Sample records for buffer experimental results

  1. Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties

    PubMed Central

    Matveev, Victor; Zucker, Robert S.; Sherman, Arthur

    2004-01-01

    Synaptic facilitation (SF) is a ubiquitous form of short-term plasticity, regulating synaptic dynamics on fast timescales. Although SF is known to depend on the presynaptic accumulation of Ca2+, its precise mechanism is still under debate. Recently it has been shown that at certain central synapses SF results at least in part from the progressive saturation of an endogenous Ca2+ buffer (Blatow et al., 2003), as proposed by Klingauf and Neher (1997). Using computer simulations, we study the magnitude of SF that can be achieved by a buffer saturation mechanism (BSM), and explore its dependence on the endogenous buffering properties. We find that a high SF magnitude can be obtained either by a global saturation of a highly mobile buffer in the entire presynaptic terminal, or a local saturation of a completely immobilized buffer. A characteristic feature of BSM in both cases is that SF magnitude depends nonmonotonically on the buffer concentration. In agreement with results of Blatow et al. (2003), we find that SF grows with increasing distance from the Ca2+ channel cluster, and increases with increasing external Ca2+, [Ca2+]ext, for small levels of [Ca2+]ext. We compare our modeling results with the experimental properties of SF at the crayfish neuromuscular junction, and find that the saturation of an endogenous mobile buffer can explain the observed SF magnitude and its supralinear accumulation time course. However, we show that the BSM predicts slowing of the SF decay rate in the presence of exogenous Ca2+ buffers, contrary to experimental observations at the crayfish neuromuscular junction. Further modeling and data are required to resolve this aspect of the BSM. PMID:15111389

  2. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. From Shattered Assumptions to Weakened Worldviews: Trauma Symptoms Signal Anxiety Buffer Disruption.

    PubMed

    Edmondson, Donald; Chaudoir, Stephenie R; Mills, Mary Alice; Park, Crystal L; Holub, Julie; Bartkowiak, Jennifer M

    2011-01-01

    The fundamental assertion of worldview-based models of posttraumatic stress disorder is that trauma symptoms result when traumatic experiences cannot be readily assimilated into previously held worldviews. In two studies, we test the anxiety buffer disruption hypothesis, which states that trauma symptoms result from the disruption of normal death anxiety-buffering functions of worldview. In Study 1, participants with trauma symptoms greater than the cutoff for PTSD evinced greater death-thought accessibility than those with sub-clinical or negligible symptoms after a reminder of death. In Study 2, participants with clinically significant trauma symptoms showed no evidence of worldview defense though death-thoughts were accessible. These results support the anxiety buffer disruption hypothesis, and suggest an entirely new approach to experimental PTSD research.

  4. Toward an In Vivo Dissolution Methodology: A Comparison of Phosphate and Bicarbonate Buffers

    PubMed Central

    Sheng, Jennifer J.; McNamara, Daniel P.; Amidon, Gordon L.

    2011-01-01

    Purpose To evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. Methods The intrinsic dissolution rates of, ketoprofen and indomethacin, were experimentally measured using rotating disk method at 37°C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Results Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin, in USP and FaSSIF phosphate buffers are 1.5–3.0 times of that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and secondly on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pKa, solubility and diffusivity, simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13–15 mM and 3–4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. Conclusions This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for BCS II weak acids in developing in vitro bioequivalence dissolution methodology. PMID:19183104

  5. From Shattered Assumptions to Weakened Worldviews: Trauma Symptoms Signal Anxiety Buffer Disruption

    PubMed Central

    Edmondson, Donald; Chaudoir, Stephenie R.; Mills, Mary Alice; Park, Crystal L.; Holub, Julie; Bartkowiak, Jennifer M.

    2013-01-01

    The fundamental assertion of worldview-based models of posttraumatic stress disorder is that trauma symptoms result when traumatic experiences cannot be readily assimilated into previously held worldviews. In two studies, we test the anxiety buffer disruption hypothesis, which states that trauma symptoms result from the disruption of normal death anxiety-buffering functions of worldview. In Study 1, participants with trauma symptoms greater than the cutoff for PTSD evinced greater death-thought accessibility than those with sub-clinical or negligible symptoms after a reminder of death. In Study 2, participants with clinically significant trauma symptoms showed no evidence of worldview defense though death-thoughts were accessible. These results support the anxiety buffer disruption hypothesis, and suggest an entirely new approach to experimental PTSD research. PMID:24077677

  6. The Influence of End-Stop Buffer Characteristics on the Severity of Suspension Seat End-Stop Impacts

    NASA Astrophysics Data System (ADS)

    Wu, X.; Griffin, M. J.

    1998-08-01

    Suspension seat end-stop impacts may be a source of increased risk of injury for the drivers of some machines and work vehicles, such as off-road vehicles. Most suspension seats use rubber buffers to reduce the severity of end-stop impacts, but they still result in a high magnitude of acceleration being transmitted to drivers when an end-stop impact occurs. An experimental study has been conducted to investigate the effect of buffer stiffness and buffer damping on the severity of end-stop impacts. The results show that the end-stop impact performance of suspension seats with only bottom buffers can be improved by the use of both top and bottom buffers. The force-deflection characteristics of rubber buffers had a significant influence on the severity of end-stop impacts. The optimum buffer should have medium stiffness which is nearly linear and occurs over a long deflection, without being compressed to its high stiffness stage. It is shown, theoretically, that buffer damping is capable of significantly reducing the severity of end-stop impacts. However, since current rubber material provides only low damping, alternative materials to those in current use, or either passive or active damping devices, are required.

  7. Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Lu, Xilin; Lu, Wensheng; Masri, Sami F.

    2012-04-01

    This paper presents a systematic experimental investigation of the effects of buffered particle dampers attached to a multi-degree-of-freedom (mdof) system under different dynamic loads (free vibration, random excitation as well as real onsite earthquake excitations), and analytical/computational study of such a system. A series of shaking table tests of a three-storey steel frame with the buffered particle damper system are carried out to evaluate the performance and to verify the analysis method. It is shown that buffered particle dampers have good performance in reducing the response of structures under dynamic loads, especially under random excitation case. It can effectively control the fundamental mode of the mdof primary system; however, the control effect for higher modes is variable. It is also shown that, for a specific container geometry, a certain mass ratio leads to more efficient momentum transfer from the primary system to the particles with a better vibration attenuation effect, and that buffered particle dampers have better control effect than the conventional rigid ones. An analytical solution based on the discrete element method is also presented. Comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system can be obtained. Properly designed buffered particle dampers can effectively reduce the response of lightly damped mdof primary system with a small weight penalty, under different dynamic loads.

  8. The Ca(2+)-EDTA chelation as standard reaction to validate Isothermal Titration Calorimeter measurements (ITC).

    PubMed

    Ràfols, Clara; Bosch, Elisabeth; Barbas, Rafael; Prohens, Rafel

    2016-07-01

    A study about the suitability of the chelation reaction of Ca(2+)with ethylenediaminetetraacetic acid (EDTA) as a validation standard for Isothermal Titration Calorimeter measurements has been performed exploring the common experimental variables (buffer, pH, ionic strength and temperature). Results obtained in a variety of experimental conditions have been amended according to the side reactions involved in the main process and to the experimental ionic strength and, finally, validated by contrast with the potentiometric reference values. It is demonstrated that the chelation reaction performed in acetate buffer 0.1M and 25°C shows accurate and precise results and it is robust enough to be adopted as a standard calibration process. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  10. Mechanisms of buffer therapy resistance

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.

    2014-01-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761

  11. Progressing from Light Experimentation to Heavy Episodic Drinking in Early and Middle Adolescence

    PubMed Central

    Guilamo-Ramos, Vincent; Turrisi, Rob; Jaccard, James; Wood, Elizabeth; Gonzalez, Bernardo

    2010-01-01

    Objective Few studies have examined psychological variables related to changes in drinking patterns from light experimentation with alcohol to heavy episodic drinking in early and middle adolescence. The present study examined parental and peer influences, gender and grade level as predictors of such changes in adolescent alcohol consumption. Method Approximately 1,420 light drinkers were analyzed from Wave 1 of the National Longitudinal Study of Adolescent Health (Add Health). Heavy episodic drinking activity was assessed 1 year later. Results Gender differences in transitions to heavy episodic drinking were observed, with males being more likely than females to make a transition. Parent parameter setting and communication variables, as well as peer variables at different grade levels, buffered these gender differences. Conclusions Adolescents who are light experimenters represent a high-risk group as a consequence of their initial consumption tendencies. Some of these adolescents graduated beyond simple experimentation and moved into patterns of consumption that could be considered dangerous. Our analyses implicated an array of parental-based buffers: parent involvement in the adolescent’s life, development of good communication patterns and expressions of warmth and affection. Minimizing associations with peers who consume alcohol may also have a buffering effect. There was evidence that these buffers may dampen gender differences not so much by affecting female drinking tendencies as by keeping males at reduced levels of alcohol consumption comparable to those of females. PMID:15376824

  12. Sulfur speciation in hydrous experimental glasses of varying oxidation state - Results from measured wavelength shifts of sulfur X-rays

    NASA Technical Reports Server (NTRS)

    Carroll, Michael R.; Rutherford, Malcolm J.

    1988-01-01

    The focusing geometry of an electron microprobe has been used to measure the wavelength shifts of sulfur X-rays from hydrous experimental melts synthesized at oxygen fugacities that range from near the iron-wustite buffer to the magnetite-hermatite buffer. It is found that the proportion of dissolved sulfur which is present as sulfate increases with increasing oxygen fugacity. It is noted that in natural melts that have equilibrated at or below fayalite-magnetite-quartz values of +1, sulfur is probably present mainly as S(2-).

  13. High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Andrew J; Danielson, Lisa; Righter, Kevin

    The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high pressures corresponding to the conditions of the deep Earth, oxygen fugacity buffers are poorly calibrated. Reference (1 bar) fO{sub 2} buffers can be integrated to high pressure conditions by integrating the difference in volume between the solid phases, provided that their equations of state are known. In this work, the equations of state and volume difference between the metal-oxide pairs Fe-FeO and Ni-NiO were measured using synchrotronmore » X-ray diffraction in a multi-anvil press and laser heated diamond anvil cells. The results were used to construct high pressure fO{sub 2} buffer curves for these systems. The difference between the Fe-FeO and Ni-NiO buffers is observed to decrease significantly, by several log units, over 80 GPa. The results can be used to improve interpretation of high pressure experiments, specifically Fe-Ni exchange between metallic and oxide phases.« less

  14. Accessing the band alignment in high efficiency Cu(In,Ga)(Se,S)2 (CIGSSe) solar cells with an InxSy:Na buffer based on temperature dependent measurements and simulations

    NASA Astrophysics Data System (ADS)

    Schoneberg, Johannes; Ohland, Jörg; Eraerds, Patrick; Dalibor, Thomas; Parisi, Jürgen; Richter, Michael

    2018-04-01

    We present a one-dimensional simulation model for high efficiency Cu(In,Ga)(Se,S)2 solar cells with a novel band alignment at the hetero-junction. The simulation study is based on new findings about the doping concentration of the InxSy:Na buffer and i-ZnO layers as well as comprehensive solar cell characterization by means of capacitance, current voltage, and external quantum efficiency measurements. The simulation results show good agreement with the experimental data over a broad temperature range, suggesting the simulation model with an interface-near region (INR) of approximately 100 nm around the buffer/absorber interface that is of great importance for the solar cell performance. The INR exhibits an inhomogeneous doping and defect density profile as well as interface traps at the i-layer/buffer and buffer/absorber interfaces. These crucial parameters could be accessed via their opposing behavior on the simulative reconstruction of different measurement characteristics. In this work, we emphasize the necessity to reconstruct the results of a set of experimental methods by means of simulation to find the most appropriate model for the solar cell. Lowly doped buffer and intrinsic window layers in combination with a high space charge at the front of the absorber lead to a novel band alignment in the simulated band structure of the solar cell. The presented insights may guide the strategy of further solar cell optimization including (alkali-) post deposition treatments.

  15. Experimental investigation of all-optical packet-level time slot assignment using two optical buffers cascaded.

    PubMed

    Sheng, Xinzhi; Feng, Zhen; Li, Bing

    2013-04-20

    We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.

  16. Lot A2 test, THC modelling of the bentonite buffer

    NASA Astrophysics Data System (ADS)

    Itälä, Aku; Olin, Markus; Lehikoinen, Jarmo

    Finnish spent nuclear fuel is planned to be disposed of deep in the crystalline bedrock of the Olkiluoto island. In such a repository, the role of the bentonite buffer is considered to be central. The initially unsaturated bentonite emplaced around a spent-fuel canister will become fully saturated by the groundwater from the host rock. In order to assess the long-term safety of a deep repository, it is essential to determine how temperature influences the chemical stability of bentonite. The aim of this study was to achieve an improved understanding of the factors governing the thermo-hydro-chemical evolution of the bentonite buffer subject to heat generation from the disposed fuel and in contact with a highly permeable rock fracture intersecting a canister deposition hole. TOUGHREACT was used to model a test known as the long-term test of buffer material adverse-2, which was conducted at the Äspö hard rock laboratory in Sweden. The results on the evolution of cation-exchange equilibria, bentonite porewater chemistry, mineralogy, and saturation of the buffer are presented and discussed. The calculated model results show similarity to the experimental results. In particular, the spatial differences in the saturation and porewater chemistry of the bentonite buffer were clearly visible in the model.

  17. Compiler-assisted multiple instruction rollback recovery using a read buffer

    NASA Technical Reports Server (NTRS)

    Alewine, Neal J.; Chen, Shyh-Kwei; Fuchs, W. Kent; Hwu, Wen-Mei W.

    1995-01-01

    Multiple instruction rollback (MIR) is a technique that has been implemented in mainframe computers to provide rapid recovery from transient processor failures. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs have also been developed which remove rollback data hazards directly with data-flow transformations. This paper describes compiler-assisted techniques to achieve multiple instruction rollback recovery. We observe that some data hazards resulting from instruction rollback can be resolved efficiently by providing an operand read buffer while others are resolved more efficiently with compiler transformations. The compiler-assisted scheme presented consists of hardware that is less complex than shadow files, history files, history buffers, or delayed write buffers, while experimental evaluation indicates performance improvement over compiler-based schemes.

  18. Chemically Deposited CdS Buffer/Kesterite Cu2ZnSnS4 Solar Cells: Relationship between CdS Thickness and Device Performance.

    PubMed

    Hong, Chang Woo; Shin, Seung Wook; Suryawanshi, Mahesh P; Gang, Myeng Gil; Heo, Jaeyeong; Kim, Jin Hyeok

    2017-10-25

    Earth-abundant, copper-zinc-tin-sulfide (CZTS), kesterite, is an attractive absorber material for thin-film solar cells (TFSCs). However, the open-circuit voltage deficit (V oc -deficit) resulting from a high recombination rate at the buffer/absorber interface is one of the major challenges that must be overcome to improve the performance of kesterite-based TFSCs. In this paper, we demonstrate the relationship between device parameters and performances for chemically deposited CdS buffer/CZTS-based heterojunction TFSCs as a function of buffer layer thickness, which could change the CdS/CZTS interface conditions such as conduction band or valence band offsets, to gain deeper insight and understanding about the V oc -deficit behavior from a high recombination rate at the CdS buffer/kesterite interface. Experimental results show that device parameters and performances are strongly dependent on the CdS buffer thickness. We postulate two meaningful consequences: (i) Device parameters were improved up to a CdS buffer thickness of 70 nm, whereas they deteriorated at a thicker CdS buffer layer. The V oc -deficit in the solar cells improved up to a CdS buffer thickness of 92 nm and then deteriorated at a thicker CdS buffer layer. (ii) The minimum values of the device parameters were obtained at 70 nm CdS thickness in the CZTS TFSCs. Finally, the highest conversion efficiency of 8.77% (V oc : 494 mV, J sc : 34.54 mA/cm 2 , and FF: 51%) is obtained by applying a 70 nm thick CdS buffer to the Cu 2 ZnSn(S,Se) 4 absorber layer.

  19. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution.

    PubMed

    Zhang, Xuyang; Liu, Xingmei; Zhang, Minghua; Dahlgren, Randy A; Eitzel, Melissa

    2010-01-01

    Vegetated buffers are a well-studied and widely used agricultural management practice for reducing nonpoint-source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-e(-bxw)), (0 < K < or = 100) successfully captured the relationship between buffer width and pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. Buffer width alone explains 37, 60, 44, and 35% of the total variance in removal efficacy for sediment, pesticides, N, and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope < or = 10%) or negatively (when slope > 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Based on our analysis, a 30-m buffer under favorable slope conditions (approximately 10%) removes more than 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation, and modeling of vegetated buffers for treating agricultural runoff.

  20. Partitioning of Ni, Co and V between Spinel-Structured Oxides and Silicate Melts: Importance of Spinel Composition

    NASA Technical Reports Server (NTRS)

    Righter, K.; Leeman, W. P.; Hervig, R. L.

    2006-01-01

    Partitioning of Ni, Co and V between Cr-rich spinels and basaltic melt has been studied experimentally between 1150 and 1325 C, and at controlled oxygen fugacity from the Co-CoO buffer to slightly above the hematite magnetite buffer. These new results, together with new Ni, Co and V analyses of experimental run products from Leeman [Leeman, W.P., 1974. Experimental determination of the partitioning of divalent cations between olivine and basaltic liquid, Pt. II. PhD thesis, Univ. Oregon, 231 - 337.], show that experimentally determined spinel melt partition coefficients (D) are dependent upon temperature (T), oxygen fugacity (fO2) and spinel composition. In particular, partition coefficients determined on doped systems are higher than those in natural (undoped) systems, perhaps due to changing activity coefficients over the composition range defined by the experimental data. Using our new results and published runs (n =85), we obtain a multilinear regression equation that predicts experimental D(V) values as a function of T, fO2, concentration of V in melt and spinel composition. This equation allows prediction of D(V) spinel/melt values for natural mafic liquids at relevant crystallization conditions. Similarly, D(Ni) and D(Co) values can be inferred from our experiments at redox conditions approaching the QFM buffer, temperatures of 1150 to 1250 C and spinel composition (early Cr-bearing and later Ti-magnetite) appropriate for basic magma differentiation. When coupled with major element modelling of liquid lines of descent, these values (D(Ni) sp/melt=10 and D(Co) sp/melt=5) closely reproduce the compositional variation observed in komatiite, mid-ocean ridge basalt (MORB), ocean island basalt (OIB) and basalt to rhyolite suites.

  1. An Experimental Test of Buffer Utility as a Technique for Managing Pool-Breeding Amphibians

    PubMed Central

    Veysey Powell, Jessica S.; Babbitt, Kimberly J.

    2015-01-01

    Vegetated buffers are used extensively to manage wetland-dependent wildlife. Despite widespread application, buffer utility has not been experimentally validated for most species. To address this gap, we conducted a six-year, landscape-scale experiment, testing how buffers of different widths affect the demographic structure of two amphibian species at 11 ephemeral pools in a working forest of the northeastern U.S. We randomly assigned each pool to one of three treatments (i.e., reference, 100m buffer, 30m buffer) and clearcut to create buffers. We captured all spotted salamanders and wood frogs breeding in each pool and examined the impacts of treatment and hydroperiod on breeding-population abundance, sex ratio, and recapture rate. The negative effects of clearcutting tended to increase as forest-buffer width decreased and be strongest for salamanders and when other stressors were present (e.g., at short-hydroperiod pools). Recapture rates were reduced in the 30m, but not 100m, treatment. Throughout the experiment for frogs, and during the first year post-cut for salamanders, the predicted mean proportion of recaptured adults in the 30m treatment was only 62% and 40%, respectively, of that in the reference treatment. Frog sex ratio and abundance did not differ across treatments, but salamander sex ratios were increasingly male-biased in both cut treatments. By the final year, there were on average, only about 40% and 65% as many females predicted in the 100m and 30m treatments, respectively, compared to the first year. Breeding salamanders at short-hydroperiod pools were about 10% as abundant in the 100m versus reference treatment. Our study demonstrates that buffers partially mitigate the impacts of habitat disturbance on wetland-dependent amphibians, but buffer width and hydroperiod critically mediate that process. We provide the first experimental evidence showing that 30-m-wide buffers may be insufficient for maintaining resilient breeding populations of pool-dependent amphibians, at least during the first six years post-disturbance. PMID:26196129

  2. Quantifying the capacity of compost buffers for treating agricultural runoff

    NASA Astrophysics Data System (ADS)

    Naranjo, S. A.; Beighley, R. E.; Buyuksonmez, F.

    2007-12-01

    Agricultural operations, specifically, avocado and commercial nurseries require frequent and significant fertilizing and irrigating which tends to result in excessive nutrient leaching and off-site runoff. The increased runoff contains high concentrations of nutrients which negatively impacts stream water quality. Researcher has demonstrated that best management practices such as compost buffers can be effective for reducing nutrient and sediment concentrations in agricultural runoff. The objective of this research is to evaluate both the hydraulic capacity and the nutrient removal efficiency of: (a) compost buffers and (b) buffers utilizing a combination of vegetation and compost. A series of experiments will be performed in the environmental hydraulics laboratory at San Diego State University. A tilting flume 12-m long, 27-cm wide and 25-cm deep will be used. Discharge is propelled by an axial flow pump powered by a variable speed motor with a maximum capacity of 30 liters per second. The experiments are designed to measure the ratio compost mass per flow rate per linear width. Two different discharges will be measured: (a) treatment discharge (maximum flow rate such that the buffer decreases the incoming nitrogen and phosphorus concentrations below a maximum allowable limit) and (b) breaking discharge (maximum flow rate the buffer can tolerate without structural failure). Experimental results are presented for the hydraulic analysis, and preliminary results are presented for the removal of nitrogen and phosphorus from runoff. The results from this project will be used to develop guidelines for installing compost buffers along the perimeters of nursery sites and avocado groves in southern California.

  3. Buffer regulation of calcium puff sequences.

    PubMed

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-02-01

    Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.

  4. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    PubMed

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  5. Buffer regulation of calcium puff sequences

    NASA Astrophysics Data System (ADS)

    Fraiman, Daniel; Ponce Dawson, Silvina

    2014-02-01

    Puffs are localized Ca2 + signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca2 + from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca2 + provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca2 + signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca2 + channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca2 + buffer can increase the average number of channels that participate of a puff.

  6. Formulation of glutaraldehyde disinfectant for alginate impressions.

    PubMed

    Unemori, M; Matsuya, Y; Matsuya, S; Akashi, A; Mizuno, K; Akamine, A

    1999-12-01

    The effect of buffer agents incorporated in glutaraldehyde disinfectants on the surface quality of dental models was examined by the measurement of surface roughness, X-ray diffraction analysis and SEM observation. Seven experimental glutaraldehyde disinfectants were prepared using two buffer agents, potassium acetate alone or potassium acetate and sodium hydrogen carbonate in combination. Four kinds of sulfate--zinc, calcium, potassium and magnesium sulfate--were added to these disinfectants in order to accelerate the hydration of calcium sulfate hemihydrate. The impressions treated with the experimental disinfectants for 1 h produced stone surfaces which had significantly lower surface roughness values than those treated with the commercial disinfectants (p < 0.05). The X-ray diffraction analysis and SEM observation showed that these superior surfaces were produced as a result of significant reductions in the amount of residual calcium sulfate hemihydrate. Replacement of buffer agents in commercial glutaraldehyde disinfectants with chemicals such as those studied in the present study will improve the surface quality of dental stone.

  7. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.

    2016-04-01

    The impact of proton irradiation on the threshold voltage (VT) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of VT was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 1014 cm-2. Silvaco Atlas simulations of VT shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different VT dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed VT shifts. The proton irradiation induced VT shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  8. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers.

    PubMed

    Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo

    2017-10-25

    Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.

  10. Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas

    NASA Astrophysics Data System (ADS)

    Rouse, I.; Willitsch, S.

    2017-04-01

    An ion in a radio frequency ion trap interacting with a buffer gas of ultracold neutral atoms is a driven dynamical system which has been found to develop a nonthermal energy distribution with a power law tail. The exact analytical form of this distribution is unknown, but has often been represented empirically by q -exponential (Tsallis) functions. Based on the concepts of superstatistics, we introduce a framework for the statistical mechanics of an ion trapped in an rf field subject to collisions with a buffer gas. We derive analytic ion secular energy distributions from first principles both neglecting and including the effects of the thermal energy of the buffer gas. For a buffer gas with a finite temperature, we prove that Tsallis statistics emerges from the combination of a constant heating term and multiplicative energy fluctuations. We show that the resulting distributions essentially depend on experimentally controllable parameters paving the way for an accurate control of the statistical properties of ion-atom hybrid systems.

  11. Effect of buffer layer on photoresponse of MoS2 phototransistor

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuga; Yoshikawa, Daiki; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2018-06-01

    An atomically thin MoS2 field-effect transistor (FET) is expected as an ultrathin photosensor with high sensitivity. However, a persistent photoconductivity phenomenon prevents high-speed photoresponse. Here, we investigate the photoresponse of a MoS2 FET with a thin Al2O3 buffer layer on a SiO2 gate insulator. The application of a 2-nm-thick Al2O3 buffer layer greatly improves not only the steady state properties but also the response speed from 1700 to 0.2 s. These experimental results are well explained by the random localized potential fluctuation model combined with the model based on the recombination of the bounded electrons around the trapped hole.

  12. Basal buffer systems for a newly glycosylated recombinant human interferon-β with biophysical stability and DoE approaches.

    PubMed

    Kim, Nam Ah; Song, Kyoung; Lim, Dae Gon; Hada, Shavron; Shin, Young Kee; Shin, Sangmun; Jeong, Seong Hoon

    2015-10-12

    The purpose of this study was to develop a basal buffer system for a biobetter version of recombinant human interferon-β 1a (rhIFN-β 1a), termed R27T, to optimize its biophysical stability. The protein was pre-screened in solution as a function of pH (2-11) using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the result, its experimental pI and optimal pH range were 5.8 and 3.6-4.4, respectively. Design of experiment (DoE) approach was developed as a practical tool to aid formulation studies as a function of pH (2.9-5.7), buffer (phosphate, acetate, citrate, and histidine), and buffer concentration (20 mM and 50 mM). This method employed a weight-based procedure to interpret complex data sets and to investigate critical key factors representing protein stability. The factors used were Tm, enthalpy, and relative helix contents which were obtained by DSC and Fourier Transform Infrared spectroscopy (FT-IR). Although the weights changed by three responses, objective functions from a set of experimental designs based on four buffers were highest in 20 mM acetate buffer at pH 3.6 among all 19 scenarios tested. Size exclusion chromatography (SEC) was adopted to investigate accelerated storage stability in order to optimize the pH value with susceptible stability since the low pH was not patient-compliant. Interestingly, relative helix contents and storage stability (monomer remaining) increased with pH and was the highest at pH 4.0. On the other hand, relative helix contents and thermodynamic stability decreased at pH 4.2 and 4.4, suggesting protein aggregation issues. Therefore, the optimized basal buffer system for the novel biobetter was proposed to be 20 mM acetate buffer at pH 3.8±0.2. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Setting priorities for research on pollution reduction functions of agricultural buffers.

    PubMed

    Dosskey, Michael G

    2002-11-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An assessment of these uncertainties cautions that there is greater risk of overestimating buffer impact than underestimating it. Priorities for future research are proposed that will lead more quickly to major advances in predictive capabilities. Highest priority is given for work on the surface runoff filtration function, which is almost universally important to the amount of pollution reduction expected from buffer installation and for which there remain major sources of uncertainty for predicting level of impact. Foremost uncertainties surround the extent and consequences of runoff flow concentration and pollutant accumulation. Other buffer functions, including filtration of groundwater nitrate and stabilization of channel erosion sources of sediments, may be important in some regions. However, uncertainty surrounds our ability to identify and quantify the extent of site conditions where buffer installation can substantially reduce stream pollution in these ways. Deficiencies in predictive models reflect gaps in experimental information as well as technology to account for spatial heterogeneity of pollutant sources, pathways, and buffer capabilities across watersheds. Since completion of a comprehensive watershed-scale buffer model is probably far off, immediate needs call for simpler techniques to gage the probable impacts of buffer installation at local scales.

  14. Theoretical and experimental studies of electric field distribution in N-polar GaN/AlGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladysiewicz, M., E-mail: marta.gladysiewicz@pwr.edu.pl; Janicki, L.; Kudrawiec, R.

    2015-12-28

    Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaNmore » layers.« less

  15. Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study.

    PubMed

    Martin, N K; Robey, I F; Gaffney, E A; Gillies, R J; Gatenby, R A; Maini, P K

    2012-03-27

    Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts. We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies. The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1-7.2. Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1-7.2 is most promising.

  16. Studies on the electrochemical behavior of thiazolidine and its applications using a flow-through chronoamperometric sensor based on a gold electrode.

    PubMed

    Wang, Lai-Hao; Li, Wen-Jie

    2011-09-06

    The electrochemical behaviors of thiazolidine (tetrahydrothiazole) on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77-11.61), acetate buffer (pH 4.31), phosphate buffer solutions (pH 2.11 and 6.38) and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate) as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L-1 was found. The limit of quantification (LOQ) of the method for thiazolidine was found to be 1 ng.

  17. Experimental determination of the hydrothermal solubility of ReS2 and the Re–ReO2 buffer assemblage and transport of rhenium under supercritical conditions

    PubMed Central

    Xiong, Yongliang; Wood, Scott A

    2002-01-01

    To understand the aqueous species important for transport of rhenium under supercritical conditions, we conducted a series of solubility experiments on the Re–ReO2 buffer assemblage and ReS2. In these experiments, pH was buffered by the K–feldspar–muscovite–quartz assemblage; in sulfur-free systems was buffered by the Re–ReO2 assemblage; and and in sulfur-containing systems were buffered by the magnetite–pyrite–pyrrhotite assemblage. Our experimental studies indicate that the species ReCl40 is dominant at 400°C in slightly acidic to near-neutral, and chloride-rich (total chloride concentrations ranging from 0.5 to 1.0 M) environments, and ReCl3+ may predominate at 500°C in a solution with total chloride concentrations ranging from 0.5 to 1.5 M. The results also demonstrate that the solubility of ReS2 is about two orders of magnitude less than that of ReO2. This finding not only suggests that ReS2 (or a ReS2 component in molybdenite) is the solubility-controlling phase in sulfur-containing, reducing environments but also implies that a mixing process involving an oxidized, rhenium-containing solution and a solution with reduced sulfur is one of the most effective mechanisms for deposition of rhenium. In analogy with Re, TcS2 may be the stable Tc-bearing phase in deep geological repositories of radioactive wastes.

