancy ends when flower initiation begins and ethylene peak occurs. Ethylene application had no effect on dormancy release, while it hastened sprouting only after the release from endo-dormancy by high temperature.

  13. 4. Light tower, interior from entrance, looking southeast Goat ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Light tower, interior from entrance, looking southeast - Goat Island Light Station, Goat Island, next to entrance to Cape Porpoise Harbor, just south of Trott Island, Cape Porpoise, York County, ME

  14. 6. DETAIL VIEW OF ENTRANCE GATES, SHOWING IRON GATE, STONE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF ENTRANCE GATES, SHOWING IRON GATE, STONE WORK, AND GATE STOP FROM SOUTHEAST OF NORTHWEST ELEMENTS. - William Enston Home, Entrance Gate, 900 King Street, Charleston, Charleston County, SC

  15. 7. South entrance sign, 1935; pylon completer, signboard not installed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. South entrance sign, 1935; pylon completer, signboard not installed. Zion negative no. 858 Z10. - South Entrance Sign, Zion-Mt. Carmel Highway at south park boundary, Springdale, Washington County, UT

  16. 57. POWDER MAGAZINE, DETAIL VIEW OF NORTHEAST FRONT ENTRANCE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. POWDER MAGAZINE, DETAIL VIEW OF NORTHEAST FRONT ENTRANCE TO ACESS PASSAGE TO MAGAZINES FROM INTERIOR OF MAGAZINE SHOWING VENTILATION WINDOWS (BARRED) FLANKING ENTRANCE DOOR (OPEN). NOTE ACCESS PASSAGE TO ADJOING MAGAZINE. - Fort Monroe, Fortress, Hampton, Hampton, VA

  17. 8. VIEW LOOKING SOUTH, SHOWING NORTH ENTRANCE HOUSE AND CENTRAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING SOUTH, SHOWING NORTH ENTRANCE HOUSE AND CENTRAL PAVILION, WITH SOUTH ENTRANCE HOUSE AND ENGINE HOUSE BEYOND - Fairmount Waterworks, East bank of Schuylkill River, Aquarium Drive, Philadelphia, Philadelphia County, PA

  18. 7. VIEW OF OLD ENTRANCE ROAD (NOW WILLOW FLATS ROAD) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF OLD ENTRANCE ROAD (NOW WILLOW FLATS ROAD) FACING EAST INTO PARK. - Arches National Park Main Entrance Road, Beginning at U.S. Highway 191, approximately 6 miles north of Moab, Moab, Grand County, UT

  19. The dormant buds of Rhabdopleura compacta (Hemichordata).

    PubMed

    Dilly, P N

    1975-06-13

    Rhabdopleura has an overwintering stage that consists of two layers of cells surrounding a central yolk mass. This cellular part is surrounded by a thick electron dense capsule which is secreted by the bud itself. The capsule is probably impervious and protective to its contents. Blood vessels join the buds to the zooids of the colony. They form the probable route of transfer of yolk from the zooids to the dormant bud. The capsule of the dormant bud has some structural features in common with the black stolon of the adult zooids. The black stolon is probably formed in a manner similar to that which made the fusellar fabric of the periderm of fossil graptolities. PMID:1149105

  20. Supercooling in Overwintering Azalea Flower Buds 1

    PubMed Central

    George, Milon F.; Burke, Michael J.; Weiser, Conrad J.

    1974-01-01

    Differential thermal analysis and nuclear magnetic resonance spectroscopy experiments on whole flower buds and excised floral primordia of azalea (Rhododendron kosterianum, Schneid.) proved that supercooling is the mode of freezing resistance (avoidance) of azalea flower primordia. Increase in the linewidth of nuclear magnetic resonance spectra for water upon thawing supports the view that injury to the primordia occurs at the moment of freezing. Nonliving primordia freeze at the same temperatures as living primordia, indicating that morphological features of primordial tissues are a key factor in freezing avoidance of dormant azalea flower primordia. Differential thermal analyses was used to study the relationship of cooling rate to the freezing points of floral primordia in whole flower buds. At a cooling rate of 8.5 C per hour, primordia in whole buds froze at about the same subfreezing temperatures as did excised primordia cooled at 37 C per hour. At more rapid cooling rates primordia in intact buds froze at higher temperatures. PMID:16658832

  1. The dormant buds of Rhabdopleura compacta (Hemichordata).

    PubMed

    Dilly, P N

    1975-06-13

    Rhabdopleura has an overwintering stage that consists of two layers of cells surrounding a central yolk mass. This cellular part is surrounded by a thick electron dense capsule which is secreted by the bud itself. The capsule is probably impervious and protective to its contents. Blood vessels join the buds to the zooids of the colony. They form the probable route of transfer of yolk from the zooids to the dormant bud. The capsule of the dormant bud has some structural features in common with the black stolon of the adult zooids. The black stolon is probably formed in a manner similar to that which made the fusellar fabric of the periderm of fossil graptolities.

  2. Properties of peach flower buds which facilitate supercooling.

    PubMed

    Ashworth, E N

    1982-11-01

    Water in dormant peach (Prunus persica [L.] Batsch. var. ;Harbrite') flower buds deep supercooled. Both supercooling and the freezing of water within the bud axis and primordium as distinct components depended on the viability of the bud axis tissue. The viability of the primordium was not critical. Supercooling was prevented by wounding buds with a dissecting needle, indicating that bud structural features were important. Bud morphological features appeared to prevent the propagation of ice through the vascular tissue and into the primordium. In dormant buds, procambial cells had not yet differentiated into xylem vessel elements. Xylem continuity between the bud primordium and adjacent tissues did not appear to be established until buds had deacclimated. It was concluded that structural, morphological, and physiological features of the bud facilitated supercooling.

  3. 81. EXTERIOR VIEW, EAST SIDE, SHOWING ENTRANCE TO BOILER ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. EXTERIOR VIEW, EAST SIDE, SHOWING ENTRANCE TO BOILER ROOM ON LEFT, ENTRANCE TO STABLES AT CENTER, AND ENTRANCE TO ENGINE ROOM ON RIGHT. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  4. Impeller entrance pre whirl characteristics research

    NASA Astrophysics Data System (ADS)

    WU, W.; Wang, Y.; Han, Y. W.

    2016-05-01

    In order to study the effect of inlet port on the pump performance, the impeller inlet part, should be analyzed for impeller is able to extend the function of water flow to the front of the impeller for a long distance. Impeller flow of pre swirl flow is due to selection of least resistance into the impeller, but the pre swirl in the flow direction according to the impeller blade entrance angle, and the circumferential velocity of flow. The study found that lies in the external characteristic of the pump will be fell when the off-design, but in the case of large flow impeller and impeller in the direction of the front entrance fluid pre whirl steering is on the contrary, when this with little traffic is quite different .this article will study the occurrence, development, and the mechanism of the influence of flow field.

  5. Mechanisms of disseminated cancer cell dormancy: an awakening field

    PubMed Central

    Sosa, María Soledad; Bragado, Paloma; Aguirre-Ghiso, Julio A.

    2014-01-01

    Metastases arise from residual disseminated tumour cells (DTCs). This can happen years after primary tumour treatment because residual tumour cells can enter dormancy and evade therapies. As the biology of minimal residual disease seems to diverge from that of proliferative lesions, understanding the underpinnings of this new cancer biology is key to prevent metastasis. Analysis of approximately 7 years of literature reveals a growing focus on tumour and normal stem cell quiescence, extracellular and stromal microenvironments, autophagy and epigenetics as mechanisms that dictate tumour cell dormancy. In this Review, we attempt to integrate this information and highlight both the weaknesses and the strengths in the field to provide a framework to understand and target this crucial step in cancer progression. PMID:25118602

  6. A local dormancy cline is related to the seed maturation environment, population genetic composition and climate

    PubMed Central

    Fernández-Pascual, Eduardo; Jiménez-Alfaro, Borja; Caujapé-Castells, Juli; Jaén-Molina, Ruth; Díaz, Tomás Emilio

    2013-01-01

    Background and Aims Seed dormancy varies within species in response to climate, both in the long term (through ecotypes or clines) and in the short term (through the influence of the seed maturation environment). Disentangling both processes is crucial to understand plant adaptation to environmental changes. In this study, the local patterns of seed dormancy were investigated in a narrow endemic species, Centaurium somedanum, in order to determine the influence of the seed maturation environment, population genetic composition and climate. Methods Laboratory germination experiments were performed to measure dormancy in (1) seeds collected from different wild populations along a local altitudinal gradient and (2) seeds of a subsequent generation produced in a common garden. The genetic composition of the original populations was characterized using intersimple sequence repeat (ISSR) PCR and principal co-ordinate analysis (PCoA), and its correlation with the dormancy patterns of both generations was analysed. The effect of the local climate on dormancy was also modelled. Key Results An altitudinal dormancy cline was found in the wild populations, which was maintained by the plants grown in the common garden. However, seeds from the common garden responded better to stratification, and their release from dormancy was more intense. The patterns of dormancy variation were correlated with genetic composition, whereas lower temperature and summer precipitation at the population sites predicted higher dormancy in the seeds of both generations. Conclusions The dormancy cline in C. somedanum is related to a local climatic gradient and also corresponds to genetic differentiation among populations. This cline is further affected by the weather conditions during seed maturation, which influence the receptiveness to dormancy-breaking factors. These results show that dormancy is influenced by both long-and short-term climatic variation. Such processes at such a reduced spatial

  7. Budded baculovirus particle structure revisited.

    PubMed

    Wang, Qiushi; Bosch, Berend-Jan; Vlak, Just M; van Oers, Monique M; Rottier, Peter J; van Lent, Jan W M

    2016-02-01

    Baculoviruses are a group of enveloped, double-stranded DNA insect viruses with budded (BV) and occlusion-derived (ODV) virions produced during their infection cycle. BVs are commonly described as rod shaped particles with a high apical density of protein extensions (spikes) on the lipid envelope surface. However, due to the fragility of BVs the conventional purification and electron microscopy (EM) staining methods considerably distort the native viral structure. Here, we use cryo-EM analysis to reveal the near-native morphology of two intensively studied baculoviruses, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV), as models for BVs carrying GP64 and F as envelope fusion protein on the surface. The now well-preserved AcMNPV and SeMNPV BV particles have a remarkable elongated, ovoid shape leaving a large, lateral space between nucleocapsid (NC) and envelope. Consistent with previous findings the NC has a distinctive cap and base structure interacting tightly with the envelope. This tight interaction may explain the partial retaining of the envelope on both ends of the NC and the disappearance of the remainder of the BV envelope in the negative-staining EM images. Cryo-EM also reveals that the viral envelope contains two layers with a total thickness of ≈ 6-7 nm, which is significantly thicker than a usual biological membrane (<4 nm) as measured by X-ray scanning. Most spikes are densely clustered at the two apical ends of the virion although some envelope proteins are also found more sparsely on the lateral regions. The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new near-native structural model of baculovirus BVs.

  8. Senescence, dormancy and tillering in perennial C4 grasses.

    PubMed

    Sarath, Gautam; Baird, Lisa M; Mitchell, Robert B

    2014-03-01

    Perennial, temperate, C4 grasses, such as switchgrass and miscanthus have been tabbed as sources of herbaceous biomass for the production of green fuels and chemicals based on a number of positive agronomic traits. Although there is important literature on the management of these species for biomass production on marginal lands, numerous aspects of their biology are as yet unexplored at the molecular level. Perenniality, a key agronomic trait, is a function of plant dormancy and winter survival of the below-ground parts of the plants. These include the crowns, rhizomes and meristems that will produce tillers. Maintaining meristem viability is critical for the continued survival of the plants. Plant tillers emerge from the dormant crown and rhizome meristems at the start of the growing period in the spring, progress through a phase of vegetative growth, followed by flowering and eventually undergo senescence. There is nutrient mobilization from the aerial portions of the plant to the crowns and rhizomes during tiller senescence. Signals arising from the shoots and from the environment can be expected to be integrated as the plants enter into dormancy. Plant senescence and dormancy have been well studied in several dicot species and offer a potential framework to understand these processes in temperate C4 perennial grasses. The availability of latitudinally adapted populations for switchgrass presents an opportunity to dissect molecular mechanisms that can impact senescence, dormancy and winter survival. Given the large increase in genomic and other resources for switchgrass, it is anticipated that projected molecular studies with switchgrass will have a broader impact on related species. PMID:24467906

  9. Dormancy and Recovery Testing for Biological Wastewater Processors

    NASA Technical Reports Server (NTRS)

    Hummerick, Mary E.; Coutts, Janelle L.; Lunn, Griffin M.; Spencer, LaShelle; Khodadad, Christina L.; Frances, Someliz; Wheller, Raymond

    2015-01-01

    Bioreactors, such as aerated membrane type bioreactors have been proposed and studied for a number of years as an alternate approach for treating wastewater streams for space exploration. Several challenges remain before these types of bioreactors can be used in space settings, including transporting the bioreactors with their microbial communities to space, whether that be the International Space Station or beyond, or procedures for safing the systems and placing them into dormant state for later start-up. Little information is available on such operations as it is not common practice for terrestrial systems. This study explored several dormancy processes for established bioreactors to determine optimal storage and recovery conditions. Procedures focused on complete isolation of the microbial communities from an operational standpoint and observing the effects of: 1) storage temperature, and 2) storage with or without the reactor bulk fluid. The first consideration was tested from a microbial integrity and power consumption standpoint; both room temperature (25 C) and cold (4 C) storage conditions were studied. The second consideration was explored; again, for microbial integrity as well as plausible real-world scenarios of how terrestrially established bioreactors would be transported to microgravity and stored for periods of time between operations. Biofilms were stored without the reactor bulk fluid to simulate transport of established biofilms into microgravity, while biofilms stored with the reactor bulk fluid simulated the most simplistic storage condition to implement operations for extended periods of nonuse. Dormancy condition did not have an influence on recovery in initial studies with immature biofilms (48 days old), however, a lengthy recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy period to steady state operation within 4 days (approximately 1 residence cycle

  10. Dormancy and Recovery Testing for Biological Wastewater Processors

    NASA Technical Reports Server (NTRS)

    Hummerick, Mary E.; Coutts, Janelle L.; Lunn, Griffin M.; Spencer, LaShelle; Khodadad, Christina L.; Birmele, Michele N.; Frances, Someliz; Wheeler, Raymond

    2015-01-01

    Bioreactors, such as the aerated hollow fiber membrane type, have been proposed and studied for a number of years as an alternate approach for treating wastewater streams for space exploration. Several challenges remain to be resolved before these types of bioreactors can be used in space settings, including transporting the bioreactors with intact and active biofilms, whether that be to the International Space Station or beyond, or procedures for safing the systems and placing them into a dormant state for later start-up. Little information is available on such operations as it is not common practice for terrestrial systems. This study explored several dormancy processes for established bioreactors to determine optimal storage and recovery conditions. Procedures focused on complete isolation of the microbial communities from an operational standpoint and observing the effects of: 1) storage temperature, and 2) storage with or without the reactor bulk fluid. The first consideration was tested from a microbial integrity and power consumption standpoint; both ambient temperature (25 C) and cold (4 C) storage conditions were studied. The second consideration was explored; again, for microbial integrity as well as plausible real-world scenarios of how terrestrially established bioreactors would be transported to microgravity and stored for periods of time between operations. Biofilms were stored without the reactor bulk fluid to simulate transport of established biofilms into microgravity, while biofilms stored with the reactor bulk fluid simulated the most simplistic storage condition to implement operations for extended periods of nonuse. Dormancy condition did not have an influence on recovery in initial studies with immature biofilms (48 days old), however a lengthy recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy period to steady state operation within 4 days (approx. 1

  11. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.

    PubMed

    Postma, Froukje M; Ågren, Jon

    2015-02-01

    The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.

  12. Hormonal Regulation of Dormancy in Developing Sorghum Seeds.

    PubMed Central

    Steinbach, H. S.; Benech-Arnold, R. L.; Sanchez, R. A.

    1997-01-01

    The role of abscisic acid (ABA) and gibberellic acid (GA) in determining the dormancy level of developing sorghum (Sorghum bicolor [L.] Moench.) seeds from varieties presenting contrasting preharvest sprouting behavior (Redland B2, susceptible; IS 9530, resistant) was investigated. Panicles from both varieties were sprayed soon after pollination with fluridone or paclobutrazol to inhibit ABA and GA synthesis, respectively. Fluridone application to the panicles increased germinability of Redland B2 immature caryopses, whereas early treatment with paclobutrazol completely inhibited germination of this variety during most of the developmental period. Incubating caryopses in the presence of 100 [mu]M GA4+7 overcame the inhibitory effect of paclobutrazol, but also stimulated germination of seeds from other treatments. IS 9530 caryopses presented germination indices close to zero until physiological maturity (44 d after pollination) in control and paclobutrazol-treated particles. However, fluridone-treated caryopses were released from dormancy earlier than control and paclobutrazol-treated caryopses. Incubation in the presence of GA4+7 stimulated germination of caryopses from all treatments. Our results support the proposition that a low dormancy level (which is related to a high preharvest sprouting susceptibility) is determined not only by a low embryonic sensitivity to ABA, but also by a high GA content or sensitivity. PMID:12223597

  13. Phenotypic Diversity as a Mechanism to Exit Cellular Dormancy

    PubMed Central

    Sturm, Alexander; Dworkin, Jonathan

    2016-01-01

    SUMMARY Microorganisms can facilitate their survival in stressful environments by entering a state of metabolic inactivity or dormancy [1]. However, this state impairs the function of the very sensory systems necessary to detect favorable growth conditions. Thus, how can a metabolically quiescent cell accurately monitor environmental conditions in order to best decide when to exit dormancy? One strategy employed by microbes to deal with changing environments is the generation of phenotypes that may be less well adapted to a current condition but might confer an advantage in the future [2, 3]. This bet-hedging depends on phenotypic diversity in the population [4], which itself can derive from naturally occurring stochastic differences in gene expression [5, 6]. In the case of metabolic dormancy, a bet-hedging strategy that has been proposed is the “scout model” where cells comprising a fraction of the dormant population reinitiate growth stochastically, independent of environmental cues [7, 8]. Here, we provide experimental evidence that such a mechanism exists in dormant spores produced by the ubiquitous soil bacterium Bacillus subtilis. We observe that these spores reinitiate growth at a low but measureable frequency even in the absence of an inducing signal. This phenomenon is the result of phenotypic variation in the propensity of individual spores to reinitiate growth spontaneously. Since this bet-hedging mechanism produces individuals that will either grow under favorable conditions or die under unfavorable conditions, a population can properly respond to environmental changes despite the impaired sensory ability of individual cells. PMID:26279233

  14. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  15. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    PubMed Central

    Li, Yi-ke; Yang, Juan-mei; Huang, Yi-bo; Ren, Dong-dong; Chi, Fang-lu

    2015-01-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds. PMID:26199619

  16. Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding.

    PubMed

    Taylor, Gwen M; Hanson, Phyllis I; Kielian, Margaret

    2007-12-01

    The budding reactions of a number of enveloped viruses use the cellular machinery involved in the formation of the luminal vesicles of endosomal multivesicular bodies (MVB). Budding of these viruses is dependent on the presence of specific late-domain motifs in membrane-associated viral proteins. Such budding reactions usually involve ubiquitin and are blocked by expression of an ATPase-deficient form of VPS4, a cellular AAA+ ATPase believed to be required late in the MVB pathway for the disassembly/release of the MVB machinery. Here we examined the role of the MVB pathway in the budding of the late-domain-containing rhabdovirus vesicular stomatitis virus (VSV) and the alphavirus Semliki Forest virus (SFV). We tested early and late steps in the MVB pathway by depleting ubiquitin with the proteasome inhibitor MG-132 and by using cell lines inducibly expressing VPS4A or VPS4B protein. As previously shown, VSV budding was strongly dependent on ubiquitin. In contrast to the findings of previous studies with VPS4A, expression of ATPase-deficient mutants of either VPS4A or VPS4B inhibited VSV budding. Inhibition by VPS4 required the presence of the PPPY late domain on the VSV matrix protein and resulted in the accumulation of nonreleased VSV particles at the plasma membrane. In contrast, SFV budding was independent of both ubiquitin and the activity of VPS4, perhaps reflecting the important role of the highly organized envelope protein lattice during alphavirus budding.