  18. Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study

    PubMed Central

    Martin, N K; Robey, I F; Gaffney, E A; Gillies, R J; Gatenby, R A; Maini, P K

    2012-01-01

    Background: Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts. Methods: We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies. Results: The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1–7.2. Conclusion: Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1–7.2 is most promising. PMID:22382688

  19. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  20. Ruthenium (Ru) peeling and predicting robustness of the capping layer using finite element method (FEM) modeling

    NASA Astrophysics Data System (ADS)

    Jang, Il-Yong; John, Arun; Goodwin, Frank; Lee, Su-Young; Kim, Byung-Gook; Kim, Seong-Sue; Jeon, Chan-Uk; Kim, Jae Hyung; Jang, Yong Hoon

    2014-07-01

    Ruthenium (Ru) film used as capping layer in extreme ultraviolet (EUV) mask peeled off after annealing and in-situ UV (IUV) cleaning. We investigated Ru peeling and found out that the mechanical stress caused by the formation of Si oxide due to the penetration of oxygen atoms from ambient or cleaning media to top-Si of ML is the root cause for the problem. To support our experimental results, we developed a numerical model of finite element method (FEM) using commercial software (ABAQUS™) to calculate the stress and displacement forced on the capping layer. By using this model, we could observe that the displacement agrees well with the actual results measured from the transmission electron microscopy (TEM) image. Using the ion beam deposition (IBD) tool at SEMATECH, we developed four new types of alternative capping materials (RuA, RuB, B4C, B4C-buffered Ru). The durability of each new alternative capping layer observed by experiment was better than that of conventional Ru. The stress and displacement calculated from each new alternative capping layer, using modeling, also agreed well with the experimental results. A new EUV mask structure is proposed, inserting a layer of B4C (B4C-buffered Ru) at the interface between the capping layer (Ru) and the top-Si layer. The modeling results showed that the maximum displacement and bending stress observed from the B4C-buffered Ru are significantly lower than that of single capping layer cases. The durability investigated from the experiment also showed that the B4C-buffered structure is at least 3X stronger than that of conventional Ru.

  1. Protein-Water and Protein-Buffer Interactions in the Aqueous Solution of an Intrinsically Unstructured Plant Dehydrin: NMR Intensity and DSC Aspects

    PubMed Central

    Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K.

    2006-01-01

    Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation. PMID:16798808

  2. Characterization of pH-fractionated humic acids with respect to their dissociation behaviour.

    PubMed

    Klučáková, Martina

    2016-04-01

    Humic acids were divided into several fractions using buffer solutions as extraction agents with different pH values. Two methods of fractionation were used. The first one was subsequent dissolution of bulk humic acids in buffers adjusted to different pH. The second one was sequential dissolution in buffers with increasing pH values. Experimental data were compared with hypothesis of partial solubility of humic acids in aqueous solutions. Behaviour of humic fractions obtained by sequential dissolution, original bulk sample and residual fractions obtained by subsequent dissolution at pH 10 and 12 agrees with the hypothesis. Results demonstrated that regardless the common mechanism, solubility and dissociation degree of various humic fractions may be very different and can be estimated using parameters of the model based on the proposed mechanism. Presented results suggest that dissolving of solid humic acids in water environment is more complex than conventional solubility behaviour of sparingly soluble solids.

  3. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  4. Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows.

    PubMed

    Stone, Philip A; Waleffe, Fabian; Graham, Michael D

    2002-11-11

    Nontrivial steady flows have recently been found that capture the main structures of the turbulent buffer layer. We study the effects of polymer addition on these "exact coherent states" (ECS) in plane Couette flow. Despite the simplicity of the ECS flows, these effects closely mirror those observed experimentally: Structures shift to larger length scales, wall-normal fluctuations are suppressed while streamwise ones are enhanced, and drag is reduced. The mechanism underlying these effects is elucidated. These results suggest that the ECS are closely related to buffer layer turbulence.

  5. Quantum memory in warm rubidium vapor with buffer gas.

    PubMed

    Bashkansky, Mark; Fatemi, Fredrik K; Vurgaftman, Igor

    2012-01-15

    The realization of quantum memory using warm atomic vapor cells is appealing because of their commercial availability and the perceived reduction in experimental complexity. In spite of the ambiguous results reported in the literature, we demonstrate that quantum memory can be implemented in a single cell with buffer gas using the geometry where the write and read beams are nearly copropagating. The emitted Stokes and anti-Stokes photons display cross-correlation values greater than 2, characteristic of quantum states, for delay times up to 4 μs.

  6. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing non-point source pollution

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liu, X.; Zhang, M.; Dahlgren, R. A.; Eitzel, M.

    2009-12-01

    Vegetated buffers are a well-studied and widely used agricultural management practice for reducing non-point source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-exp(-b x w) , (0< K <= 100) successfully captured the relationship between buffer width and pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. The estimates of K were 90.9, 93.2, 92.0, and 89.5 for sediment, pesticides, nitrogen (N) and phosphorus (P), respectively. Buffer width alone explains 37, 60, 44 and 35% of the total variance in removal efficacy for sediment, pesticides, N and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope ≤ 10%) or negatively (when slope > 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Models for all the studied pollutants were statistically significant with P-values < 0.001. Based on our analysis, a 30 m buffer under favorable slope conditions (≈ 10%) removes over 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation and modeling of vegetated buffers for treating agricultural runoff.

  7. Rotational relaxation of fluoromethane molecules in low-temperature collisions with buffer-gas helium

    NASA Astrophysics Data System (ADS)

    Li, Xingjia; Xu, Liang; Yin, Yanning; Xu, Supeng; Xia, Yong; Yin, Jianping

    2016-06-01

    We propose a method to study the rotational relaxation of polar molecules [here taking fluoromethane (CH3F ) as an example] in collisions with 3.5 K buffer-gas helium (He) atoms by using an electrostatic guiding technique. The dependence of the guiding signal of CH3F on the injected He flux and the dependence of the guiding efficiency of CH3F on its rotational temperature are investigated both theoretically and experimentally. By comparing the experimental and simulated results, we find that the translational and rotational temperatures of the buffer-gas cooled CH3F molecules can reach to about 5.48 and 0.60 K, respectively, and the ratio between the translational and average rotational collisional cross sections of CH3F -He is γ =σt/σr=36.49 ±6.15 . In addition, the slowing, cooling, and boosting effects of the molecular beam with different injected He fluxes are also observed and their forming conditions are investigated in some detail. Our study shows that our proposed method can not only be used to measure the translational and rotational temperatures of the buffer-gas cooled molecules, but also to measure the ratio of the translational collisional cross section to the average rotational collisional cross section, and even to measure the average rotational collisional cross section when the translational collisional cross section is measured by fitting the lifetime of molecule signal to get a numerical solution from the diffusion equation of buffer-gas He atoms in the cell.

  8. Social buffering enhances extinction of conditioned fear responses in male rats.

    PubMed

    Mikami, Kaori; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-09-01

    In social species, the phenomenon in which the presence of conspecific animals mitigates stress responses is called social buffering. We previously reported that social buffering in male rats ameliorated behavioral fear responses, as well as hypothalamic-pituitary-adrenal axis activation, elicited by an auditory conditioned stimulus (CS). However, after social buffering, it is not clear whether rats exhibit fear responses when they are re-exposed to the same CS in the absence of another rat. In the present study, we addressed this issue using an experimental model of extinction. High stress levels during extinction training impaired extinction, suggesting that extinction is enhanced when stress levels during extinction training are low. Therefore, we hypothesized that rats that had received social buffering during extinction training would not show fear responses to a CS, even in the absence of another rat, because social buffering had enhanced the extinction of conditioned fear responses. To test this, we subjected male fear-conditioned rats to extinction training either alone or with a non-conditioned male rat. The subjects were then individually re-exposed to the CS in a recall test. When the subjects individually underwent extinction training, no responses were suppressed in the recall test. Conversely, when the subjects received social buffering during extinction training, freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala were suppressed. Additionally, the effects of social buffering were absent when the recall test was conducted in a different context from the extinction training. The present results suggest that social buffering enhances extinction of conditioned fear responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Learning non-local dependencies.

    PubMed

    Kuhn, Gustav; Dienes, Zoltán

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., and Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory and Cognition, 31(6) 1417-1432] showed that people could implicitly learn a musical rule that was solely based on non-local dependencies. These results seriously challenge models of implicit learning that assume knowledge merely takes the form of linking adjacent elements (chunking). We compare two models that use a buffer to allow learning of long distance dependencies, the Simple Recurrent Network (SRN) and the memory buffer model. We argue that these models - as models of the mind - should not be evaluated simply by fitting them to human data but by determining the characteristic behaviour of each model. Simulations showed for the first time that the SRN could rapidly learn non-local dependencies. However, the characteristic performance of the memory buffer model rather than SRN more closely matched how people came to like different musical structures. We conclude that the SRN is more powerful than previous demonstrations have shown, but it's flexible learned buffer does not explain people's implicit learning (at least, the affective learning of musical structures) as well as fixed memory buffer models do.

  10. Separation of 20 coumarin derivatives using the capillary electrophoresis method optimized by a series of Doehlert experimental designs.

    PubMed

    Woźniakiewicz, Michał; Gładysz, Marta; Nowak, Paweł M; Kędzior, Justyna; Kościelniak, Paweł

    2017-05-15

    The aim of this study was to develop the first CE-based method enabling separation of 20 structurally similar coumarin derivatives. To facilitate method optimization a series of three consequent Doehlert experimental designs with the response surface methodology was employed, using number of peaks and the adjusted time of analysis as the selected responses. Initially, three variables were examined: buffer pH, ionic strength and temperature (No. 1 Doehlert design). The optimal conditions provided only partial separation, on that account, several buffer additives were examined at the next step: organic cosolvents and cyclodextrin (No. 2 Doehlert design). The optimal cyclodextrin type was also selected experimentally. The most promising results were obtained for the buffers fortified with methanol, acetonitrile and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin. Since these additives may potentially affect acid-base equilibrium and ionization state of analytes, the third Doehlert design (No. 3) was used to reconcile concentration of these additives with optimal pH. Ultimately, the total separation of all 20 compounds was achieved using the borate buffer at basic pH 9.5 in the presence of 10mM cyclodextrin, 9% (v/v) acetonitrile and 36% (v/v) methanol. Identity of all compounds was confirmed using the in-lab build UV-VIS spectra library. The developed method succeeded in identification of coumarin derivatives in three real samples. It demonstrates a huge resolving power of CE assisted by addition of cyclodextrins and organic cosolvents. Our unique optimization approach, based on the three Doehlert designs, seems to be prospective for future applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cell Electrosensitization Exists Only in Certain Electroporation Buffers.

    PubMed

    Dermol, Janja; Pakhomova, Olga N; Pakhomov, Andrei G; Miklavčič, Damijan

    2016-01-01

    Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms.

  12. Cell Electrosensitization Exists Only in Certain Electroporation Buffers

    PubMed Central

    Dermol, Janja; Pakhomova, Olga N.; Pakhomov, Andrei G.; Miklavčič, Damijan

    2016-01-01

    Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms. PMID:27454174

  13. Amperometric Determination of Glucose at Parts per Million Levels with Immobilized Glucose Oxidase.

    ERIC Educational Resources Information Center

    Sittampalam, G.; Wilson, G. S.

    1982-01-01

    An experiment on the operation and utility of an amperometric immobilized enzyme electrode (or probe) is described, including advantages of the experiment, equipment, reagents, preparation of phosphate buffer, enzyme immobilization techniques, laboratory procedures, precautions, and discussion of experimental results. (SK)

  14. TRIO: Burst Buffer Based I/O Orchestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Teng; Oral, H Sarp; Pritchard, Michael

    The growing computing power on leadership HPC systems is often accompanied by ever-escalating failure rates. Checkpointing is a common defensive mechanism used by scientific applications for failure recovery. However, directly writing the large and bursty checkpointing dataset to parallel filesystem can incur significant I/O contention on storage servers. Such contention in turn degrades the raw bandwidth utilization of storage servers and prolongs the average job I/O time of concurrent applications. Recently burst buffer has been proposed as an intermediate layer to absorb the bursty I/O traffic from compute nodes to storage backend. But an I/O orchestration mechanism is still desiredmore » to efficiently move checkpointing data from bursty buffers to storage backend. In this paper, we propose a burst buffer based I/O orchestration framework, named TRIO, to intercept and reshape the bursty writes for better sequential write traffic to storage severs. Meanwhile, TRIO coordinates the flushing orders among concurrent burst buffers to alleviate the contention on storage server bandwidth. Our experimental results reveal that TRIO can deliver 30.5% higher bandwidth and reduce the average job I/O time by 37% on average for data-intensive applications in various checkpointing scenarios.« less

  15. Molecular weight and oligomerization of rabbit thrombomodulin as assessed by sedimentation equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnard, P.T.; Esmon, C.T.; Laue, T.M.

    1989-02-15

    Lubrol-solubilized rabbit thrombomodulin has been examined by equilibrium sedimentation in buffers that include sufficient D/sub 2/O to make the detergent neutrally buoyant. Data were acquired at rotor speeds from 12,000 to 28,000 rpm from two thrombomodulin preparations, at protein concentrations from 0.01 to 0.07%, and in buffer containing 0.01 to 0.23% Lubrol. Examination of the data from different rotor speeds shows that the thrombomodulin exists as a heterogeneous mixture containing monomer (Mr 65,000), trimer, and higher oligomers. The oligomers do not equilibrate over the time scale of the experiment. The weight fraction as monomer varies from preparation to preparation, andmore » appears to be independent of detergent concentration. Thus, experimenters should be cautious when interpreting binding or kinetic results obtained under similar buffer conditions.« less

  16. Kinetic and Mechanistic Study of the pH-Dependent Activation (Epoxidation) of Prodrug Treosulfan Including the Reaction Inhibition in a Borate Buffer.

    PubMed

    Romański, Michał; Ratajczak, Whitney; Główka, Franciszek

    2017-07-01

    A prodrug treosulfan (T) undergoes a pH-dependent activation to epoxide derivatives. The process seems to involve an intramolecular Williamson reaction (IWR) but clear kinetic evidence is lacking. Moreover, a cis-diol system present in the T structure is expected to promote complexation with boric acid. As a result, the prodrug epoxidation would be inhibited; however, this phenomenon has not been investigated. In this article, the effect of pH on the kinetics of T conversion to its monoepoxide was studied from a mechanistic point of view. Also, the influence of boric acid on the reaction kinetics was examined. The rate constants observed for the activation of T (k obs ) in acetate, phosphate, and carbonate buffers satisfied the equation logk obs  = -7.48 + 0.96 pH. The reaction was inhibited in the excess of boric acid over T, and the k obs decreased with increasing borate buffer concentration. The experimental results were consistent with the inhibition model that included the formation of a tetrahedral, anionic T-boric acid monoester. To conclude, in nonborate buffers, the T activation to (2S,3S)-1,2-epoxybutane-3,4-diol 4-methanesulfonate follows IWR mechanism. A borate buffer changes the reaction kinetics and complicates kinetic analysis. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.

    2016-04-28

    The impact of proton irradiation on the threshold voltage (V{sub T}) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of V{sub T} was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 10{sup 14} cm{sup −2}. Silvaco Atlas simulations of V{sub T} shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different V{sub T} dependences on protonmore » irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed V{sub T} shifts. The proton irradiation induced V{sub T} shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.« less

  18. Experimental Study on the Interaction Between Contacting Barrier Materials for Containment of Radioactive Wastes

    NASA Astrophysics Data System (ADS)

    Huang, W. H.; Chang, H. C.

    2017-12-01

    The disposal of low- and intermediate-level radioactive wastes requires use of multi-barriers for isolation of the wastes from the biosphere. Typically, the engineered barriers are composed of a concrete vault, buffer and backfill materials. Zhishin clay and Black Hill bentonite were used as raw clay material in making buffer and backfill materials in this study. These clays were compacted to make buffer material, or mixed with Taitung area argillite to produce backfill material for potential application as barriers for the disposal of low- and intermediate-level radioactive wastes. The interaction between concrete barrier and the buffer/backfill material is simulated by an accelerated migration test to investigate the effect of contacting concrete on the expected functions of buffer/backfill material. The results show buffer material close to the contact with concrete exhibits significant change in the ratio of calcium/sodium exchange capacity, due to the move of calcium ions released from the concrete. The shorter the distance from the contacting interface, the ratio of the calcium/sodium concentration in buffer/backfill materials increases. The longer the distance from the interface, the effect of the contact on alteration in clays become less significant. Also, some decreases in swelling capacity in the buffer/backfill material near the concrete-backfill interface are noted. Finally, a comparison is made between Zhisin clay and Balck Hill bentonite on the interaction between concrete and the two clays. Black Hill bentonite was found to be influenced more by the interaction, because of the higher content of montmorillonite. On the other hand, being a mixture of clay and sand, backfill material is less affected by the decalsification of concrete at the contact than buffer material.

  19. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  20. The Interplay between Feedback and Buffering in Cellular Homeostasis.

    PubMed

    Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart

    2017-11-22

    Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Breeding Bird Community Continues to Colonize Riparian Buffers Ten Years after Harvest

    PubMed Central

    2015-01-01

    Riparian ecosystems integrate aquatic and terrestrial communities and often contain unique assemblages of flora and fauna. Retention of forested buffers along riparian habitats is a commonly employed practice to reduce potential negative effects of land use on aquatic systems. However, very few studies have examined long-term population and community responses to buffers, leading to considerable uncertainty about effectiveness of this practice for achieving conservation and management outcomes. We examined short- (1–2 years) and long-term (~10 years) avian community responses (occupancy and abundance) to riparian buffer prescriptions to clearcut logging silvicultural practices in the Pacific Northwest USA. We used a Before-After-Control-Impact experimental approach and temporally replicated point counts analyzed within a Bayesian framework. Our experimental design consisted of forested control sites with no harvest, sites with relatively narrow (~13m) forested buffers on each side of the stream, and sites with wider (~30m) and more variable width unharvested buffer. Buffer treatments exhibited a 31–44% increase in mean species richness in the post-harvest years, a pattern most evident 10 years post-harvest. Post-harvest, species turnover was much higher on both treatments (63–74%) relative to the controls (29%). We did not find evidence of local extinction for any species but found strong evidence (no overlap in 95% credible intervals) for an increase in site occupancy on both Narrow (short-term: 7%; long-term 29%) and Wide buffers (short-term: 21%; long-term 93%) relative to controls after harvest. We did not find a treatment effect on total avian abundance. When assessing relationships between buffer width and site level abundance of four riparian specialists, we did not find strong evidence of reduced abundance in Narrow or Wide buffers. Silviculture regulations in this region dictate average buffer widths on small and large permanent streams that range from ~22–25 m. Guidelines for this region are within the range of buffers included in our study, in which we observed no evidence for avian species loss or for a decline in species abundance (including riparian associated species). PMID:26637120

  2. Expression and solubilization of insect cell-based rabies virus glycoprotein and assessment of its immunogenicity and protective efficacy in mice.

    PubMed

    Ramya, R; Mohana Subramanian, B; Sivakumar, V; Senthilkumar, R L; Sambasiva Rao, K R S; Srinivasan, V A

    2011-10-01

    Rabies is a fatal zoonotic disease of serious public health and economic significance worldwide. The rabies virus glycoprotein (RVG) has been the major target for subunit vaccine development, since it harbors domains responsible for induction of virus-neutralizing antibodies, infectivity, and neurovirulence. The glycoprotein (G) was cloned using the baculovirus expression vector system (BEVS) and expressed in Spodoptera frugiperda (Sf-9) cells. In order to obtain a soluble form of G suitable for experimentation in mice, 18 different combinations of buffers and detergents were evaluated for their ability to solubilize the insect cell membrane-associated G. The combination that involved 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) detergent in lysis buffer 1, formulated with Tris, NaCl, 10% dimethyl sulfoxide (DMSO), and EDTA, gave the highest yield of soluble G, as evidenced by the experimental data. Subsequently, several other parameters, such as the concentration of CHAPS and the duration and temperature of the treatment for the effective solubilization of G, were optimized. The CHAPS detergent, buffered at a concentration of 0.4% to 0.7% (wt/vol) at room temperature (23 to 25°C) for 30 min to 1 h using buffer 1, containing 10% DMSO, resulted in consistently high yields. The G solubilized using CHAPS detergent was found to be immunogenic when tested in mice, as evidenced by high virus-neutralizing antibody titers in sera and 100% protection upon virulent intracerebral challenge with the challenge virus standard (CVS) strain of rabies virus. The results of the mice study indicated that G solubilized with CHAPS detergent retained the immunologically relevant domains in the native conformation, thereby paving the way for producing a cell-free and efficacious subunit vaccine.

  3. Review article: do exercise and fitness protect against stress-induced health complaints? A review of the literature.

    PubMed

    Gerber, Markus; Pühse, Uwe

    2009-11-01

    Understanding how exercise influences health is important in designing public health interventions. At present, evidence suggests that there is a positive relationship between exercise and health. However, whether this relationship is partly due to the stress-moderating impact of exercise has been less frequently investigated although more and more people are taxed by stressful life circumstances. A comprehensive review of studies testing the potential of exercise as a stress-buffer was conducted (including literature from 1982 to 2008). The findings are based on a narrative review method. Specific criteria were taken into account to evaluate causality of the evidence. About half of the studies reported at least partly supportive results in the sense that people with high exercise levels exhibit less health problems when they encounter stress. The causality analyses show that stress-moderation effects were consistently found in different samples and with different methodological approaches. Although more support results from cross-sectional studies, exercise-based stress-buffer effects were also found in prospective, longitudinal and quasi-experimental investigations. This review underscores the relevance of exercise as a public health resource. Recommendations are provided for future research. More prospective and experimental studies are needed to provide insight into how much exercise is necessary to trigger stress-buffer effects. Furthermore, more information is warranted to conclude which sort of exercise has the strongest impact on the stress-illness-relationship.

  4. Effects of vehicles and prodrug properties and their interactions on the delivery of 6-mercaptopurine through skin: bisacyloxymethyl-6-mercaptopurine prodrugs.

    PubMed

    Waranis, R P; Sloan, K B

    1987-08-01

    A series of S6,9-bisacyloxymethyl-6-mercaptopurine (6,9-bis-6-MP) prodrug derivatives was synthesized and characterized. The solubilities of the derivatives in solvents (vehicles), which exhibited a wide range of polarities from water to oleic acid, were measured. The abilities of the prodrugs to deliver 6-mercaptopurine (6-MP) from the vehicles have also been determined, and experimental fluxes and permeability coefficients (Kp) have been calculated for a large number of prodrug: vehicle combinations. Generally the best prodrugs of the series in terms of delivering 6-MP, regardless of the vehicle, were the first two members--the bisacetyl- and the bispropionyloxymethyl-6-mercaptopurine prodrugs. This result has been attributed mainly to the increased water solubility of these two prodrugs compared with that of 6-MP and the other prodrugs, since all of the prodrugs are much more lipid soluble than 6-MP. For three vehicles--isopropyl myristate, propylene glycol, and water--there was a good correlation between log experimental Kp for the delivery of 6-MP by the prodrugs from those vehicles and the theoretical solubility parameters of the prodrugs. The stabilities of the bisacetyl-(2), bisproprionyl-(3), and bisbutyryloxymethyl-6-mercaptopurine (4) derivatives were determined in buffer and in buffer containing enzymes leached from the dermis. Prodrug 2 was more stable than 3 or 4 in the buffer containing the enzymes, while 4 was more stable than 2 or 3 in the plain buffer.

  5. The role of AlGaN buffers and channel thickness in the electronic transport properties of Al{sub x}In{sub 1–x}N/AlN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amirabbasi, M., E-mail: mo.amirabbasi@gmail.com

    We try to theoretically analyze the reported experimental data of the Al{sub x}In{sub 1–x}N/AlN/GaN heterostructures grown by MOCVD and quantitatively investigate the effects of AlGaN buffers and the GaNchannel thickness on the electrical transport properties of these systems. Also, we obtain the most important effective parameters of the temperature-dependent mobility in the range 35–300 K. Our results show that inserting a 1.1 μm thick Al{sub 0.04}Ga{sub 0.96}N buffer enhances electron mobility by decreasing the effect of phonons, the interface roughness, and dislocation and crystal defect scattering mechanisms. Also, as the channel thickness increases from 20 nm to 40 nm, themore » electron mobility increases from 2200 to 2540 cm{sup 2}/(V s) and from 870 to 1000 cm{sup 2}/(V s) at 35 and 300 K respectively, which is attributed to the reduction in the dislocation density and the strain-induced field. Finally, the reported experimental data show that inserting a 450 nm graded AlGaN layer before an Al{sub 0.04}Ga{sub 0.96}N buffer causes a decrease in the electron mobility, which is attributed to the enhancement of the lateral size of roughness, the dislocation density, and the strain-induced field in this sample.« less

  6. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  7. APEX Model Simulation for Row Crop Watersheds with Agroforestry and Grass Buffers

    USDA-ARS?s Scientific Manuscript database

    Watershed model simulation has become an important tool in studying ways and means to reduce transport of agricultural pollutants. Conducting field experiments to assess buffer influences on water quality are constrained by the large-scale nature of watersheds, high experimental costs, private owner...

  8. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.

    PubMed

    Zhou, Marilyn X; Foley, Joe P

    2006-03-15

    To optimize separations in capillary electrophoresis, it is important to control the electroosmotic mobility of the running buffer and the factors that affect it. Through the application of a site-dissociation-site-binding model, we demonstrated that the electroosmotic mobility could be controlled qualitatively and quantitatively by the parameters related to the physical and chemical properties of the running buffer: pH, cation valence, ionic strength, viscosity, activity, and dissociation constant. Our study illustrated that the logarithm of the number of apparent silanol sites on a fused-silica surface has a linear relationship with the pH of a buffer solution. The extension of the chemical kinetics approach allowed us to obtain the thickness of the electrical double layer when multivalent inorganic cations are present with monovalent cations in a buffer solution, and we found that the thickness of the electrical double layer does not depend on the charge of anions. The general equation to predict the electroosmotic mobility suggested here also indicates the increase of electroosmotic mobility with temperature. The general equation was experimentally verified by three buffer scenarios: (i) buffers containing only monovalent cations; (ii) buffers containing multivalent inorganic cations; and (iii) buffers containing cations and neutral additives. The general equation can explain the experimental observations of (i) a maximum electroosmotic mobility for the first scenario as the pH was varied at constant ionic strength and (ii) the inversion and maximum value of the electroosmotic mobility for the second scenario when the concentration of divalent cations was varied at constant pH. A good agreement between theory and experiment was obtained for each scenario.

  9. Effect of Ca2+ Efflux Pathway Distribution and Exogenous Ca2+ Buffers on Intracellular Ca2+ Dynamics in the Rat Ventricular Myocyte: A Simulation Study

    PubMed Central

    Šimurda, Jiří; Orchard, Clive H.

    2014-01-01

    We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca2+ efflux pathways (SERCA, Na+/Ca2+ exchange, and sarcolemmal Ca2+ ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca2+ buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca2+ in the dyad and bulk cytoplasm, on cellular Ca2+ cycling. Increasing the dyadic fraction of a particular Ca2+ efflux pathway increases the amount of Ca2+ removed by that pathway, with corresponding changes in Ca2+ efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca2+ removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca2+-dependent inactivation of the L-type Ca2+ current, resulted from the buffers acting as slow and fast “shuttles,” respectively, removing Ca2+ from the dyadic space. The data suggest that complex changes in dyadic Ca2+ and cellular Ca2+ cycling occur as a result of changes in the location of Ca2+ removal pathways or the presence of exogenous Ca2+ buffers, although changing the distribution of Ca2+ efflux pathways has relatively small effects on the systolic Ca2+ transient. PMID:24971358

  10. Development of a nucleic Acid extraction procedure for simultaneous recovery of DNA and RNA from diverse microbes in water.

    PubMed

    Hill, Vincent R; Narayanan, Jothikumar; Gallen, Rachel R; Ferdinand, Karen L; Cromeans, Theresa; Vinjé, Jan

    2015-05-26

    Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters.

  11. Development of a Nucleic Acid Extraction Procedure for Simultaneous Recovery of DNA and RNA from Diverse Microbes in Water

    PubMed Central

    Hill, Vincent R.; Narayanan, Jothikumar; Gallen, Rachel R.; Ferdinand, Karen L.; Cromeans, Theresa; Vinjé, Jan

    2015-01-01

    Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters. PMID:26016775

  12. Chelatable trace zinc causes low, irreproducible KDAC8 activity.

    PubMed

    Toro, Tasha B; Edenfield, Samantha A; Hylton, Brandon J; Watt, Terry J

    2018-01-01

    Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less

  14. Driving forces and the influence of the buffer composition on the complexation reaction between ibuprofen and HPCD.

    PubMed

    Perlovich, German L; Skar, Merete; Bauer-Brandl, Annette

    2003-10-01

    Cyclodextrins are often used in order to increase the aqueous solubility of drug substances by complexation. In order to investigate the complexation reaction of ibuprofen and hydroxypropyl-beta-cyclodextrin, titration calorimetry was used as a direct method. The thermodynamic parameters of the complexation process (stability constant, K(11); complexation enthalpy, deltaH(c) degrees ) were obtained in two different buffer systems (citric acid/sodium-phosphate and phosphoric acid) at various pH values. Based on these data the relative contributions of the enthalpic and entropic terms of the Gibbs energy to the complexation process have been analyzed. In both buffers the enthalpic and entropic terms are of different sign and this case corresponds to a 'nonclassical' model of hydrophobic interaction. In citric buffer, the main driving force of complexation is the entropy, which increases from 60 to 67% while the pH of the solution increases from 3.2 to 8.0. However, for the phosphoric buffer the entropic term decreases from 60 to 45%, while the pH-value of the solution increases from 5.0 to 8.2, and the driving force of the complexation process changes from entropy to enthalpy. The experimental data of the present study are compared to results of other authors and discrepancies discussed in detail.

  15. Perennial Grass and Native Wildflowers: A Synergistic Approach to Habitat Management.

    PubMed

    Xavier, Shereen S; Olson, Dawn M; Coffin, Alisa W; Strickland, Timothy C; Schmidt, Jason M

    2017-09-22

    Marginal agricultural land provides opportunities to diversify landscapes by producing biomass for biofuel, and through floral provisioning that enhances arthropod-mediated ecosystem service delivery. We examined the effects of local spatial context (adjacent to woodland or agriculture) and irrigation (irrigation or no irrigation) on wildflower bloom and visitation by arthropods in a biofeedstocks-wildflower habitat buffer design. Twenty habitat buffer plots were established containing a subplot of Napier grass ( Pennisetum perpureum Schumach) for biofeedstock, three commercial wildflower mix subplots, and a control subplot containing spontaneous weeds. Arthropods and flowers were visually observed in quadrats throughout the season. At the end of the season we measured soil nutrients and harvested Napier biomass. We found irrespective of buffer location or irrigation, pollinators were observed more frequently early in the season and on experimental plots with wildflowers than on weeds in the control plots. Natural enemies showed a tendency for being more common on plots adjacent to a wooded border, and were also more commonly observed early in the season. Herbivore visits were infrequent and not significantly influenced by experimental treatments. Napier grass yields were high and typical of first-year yields reported regionally, and were not affected by location context or irrigation. Our results suggest habitat management designs integrating bioenergy crop and floral resources provide marketable biomass and habitat for beneficial arthropods.

  16. Structure, molecular simulation, and release of aspirin from intercalated Zn-Al-layered double hydroxides.

    PubMed

    Meng, Zilin; Li, Xiaowei; Lv, Fengzhu; Zhang, Qian; Chu, Paul K; Zhang, Yihe

    2015-11-01

    Aspirin or acetylsalicylic acid (AA), a non-steroidal anti-inflammatory drug, is intercalated into Zn-Al-layered double hydroxides (ZnAl-LDHs) by co-precipitation and reconstruction methods. The composition, structure, and morphology of the intercalated products as well as their release behavior are determined experimentally and theoretically by Material Studio 5.5. Experimental results disclose the strong interaction between the LDHs sheets and AA in the intercalated ZnAl-LDHs produced by co-precipitation and slow release of AA from the intercalated ZnAl-LDHs in both phosphate buffered saline (PBS) and borate buffered saline (BBS) solutions. The percentage of AA released from the ZnAl-LDHs prepared by both methods in PBS (96.87% and 98.12%) are much more than those in BBS (68.59% and 81.22%) implying that both H4BO4(-) and H2PO4(-) can exchange with AA in the ZnAl-LDHs. After AA is released to PBS, ZnAl-LDHs break into small pieces. The experimental results are explained theoretically based on the calculation of the bonding energy between the anions and LDHs sheets as well as the AlO bond length change in the LDHs sheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  18. True Ortho Generation of Urban Area Using High Resolution Aerial Photos

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Stanley, David; Xin, Yubin

    2016-06-01

    The pros and cons of existing methods for true ortho generation are analyzed based on a critical literature review for its two major processing stages: visibility analysis and occlusion compensation. They process frame and pushbroom images using different algorithms for visibility analysis due to the need of perspective centers used by the z-buffer (or alike) techniques. For occlusion compensation, the pixel-based approach likely results in excessive seamlines in the ortho-rectified images due to the use of a quality measure on the pixel-by-pixel rating basis. In this paper, we proposed innovative solutions to tackle the aforementioned problems. For visibility analysis, an elevation buffer technique is introduced to employ the plain elevations instead of the distances from perspective centers by z-buffer, and has the advantage of sensor independency. A segment oriented strategy is developed to evaluate a plain cost measure per segment for occlusion compensation instead of the tedious quality rating per pixel. The cost measure directly evaluates the imaging geometry characteristics in ground space, and is also sensor independent. Experimental results are demonstrated using aerial photos acquired by UltraCam camera.

  19. Enhancement of Self Efficacy of Vocational School Students in Buffer Solution Topics through Guided Inquiry Learning

    NASA Astrophysics Data System (ADS)

    M, Ardiany; W, Wahyu; A, Supriatna

    2017-09-01

    The more students who feel less confident in learning, so doing things that are less responsible, such as brawl, drunkenness and others. So researchers need to do research related to student self efficacy in learning, in order to reduce unwanted things. This study aims to determine the effect of guided inquiry learning on improving self-efficacy of learners in the buffer solution topics. The method used is the mixed method which is the two group pretest postest design. The subjects of the study are 60 students of class XI AK in one of the SMKN in Bandung, consisting of 30 experimental class students and 30 control class students. The instruments used in this study mix method consist of self-efficacy questionnaire of pretest and posttest learners, interview guides, and observation sheet. Data analysis using t test with significant α = 0,05. Based on the result of inquiry of guided inquiry study, there is a significant improvement in self efficacy aspect of students in the topic of buffer solution. Data of pretest and posttest interview, observation, questionnaire showed significant result, that is improvement of experimental class with conventionally guided inquiry learning. The mean of self-efficacy of student learning there is significant difference of experiment class than control class equal to 0,047. There is a significant relationship between guided inquiry learning with self efficacy and guided inquiry learning. Each correlation value is 0.737. The learning process with guided inquiry is fun and challenging so that students can expose their ideas and opinions without being forced. From the results of questionnaires students showed an attitude of interest, sincerity and a good response of learning. While the results of questionnaires teachers showed that guided inquiry learning can make students learn actively, increased self-efficacy.

  20. Comparison of different photoresist buffer layers in SPR sensors based on D-shaped POF and gold film

    NASA Astrophysics Data System (ADS)

    Cennamo, Nunzio; Pesavento, Maria; De Maria, Letizia; Galatus, Ramona; Mattiello, Francesco; Zeni, Luigi

    2017-04-01

    A comparative analysis of two optical fiber sensing platforms is presented. The sensors are based on surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) with a photoresist buffer layer between the exposed POF core and the thin gold film. We show how the sensor's performances change when the photoresist layer changes. The photoresist layers proposed in this analysis are SU-8 3005 and S1813. The experimental results are congruent with the numerical studies and it is instrumental for chemical and bio-chemical applications. Usually, the photoresist layer is required in order to increase the performance of the SPR-POF sensor.

  1. A segmental chronic pain syndrome in rats associated with intrathecal infusion of NMDA: evidence for selective action in the dorsal horn.

    PubMed

    Zochodne, D W; Murray, M; Nag, S; Riopelle, R J

    1994-02-01

    We explored the effects of chronic lumbar intrathecal NMDA infusion (mini-osmotic pumps) in Sprague-Dawley rats on motor and sensory axon integrity. Several different infusion protocols, each given over a 4 week period were examined: 0.15 M NMDA in phosphate buffered saline; phosphate buffered saline without NMDA; and 0.20 M magnesium sulfate plus 0.15 M NMDA; 0.35 M NMDA. In two additional protocols, 0.15 M NMDA or phosphate buffered saline were infused for a total of 8 weeks. Within 1-2 weeks of the onset of NMDA, but not phosphate buffered saline infusions, the rats exhibited irritability, circling, biting and excessive grooming resulting in loss of hair, and skin ulcerations from autotomy localized to lumbar and sacral innervated dermatomes. Co-infusion of NMDA with magnesium sulfate almost completely prevented these findings. The behavioural changes were not associated with abnormalities of sensory or motor conduction. Intrathecal infusion of NMDA induces a chronic "central" experimental pain disorder in rats, localized to the cord segment with the greatest exposure to the infusion, without involvement of peripheral sensory axons and sparing the axonal integrity of anterior horn cells.

  2. High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core-shell structured TiO2@BaTiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Penghao; Jia, Zhuye; Shen, Zhonghui; Wang, Peng; Liu, Xiaoru

    2018-05-01

    To realize application in high-capacity capacitors and portable electric devices, large energy density is eagerly desired for polymer-based nanocomposite. The core-shell structured nanofillers with inorganic buffer layer are recently supposed to be promising in improving the dielectric property of polymer nanocomposite. In this work, core-shell structured TO@BT nanoparticles with crystalline TiO2 buffer layer coated on BaTiO3 nanoparticle were fabricated via solution method and heat treatment. The thickness of the TO buffer layer can be tailored by modulating the additive amount of the titanate coupling agent in preparation process, and the apparent dielectric properties of nanocomposite are much related to the thickness of the TO layer. The relatively thin TO layer prefer to generate high polarization to increase dielectric constant while the relatively thick TO layer would rather to homogenize field to maintain breakdown strength. Simulation of electric field distribution in the interfacial region reveals the improving effect of the TO buffer layer on the dielectric properties of nanocomposite which accords with the experimental results well. The optimized nanoparticle TO@BT-2 with a mean thickness of 3-5 nm buffer layer of TO is effective in increasing both the ε and Eb in the PVDF composite film. The maximal discharged energy density of 8.78 J/cm3 with high energy efficiency above 0.6 is obtained in TO@BT-2/PVDF nanocomposite with 2.5 vol% loading close to the breakdown strength of 380 kV/mm. The present study demonstrates the approach to optimize the structure of core-shell nanoparticles by modulating buffer layer and provides a new way to further enlarge energy density in polymer nanocomposite.

  3. Effect of Tris-acetate buffer on endotoxin removal from human-like collagen used biomaterials.

    PubMed

    Zhang, Huizhi; Fan, Daidi; Deng, Jianjun; Zhu, Chenghui; Hui, Junfeng; Ma, Xiaoxuan

    2014-09-01

    Protein preparation, which has active ingredients designated for the use of biomaterials and therapeutical protein, is obtained by genetic engineering, but products of genetic engineering are often contaminated by endotoxins. Because endotoxin is a ubiquitous and potent proinflammatory agent, endotoxin removal or depletion from protein is essential for researching any biomaterials. In this study, we have used Tris-acetate (TA) buffer of neutral pH value to evaluate endotoxins absorbed on the Pierce high-capacity endotoxin removal resin. The effects of TA buffer on pH, ionic strength, incubation time as well as human-like collagen (HLC) concentration on eliminating endotoxins are investigated. In the present experiments, we design an optimal method for TA buffer to remove endotoxin from recombinant collagen and use a chromogenic tachypleus amebocyte lysate (TAL) test kit to measure the endotoxin level of HLC. The present results show that, the endotoxins of HLC is dropped to 8.3EU/ml at 25 mM TA buffer (pH7.8) with 150 mM NaCl when setting incubation time at 6h, and HLC recovery is about 96%. Under this experimental condition, it is proved to exhibit high efficiencies of both endotoxin removal and collagen recovery. The structure of treated HLC was explored by Transmission Electron Microscopy (TEM), demonstrating that the property and structure of HLC treated by TA buffer are maintained. Compared to the most widely used endotoxin removal method, Triton X-114 extraction, using TA buffer can obtain the non-toxic HLC without extra treatment for removing the toxic substances in Triton X-114. In addition, the present study aims at establishing a foundation for further work in laboratory animal science and providing a foundation for medical grade biomaterials. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Native species richness buffers invader impact in undisturbed but not disturbed grassland assemblages

    Treesearch

    Sarah M. Pinto; Yvette K. Ortega

    2016-01-01

    Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (...

  5. Perennial grass and native wildflowers: a synergistic approach to habitat management

    USDA-ARS?s Scientific Manuscript database

    A total of 19 buffer plots were established on University of Georgia experimental farms and lands near Tifton, GA in 2015. The buffer plots were assigned to a 2 x 2 design of local spatial context and irrigation. For local spatial context, ten plots were located adjacent to woodland (“T”) and ten in...

  6. Does Ethnic Identity Buffer or Exacerbate the Effects of Frequent Racial Discrimination on Situational Well-Being of Asian Americans?

    ERIC Educational Resources Information Center

    Yoo, Hyung Chol; Lee, Richard M.

    2008-01-01

    A quasi-experimental vignette study was conducted to test whether ethnic identity moderated the effects of frequent racial discrimination on situational positive and negative affect of Asian American college students. Results showed that imagining multiple incidents of racial discrimination was related to higher negative affect than imagining a…

  7. Radiation Effects on Nematodes: Results from IML-1 Esperiments

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Schubert, W. W.; Kazarians, G. A.; Righards, G. F.; Benton, E. V; Benton, E. R.; Henke, R.

    1993-01-01

    The nematode Caenorhabditis elegans was exposed to natural space radiation using the ESA Biorack facility aboard Spacelab on International Microgravity Laboratory 1, STS-42. For the major experimental objective dormant animals were suspended in buffer or on agar or immobilized next to CR-39 plactic nuclear track detectors to correlate fluence of HZE particles with genetic events.

  8. Kinetics and equilibria of cyanide binding to prostaglandin H synthase.

    PubMed

    MacDonald, I D; Dunford, H B

    1989-09-01

    Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.

  9. Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes.

    PubMed

    Ginocchio, Rosanna; De la Fuente, Luz María; Sánchez, Pablo; Bustamante, Elena; Silva, Yasna; Urrestarazu, Paola; Rodríguez, Patricio H

    2009-10-01

    Pollution of soil with mine wastes results in both Cu enrichment and soil acidification. This confounding effect may be very important in terms of phytotoxicity, because pH is a key parameter influencing Cu solubility in soil solution. Laboratory toxicity tests were used to assess the effect of acidification by acidic mine wastes on Cu solubility and on root elongation of barley (Hordeum vulgare L.). Three contrasting substrates (two soils and a commercial sand) and two acidic, Cu-rich mine wastes (oxidized tailings [OxT] and smelter dust [SmD]) were selected as experimental materials. Substrates were spiked with a fixed amount of either SmD or OxT, and the pH of experimental mixtures was then modified in the range of 4.0 to 6.0 and 7.0 using PIPES (piperazine-1,4-bis(2-ethanesulfonic acid)), MES (2-(N-morpholino)ethanesulfonic acid), and MOPS (3-(N-Morpholino)-propanesulfonic acid) buffers. Chemical (pore-water Cu and pH) and toxicological (root length of barley plants) parameters were determined for experimental mixtures. Addition of SmD and OxT to substrates resulted in acidification (0.11-1.16 pH units) and high levels of soluble Cu and Zn. Neutralization of experimental mixtures with MES (pH 6.0) and MOPS (pH 7.0) buffers resulted in a marked decrease in soluble Cu and Zn, but the intensity of the effect was substrate-dependent. Adjustment of soil pH above the range normally considered to be toxic to plants (pH in water extract, > 5.5) significantly reduced metal toxicity in barley, but phytotoxicity was not completely eliminated. The present results stress the importance of considering confounding effects on derivation of toxicity thresholds to plants when using laboratory phytotoxicity tests.

  10. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  11. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, K.M.; Serne, R.J.

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to modelmore » pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.« less

  12. Perennial Grass and Native Wildflowers: A Synergistic Approach to Habitat Management

    PubMed Central

    Xavier, Shereen S.; Olson, Dawn M.; Coffin, Alisa W.; Strickland, Timothy C.; Schmidt, Jason M.

    2017-01-01

    Marginal agricultural land provides opportunities to diversify landscapes by producing biomass for biofuel, and through floral provisioning that enhances arthropod-mediated ecosystem service delivery. We examined the effects of local spatial context (adjacent to woodland or agriculture) and irrigation (irrigation or no irrigation) on wildflower bloom and visitation by arthropods in a biofeedstocks-wildflower habitat buffer design. Twenty habitat buffer plots were established containing a subplot of Napier grass (Pennisetum perpureum Schumach) for biofeedstock, three commercial wildflower mix subplots, and a control subplot containing spontaneous weeds. Arthropods and flowers were visually observed in quadrats throughout the season. At the end of the season we measured soil nutrients and harvested Napier biomass. We found irrespective of buffer location or irrigation, pollinators were observed more frequently early in the season and on experimental plots with wildflowers than on weeds in the control plots. Natural enemies showed a tendency for being more common on plots adjacent to a wooded border, and were also more commonly observed early in the season. Herbivore visits were infrequent and not significantly influenced by experimental treatments. Napier grass yields were high and typical of first-year yields reported regionally, and were not affected by location context or irrigation. Our results suggest habitat management designs integrating bioenergy crop and floral resources provide marketable biomass and habitat for beneficial arthropods. PMID:28937651

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an activemore » medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%. (lasers)« less

  14. Oxygen Fugacity at High Pressure: Equations of State of Metal-Oxide Pairs

    NASA Technical Reports Server (NTRS)

    Campbell A. J.; Danielson, L.; Righter, K.; Wang, Y.; Davidson, G.; Wang, Y.

    2006-01-01

    Oxygen fugacity (fO2) varies by orders of magnitude in nature, and can induce profound changes in the chemical state of a substance, and also in the chemical equilibrium of multicomponent systems. One prominent area in high pressure geochemistry, in which fO2 is widely recognized as a principal controlling factor, is that of metal-silicate partitioning of siderophile trace elements (e.g., [1]). Numerous experiments have shown that high pressures and temperatures can significantly affect metal/silicate partitioning of siderophile and moderately siderophile elements. Parameterization of these experimental results over P, T, X, and fO2 can allow the observed siderophile element composition of the mantle to be associated with particular thermodynamic conditions [2]. However, this is best done only if quantitative control exists over each thermodynamic variable relevant to the experiments. The fO2 values for many of these partitioning experiments were determined relative to a particular metal-oxide buffer (e.g., Fe-FeO (IW), Ni-NiO (NNO), Co-CoO, Re-ReO2 (RRO)), but the parameterization of all experimental results is weakened by the fact that the pressure-induced relative changes between these buffer systems are imprecisely known.

  15. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-04-01

    Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH

  16. Nitrate-nitrogen reduction by established tree and pasture buffer strips associated with a cattle feedlot effluent disposal area near Armidale, NSW Australia.

    PubMed

    Wang, Liangmin; Duggin, John A; Nie, Daoping

    2012-05-30

    Vegetated buffer strips have been recognized as an important element in overall agro-ecosystem management to reduce the delivery of non-point source pollutants from agricultural land to inland water systems. A buffer strip experiment consisting of two tree species (Eucalyptus camaldulensis and Casuarina cunninghamiana) with two planting densities and a pasture treatment was conducted to determine the effectiveness of NO(3)-N removal from a cattle feedlot effluent disposal area at Tullimba near Armidale, NSW Australia. Different management methods were applied for the buffers where grass and weeds were mowed 2-3 times during the second and third years and were not managed during the rest experimental years for the tree buffer, while grass was harvested 1-3 times per year for the pasture buffer. The differences between tree species and planting density significantly affected tree growth, but the growth difference did not significantly affect their capacities to reduce NO(3)-N in soil surface runoff and groundwater. On average for all the tree and pasture treatments, the buffer strips reduced NO(3)-N concentration by 8.5%, 14.7% and 14.4% for the surface runoff, shallow and deep groundwater respectively. The tree and pasture buffer strips were not significantly different in NO(3)-N reduction for both shallow and deep groundwater while the pasture buffer strips reduced significantly more NO(3)-N concentration in surface runoff than the tree buffer strips. Both buffer strips reduced more than 50% of surface runoff volume indicating that both the tree and pasture buffer strips were efficient at removing water and nutrients, mostly through a significant reduction in soil surface runoff volume. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Salivary buffer capacity, pH, and stimulated flow rate of crack cocaine users.

    PubMed

    Woyceichoski, Iverson Ernani Cogo; Costa, Carlos Henrique; de Araújo, Cristiano Miranda; Brancher, João Armando; Resende, Luciane Grochocki; Vieira, Iran; de Lima, Antonio Adilson Soares

    2013-08-01

    Crack cocaine is the freebase form of cocaine that can be smoked. The use of this drug has been considered a public health problem in many countries. The aim of this study was to assess the stimulated salivary flow rate (SSFR), pH, and the buffer capacity of saliva in crack cocaine users. Stimulated whole saliva was collected from 54 selected crack cocaine users and 40 non-users. All samples were analyzed for SSFR, pH, and buffer capacity. SSFR was analyzed by gravimetric method. The buffer capacity and pH were determined using a digital pH meter. The crack cocaine users demonstrated higher buffer capacity than the control group (P > 0.05). Salivary pH was lower in crack cocaine users (P < 0.05). Mean values of the SSFR for the experimental and control groups were 1.1 and 1.3 mL/min, respectively (P > 0.05). Crack cocaine users might exhibit a significant decrease in salivary pH, but not in salivary flow rate or buffer capacity. © 2012 Blackwell Publishing Asia Pty Ltd.

  18. Stress in (Al, Ga)N heterostructures grown on 6H-SiC and Si substrates byplasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.

    2017-11-01

    The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.

  19. The stress-buffering effects of functional social support on ambulatory blood pressure.

    PubMed

    Bowen, Kimberly S; Uchino, Bert N; Birmingham, Wendy; Carlisle, McKenzie; Smith, Timothy W; Light, Kathleen C

    2014-11-01

    Social support is a reliable predictor of cardiovascular health. According to the buffering hypothesis, stress is 1 mechanism by which support is able to affect physiological processes. However, most of the experimental evidence for the hypothesis comes from laboratory studies. Ambulatory blood pressure (ABP) protocols examine participants in their natural environment, where they are more likely to encounter personally relevant real-world stressors. Furthermore, prior work shows that examining support by its specific functional components reveals additional independent links to health. The current study aimed to examine the stress-buffering effects of functional social support on ABP. One hundred eighty-eight participants completed a 1-day ABP assessment along with measures of functional social support and both global perceived stress and momentary stress at time of reading. RESULTS indicated main effects for both stress measures. Global support, emotional, tangible, and informational support only moderated the effects of momentary stress, but not global stress, in predicting ABP. Informational support was the most consistent stress-buffering predictor of ABP, predicting both ambulatory systolic and diastolic blood pressure. The predicted values in ABP for informational support achieved health-relevant differences, emphasizing the value of examining functional support beyond global support alone. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. [Systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography].

    PubMed

    Fu, Qing; Wang, Jun; Liang, Tu; Xu, Xiaoyong; Jin, Yu

    2013-11-01

    A systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography (HILIC) was performed. The influences of mobile phase, stationary phase and buffer salt on the retention of carbohydrates were investigated. According to the results, the retention time of carbohydrates decreased as the proportion of acetonitrile in mobile phase decreased. Increased time of carbohydrates was observed as the concentration of buffer salt in mobile phase increased. The retention behavior of carbohydrates was also affected by organic solvent and HILIC stationary phase. Furthermore, an appropriate retention equation was used in HILIC mode. The retention equation lnk = a + blnC(B) + cC(B) could quantitatively describe the retention factors of carbohydrates of plant origin with good accuracy: the relative error of the predicted time to actual time was less than 0.3%. The evaluation results could provide guidance for carbohydrates to optimize the experimental conditions in HILIC method development especially for carbohydrate separation

  1. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  2. Enhancing longevity of Plasmodium vivax and P. falciparum sporozoites after dissection from mosquito salivary glands.

    PubMed

    Lupton, Emily J; Roth, Alison; Patrapuvich, Rapatbhorn; Maher, Steve P; Singh, Naresh; Sattabongkot, Jetsumon; Adams, John H

    2015-04-01

    The pre-erythrocytic stages of Plasmodium vivax and Plasmodium falciparum remain challenging for experimental research in part due to limited access to sporozoites. An important factor limiting availability is the laboratory support required for producing infected mosquitoes and the ephemeral nature of isolated extracellular sporozoites. This study was undertaken to investigate methods to improve the availability of this limited resource by extending the longevity of the extracellular sporozoites after mosquito dissection. Our goal in this study was to determine whether buffer conditions more closely mimicking the insect microenvironment could prolong longevity of ex vivo P. vivax and P. falciparum sporozoites. The study compared the current standard dissection buffer RPMI1640 to Hank's Balanced Salt Solution with 1g/L glucose (HBSS-1) or 2g/L glucose (HBSS-2) and Grace's Insect Medium for ability to extend longevity of ex vivo P. vivax and P. falciparum sporozoites. The effect of each buffer on sporozoite viability was evaluated by measuring sporozoite gliding motility at 0, 4, 8, and 24h post-dissection from mosquito salivary glands. Comparisons of mean gliding percentages of ex vivo sporozoites in the different buffers and time points found that RPMI and Grace's both showed strong gliding at 0h. In contrast, by 4h post-dissection sporozoites in RPMI consistently had the lowest gliding activity, whereas sporozoites in Grace's had significantly more gliding compared to all other buffers at almost all time points. Our results indicate that P. vivax and P. falciparum sporozoites maintained in insect media rather than the standard dissection buffer RPMI and HBSS retain viability better over time. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  4. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-28

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  5. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Kinetic model of the active medium of an XeCl laser pumped by an electron beam

    NASA Astrophysics Data System (ADS)

    Boĭchenko, A. M.; Derzhiev, V. I.; Zhidkov, A. G.; Yakovlenko, Sergei I.

    1989-02-01

    Kinetic models of active media of an XeCl laser are developed for the case when these media are diluted by various buffer gases (helium, neon, argon) and the laser is pumped by an electron beam. The results of the calculations are in satisfactory agreement with experimental data.

  6. Bicarbonate alters cellular responses in respiration assays.

    PubMed

    Krycer, James R; Fisher-Wellman, Kelsey H; Fazakerley, Daniel J; Muoio, Deborah M; James, David E

    2017-08-05

    Metabolic assay buffers often omit bicarbonate, which is susceptible to alkalinisation in an open environment. Here, we assessed the effect of including bicarbonate in respirometry experiments. By supplementing HEPES-buffered media with low concentrations of bicarbonate, we found increased respiration in adipocytes and hepatocytes, but not myotubes. This was observed across multiple respirometry platforms and was independent of effects on enhanced insulin sensitivity, pH drift, or mitochondrial function. Permeabilised cell experiments suggest that bicarbonate increases substrate availability, likely by acting as a cofactor for carboxylase enzymes. This emphasises the importance of buffer choice in experimental biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Thermodynamic characteristics of the interaction between nicotinic acid and phenylalanine in an aqueous buffer solution at 298 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.

    2013-08-01

    The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.

  8. Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer's A{beta} peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Megan; Tepper, Katharina; Haupt, Caroline

    Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects onmore » the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.« less

  9. Continuous processing of recombinant proteins: Integration of inclusion body solubilization and refolding using simulated moving bed size exclusion chromatography with buffer recycling.

    PubMed

    Wellhoefer, Martin; Sprinzl, Wolfgang; Hahn, Rainer; Jungbauer, Alois

    2013-12-06

    An integrated process which combines continuous inclusion body dissolution with NaOH and continuous matrix-assisted refolding based on closed-loop simulated moving bed size exclusion chromatography was designed and experimentally evaluated at laboratory scale. Inclusion bodies from N(pro) fusion pep6His and N(pro) fusion MCP1 from high cell density fermentation were continuously dissolved with NaOH, filtered and mixed with concentrated refolding buffer prior to refolding by size exclusion chromatography (SEC). This process enabled an isocratic operation of the simulated moving bed (SMB) system with a closed-loop set-up with refolding buffer as the desorbent buffer and buffer recycling by concentrating the raffinate using tangential flow filtration. With this continuous refolding process, we increased the refolding and cleavage yield of both model proteins by 10% compared to batch dilution refolding. Furthermore, more than 99% of the refolding buffer of the raffinate could be recycled which reduced the buffer consumption significantly. Based on the actual refolding data, we compared throughput, productivity, and buffer consumption between two batch dilution refolding processes - one using urea for IB dissolution, the other one using NaOH for IB dissolution - and our continuous refolding process. The higher complexity of the continuous refolding process was rewarded with higher throughput and productivity as well as significantly lower buffer consumption compared to the batch dilution refolding processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems: Theoretical calculations and experimental measurements

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Pelzel, Rodney I.; Nosho, Brett Z.; Weinberg, W. Henry; Maroudas, Dimitrios

    2001-09-01

    A comprehensive, quantitative analysis is presented of the deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems. The analysis combines a hierarchical theoretical approach with experimental measurements. Continuum linear elasticity theory is linked with atomic-scale calculations of structural relaxation for detailed theoretical studies of deformation in systems consisting of InAs thin films on thin GaAs(111)A substrates that are mechanically unconstrained at their bases. Molecular-beam epitaxy is used to grow very thin InAs films on both thick and thin GaAs buffer layers on epi-ready GaAs(111)A substrates. The deformation state of these samples is characterized by x-ray diffraction (XRD). The interplanar distances of thin GaAs buffer layers along the [220] and [111] crystallographic directions obtained from the corresponding XRD spectra indicate clearly that thin buffer layers deform parallel to the InAs/GaAs(111)A interfacial plane, thus aiding in the accommodation of the strain induced by lattice mismatch. The experimental measurements are in excellent agreement with the calculated lattice interplanar distances and the corresponding strain fields in the thin mechanically unconstrained substrates considered in the theoretical analysis. Therefore, this work contributes direct evidence in support of our earlier proposal that thin buffer layers in layer-by-layer semiconductor heteroepitaxy exhibit mechanical behavior similar to that of compliant substrates [see, e.g., B. Z. Nosho, L. A. Zepeda-Ruiz, R. I. Pelzel, W. H. Weinberg, and D. Maroudas, Appl. Phys. Lett. 75, 829 (1999)].

  11. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-06-02

    Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.

  12. Compiler-assisted multiple instruction rollback recovery using a read buffer

    NASA Technical Reports Server (NTRS)

    Alewine, N. J.; Chen, S.-K.; Fuchs, W. K.; Hwu, W.-M.