  17. Unsteady entrance flow development in a straight tube.

    PubMed

    He, X; Ku, D N

    1994-08-01

    The entrance conditions for pulsatile flow are important in the understanding blood flow out of the heart and in developing regions at branches. The pulsatile entrance flow was solved using a spectral element simulation of the full unsteady Navier-Stokes equations. A mean Reynolds number of 200 and a range of Womersley parameters from 1.8 to 12.5 was used for a sinusoidal inlet flow waveform 1 + sin (omega t). Variations in the entrance length were observed during the pulsatile cycle. The amplitude of the entrance length variation decreased with an increase in the Womersley parameter. The phase lag between the entrance length and the inlet flow waveform increased for Womersley parameter alpha up to 5.0 and decreased for alpha larger than 5.0. For low alpha, the maximum entrance length during pulsatile flow was approximately the same as the steady entrance length for the peak flow. For high varies; is directly proportional to, the pulsatile entrance length was more uniform during the cycle and tended to the entrance length for the mean flow. The wall shear rate reached its far downstream value after only about half of the entrance length and also exhibited a dependence on alpha. The results quantify the entrance conditions typically encountered in studies of the arterial system. PMID:7799639

  18. Physical Dormancy in Seeds of the Holoparasitic Angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): Dormancy-breaking Requirements, Anatomy of the Water Gap and Sensitivity Cycling

    PubMed Central

    Jayasuriya, K. M. G. Gehan; Baskin, Jerry M.; Geneve, Robert L.; Baskin, Carol C.; Chien, Ching-Te

    2008-01-01

    Background and Aims Dormancy in seeds of Cuscuta (Convolvulaceae, tribe Cuscuteae) is due to a water-impermeable seed coat (physical dormancy). In nondormant seeds of several species of this family, bulges adjacent to the micropyle have been identified as the initial route of water entry into seeds (water gap). However, there are claims that water enters seeds of Cuscuta spp. via the entire seed coat. Although several studies have been done on seed coat anatomy of Cuscuta, none has identified and/or characterized the morphology/anatomy of a water gap. Thus, the primary aim of this research was to identify and describe the morphology and anatomy of the water gap in seeds of Cuscuta australis. It was also determined if sensitivity cycling to dormancy-breaking treatments occurs in seeds of this species. Methods Light microscopy, scanning electron microscopy, tissue-sectioning and dye-tracking and blocking experiments were used to investigate the morphology and anatomy of the water gap. Treatments simulating natural conditions were used to break seed dormancy. Storage of seeds at different temperatures was tested for their effect on sensitivity to dormancy-breaking treatment. Key Results Dormancy-breaking treatments caused the tightly closed hilar fissure to open. Staining was observed in cells below the hilum area but not in those below the seed coat away from the hilum. Sensitivity to dormancy-breaking treatment was induced by storing seeds dry and reduced by storing them wet. Conclusions Whereas bulges adjacent to the micropyle act as the water gap in other species of Convolvulaceae with physical dormancy, the hilar fissure serves this function in Cuscuta. Cuscuta australis can cycle between insensitivity ↔ sensitivity to dormancy-breaking treatments. PMID:18453546

  19. Sympatric species of Hibbertia (Dilleniaceae) vary in dormancy break and germination requirements: implications for classifying morphophysiological dormancy in Mediterranean biomes

    PubMed Central

    Hidayati, Siti N.; Walck, Jeffrey L.; Merritt, David J.; Turner, Shane R.; Turner, David W.; Dixon, Kingsley W.

    2012-01-01

    Background and Aims Several ecologically important plant families in Mediterranean biomes have seeds with morphophysiological dormancy (MPD) but have been poorly studied. The aim of this study was to understand the seed ecology of these species by focusing on the prominent, yet intractably dormant Australian genus Hibbertia. It was hypothesized that the slow germination in species of this genus is caused by a requirement for embryo growth inside the seed before germination, and that initiation of embryo growth is reliant upon a complex sequence of environmental cues including seasonal fluctuations in temperature and moisture, and an interplay with light and smoke. Using the results, the classification of the MPD level in species of Hibbertia is considered. Methods Four species of Hibbertia in winter rainfall south-western Australia were selected. These species, whilst differing in geographic distributions, are variously sympatric, and all are important understorey components of plant communities. The following aspects related to dormancy break, embryo growth and germination were investigated: temperature and moisture requirements; effects of karrikinolide, gibberellic acid and aerosol smoke; and phenology. Key Results Following exposure to wet/dry cycles at low or high temperatures, embryo growth and germination occurred, albeit slowly in all species at low temperatures when moisture was unlimited, corresponding to winter in south-west Australia. Photo regime influenced germination only in H. racemosa. Aerosol smoke triggered substantial germination during the 1st germination season in H. huegelii and H. hypericoides. Conclusions Although the study species are con-generic, sympatric and produce seeds of identical morphology, they possessed different dormancy-break and germination requirements. The physiological component of MPD was non-deep in H. racemosa but varied in the other three species where more deeply dormant seeds required >1 summer to overcome dormancy

  20. Virus Budding and the ESCRT Pathway

    PubMed Central

    Votteler, Jörg; Sundquist, Wesley I.

    2013-01-01

    Enveloped viruses escape infected cells by budding through limiting membranes. In the decade since the discovery that the Human Immunodeficiency Virus (HIV) recruits cellular ESCRT (endosomal sorting complexes required for transport) machinery to facilitate viral budding, this pathway has emerged as the major escape route for enveloped viruses. In cells, the ESCRT pathway catalyzes the analogous membrane fission events required for the abscission stage of cytokinesis and for a series of “reverse topology” vesiculation events. Studies of enveloped virus budding are therefore providing insights into the complex cellular mechanisms of cell division and membrane protein trafficking (and vice versa). Here, we review how viruses mimic cellular recruiting signals to usurp the ESCRT pathway, discuss mechanistic models for ESCRT pathway functions, and highlight important research frontiers. PMID:24034610

  1. Dental cell sheet biomimetic tooth bud model.

    PubMed

    Monteiro, Nelson; Smith, Elizabeth E; Angstadt, Shantel; Zhang, Weibo; Khademhosseini, Ali; Yelick, Pamela C

    2016-11-01

    Tissue engineering and regenerative medicine technologies offer promising therapies for both medicine and dentistry. Our long-term goal is to create functional biomimetic tooth buds for eventual tooth replacement in humans. Here, our objective was to create a biomimetic 3D tooth bud model consisting of dental epithelial (DE) - dental mesenchymal (DM) cell sheets (CSs) combined with biomimetic enamel organ and pulp organ layers created using GelMA hydrogels. Pig DE or DM cells seeded on temperature-responsive plates at various cell densities (0.02, 0.114 and 0.228 cells 10(6)/cm(2)) and cultured for 7, 14 and 21 days were used to generate DE and DM cell sheets, respectively. Dental CSs were combined with GelMA encapsulated DE and DM cell layers to form bioengineered 3D tooth buds. Biomimetic 3D tooth bud constructs were cultured in vitro, or implanted in vivo for 3 weeks. Analyses were performed using micro-CT, H&E staining, polarized light (Pol) microscopy, immunofluorescent (IF) and immunohistochemical (IHC) analyses. H&E, IHC and IF analyses showed that in vitro cultured multilayered DE-DM CSs expressed appropriate tooth marker expression patterns including SHH, BMP2, RUNX2, tenascin and syndecan, which normally direct DE-DM interactions, DM cell condensation, and dental cell differentiation. In vivo implanted 3D tooth bud constructs exhibited mineralized tissue formation of specified size and shape, and SHH, BMP2 and RUNX2and dental cell differentiation marker expression. We propose our biomimetic 3D tooth buds as models to study optimized DE-DM cell interactions leading to functional biomimetic replacement tooth formation.

  2. Dental cell sheet biomimetic tooth bud model.

    PubMed

    Monteiro, Nelson; Smith, Elizabeth E; Angstadt, Shantel; Zhang, Weibo; Khademhosseini, Ali; Yelick, Pamela C

    2016-11-01

    Tissue engineering and regenerative medicine technologies offer promising therapies for both medicine and dentistry. Our long-term goal is to create functional biomimetic tooth buds for eventual tooth replacement in humans. Here, our objective was to create a biomimetic 3D tooth bud model consisting of dental epithelial (DE) - dental mesenchymal (DM) cell sheets (CSs) combined with biomimetic enamel organ and pulp organ layers created using GelMA hydrogels. Pig DE or DM cells seeded on temperature-responsive plates at various cell densities (0.02, 0.114 and 0.228 cells 10(6)/cm(2)) and cultured for 7, 14 and 21 days were used to generate DE and DM cell sheets, respectively. Dental CSs were combined with GelMA encapsulated DE and DM cell layers to form bioengineered 3D tooth buds. Biomimetic 3D tooth bud constructs were cultured in vitro, or implanted in vivo for 3 weeks. Analyses were performed using micro-CT, H&E staining, polarized light (Pol) microscopy, immunofluorescent (IF) and immunohistochemical (IHC) analyses. H&E, IHC and IF analyses showed that in vitro cultured multilayered DE-DM CSs expressed appropriate tooth marker expression patterns including SHH, BMP2, RUNX2, tenascin and syndecan, which normally direct DE-DM interactions, DM cell condensation, and dental cell differentiation. In vivo implanted 3D tooth bud constructs exhibited mineralized tissue formation of specified size and shape, and SHH, BMP2 and RUNX2and dental cell differentiation marker expression. We propose our biomimetic 3D tooth buds as models to study optimized DE-DM cell interactions leading to functional biomimetic replacement tooth formation. PMID:27565550

  3. Interaction between bud-site selection and polarity-establishment machineries in budding yeast

    PubMed Central

    Wu, Chi-Fang; Savage, Natasha S.; Lew, Daniel J.

    2013-01-01

    Saccharomyces cerevisiae yeast cells polarize in order to form a single bud in each cell cycle. Distinct patterns of bud-site selection are observed in haploid and diploid cells. Genetic approaches have identified the molecular machinery responsible for positioning the bud site: during bud formation, specific locations are marked with immobile landmark proteins. In the next cell cycle, landmarks act through the Ras-family GTPase Rsr1 to promote local activation of the conserved Rho-family GTPase, Cdc42. Additional Cdc42 accumulates by positive feedback, creating a concentrated patch of GTP-Cdc42, which polarizes the cytoskeleton to promote bud emergence. Using time-lapse imaging and mathematical modelling, we examined the process of bud-site establishment. Imaging reveals unexpected effects of the bud-site-selection system on the dynamics of polarity establishment, raising new questions about how that system may operate. We found that polarity factors sometimes accumulate at more than one site among the landmark-specified locations, and we suggest that competition between clusters of polarity factors determines the final location of the Cdc42 cluster. Modelling indicated that temporally constant landmark-localized Rsr1 would weaken or block competition, yielding more than one polarity site. Instead, we suggest that polarity factors recruit Rsr1, effectively sequestering it from other locations and thereby terminating landmark activity. PMID:24062579

  4. Transient decreases in methylation at 5'-cCGG-3' sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth.

    PubMed

    Law, R David; Suttle, Jeffrey C

    2003-02-01

    The 5-methylcytosine (5mC) content in DNA of tuber meristems isolated from field-grown potatoes (Solanum tuberosum L.) was determined during a 7-month storage period at 3 degrees C for three growing/postharvest seasons. No significant changes in 5mC levels were noted genome-wide or within 5'-CG-3' dinucleotide sequences, 5'-CG-3' islands or 5'-CA(T)G-3' trinucleotide sequences during storage. However, a consistent but transient 50-70% decrease in methylation at both cytosines within 5'-CCGG-3' sequences was detected that peaked 112-194 days after harvest. This result was corroborated by methylation-sensitive amplified fragment length polymorphism analysis of meristem DNA. Similar to tuber meristems undergoing progression through natural dormancy, premature chemical termination of dormancy resulted in rapid, transient 5'-CCGG-3' demethylation in meristem DNA. Minimum methylation levels at this sequence preceded initiation of high levels of de novo DNA synthesis by two days. Cytosine methylation status was also followed in in vitro-generated potato microtubers during 7 months of post-harvest storage. As in DNA from tuber bud meristems, no changes in genome-wide 5mC content or methylation at 5'-CA(T)G-3' or 5'-CG-3' island sequences were noted in microtuber DNA. However, there was a transient 46% drop in methylation at 5'-CG-3' dinucleotides concomitant with minimum levels of 5'-CCGG-3' methylation (30-60% below those in dormant microtubers) 57-98 days after harvest. As microtubers exited dormancy, there were sustained three- and seven-fold increases in RNA and DNA synthesis rates, peaking on or after 98 days of storage, respectively. Together, these data demonstrate that demethylation of 5'-CCGG-3' sequences occurs independently of tuber age during dormancy progression and precedes transcriptional activation of genes leading to cell division and meristem growth in potatoes.

  5. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination.

    PubMed

    Shu, Kai; Liu, Xiao-dong; Xie, Qi; He, Zu-hua

    2016-01-01

    Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also important for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node.

  6. Dormancy behaviors and underlying regulatory mechanisms: from perspective of pathways to epigenetic regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperate perennials exploit dormancy as one strategy to survive long term environmental stresses. As the current trend in global warming continues, many regions are experiencing warmer winters that fail to provide sufficient chilling temperature for dormancy release, impacting fruit tree productiv...

  7. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lack of seed dormancy in cereal crops such as barley and wheat is a common problem affecting farming areas around the world, causing losses in yield and quality due to pre-harvest sprouting. Control of seed dormancy has been investigated extensively using various approaches in different species incl...

  8. Entrance Length and Turbulence Transition in Microflows

    NASA Astrophysics Data System (ADS)

    Wereley, Steve; Lee, Sangyoup; Gui, Lichuan

    2002-11-01

    Since microfabrication techniques are typically planar processes, microchannel flows typically have significant predevelopment due to the upstream reservoir having the same height as the microchannel. The main concerns of the current study are categorized into finding the effects of typical microchannel geometry on the velocity entrance length in the laminar flow regime and providing the turbulence transitional Reynolds number range using the details of the velocity profile rather than global measurements of pressure drop. A rectangular micro-channel of aspect ratio 2.65 and the hydraulic diameter 380 um was used in this study. Micro particle image velocimetry measurement was performed to measure the velocity profiles. The entrance length is found to be reduced by about 45number occurs between 2100 and 2900-comparable to macroscale observations. Finally a new technique is proposed to measure the turbulence intensity of a flow directly from the PIV correlation function peak width. This new technique provides results comparable to traditional means of calculating turbulence intensity but is particularly useful in measuring microflows where the seeding density can be very low.

  9. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth.

    PubMed

    Balla, Jozef; Kalousek, Petr; Reinöhl, Vilém; Friml, Jiří; Procházka, Stanislav

    2011-02-01

    Shoot branching is one of the major determinants of plant architecture. Polar auxin transport in stems is necessary for the control of bud outgrowth by a dominant apex. Here, we show that following decapitation in pea (Pisum sativum L.), the axillary buds establish directional auxin export by subcellular polarization of PIN auxin transporters. Apical auxin application on the decapitated stem prevents this PIN polarization and canalization of laterally applied auxin. These results support a model in which the apical and lateral auxin sources compete for primary channels of auxin transport in the stem to control the outgrowth of axillary buds. PMID:21219506

  10. Cryptococcus neoformans Host Adaptation: Toward Biological Evidence of Dormancy

    PubMed Central

    Vernel-Pauillac, Frédérique; Sturny-Leclère, Aude; Dromer, Françoise

    2015-01-01

    ABSTRACT Cryptococcosis is an opportunistic infection due to the ubiquitous yeast Cryptococcus neoformans. This yeast interacts closely with innate immune cells, leading to various fates, including fungal persistence within cells, making possible the dissemination of the yeast cells with monocytes via a Trojan horse strategy. In humans, the natural history of the infection begins with primoinfection during childhood, which is followed by dormancy and, in some individuals, reactivation upon immunosuppression. To address the question of dormancy, we studied C. neoformans infection at the macrophage level (in vitro H99-macrophage interaction) and at the organ level in a murine model of cryptococcosis. We analyzed the diversity of yeast adaptation to the host by characterizing several C. neoformans populations with new assays based on flow cytometry (quantitative flow cytometry, multispectral imaging flow cytometry, sorting), microscopy (dynamic imaging), and gene expression analysis. On the basis of parameters of multiplication and stress response, various populations of yeast cells were observed over time in vivo and in vitro. Cell sorting allowed the identification of a subpopulation that was less prone to grow under standard conditions than the other populations, with growth enhanced by the addition of serum. Gene expression analysis revealed that this population had specific metabolic characteristics that could reflect dormancy. Our data suggest that dormant yeast cells could exist in vitro and in vivo. C. neoformans exhibits a huge plasticity and adaptation to hosts that deserves further study. In vitro generation of dormant cells is now the main challenge to overcome the limited number of yeast cells recovered in our models. PMID:25827423

  11. Identification and Quality Assessment of Chrysanthemum Buds by CE Fingerprinting

    PubMed Central

    Xing, Xiaoping; Li, Dan

    2015-01-01

    A simple and efficient fingerprinting method for chrysanthemum buds was developed with the aim of establishing a quality control protocol based on biochemical makeup. Chrysanthemum bud samples were successively extracted by water and alcohol. The fingerprints of the chrysanthemum buds samples were obtained using capillary electrophoresis and electrochemical detection (CE-ED) employing copper and carbon working electrodes to capture all of the chemical information. 10 batches of chrysanthemum buds were collected from different regions and various factories to establish the baseline fingerprint. The experimental data of 10 batches electropherogram buds by CE were analyzed by correlation coefficient and the included angle cosine methods. A standard chrysanthemum bud fingerprint including 24 common peaks was established, 12 from each electrode, which was successfully applied to identify and distinguish between chrysanthemum buds from 2 other chrysanthemum species. These results demonstrate that fingerprint analysis can be used as an important criterion for chrysanthemum buds quality control. PMID:26064777

  12. View of east entrance to Flume Tunnel #2. In foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of east entrance to Flume Tunnel #2. In foreground, covered decking (covered by debris) protects the flume below it (not visible). The extreme top of the tunnel entrance is visible in the middle of the picture, just beyond the covered decking. This is typical of gravity tunnel entrances and the only photograph representing these features in the system. Looking south - Childs-Irving Hydroelectric Project, Childs System, Flume Tunnel No. 2, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  13. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.

    PubMed

    Vaistij, Fabián E; Gan, Yinbo; Penfield, Steven; Gilday, Alison D; Dave, Anuja; He, Zhesi; Josse, Eve-Marie; Choi, Giltsu; Halliday, Karen J; Graham, Ian A

    2013-06-25

    Freshly matured seeds exhibit primary dormancy, which prevents germination until environmental conditions are favorable. The establishment of dormancy occurs during seed development and involves both genetic and environmental factors that impact on the ratio of two antagonistic phytohormones: abscisic acid (ABA), which promotes dormancy, and gibberellic acid, which promotes germination. Although our understanding of dormancy breakage in mature seeds is well advanced, relatively little is known about the mechanisms involved in establishing dormancy during seed maturation. We previously showed that the SPATULA (SPT) transcription factor plays a key role in regulating seed germination. Here we investigate its role during seed development and find that, surprisingly, it has opposite roles in setting dormancy in Landsberg erecta and Columbia Arabidopsis ecotypes. We also find that SPT regulates expression of five transcription factor encoding genes: ABA-INSENSITIVE4 (ABI4) and ABI5, which mediate ABA signaling; REPRESSOR-OF-GA (RGA) and RGA-LIKE3 involved in gibberellic acid signaling; and MOTHER-OF-FT-AND-TFL1 (MFT) that we show here promotes Arabidopsis seed dormancy. Although ABI4, RGA, and MFT are repressed by SPT, ABI5 and RGL3 are induced. Furthermore, we show that RGA, MFT, and ABI5 are direct targets of SPT in vivo. We present a model in which SPT drives two antagonistic "dormancy-repressing" and "dormancy-promoting" routes that operate simultaneously in freshly matured seeds. Each of these routes has different impacts and this in turn explains the opposite effect of SPT on seed dormancy of the two ecotypes analyzed here. PMID:23754415

  14. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.