    1993-01-01

    Multiple instruction rollback (MIR) is a technique that has been implemented in mainframe computers to provide rapid recovery from transient processor failures. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs have also been developed which remove rollback data hazards directly with data-flow transformations. This paper focuses on compiler-assisted techniques to achieve multiple instruction rollback recovery. We observe that some data hazards resulting from instruction rollback can be resolved efficiently by providing an operand read buffer while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations indicate improved efficiency over previous hardware-based and compiler-based schemes.

  13. Adaptive quantization-parameter clip scheme for smooth quality in H.264/AVC.

    PubMed

    Hu, Sudeng; Wang, Hanli; Kwong, Sam

    2012-04-01

    In this paper, we investigate the issues over the smooth quality and the smooth bit rate during rate control (RC) in H.264/AVC. An adaptive quantization-parameter (Q(p)) clip scheme is proposed to optimize the quality smoothness while keeping the bit-rate fluctuation at an acceptable level. First, the frame complexity variation is studied by defining a complexity ratio between two nearby frames. Second, the range of the generated bits is analyzed to prevent the encoder buffer from overflow and underflow. Third, based on the safe range of the generated bits, an optimal Q(p) clip range is developed to reduce the quality fluctuation. Experimental results demonstrate that the proposed Q(p) clip scheme can achieve excellent performance in quality smoothness and buffer regulation.

  14. Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1989-01-01

    Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.

  15. Field measurement of moisture-buffering model inputs for residential buildings

    DOE PAGES

    Woods, Jason; Winkler, Jon

    2016-02-05

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the onlymore » unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.« less

  16. The Buffer Diagnostic Prototype: A fault isolation application using CLIPS

    NASA Technical Reports Server (NTRS)

    Porter, Ken

    1994-01-01

    This paper describes problem domain characteristics and development experiences from using CLIPS 6.0 in a proof-of-concept troubleshooting application called the Buffer Diagnostic Prototype. The problem domain is a large digital communications subsystems called the real-time network (RTN), which was designed to upgrade the launch processing system used for shuttle support at KSC. The RTN enables up to 255 computers to share 50,000 data points with millisecond response times. The RTN's extensive built-in test capability but lack of any automatic fault isolation capability presents a unique opportunity for a diagnostic expert system application. The Buffer Diagnostic Prototype addresses RTN diagnosis with a multiple strategy approach. A novel technique called 'faulty causality' employs inexact qualitative models to process test results. Experimental knowledge provides a capability to recognize symptom-fault associations. The implementation utilizes rule-based and procedural programming techniques, including a goal-directed control structure and simple text-based generic user interface that may be reusable for other rapid prototyping applications. Although limited in scope, this project demonstrates a diagnostic approach that may be adapted to troubleshoot a broad range of equipment.

  17. Hexagonal Hollow Tube Based Energy Absorbing Crash Buffers for Roadside Fixed Objects

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Amirah Shafie, Nurul; Zivkovic, Grad

    2017-03-01

    The purpose of this study was to investigate the deformation of the energy absorbing hexagonal hollow tubes in a lateral compression. The aim is to design cost effective and high energy-absorbing buffer systems, which are capable of controlling out-of-control vehicles in high-speed zones. A nonlinear quasi-static finite element analysis was applied to determine the deformation and energy absorption capacity. The main parameters in the design were diameter and wall thickness of the tubes. Experimental test simulating the lateral compressive loading on a single tube was performed. Results show that as the diameter and the thickness increase, the deformation strength increases. Hexagonal tube with diameter of 219 mm and thickness of 4 mm is shown to have the highest energy absorption capability. Compared to existing cylindrical and octagonal shapes, the hexagonal tubes show the highest energy absorption capacity. Hexagonal tubes therefore can be regarded as a potential candidate for buffer designs in high speed zones. In addition, they would be compact, cost effective and facilitate ease of installation.

  18. Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH.

    PubMed

    Zareie, Mohammad; Keuning, Eelco D; ter Wee, Piet M; Schalkwijk, Casper G; Beelen, Robert H J; van den Born, Jacob

    2006-01-01

    Chronic exposure to conventional peritoneal dialysis fluid (PDF) is associated with functional and structural alterations of the peritoneal membrane. The bioincompatibility of conventional PDF can be due to hypertonicity, high glucose concentration, lactate buffering system, presence of glucose degradation products (GDPs) and/or acidic pH. Although various investigators have studied the sole effects of hyperosmolarity, high glucose, GDPs and lactate buffer in experimental PD, less attention has been paid to the chronic impact of low pH in vivo. Rats received daily 10 ml of either conventional lactate-buffered PDF (pH 5.2; n=7), a standard bicarbonate/lactate-buffered PDF with physiological pH (n=8), bicarbonate/lactate-buffered PDF with acidic pH (adjusted to pH 5.2 with 1 N hydrochloride, n=5), or bicarbonate/lactate buffer, without glucose, pH 7.4 (n=7). Fluids were instilled via peritoneal catheters connected to implanted subcutaneous mini vascular access ports for 8 weeks. Control animals with or without peritoneal catheters served as control groups (n=8/group). Various functional (2 h PET) and morphological/cellular parameters were analyzed. Compared with control groups and the buffer group, conventional lactate-buffered PDF induced a number of morphological/cellular changes, including angiogenesis and fibrosis in various peritoneal tissues (all parameters P<0.05), accompanied by increased glucose absorption and reduced ultrafiltration capacity. Daily exposure to standard or acidified bicarbonate/lactate-buffered PDF improved the performance of the peritoneal membrane, evidenced by reduced new vessel formation in omentum (P<0.02) and parietal peritoneum (P<0.008), reduced fibrosis (P<0.02) and improved ultrafiltration capacity. No significant differences were found between standard and acidified bicarbonate/lactate-buffered PDF. During PET, acidic PDF was neutralized within 15 to 20 min. The bicarbonate/lactate-buffered PDF, acidity per se did not contribute substantially to peritoneal worsening in our in vivo model for PD, which might be explained by the buffering capacity of the peritoneum.

  19. Effect of Probiotic Lactobacillus reuteri on Salivary Cariogenic Bacterial Counts among Groups of Preschool Children in Jeddah, Saudi Arabia: A Randomized Clinical Trial.

    PubMed

    Alamoudi, Najlaa M; Almabadi, Eman S; El Ashiry, Eman A; El Derwi, Douaa A

    2018-05-15

    To evaluate the effect of probiotic Lactobacilli reuteri lozenges on caries-associated salivary bacterial counts (Mutans streptococci and Lactobacillus), dental plaque accumulation, and salivary buffer capacity in a group of preschool children. The study group consisted of 178 healthy children (aged 3-6 years). Children were randomly grouped: the experimental group (n = 90) received L. reuteri probiotic lozenges and the control group (n = 88) received placebo lozenges, twice daily, for 28 days. Salivary Mutans streptococci and Lactobacillus counts, and buffer capacity were assessed using chair-side caries-risk test (CRT®) kits. The Simplified Oral Hygiene index (OHI-S) was used to assess dental plaque accumulation at baseline and after 28 days. After 28 days, the experimental group had a statistically significant reduction in Mutans streptococci and lactobacilli (p = 0.000 and p = 0.020, respectively) and both groups had less plaque accumulation than at baseline. While the buffer capacity in the experimental group increased more than in the control group, it was not statistically significant (p = 0.577). Compliance was 90%, with no adverse events. Consumption of probiotic lozenges containing L. reuteri reduces caries-associated bacterial counts significantly. Probiotics consumption may have a beneficial caries-preventive effect.

  20. Thermal - Hydraulic Behavior of Unsaturated Bentonite and Sand-Bentonite Material as Seal for Nuclear Waste Repository: Numerical Simulation of Column Experiments

    NASA Astrophysics Data System (ADS)

    Ballarini, E.; Graupner, B.; Bauer, S.

    2015-12-01

    For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.

  1. FIBER AND INTEGRATED OPTICS: Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Gusovskiĭ, D. D.; Konoplev, Yu N.; Leonov, V. I.; Mamaev, Yu A.; Turkin, A. A.

    1990-01-01

    A model of a plane-layer waveguide is used in a theoretical analysis of the attenuation coefficients of the TM0 and TE0 waves in a fiber-optic polarizer with a metal film and two dielectric buffer layers, one of which is the residual part of the fiber cladding. A report is given of the construction and experimental investigation of polarizers with a buffer layer of magnesium fluoride and an aluminum film operating at wavelengths of 0.63 and 0.81 μm and characterized by extinction coefficients of at least 53 and 46 dB, respectively, and by losses not exceeding 0.5 dB.

  2. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  3. Nuclear envelope breakdown and mitosis in sand dollar embryos is inhibited by microinjection of calcium buffers in a calcium-reversible fashion, and by antagonists of intracellular Ca2+ channels.

    PubMed

    Silver, R B

    1989-01-01

    Transient elevations in intracellular free Ca2+ are believed to signal the initiation of mitosis. This model predicts that mitosis might be arrested prior to nuclear envelope breakdown (NEB) or anaphase onset if intracellular Ca2+ concentration is buffered or dampened. Microinjection of a discrete dose of Ca2+ into the cell might then release the cell to resume mitotic cycling. Experimentally, one blastomere of two cell sand dollar (Echinaracnius parma) embryos was microinjected with Ca2+ buffers, Ca2+ solutions, or Ca2+ channel antagonists; the uninjected blastomere was the control. Cells were loaded with 10 pl doses of the Ca2+ buffer antipyrylazo III (ApIII) at specific times in the cell cycle to attempt a competitive inhibition of Ca2+-dependent steps in NEB and initiation of mitosis. Injection of 50 microM ApIII 6 min prior to NEB blocked NEB and further cell cycling. Injections of solutions between 0 and 30 microM ApIII were without observable effect. Control injections had no observable effect on the injected cell. Cells injected with 50 microM ApIII 2 min prior to the onset of anaphase in control cells were blocked in metaphase. Cells were sensitive to Ca2+ buffer injections 6 min prior to NEB (with a 40- to 45-sec duration), and 2 min prior to anaphase onset (with a 10- to 20-sec duration). Vital staining of these cells with H33342 demonstrated that they contained only one nucleus that had the same fluorescence intensity as seen prior to microinjection, and thus did not undergo DNA synthesis following the imposition of the Ca2+ buffer block to mitosis. Cells arrested in this fashion did not spontaneously resume mitotic cycling. This Ca2+ buffer-induced mitotic arrest was, however, experimentally reversible. Cells arrested with 50 microM ApIII 6 min prior to NEB could be returned to mitotic activity by injecting 300 microM CaCl2 5 min after the ApIII injection. The double injected cells resumed cycling, NEB, and mitosis after a delay of one cell cycle period, and remained one cell cycle out of phase with the sister (control) cell. Microinjection of antagonists of endomembrane Ca2+ channels inhibited NEB and anaphase onset in a concentration- and time-dependent fashion. The effective doses of compounds tested were 7 micrograms/ml ryanodine and 500 micrograms/ml TMB-8. These results indicate that a transient elevation of intracellular Ca2+ from endomembrane stores is required to initiate mitotic events, namely NEB and anaphase onset.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Identifying green infrastructure BMPs for reducing nitrogen export to a Chesapeake Bay agricultural stream: model synthesis and extension of experimental data

    EPA Science Inventory

    Background/Question/Methods The effectiveness of riparian forest buffers and other green infrastructure for reducing nitrogen export to agricultural streams has been well described experimentally, but a clear understanding of process-level hydrological and biogeochemical control...

  5. EXPERIMENTAL ACIDIFICATION OF A STREAM TRIBUTARY TO HUBBARD BROOK

    EPA Science Inventory

    Long (5 mo.) and short-term (1 h to 2 days) effects of acidic pH have been measured in a poorly buffered mountain stream within the Hubbard Brook Experimental Forest, New Hampshire. Over a 5-month period aluminum, calcium, magnesium, and potassium were mobilized into the stream w...

  6. Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru

    PubMed Central

    Okamoto, Kenichi W.; Astete, Helvio; Vasquez, Gissella M.; Del Aguila, Clara; Pinedo, Raul; Cardenas, Roldan; Pacheco, Carlos; Chalco, Enrique; Rodriguez-Ferruci, Hugo; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2018-01-01

    Background Aedes aegypti is a primary vector of dengue, chikungunya, Zika, and urban yellow fever viruses. Indoor, ultra low volume (ULV) space spraying with pyrethroid insecticides is the main approach used for Ae. aegypti emergency control in many countries. Given the widespread use of this method, the lack of large-scale experiments or detailed evaluations of municipal spray programs is problematic. Methodology/Principal findings Two experimental evaluations of non-residual, indoor ULV pyrethroid spraying were conducted in Iquitos, Peru. In each, a central sprayed sector was surrounded by an unsprayed buffer sector. In 2013, spray and buffer sectors included 398 and 765 houses, respectively. Spraying reduced the mean number of adults captured per house by ~83 percent relative to the pre-spray baseline survey. In the 2014 experiment, sprayed and buffer sectors included 1,117 and 1,049 houses, respectively. Here, the sprayed sector’s number of adults per house was reduced ~64 percent relative to baseline. Parity surveys in the sprayed sector during the 2014 spray period indicated an increase in the proportion of very young females. We also evaluated impacts of a 2014 citywide spray program by the local Ministry of Health, which reduced adult populations by ~60 percent. In all cases, adult densities returned to near-baseline levels within one month. Conclusions/Significance Our results demonstrate that densities of adult Ae. aegypti can be reduced by experimental and municipal spraying programs. The finding that adult densities return to approximately pre-spray densities in less than a month is similar to results from previous, smaller scale experiments. Our results demonstrate that ULV spraying is best viewed as having a short-term entomological effect. The epidemiological impact of ULV spraying will need evaluation in future trials that measure capacity of insecticide spraying to reduce human infection or disease. PMID:29624581

  7. Influence of high-conductivity buffer composition on field-enhanced sample injection coupled to sweeping in CE.

    PubMed

    Anres, Philippe; Delaunay, Nathalie; Vial, Jérôme; Thormann, Wolfgang; Gareil, Pierre

    2013-02-01

    The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Production of cold beams of ND{sub 3} with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twyman, Kathryn S.; Bell, Martin T.; Heazlewood, Brianna R.

    2014-07-14

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND{sub 3} is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND{sub 3} beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND{sub 3} can be produced with rotational state populations corresponding to approximately T{sub rot} = 9–18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K),more » the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND{sub 3}. The translational temperature of the guided ND{sub 3} is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.« less

  9. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.

    PubMed

    Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Thermochemical parameters of minerals from oxygen-buffered hydrothermal equilibrium data: Method, application to annite and almandine

    USGS Publications Warehouse

    Zen, E.-A.

    1973-01-01

    Reversed univariant hydrothermal phase-equilibrium reactions, in which a redox reaction occurs and is controlled by oxygen buffers, can be used to extract thermochemical data on minerals. The dominant gaseous species present, even for relatively oxidizing buffers such as the QFM buffer, are H2O and H2; the main problem is to calculate the chemical potentials of these components in a binary mixture. The mixing of these two species in the gas phase was assumed by Eugster and Wones (1962) to be ideal; this assumption allows calculation of the chemical potentials of the two components in a binary gas mixture, using data in the literature. A simple-mixture model of nonideal mixing, such as that proposed by Shaw (1967), can also be combined with the equations of state for oxygen buffers to permit derivation of the chemical potentials of the two components. The two mixing models yield closely comparable results for the more oxidizing buffers such as the QFM buffer. For reducing buffers such as IQF, the nonideal-mixing correction can be significant and the Shaw model is better. The procedure of calculation of mineralogical thermochemical data, in reactions where hydrogen and H2O simultaneously appear, is applied to the experimental data on annite, given by Wones et al. (1971), and on almandine, given by Hsu (1968). For annite the results are: Standard entropy of formation from the elements, Sf0 (298, 1)=-283.35??2.2 gb/gf, S0 (298, 1) =+92.5 gb/gf. Gf0 (298, 1)=-1148.2??6 kcal, and Hf0 (298, 1)=-1232.7??7 kcal. For almandine, the calculation takes into account the mutual solution of FeAl2O4 (Hc) in magnetite and of Fe3O4 (Mt) in hercynite and the temperature dependence of this solid solution, as given by Turnock and Eugster (1962); the calculations assume a regular-solution model for this binary spinel system. The standard entropy of formation of almandine, Sf,A0 (298, 1) is -272.33??3 gb/gf. The third law entropy, S0 (298, 1) is +68.3??3 gb/gf, a value much less than the oxide-sum estimate but the deviation is nearly the same as that of grossularite, referring to a comparable set of oxide standard states. The Gibbs free energy Gf,A0 (298, 1) is -1192.36??4 kcal, and the enthalpy Hf,A0 (298, 1) is -1273.56??5 kcal. ?? 1973 Springer-Verlag.

  11. The role of mechanisms of buffering anxiety in HIV carriers. A study within the terror management theory paradigm.

    PubMed

    Kwiatkowska, Marta; Knysz, Brygida; Gąsiorowski, Jacek; Łuszczyńska, Aleksandra; Gładysz, Andrzej

    2011-02-28

    The paper concerns definition of the level of posttraumatic growth (PTG), the psychological adaptation mechanism occurring after extreme experiences in life, such as being informed of having HIV infection. The study is experimental, aiming to assess whether correlations between exposure to thoughts of stressful experiences and their psychological consequences are mediated by an efficient mechanism of buffering anxiety Fifty-four men and 26 women infected with HIV who underwent manipulated exposure to mortality according to the hypotheses of the terror management theory (TMT) were included. Subjects were randomly assigned to the control group (dental anxiety) or the experimental group (fear of dying). The results confirmed the assumptions of the terror management theory. The subjects had an efficient mechanism of alleviating the fear of dying, the so-called "anxiety buffer." The analysis revealed a high level of posttraumatic growth and advantages derived from the disease. The paper additionally characterizes the specific group of HIV-positive people, their functioning in society and the family. It touches on such issues as professional work, relations with relatives and friends, social life, and adherence. The study has shown that the specific group of people infected with HIV managed very well to adapt to the circumstances. One may say that as a consequence of acquiring the infection, the subjects have experienced significant changes of personality, which have ultimately led to an improvement of their lives and offered new possibilities for personal and social development to them. All the recorded changes fit into the TMT paradigm. ® Postepy Hig Med Dosw

  12. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as themore » AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.« less

  13. Alternative for Perchlorates in Incendiary and Pyrotechnic Formulations for Projectiles

    DTIC Science & Technology

    2009-08-01

    although other copper salts including chloride, acetate, sulfate and carbonate are highly bioavailable in animal nutrition. The toxicity of a single oral...6 hours to 820 mg m-3 after 2 hr. In experimental animals, single inhalation exposures to hydrogen sulfide result in death and respiratory...is in general regulated by the equilibria between CO2, HCO3 - and CO3 2-. The buffer capacity depends on the concentration of these substances

  14. Lizards fail to plastically adjust nesting behavior or thermal tolerance as needed to buffer populations from climate warming.

    PubMed

    Telemeco, Rory S; Fletcher, Brooke; Levy, Ofir; Riley, Angela; Rodriguez-Sanchez, Yesenia; Smith, Colton; Teague, Collin; Waters, Amanda; Angilletta, Michael J; Buckley, Lauren B

    2017-03-01

    Although observations suggest the potential for phenotypic plasticity to allow adaptive responses to climate change, few experiments have assessed that potential. Modeling suggests that Sceloporus tristichus lizards will need increased nest depth, shade cover, or embryonic thermal tolerance to avoid reproductive failure resulting from climate change. To test for such plasticity, we experimentally examined how maternal temperatures affect nesting behavior and embryonic thermal sensitivity. The temperature regime that females experienced while gravid did not affect nesting behavior, but warmer temperatures at the time of nesting reduced nest depth. Additionally, embryos from heat-stressed mothers displayed increased sensitivity to high-temperature exposure. Simulations suggest that critically low temperatures, rather than high temperatures, historically limit development of our study population. Thus, the plasticity needed to buffer this population has not been under selection. Plasticity will likely fail to compensate for ongoing climate change when such change results in novel stressors. © 2016 John Wiley & Sons Ltd.

  15. Systematic research on the pretreatment of peptides for quantitative proteomics using a C₁₈ microcolumn.

    PubMed

    Zhai, Linhui; Chang, Cheng; Li, Ning; Duong, Duc M; Chen, Hao; Deng, Zixin; Yang, Jian; Hong, Xuechuan; Zhu, Yunping; Xu, Ping

    2013-08-01

    Reversed phase microcolumns have been widely used for peptide pretreatment to desalt and remove interferences before tandem LC-MS in proteomics studies. However, few studies have characterized the effects of experimental parameters as well as column characteristics on the composition of identified peptides. In this study, several parameters including the concentration of ACN in washing buffer, the microcolumn's purification effect, the peptide recovery rate, and the dynamic-binding capacity were characterized in detail, based upon stable isotope labeling by amino acids in a cell culture quantitative approach. The results showed that peptide losses can be reduced with low ACN concentration in washing buffers resulting in a recovery rate of approximately 82%. Furthermore, the effects of ACN concentration and loading amount on the properties of identified peptides were also evaluated. We found that the dynamic-binding capacity of the column was approximately 26 μg. With increased loading amounts, more hydrophilic peptides were replaced by hydrophobic peptides. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Impact of Extraction Parameters on the Recovery of Lipolytic Activity from Fermented Babassu Cake

    PubMed Central

    Silva, Jaqueline N.; Godoy, Mateus G.; Gutarra, Melissa L. E.; Freire, Denise M. G.

    2014-01-01

    Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process. PMID:25090644

  17. High-quality electromagnetically-induced absorption resonances in a buffer-gas-filled vapour cell

    NASA Astrophysics Data System (ADS)

    Brazhnikov, D. V.; Ignatovich, S. M.; Vishnyakov, V. I.; Skvortsov, M. N.; Andreeva, Ch; Entin, V. M.; Ryabtsev, I. I.

    2018-02-01

    Magneto-optical subnatural-linewidth resonances of electromagnetically-induced absorption (EIA) in an alkali vapour cell have been experimentally studied. The observation configuration includes using two counter-propagating pumps and probe light waves with mutually orthogonal linear polarizations, exciting an open optical transition in the 87Rb D 1 line in the presence of argon buffer gas. The EIA signals registered in a probe-wave transmission reach an unprecedented contrast of about 135% with respect to the wide ‘Doppler’ absorption pedestal and 29% with respect to the level of background transmission signal. These contrast values correspond to a relatively small resonance full width at half maximum of about 7.2 mG (5.2 kHz). The width of the narrowest EIA resonance observed is about 2.1 mG (1.5 kHz). To our knowledge, such a large relative contrast at the kHz-width is the record result for EIA resonances. In general, the work has experimentally proved that the magneto-optical scheme used has very good prospects for various quantum technologies (quantum sensors of weak magnetic fields, optical switches and other photonic elements).

  18. FIBER AND INTEGRATED OPTICS: Emission properties of graded-index corrugated waveguides with a metal or semiconductor coating

    NASA Astrophysics Data System (ADS)

    Ataya, B. A.; Osovitskiĭ, A. N.

    1992-02-01

    A numerical method was used to investigate the emission of TE-polarized light from a graded-index corrugated waveguide coated with a metal or semiconductor and either with or without a buffer layer. The main emission characteristics of these systems were analyzed. In the case of metallized dielectric structures an optimal corrugation depth was established for which the emitted power is a maximum. It was found that when the parameters of a structure with a buffer layer were correctly chosen and a highly reflective metal coating was used, practically all the power in the waveguide wave could be emitted along a specified direction. A structure with a buffer layer and an aluminum coating was investigated experimentally.

  19. Optimization of microwave-assisted extraction of analgesic and anti-inflammatory drugs from human plasma and urine using response surface experimental designs.

    PubMed

    Fernández, Purificación; Fernández, Ana M; Bermejo, Ana M; Lorenzo, Rosa A; Carro, Antonia M

    2013-04-01

    The performance of microwave-assisted extraction and HPLC with photodiode array detection method for determination of six analgesic and anti-inflammatory drugs from plasma and urine, is described, optimized, and validated. Several parameters affecting the extraction technique were optimized using experimental designs. A four-factor (temperature, phosphate buffer pH 4.0 volume, extraction solvent volume, and time) hybrid experimental design was used for extraction optimization in plasma, and three-factor (temperature, extraction solvent volume, and time) Doehlert design was chosen to extraction optimization in urine. The use of desirability functions revealed the optimal extraction conditions as follows: 67°C, 4 mL phosphate buffer pH 4.0, 12 mL of ethyl acetate and 9 min, for plasma and the same volume of buffer and ethyl acetate, 115°C and 4 min for urine. Limits of detection ranged from 4 to 45 ng/mL in plasma and from 8 to 85 ng/mL in urine. The reproducibility evaluated at two concentration levels was less than 6.5% for both specimens. The recoveries were from 89 to 99% for plasma and from 83 to 99% for urine. The proposed method was successfully applied in plasma and urine samples obtained from analgesic users. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An experimental study of the job demand-control model with measures of heart rate variability and salivary alpha-amylase: Evidence of increased stress responses to increased break autonomy.

    PubMed

    O'Donnell, Emma; Landolt, Kathleen; Hazi, Agnes; Dragano, Nico; Wright, Bradley J

    2015-01-01

    We assessed in an experimental design whether the stress response towards a work task was moderated by the autonomy to choose a break during the assigned time to complete the task. This setting is defined in accordance with the theoretical framework of the job-demand-control (JDC) model of work related stress. The findings from naturalistic investigations of a stress-buffering effect of autonomy (or 'buffer hypothesis') are equivocal and the experimental evidence is limited, especially with relation to physiological indices of stress. Our objective was to investigate if increased autonomy in a particular domain (break time control) was related with adaptive physiology using objective physiological markers of stress; heart rate variability (HRV) and salivary alpha amylase (sAA). We used a within-subject design and the 60 female participants were randomly assigned to an autonomy (free timing of break) and standard conditions (fixed timing of break) of a word processing task in a simulated office environment in a random order. Participants reported increased perceptions of autonomy, no difference in demand and performed worse in the task in the break-time autonomy versus the standard condition. The results revealed support for the manipulation of increased autonomy, but in the opposing direction. Increased autonomy was related with dysregulated physiological reactivity, synonymous with typical increased stress responses. Potentially, our findings may indicate that autonomy is not necessary a resource but could become an additional stressor when it adds additional complexity while the amount of work (demands) remains unchanged. Further, our findings underscore the need to collect objective physiological evidence of stress to supplement self-reported information. Self-report biases may partially explain the inconsistent findings with the buffer hypothesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. An Experimental Investigation of the Boundary Layer under Pack Ice

    DTIC Science & Technology

    1975-01-01

    current-meter interface ( CMIF ) consists of a very stable, 20-Kllz crystal oscillator and counter, a master memory-address buffer, and a buffer for each...data channel to a specific location in the computer’s memory, The CMIF also generates computer interrupts at a rate determined by the program (12.8... CMIF can handle up to 128 channels and is designed so that even if all channels have simultaneous dipulses, the processing delay is less than .05 msec

  2. Metal-silicate thermochemistry at high temperature - Magma oceans and the 'excess siderophile element' problem of the earth's upper mantle

    NASA Technical Reports Server (NTRS)

    Capobianco, Christopher J.; Jones, John H.; Drake, Michael J.

    1993-01-01

    Low-temperature metal-silicate partition coefficients are extrapolated to magma ocean temperatures. If the low-temperature chemistry data is found to be applicable at high temperatures, an important assumption, then the results indicate that high temperature alone cannot account for the excess siderophile element problem of the upper mantle. For most elements, a rise in temperature will result in a modest increase in siderophile behavior if an iron-wuestite redox buffer is paralleled. However, long-range extrapolation of experimental data is hazardous when the data contains even modest experimental errors. For a given element, extrapolated high-temperature partition coefficients can differ by orders of magnitude, even when data from independent studies is consistent within quoted errors. In order to accurately assess siderophile element behavior in a magma ocean, it will be necessary to obtain direct experimental measurements for at least some of the siderophile elements.

  3. Development status of a high cooling capacity single stage pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Hirayama, T.; Li, R.; Y Xu, M.; Zhu, S. W.

    2017-12-01

    High temperature superconducting (HTS) applications require high-capacity and high-reliability cooling solutions to keep HTS materials at temperatures of approximately 80 K. In order to meet such requirements, Sumitomo Heavy Industries, Ltd.(SHI) has been developing high cooling capacity GM-type active-buffer pulse tube cryocooler. An experimental unit was designed, built and tested. A cooling capacity of 390.5 W at 80 K, COP 0.042 was achieved with an input power of approximately 9 kW. The cold stage usually reaches a stable temperature of about 25 K within one hour starting at room temperature. Also, a simplified analysis was carried out to better understand the experimental unit. In the analysis, the regenerator, thermal conduction, heat exchanger and radiation losses were calculated. The net cooling capacity was about 80% of the PV work. The experimental results, the analysis method and results are reported in this paper.