    PubMed

    Vaistij, Fabián E; Gan, Yinbo; Penfield, Steven; Gilday, Alison D; Dave, Anuja; He, Zhesi; Josse, Eve-Marie; Choi, Giltsu; Halliday, Karen J; Graham, Ian A

    2013-06-25

    Freshly matured seeds exhibit primary dormancy, which prevents germination until environmental conditions are favorable. The establishment of dormancy occurs during seed development and involves both genetic and environmental factors that impact on the ratio of two antagonistic phytohormones: abscisic acid (ABA), which promotes dormancy, and gibberellic acid, which promotes germination. Although our understanding of dormancy breakage in mature seeds is well advanced, relatively little is known about the mechanisms involved in establishing dormancy during seed maturation. We previously showed that the SPATULA (SPT) transcription factor plays a key role in regulating seed germination. Here we investigate its role during seed development and find that, surprisingly, it has opposite roles in setting dormancy in Landsberg erecta and Columbia Arabidopsis ecotypes. We also find that SPT regulates expression of five transcription factor encoding genes: ABA-INSENSITIVE4 (ABI4) and ABI5, which mediate ABA signaling; REPRESSOR-OF-GA (RGA) and RGA-LIKE3 involved in gibberellic acid signaling; and MOTHER-OF-FT-AND-TFL1 (MFT) that we show here promotes Arabidopsis seed dormancy. Although ABI4, RGA, and MFT are repressed by SPT, ABI5 and RGL3 are induced. Furthermore, we show that RGA, MFT, and ABI5 are direct targets of SPT in vivo. We present a model in which SPT drives two antagonistic "dormancy-repressing" and "dormancy-promoting" routes that operate simultaneously in freshly matured seeds. Each of these routes has different impacts and this in turn explains the opposite effect of SPT on seed dormancy of the two ecotypes analyzed here.

  15. Transcriptomic Analysis of American Ginseng Seeds during the Dormancy Release Process by RNA-Seq

    PubMed Central

    Qi, Jianjun; Sun, Peng; Liao, Dengqun; Sun, Tongyu; Zhu, Juan; Li, Xianen

    2015-01-01

    American ginseng (Panax quinquefolius L.) is an important herb that is cultivated in China, North American, and South Korea. It is propagated from seed, but the seed has deep dormancy characteristics described as morphophysiological dormancy. Two-stage temperature stratification, a warm (15–20°C) and cold (2°C) stratification period of 6 months, has been used successfully for seed dormancy release. However, little is known about the molecular mechanisms of seed dormancy release in the stratification process. In this study, seed development after pollination and seed development in the dormancy release process were investigated in American ginseng. The transcriptome during seed dormancy release was analyzed using RNA-Seq technology and 78,207 unigenes (mean length 531 bp) were generated. Based on similarity searches of public databases, 54,292 of the unigenes (69.4%) were functionally annotated. Further, three digital gene expression (DGE) libraries were sequenced and differences in gene expression at three stages during seed cold stratification were examined. The greatest number of differentially expressed genes occurred in the 90DCS versus 180DCS libraries, while the lowest number of differentially expressed genes occurred in the 135DCS verus 180DCS libraries. GO enrichment analysis revealed that 59, 29, and 39 GO terms were significantly enriched in the biological process, molecular function, and cell component GO categories, respectively. There were 25,190 genes with KEGG pathway annotation in the three DGE libraries and their enrichment pathways were compared. The gene expressions of 30 selected unigenes were validated using quantitative PCR. This study is the first to provide the transcriptome sequences for seed dormancy release in American ginseng, and demonstrates the successful use of DGE profiling data for analyzing transcriptomic variation during dormancy release. These data provide a basis for future researches of seed dormancy in morphophysiological

  16. Bilingual Buds: The Evolution of a Program

    ERIC Educational Resources Information Center

    Huang, Sharon

    2009-01-01

    The impetus to begin Bilingual Buds came about six years ago when the author, pregnant with twins and commuting into New York City, was reading about the numerous cognitive benefits for children of acquiring a second language early in their lives. She was surprised to learn that even by the age of six months, children begin to lose the ability to…

  17. Radiation effects on bovine taste bud membranes

    SciTech Connect

    Shatzman, A.R.; Mossman, K.L.

    1982-11-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.

  18. Dormant bud preservation for germplasm conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suitability of dormant buds (DB) for cryopreservation of different plant species has been demonstrated in several reports. For the majority of the species, processing DB for long-term liquid nitrogen storage does not involve establishing tissue cultures and the time for growing out post-cryo mat...

  19. INTERIOR VIEW OF ENTRANCE TO LABORATORY, SHOWING HANDHAMMERED ALUMINUM DOORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF ENTRANCE TO LABORATORY, SHOWING HAND-HAMMERED ALUMINUM DOORS AND MARBLE. NOTE ALUMINUM LIGHT FIXTURE - Alcoa Research Laboratory, Freeport Road, New Kensington, Westmoreland County, PA

  20. 6. ANOTHER GRANDSTAND ENTRANCE, EAST WING OF GRANDSTAND. NOTE PHILADELPHIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. ANOTHER GRANDSTAND ENTRANCE, EAST WING OF GRANDSTAND. NOTE PHILADELPHIA ATHLETICS'S LETTER 'A' ON CARTOUCHE. - Shibe Park (Stadium), 2701 North Twenty-first Street, Philadelphia, Philadelphia County, PA

  1. Secondary entrance corridor (room 120, representing room 121), looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Secondary entrance corridor (room 120, representing room 121), looking west (bearing 270) from elevator lobby - California State Office Building No. 1, 915 Capitol Mall, Sacramento, Sacramento County, CA

  2. 12. VIEW LOOKING SOUTH FROM PAVILION, SHOWING SOUTH ENTRANCE HOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW LOOKING SOUTH FROM PAVILION, SHOWING SOUTH ENTRANCE HOUSE, SOUTH WING, AND ENGINE HOUSE - Fairmount Waterworks, East bank of Schuylkill River, Aquarium Drive, Philadelphia, Philadelphia County, PA

  3. View looking south from pavilion, showing south entrance house, south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking south from pavilion, showing south entrance house, south wing, and engine house - Fairmount Waterworks, East bank of Schuylkill River, Aquarium Drive, Philadelphia, Philadelphia County, PA

  4. Perspective view of east entrance from northeast National Home ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of east entrance from northeast - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Building, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  5. Seed Dormancy in Red Rice (Oryza sativa) (IX. Embryo Fructose-2,6-Bisphosphate during Dormancy Breaking and Subsequent Germination).

    PubMed

    Footitt, S.; Cohn, M. A.

    1995-04-01

    Fructose-2,6-bisphosphate (Fru-2,6-bisP) was evaluated as a potential marker for the dormancy-breaking phase or the germination phase before pericarp splitting in red rice (Oryza sativa). During 4 h of imbibition at 30[deg]C, Fru-2,6-bisP of dehulled dormant and nondormant seeds increased to 0.26 and 0.38 pmol embryo-1, respectively. In nondormant seeds, embryo Fru-2,6-bisP content remained stable until the onset of pericarp splitting (12 h) and increased rapidly thereafter. In dormant seeds, Fru-2,6-bisP declined to 0.09 pmol embryo-1 at 24 h. Embryo Fru-2,6-bisP was correlated with O2 uptake of dormant and nondormant seeds. A 24-h exposure of dehulled, water-imbibed, dormant seeds to treatments yielding >90% germination (sodium nitrite [4 mM], propionic acid [22 mM], methyl propionate [32 mM], propanol [75 mM], and propionaldehyde [40 mM]) led to changes in embryo Fru-2,6-bisP that were unrelated to the final germination percentages. Furthermore, a 2-h pulse of propionaldehyde increased Fru-2,6-bisP 4-fold but did not break dormancy. Whereas nitrite and propionaldehyde increased Fru-2,6-bisP to 0.33 pmol embryo-1 after 2 h of contact, propionic acid and methyl propionate did not increase Fru-2,6-bisP above the untreated control. In all cases, further increases in Fru-2,6-bisP occurred after pericarp splitting. However, the plateau Fru-2,6-bisP attained during chemical contact was inversely correlated with elapsed time to 30% germination (r = -0.978). Therefore, although Fru-2,6-bisP is not a universal marker for dormancy release, its rapid increase during nitrite and propionaldehyde treatments suggests that events associated with dormancy breaking can occur within 2 h of chemical treatment.

  6. Anaerobiosis and Release from Dormancy in Apple Embryos

    PubMed Central

    Barthe, Philippe; Bulard, Camille

    1983-01-01

    An anaerobic treatment released Pyrus malus L. cv Golden Delicious embryos from their primary dormancy. It also suppressed the inhibitory effect induced by exogenous abscisic acid (ABA) on after-ripened embryos. For the study of ABA metabolism, a two-step culture method was developed. Embryos in primary dormancy were cultivated aerobically in the presence of [14C]ABA (first culture). Some were directly analyzed to evaluate metabolism of absorbed ABA. The remaining embryos were cultivated on moist cotton without ABA, either in aerobic or anaerobic conditions (second culture). The amounts of ABA and its metabolites were measured both in the embryos and the water-leachates. After the second culture, the embryos showed a spectacular decrease in ABA content, with no difference between anaerobic and aerobic cultures. The amount of ABA glucose ester increased slightly in aerobiosis but diminished markedly in anaerobiosis. Radioactivity of the butanol fraction, which corresponded to polar conjugates, decreased considerably in anaerobiosis, whereas it increased in aerobiosis. Analysis of the water-leachates indicated that, compared to aerobic conditions, anaerobiosis increased total leaching of radioactive materials (× 4.2) as well as leaching of ABA (× 1.4). In addition, anaerobiosis induced leaching of conjugates, such as ABA glucose ester and butanol-soluble metabolites. We concluded that the anaerobic treatment affects mainly membrane permeability. PMID:16663111

  7. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  8. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  9. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  10. Dormancy, germination, emergence and ecology of Gardner saltbush (Atriplex gardneri (Moq. ) D. Dietr. ) seeds

    SciTech Connect

    Ansley, R.J. Jr.

    1983-01-01

    Gardner saltbush (Atriplex gardneri (Moq.) D. Dietr.) provides valuable winter browse and is an important soil stabilizer in arid, alkaline, and saline areas of the intermountain region. However, seed dormancy and poor seedling vigor inhibit its potential for revegetation by direct seeding on disturbed lands. The objectives of this study were to 1) develop seed treatments which would overcome dormancy in Gardner saltbush seeds, 2) evaluate field establishment by direct seeding of Gardner saltbush, and 3) characterize seed dormancy, seedling vigor and some aspects of the ecology of germination in Gardner saltbush. In the laboratory, single and combined pretreatments removed dormancy to varying degrees. Dormancy was completely alleviated with 15 months dry after-ripening + scarification + 24 hours washing + 4 weeks stratification. Dry after-ripening and scarification appeared to facilitate effects of washing and stratification. Physiologically, indirect evidence was obtained suggesting both embryo and seedcoat mediated dormancy occur in Gardner saltbush. Ecologically, the various levels of germination response to simulated environmental pretreatments appeared to be an adaptation of Gardner saltbush seeds to ensure a temporal dispersal of release from dormancy. This increases the probability that under natural conditions some seedlings will emerge during times when the environment is amenable to seedling survival.

  11. An immunoproteomic approach for characterization of dormancy within Staphylococcus epidermidis biofilms.

    PubMed

    Carvalhais, Virginia; Cerveira, Frederico; Vilanova, Manuel; Cerca, Nuno; Vitorino, Rui

    2015-06-01

    Virulence of Staphylococcus epidermidis is mainly attributed to surface colonization and biofilm formation in indwelling medical devices. Physiological heterogeneity of biofilms may influence host immune response and sensitivity to antibiotics. Dormant cells, among others, contribute to biofilm heterogeneity. The aim of this study was to identify immunogenic proteins of S. epidermidis biofilms associated with dormancy mechanism, by using two-dimensional electrophoresis (2-DE) immunoblotting and mass spectrometry (MS). A total of 19 bacterial proteins, recognized by human serum samples, were identified. These proteins were mainly involved in small molecule metabolic biological processes. Catalytic activity and ion binding were the most representative molecular functions. CodY and GpmA proteins were more reactive to sera when biofilm dormancy was induced, while FtnA and ClpP were more reactive when dormancy was prevented. This is the first work that identifies differences in immunoreactive proteins within bacterial biofilms with induced or prevented dormancy. Considering the importance of dormancy within biofilms, further evaluation of these proteins can provide insights into the mechanisms related to dormancy and help to improve current understanding on how dormancy affects the host immune response.

  12. An immunoproteomic approach for characterization of dormancy within Staphylococcus epidermidis biofilms.

    PubMed

    Carvalhais, Virginia; Cerveira, Frederico; Vilanova, Manuel; Cerca, Nuno; Vitorino, Rui

    2015-06-01

    Virulence of Staphylococcus epidermidis is mainly attributed to surface colonization and biofilm formation in indwelling medical devices. Physiological heterogeneity of biofilms may influence host immune response and sensitivity to antibiotics. Dormant cells, among others, contribute to biofilm heterogeneity. The aim of this study was to identify immunogenic proteins of S. epidermidis biofilms associated with dormancy mechanism, by using two-dimensional electrophoresis (2-DE) immunoblotting and mass spectrometry (MS). A total of 19 bacterial proteins, recognized by human serum samples, were identified. These proteins were mainly involved in small molecule metabolic biological processes. Catalytic activity and ion binding were the most representative molecular functions. CodY and GpmA proteins were more reactive to sera when biofilm dormancy was induced, while FtnA and ClpP were more reactive when dormancy was prevented. This is the first work that identifies differences in immunoreactive proteins within bacterial biofilms with induced or prevented dormancy. Considering the importance of dormancy within biofilms, further evaluation of these proteins can provide insights into the mechanisms related to dormancy and help to improve current understanding on how dormancy affects the host immune response. PMID:25749707

  13. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    PubMed

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.

  14. 33 CFR 80.510 - Chesapeake Bay Entrance, VA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Chesapeake Bay Entrance, VA. 80.510 Section 80.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.510 Chesapeake Bay Entrance, VA....

  15. 33 CFR 80.510 - Chesapeake Bay Entrance, VA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Chesapeake Bay Entrance, VA. 80.510 Section 80.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.510 Chesapeake Bay Entrance, VA....

  16. 33 CFR 80.510 - Chesapeake Bay Entrance, VA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Chesapeake Bay Entrance, VA. 80.510 Section 80.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.510 Chesapeake Bay Entrance, VA....

  17. 33 CFR 80.510 - Chesapeake Bay Entrance, VA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chesapeake Bay Entrance, VA. 80.510 Section 80.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.510 Chesapeake Bay Entrance, VA....

  18. 33 CFR 80.510 - Chesapeake Bay Entrance, VA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Chesapeake Bay Entrance, VA. 80.510 Section 80.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.510 Chesapeake Bay Entrance, VA....

  19. 75 FR 8489 - Security Zone; Freeport Channel Entrance, Freeport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Security Zone; Freeport Channel Entrance, Freeport, TX in the Federal Register (33 FR 19923). We received... rule as it was proposed in the notice of proposed rulemaking (33 FR 19923). Regulatory Analyses We... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; Freeport Channel Entrance, Freeport,...

  20. 15. Front security entrance to the perimeter acquisition radar building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Front security entrance to the perimeter acquisition radar building, showing rotogates 1 and 2 and entrance door to security operations control center (SOCC), room #108 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. 3. VIEW FROM MAIN ENTRANCE ROAD SWITCHBACKS FACING EAST. UTAH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW FROM MAIN ENTRANCE ROAD SWITCHBACKS FACING EAST. UTAH HIGHWAY 191 VISIBLE AT RIGHT, PARK MAINTENANCE FACILITY IN FOREGROUND. - Arches National Park Main Entrance Road, Beginning at U.S. Highway 191, approximately 6 miles north of Moab, Moab, Grand County, UT

  2. VIEW FROM MAIN ENTRANCE ROAD SWITCHBACKS FACING EAST. UTAH HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM MAIN ENTRANCE ROAD SWITCHBACKS FACING EAST. UTAH HIGHWAY 191 VISIBLE AT RIGHT, PARK MAINTENANCE FACILITY IN FOREGROUND - Arches National Park Main Entrance Road, Beginning at U.S. Highway 191, approximately 6 miles north of Moab, Moab, Grand County, UT

  3. VIEW OF MAIN ENTRANCE ROAD FACING SOUTH. SPUR ROAD TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MAIN ENTRANCE ROAD FACING SOUTH. SPUR ROAD TO WINDOWS SECTION AT LEFT, BALANCED ROCK NEAR CENTER OF PHOTO - Arches National Park Main Entrance Road, Beginning at U.S. Highway 191, approximately 6 miles north of Moab, Moab, Grand County, UT

  4. 6. VIEW OF MAIN ENTRANCE ROAD FACING SOUTH. SPUR ROAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF MAIN ENTRANCE ROAD FACING SOUTH. SPUR ROAD TO WINDOWS SECTION AT LEFT, BALANCED ROCK NEAR CENTER OF PHOTO. - Arches National Park Main Entrance Road, Beginning at U.S. Highway 191, approximately 6 miles north of Moab, Moab, Grand County, UT

  5. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. PMID:26948880

  6. Annual dormancy cycles in buried seeds of shrub species: germination ecology of Sideritis serrata (Labiatae).

    PubMed

    Copete, M A; Herranz, J M; Ferrandis, P; Copete, E

    2015-07-01

    The germination ecology of Sideritis serrata was investigated in order to improve ex-situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non-deep physiological dormancy. Under unheated shade-house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade-house, exhibited an annual conditional dormancy/non-dormancy cycle, coming out of conditional dormancy in summer and re-entering it in winter. Non-dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non-dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non-dormancy cycle in seeds of shrub species.

  7. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    PubMed Central

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  8. Ants' learning of nest entrance characteristics (Hymenoptera, Formicidae).

    PubMed

    Cammaerts, M C

    2014-02-01

    Young workers, experimentally removed from their nest and set in front of it, are not very good at finding the nest entrance and entering the nest. I examined how young ants learn their nest entrance characteristics, dealing only with the entrance sensu stricto, not with its vicinity. I observed that young ants have the innate behavior of trying to exit and re-enter their nest. I found that they are imprinted with the nest entrance odor while they are still living inside their nest and that they learn the visual aspect of their nest entrances, thanks to operant conditioning, when they exit their nest and succeed in re-entering in the course of their first short trips outside.

  9. Single-cell phenomics in budding yeast

    PubMed Central

    Ohya, Yoshikazu; Kimori, Yoshitaka; Okada, Hiroki; Ohnuki, Shinsuke

    2015-01-01

    The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast. PMID:26543200

  10. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  11. Eukaryotic-Like Virus Budding in Archaea

    PubMed Central

    Quemin, Emmanuelle R. J.; Chlanda, Petr; Sachse, Martin; Forterre, Patrick

    2016-01-01

    ABSTRACT Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. PMID:27624130

  12. Studies in Wild Oat Seed Dormancy: I. THE ROLE OF ETHYLENE IN DORMANCY BREAKAGE AND GERMINATION OF WILD OAT SEEDS (AVENA FATUA L.).

    PubMed

    Adkins, S W; Ross, J D

    1981-02-01

    Seed of Avena fatua were shown to exhibit a characteristic loss of dormancy during dry storage at 25 C, whereas similar seed stored at 5 C maintained dormancy. 2-Chloroethylphosphonic acid was shown to increase germination of partly dormant seed imbibed under certain temperature regimes; a similar effect could not be established for fully dormant or fully nondormant seed. Using gas-liquid chromatography, natural ethylene levels were followed during imbibition of fully dormant and nondormant seed. A large peak in production was observed in the period prior to radicle emergence in the case of the nondormant seed. Measurements of ethylene production taken at 15 C, following periods of after-ripening in moist soil at either 5 or 25 C, indicated that endogenous production was unlikely to be a main cause of dormancy breakage in this species. The possibility that endogenous ethylene could play a role in natural dormancy breakage in aged seeds is discussed. The practical possibilities of 2-chloroethylphosphonic acid as a dormancy breaking agent in a field situation are outlined.

  13. RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction

    PubMed Central

    2014-01-01

    Background Higher plants exhibit a remarkable phenotypic plasticity to adapt to adverse environmental changes. The Greater Duckweed Spirodela, as an aquatic plant, presents exceptional tolerance to cold winters through its dormant structure of turions in place of seeds. Abundant starch in turions permits them to sink and escape the freezing surface of waters. Due to their clonal propagation, they are the fastest growing biomass on earth, providing yet an untapped source for industrial applications. Results We used next generation sequencing technology to examine the transcriptome of turion development triggered by exogenous ABA. A total of 208 genes showed more than a 4-fold increase compared with 154 down-regulated genes in developing turions. The analysis of up-regulated differential expressed genes in response to dormancy exposed an enriched interplay among various pathways: signal transduction, seed dehydration, carbohydrate and secondary metabolism, and senescence. On the other side, the genes responsible for rapid growth and biomass accumulation through DNA assembly, protein synthesis and carbon fixation are repressed. Noticeably, three members of late embryogenesis abundant protein family are exclusively expressed during turion formation. High expression level of key genes in starch synthesis are APS1, APL3 and GBSSI, which could artificially be reduced for re-directing carbon flow from photosynthesis to create a higher energy biomass. Conclusions The identification and functional annotation of differentially expressed genes open a major step towards understanding the molecular network underlying vegetative frond dormancy. Moreover, genes have been identified that could be engineered in duckweeds for practical applications easing agricultural production of food crops. PMID:24456086

  14. Proteomic Analysis of Seed Dormancy in Arabidopsis1[W

    PubMed Central

    Chibani, Kamel; Ali-Rachedi, Sonia; Job, Claudette; Job, Dominique; Jullien, Marc; Grappin, Philippe

    2006-01-01

    The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [35S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium. PMID:17028149

  15. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis.