  4. Comparison of Four Nuclear Isolation Buffers for Plant DNA Flow Cytometry

    PubMed Central

    LOUREIRO, JOÃO; RODRIGUEZ, ELEAZAR; DOLEŽEL, JAROSLAV; SANTOS, CONCEIÇÃO

    2006-01-01

    • Background and Aims DNA flow cytometry requires preparation of suspensions of intact nuclei, which are stained using a DNA-specific fluorochrome prior to analysis. Various buffer formulas were developed to preserve nuclear integrity, protect DNA from degradation and facilitate its stoichiometric staining. Although nuclear isolation buffers differ considerably in chemical composition, no systematic comparison of their performance has been made until now. This knowledge is required to select the appropriate buffer for a given species and tissue. • Methods Four common lysis buffers (Galbraith's, LB01, Otto's and Tris.MgCl2) were used to prepare samples from leaf tissues of seven plant species (Sedum burrito, Oxalis pes-caprae, Lycopersicon esculentum, Celtis australis, Pisum sativum, Festuca rothmaleri and Vicia faba). The species were selected to cover a wide range of genome sizes (1·30–26·90 pg per 2C DNA) and a variety of leaf tissue types. The following parameters were assessed: forward (FS) and side (SS) light scatters, fluorescence of propidium iodide-stained nuclei, coefficient of variation of DNA peaks, presence of debris background and the number of nuclei released from sample tissue. The experiments were performed independently by two operators and repeated on three different days. • Key Results Clear differences among buffers were observed. With the exception of O. pes-caprae, any buffer provided acceptable results for all species. LB01 and Otto's were generally the best buffers, with Otto's buffer providing better results in species with low DNA content. Galbraith's buffer led to satisfactory results and Tris.MgCl2 was generally the worst, although it yielded the best histograms in C. australis. A combined analysis of FS and SS provided a ‘fingerprint’ for each buffer. The variation between days was more significant than the variation between operators. • Conclusions Each lysis buffer tested responded to a specific problem differently and none of the buffers worked best with all species. These results expand our knowledge on nuclear isolation buffers and will facilitate selection of the most appropriate buffer depending on species, tissue type and the presence of cytosolic compounds interfering with DNA staining. PMID:16820407

  5. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: pH buffering properties of cheese.

    PubMed

    Upreti, P; Bühlmann, P; Metzger, L E

    2006-03-01

    The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows that the buffering properties of the precipitate can be explained, assuming that it consists of hydroxyapatite [Ca5(OH)(PO4)3] or Ca3(PO4)2. The pH buffering in the region from pH 3.5 to 4.5 is due to protonation of side-chain carboxylates of protein-bound glutamate, aspartate, and lactate, in order of decreasing significance. In addition, pH buffering between pH 5 to 8 in the backtitration results from the reprecipitation of calcium and phosphate either as CaHPO4 or Ca4H(PO4)3.

  6. k(+)-buffer: An Efficient, Memory-Friendly and Dynamic k-buffer Framework.

    PubMed

    Vasilakis, Andreas-Alexandros; Papaioannou, Georgios; Fudos, Ioannis

    2015-06-01

    Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the most suitable value of k are still missing. To this end, we introduce k(+)-buffer, a fast framework that accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality.

  7. Determination of residual cell culture media components by MEKC.

    PubMed

    Zhang, Junge; Chakraborty, Utpal; Foley, Joe P

    2009-11-01

    Folic acid, hypoxanthine, mycophenolic acid, nicotinic acid, riboflavin, and xanthine are widely used as cell culture media components in monoclonal antibody manufacturing. These components are subsequently removed during the downstream purification processes. This article describes a single MEKC method that can simultaneously determine all the listed compounds with acceptable LOD and LOQ. All the analytes were successfully separated by MEKC using running buffer containing 40 mM SDS, 20 mM sodium phosphate, and 20 mM sodium borate at pH 9.0. The MEKC method was compared to the corresponding CZE method using the same running buffer containing no SDS. The effect of SDS concentration on separation, the pH of the running buffer, and the detection wavelength were studied and optimal MEKC conditions were established. Good linearity was obtained with correlation coefficients of more than 0.99 for all analytes. Specificity, accuracy, and precision were also evaluated. The recovery was in the range of 89-112%. The precision results were in the range of 1.7-4.8%. The experimentally determined data demonstrated that the MEKC method is applicable to the determination of the six analytes in in-process samples from monoclonal antibody manufacturing processes.

  8. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2017-04-01

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H+/OH- transport) and electric field-driven migration on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Overall, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.

  9. Heat-sterilized PD fluid blocks leukocyte adhesion and increases flow velocity in rat peritoneal venules.

    PubMed

    Jonasson, P; Bagge, U; Wieslander, A; Braide, M

    1996-01-01

    Data from cell culture experiments indicate that heat sterilization of peritoneal dialysis (PD) fluids produces cytotoxic glucose degradation products. The present vital microscopic study investigated the effects of different sterilization methods on the biocompatibility of PD fluids. Thus, heat-sterilized (commercially obtained and experimentally produced) and filter-sterilized PD fluids (pH = 5.30-5.40; 1.5% glucose) were compared with Tyrode buffer, with respect to the effects on microvascular blood flow velocity and leukocyte adhesion in the rat mesentery. Exteriorization of the mesentery produced a mild inflammation, known from the literature and characterized by the adhesive rolling of leukocytes along venular walls. Superfusion of the mesentery with filter-sterilized PD fluid had no significant effects on leukocyte rolling or flow velocity in venules 25-40 microns in diameter compared with buffer superfusion. Heat-sterilized PD fluid decreased the concentration of rolling leukocytes and increased flow velocity significantly, as compared with buffer and filter-sterilized PD fluid. The results indicate that heat sterilization of PD fluids produces substances that interact with microvascular tone and leukocyte-endothelial adhesion, which hypothetically could impair the acute, granulocyte-mediated defense against bacterial infections.

  10. Executing a gather operation on a parallel computer

    DOEpatents

    Archer, Charles J [Rochester, MN; Ratterman, Joseph D [Rochester, MN

    2012-03-20

    Methods, apparatus, and computer program products are disclosed for executing a gather operation on a parallel computer according to embodiments of the present invention. Embodiments include configuring, by the logical root, a result buffer or the logical root, the result buffer having positions, each position corresponding to a ranked node in the operational group and for storing contribution data gathered from that ranked node. Embodiments also include repeatedly for each position in the result buffer: determining, by each compute node of an operational group, whether the current position in the result buffer corresponds with the rank of the compute node, if the current position in the result buffer corresponds with the rank of the compute node, contributing, by that compute node, the compute node's contribution data, if the current position in the result buffer does not correspond with the rank of the compute node, contributing, by that compute node, a value of zero for the contribution data, and storing, by the logical root in the current position in the result buffer, results of a bitwise OR operation of all the contribution data by all compute nodes of the operational group for the current position, the results received through the global combining network.

  11. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species.

    PubMed

    Zheng, Songyan; Qiu, Difei; Adams, Monica; Li, Jinjiang; Mantri, Rao V; Gandhi, Rajesh

    2017-01-01

    This study aimed in understanding the degradation behaviors of an IgG 1 subtype therapeutic monoclonal antibody A (mAb-A) associated with pH and buffer species. The information obtained in this study can augment conventional, stability-based screening paradigms by providing the direction necessary for efficient experimental design. Differential scanning calorimetry (DSC) was used for studying conformational stability. Dynamic light scattering (DLS) was utilized to generate B 22 *, a modified second virial coefficient for the character of protein-protein interaction. Size-exclusion chromatography (SEC) and hydrophobic interaction chromatography (HIC) were employed to separate degradation products. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for determining the molecular size and liquid chromatography mass spectrometry (LC-MS) were used for identifying the sequence of the separated fragments. The results showed that both pH and buffer species played the roles in controlling the degradation behaviors of mAb-A, but the pH was more significant. In particular, pH 4.5 induced additional thermal transition peaks occurring at a low temperature compared with pH 6.5. A continual temperature-stress study illustrated that the additional thermal transition peaks related to the least stable structure and a greater fragmentation. Although mAb-A showed the comparable conformational structures and an identical amount of aggregates at time zero between the different types of buffer species at pH 6.5, the aggregation formation rate showed a buffer species-dependent discrepancy over a temperature-stress period. It was found that the levels of aggregations associated with the magnitudes of protein-protein interaction forces.

  12. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas.

    PubMed

    Hansen, A K; Versolato, O O; Kłosowski, L; Kristensen, S B; Gingell, A; Schwarz, M; Windberger, A; Ullrich, J; López-Urrutia, J R Crespo; Drewsen, M

    2014-04-03

    The preparation of cold molecules is of great importance in many contexts, such as fundamental physics investigations, high-resolution spectroscopy of complex molecules, cold chemistry and astrochemistry. One versatile and widely applied method to cool molecules is helium buffer-gas cooling in either a supersonic beam expansion or a cryogenic trap environment. Another more recent method applicable to trapped molecular ions relies on sympathetic translational cooling, through collisional interactions with co-trapped, laser-cooled atomic ions, into spatially ordered structures called Coulomb crystals, combined with laser-controlled internal-state preparation. Here we present experimental results on helium buffer-gas cooling of the rotational degrees of freedom of MgH(+) molecular ions, which have been trapped and sympathetically cooled in a cryogenic linear radio-frequency quadrupole trap. With helium collision rates of only about ten per second--that is, four to five orders of magnitude lower than in typical buffer-gas cooling settings--we have cooled a single molecular ion to a rotational temperature of 7.5(+0.9)(-0.7) kelvin, the lowest such temperature so far measured. In addition, by varying the shape of, or the number of atomic and molecular ions in, larger Coulomb crystals, or both, we have tuned the effective rotational temperature from about 7 kelvin to about 60 kelvin by changing the translational micromotion energy of the ions. The extremely low helium collision rate may allow for sympathetic sideband cooling of single molecular ions, and eventually make quantum-logic spectroscopy of buffer-gas-cooled molecular ions feasible. Furthermore, application of the present cooling scheme to complex molecular ions should enable single- or few-state manipulations of individual molecules of biological interest.

  13. Anxiety-like behavior and neuropeptide receptor expression in male and female prairie voles: The effects of stress and social buffering.

    PubMed

    Donovan, Meghan; Liu, Yan; Wang, Zuoxin

    2018-04-16

    Strong social support can negate negative health outcomes - an effect defined as 'social buffering'. In the present study, using the socially monogamous prairie vole (Microtus ochrogaster), we examined whether the presence of a bonded partner during a stressful event can reduce stress responses. Adult, pair-bonded female and male voles were assigned into experimental groups that were either handled (Control), experienced a 1-h immobilization (IMO) stress alone (IMO-Alone), or experienced IMO with their partner (IMO-Partner). Thereafter, subjects were tested for anxiety-like behavior, and brain sections were subsequently processed for oxytocin receptor (OTR) and vasopressin V1a-type receptor (V1aR) binding. Our data indicate that while IMO stress significantly decreased the time that subjects spent in the open arms of an elevated plus maze, partner's presence prevented this behavioral change - this social buffering on anxiety-like behavior was the same for both male and female subjects. Further, IMO stress decreased OTR binding in the nucleus accumbens (NAcc), but a partner's presence dampened this effect. No effects were found in V1aR binding. These data suggest that the neuropeptide- and brain region-specific OTR alterations in the NAcc may be involved in both the mediation and social buffering of stress responses. Some sex differences in the OTR and V1aR binding were also found in selected brain regions, offering new insights into the sexually dimorphic roles of the two neuropeptides. Overall, our results suggest a potential preventative approach in which the presence of social interactions during a stressor may buffer typical negative outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China

    NASA Astrophysics Data System (ADS)

    Ren, Lihong; Wang, Wei; Wang, Qingyue; Yang, XiaoYang; Tang, Dagang

    2011-12-01

    The acidity of about 2000 particulate matter samples from aircraft and ground-based monitoring is analyzed by the method similar to soil acidity determination. The ground-based samples were collected at about 50 urban or background sites in northern and southern China. Moreover, the acidic buffering capacity of those samples is also analyzed by the method of micro acid-base titration. Results indicate that the acidity level is lower in most northern areas than those in the south, and the acidic buffering capacity showed inverse tendency, correspondingly. This is the most important reason why the pollution of acidic-precipitation is much more serious in Southern China than that in Northern China. The acidity increases and the acidic buffering capacity drops with the decreasing of the particle sizes, indicating that fine particle is the main influencing factor of the acidification. The ionic results show that Ca salt is the main alkaline substance in particulate matter, whereas the acidification of particulate matter is due to the SO 2 and NO x emitted from the fossil fuel burning. And among of them, coal burning is the main contributor of SO 2, however the contribution of NO x that emitted from fuel burning of motor vehicles has increased in recent years. By comparison of the experimental results during the past 20 years, it can be concluded that the acid precipitation of particulate matter has not been well controlled, and it even shows an increasing tendency in China lately. The acid precipitation of particulate matter has begun to frequently attack in part of the northern areas. Multiple regression analysis indicates that coefficient value of the ions is the lowest at the urban sites and the highest at the regional sites, whereas the aircraft measurement results are intermediate between those two kinds of sites.

  15. Experimental Germ Tube Induction in Candida albicans: An Evaluation of the Effect of Sodium Bicarbonate on Morphogenesis and Comparison with Pooled Human Serum.

    PubMed

    Matare, Tapiwa; Nziramasanga, Pasipanodya; Gwanzura, Lovemore; Robertson, Valerie

    2017-01-01

    The potential of NaHCO 3 versus human serum to induce germ tube formation in Candida albicans was investigated. A total of 100 isolates were obtained from oral swabs of patients presenting with thrush. Approval for the study was granted by the Joint Research Ethics Committee (JREC/23/08). Confirmed C. albicans isolates by routine methods were tested for germ tube induction using 5 different concentrations of Tris-maleate buffered NaHCO 3 and Tris-maleate buffer control. Standard control strains included were C. albicans (ATCC 10231) and C. krusei (ATCC 6258). Microculture was done in 20  μ L inoculums on microscope slides for 3 hours at 37°C. The rate of germ tube formation at 10-minute intervals was determined on 100 isolates using the optimum 20 mM Tris-maleate buffered NaHCO 3 concentration. Parallel germ tube formation using human serum was done in test tubes. The optimum concentration of NaHCO 3 in Tris-maleate buffer for germ tube induction was 20 mM for 67% of isolates. Only 21% of isolates formed germ tubes in Tris-maleate buffer control. There was no significant difference in induction between human serum and Tris-maleate buffered NaHCO 3 . Tris-maleate buffered NaHCO 3 induced germ tube formation in C. albicans isolates at rates similar to human serum.

  16. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.

  17. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  18. Isothermal titration calorimetry for measuring macromolecule-ligand affinity.

    PubMed

    Duff, Michael R; Grubbs, Jordan; Howell, Elizabeth E

    2011-09-07

    Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given.

  19. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity

    PubMed Central

    Duff,, Michael R.; Grubbs, Jordan; Howell, Elizabeth E.

    2011-01-01

    Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given. PMID:21931288

  20. Evaluation of the Effects of Iron Oxides on Soil Reducing Conditions and Methane Generation in Cambodian Wetland Rice Fields

    NASA Astrophysics Data System (ADS)

    Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.

    2007-12-01

    Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.

  1. Rotationally inelastic collisions of H2+ ions with He buffer gas: Computing cross sections and rates

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Gianturco, F. A.; Wester, R.; da Silva, H.; Dulieu, O.; Schiller, S.

    2017-03-01

    We present quantum calculations for the inelastic collisions between H2+ molecules, in rotationally excited internal states, and He atoms. This work is motivated by the possibility of experiments in which the molecular ions are stored and translationally cooled in an ion trap and a He buffer gas is added for deactivation of the internal rotational population, in particular at low (cryogenic) translational temperatures. We carry out an accurate representation of the forces at play from an ab initio description of the relevant potential energy surface, with the molecular ion in its ground vibrational state, and obtain the cross sections for state-changing rotationally inelastic collisions by solving the coupled channel quantum scattering equations. The presence of hyperfine and fine structure effects in both ortho- and para-H2+ molecules is investigated and compared to the results where such a contribution is disregarded. An analysis of possible propensity rules that may predict the relative probabilities of inelastic events involving rotational state-changing is also carried out, together with the corresponding elastic cross sections from several initial rotational states. Temperature-dependent rotationally inelastic rates are then computed and discussed in terms of relative state-changing collisional efficiency under trap conditions. The results provide the essential input data for modeling different aspects of the experimental setups which can finally produce internally cold molecular ions interacting with a buffer gas.

  2. Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.

    PubMed

    Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui

    2015-01-01

    In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.

  3. Interrelation of the construction of the metamorphic InAlAs/InGaAs nanoheterostructures with the InAs content in the active layer of 76-100% with their surface morphology and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasil'evskii, I. S., E-mail: ivasilevskii@mail.ru; Galiev, G. B.; Klimov, E. A.

    The influence of the construction of a metamorphic buffer on the surface morphology and electrical properties of InAlAs/InGaAs/InAlAs nanoheterostructures with InAs content in the active layer from 76 to 100% with the use of the GaAs and InP substrates is studied. It is shown that such parameters as the electron mobility and the concentration, as well as the root-mean-square surface roughness, substantially depend on the construction of the metamorphic buffer. It is established experimentally that these parameters largely depend on the maximal local gradient of the lattice constant of the metamorphic buffer in the growth direction of the layers rathermore » than on its average value. It is shown that, with selection of the construction of the metamorphic buffer, it is possible to form nanostructured surfaces with a large-periodic profile.« less

  4. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    PubMed Central

    Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii)  1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased. PMID:29854774

  5. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space.

    PubMed

    Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii)  1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.

  6. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 1. Screening of optimal extraction conditions using a D-optimal experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A D-optimal design was constructed to optimize allergen extraction efficiency simultaneously from roasted, non-roasted, defatted, and non-defatted almond, hazelnut, peanut, and pistachio flours using three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various conditions of ionic strength, buffer-to-protein ratio, extraction temperature, and extraction duration. Statistical analysis showed that roasting and non-defatting significantly lowered protein recovery for all nuts. Increasing the temperature and the buffer-to-protein ratio during extraction significantly increased protein recovery, whereas increasing the extraction time had no significant impact. The impact of the three buffers on protein recovery varied significantly among the nuts. Depending on the extraction conditions, protein recovery varied from 19% to 95% for peanut, 31% to 73% for almond, 17% to 64% for pistachio, and 27% to 88% for hazelnut. A modulation by the buffer type and ionic strength of protein and immunoglobuline E binding profiles of extracts was evidenced, where high protein recovery levels did not always correlate with high immunoreactivity. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. High-port low-latency optical switch architecture with optical feed-forward buffering for 256-node disaggregated data centers.

    PubMed

    Terzenidis, Nikos; Moralis-Pegios, Miltiadis; Mourgias-Alexandris, George; Vyrsokinos, Konstantinos; Pleros, Nikos

    2018-04-02

    Departing from traditional server-centric data center architectures towards disaggregated systems that can offer increased resource utilization at reduced cost and energy envelopes, the use of high-port switching with highly stringent latency and bandwidth requirements becomes a necessity. We present an optical switch architecture exploiting a hybrid broadcast-and-select/wavelength routing scheme with small-scale optical feedforward buffering. The architecture is experimentally demonstrated at 10Gb/s, reporting error-free performance with a power penalty of <2.5dB. Moreover, network simulations for a 256-node system, revealed low-latency values of only 605nsec, at throughput values reaching 80% when employing 2-packet-size optical buffers, while multi-rack network performance was also investigated.

  8. Mutual interactions of redox couples via electron exchange in silicate melts - Models for geochemical melt systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Henry D.; Merkel, Robert C., Jr.; Schreiber, V. Lea; Balazs, G. Bryan

    1987-01-01

    The mutual interactions via electron exchange of redox couples in glass-forming melts were investigated both theoretically and experimentally. A thermodynamic approach for considering the mutual interactions leads to conclusion that the degree of mutual interaction in the melt should be proportional in part to the difference in relative reduction potentials of the interacting redox couples. Experimental studies verify this conclusion for numerous redox couples in several composition/temperature/oxygen fugacity regimes. Geochemical systems simultaneously possess many potentially multivalent elements; the stabilized redox states in the resulting magmas can be explained in part by mutual interactions and by redox buffering through the central Fe(III)- Fe(II) couples in the melts. The significance of these results for basaltic magmas of the earth, moon, and meteorites is addressed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siol, Sebastian; Dhakal, Tara P.; Gudavalli, Ganesh S.

    High-throughput computational and experimental techniques have been used in the past to accelerate the discovery of new promising solar cell materials. An important part of the development of novel thin film solar cell technologies, that is still considered a bottleneck for both theory and experiment, is the search for alternative interfacial contact (buffer) layers. The research and development of contact materials is difficult due to the inherent complexity that arises from its interactions at the interface with the absorber. A promising alternative to the commonly used CdS buffer layer in thin film solar cells that contain absorbers with lower electronmore » affinity can be found in ..beta..-In2S3. However, the synthesis conditions for the sputter deposition of this material are not well-established. Here, In2S3 is investigated as a solar cell contact material utilizing a high-throughput combinatorial screening of the temperature-flux parameter space, followed by a number of spatially resolved characterization techniques. It is demonstrated that, by tuning the sulfur partial pressure, phase pure ..beta..-In2S3 could be deposited using a broad range of substrate temperatures between 500 degrees C and ambient temperature. Combinatorial photovoltaic device libraries with Al/ZnO/In2S3/Cu2ZnSnS4/Mo/SiO2 structure were built at optimal processing conditions to investigate the feasibility of the sputtered In2S3 buffer layers and of an accelerated optimization of the device structure. The performance of the resulting In2S3/Cu2ZnSnS4 photovoltaic devices is on par with CdS/Cu2ZnSnS4 reference solar cells with similar values for short circuit currents and open circuit voltages, despite the overall quite low efficiency of the devices (-2%). Overall, these results demonstrate how a high-throughput experimental approach can be used to accelerate the development of contact materials and facilitate the optimization of thin film solar cell devices.« less

  10. Chemical Modification of the Olfactory Receptor Epithelium of Vertebrate Species

    DTIC Science & Technology

    1990-06-28

    Pre-column Derivatization Procedure: 1.0 mL of the Jeffamine solution was mixed with 1.0 mL of NaCN, 5.0 mL of phosphate buffer pH 9.5 followed by 1.0...running buffer. All the unprotonated components elute at the same time because their rate of elution is controlled only by the rate of electroosmotic ...elecarosomotic mobility under our experimental conditions. Using an average elution time of 22.2 min the measured electroosmotic mobility is 1.3 x 10-4 cm2

  11. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  12. The W-W02 Oxygen Fugacity Buffer at High Pressures and Temperatures: Implications for f02 Buffering and Metal-silicate Partitioning

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Righter, K.

    2013-01-01

    Oxygen fugacity (fO2) controls multivalent phase equilibria and partitioning of redox-sensitive elements, and it is important to understand this thermodynamic parameter in experimental and natural systems. The coexistence of a metal and its oxide at equilibrium constitutes an oxygen buffer which can be used to control or calculate fO2 in high pressure experiments. Application of 1-bar buffers to high pressure conditions can lead to inaccuracies in fO2 calculations because of unconstrained pressure dependencies. Extending fO2 buffers to pressures and temperatures corresponding to the Earth's deep interior requires precise determinations of the difference in volume (Delta) V) between the buffer phases. Synchrotron x-ray diffraction data were obtained using diamond anvil cells (DAC) and a multi anvil press (MAP) to measure unit cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. These data were fitted to Birch-Murnaghan 3rd-order thermal equations of state using a thermal pressure approach; parameters for W are KT = 306 GPa, KT' = 4.06, and aKT = 0.00417 GPa K-1. Two structural phase transitions were observed for WO2 at 4 and 32 GPa with structures in P21/c, Pnma and C2/c space groups. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 190, 213, 300 GPa, KT' = 4.24, 5.17, 4 (fixed), and aKT = 0.00506, 0.00419, 0.00467 GPa K-1 for the P21/c, Pnma and C2/c phases, respectively. The W-WO2 buffer (WWO) was extended to high pressure by inverting the W and WO2 equations of state to obtain phase volumes at discrete pressures (1-bar to 100 GPa, 1 GPa increments) along isotherms (300 to 3000K, 100 K increments). The slope of the absolute fO2 of the WWO buffer is positive with increasing temperature up to approximately 70 GPa and is negative above this pressure. The slope is positive along isotherms from 1000 to 3000K with increasing pressure up to at least 100 GPa. The WWO buffer is at a higher fO2 than the IW buffer at pressures lower than 40 GPa, and the magnitude of this difference decreases at higher pressures. This qualitatively indicates an increasingly lithophile character for W at higher pressures. The WWO buffer was quantitatively applied to W metal-silicate partitioning by using the WWO-IW buffer difference in combination with literature data on W metal-silicate partitioning to model the exchange coefficient (KD) for the Fe-W exchange reaction. This approach captures the pressure dependence of W metal-silicate partitioning using the WWO-IW buffer difference and models the activities of the components in the silicate and metallic phases using an expression of the Gibbs excess energy of mixing. Calculation of KD along a peridotite liquidus predicts a decrease in W siderophility at higher pressures that supports the qualitative behavior predicted by the WWO-IW buffer difference, and agrees with findings of others. Comparing the competing effects of temperature and pressure on W metal-silicate partitioning, our results indicate that pressure exerts a greater effect.

  13. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion may affect the engineering performance of the bentonite buffer such that any interfaces between bentonite blocks that may be present immediately following buffer emplacement may persist in the longer term.

  14. Application of an experimental design for the optimization and validation of a new HPLC method for the determination of vancomycin in an extemporaneous ophthalmic solution.

    PubMed

    Enrique, Montse; García-Montoya, Encarna; Miñarro, Montserrat; Orriols, Anna; Ticó, Joseph Ramon; Suñé-Negre, Joseph Maria; Pérez-Lozano, Pilar

    2008-10-01

    An experimental design has been used to develop and optimize a new high-performance liquid chromatographic (HPLC) method for the determination of Vancomycin in an extemporaneous ophthalmic solution. After the preliminary studies and literature review, the optimized method was carried out on a second generation of a C18 reverse-phase column (Luna 150 x 4.6 mm i.d., 5 microm particle size) and using methanol as organic phase, a less toxic solvent than acetonitrile, described in the extended literature. The experimental design consisted of a Placket-Burman design where six different variables were studied (flow rate, mL/min; temperature, degrees C; pH mobile phase; % buffer solution; wavelength; and injection volume) to obtain the best suitability parameters (Capacity factor-K', tailing factor, resolution, and theoretical plates). After the optimization of the chromatographic conditions and statistical treatment of the obtained results, the final method uses a mixture of a buffer solution of water-phosphoric acid (85%) (99.83:0.17, v/v) adjusted to pH 3.0 using triethylamine and mixed with methanol (87:13, v/v). The separation is achieved using a flow rate of 1.0 mL/min at 35 degrees C. The UV detector was operated at 280 nm. The validation study carried out, demonstrates the viability of the method, obtaining a good selectivity, linearity, precision, accuracy, and sensitivity.

  15. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase

    PubMed Central

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060

  16. [Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].

    PubMed

    Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo

    2012-04-01

    Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.

  17. International comparison of observation-specific spatial buffers: maximizing the ability to estimate physical activity.

    PubMed

    Frank, Lawrence D; Fox, Eric H; Ulmer, Jared M; Chapman, James E; Kershaw, Suzanne E; Sallis, James F; Conway, Terry L; Cerin, Ester; Cain, Kelli L; Adams, Marc A; Smith, Graham R; Hinckson, Erica; Mavoa, Suzanne; Christiansen, Lars B; Hino, Adriano Akira F; Lopes, Adalberto A S; Schipperijn, Jasper

    2017-01-23

    Advancements in geographic information systems over the past two decades have increased the specificity by which an individual's neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built environment measures (BEMs) and tested their performance on associations with physical activity outcomes. An internationally-developed set of objective BEMs using three different spatial buffering techniques were used to evaluate the relative differences in resulting explanatory power on self-reported physical activity outcomes. BEMs were developed in five countries using 'sausage,' 'detailed-trimmed,' and 'detailed,' network buffers at a distance of 1 km around participant household addresses (n = 5883). BEM values were significantly different (p < 0.05) for 96% of sausage versus detailed-trimmed buffer comparisons and 89% of sausage versus detailed network buffer comparisons. Results showed that BEM coefficients in physical activity models did not differ significantly across buffering methods, and in most cases BEM associations with physical activity outcomes had the same level of statistical significance across buffer types. However, BEM coefficients differed in significance for 9% of the sausage versus detailed models, which may warrant further investigation. Results of this study inform the selection of spatial buffering methods to estimate physical activity outcomes using an internationally consistent set of BEMs. Using three different network-based buffering methods, the findings indicate significant variation among BEM values, however associations with physical activity outcomes were similar across each buffering technique. The study advances knowledge by presenting consistently assessed relationships between three different network buffer types and utilitarian travel, sedentary behavior, and leisure-oriented physical activity outcomes.

  18. Chance and necessity in the genome evolution of endosymbiotic bacteria of insects.

    PubMed

    Sabater-Muñoz, Beatriz; Toft, Christina; Alvarez-Ponce, David; Fares, Mario A

    2017-06-01

    An open question in evolutionary biology is how does the selection-drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host-symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shift.

  19. Multiwavelength self-pulsating fibre laser based on cascaded SPM spectral broadening and filtering

    NASA Astrophysics Data System (ADS)

    Rochette, Martin; Sun, Kai; Hernández-Cordero, Juan; Chen, Lawrence R.

    2008-06-01

    We experimentally demonstrate the operation of a laser based on self-phase modulation followed by offset spectral filtering. This laser has three operation modes: a continuous-wave mode, a self-pulsating mode where the laser self ignites and produces pulses, and a pulse-buffering mode where no new pulse is formed from spontaneous emission noise but only pulses already propagating or pulses injected in the laser cavity can be sustained. In the self-pulsating and pulse-buffering modes, the laser is multi-wavelength and continuously tunable over the entire gain band of the amplifiers. The output pulse width is quasi transform-limited with respect to the spectral-width of the filters used in the cavity. Overall, this device provides a simple alternative to pulsed laser source and also represents a promising approach for signal buffering.

  20. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H +/OH – transport) and electric field-driven migrationmore » on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less

  1. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2017-02-23

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H +/OH – transport) and electric field-driven migrationmore » on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less

  2. Control and monitoring of oxygen fugacity in piston cylinder experiments

    NASA Astrophysics Data System (ADS)

    Matjuschkin, Vladimir; Brooker, Richard A.; Tattitch, Brian; Blundy, Jon D.; Stamper, Charlotte C.

    2015-01-01

    We present a newly developed capsule design that resolves some common problems associated with the monitoring and control of oxygen fugacity ( fO2) in high-pressure piston cylinder experiments. The new fO2 control assembly consists of an AuPd outer capsule enclosing two inner capsules: one of AuPd capsule containing the experimental charge (including some water), and the other of Pt containing a solid oxygen buffer plus water. The inner capsules are separated by crushable alumina. The outer capsule is surrounded by a Pyrex sleeve to simultaneously minimise hydrogen loss from the cell and carbon infiltration from the graphite furnace. Controlled fO2 experiments using this cell design were carried out at 1.0 GPa and 1,000 °C. We used NiPd, CoPd and (Ni, Mg)O fO2 sensors, whose pressure sensitivity is well calibrated, to monitor the redox states achieved in experiments buffered by Re-ReO2, Ni-NiO and Co-CoO, respectively. Results for the fO2 sensors are in good agreement with the intended fO2 established by the buffer, demonstrating excellent control for durations of 24-48 h, with uncertainties less than ± 0.3 log bar units of fO2.

  3. Integrated experimental and modeling assessment of potential effects of gas leakages on groundwater composition

    NASA Astrophysics Data System (ADS)

    Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Schäfer, Dirk

    2017-04-01

    Storing renewably produced energy is one of the major challenges for the energy systems of the upcoming decades. Power-to-gas technologies coupled to geological storage of compressed air, methane, and hydrogen offer a comparatively safe and cost-efficient way for large-scale energy storage. However, the stored gases can potentially escape from their geological reservoir and may thus affect protected natural goods such as groundwater. The geochemical reactions responsible for these composition changes are usually investigated separately in experiments and numerical models. Here we present the outcomes of an integrated experimental and modeling approach through the example of a compressed air leakage scenario. A main consequence of the presence of oxygen to be assessed in an aquifer is pyrite oxidation, well known from acid mine drainage sites. However, in contrast to acid mine drainage sites exhibiting unsaturated sediments and fed by meteoric low-carbonate water, aquifers such as in Northern Germany contain a considerable amount of solid and dissolved inorganic carbon species potentially buffering pH changes. High pressure flow-through column experiments representing an intrusion of compressed air into an aquifer were carried out to quantify pyrite oxidation kinetics and to incorporate the observations into a descriptive reaction model. Surface passivation was found to decrease the reactivity of pyrite by more than 90% after a few months of experimental run time. We propose that the carbonate buffer system enables the precipitation of a passivating mineral layer on the pyrite surface reducing the overall reaction rate significantly. Consequently, an established rate law from the literature was extended by a reactive surface passivation term[1]. This improved reaction rate equation was incorporated into a 3D numerical model using OpenGeoSys with parameters representing similarly typical aquifer conditions the experiments had characterized. These boundaries include pyrite content, oxygen dissolution kinetics, groundwater composition including the carbonate buffer, and diffusive and advective transport parameters. The results of site-scale multiphase reactive transport modeling revealed the expected spatial distribution of redox-sensitive species such as oxygen, pyrite, and sulfate in an aquifer following a leakage. The changes in concentration of sulfate, dissolved oxygen, and H+ observed in the lab-scale experiments were qualitatively reproduced by the models applying the same boundary conditions on a site-scale. This integrated study acknowledged that the combination of experiments and models is a powerful tool to prognose the geochemical consequences of gas leakage on site scale. However, it is yet unknown how the passivation would be effected if the carbonate buffer depleted on the long term and under what circumstances a transition from the passivating pyrite oxidation process to the non-passivating process observed for instance in acid mine drainage setups occurs. These restrictions mark the limits of validity of our experimental and modeling concept. This conclusion suggests the feasibility of the presented integrated approach also when evaluating comparable scenarios on methane and hydrogen storage based on experimental results gathered similarly[2]. [1]Berta et al. Environ Earth Sci (2016) 75:1175, DOI 10.1007/s12665-016-5985-7. [2]Berta et al. First Break (2015) 33,93-95, ISSN 1365-2397. This work is part of the ANGUS+ project funded by the BMBF-FK03EK3022.

  4. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions.

    PubMed

    Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K

    2017-10-19

    We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.

  5. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    NASA Technical Reports Server (NTRS)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  6. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    NASA Astrophysics Data System (ADS)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results indicated that it is possible to modulate the product formation by limiting key nutrients of acetyl-CoA pathway and using a continuous fermentation in two-stage fermentor design to improve ethanol yields. The last experimental study was conducted to commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a bench-scale to a pilot scale 100-L fermentor. Results indicated a six-fold improvement in ethanol concentration (25.3 g L-1 at the end of 59 d) compared to previous Clostridium strain P11 and Clostridium carboxidivorans fermentations plus the formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance.

  7. Multiscale Spectroscopy of Diffusing Molecules in Crowded Environments

    NASA Astrophysics Data System (ADS)

    Heikal, Ahmed A.

    2015-06-01

    Living cells are known to be crowded with organelles, biomembranes, and macromolecules such as proteins, DNA, RNA, and actin filaments. It is believed that such macromolecular crowding affect biomolecular diffusion, protein-protein and protein-substrate interaction, and protein folding. In this contribution, I will discuss our recent results on rotational and translational diffusion of small and large molecules in crowded environments using time-resolved anisotropy and fluorescence correlation spectroscopy methods. In these studies, rhodamine green and enhanced green fluorescent protein are used as fluorescent probes diffusing in buffers enriched with biomimetic crowding agents such as Ficoll-70, bovine serum albumin (BSA), and ovalbumin. Controlled experiments on pure and glycerol-rich buffers were carried out as environments with variable, homogeneous viscosity. Our results indicate that the microviscosity differs from the corresponding bulk viscosity, depending on the nature of crowding agents (i.e., proteins versus polymers), the concentration of crowding agents and spatio-temporal scaling of our experimental approach. Our findings provide a foundation for fluorescence-based studies of diffusion and binding of biomolecules in the crowded milieu of living cells.

  8. Photosystem I assembly on chemically tailored SAM/ Au substrates for bio-hybrid device fabrication

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dibyendu; Khomami, Bamin

    2011-03-01

    Photosystem I (PS I), a supra-molecular protein complex and a biological photodiode responsible for driving natural photosynthesis mechanism, charge separates upon exposure to light. Effective use of the photo-electrochemical activities of PS I for future bio-hybrid electronic devices requires controlled attachment of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface topography of PS I deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate SAM /Au substrates, thereby resulting in complex columnar structures that affect the electron capture pathway of PS I. Specifically, solution phase characterizations indicate that specific detergents used for PS I stabilization in buffer solutions drive the unique colloidal chemistry to tune protein-protein interactions and prevent aggregation, thereby allowing us to tailor the morphology of surface immobilized PS I. We present surface topographical, adsorption, and electrochemical characterizations of PSI /SAM/Au substrates to elucidate protein-surface attachment dynamics and its effect on the photo-activated electronic activities of surface immobilized PS I. Sustainable Energy Education and Research Center (SEERC).

  9. Development of gastro intestinal sustained release tablet formulation containing acryl-EZE and pH-dependent swelling HPMC K 15 M.

    PubMed

    Lamoudi, Lynda; Chaumeil, Jean Claude; Daoud, Kamel

    2012-05-01

    The aim of this study was to evaluate physical properties and release from matrix tablets containing different ratios of HPMC 15 M and Acryl-EZE. A further aim is to assess their suitability for pH dependent controlled release. Matrix tablets containing HPMC 15 M and Acryl-EZE were manufactured using a fluidized bed. The release from this matrix using Sodium Diclofenac (SD) as model drug is studied in two dissolution media (0.1 N HCl or pH = 6.8 phosphate buffer solution); the release rate, mechanism, and pH dependence were characterized by fitting four kinetic models and by using a similarity factor analysis. The obtained results revealed that the presence of Acryl-EZE in the matrix tablets is effective in protecting the dosage forms from release in acid environments such as gastric fluid. In pH = 6.8 phosphate buffer, the drug release rate and mechanism of release from all matrices is mainly controlled by HPMC 15 M. The model of Korsmeyer-Peppas was found to fit experimental dissolution results.

  10. A potential for overestimating the absolute magnitudes of second virial coefficients by small-angle X-ray scattering.

    PubMed

    Scott, David J; Patel, Trushar R; Winzor, Donald J

    2013-04-15

    Theoretical consideration is given to the effect of cosolutes (including buffer and electrolyte components) on the determination of second virial coefficients for proteins by small-angle X-ray scattering (SAXS)-a factor overlooked in current analyses in terms of expressions for a two-component system. A potential deficiency of existing practices is illustrated by reassessment of published results on the effect of polyethylene glycol concentration on the second virial coefficient for urate oxidase. This error reflects the substitution of I(0,c3,0), the scattering intensity in the limit of zero scattering angle and solute concentration, for I(0,0,0), the corresponding parameter in the limit of zero cosolute concentration (c3) as well. Published static light scattering results on the dependence of the apparent molecular weight of ovalbumin on buffer concentration are extrapolated to zero concentration to obtain the true value (M2) and thereby establish the feasibility of obtaining the analogous SAXS parameter, I(0,0,0), experimentally. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  12. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles.

    PubMed

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M

    2013-10-17

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Qr.

  13. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Allam, Ayat A.; Sadat, Md Ehsan; Potter, Sarah J.; Mast, David B.; Mohamed, Dina F.; Habib, Fawzia S.; Pauletti, Giovanni M.

    2013-10-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions.

  14. Optimization of protein solution by a novel experimental design method using thermodynamic properties.

    PubMed

    Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon

    2012-09-01

    In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.

  15. Hydrolytic weakening in olivine single crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob A.; Zimmerman, Mark E.; Kohlstedt, David L.

    2017-05-01

    Deformation experiments on single crystals of San Carlos olivine under hydrous conditions were performed to investigate the microphysical processes responsible for hydrolytic weakening during dislocation creep. Hydrogen was supplied to the crystals using either talc or brucite sealed in nickel capsules with the crystal. Deformation experiments were carried out using a gas medium apparatus at temperatures of 1050° to 1250°C, a confining pressure of 300 MPa, differential stresses of 45 to 294 MPa, and resultant strain rates of 1.5 × 10-6 to 4.4 × 10-4 s-1. For talc-buffered (i.e., water and orthopyroxene-buffered) samples at high temperatures, the dependence of strain rate on stress follows a power law relationship with a stress exponent (n) of ˜2.5 and an activation energy of ˜490 kJ/mol. Brucite-buffered samples deformed faster than talc-buffered samples but contained similar hydrogen concentrations, demonstrating that strain rate is influenced by orthopyroxene activity under hydrous conditions. The values of n and dependence of strain rate on orthopyroxene activity are consistent with hydrolytic weakening occurring in the climb-controlled dislocation creep regime that is associated with deformation controlled by lattice diffusion under hydrous conditions and by pipe diffusion under anhydrous conditions. Analyses of postdeformation electron-backscatter diffraction data demonstrate that dislocations with [100] Burgers vectors are dominant in the climb-controlled regime and dislocations with [001] are dominant in the glide-controlled regime. Comparison of the experimentally determined constitutive equations demonstrates that under hydrous conditions crystals deform 1 to 2 orders of magnitude faster than under anhydrous conditions.

  16. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, J.; Winkler, J.; Christensen, D.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputsmore » for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.« less

  17. Diluents for stabilization of tuberculin

    PubMed Central

    Magnusson, Mogens; Guld, Johannes; Magnus, Knut; Waaler, Hans

    1958-01-01

    Tuberculin is known to be adsorbed to containers and syringes. In the present paper, the adsorption which takes place in the ampoules has been studied in relation to the diluent for the tuberculin. Adsorption was most evident in dilutions prepared with saline or with phosphate buffer containing dextran. The inclusion in phosphate buffer diluent of small amounts of proteins or synthetic surface-active agents decreased or prevented adsorption. A boric-acid sodium-borate diluent containing gum arabic, previously recommended for the preparation of stabilized tuberculin dilutions, was found to be ineffective. The most suitable diluent for the preparation of stable tuberculin dilutions was a 0.05‰ solution of Tween 80 in phosphate-buffered saline; this diluent appeared to prevent adsorption under a variety of experimental conditions. The inclusion of Tween 80 in the diluent had little or no effect on the general storage stability of purified tuberculin. Sensitization experiments in guinea-pigs, rabbits and humans showed that no sensitization against Tween 80 need be feared when a 0.05‰ solution of Tween 80 in phosphate buffered saline is used in the preparation of tuberculin dilutions. PMID:13618720

  18. Molecular Structures and Momentum Transfer Cross Sections: The Influence of the Analyte Charge Distribution.

    PubMed

    Young, Meggie N; Bleiholder, Christian

    2017-04-01

    Structure elucidation by ion mobility spectrometry-mass spectrometry methods is based on the comparison of an experimentally measured momentum transfer cross-section to cross-sections calculated for model structures. Thus, it is imperative that the calculated cross-section must be accurate. However, it is not fully understood how important it is to accurately model the charge distribution of an analyte ion when calculating momentum transfer cross-sections. Here, we calculate and compare momentum transfer cross-sections for carbon clusters that differ in mass, charge state, and mode of charge distribution, and vary temperature and polarizability of the buffer gas. Our data indicate that the detailed distribution of the ion charge density is intimately linked to the contribution of glancing collisions to the momentum transfer cross-section. The data suggest that analyte ions with molecular mass ~3 kDa or momentum transfer cross-section 400-500 Å 2 would be significantly influenced by the charge distribution in nitrogen buffer gas. Our data further suggest that accurate structure elucidation on the basis of IMS-MS data measured in nitrogen buffer gas must account for the molecular charge distribution even for systems as large as C 960 (~12 kDa) when localized charges are present and/or measurements are conducted under cryogenic temperatures. Finally, our data underscore that accurate structure elucidation is unlikely if ion mobility data recorded in one buffer gas is converted into other buffer gases when electronic properties of the buffer gases differ. Graphical Abstract ᅟ.

  19. Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.

    2012-01-01

    The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).

  20. Parameterization of hyperpolarized (13)C-bicarbonate-dissolution dynamic nuclear polarization.

    PubMed

    Scholz, David Johannes; Otto, Angela M; Hintermair, Josef; Schilling, Franz; Frank, Annette; Köllisch, Ulrich; Janich, Martin A; Schulte, Rolf F; Schwaiger, Markus; Haase, Axel; Menzel, Marion I

    2015-12-01

    (13)C metabolic MRI using hyperpolarized (13)C-bicarbonate enables preclinical detection of pH. To improve signal-to-noise ratio, experimental procedures were refined, and the influence of pH, buffer capacity, temperature, and field strength were investigated. Bicarbonate preparation was investigated. Bicarbonate was prepared and applied in spectroscopy at 1, 3, 14 T using pure dissolution, culture medium, and MCF-7 cell spheroids. Healthy rats were imaged by spectral-spatial spiral acquisition for spatial and temporal bicarbonate distribution, pH mapping, and signal decay analysis. An optimized preparation technique for maximum solubility of 6 mol/L and polarization levels of 19-21% is presented; T1 and SNR dependency on field strength, buffer capacity, and pH was investigated. pH mapping in vivo is demonstrated. An optimized bicarbonate preparation and experimental procedure provided improved T1 and SNR values, allowing in vitro and in vivo applications.

  1. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    PubMed

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  2. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  3. Petri net modelling of buffers in automated manufacturing systems.

    PubMed

    Zhou, M; Dicesare, F

    1996-01-01

    This paper presents Petri net models of buffers and a methodology by which buffers can be included in a system without introducing deadlocks or overflows. The context is automated manufacturing. The buffers and models are classified as random order or order preserved (first-in-first-out or last-in-first-out), single-input-single-output or multiple-input-multiple-output, part type and/or space distinguishable or indistinguishable, and bounded or safe. Theoretical results for the development of Petri net models which include buffer modules are developed. This theory provides the conditions under which the system properties of boundedness, liveness, and reversibility are preserved. The results are illustrated through two manufacturing system examples: a multiple machine and multiple buffer production line and an automatic storage and retrieval system in the context of flexible manufacturing.

  4. Implications of groundwater hydrology to buffer design in the southeastern U.S.

    Treesearch

    Ge Sun; James M. Vose; Devendra M. Amatya; Carl Trettin; Steven G. McNulty

    2008-01-01

    The objective of this study was to examine the hydrologic processes of shallow groundwater to better define and design forest riparian management zones in headwater streams of two contrasting terrains in the southeastern U.S. We employed two long-term experimental watersheds, WS80 (206 ha) and WS77 (151 ha) at the Santee Experimental Forests in South Carolina, and WS2...

  5. Hormone purification by isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1982-01-01

    The performance of a ground-prototype of an apparatus for recycling isoelectric focusing was evaluated in an effort to provide technology for large scale purification of peptide hormones, proteins, and other biologicals. Special emphasis was given to the effects of gravity on the function of the apparatus and to the determination of potential advantages deriveable from its use in a microgravity environment. A theoretical model of isoelectric focusing sing chemically defined buffer systems for the establishment of the pH gradients was developed. The model was transformed to a form suitable for computer simulations and was used extensively for the design of experimental buffers.

  6. In-situ Optical Waveguides for Monitoring and Modifying Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula; Osterberg, Ulf

    2004-01-01

    The use of electric fields in the growth of protein crystals was investigated, both theoretically and experimentally. We used dc, ac and optical fields to change the spatial distribution of proteins. Dc fields had only local effects, due to the conductivity of the growth solution. We found that for low frequency fields, movement of the buffer and salt ions dominated, and that for high frequency ac fields, &electrophoretic effects could be useful for relocating growing protein crystals. The most promising result was that for optical fields, a large gradient in the field could be used to capture a crystal, and observe growth in-situ. This concept could be developed into an experimental setup compatible with automated x-ray diffraction measurements in microgravity.

  7. Time-related Changes in pH, Buffering Capacity and Phosphate and Urea Concentration of Stimulated Saliva.

    PubMed

    Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan

    2014-01-01

    To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.

  8. Two New Nuclear Isolation Buffers for Plant DNA Flow Cytometry: A Test with 37 Species

    PubMed Central

    Loureiro, João; Rodriguez, Eleazar; Doležel, Jaroslav; Santos, Conceição

    2007-01-01

    Background and Aims After the initial boom in the application of flow cytometry in plant sciences in the late 1980s and early 1990s, which was accompanied by development of many nuclear isolation buffers, only a few efforts were made to develop new buffer formulas. In this work, recent data on the performance of nuclear isolation buffers are utilized in order to develop new buffers, general purpose buffer (GPB) and woody plant buffer (WPB), for plant DNA flow cytometry. Methods GPB and WPB were used to prepare samples for flow cytometric analysis of nuclear DNA content in a set of 37 plant species that included herbaceous and woody taxa with leaf tissues differing in structure and chemical composition. The following parameters of isolated nuclei were assessed: forward and side light scatter, propidium iodide fluorescence, coefficient of variation of DNA peaks, quantity of debris background, and the number of particles released from sample tissue. The nuclear genome size of 30 selected species was also estimated using the buffer that performed better for a given species. Key Results In unproblematic species, the use of both buffers resulted in high quality samples. The analysis of samples obtained with GPB usually resulted in histograms of DNA content with higher or similar resolution than those prepared with the WPB. In more recalcitrant tissues, such as those from woody plants, WPB performed better and GPB failed to provide acceptable results in some cases. Improved resolution of DNA content histograms in comparison with previously published buffers was achieved in most of the species analysed. Conclusions WPB is a reliable buffer which is also suitable for the analysis of problematic tissues/species. Although GPB failed with some plant species, it provided high-quality DNA histograms in species from which nuclear suspensions are easy to prepare. The results indicate that even with a broad range of species, either GPB or WPB is suitable for preparation of high-quality suspensions of intact nuclei suitable for DNA flow cytometry. PMID:17684025

  9. NH2- in a cold ion trap with He buffer gas: Ab initio quantum modeling of the interaction potential and of state-changing multichannel dynamics

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Yurtsever, Ersin; Wester, Roland; Gianturco, Franco A.

    2018-05-01

    We present an extensive range of accurate ab initio calculations, which map in detail the spatial electronic potential energy surface that describes the interaction between the molecular anion NH2 - (1A1) in its ground electronic state and the He atom. The time-independent close-coupling method is employed to generate the corresponding rotationally inelastic cross sections, and then the state-changing rates over a range of temperatures from 10 to 30 K, which is expected to realistically represent the experimental trapping conditions for this ion in a radio frequency ion trap filled with helium buffer gas. The overall evolutionary kinetics of the rotational level population involving the molecular anion in the cold trap is also modelled during a photodetachment experiment and analyzed using the computed rates. The present results clearly indicate the possibility of selectively detecting differences in behavior between the ortho- and para-anions undergoing photodetachment in the trap.

  10. Structure and Dynamics of Highly PEG-ylated Sterically Stabilized Micelles in Aqueous Media

    PubMed Central

    Vuković, Lela; Khatib, Fatima A.; Drake, Stephanie P.; Madriaga, Antonett; Brandenburg, Kenneth S.; Král, Petr; Onyuksel, Hayat

    2011-01-01

    Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We study sterically stabilized micelles (SSM) of self-assembled DSPE-PEG2000 in pure water and isotonic HEPES buffered saline solution. The observed SSM sizes of 2 – 15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration (CMC) of DSPE-PEG2000 is ≈ 10 times higher in water than in buffer and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we perform atomistic molecular dynamics simulations of the solvated SSM. Our modeling reveal that the observed assemblies have very different aggregation numbers of Nagg ≈ 90 (saline solution) and Nagg < 8 (water), due to very different screening of their charged −PO4− groups. We also demonstrate that the micelle cores can inflate and their corona highly fluctuate, allowing thus storage and delivery of molecules with different chemistry. PMID:21780810

  11. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media.

    PubMed

    Vuković, Lela; Khatib, Fatima A; Drake, Stephanie P; Madriaga, Antonett; Brandenburg, Kenneth S; Král, Petr; Onyuksel, Hayat

    2011-08-31

    Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We have studied sterically stabilized micelles (SSMs) of self-assembled DSPE–PEG2000 in pure water and isotonic HEPES-buffered saline solution. The observed SSM sizes of 2–15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration of DSPE–PEG2000 is 10 times higher in water than in buffer, and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we performed atomistic molecular dynamics simulations of solvated SSMs. Our modeling revealed that the observed assemblies have very different aggregation numbers (N(agg) ≈ 90 in saline solution and N(agg) < 8 in water) because of very different screening of their charged PO4(–) groups. We also demonstrate that the micelle cores can inflate and their coronas can fluctuate strongly, thus allowing storage and delivery of molecules with different chemistries.

  12. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  13. DAQ application of PC oscilloscope for chaos fiber-optic fence system based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Lu, Manman; Fang, Nian; Wang, Lutang; Huang, Zhaoming; Sun, Xiaofei

    2011-12-01

    In order to obtain simultaneously high sample rate and large buffer in data acquisition (DAQ) for a chaos fiber-optic fence system, we developed a double-channel high-speed DAQ application of a digital oscilloscope of PicoScope 5203 based on LabVIEW. We accomplished it by creating call library function (CLF) nodes to call the DAQ functions in the two dynamic link libraries (DLLs) of PS5000.dll and PS5000wrap.dll provided by Pico Technology Company. The maximum real-time sample rate of the DAQ application can reach 1GS/s. We can control the resolutions of the application at the sample time and data amplitudes by changing their units in the block diagram, and also control the start and end times of the sampling operations. The experimental results show that the application has enough high sample rate and large buffer to meet the demanding DAQ requirements of the chaos fiber-optic fence system.

  14. Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction

    PubMed Central

    Hong, Young-Joo; Makita, Shuichi; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2014-01-01

    Polarization mode dispersion (PMD) degrades the performance of Jones-matrix-based polarization-sensitive multifunctional optical coherence tomography (JM-OCT). The problem is specially acute for optically buffered JM-OCT, because the long fiber in the optical buffering module induces a large amount of PMD. This paper aims at presenting a method to correct the effect of PMD in JM-OCT. We first mathematically model the PMD in JM-OCT and then derive a method to correct the PMD. This method is a combination of simple hardware modification and subsequent software correction. The hardware modification is introduction of two polarizers which transform the PMD into global complex modulation of Jones matrix. Subsequently, the software correction demodulates the global modulation. The method is validated with an experimentally obtained point spread function with a mirror sample, as well as by in vivo measurement of a human retina. PMID:25657888

  15. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations

    USGS Publications Warehouse

    Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.

    1992-01-01

    Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors

  16. Solid-solution Zn(O,S) thin films: Potential alternative buffer layer for Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Jani, Margi; Raval, Dhyey; Chavda, Arvind; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    This report investigates the alternative buffer material as Zn(O,S) for chalcogenide Cu2ZnSnS4 (CZTS) solar cell application. Using the band gap tailoring (band bowing) properties of Zn(O,S) system, performance of CZTS solar cell is explore in the present study. Reducing the band offsets with the hetero-junction partners plays a deterministic role in the performance of the device using Zn(O,S) as buffer layer. The experimental performance of the device with the CZTS/Zn(O,S) film developed by Spray pyrolysis method and analyze using J-V characterization in dark and illuminated configuration. Device with the best achievable performance shows Voc of 150 mV and Jsc of 0.47 mA/cm2 has been presented with the possibility of application in the energy harvesting.

  17. Observing random walks of atoms in buffer gas through resonant light absorption

    NASA Astrophysics Data System (ADS)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  18. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  19. Multi-function all optical packet switch by periodic wavelength arrangement in an arrayed waveguide grating and wideband optical filters.

    PubMed

    Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang

    2012-01-16

    By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.

  20. The quantitation of buffering action II. Applications of the formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-16

    The paradigm of "buffering" originated in acid-base physiology, but was subsequently extended to other fields and is now used for a wide and diverse set of phenomena. In the preceding article, we have presented a formal and general approach to the quantitation of buffering action. Here, we use that buffering concept for a systematic treatment of selected classical and other buffering phenomena. H+ buffering by weak acids and "self-buffering" in pure water represent "conservative buffered systems" whose analysis reveals buffering properties that contrast in important aspects from classical textbook descriptions. The buffering of organ perfusion in the face of variable perfusion pressure (also termed "autoregulation") can be treated in terms of "non-conservative buffered systems", the general form of the concept. For the analysis of cytoplasmic Ca++ concentration transients (also termed "muffling"), we develop a related unit that is able to faithfully reflect the time-dependent quantitative aspect of buffering during the pre-steady state period. Steady-state buffering is shown to represent the limiting case of time-dependent muffling, namely for infinitely long time intervals and infinitely small perturbations. Finally, our buffering concept provides a stringent definition of "buffering" on the level of systems and control theory, resulting in four absolute ratio scales for control performance that are suited to measure disturbance rejection and setpoint tracking, and both their static and dynamic aspects. Our concept of buffering provides a powerful mathematical tool for the quantitation of buffering action in all its appearances.

  1. Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering.

    PubMed

    Al Aïn, Syrina; Perry, Rosemarie E; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A; Sullivan, Regina M

    2017-02-01

    Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14 C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.

  2. Role of Buffers in Protein Formulations.

    PubMed

    Zbacnik, Teddy J; Holcomb, Ryan E; Katayama, Derrick S; Murphy, Brian M; Payne, Robert W; Coccaro, Richard C; Evans, Gabriel J; Matsuura, James E; Henry, Charles S; Manning, Mark Cornell

    2017-03-01

    Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. A low-latency optical switch architecture using integrated μm SOI-based contention resolution and switching

    NASA Astrophysics Data System (ADS)

    Mourgias-Alexandris, G.; Moralis-Pegios, M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    The urgent need for high-bandwidth and high-port connectivity in Data Centers has boosted the deployment of optoelectronic packet switches towards bringing high data-rate optics closer to the ASIC, realizing optical transceiver functions directly at the ASIC package for high-rate, low-energy and low-latency interconnects. Even though optics can offer a broad range of low-energy integrated switch fabrics for replacing electronic switches and seamlessly interface with the optical I/Os, the use of energy- and latency-consuming electronic SerDes continues to be a necessity, mainly dictated by the absence of integrated and reliable optical buffering solutions. SerDes undertakes the role of optimally synergizing the lower-speed electronic buffers with the incoming and outgoing optical streams, suggesting that a SerDes-released chip-scale optical switch fabric can be only realized in case all necessary functions including contention resolution and switching can be implemented on a common photonic integration platform. In this paper, we demonstrate experimentally a hybrid Broadcast-and-Select (BS) / wavelength routed optical switch that performs both the optical buffering and switching functions with μm-scale Silicon-integrated building blocks. Optical buffering is carried out in a silicon-integrated variable delay line bank with a record-high on-chip delay/footprint efficiency of 2.6ns/mm2 and up to 17.2 nsec delay capability, while switching is executed via a BS design and a silicon-integrated echelle grating, assisted by SOA-MZI wavelength conversion stages and controlled by a FPGA header processing module. The switch has been experimentally validated in a 3x3 arrangement with 10Gb/s NRZ optical data packets, demonstrating error-free switching operation with a power penalty of <5dB.

  4. The adsorption mechanism of nortryptiline on C18-bonded discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2005-08-01

    The adsorption isotherms of an ionizable compound, nortriptyline, were accurately measured by frontal analysis (FA) on a C{sub 18}-Discovery column, first without buffer (in an aqueous solution of acetonitrile at 15%, v/v of ACN), then with a buffer (in 28%, v/v ACN solution). The buffers were aqueous solutions containing 20 mM of formic acid or a phosphate buffer at pH 2.70. The linear range of the isotherm could not be reached with the non-buffered mobile phase using a dynamic range larger than 40,000 (from 1.2 x 10{sup -3} g/L to 50 g/L). With a 20 mM buffer in the liquidmore » phase, the isotherm is linear for concentrations of nortriptyline inferior to 10{sup -3} g/L (or 3 {micro} mol/L). The adsorption energy distribution (AED) was calculated to determine the heterogeneity of the adsorption process. AED and FA were consistent and lead to a trimodal distribution. A tri-Moreau and a tri-Langmuir isotherm models accounted the best for the adsorption of nortriptyline without and with buffer, respectively. The nature of the buffer affects significantly the middle-energy sites while the properties of the lowest and highest of the three types of energy sites are almost unchanged. The desorption profiles of nortriptyline show some anomalies in relation with the formation of a complex multilayer adsorbed phase of acetonitrile whose excess isotherm was measured by the minor disturbance method. The C{sub 18}-Discovery column has about the same total saturation capacity, around 200 g of nortriptyline per liter of adsorbent (or 116 mg/g), with or without buffer. About 98-99% of the available surface consists in low energy sites. The coexistence of these different types of sites on the surface solves the McCalley's enigma, that the column efficiency begins to drop rapidly when the analyte concentration reaches values that are almost one hundred times lower than those that could be predicted from the isotherm data acquired under the same experimental conditions. Due to the presence of some relatively rare high energy sites, the largest part of the saturation capacity is not practically useful.« less

  5. Experimental observation of motion of edge dislocations in Ge/Ge{sub x}Si{sub 1–x}/Si(001) (x = 0.2–0.6) heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolkhovityanov, Yu. B., E-mail: bolkhov@isp.nsc.ru; Gutakovskii, A. K.; Deryabin, A. S.