    PubMed

    Jiang, Zhimin; Xu, Gang; Jing, Yanjun; Tang, Weijiang; Lin, Rongcheng

    2016-01-01

    Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we show that the REVEILLE1 (RVE1) and RVE2 transcription factors promote primary seed dormancy and repress red/far-red-light-reversible germination downstream of phytochrome B (phyB) in Arabidopsis thaliana. RVE1 and RVE2 expression is downregulated after imbibition and by phyB. RVE1 directly binds to the promoter of GIBBERELLIN 3-OXIDASE 2, inhibits its transcription and thus suppresses the biosynthesis of bioactive gibberellins. In addition, DELAY OF GERMINATION 1 also acts downstream of phyB. This study identifies a signalling pathway that integrates environmental light input with internal factors to control both seed dormancy and germination.

  16. Temperature-mediated changes in seed dormancy and light requirement for Penstemon palmeri (Scrophulariaceae)

    SciTech Connect

    Kitchen, S.G.; Meyer, S.E. )

    1992-03-01

    Penstemon palmeri is a short-lived perennial herb colonizing disturbed sites in semiarid habitats in the western US. In this study seed was harvested from six native and four seeded populations during two consecutive years. In laboratory germination trials at constant 15C, considerable between-lot variation in primary dormancy and light requirement was observed. Four weeks of moist chilling (1C) induced secondary dormancy at 15C. Cold-induced secondary dormancy was reversed by one week of dark incubation at 30C. This warm incubation treatment also reduced the light requirement of unchilled, after-ripened seed. Fluctuations in dormancy and light requirement of buried seeds have been linked to seasonal changes in soil temperature. Penstemon palmeri germination responses to temperature appear to be similar to those of facultative winter annuals.

  17. One phase of the dormancy developmental pathway is critical for the evolution of insect seasonality.

    PubMed

    Wadsworth, C B; Woods, W A; Hahn, D A; Dopman, E B

    2013-11-01

    Evolutionary change in the timing of dormancy enables animals and plants to adapt to changing seasonal environments and can result in ecological speciation. Despite its clear biological importance, the mechanisms underlying the evolution of dormancy timing in animals remain poorly understood because of a lack of anatomical landmarks to discern which phase of dormancy an individual is experiencing. Taking advantage of the nearly universal characteristic of metabolic suppression during insect dormancy (diapause), we use patterns of respiratory metabolism to document physiological landmarks of dormancy and test which of the distinct phases of the dormancy developmental pathway contribute to a month-long shift in diapause timing between a pair of incipient moth species. Here, we show that divergence in life cycle between the earlier-emerging E-strain and the later-emerging Z-strain of European corn borer (ECB) is clearly explained by a delay in the timing of the developmental transition from the diapause maintenance phase to the termination phase. Along with recent findings indicating that life-cycle differences between ECB strains stem from allelic variation at a single sex-linked locus, our results demonstrate how dramatic shifts in animal seasonality can result from simple developmental and genetic changes. Although characterizing the multiple phases of the diapause developmental programme in other locally adapted populations and species will undoubtedly yield surprises about the nature of animal dormancy, results in the ECB moth suggest that focusing on genetic variation in the timing of the dormancy termination phase may help explain how (or whether) organisms rapidly respond to global climate change, expand their ranges after accidental or managed introductions, undergo seasonal adaptation, or evolve into distinct species through allochronic isolation.

  18. Comparative transcriptome profiling of developing caryopses from two rice cultivars with differential dormancy.

    PubMed

    Huh, Sun Mi; Hwang, Yong-sic; Shin, Young Seop; Nam, Myung Hee; Kim, Dool Yi; Yoon, In Sun

    2013-08-15

    Pre-harvest sprouting (PHS) in rice causes poor grain quality and results in significant reductions in yield, leading to significant economic losses. In contrast, deep dormancy can lead to equally unwanted non-uniform germination. Therefore, a suitable level of dormancy is a critically important agronomic trait. In this study, an analysis of PHS in developing seeds of two Korean rice cultivars (vivipary), Gopum and Samgwang, revealed differences in dormancy in caryopses at 25 d after heading (DAH). To assess the transcriptomic characteristics associated with vivipary, we compared RNA profiles at early (3-6 DAH), middle (25 DAH), and late (40 DAH) developmental stages. Transcriptomic differentiation was most pronounced in caryopses at 25 DAH, the developmental stage at which differential dormancy was also the most prominent. A k-means clustering analysis of the two cultivars revealed groups of genes with similar or dissimilar expression profiles. Many of the genes that showed distinct differential expression profiles were those involved in seed maturation. Intriguingly, differential gene expression levels between the two cultivars were positively correlated with fold-changes in their expression during the early half of caryopsis development. This implies that the establishment of seed dormancy is strongly correlated with the altered transcriptomic patterns related to the progression of maturation. Our global RNA profiling suggests that caryopsis development in Gopum proceeds at a greater speed than in the Samgwang cultivar. Thus, a high degree of maturity and early dormancy release may be present in 25 DAH caryopses of Gopum, although we cannot exclude the possibility of genetic defects modifying dormancy. The comparative transcriptomic analysis of the two cultivars did not reveal noticeable differences in RNA profiles with respect to differences in abscisic acid (ABA) content or ABA sensitivity. Therefore, it is unlikely that ABA is directly involved in the

  19. Trade-offs between seed dispersal and dormancy in an amphi-basicarpic cold desert annual

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Jerry M.; Baskin, Carol C.

    2013-01-01

    Background and Aims Several studies have demonstrated trade-offs between depth of seed dormancy and dispersal ability for diaspore-dimorphic species. However, relatively little is known about trade-offs between these two life history traits for a species that produces more than two diaspore morphs. The aim of this study was to investigate the relationship between seed dormancy and dispersal in Ceratocarpus arenarius, an amphi-basicarpic cold desert annual that produces a continuum of dispersal unit morphs. Methods A comparison was made of dispersal and dormancy breaking/germination responses of dispersal units from ground level (a), the middle of the plant canopy (c) and the top of the plant canopy (f). Various features of the morphology and mass of dispersal units and fruits (utricles) were measured. The role of bracteoles in diaspore dispersal by wind, settlement onto the soil surface and dormancy/germination was determined by comparing responses of intact dispersal units and fruits. Movement of dispersal units by wind and animals, seed after-ripening, germination phenology and the presence of water-soluble germination inhibitors in bracteoles were tested using standard procedures. Key Results Dispersal units a, c and f differed in morphology and mass; in the majority of cases, extremes were exhibited by a and f, with c being intermediate. Overall, relative dispersal ability was f > c > a, whereas relative intensity of dormancy was a > c > f. Bracteoles increased dispersal distance by wind, enhanced settlement of diaspores onto the soil surface and mechanically inhibited germination. Conclusions The results provide evidence for a model in which there is a continuous inverse-linear relationship between diaspore dispersal ability and depth of dormancy. Thus, dispersal unit heteromorphism of C. arenarius results in a continuum, from no dispersal ability/high dormancy (dispersal unit a) to high dispersal ability/low dormancy (unit f), which may be a bet

  20. One phase of the dormancy developmental pathway is critical for the evolution of insect seasonality.

    PubMed

    Wadsworth, C B; Woods, W A; Hahn, D A; Dopman, E B

    2013-11-01

    Evolutionary change in the timing of dormancy enables animals and plants to adapt to changing seasonal environments and can result in ecological speciation. Despite its clear biological importance, the mechanisms underlying the evolution of dormancy timing in animals remain poorly understood because of a lack of anatomical landmarks to discern which phase of dormancy an individual is experiencing. Taking advantage of the nearly universal characteristic of metabolic suppression during insect dormancy (diapause), we use patterns of respiratory metabolism to document physiological landmarks of dormancy and test which of the distinct phases of the dormancy developmental pathway contribute to a month-long shift in diapause timing between a pair of incipient moth species. Here, we show that divergence in life cycle between the earlier-emerging E-strain and the later-emerging Z-strain of European corn borer (ECB) is clearly explained by a delay in the timing of the developmental transition from the diapause maintenance phase to the termination phase. Along with recent findings indicating that life-cycle differences between ECB strains stem from allelic variation at a single sex-linked locus, our results demonstrate how dramatic shifts in animal seasonality can result from simple developmental and genetic changes. Although characterizing the multiple phases of the diapause developmental programme in other locally adapted populations and species will undoubtedly yield surprises about the nature of animal dormancy, results in the ECB moth suggest that focusing on genetic variation in the timing of the dormancy termination phase may help explain how (or whether) organisms rapidly respond to global climate change, expand their ranges after accidental or managed introductions, undergo seasonal adaptation, or evolve into distinct species through allochronic isolation. PMID:24016035

  1. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice.

    PubMed

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You

    2015-11-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662

  2. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro

    PubMed Central

    Gray, Karen-Ann; Gresty, Karryn J.; Chen, Nanhua; Zhang, Veronica; Gutteridge, Clare E.; Peatey, Christopher L.; Chavchich, Marina; Waters, Norman C.; Cheng, Qin

    2016-01-01

    Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment. PMID:27326764

  3. Production of seed samples for the effective molecular analysis of dormancy cycling in Arabidopsis.

    PubMed

    Footitt, Steven; Finch-Savage, William E

    2011-01-01

    Most often, the samples used for molecular analysis of dormancy are populations of seeds. An essential survival characteristic of seed populations inhabiting the variable surface layers of the soil is that individuals in the population do not behave uniformly. In addition, seed dormancy (SD) status of the whole population constantly changes even in the dry state. For these and other reasons, production of appropriate and adequately characterized seed samples is the key to the correct and most informative interpretation of molecular studies. This is particularly important when the aim is to describe and explain seed behaviour in the natural environment. Molecular studies of seed dormancy, and especially ecologically relevant behaviour, such as dormancy cycling, should therefore involve characterization of dormancy status based on a sound understanding of seed physiology. This chapter discusses the problems and pitfalls of using Arabidopsis and provides protocols devised for use with the Arabidopsis ecotype Cape Verde Islands for the production and characterization of samples to be used in molecular analysis of dormancy transitions and cycling. PMID:21898250

  4. Differential regional expression of multiple ADAMs during feather bud formation.

    PubMed

    Lin, Juntang; Luo, Jiankai; Redies, Christoph

    2011-09-01

    The expression of seven members of the ADAM family was investigated by in situ hybridization in the developing feather buds of chicken. The expression profiles of the ADAMs in the cells and tissues of the feather buds differ from each other. ADAM9, ADAM10, and ADAM17 are expressed in the epidermis of the feather bud, whereas ADAM23 expression is restricted to the bud crest, with a distribution similar to that of sonic hedgehog. ADAM13 is not only expressed in the epidermis, but also in restricted regions of the dermis. Both ADAM12 and ADAM22 are expressed in the dermis of the feather bud, with an opposite mediolateral and anteroposterior polarity. Furthermore, the mRNAs of all investigated ADAMs show regional differences in their expression, for example, in the neck and in the roots of the leg and wing. These results suggest that ADAMs play a variety of roles during avian feather bud formation.

  5. 39. DINING ROOM, LOOKING (NORTH) BACK TOWARD ENTRANCE. BEFORE 1907, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DINING ROOM, LOOKING (NORTH) BACK TOWARD ENTRANCE. BEFORE 1907, GUESTS AT THE INN ATE FAMILY-STYLE AT LONG RECTANGULAR TABLES. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  6. Front (west side) entrance bay Fitzsimons General Hospital, Swimming ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Front (west side) entrance bay - Fitzsimons General Hospital, Swimming Pool, Southeast corner of East Nineteenth Place (formerly East McAfee Avenue) & Wheeling Street (formerly South Van Valzah Street), Aurora, Adams County, CO

  7. Entrance to pool area near northeast end of the building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Entrance to pool area near northeast end of the building - Fitzsimons General Hospital, Swimming Pool, Southeast corner of East Nineteenth Place (formerly East McAfee Avenue) & Wheeling Street (formerly South Van Valzah Street), Aurora, Adams County, CO

  8. 10. DETAIL INTERIOR VIEW SHOWING MAIN ENTRANCE DOORS TO AUDITORIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL INTERIOR VIEW SHOWING MAIN ENTRANCE DOORS TO AUDITORIUM BUILDING; STAIRS IN FOREGROUND LEAD TO BASKETBALL COURT/STAGE AREA. - Bonneville Project, Auditorium, Columbia River, 1 mile Northeast of Exit 40, Interstate 84, Bonneville, Multnomah County, OR

  9. VIEW ACROSS NINTH HOLE TO SPECIMEN JUNIPER AT ENTRANCE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW ACROSS NINTH HOLE TO SPECIMEN JUNIPER AT ENTRANCE TO CHEROKEE, THE HILL, FACING SOUTHEAST - Overhills, Fort Bragg Military Reservation, Approximately 15 miles NW of Fayetteville, Overhills, Harnett County, NC

  10. 2. Water treatment plant entrance, view to W Fort ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Water treatment plant entrance, view to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  11. North & south wall elevation of the east entrance loggia; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North & south wall elevation of the east entrance loggia; detail of pilaster base and capital - National Zoological Park, Elephant House, 3001 Connecticut Avenue NW, Washington, District of Columbia, DC

  12. OVERALL VIEW OF CEMETERY ENTRANCE, WITH LODGE BUILDING AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF CEMETERY ENTRANCE, WITH LODGE BUILDING AT LEFT AND FLAGPOLE AT RIGHT. VIEW TO SOUTHWEST. - Baton Rouge National Cemetery, 220 North 19th Street, Baton Rouge, East Baton Rouge Parish, LA

  13. 4. VIEW OF ENTRANCE TO BUILDING NO. 1 FACING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF ENTRANCE TO BUILDING NO. 1 FACING WEST. - U.S. Naval Base, Pearl Harbor, Ordinance Operations Building, West Loch, First Street near Whiskey Wharves W1 & W2, Pearl City, Honolulu County, HI

  14. 12. CLOSEUP DETAIL VIEW OF ENTRANCE DOORS TO CELL BLOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP DETAIL VIEW OF ENTRANCE DOORS TO CELL BLOCK SHOWING KEY-WINDING MECHANISM TO ROTATE THE CELL BLOCK - Montgomery County Jail, Washington & Spring Streets, Crawfordsville, Montgomery County, IN

  15. View of south entrance to #157 through south breezeway arches ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of south entrance to #157 through south breezeway arches - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Buildings, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  16. 1. GENERAL VIEW OF ENTRANCE INTO ALUMINUM CITY TERRACE ALONG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF ENTRANCE INTO ALUMINUM CITY TERRACE ALONG EAST HILL DRIVE. BUILDING 1 ON RIGHT, BUILDING 2 ON LEFT, FACING EAST. - Aluminum City Terrace, East Hill Drive, New Kensington, Westmoreland County, PA

  17. 2. HISTORIC AMERICAN BUILDINGS SURVEY. S. Lucas, Photographer, 1934 ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HISTORIC AMERICAN BUILDINGS SURVEY. S. Lucas, Photographer, 1934 ENTRANCE DETAIL, SS. PETER & PAUL'S JESUIT CHURCH, DETROIT MICHIGAN - Sts. Peter & Paul's Jesuit Church, East Jefferson Avenue & Saint Antoine Street, Detroit, MI

  18. DETAIL OF MAIN ENTRANCE ON EAST (FRONT) ELEVATION OF BUILDING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF MAIN ENTRANCE ON EAST (FRONT) ELEVATION OF BUILDING. view TO SOUTHWEST. - Plattsburgh Air Force Base, Target Intelligence Training Building-Combat Center, Off Connecticut Road, east of Idaho Avenue, Plattsburgh, Clinton County, NY

  19. 95. Pioneer Plaza, 125 (movie theater), entrance to theater and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. Pioneer Plaza, 125 (movie theater), entrance to theater and building to left of theater - South El Paso Street Historic District, South El Paso, South Oregon & South Santa Fe Streets, El Paso, El Paso County, TX

  20. 1. VIEW WEST SOUTHWEST OF BUILDING 7 SHOWING MAIN ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW WEST SOUTHWEST OF BUILDING 7 SHOWING MAIN ENTRANCE TO OFFICES; MANAGEMENT AND FINANCE OFFICES WERE LOCATED HERE; BUILDING 23 IS AT RIGHT OF PHOTOGRAPH - Bryant Electric Company, 1421 State Street, Bridgeport, Fairfield County, CT

  1. 1. GENERAL VIEW OF SOUTH SIDE ELEVATION FROM ENTRANCE GATE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF SOUTH SIDE ELEVATION FROM ENTRANCE GATE, WITH NEW CHURCH ON RIGHT - Valley Grove Churches, Old Church, County Road 29, 1/4 mile from Minnesota Highway 246, Nerstrand, Rice County, MN

  2. 55. VIEW OF WEST ENTRANCE BRIDGE CROSSING THE ARIZONA CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. VIEW OF WEST ENTRANCE BRIDGE CROSSING THE ARIZONA CANAL AT THE ARIZONA BILTMORE, LOOKING EAST Photographer: Kevin Kriesel-Coons, May 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  3. 1. VIEW OF THE ENTRANCE TO THE HATCH ADIT (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE ENTRANCE TO THE HATCH ADIT (FEATURE B-28), FACING WEST. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, Hatch Adit, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  4. 13. View of west entrance to central corridor of filtration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of west entrance to central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  5. 38. JL photographer, summer 1978, general view of main entrance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. JL photographer, summer 1978, general view of main entrance facade of Baldwin Filtration plant. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  6. 37. STAIRS TO ENTRANCE AT SIXTEENTH STREET FROM UPPER MALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. STAIRS TO ENTRANCE AT SIXTEENTH STREET FROM UPPER MALL PARK, LOOKING NORTH, August 1976 - Meridian Hill Park, Bounded by Fifteenth, Sixteenth, Euclid & W Streets, Northwest, Washington, District of Columbia, DC

  7. 38. STAIRS FROM ENTRANCE AT SIXTEENTH STREET TO UPPER MALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. STAIRS FROM ENTRANCE AT SIXTEENTH STREET TO UPPER MALL PARK, LOOKING SOUTH, summer 1985 - Meridian Hill Park, Bounded by Fifteenth, Sixteenth, Euclid & W Streets, Northwest, Washington, District of Columbia, DC

  8. 72. SECOND FLOOR, HEATER ROOM ENTRANCE (UPPER RIGHT) AND STEEL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. SECOND FLOOR, HEATER ROOM ENTRANCE (UPPER RIGHT) AND STEEL, CONCRETE, BRICK, AND SPRING AIR CONDITIONER BASE, BAY 31-32/4 SOUTH, TO WEST - Ford Motor Company Edgewater Assembly Plant, Assembly Building, 309 River Road, Edgewater, Bergen County, NJ

  9. 48. INTERIOR, FIRST FLOOR, ENTRANCE HALL, DETAIL OF BUST OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. INTERIOR, FIRST FLOOR, ENTRANCE HALL, DETAIL OF BUST OF SAMUEL CLEMENTS AND WALL STENCILING - Mark Twain House, 351 Farmington Avenue (corrected from original address of 531 Farmington Avenue), Hartford, Hartford County, CT

  10. Detail of stairway and main entrance on west front of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of stairway and main entrance on west front of center block, showing steps and frame canopy. View to southeast. - Southern Ute Boarding School, Boy's Dormitory, Ouray & Capote Drives, Ignacio, La Plata County, CO

  11. 3. Perspective view of west entrance to Gas House. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Perspective view of west entrance to Gas House. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Gas House, 100 block of South Washington Avenue, west side, Scranton, Lackawanna County, PA

  12. Interior detail of anteroom inside main entrance at west wall; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of ante-room inside main entrance at west wall; camera facing southwest. - Mare Island Naval Shipyard, Printing Plant, California Avenue, northwest corner of California Avenue & Eighth Street, Vallejo, Solano County, CA

  13. Halfthrough girder over entrance to scrap yard at western end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Half-through girder over entrance to scrap yard at western end of trestle, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  14. 3. DETAIL OF ART DECO STAR INSIGNIA OVER MAIN ENTRANCE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF ART DECO STAR INSIGNIA OVER MAIN ENTRANCE. - Wright-Patterson Air Force Base, Area B, Building 65, Static Structural Test Laboratory, Between Eleventh & Twelfth Streets, Dayton, Montgomery County, OH

  15. 2. POST ENGINEER'S SHOPS AND YARD BUILDINGS FROM PRESIDIO ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. POST ENGINEER'S SHOPS AND YARD BUILDINGS FROM PRESIDIO ENTRANCE GATE AT MASON STREET, LOOKING 270 DEGREES WEST - Presidio of San Francisco, Post Engineer's Headquarters Office, Crissy Field North cantonment, San Francisco, San Francisco County, CA

  16. Detail view in caryatid breezeway to show entrance steps; lion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view in caryatid breezeway to show entrance steps; lion statues once flanked these steps - National Park Seminary, Aloha House, North of Linden Lane near corner of Beech Drive, Silver Spring, Montgomery County, MD

  17. EXTERIOR VIEW, LOOKING EAST, FRONT FACADE AND ENTRANCE TO COMPANY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING EAST, FRONT FACADE AND ENTRANCE TO COMPANY SCHOOL FOR CHILDREN OF BLACK TCI-US STEEL RED ORE MINE WORKERS - Company School for Blacks, 413 Morgan Road, Bessemer, Jefferson County, AL

  18. MEMORIAL WALK WITH MEMORIALS, TOWARD ENTRANCE GATE. VIEW TO WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MEMORIAL WALK WITH MEMORIALS, TOWARD ENTRANCE GATE. VIEW TO WEST. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  19. DETAIL OF FENCE FLANKING GATE AT ENTRANCE TO MEMORIAL WALK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF FENCE FLANKING GATE AT ENTRANCE TO MEMORIAL WALK. VIEW TO NORTHEAST. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  20. GETTYSBURG ADDRESS TABLET BESIDE ENTRANCE GATE AT MEMORIAL WALK. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GETTYSBURG ADDRESS TABLET BESIDE ENTRANCE GATE AT MEMORIAL WALK. VIEW TO EAST. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  1. GATE AND FLANKING FENCE AT ENTRANCE TO MEMORIAL WALK. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GATE AND FLANKING FENCE AT ENTRANCE TO MEMORIAL WALK. VIEW TO NORTHEAST. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  2. Japanese High School Entrance Examinations and Scholastic Achievement.