    2016-11-15

    The Ge/Ge{sub x}Si{sub 1–x}/Si(001) (x = 0.2–0.6) heterostructures grown by the molecular epitaxy method are analyzed using high-resolution electron microscopy with atomic resolution. The thickness of the Ge{sub x}Si{sub 1–x} buffer layer is 7–35 nm. It is shown that such heterostructures relax in two stages: an ordered network of edge dislocations is formed during their growth (500°C) at the Ge/GeSi interface and then, contrary to the generally accepted opinion concerning their immobility, some of the edge dislocations move through the buffer GeSi layer to the GeSi/Si(001) interface during annealing at higher temperatures and x > 0.3. It is found thatmore » plastic relaxation of the GeSi buffer layer occurs due to motion of dislocation complexes of the edge type, consisting of a pair of complementary 60° dislocations with the ends of (111) extra planes located approximately at a distance from 2 to 12 interplanar spacings. It is shown that the penetration of dislocation complexes into the GeSi buffer layer and further to the GeSi/Si interface is intensified with increasing annealing temperature (600–800°C) and the fraction of Ge in the buffer layer.« less

  6. The systematic study of the electroporation and electrofusion of B16-F1 and CHO cells in isotonic and hypotonic buffer.

    PubMed

    Usaj, Marko; Kanduser, Masa

    2012-09-01

    The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells' response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41 ± 9 % yield, while in isotonic buffer 32 ± 11 % yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1 % in isotonic buffer to 10 ± 4 % in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.

  7. A 4H Silicon Carbide Gate Buffer for Integrated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, N; Frank, S; Britton, C

    2014-02-01

    A gate buffer fabricated in a 2-mu m 4H silicon carbide (SiC) process is presented. The circuit is composed of an input buffer stage with a push-pull output stage, and is fabricated using enhancement mode N-channel FETs in a process optimized for SiC power switching devices. Simulation and measurement results of the fabricated gate buffer are presented and compared for operation at various voltage supply levels, with a capacitive load of 2 nF. Details of the design including layout specifics, simulation results, and directions for future improvement of this buffer are presented. In addition, plans for its incorporation into anmore » isolated high-side/low-side gate-driver architecture, fully integrated with power switching devices in a SiC process, are briefly discussed. This letter represents the first reported MOSFET-based gate buffer fabricated in 4H SiC.« less

  8. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  9. Intra- and Inter-personal Consequences of Protective Buffering among Cancer Patients and Caregivers

    PubMed Central

    Langer, Shelby L.; Brown, Jonathon D.; Syrjala, Karen L.

    2009-01-01

    BACKGROUND Protective buffering refers to hiding cancer-related thoughts and concerns from one’s spouse or partner. This study sought to examine the intra- and inter-personal consequences of protective buffering and motivations for such (desire to shield partner from distress, desire to shield self from distress). METHODS Eighty hematopoietic stem cell transplant patients and their spousal caregivers/ partners completed measures designed to assess protective buffering and relationship satisfaction at two time points: prior to the transplant (T1) and 50 days post-transplant (T2). Overall mental health was also assessed at T2. RESULTS There was moderate agreement between one dyad member’s reported buffering of his/ her partner, and the partner’s perception of the extent to which s/he felt buffered. Caregivers buffered patients more than patients buffered caregivers, especially at T2. The more participants buffered their partners at T2, and the more they felt buffered, the lower their concurrent relationship satisfaction and the poorer their mental health. The latter effect was particularly true for patients who buffered, and patients who felt buffered. With respect to motivations, patients who buffered primarily to protect their partner at T1 reported increases in relationship satisfaction over time, but when they did so at T2, their caregiver reported concurrent decreases in relationship satisfaction. CONCLUSIONS Protective buffering is costly, in that those who buffer and those who feel buffered report adverse psychosocial outcomes. In addition, buffering enacted by patients with an intention to help may prove counterproductive, ultimately hurting the object of such protection. PMID:19731352

  10. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  11. Categorisation salience and ingroup bias: the buffering role of a multicultural ideology.

    PubMed

    Costa-Lopes, Rui; Pereira, Cícero Roberto; Judd, Charles M

    2014-12-01

    The current work sought to test the moderating role of a multicultural ideology on the relationship between categorisation salience and ingroup bias. Accordingly, in one experimental study, we manipulated categorisation salience and the accessibility of a multicultural ideology, and measured intergroup attitudes. Results show that categorisation salience only leads to ingroup bias when a multiculturalism (MC) ideology is not made salient. Thus, MC ideology attenuates the negative effects of categorisation salience on ingroup bias. These results pertain to social psychology in general showing that the cognitive processes should be construed within the framework of ideological contexts. © 2014 International Union of Psychological Science.

  12. Characteristics of TiO2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    NASA Astrophysics Data System (ADS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-07-01

    In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  13. Characteristics of TiO{sub 2}/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Rohanieza Abdul, E-mail: rohanieza.abdrahman@gmail.com; Zulkefle, Muhammad Al Hadi, E-mail: alhadizulkefle@gmail.com; Abdullah, Wan Fazlida Hanim, E-mail: wanfaz@salam.uitm.edu.my

    In this study, titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO{sub 2}/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V)more » biasing interfacing circuit. TiO{sub 2}/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.« less

  14. Expanding the range of free calcium regulation in biological solutions.

    PubMed

    Dweck, David; Reyes-Alfonso, Avelino; Potter, James D

    2005-12-15

    Many biological systems use ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) to regulate the free calcium concentration ([Ca(2+)](free)) in the presence of physiological levels of free Mg(2+) ([Mg(2+)](free)). Frequently, it is necessary to work at [Ca(2+)](free) beyond EGTA's buffering capabilities. Therefore, we have developed methods to extend the buffering range by adding nitrilotriacetic acid (NTA) to solutions containing EGTA. This extension results from NTA having a lower K'(dCa) than EGTA. Such equilibria are solved by pCa Calculator, a computer program designed to aid in the study of Ca(2+)-dependent physiological processes while accounting for the effects of pH, temperature, and ionic strength. With multiple chelators and pH buffers from which to choose, pCa Calculator calculates the total concentration of each species required to achieve specified free concentrations of Ca(2+), ATP, and Mg(2+). The program is intuitive, user-friendly, and flexible enough to fix or vary the [Mg-ATP(2-)] and ionic strength. Moreover, it can account for increases in experimental volume from calcium addition. A comparative analysis is reported for testing solutions in the presence and absence of NTA by measuring the calcium binding affinity of fluorescent cardiac troponin C. These findings demonstrate that EGTA, when used in conjunction with NTA, improves and expands the regulation of free calcium in solution.

  15. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  16. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  17. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water.

    PubMed

    Beltrán, Fernando J; Aguinaco, Almudena; García-Araya, Juan F; Oropesa, Ana

    2008-08-01

    In this study, water containing the pharmaceutical compound sulfamethoxazole (SMT) was subjected to the various treatments of different oxidation processes involving ozonation, and photolysis and catalysis under different experimental conditions. Removal rates of SMT and total organic carbon (TOC), from experiments of simple UVA radiation, ozonation (O(3)), catalytic ozonation (O(3)/TiO(2)), ozone photolysis (O(3)/UVA), photocatalytic oxidation (O(2)/TiO(2)/UVA) and photocatalytic ozonation (O(3)/UVA/TiO(2)), have been compared. Photocatalytic ozonation leads to the highest SMT removal rate (pH 7 in buffered systems, complete removal is achieved in less than 5min) and total organic carbon (in unbuffered systems, with initial pH=4, 93% TOC removal is reached). Also, lowest ozone consumption per TOC removed and toxicity was achieved with the O(3)/UVA/TiO(2) process. Direct ozone and free radical reactions were found to be the principal mechanisms for SMT and TOC removal, respectively. In photocatalytic ozonation, with buffered (pH 7) aqueous solutions phosphates (buffering salts) and accumulation of bicarbonate scavengers inhibit the reactions completely on the TiO(2) surface. As a consequence, TOC removal diminishes. In all cases, hydrogen peroxide plays a key role in TOC mineralization. According to the results obtained in this work the use of photocatalytic ozonation is recommended to achieve a high mineralization degree of water containing SMT type compounds.

  18. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  19. Improved Epitaxy and Surface Morphology in YBa2Cu3Oy Thin Films Grown on Double Buffered Si Wafers

    NASA Astrophysics Data System (ADS)

    Gao, J.; Kang, L.; Wong, H. Y.; Cheung, Y. L.; Yang, J.

    Highly epitaxial thin films of YBCO have been obtained on silicon wafers using a Eu2CuO4/YSZ (yttrium-stabilized ZrO2) double buffer. Our results showed that application of such a double buffer can significantly enhance the epitaxy of grown YBCO. It also leads to an excellent surface morphology. The average surface roughness was found less than 5 nm in a large range. The results of X-ray small angle reflection and positron spectroscpy demonstrate a very clear and flat interface between YBCO and buffer layers. The Eu2CuO4/YSZ double buffer could be promising for coating high-TC superconducting films on various reactive substrates.

  20. Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering

    PubMed Central

    Al Aïn, Syrina; Perry, Rosemarie E.; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A.; Sullivan, Regina M.

    2016-01-01

    Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother’s social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering. PMID:26934130

  1. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  2. Analysis of a hybrid-undirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.

  3. Graphene electrodes for lithium-niobate electro-optic devices.

    PubMed

    Chang, Zeshan; Jin, Wei; Chiang, Kin Seng

    2018-04-15

    We propose and demonstrate the use of graphene electrodes for lithium-niobate electro-optic (EO) devices to exempt the need of incorporating a buffer layer between the waveguide and the electrodes. Using graphene electrodes, our experimental mode converter, based on an EO-generated long-period grating in a LiNbO 3 waveguide, shows a reduction in the half-π voltage by almost three times, compared with the conventional electrode design using metal. With the buffer layer exempted, the device fabrication process is also significantly simplified. The use of graphene electrodes is an effective approach to enhancing the efficiency of EO devices and, at the same time, reducing their fabrication cost.

  4. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Sueoka, S.; Harafuji, K.

    2017-06-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.

  5. Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells.

    PubMed

    Siol, Sebastian; Dhakal, Tara P; Gudavalli, Ganesh S; Rajbhandari, Pravakar P; DeHart, Clay; Baranowski, Lauryn L; Zakutayev, Andriy

    2016-06-08

    High-throughput computational and experimental techniques have been used in the past to accelerate the discovery of new promising solar cell materials. An important part of the development of novel thin film solar cell technologies, that is still considered a bottleneck for both theory and experiment, is the search for alternative interfacial contact (buffer) layers. The research and development of contact materials is difficult due to the inherent complexity that arises from its interactions at the interface with the absorber. A promising alternative to the commonly used CdS buffer layer in thin film solar cells that contain absorbers with lower electron affinity can be found in β-In2S3. However, the synthesis conditions for the sputter deposition of this material are not well-established. Here, In2S3 is investigated as a solar cell contact material utilizing a high-throughput combinatorial screening of the temperature-flux parameter space, followed by a number of spatially resolved characterization techniques. It is demonstrated that, by tuning the sulfur partial pressure, phase pure β-In2S3 could be deposited using a broad range of substrate temperatures between 500 °C and ambient temperature. Combinatorial photovoltaic device libraries with Al/ZnO/In2S3/Cu2ZnSnS4/Mo/SiO2 structure were built at optimal processing conditions to investigate the feasibility of the sputtered In2S3 buffer layers and of an accelerated optimization of the device structure. The performance of the resulting In2S3/Cu2ZnSnS4 photovoltaic devices is on par with CdS/Cu2ZnSnS4 reference solar cells with similar values for short circuit currents and open circuit voltages, despite the overall quite low efficiency of the devices (∼2%). Overall, these results demonstrate how a high-throughput experimental approach can be used to accelerate the development of contact materials and facilitate the optimization of thin film solar cell devices.

  6. Chemical Rescue of Enzymes: Proton Transfer in Mutants of Human Carbonic Anhydrase II

    PubMed Central

    Maupin, C. Mark; Castillo, Norberto; Taraphder, Srabani; Tu, Chingkuang; McKenna, Robert; Silverman, David N.; Voth, Gregory A.

    2011-01-01

    In human carbonic anhydrase II (HCA II) the mutation of position 64 from histidine to alanine (H64A) disrupts the rate limiting proton transfer (PT) event, resulting in a reduction of the catalytic activity of the enzyme as compared to the wild-type. Potential of mean force (PMF) calculations utilizing the multistate empirical valence bond (MS-EVB) methodology for H64A HCA II give a PT free energy barrier significantly higher than that found in the wild-type enzyme. This high barrier, determined in the absence of exogenous buffer and assuming no additional ionizable residues in the PT pathway, indicates the likelihood of alternate enzyme pathways that utilize either ionizable enzyme residues (self-rescue) and/or exogenous buffers (chemical rescue). It has been shown experimentally that the catalytic activity of H64A HCA II can be chemically rescued to near wild type levels by the addition of the exogenous buffer 4-methylimidazole (4MI). Crystallographic studies have identified two 4MI binding sites, yet site specific mutations intended to disrupt 4MI binding have demonstrated these sites to be non-productive. In the present work MS-EVB simulations show that binding of 4MI near Thr199 in the H64A HCA II mutant, a binding site determined by NMR spectroscopy, results in a viable chemical rescue pathway. Additional viable rescue pathways are also identified where 4MI acts as a proton transport intermediary from the active site to ionizable residues on the rim of the active site, revealing a probable mode of action for the chemical rescue pathway PMID:21452838

  7. The influence of bile salts on the distribution of simvastatin in the octanol/buffer system.

    PubMed

    Đanić, Maja; Pavlović, Nebojša; Stanimirov, Bojan; Vukmirović, Saša; Nikolić, Katarina; Agbaba, Danica; Mikov, Momir

    2016-01-01

    Distribution coefficient (D) is useful parameter for evaluating drugs permeability properties across biological membranes, which are of importance for drugs bioavailability. Given that bile acids are intensively studied as drug permeation-modifying and -solubilizing agents, the aim of this study was to estimate the influence of sodium salts of cholic (CA), deoxycholic (DCA) and 12-monoketocholic acids (MKC) on distribution coefficient of simvastatin (SV) (lactone [SVL] and acid form [SVA]) which is a highly lipophilic compound with extremely low water solubility and bioavailability. LogD values of SVA and SVL with or without bile salts were measured by liquid-liquid extraction in n-octanol/buffer systems at pH 5 and 7.4. SV concentrations in aqueous phase were determined by HPLC-DAD. Chem3D Ultra program was applied for computation of physico-chemical properties of analyzed compounds and their complexes. Statistically significant decrease in both SVA and SVL logD was observed for all three studied bile salts at both selected pH. MKC exerted the most pronounced effect in the case of SVA while there were no statistically significant differences between observed bile salts for SVL. The calculated physico-chemical properties of analyzed compounds and their complexes supported experimental results. Our data indicate that the addition of bile salts into the n-octanol/buffer system decreases the values of SV distribution coefficient at both studied pH values. This may be the result of the formation of hydrophilic complexes increasing the solubility of SV that could consequently impact the pharmacokinetic parameters of SV and the final drug response in patients.

  8. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2017-02-01

    Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.

  9. Urban green spaces' effectiveness as a psychological buffer for the negative health impact of noise pollution: a systematic review.

    PubMed

    Dzhambov, Angel Mario; Dimitrova, Donka Dimitrova

    2014-01-01

    Noise pollution is one of the four major pollutions in the world. Little evidence exists about the actual preventive benefits of psychological noise attenuation by urban green spaces, especially from the perspective of environmental medicine and, to the best of our knowledge, there is not a systematic analysis on this topic. The aim of this review was to systematically evaluate whether there is conclusive scientific evidence for the effectiveness of urban green spaces as a psychological buffer for the negative impact of noise pollution on human health and to promote an evidence-based approach toward this still growing environmental hazard. MEDLINE and EMBASE databases were searched for experimental and epidemiological studies published before June 04, 2013 in English and Spanish. Data was independently extracted in two step process by the authors. Due to the heterogeneity of the included studies qualitative assessment was performed. We found moderate evidence that the presence of vegetation can generally reduce the negative perception of noise (supported with an electroencephalogram test in one of the experimental studies; consistent with the data from two epidemiological studies; one experiment found no effect and one was inconclusive about the positive effect). This review fills a gap in the literature and could help researchers further clarify the proper implementation of urban green spaces as a psychological buffer in areas with population exposed to chronic noise pollution.

  10. Structural evaluation of InAsP/InGaAsP strained-layer superlattices with dislocations as grown by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakashima, Kiichi; Sugiura, Hideo

    1997-08-01

    The relaxation process in InAsP/InGaAsP strained-layer superlattices (SLSs) with interfacial misfit dislocations has been investigated systematically by transmission electron microscopy (TEM) and x-ray analyses. The TEM analysis reveals that dislocations locate a little inside the buffer layer near the interface between the buffer and first well layer in the SLS. The x-ray analysis of (400) azimuthal angle dependence indicates the buffer layer has a large macroscopic tilt. Using a curve fitting analysis of various (hkl) x-ray profiles and reciprocal lattice mapping measurements, residual strain was determined quantitatively, i.e., Δa∥ and Δa⊥, in the SLS and buffer layer. These results reveal that the dislocations mainly cause lattice distortion of the buffer layer rather than relaxation of the SLS layer. The most remarkable result is that the change of a∥ is not equal to that of a⊥ in the buffer layer. This phenomenon strongly suggests that microplastic domains are generated in the buffer layer.

  11. Protocol for buffer space negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessett, D.

    There are at least two ways to manage the buffer memory of a communications node. On etechnique veiws the buffer as a single resource that is to be reserved and released as a unit for a particular communication transaction. A more common approach treats the node's buffer space as a collection of resources (e.g., bytes, words, packet slots) capable of being allocated among multiple concurrent conversations. To achieve buffer space multiplexing, some sort of negotiation for buffer space must take place between source and sink nodes before a transaction can commence. Results are presented which indicate that, for an applicationmore » involving a CSMA broadcast network, buffer space multiplexing offers better performance than buffer reservation. To achieve this improvement, a simple protocol is presented that features flow-control information traveling both from source to sink as well as from sink to source. It is argued that this bidirectionality allows the sink to allocate buffer space among its active communication paths more effectively. 13 figures.« less

  12. Effect of sample storage temperature and buffer formulation on faecal immunochemical test haemoglobin measurements.

    PubMed

    Symonds, Erin L; Cole, Stephen R; Bastin, Dawn; Fraser, Robert Jl; Young, Graeme P

    2017-12-01

    Objectives Faecal immunochemical test accuracy may be adversely affected when samples are exposed to high temperatures. This study evaluated the effect of two sample collection buffer formulations (OC-Sensor, Eiken) and storage temperatures on faecal haemoglobin readings. Methods Faecal immunochemical test samples returned in a screening programme and with ≥10 µg Hb/g faeces in either the original or new formulation haemoglobin stabilizing buffer were stored in the freezer, refrigerator, or at room temperature (22℃-24℃), and reanalysed after 1-14 days. Samples in the new buffer were also reanalysed after storage at 35℃ and 50℃. Results were expressed as percentage of the initial concentration, and the number of days that levels were maintained to at least 80% was calculated. Results Haemoglobin concentrations were maintained above 80% of their initial concentration with both freezer and refrigerator storage, regardless of buffer formulation or storage duration. Stability at room temperature was significantly better in the new buffer, with haemoglobin remaining above 80% for 20 days compared with six days in the original buffer. Storage at 35℃ or 50℃ in the new buffer maintained haemoglobin above 80% for eight and two days, respectively. Conclusion The new formulation buffer has enhanced haemoglobin stabilizing properties when samples are exposed to temperatures greater than 22℃.

  13. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion (Briefing Charts)

    DTIC Science & Technology

    2014-07-01

    applications • Mentioned as a potential buffer / storage material for TPVs • Brief mentions in the solar thermal literature...Charts 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Experimental Investigation of Latent Heat Thermal Energy Storage for 5a. CONTRACT...NUMBER In-House Bi-Modal Solar Thermal Propulsion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew R. Gilpin, David B. Scharfe

  14. Multi-scale continuum modeling of biological processes: from molecular electro-diffusion to sub-cellular signaling transduction

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Kekenes-Huskey, P.; Hake, J. E.; Holst, M. J.; McCammon, J. A.; Michailova, A. P.

    2012-01-01

    This paper presents a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times, with increasing ionic strength, and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a nonlinear, reaction-diffusion system describing Ca2+ ligand buffering and diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal the important role of mobile and stationary Ca2+ buffers, including Ca2+ indicator dye. We found that alterations in Ca2+-binding and dissociation rates of troponin C (TnC) and total TnC concentration modulate sub-cellular Ca2+ signals. The model predicts that reduced off-rate in the whole troponin complex (TnC, TnI, TnT) versus reconstructed thin filaments (Tn, Tm, actin) alters cytosolic Ca2+ dynamics under control conditions or in disease-linked TnC mutations. The ultimate goal of these studies is to develop scalable methods and theories for the integration of molecular-scale information into simulations of cellular-scale systems.

  15. A VSA-based strategy for placing conservation buffers in agricultural watersheds.

    PubMed

    Qiu, Zeyuan

    2003-09-01

    Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.

  16. Social Identity and Achievement Gaps: Evidence from an Affirmation Intervention

    ERIC Educational Resources Information Center

    Dee, Thomas S.

    2015-01-01

    One provocative explanation for the continued persistence of minority achievement gaps involves the performance-dampening anxiety thought to be experienced by minority students in highly evaluative settings (i.e., "stereotype threat"). Recent field-experimental studies suggest that modest, low-cost "buffering" interventions…

  17. Investigation of numerical simulation on all-optical flip-flop stability maps of 1550nm vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Li, Jun; Xia, Qing; Wang, Xiaofa

    2017-10-01

    Based on the extended spin-flip model, the all-optical flip-flop stability maps of the 1550nm vertical-cavity surface-emitting laser have been studied. Theoretical results show that excellent agreement is found between theoretical and the reported experimental results in polarization switching point current which is equal to 1.95 times threshold. Furthermore, the polarization bistable region is wide which is from 1.05 to 1.95 times threshold. A new method is presented that uses power difference between two linear polarization modes as the judging criterion of trigger degree and stability maps of all-optical flip-flop operation under different injection parameters are obtained. By alternately injecting set and reset pulse with appropriate parameters, the mutual conversion switching between two polarization modes is realized, the feasibility of all-optical flip-flop operation is checked theoretically. The results show certain guiding significance on the experimental study on all optical buffer technology.

  18. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J. P.; Verdon, C. P.; Meyerhofer, D. D.

    1997-04-15

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600-{mu}m-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measuredmore » using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam.« less

  19. Membrane-associated actin from the microvillar membranes of ascites tumor cells

    PubMed Central

    1982-01-01

    A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin. PMID:6890066

  20. Membrane-associated actin from the microvillar membranes of ascites tumor cells.

    PubMed

    Carraway, K L; Cerra, R F; Jung, G; Carraway, C A

    1982-09-01

    A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin.

  1. A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Moralis-Pegios, M.; Terzenidis, N.; Mourgias-Alexandris, G.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    Disaggregated Data Centers (DCs) have emerged as a powerful architectural framework towards increasing resource utilization and system power efficiency, requiring, however, a networking infrastructure that can ensure low-latency and high-bandwidth connectivity between a high-number of interconnected nodes. This reality has been the driving force towards high-port count and low-latency optical switching platforms, with recent efforts concluding that the use of distributed control architectures as offered by Broadcast-and-Select (BS) layouts can lead to sub-μsec latencies. However, almost all high-port count optical switch designs proposed so far rely either on electronic buffering and associated SerDes circuitry for resolving contention or on buffer-less designs with packet drop and re-transmit procedures, unavoidably increasing latency or limiting throughput. In this article, we demonstrate a 256x256 optical switch architecture for disaggregated DCs that employs small-size optical delay line buffering in a distributed control scheme, exploiting FPGA-based header processing over a hybrid BS/Wavelength routing topology that is implemented by a 16x16 BS design and a 16x16 AWGR. Simulation-based performance analysis reveals that even the use of a 2- packet optical buffer can yield <620nsec latency with >85% throughput for up to 100% loads. The switch has been experimentally validated with 10Gb/s optical data packets using 1:16 optical splitting and a SOA-MZI wavelength converter (WC) along with fiber delay lines for the 2-packet buffer implementation at every BS outgoing port, followed by an additional SOA-MZI tunable WC and the 16x16 AWGR. Error-free performance in all different switch input/output combinations has been obtained with a power penalty of <2.5dB.

  2. Capillary electrochromatography and capillary electrochromatography-electrospray mass spectrometry for the separation of non-steroidal anti-inflammatory drugs.

    PubMed

    Desiderio, C; Fanali, S

    2000-10-20

    In this study capillary electrochromatography (CEC) was utilized for the separation of ten non-steroidal anti-inflammatory drugs (NSAIDs). Experiments were carried out in a commercially available CE instrument using a packed capillary with RP-18 silica particles where the stationary phase completely filled the capillary. The mobile phase consisted of a mixture of ammonium formate buffer pH 2.5 and acetonitrile. Selectivity and resolution were studied changing the pH and the concentration of the buffer, the acetonitrile content mobile phase and the capillary temperature. The optimum experimental conditions for CEC separation of the studied drug mixture were found using 50 mM ammonium formate pH 2.5-acetonitrile (40:60) at 25 degrees C. The CEC capillary was coupled to an electrospray mass spectrometer for the characterization of the NSAIDs. A mobile phase composed by the same buffer but with a higher concentration of acetonitrile (90%) was used in order to speed up the separation of analytes.

  3. Spotting optimization for oligo microarrays on aldehyde-glass.

    PubMed

    Dawson, Erica D; Reppert, Amy E; Rowlen, Kathy L; Kuck, Laura R

    2005-06-15

    Low-density microarrays that utilize short oligos (<100 nt) for capture are highly attractive for use in diagnostic applications, yet these experiments require strict quality control and meticulous reproducibility. However, a survey of current literature indicates vast inconsistencies in the spotting and processing procedures. In this study, spotting and processing protocols were optimized for aldehyde-functionalized glass substrates. Figures of merit were developed for quantitative comparison of spot quality and reproducibility. Experimental variables examined included oligo concentration in the spotting buffer, composition of the spotting buffer, postspotting "curing" conditions, and postspotting wash conditions. Optimized conditions included the use of 3-4 microM oligo in a 3x standard saline citrate/0.05% sodium dodecyl sulfate/0.001% (3-[(3-cholamidopropyl) dimethylammonia]-1-propane sulfonate) spotting buffer, 24-h postspotting reaction at 100% relative humidity, and a four-step wash procedure. Evaluation of six types of aldehyde-functionalized glass substrates indicated that those manufactured by CEL Associates, Inc. yield the highest oligo coverage.

  4. Gossip-based solutions for discrete rendezvous in populations of communicating agents.

    PubMed

    Hollander, Christopher D; Wu, Annie S

    2014-01-01

    The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm.

  5. Gossip-Based Solutions for Discrete Rendezvous in Populations of Communicating Agents

    PubMed Central

    Hollander, Christopher D.; Wu, Annie S.

    2014-01-01

    The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm. PMID:25397882

  6. Learning Non-Local Dependencies

    ERIC Educational Resources Information Center

    Kuhn, Gustav; Dienes, Zoltan

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…

  7. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity β V is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  8. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    NASA Astrophysics Data System (ADS)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  9. Analysis of Optimal Jitter Buffer Size for VoIP QoS under WiMAX Power-Saving Mode

    NASA Astrophysics Data System (ADS)

    Kim, Hyungsuk; Kim, Taehyoun

    VoIP service is expected as one of the key applications of Mobile WiMAX, but the speech quality of VoIP service often suffers deterioration due to the fluctuating transmission delay called jitter. This is commonly ameliorated by a de-jitter buffer, and we aim to find the optimal size of de-jitter buffer to achieve speech quality comparable to PSTN. We developed a new model of the packet drops at the de-jitter buffer and the end-to-end packet delay which takes account of the additional delay introduced by the WiMAX power-saving mode. Using our model, we analyzed the optimal size of the de-jitter buffer for various network parameters, and showed that the results obtained by analysis accord with simulation results.

  10. Design and evaluation of a DAMQ multiprocessor network with self-compacting buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.; O`Krafka, B.W.O.; Vassiliadis, S.

    1994-12-31

    This paper describes a new approach to implement Dynamically Allocated Multi-Queue (DAMQ) switching elements using a technique called ``self-compacting buffers``. This technique is efficient in that the amount of hardware required to manage the buffers is relatively small; it offers high performance since it is an implementation of a DAMQ. The first part of this paper describes the self-compacting buffer architecture in detail, and compares it against a competing DAMQ switch design. The second part presents extensive simulation results comparing the performance of a self compacting buffer switch against an ideal switch including several examples of k-ary n-cubes and deltamore » networks. In addition, simulation results show how the performance of an entire network can be quickly and accurately approximated by simulating just a single switching element.« less

  11. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  12. Optimization of protein buffer cocktails using Thermofluor.

    PubMed

    Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2013-02-01

    The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.

  13. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers.

    PubMed

    Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y

    2016-12-01

    The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.