    ERIC Educational Resources Information Center

    Togashi, Yutaka

    1985-01-01

    The Japanese high school entrance examinations were examined in detail for social studies, mathematics, and science test items. Most items measured knowledge and comprehension rather than synthesis, analysis, or scientific thinking. Implications for middle school instruction were discussed. (GDC)

  3. 7. Light tower, interior from entrance, looking northwest Pumpkin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Light tower, interior from entrance, looking northwest - Pumpkin Island Light Station, Pumpkin Island, at northern end of Eggemoggin Beach, off northwest end of Little Deer Island, Eggemoggin, Hancock County, ME

  4. 8. VIEW NORTHWEST 310 DEGREES ENTRANCE FACADE OF RCA COMMUNICATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW NORTHWEST 310 DEGREES ENTRANCE FACADE OF RCA COMMUNICATIONS RECEIVING STATION. FACADE USED TO SAY RCA COMMUNICATIONS, INC, ACROSS THE TOP. - Marconi Radio Sites, Receiving, Point Reyes Station, Marin County, CA

  5. Security Station and Front Entrance to hospital property, looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Security Station and Front Entrance to hospital property, looking northeast - U.S. Veterans Hospital, Jefferson Barracks, Security Station & Front Gate, VA Medical Center, Jefferson Barracks Division 1 Jefferson Barracks Drive, Saint Louis, Independent City, MO

  6. View looking straightup at celing in center of entrance portico ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking straight-up at celing in center of entrance portico showing stenciled and painted panel saying "C.R.R. 1856." - Central of Georgia Railway, Gray Building, 227 West Broad Street, Savannah, Chatham County, GA

  7. 27. INTERIOR, FIRST FLOOR, SOUTH ENTRANCE, SOUTH LOBBY, DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. INTERIOR, FIRST FLOOR, SOUTH ENTRANCE, SOUTH LOBBY, DETAIL OF BRONZE SEAL IN FLOOR (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  8. 125. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, ENTRANCE TO THE OFFICE OF THE SECRETARY OF THE INTERIOR - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  9. 25. INTERIOR, FIRST FLOOR, SOUTH ENTRANCE, LOBBY, DETAIL OF BRONZE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. INTERIOR, FIRST FLOOR, SOUTH ENTRANCE, LOBBY, DETAIL OF BRONZE AND GLASS DOORS (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  10. Entrance terrace with recreation center portion to left and arena ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Entrance terrace with recreation center portion to left and arena portion to right. - U.S. Naval Base, Pearl Harbor, Bloch Recreation Center & Arena, Between Center Drive & North Road near Nimitz Gate, Pearl City, Honolulu County, HI

  11. 3. FIRST FLOOR, FRONT ROOM WITH ENTRANCE DOORS ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FIRST FLOOR, FRONT ROOM WITH ENTRANCE DOORS ON THE EAST WALL - Penn School Historic District, Butler Building, SC Route 37, 1 mile South of Frogmore, St. Helena Island, Frogmore, Beaufort County, SC

  12. 1. General view of guard house and entrance to Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view of guard house and entrance to Coast Guard Base from La Putilla Street, looking southwest - U.S. Coast Guard Base, San Juan, Guard House, La Puntilla Finalle, San Juan, San Juan Municipio, PR

  13. VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LAMP FIXTURE (EXTERIOR) ADJACENT TO ENTRANCE AT SOUTHWEST CORNER OF BUILDING 23, FACING NORTH - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  14. 41. OVERALL VIEW SHOWING ENTRANCE TO 'CATFISH' SILO, LOOKING SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. OVERALL VIEW SHOWING ENTRANCE TO 'CATFISH' SILO, LOOKING SOUTH Marilyn Ziemer, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  15. 72. Detail of keystone emblem over the main entrance to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. Detail of keystone emblem over the main entrance to the Carpenter's Union Hall. The inscription translates 'Labor conquers all.' - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  16. Detail view of stone entrance gate pylon showing carved site ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of stone entrance gate pylon showing carved site name and Great Seal of the United States. View looking northeast. - Flanders Field American Cemetery & Memorial, Wortegemseweg 117, Waregem, West Flanders (Belgium)

  17. 7. VIEW SOUTHWEST, SHOWING NORTHEAST CORNER ENTRANCES TO TWO SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW SOUTHWEST, SHOWING NORTHEAST CORNER ENTRANCES TO TWO SERVICE BAYS AND SHED ADDITION ON EAST WALL - Chesapeake Beach Railroad Engine House, 21 Yost Place, Seat Pleasant, Prince George's County, MD

  18. 20. WHEELPIT AREA LOOKING SOUTHWEST, WITH TAILRACE ENTRANCE ARCH BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. WHEELPIT AREA LOOKING SOUTHWEST, WITH TAILRACE ENTRANCE ARCH BELOW SLAB, IN FOUNDATION WALL AT LEFT; ANOTHER VIEW OF THE LONGITUDINAL BEAMS SPANNING WHEELPIT. - Boston Manufacturing Company, 144-190 Moody Street, Waltham, Middlesex County, MA

  19. 3. Building 8 east elevation oblique. Entrance to entire complex ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Building 8 east elevation oblique. Entrance to entire complex from Ridge Avenue to left. View looking west. - John & James Dobson Carpet Mill (West Parcel), Building No. 8, 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  20. Lock 1 View northwest of lock entrance. Notch for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 1 - View northwest of lock entrance. Notch for flash boards can be seen near center, gate pocket at left. - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  1. 7. STRUCTURAL DETAILS AT ENTRANCE OF LOCOMOTIVE ROUNDHOUSE, SHEET NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. STRUCTURAL DETAILS AT ENTRANCE OF LOCOMOTIVE ROUNDHOUSE, SHEET NO. 1-9-2/89.1 (DRAWING DATED 1942). - Oakland Army Base, Railroad Engine Shop, Engineer Road & Wake Avenue, Oakland, Alameda County, CA

  2. 1. Old road alignment, now entrance to government parking area, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Old road alignment, now entrance to government parking area, facing 24 degrees north northeast - Oak Creek Administrative Center, One half mile east of Zion-Mount Carmel Highway at Oak Creek, Springdale, Washington County, UT

  3. VIEW OF FRONT SIDE (ENTRANCE) OF BUILDING 23, FROM MIDDLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FRONT SIDE (ENTRANCE) OF BUILDING 23, FROM MIDDLE OF COURTYARD, FACING WEST - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  4. CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE - Edwards Air Force Base, X-15 Engine Test Complex, Firing Control Building, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  5. VIEW OF TYPICAL SIDE DOOR ENTRANCE OF BUILDING 23, (AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TYPICAL SIDE DOOR ENTRANCE OF BUILDING 23, (AT SOUTHWEST CORNER), FACING NORTH - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  6. OBLIQUE VIEW OF FRONT SIDE (ENTRANCE) AND COURTYARD OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF FRONT SIDE (ENTRANCE) AND COURTYARD OF BUILDING 23, FACING SOUTHWEST - Roosevelt Base, Auditorium-Gymnasium, West Virginia Street between Richardson & Reeves Avenues, Long Beach, Los Angeles County, CA

  7. 5. Keeper's house, detail of entrance porch, southeast corner, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Keeper's house, detail of entrance porch, southeast corner, looking northwest - Ram Island Light Station, Ram Island, south of Ocean Point & just north of Fisherman Island, marking south side of Fisherman Island Passage, Ocean Point, Lincoln County, ME

  8. 35. Basement, passage beneath main entrance porch, showing circular skylight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Basement, passage beneath main entrance porch, showing circular skylight opening, view to northwest - Portsmouth Naval Hospital, Hospital Building, Rixey Place, bounded by Williamson Drive, Holcomb Road, & The Circle, Portsmouth, Portsmouth, VA

  9. 1. Roaring Fork Motor Nature Trail, entrance sign. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Roaring Fork Motor Nature Trail, entrance sign. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  10. Historic interior view of the entrance taken shortly after battle, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic interior view of the entrance taken shortly after battle, looking toward the southwest showing damage to gorge as well as timber and earth blindage. - Fort Pulaski, Cockspur Island, Savannah, Chatham County, GA

  11. 5. BUILDING 0503, INTERIOR WOODEN ARCHES. Looking south from entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. BUILDING 0503, INTERIOR WOODEN ARCHES. Looking south from entrance. - Edwards Air Force Base, South Base Sled Track, Earth Covered Bunker Types, North of Sled Track, Lancaster, Los Angeles County, CA

  12. View looking from the Tenth Street vehicular entrance to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking from the Tenth Street vehicular entrance to the Justice Department Building to show the great court and fountain - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  13. Interior view, stairwell and entrance to the great hall (note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, stairwell and entrance to the great hall (note Boardman Roberts's painting, Great Codifers of Law) - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  14. Interior view, close view of stairwell and entrance to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, close view of stairwell and entrance to the great hall - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  15. TENANT HOUSE INTERIOR, DOOR DETAIL, FRONT ENTRANCE INTO LIVING ROOM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TENANT HOUSE INTERIOR, DOOR DETAIL, FRONT ENTRANCE INTO LIVING ROOM, LOOKING NORTH - Irvine Ranch Agricultural Headquarters, Carillo Tenant House, Southwest of Intersection of San Diego & Santa Ana Freeways, Irvine, Orange County, CA

  16. 5. DETAIL OF ENTRANCE OF 14 LOGAN CIRCLE WITH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF ENTRANCE OF 14 LOGAN CIRCLE WITH SIDE BAY OF 1500 THIRTEENTH STREET NW ON RIGHT. - Logan Circle, Vermont Avenue, Rhode Island Avenue, & Thirteenth Street, Washington, District of Columbia, DC

  17. 1. BUILDING 324, SOUTH SIDE, FROM F STREET OPPOSITE ENTRANCE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 324, SOUTH SIDE, FROM F STREET OPPOSITE ENTRANCE, LOOKING NORTH. - Oakland Naval Supply Center, Commanding Officers Residences, Between E & F Streets, West of Fourth Street, Oakland, Alameda County, CA

  18. 6. MAIN ENTRANCE, LOOKING SOUTH FROM SYCAMORE STREET; CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. MAIN ENTRANCE, LOOKING SOUTH FROM SYCAMORE STREET; CORNER OF BUILDING 88 IS VISIBLE AT RIGHT, BUILDING 93 IS AT CENTER, BUILDING 145 AT LEFT - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  19. 118. BENCH SHOP, NORTHWEST CORNER SHOWING ENTRANCE TO ROOM FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. BENCH SHOP, NORTHWEST CORNER SHOWING ENTRANCE TO ROOM FROM OUTSIDE. OFFICE SAFE AT CENTER. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  20. 19. View of main entrance and front (east) facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of main entrance and front (east) facade of H-wing from Comstat Drive, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  1. VIEW OF RIDING STABLE AND PASTURE FROM ENTRANCE ROAD, PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF RIDING STABLE AND PASTURE FROM ENTRANCE ROAD, PART TWO OF PANORAMA, FACING NORTHEAST - Overhills, Fort Bragg Military Reservation, Approximately 15 miles NW of Fayetteville, Overhills, Harnett County, NC

  2. 7. View of south court and driveway toward main entrance; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View of south court and driveway toward main entrance; and parts of north and south wings of main building; facing east. - Mission Motel, South Court, 9235 MacArthur Boulevard, Oakland, Alameda County, CA

  3. East side detail, showing later wings flanking original entrance on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East side detail, showing later wings flanking original entrance on east side. - Fitzsimons General Hospital, Red Cross Building, South Eighth Street Bounded by West McAfee Avenue on South & West Harlow Avenue on North, Aurora, Adams County, CO

  4. 42. VIEW OF WALL AT EAST ENTRANCE TO WALKWAY. 'FRANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW OF WALL AT EAST ENTRANCE TO WALKWAY. 'FRANK AUZA, FLAGSTAFF SHEEP CO.' SCRATCHED INTO FRESH MORTAR CAP ON STONE WALL. February 1987 - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  5. 31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. '1944 JOE LANDETA' SCRATCHED INTO FRESH CONCRETE. March 1987 - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  6. 15. ROOMS 48 AND 49, LOOKING SOUTH FROM ENTRANCE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. ROOMS 48 AND 49, LOOKING SOUTH FROM ENTRANCE TO ROOM 47. THE OAK CABINETS ARE USED TO STORE ROCK CORE SAMPLES. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  7. Detail of fire alarm boxes located adjacent to the entrance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of fire alarm boxes located adjacent to the entrance of the northwest wing - Mare Island Naval Shipyard, Guard House & Barracks, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  8. 2. MAGAZINE P, WITH ENTRANCE DOOR IN FOREGROUND, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. MAGAZINE P, WITH ENTRANCE DOOR IN FOREGROUND, LOOKING NORTHEAST. - NIKE Missile Base C-84, Underground Storage Magazines & Launcher-Loader Assemblies, Easternmost portion of launch area, Barrington, Cook County, IL

  9. 9. MAGAZINE P INTERIOR, LOOKING TO DOORWAY ENTRANCE. NIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. MAGAZINE P INTERIOR, LOOKING TO DOORWAY ENTRANCE. - NIKE Missile Base C-84, Underground Storage Magazines & Launcher-Loader Assemblies, Easternmost portion of launch area, Barrington, Cook County, IL

  10. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  11. 14. Detail of possible entrance on north side of Pentagon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail of possible entrance on north side of Pentagon 2 (note leaning logs at center). View to west. - Pentagon Site, Pentagon 2, West of Barry's Landing off Highway 37, Fort Smith, Big Horn County, MT

  12. 24. LAUNCH CONTROL CAPSULE. ENTRANCE TO ACOUSTICAL ENCLOSURE. SHOCK ISOLATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. LAUNCH CONTROL CAPSULE. ENTRANCE TO ACOUSTICAL ENCLOSURE. SHOCK ISOLATOR AT FAR LEFT. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  13. Historical bathymetric changes near the entrance to Grays Harbor, Washington

    SciTech Connect

    Burch, T.L.; Sherwood, C.R. )

    1992-12-01

    Large changes in the distribution of sediment near the entrance to Grays Harbor, Washington, have occurred since the long rock jetties were built to confine flow. Spits to the north and south of the entrance have grown, the entrance channel has deepened, and the outer bar has eroded and moved offshore. The shorelines of North Beach and South Beach have experienced significant amounts of both erosion and accretion since the jetties were constructed around the turn of the century. Recently, the erosion rate at South Beach has increased and, because Half Moon Bay is growing at the expense of the shoreward side of Point Chehalis, the vegetated portion of the spit is now less than 350 ft wide at the narrowest section. The US Army Corps of Engineers, Seattle District, requested that Battelle/Marine Sciences Laboratory evaluate long-term trends in erosion near the entrance to Grays Harbor.

  14. 2. View of Ford Mansion looking at the front entrance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Ford Mansion looking at the front entrance with the fountain in the foreground - Richmond Hill Plantation, Ford Mansion, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  15. 14. DETAIL OF ENTRANCE OVERHANG, WEST SIDE OF NORTH PORTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF ENTRANCE OVERHANG, WEST SIDE OF NORTH PORTION. SAME FEATURE AS A-13. - Chollas Heights Naval Radio Transmitting Facility, Transmitter Building, 6410 Zero Road, San Diego, San Diego County, CA

  16. 70. Smart view recreation area entrance road. View of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. Smart view recreation area entrance road. View of the snake or worm fences used to reinforce the roadway alignment. Looking north-northwest. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  17. 1. EXTERIOR VIEW, LOOKING EAST, WITH ENTRANCES AND SIDE ELEVATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW, LOOKING EAST, WITH ENTRANCES AND SIDE ELEVATIONS ALONG THE OLD BANKHEAD HIGHWAY (NOW 20TH STREET) AND ELLIOTT BOULEVARD - G. W. Posey Store, Twentieth Street & Elliot Boulevard, Jasper, Walker County, AL

  18. Detail of front entrance stoop, siding, and eaves construction. Oblique ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of front entrance stoop, siding, and eaves construction. Oblique view to the southwest - Wellton-Mohawk Irrigation System, Building No. 10 A-B (Duplex), 30691 & 30693 Wellton-Mohawk Drive, Wellton, Yuma County, AZ

  19. FEATURE 4, ARMCO HUT, ENTRANCE FACADE, VIEW FACING EASTSOUTHEAST (with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 4, ARMCO HUT, ENTRANCE FACADE, VIEW FACING EAST-SOUTHEAST (with scale stick). - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-ARMCO Hut, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  20. FEATURE 4, ARMCO HUT, ENTRANCE FACADE, VIEW FACING EASTSOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 4, ARMCO HUT, ENTRANCE FACADE, VIEW FACING EAST-SOUTHEAST. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-ARMCO Hut, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  1. 14. Inner double blast door entrance to perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Inner double blast door entrance to perimeter acquisition radar building security area - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  2. Cell Polarization and Cytokinesis in Budding Yeast

    PubMed Central

    Bi, Erfei; Park, Hay-Oak

    2012-01-01

    Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field. PMID:22701052

  3. Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.

    2006-03-21

    A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.

  4. Elevation and plan of east side entrance. San Bernardino Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation and plan of east side entrance. San Bernardino Valley Union Junior College, Library Building. Also includes sections II and SS of entrance hall; and a stress diagram of steel truss. Howard E. Jones, Architect, San Bernardino, California. Sheet 7, job no. 315. Scale 1/2 inch to the foot. No date given on sheet (probably March or April, 1927). - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  5. Tanned or Burned: The Role of Fire in Shaping Physical Seed Dormancy

    PubMed Central

    Moreira, Bruno; Pausas, Juli G.

    2012-01-01

    Plant species with physical seed dormancy are common in mediterranean fire-prone ecosystems. Because fire breaks seed dormancy and enhances the recruitment of many species, this trait might be considered adaptive in fire-prone environments. However, to what extent the temperature thresholds that break physical seed dormancy have been shaped by fire (i.e., for post-fire recruitment) or by summer temperatures in the bare soil (i.e., for recruitment in fire-independent gaps) remains unknown. Our hypothesis is that the temperature thresholds that break physical seed dormancy have been shaped by fire and thus we predict higher dormancy lost in response to fire than in response to summer temperatures. We tested this hypothesis in six woody species with physical seed dormancy occurring in fire-prone areas across the Mediterranean Basin. Seeds from different populations of each species were subject to heat treatments simulating fire (i.e., a single high temperature peak of 100°C, 120°C or 150°C for 5 minutes) and heat treatments simulating summer (i.e., temperature fluctuations; 30 daily cycles of 3 hours at 31°C, 4 hours at 43°C, 3 hours at 33°C and 14 hours at 18°C). Fire treatments broke dormancy and stimulated germination in all populations of all species. In contrast, summer treatments had no effect over the seed dormancy for most species and only enhanced the germination in Ulex parviflorus, although less than the fire treatments. Our results suggest that in Mediterranean species with physical dormancy, the temperature thresholds necessary to trigger seed germination are better explained as a response to fire than as a response to summer temperatures. The high level of dormancy release by the heat produced by fire might enforce most recruitment to be capitalized into a single post-fire pulse when the most favorable conditions occur. This supports the important role of fire in shaping seed traits. PMID:23227267

  6. Intra-population level variation in thresholds for physical dormancy-breaking temperature

    PubMed Central

    Liyanage, Ganesha S.; Ooi, Mark K. J.

    2015-01-01

    Background and Aims Intra-population variation in seed dormancy is an advantage for population persistence in unpredictable environments. The important role played by physically dormant species in these habitats makes understanding the level of variation in their dormancy a key ecological question. Heat produced in the soil is the major dormancy-breaking stimulus and, in fire prone ecosystems, soil temperatures generated by fire may vary spatially and over time. While many studies have investigated variation in initial dormancy, a measure that is of little value in fire-prone ecosystems, where initial dormancy levels are uniformly high, intra-population variation in dormancy-breaking temperature thresholds has never been quantified. This study predicted that species would display variation in dormancy-breaking temperature thresholds within populations, and investigated whether this variation occurred between individual plants from the same maternal environment. Methods The intra-population variation in dormancy-breaking thresholds of five common physically dormant shrub species (family Fabaceae) from fire-prone vegetation in south-eastern Australia was assessed using heat treatments and germination trials. Replicate batches of seeds from each of four maternal plants of Dillwynia floribunda, Viminaria juncea, Bossiaea heterophylla, Aotus ericoides and Acacia linifolia were treated at 40, 60, 80, 100 and 120 °C. Key Results Dormancy-breaking response to heat treatments varied significantly among individual plants for all species, with some individuals able to germinate after heating at low temperatures and others restricting germination to temperatures that only occur as a result of high-severity fires. Germination rate (T50) varied among individuals of three species. Conclusions Variation detected among individuals that were in close proximity to each other indicates that strong differences in dormancy-breaking temperature thresholds occur throughout the broader

  7. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?

    PubMed

    Charrier, Guillaume; Bonhomme, Marc; Lacointe, André; Améglio, Thierry

    2011-11-01

    As observed for most stresses, tree frost resistance can be split into two main processes: avoidance and tolerance. Avoidance of freezing is achieved by introducing species only in the climatic context in which the probability of freezing events is very low for the sensitive stages of buds or stems; i.e., when good synchronism exists between the annual cycle and the critical climatic periods. Buds become able to grow only after chilling requirements have been satisfied (endodormancy released) during winter; they subsequently break after heat requirements have been completed (end of ecodormancy) in early spring. Actually, this period is often subject to more or less severe freezing events. Trees are also able to adjust their freezing tolerance by increasing their capacity of extracellular freezing and decreasing the possibility of intracellular freezing through the process of frost acclimation. Both freezing resistance processes (avoidance and tolerance) are environmentally driven (by photoperiod and temperature), but there are also genotypic effects among species or cultivars. Here, we evaluated the degree to which differences in dormancy release and frost acclimation were related to environmental and genetic influences by comparing trees growing in common garden conditions. This investigation was carried out for two winters in lowland and mountain locations on different walnut genotypes differing significantly for budburst dates. Chilling requirement for endodormancy release and heat requirement during ecodormancy were evaluated in all situations. In addition, frost acclimation was assessed by the electrolyte leakage method on stems from the same trees before leaf fall through budburst. No significant differences were observed in chilling requirements among genotypes. Moreover, frost acclimation dynamics were similar between genotypes or locations when expressed depending on chilling units accumulated since 15 September as a time basis instead of Julian day. The

  8. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat.

    PubMed

    Himi, Eiko; Mares, Daryl J; Yanagisawa, Akira; Noda, Kazuhiko

    2002-07-01

    The level of grain dormancy and sensitivity to ABA of the embryo, a key factor in grain dormancy, were examined in developing grains of a white-grained wheat line, Novosibirskaya 67 (NS-67), and its red-grained near-isogenic lines (ANK-1A to -1D); a red-grained line, AUS 1490, and its white-grained mutant line (EMS-AUS). ANK lines showed higher levels of grain dormancy than NS-67 at harvest maturity. AUS 1490 grain also showed higher dormancy than EMS-AUS grain. These results suggest that the R gene for grain colour can enhance grain dormancy. However, the dormancy effect conferred by the R gene was not large, suggesting that it plays a minor role in the development of grain dormancy. Water extracts of AUS 1490 and EMS-AUS bran contained germination inhibitors equivalent to 1-10 microM ABA, although there was no difference in the amount of inhibitors between AUS 1490 and EMS-AUS. Thus, the grain colour gene of AUS 1490 did not appear to enhance the level of grain dormancy by accumulating germination inhibitors in its bran. Sensitivity to ABA of embryos was higher in grains collected around harvest-maturity for ANK lines and AUS 1490, compared with NS-67 and EMS-AUS. The R gene might enhance grain dormancy by increasing the sensitivity of embryos to ABA.

  9. Electrochemical Regulation of Budding Yeast Polarity

    PubMed Central

    Piel, Matthieu; Chang, Fred; Minc, Nicolas

    2014-01-01

    Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs) at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae) cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs), which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization. PMID:25548923

  10. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. PMID:27422519

  11. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.

    PubMed

    Jones, Natalie T; Gilbert, Benjamin

    2016-03-01

    In seasonal climates, dormancy is a common strategy that structures biodiversity and is necessary for the persistence of many species. Climate change will likely alter dormancy dynamics in zooplankton, the basis of aquatic food webs, by altering two important hatching cues: mean temperatures during the ice-free season, and mean day length when lakes become ice free. Theory suggests that these changes could alter diversity, hatchling abundances and phenology within lakes, and that these responses may diverge across latitudes due to differences in optimal hatching cues and strategies. To examine the role of temperature and day length on hatching dynamics, we collected sediment from 25 lakes across a 1800 km latitudinal gradient and exposed sediment samples to a factorial combination of two photoperiods (12 and 16 h) and two temperatures (8 and 12 °C) representative of historical southern (short photoperiod, warm) and northern (long photoperiod, cool) lake conditions. We tested whether sensitivity to these hatching cues varies by latitudinal origin and differs among taxa. Higher temperatures advanced phenology for all taxa, and these advances were greatest for cladocerans followed by copepods and rotifers. Although phenology differed among taxa, the effect of temperature did not vary with latitude. The latitudinal origin of the egg bank influenced egg abundance and hatchling abundance and diversity, with these latter effects varying with taxa, temperature and photoperiod. Copepod hatchling abundances peaked at mid-latitudes in the high temperature and long photoperiod treatments, whereas hatchling abundances of other zooplankton were greatest at low latitudes and high temperature. The overall diversity of crustacean zooplankton (copepods and cladocerans) also reflected distinct responses of each taxa to our treatments, with the greatest diversity occurring at mid-latitudes (~56 °N) in the shorter photoperiod treatment. Our results demonstrate that hatching cues

  12. Water deficit and induction of summer dormancy in perennial Mediterranean grasses

    PubMed Central

    Volaire, Florence; Seddaiu, Giovanna; Ledda, Luigi; Lelievre, François

    2009-01-01

    Background and Aims Summer dormancy is a trait conferring superior drought survival in Mediterranean perennial grasses. As the respective roles of environmental factors and water deficit on induction of summer dormancy are unclear, the effect of intense drought were tested under contrasting day lengths in a range of forage and native grasses. Methods Plants of Poa bulbosa, Dactylis glomerata ‘Kasbah’ and Lolium arundinaceum ‘Flecha’ were grown in pots (a) from winter to summer in a glasshouse and subjected to either an early or a late-spring drought period followed by a summer water deficit and (b) in controlled conditions, with long days (LD, 16 h) or short days (SD, 9 h) and either full irrigation or water deficit followed by rehydration. Leaf elongation, senescence of aerial tissues and dehydration of basal tissues were measured to assess dormancy. Endogenous abscisic acid (ABA) in basal tissues was determined by monoclonal immunoassay analysis. Key Results Even under irrigation, cessation of leaf elongation, senescence of lamina and relative dehydration of basal tissues were triggered only by a day length longer than 13 h 30 min (late spring and LD) in plants of Poa bulbosa and Dactylis glomerata ‘Kasbah’ which exhibit complete dormancy. Plants of Lolium arundinaceum ‘Flecha’ maintained leaf growth under irrigation irrespective of the day length since its dormancy is incomplete. ABA concentrations were not higher during late-spring drought than early, and could not be associated with spring dormancy induction. In summer, ABA concentration in bulbs of the desiccation-tolerant Poa were greater than in basal tissues of other species. Conclusions The results of both experiments tend to invalidate the hypothesis that water deficit has a role in early summer-dormancy induction in the range of tested grasses. However, a late-spring drought tends to increase plant senescence and ABA accumulation in basal tissues of forage grasses which could enhance

  13. SMAD signaling and redox imbalance cooperate to induce prostate cancer cell dormancy

    PubMed Central

    Bui, Anh Thu; Laurent, Fanny; Havard, Maryline; Dautry, François; Tchénio, Thierry

    2015-01-01

    Metastasis involves the dissemination of single or small clumps of cancer cells through blood or lymphatic vessels and their extravasation into distant organs. Despite the strong regulation of metastases development by a cell dormancy phenomenon, the dormant state of cancer cells remains poorly characterized due to the difficulty of in vivo studies. We have recently shown in vitro that clonogenicity of prostate cancer cells is regulated by a dormancy phenomenon that is strongly induced when cells are cultured both at low cell density and in a slightly hypertonic medium. Here, we characterized by RT-qPCR a genetic expression signature of this dormant state which combines the presence of both stemness and differentiation markers. We showed that both TFGβ/BMP signaling and redox imbalance are required for the full induction of this dormancy signature and cell quiescence. Moreover, reconstruction experiments showed that TFGβ/BMP signaling and redox imbalance are sufficient to generate a pattern of genetic expression displaying all characteristic features of the dormancy signature. Finally, we observed that low cell density was sufficient to activate TGFβ/BMP signaling and to generate a slight redox imbalance thus priming cells for dormancy that can be attained with a co-stimulus like hypertonicity, most likely through an increased redox imbalance. The identification of a dual regulation of dormancy provides a framework for the interpretation of previous reports showing a restricted ability of BMP signaling to regulate cancer cell dormancy in vivo and draws attention on the role of oxidative stress in the metastatic process. PMID:25706341

  14. Seed dormancy and germination in Jeffersonia dubia (Berberidaceae) as affected by temperature and gibberellic acid.

    PubMed

    Rhie, Y H; Lee, S Y; Kim, K S

    2015-03-01

    The genus Jeffersonia, which contains only two species, has a trans-Atlantic disjunct distribution. The aims of this study were to determine the requirements for breaking dormancy and germination of J. dubia seeds and to compare its dormancy characteristics with those of the congener in eastern North America. Ripe seeds of J. dubia contain an underdeveloped embryo and were permeable to water. In nature, seeds were dispersed in May, while embryos began to grow in September, and were fully elongated by late November. Germination started in March of the next year, and seeds emerged as seedlings soon after germination. In laboratory experiments, incubation at high temperatures (25 °C, 25/15 °C) for at least 8 weeks was required to initiate embryo growth, while a transfer to moderate temperatures (20/10 °C, 15/6 °C) was needed for the completion of embryo growth. At least 8 weeks at 5 °C was effective in overcoming physiological dormancy and for germination in seeds after the embryos had fully elongated. Thus, both high and low temperatures were essential to break dormancy. Gibberellic acid (GA3 ) treatment could substitute for the high temperature requirement, but not for the low temperature requirement. Based on the dormancy-breaking requirements, it is confirmed that the seeds have deep simple morphophysiological dormancy. This dormancy type is similar to that of seeds of the eastern North American species J. diphylla. Although seeds require 10-11 months from seed dispersal to germination in nature, under controlled conditions they required only 3 months after treatment with 1000 mg·l(-1) GA3 , followed by incubation at 15/6 °C. This represents practical knowledge for propagation of these plants from seed.

  15. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species

    PubMed Central

    Heide, Ola M.

    2011-01-01

    Environmental regulation of growth and dormancy of four Sorbus genotypes was studied in controlled environments. Emphasis was placed on assessment of the presence and nature of the deficient photoperiodic dormancy regulation system that has previously been reported for some woody Rosaceae species. Two genotypes of Sorbus aucuparia L. maintained indeterminate growth for 8 weeks and 9 weeks at temperatures of 15 °C and 21 °C in both 20 h and 10 h photoperiods, while at 9 °C, in the same photoperiodic conditions, they immediately ceased growing. At the higher temperatures, initiation of new leaves (nodes) was unaffected by photoperiod, while internode elongation was significantly enhanced by long days (LD). However, even after prolonged exposure to 9 °C, most plants resumed growth when moved to high temperature and LD, indicating a shallow state of dormancy. Seedlings of Sorbus intermedia (J. F. Ehrh.) Pers. and micro-propagated plantlets of S. commixta Hedl. ‘Dodong’ were also unaffected by photoperiod during primary growth, but failed to elongate and gradually became dormant regardless of temperature and day-length conditions. However, after chilling and breaking of dormancy, the plants elongated vigorously but changed to a determinate mode of growth. Furthermore, a temperature of 9 °C was found to be fully effective for breaking dormancy in S. intermedia plants. It is concluded that deficient photoperiodic dormancy control seems widespread in the Rosaceae and that, in such plants, both dormancy induction and release is brought about by low temperature. The potential impacts of climate change on such trees are discussed. PMID:21862485

  16. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage

    PubMed Central

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75–85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy. PMID:26428064

  17. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage.

    PubMed

    Basbouss-Serhal, Isabelle; Leymarie, Juliette; Bailly, Christophe

    2016-01-01

    The changes in germination potential of freshly harvested seeds of Arabidopsis thaliana stored in various combinations of temperature and relative humidity were investigated over 63 weeks of storage. Seeds of the wild type Col-0 and of two mutants displaying low and high levels of dormancy, cat2-1 and mtr4-1, respectively, were stored at harvest in 24 different environments including a combination of eight relative humidities, from 1 to 85%, and four temperatures (10, 15, 20, and 25 °C). These mutations did not influence behaviour of seeds during storage. Primary dormant seeds did not germinate in darkness at 25 °C but acquired the potential to germinate at this temperature within 7 weeks when stored in relative humidities close to 50% across all temperatures. Sorption isotherms and Arrhenius plots demonstrated that the seed moisture content of 0.06 g H2O/g dry weight was a critical value below which dormancy release was associated with reactions of negative activation energy and above which dormancy release increased with temperature. Longer storage times when relative humidity did not exceed 75-85% led to decreased germination at 25 °C, corresponding to the induction of secondary dormancy. Dormancy release and induction of secondary dormancy in the dry state were associated with induction or repression of key genes related to abscisic acid and gibberellins biosynthesis and signalling pathways. In high relative humidity, prolonged storage of seeds induced ageing and progressive loss of viability, but this was not related to the initial level of dormancy.

  18. SMAD signaling and redox imbalance cooperate to induce prostate cancer cell dormancy.

    PubMed

    Bui, Anh Thu; Laurent, Fanny; Havard, Maryline; Dautry, François; Tchénio, Thierry

    2015-01-01

    Metastasis involves the dissemination of single or small clumps of cancer cells through blood or lymphatic vessels and their extravasation into distant organs. Despite the strong regulation of metastases development by a cell dormancy phenomenon, the dormant state of cancer cells remains poorly characterized due to the difficulty of in vivo studies. We have recently shown in vitro that clonogenicity of prostate cancer cells is regulated by a dormancy phenomenon that is strongly induced when cells are cultured both at low cell density and in a slightly hypertonic medium. Here, we characterized by RT-qPCR a genetic expression signature of this dormant state which combines the presence of both stemness and differentiation markers. We showed that both TFGβ/BMP signaling and redox imbalance are required for the full induction of this dormancy signature and cell quiescence. Moreover, reconstruction experiments showed that TFGβ/BMP signaling and redox imbalance are sufficient to generate a pattern of genetic expression displaying all characteristic features of the dormancy signature. Finally, we observed that low cell density was sufficient to activate TGFβ/BMP signaling and to generate a slight redox imbalance thus priming cells for dormancy that can be attained with a co-stimulus like hypertonicity, most likely through an increased redox imbalance. The identification of a dual regulation of dormancy provides a framework for the interpretation of previous reports showing a restricted ability of BMP signaling to regulate cancer cell dormancy in vivo and draws attention on the role of oxidative stress in the metastatic process. PMID:25706341

  19. An elastic model of partial budding of retroviruses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2008-03-01

    Retroviruses are characterized by their unique infection strategy of reverse transcription, in which the genetic information flows from RNA back to DNA. The most well known representative is the human immunodeficiency virus (HIV). Unlike budding of traditional enveloped viruses, retrovirus budding happens together with the formation of spherical virus capsids at the cell membrane. Led by this unique budding mechanism, we proposed an elastic model of retrovirus budding in this work. We found that if the lipid molecules of the membrane are supplied fast enough from the cell interior, the budding always proceeds to completion. In the opposite limit, there is an optimal size of partially budded virions. The zenith angle of these partially spherical capsids, α, is given by α˜(2̂/κσ)^1/4, where κ is the bending modulus of the membrane, σ is the surface tension of the membrane, and τ characterizes the strength of capsid protein interaction. If τ is large enough such that α˜π, the budding is complete. Our model explained many features of retrovirus partial budding observed in experiments.

  20. Kinetics of human immunodeficiency virus budding and assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2009-03-01

    Human immunodeficiency virus (HIV) belongs to a large family of RNA viruses, retroviruses. Unlike budding of regular enveloped viruses, retroviruses bud concurrently with the assembly of retroviral capsids on the cell membrane. The kinetics of HIV (and other retroviruses) budding and assembly is therefore strongly affected by the elastic energy of the membrane and fundamentally different from regular viruses. The main result of this work shows that the kinetics is tunable from a fast budding process to a slow and effectively trapped partial budding process, by varying the attractive energy of retroviral proteins (call Gags), relative to the membrane elastic energy. When the Gag-Gag attraction is relatively high, the membrane elastic energy provides a kinetic barrier for the two pieces of the partial capsids to merge. This energy barrier determines the slowest step in the kinetics and the budding time. In the opposite limit, the membrane elastic energy provides not only a kinetic energy barrier, but a free energy barrier. The budding and assembly is effectively trapped at local free energy minimum, corresponding to a partially budded state. The time scale to escape from this metastable state is exponentially large. In both cases, our result fit with experimental measurements pretty well.

  1. Season of fire manipulates bud bank dynamics in northern mixed-grass prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In perennial grassland dominated systems, belowground bud banks regulate plant community dynamics. Plant community responses to disturbance are largely driven by the ability to generate future aboveground growth originating from belowground axillary buds. This study examined bud bank dynamics for...

  2. Disentangling direct and indirect fitness effects of microbial dormancy.

    PubMed

    Ratcliff, William C; Hoverman, Mitchell; Travisano, Michael; Denison, R Ford

    2013-08-01

    Disentangling individual selection from kin selection is one of the greatest challenges of evolutionary biology. Even solitary organisms that do not interact directly with conspecifics may interact indirectly with them through competition for resources. As a result, traits that appear to affect individual fitness alone can also modify the fitness of relatives nearby and thus may evolve partially through these cryptic indirect fitness effects. Here we develop a method to quantitatively separate direct and indirect fitness consequences when some microbes become dormant, while neighbors of the same genotype remain active. Dormant microbes typically survive stresses that kill metabolically active cells, but dormancy also has a social side effect, sparing resources that may be used by nondormant individuals for growth. In structured populations, spared resources may be preferentially consumed by nondormant clonemates, providing an indirect benefit. Without population structure, however, exploitation by a never-dormant competitor imposes an indirect fitness cost on dormant cells. Cryptic indirect fitness effects may play a significant role in the evolution of many ostensibly asocial traits.

  3. Enhanced vadose zone nitrogen removal by poplar during dormancy.

    PubMed

    Ausland, Hayden; Ward, Adam; Licht, Louis; Just, Craig

    2015-01-01

    A pilot-scale, engineered poplar tree vadose zone system was utilized to determine effluent nitrate (NO3(-)) and ammonium concentrations resulting from intermittent dosing of a synthetic wastewater onto sandy soils at 4.5°C. The synthetic wastewater replicated that of an industrial food processor that irrigates onto sandy soils even during dormancy which can leave groundwater vulnerable to NO3(-) contamination. Data from a 21-day experiment was used to assess various Hydrus model parameterizations that simulated the impact of dormant roots. Bromide tracer data indicated that roots impacted the hydraulic properties of the packed sand by increasing effective dispersion, water content and residence time. The simulated effluent NO3(-) concentration on day 21 was 1.2 mg-N L(-1) in the rooted treatments compared to a measured value of 1.0 ± 0.72 mg-N L(-1). For the non-rooted treatment, the simulated NO3(-) concentration was 4.7 mg-N L(-1) compared to 5.1 ± 3.5 mg-N L(-1) measured on day 21. The model predicted a substantial "root benefit" toward protecting groundwater through increased denitrification in rooted treatments during a 21-day simulation with 8% of dosed nitrogen converted to N2 compared to 3.3% converted in the non-rooted test cells. Simulations at the 90-day timescale provided similar results, indicating increased denitrification in rooted treatments.

  4. Rabies virus inactivates cofilin to facilitate viral budding and release.

    PubMed

    Zan, Jie; An, Shu-Ting; Mo, Kai-Kun; Zhou, Jian-Wei; Liu, Juan; Wang, Hai-Long; Yan, Yan; Liao, Min; Zhou, Ji-Yong

    2016-09-01

    Cytoplasmic actin and actin-associated proteins have been identified in RABV particles. Although actin is involved in RABV entry into cells, the specific role of actin in RABV budding and release remains unknown. Our study found that RABV M protein-mediated virion budding depends on intact actin filaments. Confocal microscopy demonstrated a block to virions budding, with a number of M protein-mediated budding vesicles detained in the cell cytoplasm. Furthermore, RABV infection resulted in inactivation of cofilin and upregulation of phosphorylated cofilin. Knockdown of cofilin reduced RABV release. These results for the first time indicate that RABV infection resulted in upregulation of phosphorylated cofilin to facililtate actin polymerization for virus budding. PMID:27396619

  5. A proposed mechanism for physical dormancy break in seeds of Ipomoea lacunosa (Convolvulaceae)

    PubMed Central

    Jayasuriya, K. M. G. Gehan; Baskin, Jerry M.; Geneve, Robert L.; Baskin, Carol C.

    2009-01-01

    Background and Aims The water-impermeable seeds of Ipomoea lacunosa undergo sensitivity cycling to dormancy breaking treatment, and slits are formed around bulges adjacent to the micropyle during dormancy break, i.e. the water gap opens. The primary aim of this research was to identify the mechanism of slit formation in seeds of this species. Methods Sensitive seeds were incubated at various combinations of relative humidity (RH) and temperature after blocking the hilar area in different places. Increase in seed mass was measured before and after incubation. Scanning electron microscopy (SEM) and staining of insensitive and sensitive seeds were carried out to characterize these states morphologically and anatomically. Water absorption was monitored at 35 and 25 °C at 100 % RH. Key Results There was a significant relationship between incubation temperature and RH with percentage seed dormancy break. Sensitive seeds absorbed water vapour, but insensitive seeds did not. Different amounts of water were absorbed by seeds with different blocking treatments. There was a significant relationship between dormancy break and the amount of water absorbed during incubation. Conclusions Water vapour seals openings that allow it to escape from seeds and causes pressure to develop below the bulge, thereby causing slits to form. A model for the mechanism of formation of slits (physical dormancy break) is proposed. PMID:19098068

  6. Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion

    PubMed Central

    Wilkie, Kathleen P.; Hahnfeldt, Philip

    2013-01-01

    Cancer dormancy, a state in which cancer cells persist in a host without significant growth, is a natural forestallment of progression to manifest disease and is thus of great clinical interest. Experimental work in mice suggests that in immune-induced dormancy, the longer a cancer remains dormant in a host, the more resistant the cancer cells become to cytotoxic T-cell-mediated killing. In this work, mathematical models are used to analyse the possible causative mechanisms of cancer escape from immune-induced dormancy. Using a data-driven approach, both decaying efficacy in immune predation and immune recruitment are analysed with results suggesting that decline in recruitment is a stronger determinant of escape than increased resistance to predation. Using a mechanistic approach, the existence of an immune-resistant cancer cell subpopulation is considered, and the effects on cancer dormancy and potential immunoediting mechanisms of cancer escape are analysed and discussed. The immunoediting mechanism assumes that the immune system selectively prunes the cancer of immune-sensitive cells, which is shown to cause an initially heterogeneous population to become a more homogeneous, and more resistant, population. The fact that this selection may result in the appearance of decreasing efficacy in T-cell cytotoxic effect with time in dormancy is also demonstrated. This work suggests that through actions that temporarily delay cancer growth through the targeted removal of immune-sensitive subpopulations, the immune response may actually progress the cancer to a more aggressive state. PMID:24511375

  7. Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production.

    PubMed

    Gniazdowska, Agnieszka; Dobrzyńska, Urszula; Babańczyk, Tomasz; Bogatek, Renata

    2007-03-01

    Mature seeds of apple (Mallus domestica Borb. cv. Antonówka) are dormant and do not germinate unless their dormancy is removed by several weeks of moist-cold treatment. We investigated the effect of short-term (3 h) nitric oxide (NO) pretreatment on breaking of apple embryonic dormancy expressed as inhibition of germination and morphological abnormalities of young seedlings. Imbibition of embryos isolated from dormant apple seeds with sodium nitroprusside (SNP) or S-nitroso,N-acetyl penicillamine (SNAP) as NO donors resulted in enhanced germination. Moreover, NO treatment removed morphological abnormalities of seedlings developing from dormant embryo. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-1-oxyl-3 oxide (cPTIO) removed the above effects. NO-mediated breaking of embryonic dormancy correlated well with enhanced ethylene production. Inhibitor of ethylene synthesis (AOA) reversed the stimulatory effect of NO donors on embryo germination. Additionally SNP reduced embryo sensitivity to exogenously applied ABA ensuing dormancy breakage. We can conclude that NO acts as a regulatory factor included in the control of apple embryonic dormancy breakage by stimulation of ethylene biosynthesis.

  8. Key genes involved in desiccation tolerance and dormancy across life forms.

    PubMed

    Costa, Maria Cecília D; Farrant, Jill M; Oliver, Melvin J; Ligterink, Wilco; Buitink, Julia; Hilhorst, Henk M W

    2016-10-01

    Desiccation tolerance (DT, the ability of certain organisms to survive severe dehydration) was a key trait in the evolution of life in terrestrial environments. Likely, the development of desiccation-tolerant life forms was accompanied by the acquisition of dormancy or a dormancy-like stage as a second powerful adaptation to cope with variations in the terrestrial environment. These naturally stress tolerant life forms may be a good source of genetic information to generate stress tolerant crops to face a future with predicted higher occurrence of drought. By mining for key genes and mechanisms related to DT and dormancy conserved across different species and life forms, unique candidate key genes may be identified. Here we identify several of these putative key genes, shared among multiple organisms, encoding for proteins involved in protection, growth and energy metabolism. Mutating a selection of these genes in the model plant Arabidopsis thaliana resulted in clear DT-, dormancy- and other seed-associated phenotypes, showing the efficiency and power of our approach and paves the way for the development of drought-stress tolerant crops. Our analysis supports a co-evolution of DT and dormancy by shared mechanisms that favour survival and adaptation to ever-changing environments with strong seasonal fluctuations. PMID:27593474

  9. Optimal shape of entrances for a frictionless nanochannel

    NASA Astrophysics Data System (ADS)

    Belin, Christophe; Joly, Laurent; Detcheverry, François

    2016-09-01

    The nearly frictionless flow of water in narrow carbon nanotubes is a genuine nanofluidic phenomenon with many prospects of applications in membrane technology. When inner dissipation is vanishing, the limiting factor to high flux lies in the viscous dissipation occurring at the tube mouth. As shown by Gravelle et al. [Gravelle, Joly, Detcheverry, Ybert, Cottin-Bizonne, and Bocquet, Proc. Natl. Acad. Sci. USA 110, 16367 (2013), 10.1073/pnas.1306447110], these so-called end effects can be reduced by adding a conical entrance. In this work, we take a step further and search for the optimal entrance shape. We use finite element calculations to compute the hydrodynamic resistance of a frictionless tube with superellipse-shaped entrances and propose an approximate analytical model. If perfect slip applies on its wall, an optimal entrance which is only 10 tube radii in length is sufficient to reduce end effects by an order of magnitude, a performance almost three times better than the optimal cone. In the case of partial slip, the resistance decreases with the entrance length before reaching a plateau at an optimal length controlled by liquid-solid slip. Our results are discussed in connection with biological and artificial systems.

  10. This bud's for you: mechanisms of cellular nucleocytoplasmic trafficking via nuclear envelope budding.

    PubMed

    Fradkin, Lee G; Budnik, Vivian

    2016-08-01

    The nuclear envelope (NE) physically separates the cytoplasmic and nuclear compartments. While this barrier provides advantages, it also presents a challenge for the nuclear export of large ribonucleoprotein (RNP) complexes. Decades-old dogma holds that all such border-crossing is via the nuclear pore complex (NPC). However, the diameter of the NPC central channel limits the passage of large cargos. Here, we review evidence that such large RNPs employ an endogenous NE-budding pathway, previously thought to be exclusive to the nuclear egress of Herpes viruses. We discuss this and other models proposed, the likelihood that this pathway is conserved, and the consequences of disrupting NE-budding for synapse development, localized translation of synaptic mRNAs, and laminopathies inducing accelerated aging. PMID:27236823

  11. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    PubMed

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  12. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  13. Calling Card Analysis in Budding Yeast.

    PubMed

    Mayhew, David; Mitra, Robi D

    2016-02-01

    Calling card analysis is a high-throughput method for identifying the genomic binding sites of multiple transcription factors in a single experiment in budding yeast. By tagging a DNA-binding protein with a targeting domain that directs the insertion of the Ty5 retrotransposon, the genomic binding sites for that transcription factor are marked. The transposition locations are then identified en masse by Illumina sequencing. The calling card protocol allows for simultaneous analysis of multiple transcription factors. By cloning barcodes into the Ty5 transposon, it is possible to pair a unique barcode with every transcription factor in the experiment. The method presented here uses expression of transcription factors from their native loci; however, it can also be altered to measure binding sites of transcription factors overexpressed from a plasmid. PMID:26832687

  14. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  15. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge about the hormonal control of seed dormancy and dormancy loss is essential in wheat, because low seed dormancy at maturity is associated with the problem of preharvest sprouting (PHS) when rain occurs before harvest. Low GA (gibberellin) hormone sensitivity and high ABA (abscisic acid) sen...

  16. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat ‘Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouti...

  17. Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy.

    PubMed

    Bai, Songling; Saito, Takanori; Sakamoto, Daisuke; Ito, Akiko; Fujii, Hiroshi; Moriguchi, Takaya

    2013-07-01

    The transcriptomes of endodormant and ecodormant Japanese pear (Pyrus pyrifolia Nakai 'Kosui') flower buds were analyzed using RNA-seq technology and compared. Among de novo assembly of 114,191 unigenes, 76,995 unigenes were successfully annotated by BLAST searches against various databases. Gene Ontology (GO) enrichment analysis revealed that oxidoreductases were enriched in the molecular function category, a result consistent with previous observations of notable changes in hydrogen peroxide concentration during endodormancy release. In the GO categories related to biological process, the abundance of DNA methylation-related gene transcripts also significantly changed during endodormancy release, indicating the involvement of epigenetic regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also showed the changes in transcript abundance of genes involved in the metabolism of various phytohormones. Genes for both ABA and gibberellin biosynthesis were down-regulated, whereas the genes encoding their degradation enzymes were up-regulated during endodormancy release. In the ethylene pathway, 1-aminocyclopropane-1-carboxylate synthase (ACS), a gene encoding the rate-limiting enzyme for ethylene biosynthesis, was induced towards endodormancy release. All of these results indicated the involvement of phytohormones in endodormancy release. Furthermore, the expression of dormancy-associated MADS-box (DAM) genes was down-regulated concomitant with endodormancy release, although changes in the abundance of these gene transcripts were not as significant as those identified by transcriptome analysis. Consequently, characterization of the Japanese pear transcriptome during the transition from endormancy to ecodormancy will provide researchers with useful information for data mining and will facilitate further experiments on endodormancy especially in rosaceae fruit trees.

  18. Progressive activation of paratrigeminal nucleus during entrance to hibernation

    SciTech Connect

    Kilduff, T.S.; Sharp, F.R.; Heller, H.C. Univ. of California, San Francisco Veterans Administration Medical Center, San Francisco, CA )

    1988-07-01

    The paratrigeminal nucleus (Pa5) undergoes a progressive increase in its uptake of 2-({sup 14}C)deoxyglucose (2DG) relative to other brain structures during entrance to hibernation in the ground squirrel. This highly significant increase results in the Pa5 becoming the most highly labeled brain region during hibernation, even though it exhibits one of the lowest levels of 2DG uptake in the brain during the nonhibernating state. The progressive activation of the Pa5 observed during entrance is reversed during arousal from hibernation. These observations and the neuroanatomical projections of the Pa5 implicate this nucleus as playing a role in the entrance and maintenance of the hibernating state.

  19. An Experimental Investigation of NACA Submerged-Duct Entrances

    NASA Technical Reports Server (NTRS)

    Frick, Charles W.; Davis, Wallace F.; Randall, Lauros M.; Mossman, Emmet A.

    1945-01-01

    The results of a preliminary investigation of submerged duct entrances are presented. It is shown that an entrance of this type possess desirable critical speed and pressure recovery characteristics when used on a fuselage or nacelle in a region of low incremental velocity and thin boundary layer. The data obtained indicate that submerged entrances are most suitable for use with internal-flow systems which diffuse the air only a small amount: for example, those used with jet motors which have axial-flow compressors. Where complete diffusion of the air is required, fuselage-nose or wing leading edge inlets may prove to be superior. The results of the investigation have been prepared in such a form as to permit their use by a designer and the application of these data to a specific design is discussed.

  20. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid

    PubMed Central

    Dave, Anuja; Vaistij, Fabián E.; Gilday, Alison D.; Penfield, Steven D.; Graham, Ian A.

    2016-01-01

    We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT. PMID:26873978

  1. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid.

    PubMed

    Dave, Anuja; Vaistij, Fabián E; Gilday, Alison D; Penfield, Steven D; Graham, Ian A

    2016-04-01

    We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT.

  2. Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze].

    PubMed

    Paul, Asosii; Lal, Lakhvir; Ahuja, Paramvir Singh; Kumar, Sanjay

    2012-04-01

    The present manuscript describes cloning and expression characterization of alpha-tubulin (CsTUA) gene in an evergreen tree tea [Camellia sinensis (L.) O. Kuntze] in response to winter dormancy (WD), abiotic stresses (sodium chloride, polyethylene glycol, and hydrogen peroxide) and plant growth regulators [abscisic acid (ABA), gibberellic acid (GA(3)), indole-3-butyric acid (IBA), and 6-benzylaminopurine (BA)]. CsTUA encoded a putative protein of 449 amino acids with a calculated molecular weight of 49.6 kDa and an isoelectric point (pI) of 5.09. CsTUA shared 76-84 and 90-95% identity at nucleotide and amino acid level, respectively with TUA genes from other plant species. During the period of active growth (PAG), CsTUA showed maximum expression in floral buds as compared to leaf, stem, fruit and root. Though the transcript was not detectable in the younger leaf tissue during the PAG, the expression was induced within 24 h of the low temperature (LT) treatment. The expression was not modulated by the plant growth regulators either in the tissue harvested during PAG or during WD. It was interesting to record that the expression of CsTUA was up-regulated in response to sodium chloride, polyethylene glycol, and hydrogen peroxide. Data has been discussed on the possible role of CsTUA in imparting tolerance to stresses including to LT so that the tea does not exhibit deciduous nature during winters.

  3. Foyer and entrance details. San Bernardino Valley Union Junior College, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Foyer and entrance details. San Bernardino Valley Union Junior College, Auditorium Building. Section through foyer showing ticket window; detail front entrance with tiling; rear of ticket window. G. Stanley Wilson, Architect, A.I.A., Riverside, California. Sheet 13, job no. 692. Scale 3/4 inch to the foot. March 27, 1936. Application no. 1446, approved by the State of California, Department of Public Works, Division of Architecture, April 22, 1936. - San Bernardino Valley College, Auditorium, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  4. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  5. Molecular and Pathogenetic Aspects of Tumor Budding in Colorectal Cancer

    PubMed Central

    Dawson, Heather; Lugli, Alessandro

    2015-01-01

    In recent years, tumor budding in colorectal cancer has gained much attention as an indicator of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival, and as an independent prognostic factor. Tumor buds, defined as the presence of single tumor cells or small clusters of up to five tumor cells at the peritumoral invasive front (peritumoral buds) or within the main tumor body (intratumoral buds), are thought to represent the morphological correlate of cancer cells having undergone epithelial–mesenchymal transition (EMT), an important mechanism for the progression of epithelial cancers. In contrast to their undisputed prognostic power and potential to influence clinical management, our current understanding of the biological background of tumor buds is less established. Most studies examining tumor buds have attempted to recapitulate findings of mechanistic EMT studies using immunohistochemical markers. The aim of this review is to provide a comprehensive summary of studies examining protein expression profiles of tumor buds and to illustrate the molecular pathways and crosstalk involved in their formation and maintenance. PMID:25806371

  6. A permeability barrier surrounds taste buds in lingual epithelia

    PubMed Central

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  7. A permeability barrier surrounds taste buds in lingual epithelia.

    PubMed

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste.

  8. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  9. The role of the testa during development and in establishment of dormancy of the legume seed

    PubMed Central

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W.; Soukup, Aleš; Thompson, Richard D.

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on

  10. A class II KNOX gene, KNOX4, controls seed physical dormancy

    PubMed Central

    Chai, Maofeng; Zhou, Chuanen; Molina, Isabel; Fu, Chunxiang; Nakashima, Jin; Li, Guifen; Zhang, Wenzheng; Park, Jongjin; Tang, Yuhong; Jiang, Qingzhen

    2016-01-01

    Physical dormancy of seed is an adaptive trait that widely exists in higher plants. This kind of dormancy is caused by a water-impermeable layer that blocks water and oxygen from the surrounding environment and keeps embryos in a viable status for a long time. Most of the work on hardseededness has focused on morphological structure and phenolic content of seed coat. The molecular mechanism underlying physical dormancy remains largely elusive. By screening a large number of Tnt1 retrotransposon-tagged Medicago truncatula lines, we identified nondormant seed mutants from this model legume species. Unlike wild-type hard seeds exhibiting physical dormancy, the mature mutant seeds imbibed water quickly and germinated easily, without the need for scarification. Microscopic observations of cross sections showed that the mutant phenotype was caused by a dysfunctional palisade cuticle layer in the seed coat. Chemical analysis found differences in lipid monomer composition between the wild-type and mutant seed coats. Genetic and molecular analyses revealed that a class II KNOTTED-like homeobox (KNOXII) gene, KNOX4, was responsible for the loss of physical dormancy in the seeds of the mutants. Microarray and chromatin immunoprecipitation analyses identified CYP86A, a gene associated with cutin biosynthesis, as one of the downstream target genes of KNOX4. This study elucidated a novel molecular mechanism of physical dormancy and revealed a new role of class II KNOX genes. Furthermore, KNOX4-like genes exist widely in seed plants but are lacking in nonseed species, indicating that KNOX4 may have diverged from the other KNOXII genes during the evolution of seed plants. PMID:27274062

  11. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    PubMed Central

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  12. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination.

    PubMed

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  13. Combining Drought Survival via Summer Dormancy and Annual Biomass Productivity in Dactylis glomerata L.

    PubMed Central

    Kallida, Rajae; Zhouri, Latifa; Volaire, Florence; Guerin, Adrien; Julier, Bernadette; Shaimi, Naima; Fakiri, Malika; Barre, Philippe

    2016-01-01

    Under Mediterranean climates, the best strategy to produce rain-fed fodder crops is to develop perennial drought resistant varieties. Summer dormancy present in native germplasm has been shown to confer a high level of survival under severe drought. Nevertheless it has also been shown to be negatively correlated with annual biomass productivity. The aim of this study was to analyze the correlations between summer dormancy and annual biomass productivity related traits and to identify quantitative trait loci (QTL) for these traits in a progeny of a summer dormant cocksfoot parent (Kasbah) and a summer active parent (Medly). A total of 283 offspring and the parents were phenotyped for summer dormancy, plant growth rate (PGR) and heading date in Morocco and for maximum leaf elongation rate (LERm) in France. The individuals were genotyped with a total of 325 markers including 59 AFLP, 64 SSR, and 202 DArT markers. The offspring exhibited a large quantitative variation for all measured traits. Summer dormancy showed a negative correlation with both PGR (-0.34 p < 0.005) and LERm (-0.27 p < 0.005). However, genotypes with both a high level of summer dormancy and a high level of PGR were detected in the progeny. One genetic map per parent was built with a total length of 377 and 423 cM for Kasbah and Medly, respectively. Both different and co-localized QTL for summer dormancy and PGR were identified. These results demonstrate that it should be possible to create summer dormant cocksfoot varieties with a high annual biomass productivity. PMID:26904054

  14. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination

    PubMed Central

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  15. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination.

    PubMed

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  16. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination.

    PubMed

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  17. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals

    PubMed Central

    Footitt, Steven; Müller, Kerstin; Kermode, Allison R; Finch-Savage, William E

    2015-01-01

    The involvement of chromatin remodelling in dormancy cycling in the soil seed bank (SSB) is poorly understood. Natural variation between the winter and summer annual Arabidopsis ecotypes Cvi and Bur was exploited to investigate the expression of genes involved in chromatin remodelling via histone 2B (H2B) ubiquitination/de-ubiquitination and histone acetylation/deacetylation, the repressive histone methyl transferases CURLY LEAF (CLF) and SWINGER (SWN), and the gene silencing repressor ROS1 (REPRESSOR OF SILENCING1) and promoter of silencing KYP/SUVH4 (KRYPTONITE), during dormancy cycling in the SSB. ROS1 expression was positively correlated with dormancy while the reverse was observed for CLF and KYP/SUVH4. We propose ROS1 dependent repression of silencing and a sequential requirement of CLF and KYP/SUVH4 dependent gene repression and silencing for the maintenance and suppression of dormancy during dormancy cycling. Seasonal expression of H2B modifying genes was correlated negatively with temperature and positively with DOG1 expression, as were histone acetyltransferase genes, with histone deacetylases positively correlated with temperature. Changes in the histone marks H3K4me3 and H3K27me3 were seen on DOG1 (DELAY OF GERMINATION1) in Cvi during dormancy cycling. H3K4me3 activating marks remained stable along DOG1. During relief of dormancy, H3K27me3 repressive marks slowly accumulated and accelerated on exposure to light completing dormancy loss. We propose that these marks on DOG1 serve as a thermal sensing mechanism during dormancy cycling in preparation for light repression of dormancy. Overall, chromatin remodelling plays a vital role in temporal sensing through regulation of gene expression. PMID:25439058

  18. Characterization of Septin Ultrastructure in Budding Yeast Using Electron Tomography

    PubMed Central

    Bertin, Aurélie; Nogales, Eva

    2015-01-01

    Summary Septins are essential for the completion of cytokinesis. In budding yeast, Saccharomyces cerevisiae, septins are located at the bud neck during mitosis and are closely connected to the inner plasma membrane. In vitro, yeast septins have been shown to self-assemble into a variety of filamentous structures, including rods, paired filaments, bundles and rings [1–3]. Using electron tomography of freeze-substituted section and cryo-electron tomography of frozen sections, we determined the three dimensional organization of the septin cytoskeleton in dividing budding yeast with molecular resolution [4,5]. Here we describe the detailed procedures used for our characterization of the septin cellular ultrastructure. PMID:26519309

  19. Seed dormancy and germination in three Crocus ser. Verni species (Iridaceae): implications for evolution of dormancy within the genus.

    PubMed

    Carta, A; Probert, R; Moretti, M; Peruzzi, L; Bedini, G

    2014-11-01

    The aim of this work was to examine whether seed ecophysiological traits in three closely related Crocus species were associated with ecological niche differentiation and species divergence. Seeds of the temperate tetraploid cytotype of Crocus neapolitanus, the sub-Mediterranean C. etruscus and the Mediterranean C. ilvensis were placed either on agar in the laboratory under different periods of simulated seasonal conditions or in nylon mesh bags buried outdoors to examine embryo growth, radicle and shoot emergence. In agreement with the phenology observed outdoors, in the laboratory embryos required a cool temperature (ca. 10 °C) to grow to full size (embryo length:seed length, E:S ratio ca. 0.75) but only after seeds received a warm stratification; radicle emergence then followed immediately (November). Shoot emergence is a temporally separated phase (March) that was promoted by cold stratification in C. neapolitanus while in the other two species this time lag was attributed to a slow continuous developmental process. These species have similar embryo growth and radicle phenology but differ in their degree of epicotyl dormancy, which is related to the length of local winter. Conclusions from laboratory experiments that only consider root emergence could be misleading; evaluating the phenology of both root and shoot emergence should be considered in order to demonstrate ecologically meaningful differences in germination behaviour and to develop effective propagation protocols. Although these taxa resulted from recent speciation processes, the outcomes suggest an early onset of adaptation to local ecological factors and that phylogeny may represent a significant constraint in the evolution and expression of seed traits in Crocus.

  20. 9. VIEW TO SOUTH SHOWING ENTRANCES TO BUILDING AT NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW TO SOUTH SHOWING ENTRANCES TO BUILDING AT NORTHEAST CORNER. DOORS TO LEFT WERE FOR INTERIOR RAILROAD SPUR. ROLL-UP GARAGE DOOR TO RIGHT HAS REPLACED ORIGINAL PEDESTRIAN DOORS WHERE HOURLY SHIP WORKERS REPORTED TO WORK. - Rosie the Riveter National Historical Park, Ford Assembly Plant, 1400 Harbour Way South, Richmond, Contra Costa County, CA

  1. Interior. Looking from balance room to the front entrance. Chemicals ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Looking from balance room to the front entrance. Chemicals related to Edison's experiments on the extraction of latex for rubber from the goldenrod plant. Room is set up based on reconstruction research done in 1972. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  2. 69. VIEW OF FOREBAY AND RESERVOIR, SHOWING FLUME ENTRANCE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. VIEW OF FOREBAY AND RESERVOIR, SHOWING FLUME ENTRANCE TO RESERVOIR ON THE RIGHT OF FOREBAY IN THE BACKGROUND (SHOWN BY THE WHITE X ON THE PHOTOGRAPHS), Print No. 191, December 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  3. 1. EXTERIOR VIEW, LOOKING WEST WITH FRONT FACADE AND ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW, LOOKING WEST WITH FRONT FACADE AND ENTRANCE TO FORMER TCI-US STEEL COMPANY BATHHOUSE FOR WHITE ORE MINERS. - Tennessee Coal & Iron-U.S. Steel Surface Plant, Company Bathhouse for White Ore Miners, East of State Route 150 on South slope of Red Mountain, Bessemer, Jefferson County, AL

  4. 1. EXTERIOR VIEW, LOOKING SOUTH, WITH SIDE FACADE AND ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW, LOOKING SOUTH, WITH SIDE FACADE AND ENTRANCE TO THE FORMER TCI-US STEEL COMPANY BATHHOUSE FOR COLORED ORE MINERS. - Tennessee Coal & Iron-U.S. Steel Surface Plant, Company Bathhouse for Black Ore Miners, East of State Route 150 on South slope of Red Mountain, Bessemer, Jefferson County, AL

  5. 9. EXTERIOR VIEW OF FRONT ENTRANCE TO BUNKER. CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR VIEW OF FRONT ENTRANCE TO BUNKER. CAMERA FACING EAST. TANK COVER AND FRAME TO THE REAR OF VIEW. INEL PHOTO NUMBER 65-6170, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  6. 24. Interior view of entrance corridor looking down east corridor; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Interior view of entrance corridor looking down east corridor; showing unoccupied corner office space and stairs going down to lower floor; center of main section of building on main floor; view to northeast. - Ellsworth Air Force Base, Group Administration & Secure Storage Building, 2372 Westover Avenue, Blackhawk, Meade County, SD

  7. 4. FACING NORTHWEST ACROSS BRIDGE SHOWING ENTRANCE TO PARKING AREA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FACING NORTHWEST ACROSS BRIDGE SHOWING ENTRANCE TO PARKING AREA BETWEEN TAMARACK AND CASCADE CREEK BRIDGES. POST TO LOWER LEFT, 'B2', IS A MARKER FOR A SELF-GUIDED ROAD TOUR TO PARK. - Tamarack Creek Bridge, Spanning Tamarack Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  8. Oblique view, looking eastsoutheast, of main gatehouse, main entrance, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view, looking east-southeast, of main gatehouse, main entrance, and battery storage house. East side of canal wall in foreground - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  9. 4. VIEW LOOKING WEST FROM ELM STREET AT THE ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW LOOKING WEST FROM ELM STREET AT THE ENTRANCE TO THE ELM CITY PLANT. NOTE TILE ROOF AND COLONIAL REVIVAL DESIGN MOTIFS. THE BOILER STACK IS VISIBLE ON THE LEFT. - Elm City Cotton Mill, 1000 Elm Street, La Grange, Troup County, GA

  10. VIEW OF ENTRANCE ROAD FROM FRONT OF HOUSE. NOTE STAIRS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF ENTRANCE ROAD FROM FRONT OF HOUSE. NOTE STAIRS TO GARDEN ON LEFT, ROAD TO RIGHT, AND POMEGRANATE HEDGE AT RIGHT REAR. LOOKING SE. - Olompali State Historic Park, Mary Burdell Garden, U.S. Highway 101, Novato, Marin County, CA

  11. 48. Historic American Buildings Survey PATIO SHOWING ENTRANCE TO LIVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Historic American Buildings Survey PATIO SHOWING ENTRANCE TO LIVING ROOM PHOTOCOPY OF PLATE FROM IRVIN L. SCOTT, 'MARALAGO', THE AMERICAN ARCHITECT (JUNE 20, 1928), P. 805 - Mar-a-Lago, 1100 South Ocean Boulevard, Palm Beach, Palm Beach County, FL

  12. 6. Interior view of main entrance vestibule looking towards lobby; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Interior view of main entrance vestibule looking towards lobby; showing wall mounted information stations and drinking fountain; near southeast corner of building on main floor; view to north. - Ellsworth Air Force Base, Mess & Administration Building, 1561 Ellsworth Street, Blackhawk, Meade County, SD

  13. 56. View of street level entrance to parking garage elevators ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. View of street level entrance to parking garage elevators and detail of aluminum and glass connection to brick from east side of 1946/1948 store for homes and parking garage. - Rich's Downtown Department Store, 45 Broad Street, Atlanta, Fulton County, GA

  14. 2. VIEW OF WEST WALL SHOWING MAIN ENTRANCE INTO SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST WALL SHOWING MAIN ENTRANCE INTO SOUTH LOBBY AND ALUMINUM VESTIBULE ADDED IN RECENT YEARS. ELEVATOR WILL BE CONSTRUCTED TO THE RIGHT OF THE DOORWAY IN THE NORTHWEST CORNER OF THE LOBBY. - Tillamook County Courthouse, 201 Laurel Avenue, Tillamook, Tillamook County, OR

  15. View looking to the arched entrances that divide the Departmental ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking to the arched entrances that divide the Departmental Auditorium from the Interstate Commerce Commission (east) and U.S. Customs Agency (originally Labor Department to the west) - Departmental Auditorium, Constitution Avenue between Twelfth and Fourteenth Streets, Washington, District of Columbia, DC

  16. 18. Dry Dock No. 4. Entrance Details (Frederic R. Harris, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Dry Dock No. 4. Entrance Details (Frederic R. Harris, Inc., January 10, 1941). In Files of Cushman & Wakefield, Building No. 501, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Dry Dock No. 4, Broad Street south of Government Avenue, Philadelphia, Philadelphia County, PA

  17. Getting Interpersonal on a University Entrance Exam Impromptu Writing Task

    ERIC Educational Resources Information Center

    Myskow, Gordon; Gordon, Kana

    2012-01-01

    This article explores the types of audience engagement strategies used by a Japanese secondary school student in an after school course preparing for a high-stakes impromptu academic writing task on a university entrance exam. The study uses appraisal theory--the branch of Systemic Functional Linguistics (SFL) concerned with the patterning of…

  18. 2. WEST FRONT ENTRANCE, WITH OWNERS MR. & MRS. ISACC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WEST FRONT ENTRANCE, WITH OWNERS MR. & MRS. ISACC N. HAGAN (WHO CONTRACTED WITH FRANK LLOYD WRIGHT FOR THE DESIGN OF THIS HOUSE) - Isaac N. Hagan House, Kentuck Knob, U.S. Route 40 vicinity (Stewart Township), Chalkhill, Fayette County, PA

  19. Reception hall, inside front entrance facing toward stairs to second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reception hall, inside front entrance facing toward stairs to second floor - Fitzsimons General Hospital, Bachelor Officers' Quarters/Officers' Club, West Harlowe Avenue, South side, 200 feet West of intersection of West Harlow Avenue & South First Street, Aurora, Adams County, CO

  20. Detail, view, underside of halfthrough girder span over entrance to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, view, underside of half-through girder span over entrance to scrap yard at western end of trestle. Note that abutment is slightly skewed. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  1. Modifications to improve entrance slit thermal stability for grasshopper monochromators

    NASA Astrophysics Data System (ADS)

    Wallace, Daniel J.; Rogers, Gregory C.; Crossley, Sherry L.

    1994-08-01

    As new monochromators are designed for high-flux storage rings, computer modeling and thermal engineering can be done to process increased heat loads and achieve mechanical stability. Several older monochromators, such as the Mark 2 and Mark 5 Grasshopper monochromators, which were designed in 1974, have thermal instabilities in their entrance slit mechanisms. The Grasshoppers operating with narrow slits experience closure of the entrance slit from thermal expansion. In extreme cases, the thermal expansion of the precision components has caused permanent mechanical damage, leaving the slit uncalibrated and/or inoperable. For the Mark 2 and Mark 5 Grasshopper monochromators at the Synchrotron Radiation Center, the original 440 stainless steel entrance slit jaws were retrofitted with an Invar (low expansion Fe, Ni alloy) slit jaw. To transfer the heat from the critical components, two flexible heat straps of Cu were attached. These changes allow safe operation with a 10 μm entrance slit width where the previous limit was 30 μm. After an initial 2 min equilibration, the slit remains stable to 10%, with 100 mA of beam current. Additional improvements in slit thermal stability are planned for a third Grasshopper.

  2. 2. EAST FACADE, ENTRANCE TO CATWALK OVER CONCRETE TANK VAULT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST FACADE, ENTRANCE TO CATWALK OVER CONCRETE TANK VAULT. BUILDING 742 TO RIGHT OF PHOTOGRAPH. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO

  3. 5. EAST ENTRANCE TO CATWALK LOOKING TOWARDS THE SOUTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAST ENTRANCE TO CATWALK LOOKING TOWARDS THE SOUTHWEST CORNER OF THE BUILDING. AGENT STORAGE TANKS LOCATED BELOW CATWALK. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO

  4. 6. EAST ENTRANCE TO CATWALK LOOKING TOWARDS THE NORTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. EAST ENTRANCE TO CATWALK LOOKING TOWARDS THE NORTHWEST CORNER OF THE BUILDING. AGENT STORAGE TANKS LOCATED BELOW CATWALK. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO

  5. View of Water Storage Tank off entrance tunnel. Tunnel at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Water Storage Tank off entrance tunnel. Tunnel at left of image to Launch Silos - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  6. DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, WHICH REFERS TO THE QUICK PASSAGE OF TIME AND THE SHORTNESS OF HUMAN LIFE. USE OF THIS MOTIF WAS A CARRYOVER FROM THE MCARTHUR GATES. - Woodlands Cemetery, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  7. DETAIL OF SLIDING DOOR LEADING FROM THE ENTRANCE TERRACE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SLIDING DOOR LEADING FROM THE ENTRANCE TERRACE TO THE RECREATION CENTER, SOUTHWEST WING. VIEW FACING NORTH NORTHWEST - U.S. Naval Base, Pearl Harbor, Bloch Recreation Center & Arena, Between Center Drive & North Road near Nimitz Gate, Pearl City, Honolulu County, HI

  8. 2. General view of guard house and entrance to Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. General view of guard house and entrance to Coast Guard Base from La Putilla Street, with view of Motor Pool (Building 122) on right side looking west - U.S. Coast Guard Base, San Juan, Guard House, La Puntilla Finalle, San Juan, San Juan Municipio, PR

  9. 3. ONTARIO MINE. ADIT ENTRANCE WITH TIN ROOF. TIP TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ONTARIO MINE. ADIT ENTRANCE WITH TIN ROOF. TIP TOP IS LOCATED IN LINE WITH 'Y' BRANCH AND THE TAILING PILE FOR TIP TOP IS VISIBLE JUST TO RIGHT OF IT. CAMERA POINTED SOUTH-SOUTHEAST. - Florida Mountain Mining Sites, Ontario Mine, Northwest side of Florida Mountain, Silver City, Owyhee County, ID

  10. 26. LOBBY, LOOKING NORTH TOWARD MAIN ENTRANCE FROM SECOND FLOOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. LOBBY, LOOKING NORTH TOWARD MAIN ENTRANCE FROM SECOND FLOOR. LOCAL LODGEPOLE PINE WHICH WAS VALUED FOR ITS INVARIABLE DIAMETER WAS USED TO CONSTRUCT THE COLUMNS AND BEAMS OF THE INN WHILE GNARLED OR DISEASED LOGS WERE SELECTED FOR THE BRACES AND BALUSTERS. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  11. View of main entrance of the Church of God. This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of main entrance of the Church of God. This structure was originally a lodge hall for the Woodmen of the World from the adjacent mill neighborhoods such as Lincoln and Dallas Mill - 601 Humes Avenue (House), 601 Humes Avenue, Huntsville, Madison County, AL

  12. South entrance, plan, section, & detail. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South entrance, plan, section, & detail. San Bernardino Valley Union Junior College, Science Building. Detailed drawings of tile work, wrought iron, and art stone, Howard E. Jones, Architect, San Bernardino, California. Sheet 6, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  13. 5. GENERAL VIEW OF ENTRANCE ROAD SHOWING WALKWAY TO ADMINISTRATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF ENTRANCE ROAD SHOWING WALKWAY TO ADMINISTRATIVE SITE, INTERNAL POLICE POST AND MILITARY POLICE POST, LOOKING NORTHNORHTEAST. - Manzanar War Relocation Center, Owens Valley off U.S. Highway 395, 6 miles South of Independence, Independence, Inyo County, CA

  14. 5. PERSPECTIVE VIEW TO THE NORTHWEST SHOWING ENTRANCE TO CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PERSPECTIVE VIEW TO THE NORTHWEST SHOWING ENTRANCE TO CREW SHELTER AND THE TAPERING SHAPE OF THE SOUTHEAST END WALL OF AR-8. - Edwards Air Force Base, South Base, Rammed Earth Aircraft Dispersal Revetments, Western Shore of Rogers Dry Lake, Boron, Kern County, CA

  15. 8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance and inner blast door. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  16. View of the main entrance with basrelief limestone panel designed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the main entrance with bas-relief limestone panel designed by C. Paul Jennwein upon which is inscribed "Lege Atque Ordine Omnia Fiunt" (translated as by law and order all is accomplished) - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  17. 42. ELEVATION EAST FACE BLDG. 4, 3, AND ENTRANCE BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. ELEVATION EAST FACE BLDG. 4, 3, AND ENTRANCE BLDG. 8. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  18. 34. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" ENTRANCE CORRIDOR LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" ENTRANCE CORRIDOR LOOKING SOUTH. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  19. SOLANO AVENUE ENTRANCE RAMP. NOTE SOLANO AVENUE OVERCROSSING AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOLANO AVENUE ENTRANCE RAMP. NOTE SOLANO AVENUE OVERCROSSING AT LEFT REAR AND CLOSED ACCESS RAMP BENEATH; PARK ROW BRIDGE AT CENTER REAR AND TUNNEL NO. 2. LOOKING 350°N - Arroyo Seco Parkway, Solano Avenue Underpass, Milepost 25.09, Los Angeles, Los Angeles County, CA

  20. Early College Entrance: How Will My Child Do?

    ERIC Educational Resources Information Center

    Chung, Rachel U.; Hertzog, Nancy B.

    2014-01-01

    Early college entrance is a form of acceleration, or the process of advancing students in academic programs faster than their same-aged peers. Many early entrants have demonstrated academic ability to achieve at high levels but they exhibit tremendous variety in their age, specific abilities, social and emotional maturity, family support, and…