  14. Metabolic oxygen consumption measurement with a single-cell biosensor after particle microbeam irradiation

    PubMed Central

    Zhang, Bo; Messerli, Mark; Randers-Pehrson, Gerhard; Hei, Tom K.; Brenner, David J.

    2015-01-01

    A noninvasive, self-referencing biosensor/probe system has been integrated into the Columbia University Radiological Research Accelerator Facility Microbeam II end station. A single-cell oxygen consumption measurement has been conducted with this type of oxygen probe in 37°C Krebs–Ringer Bicarbonate buffer immediately before and after a single-cell microbeam irradiation. It is the first such measurement made for a microbeam irradiation, and a six fold increment of oxygen flux induced during a 15-s period of time has been observed following radiation exposure. The experimental procedure and the results are discussed. PMID:25335641

  15. Unzipping and movement of Lomer-type edge dislocations in Ge/GeSi/Si(0 0 1) heterostructures

    NASA Astrophysics Data System (ADS)

    Bolkhovityanov, Yu. B.; Deryabin, A. S.; Gutakovskii, A. K.; Sokolov, L. V.

    2018-02-01

    Edge dislocations in face-centered crystals are formed from two mixed dislocations gliding along intersecting {1 -1 1} planes, forming the so-called Lomer locks. This process, which is called zipping, is energetically beneficial. It is experimentally demonstrated in this paper that a reverse process may occur in Ge/GeSi strained buffer/Si(0 0 1) heterostructures under certain conditions, namely, decoupling of two 60° dislocations that formed the Lomer-type dislocation, i.e., unzipping. It is assumed that the driving force responsible for separation of Lomer dislocations into two 60° dislocations is the strain remaining in the GeSi buffer layer.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustelny, S., E-mail: pustelny@uj.edu.pl; Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300; Schultze, V.

    A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the {sup 85}Rbmore » ground state or as far as 16 GHz away from the closest optical transition.« less

  17. An analog integrated circuit beamformer for high-frequency medical ultrasound imaging.

    PubMed

    Gurun, Gokce; Zahorian, Jaime S; Sisman, Alper; Karaman, Mustafa; Hasler, Paul E; Degertekin, F Levent

    2012-10-01

    We designed and fabricated a dynamic receive beamformer integrated circuit (IC) in 0.35-μm CMOS technology. This beamformer IC is suitable for integration with an annular array transducer for high-frequency (30-50 MHz) intravascular ultrasound (IVUS) imaging. The beamformer IC consists of receive preamplifiers, an analog dynamic delay-and-sum beamformer, and buffers for 8 receive channels. To form an analog dynamic delay line we designed an analog delay cell based on the current-mode first-order all-pass filter topology, as the basic building block. To increase the bandwidth of the delay cell, we explored an enhancement technique on the current mirrors. This technique improved the overall bandwidth of the delay line by a factor of 6. Each delay cell consumes 2.1-mW of power and is capable of generating a tunable time delay between 1.75 ns to 2.5 ns. We successfully integrated the fabricated beamformer IC with an 8-element annular array. Experimental test results demonstrated the desired buffering, preamplification and delaying capabilities of the beamformer.

  18. Metamorphic quantum dots: Quite different nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Frigeri, P.; Nasi, L.

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantummore » dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.« less

  19. Plasmonic silicon solar cells: impact of material quality and geometry.

    PubMed

    Pahud, Celine; Isabella, Olindo; Naqavi, Ali; Haug, Franz-Josef; Zeman, Miro; Herzig, Hans Peter; Ballif, Christophe

    2013-09-09

    We study n-i-p amorphous silicon solar cells with light-scattering nanoparticles in the back reflector. In one configuration, the particles are fully embedded in the zinc oxide buffer layer; In a second configuration, the particles are placed between the buffer layer and the flat back electrode. We use stencil lithography to produce the same periodic arrangement of the particles and we use the same solar cell structure on top, thus establishing a fair comparison between a novel plasmonic concept and its more traditional counterpart. Both approaches show strong resonances around 700 nm in the external quantum efficiency the position and intensity of which vary strongly with the nanoparticle shape. Moreover, disagreement between simulations and our experimental results suggests that the dielectric data of bulk silver do not correctly represent the reality. A better fit is obtained by introducing a porous interfacial layer between the silver and zinc oxide. Without the interfacial layer, e.g. by improved processing of the nanoparticles, our simulations show that the nanoparticles concept could outperform traditional back reflectors.

  20. Effects of workplace intervention on affective well-being in employees' children.

    PubMed

    Lawson, Katie M; Davis, Kelly D; McHale, Susan M; Almeida, David M; Kelly, Erin L; King, Rosalind B

    2016-05-01

    Using a group-randomized field experimental design, this study tested whether a workplace intervention-designed to reduce work-family conflict-buffered against potential age-related decreases in the affective well-being of employees' children. Daily diary data were collected from 9- to 17-year-old children of parents working in an information technology division of a U.S. Fortune 500 company prior to and 12 months after the implementation of the Support-Transform-Achieve-Results (STAR) workplace intervention. Youth (62 with parents in the STAR group, 41 in the usual-practice group) participated in 8 consecutive nightly phone calls, during which they reported on their daily stressors and affect. Well-being was indexed by positive and negative affect and affective reactivity to daily stressful events. The randomized workplace intervention increased youth positive affect and buffered youth from age-related increases in negative affect and affective reactivity to daily stressors. Future research should test specific conditions of parents' work that may penetrate family life and affect youth well-being. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Jason; Winkler, Jon

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the onlymore » unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.« less

  2. Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: thermodynamic characterization.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2010-10-21

    In a situation which is far from ideal, many buffers have been found to be quite reactive, besides maintaining their stable pH values. On the basis of apparent transfer free energies (ΔG(tr)'), through solubility measurements the interactions of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), and tetraglycine (Gly(4)), with several common neutral pH, amine-based buffers have been studied. The biological buffers studied in this work, including TRIS, TES, TAPS, TAPSO, and TABS are structurally related and all contain TRIS groups. These buffers have pK(a) values ranging from 7.5-9.0, which allow them to be used in biological, biochemical or environmental studies. We observed negative values of ΔG(tr)' for Gly(3) and Gly(4) from water to buffer, indicating that the interactions are favorable. However, the ΔG(tr)' values are positive for Gly and Gly(2), revealing unfavorable interactions, which except for the latter in TRIS buffer are negative. The surprising result in our data is the unexpected extraordinarily high favorable interactions between TRIS buffer and peptides (in comparison with the effect of the most common denaturants, urea and guanidine hydrochloride). The transfer free energies (ΔG(tr)') of the peptide backbone unit (-CH(2)C=O-NH-) contributions have been estimated from ΔG(tr)' values. We have also investigated the interactions of TRIS buffer with Bovine Serum Albumin (BSA), as a globular protein, using dynamic light scattering (DLS), zeta potential, UV-Visible absorption, fluorescence and Raman spectroscopy measurements. The results indicated that TRIS buffer stabilized the BSA molecules.

  3. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters.

    PubMed

    Stehle, Sebastian; Dabrowski, James Michael; Bangert, Uli; Schulz, Ralf

    2016-03-01

    Regulatory risk assessment considers vegetated buffer strips as effective risk mitigation measures for the reduction of runoff-related pesticide exposure of surface waters. However, apart from buffer strip widths, further characteristics such as vegetation density or the presence of erosion rills are generally neglected in the determination of buffer strip mitigation efficacies. This study conducted a field survey of fruit orchards (average slope 3.1-12.2%) of the Lourens River catchment, South Africa, which specifically focused on the characteristics and attributes of buffer strips separating orchard areas from tributary streams. In addition, in-stream and erosion rill water samples were collected during three runoff events and GIS-based modeling was employed to predict losses of pesticides associated with runoff. The results show that erosion rills are common in buffer strips (on average 13 to 24 m wide) of the tributaries (up to 6.5 erosion rills per km flow length) and that erosion rills represent concentrated entry pathways of pesticide runoff into the tributaries during rainfall events. Exposure modeling shows that measured pesticide surface water concentrations correlated significantly (R(2)=0.626; p<0.001) with runoff losses predicted by the modeling approach in which buffer strip width was set to zero at sites with erosion rills; in contrast, no relationship between predicted runoff losses and in-stream pesticide concentrations were detected in the modeling approach that neglected erosion rills and thus assumed efficient buffer strips. Overall, the results of our study show that erosion rills may substantially reduce buffer strip pesticide retention efficacies during runoff events and suggest that the capability of buffer strips as a risk mitigation tool for runoff is largely overestimated in current regulatory risk assessment procedures conducted for pesticide authorization. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 {micro}L samples of a 50 mM probe solution were injected into C{sub 18}-bonded columns using a series of five buffered mobile phases at {sub W}{sup S}pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account themore » simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1 g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C{sub 18}-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C{sub 18}-bonded layer and the bulk phase.« less

  5. Evaluating alternative approaches to modeling terrestrial C and N interactions using observations of ecosystem response to nitrogen deposition and experimental fertilization

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Bonan, G. B.; Goodale, C. L.

    2012-12-01

    In many forest ecosystems, nitrogen deposition is increasing carbon storage and reducing climate warming from fossil fuel emissions. Accurately modeling the forest carbon sequestration response to elevated nitrogen deposition using global biogeochemical models coupled to climate models is therefore important. Here, we use observations of the forest carbon response to both nitrogen fertilization experiments and nitrogen deposition gradients to test and improve a global biogeochemical model (CLM-CN 4.0). We introduce a series of model modifications to the CLM-CN that 1) creates a more closed nitrogen cycle with reduced nitrogen fixation and N gas loss and 2) includes buffering of plant nitrogen uptake and buffering of soil nitrogen available for plants and microbial processes. Overall, the modifications improved the comparison of the model predictions to the observational data by increasing the carbon storage response to historical nitrogen deposition (1850-2004) in temperate forest ecosystems by 144% and reducing the response to nitrogen fertilization. The increased sensitivity to nitrogen deposition was primarily attributable to greater retention of nitrogen deposition in the ecosystem and a greater role of synergy between nitrogen deposition and rising atmospheric CO2. Based on our results, we suggest that nitrogen retention should be an important attribute investigated in model inter-comparisons. To understand the specific ecosystem processes that contribute to the sensitivity of carbon storage to nitrogen deposition, we examined sensitivity to nitrogen deposition in a set of intermediary models that isolate the key differences in model structure between the CLM-CN 4.0 and the modified version. We demonstrate that the nitrogen deposition response was most sensitive to the implementation of a more closed nitrogen cycle and buffered plant uptake of soil mineral nitrogen, and less sensitive to modifications of the canopy scaling of photosynthesis, soil buffering of available nitrogen, and plant buffering of labile nitrogen. By comparing carbon storage sensitivity to observational data from both nitrogen deposition gradients and nitrogen fertilization experiments, we show different observed estimates of sensitivity between these two approaches could be explained by differences in the magnitude and time-scale of nitrogen additions.

  6. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-03-06

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase.

  7. Voltage scheduling for low power/energy

    NASA Astrophysics Data System (ADS)

    Manzak, Ali

    2001-07-01

    Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned to lower voltage levels (thus reducing the power consumption). A polynomial time resource and latency constrained scheduling algorithm is developed to distribute the available slack among the nodes such that power consumption is minimum. The algorithm is iterative and utilizes the slack based on the Lagrange multiplier method.

  8. The quantitation of buffering action I. A formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-15

    Although "buffering" as a homeostatic mechanism is a universal phenomenon, the quantitation of buffering action remains controversial and problematic. Major shortcomings are: lack of a buffering strength unit for some buffering phenomena, multiple and mutually incommensurable units for others, and lack of a genuine ratio scale for buffering strength. Here, I present a concept of buffering that overcomes these shortcomings. Briefly, when, for instance, some "free" H+ ions are added to a solution (e.g. in the form of strong acid), buffering is said to be present when not all H+ ions remain "free" (i.e., bound to H2O), but some become "bound" (i.e., bound to molecules other than H2O). The greater the number of H+ ions that become "bound" in this process, the greater the buffering action. This number can be expressed in two ways: 1) With respect to the number of total free ions added as "buffering coefficient b", defined in differential form as b = d(bound)/d(total). This measure expresses buffering action from nil to complete by a dimensionless number between 0 and 1, analogous to probabilites. 2) With respect to the complementary number of added ions that remain free as "buffering ratio B", defined as the differential B = d(bound)/d(free). The buffering ratio B provides an absolute ratio scale, where buffering action from nil to perfect corresponds to dimensionless numbers between 0 and infinity, and where equal differences of buffering action result in equal intervals on the scale. Formulated in purely mathematical, axiomatic form, the concept reveals striking overlap with the mathematical concept of probability. However, the concept also allows one to devise simple physical models capable of visualizing buffered systems and their behavior in an exact yet intuitive way. These two measures of buffering action can be generalized easily to any arbitrary quantity that partitions into two compartments or states, and are thus suited to serve as standard units for buffering action. Some exemplary treatments of classical and non-classical buffering phenomena are presented in the accompanying paper.

  9. Buffer substitution in malaria rapid diagnostic tests causes false-positive results

    PubMed Central

    2010-01-01

    Background Malaria rapid diagnostic tests (RDTs) are kits that generally include 20 to 25 test strips or cassettes, but only a single buffer vial. In field settings, laboratory staff occasionally uses saline, distilled water (liquids for parenteral drugs dilution) or tap water as substitutes for the RDT kit's buffer to compensate for the loss of a diluent bottle. The present study assessed the effect of buffer substitution on the RDT results. Methods Twenty-seven RDT brands were run with EDTA-blood samples of five malaria-free subjects, who were negative for rheumatoid factor and antinuclear antibodies. Saline, distilled water and tap water were used as substitute liquids. RDTs were also run with distilled water, without adding blood. Results were compared to those obtained with the RDT kit's buffer and Plasmodium positive samples. Results Only eight cassettes (in four RDT brands) showed no control line and were considered invalid. Visible test lines occurred for at least one malaria-free sample and one of the substitutes in 20/27 (74%) RDT brands (saline: n = 16; distilled water: n = 17; and tap water: n = 20), and in 15 RDTs which were run with distilled water only. They occurred for all Plasmodium antigens and RDT formats (two-, three- and four-band RDTs). Clearance of the background of the strip was excellent except for saline. The aspects (colour, intensity and crispness) of the control and the false-positive test lines were similar to those obtained with the RDT kits' buffer and Plasmodium positive samples. Conclusion Replacement of the RDT kit's dedicated buffer by saline, distilled water and tap water can cause false-positive test results. PMID:20650003

  10. Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei

    2017-03-01

    A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.

  11. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  12. Development and validation of a generic high-performance liquid chromatography for the simultaneous separation and determination of six cough ingredients: Robustness study on core-shell particles.

    PubMed

    Yehia, Ali Mohamed; Essam, Hebatallah Mohamed

    2016-09-01

    A generally applicable high-performance liquid chromatographic method for the qualitative and quantitative determination of pharmaceutical preparations containing phenylephrine hydrochloride, paracetamol, ephedrine hydrochloride, guaifenesin, doxylamine succinate, and dextromethorphan hydrobromide is developed. Optimization of chromatographic conditions was performed for the gradient elution using different buffer pH values, flow rates and two C18 stationary phases. The method was developed using a Kinetex® C18 column as a core-shell stationary phase with a gradient profile using buffer pH 5.0 and acetonitrile at 2.0 mL/min flow rate. Detection was carried out at 220 nm and linear calibrations were obtained for all components within the studied ranges. The method was fully validated in agreement with ICH guidelines. The proposed method is specific, accurate and precise (RSD% < 3%). Limits of detection are lower than 2.0 μg/mL. Qualitative and quantitative responses were evaluated using experimental design to assist the method robustness. The method was proved to be highly robust against 10% change in buffer pH and flow rate (RSD% < 10%), however, the flow rate may significantly influence the quantitative responses of phenylephrine, paracetamol, and doxylamine (RSD% > 10%). Satisfactory results were obtained for commercial combinations analyses. Statistical comparison between the proposed chromatographic and official methods revealed no significant difference. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wensui; Zhou, Jizhong; Wu, Weimin

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonatemore » (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.« less

  14. Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Parker, Jack C.; Luo, Wensui

    2008-01-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less

  15. Three-stage nucleation and growth of Ge self-assembled quantum dots grown on partially relaxed SiGe buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Zhao, Z. M.; Xie, Y. H.

    2003-11-01

    Three-stage nucleation and growth of Ge self-assembled quantum dots (SAQDs) on a relaxed SiGe buffer layer has been studied. Plastic relaxation of the SiGe buffer layer is associated with a network of buried 60° dislocations leading to an undulating strain field. As a result, the surface possesses three different types of sites for the nucleation and growth of Ge SAQDs: over the intersection of two perpendicular buried dislocations, over a single dislocation line, and in the region beyond one diffusion length away from any dislocation. Ge SAQDs are observed to nucleate exclusively over the dislocation intersections first, followed by over single dislocation lines, and finally in the region far away from dislocations. By increasing the Ge coverage at a slow rate, the prenucleation stage at the various sites is observed. It appears that the varying strain field has a significant effect on both the diffusion of Ge adatoms before SAQD nucleation, as well as the shape evolution of the SAQDs after they form. Moreover, two distinctly different self-assembly mechanisms are observed at different sites. There exist denuded zones free of Ge SAQDs adjacent to dislocation lines. The width of the denuded zone can be used to make direct determination of the Ge adatom diffusion lengths. The partially relaxed substrate provides a useful experimental vehicle for the in-depth understanding of the formation mechanism of SAQDs grown epitaxially in the Stranski-Krastanov growth mode.

  16. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    NASA Astrophysics Data System (ADS)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  17. A hexa-quinoline based C3-symmetric chemosensor for dual sensing of zinc(ii) and PPi in an aqueous medium via chelation induced "OFF-ON-OFF" emission.

    PubMed

    Sinha, Sanghamitra; Chowdhury, Bijit; Adarsh, Nayarassery N; Ghosh, Pradyut

    2018-05-15

    A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).

  18. Nitrogen-Polar (000 1 ¯ ) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer.

    PubMed

    Song, Jie; Han, Jung

    2017-03-02

    We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the GaN epilayer. The low growth temperature of the AlN buffer results in gallium-polar GaN. Even a nitridation process has been conducted. High growth temperature for an AlN buffer layer is required to achieve pure N-polarity, high crystalline quality, and smooth surface morphology for a GaN epilayer.

  19. Setting priorities for research on pollution reduction functions of agricultural buffers

    Treesearch

    Michael G. Dosskey

    2002-01-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An...

  20. Numerical and experimental study on the dynamics of a μs helium plasma gun with various amounts of O2 admixture

    NASA Astrophysics Data System (ADS)

    Viegas, Pedro; Damany, Xavier; Iseni, Sylvain; Pouvesle, Jean-Michel; Robert, Eric; Bourdon, Anne

    2016-09-01

    The use of admixtures (mostly O2 and N2) to a helium buffer has been studied recently to tailor the generation of reactive species in plasma jets for biomedical applications. So far, most experiments have been dedicated to the study of the plasma plume. For endoscopic treatments, it is also important to better understand and optimize the propagation of discharges in long dielectric tubes as catheters. In this work, we present an experimental and numerical study on the dynamics of a μs helium plasma discharge with O2 admixture in a long dielectric tube. In simulations, a 2D fluid model is used. For comparison purposes, the geometries of the set-ups used for simulations and experiments are as close as possible. We compare experiments and simulations for different amounts of O2 admixture added to the buffer gas and present results on the velocity of the discharge front for the various amounts of O2 and different applied voltages. In order to study the influence of different amounts of O2 admixture on the helium discharge dynamics, detailed kinetic schemes have been used. The influence of Penning and charge exchange reactions on the discharge structure and dynamics are studied, as well as the role of negative ions. P.V. is supported by an EDOM fellowship, and X.D. by an INEL/Region Centre-Val de Loire fellowship.

  1. Threading Dislocations in InGaAs/GaAs (001) Buffer Layers for Metamorphic High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Song, Yifei; Kujofsa, Tedi; Ayers, John E.

    2018-07-01

    In order to evaluate various buffer layers for metamorphic devices, threading dislocation densities have been calculated for uniform composition In x Ga1- x As device layers deposited on GaAs (001) substrates with an intermediate graded buffer layer using the L MD model, where L MD is the average length of misfit dislocations. On this basis, we compare the relative effectiveness of buffer layers with linear, exponential, and S-graded compositional profiles. In the case of a 2 μm thick buffer layer linear grading results in higher threading dislocation densities in the device layer compared to either exponential or S-grading. When exponential grading is used, lower threading dislocation densities are obtained with a smaller length constant. In the S-graded case, lower threading dislocation densities result when a smaller standard deviation parameter is used. As the buffer layer thickness is decreased from 2 μm to 0.1 μm all of the above effects are diminished, and the absolute threading dislocation densities increase.

  2. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki

    2016-08-28

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less

  3. Tunneling Injection and Exciton Diffusion of White Organic Light-Emitting Diodes with Composed Buffer Layers

    NASA Astrophysics Data System (ADS)

    Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong

    2018-02-01

    Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x < 0.023 and Δ y < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.

  4. Development of a High Efficiency Q-Switched Glass Laser via Sol-Gel Processing

    DTIC Science & Technology

    1989-10-30

    APPENDICES I. A. Aluminum as the "Buffer" Component B. Phosphorous as the "Buffer" Component Titanium as the "Buffer" Component II. Characteristics of Nd...alternative dehydrating agents, but with similar, undesirable results. Gels containing aluminum, phosphorus, or titanium as a third component all reacted...with aluminum isopropoxide and TEOS resulted in 50 A pore radii after drying, and densified without foaming to produce a clear, monolithic glass [22

  5. Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO 2 buffer layer-coated polymer substrates by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yu, Zhi-nong; Zhao, Jian-jian; Xia, Fan; Lin, Ze-jiang; Zhang, Dong-pu; Leng, Jian; Xue, Wei

    2011-03-01

    The electrical stability of flexible indium tin oxide (ITO) films fabricated on stripe SiO 2 buffer layer-coated polyethylene terephthalate (PET) substrates by magnetron sputtering was investigated by the bending test. The ITO thin films with stripe SiO 2 buffer layer under bending have better electrical stability than those with flat SiO 2 buffer layer and without buffer layer. Especially in inward bending text, the ITO thin films with stripe SiO 2 buffer layer only have a slight resistance change when the bending radius r is not less than 8 mm, while the resistances of the films with flat SiO 2 buffer layer and without buffer layer increase significantly at r = 16 mm with decreasing bending radius. This improvement of electrical stability in bending test is due to the small mismatch factor α in ITO-SiO 2, the enhanced interface adhesion and the balance of residual stress. These results indicate that the stripe SiO 2 buffer layer is suited to enhance the electrical stability of flexible ITO film under bending.

  6. The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement

    PubMed Central

    Koen, Erin L.; Garroway, Colin J.; Wilson, Paul J.; Bowman, Jeff

    2010-01-01

    Background Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a substitute for the true, but unknown, habitat. Methodology/Principal Findings We randomly assigned landscape resistance values to map cells in the buffer in proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result in an overestimate of landscape resistance. Conclusions/Significance Artificial map boundaries overestimate resistance values. We recommend the use of a buffer composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied. Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape genetics studies. PMID:20668690

  7. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.

    PubMed

    Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer

    2015-01-14

    In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the kosmotropic or chaotropic behaviors of the investigated buffers at 25 °C have been examined.

  9. The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica.

    PubMed

    Lusk, Bradley G; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, Cesar I

    2016-12-01

    We assessed the effects of pH and buffer concentration on current production and growth of biofilms of Thermincola ferriacetica - a thermophilic, Gram-positive, anode-respiring bacterium (ARB) - grown on anodes poised at a potential of -0.06V vs. SHE in microbial electrolysis cells (MECs) at 60°C. T. ferriacetica generated current in the pH range of 5.2 to 8.3 with acetate as the electron donor and 50mM bicarbonate buffer. Maximum current density was reduced by ~80% at pH5.2 and ~14% at 7.0 compared to pH8.3. Increasing bicarbonate buffer concentrations from 10mM to 100mM resulted in an increase in the current density by 40±6%, from 6.8±1.1 to 11.2±2.7Am(-2), supporting that more buffer alleviated pH depression within T. ferriacetica biofilms. Confocal laser scanning microscopy (CLSM) images indicated that higher bicarbonate buffer concentrations resulted in larger live biofilm thicknesses: from 68±20μm at 10mM bicarbonate to >150μm at 100mM, supporting that buffer availability was a strong influence on biofilm thickness. In comparison to mesophilic Geobacter sulfurreducens biofilms, the faster transport rates at higher temperature and the ability to grow at relatively lower pH allowed T. ferriacetica to produce higher current densities with lower buffer concentrations. Published by Elsevier B.V.

  10. Extension of nanoconfined DNA: Quantitative comparison between experiment and theory

    NASA Astrophysics Data System (ADS)

    Iarko, V.; Werner, E.; Nyberg, L. K.; Müller, V.; Fritzsche, J.; Ambjörnsson, T.; Beech, J. P.; Tegenfeldt, J. O.; Mehlig, K.; Westerlund, F.; Mehlig, B.

    2015-12-01

    The extension of DNA confined to nanochannels has been studied intensively and in detail. However, quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose, we performed experiments measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic strength of the buffer. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths, the agreement is less good. We discuss possible reasons. In principle, our approach allows us to measure the Kuhn length and the effective width of a single DNA molecule and more generally of semiflexible polymers in solution.

  11. Stable adducts of nerve agents sarin, soman and cyclosarin with TRIS, TES and related buffer compounds--characterization by LC-ESI-MS/MS and NMR and implications for analytical chemistry.

    PubMed

    Gäb, Jürgen; John, Harald; Melzer, Marco; Blum, Marc-Michael

    2010-05-15

    Buffering compounds like TRIS are frequently used in chemical, biochemical and biomedical applications to control pH in solution. One of the prerequisites of a buffer compound, in addition to sufficient buffering capacity and pH stability over time, is its non-reactivity with other constituents of the solution. This is especially important in the field of analytical chemistry where analytes are to be determined quantitatively. Investigating the enzymatic hydrolysis of G-type nerve agents sarin, soman and cyclosarin in buffered solution we have identified stable buffer adducts of TRIS, TES and other buffer compounds with the nerve agents. We identified the molecular structure of these adducts as phosphonic diesters using 1D (1)H-(31)P HSQC NMR and LC-ESI-MS/MS techniques. Reaction rates with TRIS and TES are fast enough to compete with spontaneous hydrolysis in aqueous solution and to yield substantial amounts (up to 20-40%) of buffer adduct over the course of several hours. A reaction mechanism is proposed in which the amino function of the buffer serves as an intramolecular proton acceptor rendering the buffer hydroxyl groups nucleophilic enough for attack on the phosphorus atom of the agents. Results show that similar buffer adducts are formed with a range of hydroxyl and amino function containing buffers including TES, BES, TRIS, BIS-TRIS, BIS-TRIS propane, Tricine, Bicine, HEPES and triethanol amine. It is recommended to use alternative buffers like MOPS, MES and CHES when working with G-type nerve agents especially at higher concentrations and over prolonged times. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells.

    PubMed

    Li, Xiaodong; Zhang, Wenjun; Wu, Yulei; Min, Chao; Fang, Junfeng

    2013-09-25

    We reported a facile solution-processed method to fabricate a MoSx anode buffer layer through thermal decomposition of (NH4)2MoS4. Organic solar cells (OSCs) based on in situ growth MoSx as the anode buffer layer showed impressive improvements, and the power conversion efficiency was higher than that of conventional PEDOT:PSS-based device. The MoSx films obtained at different temperatures and the corresponding device performance were systematically studied. The results indicated that both MoS3 and MoS2 were beneficial to the device performance. MoS3 could result in higher Voc, while MoS2 could lead to higher Jsc. Our results proved that, apart from MoO3, molybdenum sulfides and Mo(4+) were also promising candidates for the anode buffer materials in OSCs.

  13. Role of Ca++ in Shoot Gravitropism. [avena

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1985-01-01

    A cornerstone in the argument that Ca(2+) levels may regulate growth is the finding the EGTA promotes straight growth. The usual explanation for these results is that Ca(2+) chelation from cell walls results in wall loosening and thus accelerated straight growth. The ability of frozen-thawed Avena coleoptile tissue (subjected to 15g tension) to extend in response to EGTA and Quin II was examined. The EGTA when applied in weakly buffered (i.e., 0.1mM) neutral solutions initiates rapid extension. When the buffer strength is increased, similar concentrations of EGTA produce no growth response. This implies when EGTA liberated protons are released upon Ca(2+) chelation they can either initiate acid growth (low buffer conditions) or if consumed (high buffer conditions) have no effect. Thus Ca(2+) chelation in itself apparently does not result in straight growth.

  14. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  15. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse types. Results suggest that 1) the spatial configuration of riparian forests has a strong influence on forest structure compared to a weaker association with adjacent landuse type 2) developed landuse types are often associated with increased understory vegetation density 3) that riparian vegetation canopy cover is dense regardless of corridor width or adjacent landuse type and 4) the degree to which edge effects propagate into the buffer corridor is most influenced by corridor width. The study further demonstrates the utility of automated algorithms that sample lidar data in watershed-wide ecological analysis. Results suggest that landuse regulations should encourage wider buffers which will in turn support a greater range of ecosystem services including improved wildlife habitat, stream shading and detrital inputs.

  16. Analysis of a unidirectional, symmetric buffer strip laminate with damage

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1984-01-01

    A method for predicting the fracture behavior of hybrid buffer strip laminates is presented in which the classical shear-lag model is used to represent the shear stress distribution between adjacent fibers. The method is demonstrated by applying it to a notched graphite/epoxy laminate, and the results show clearly the manner in which the most efficient combination of buffer strip properties can be selected in order to arrest the crack. The ultimate failure stress of the laminate is plotted vs the buffer strip width. It is shown that in the case of graphite-epoxy and S-glass epoxy laminates, the optimum buffer strip spacing to width ratio should be about four to one.

  17. Model based adaptive control of a continuous capture process for monoclonal antibodies production.

    PubMed

    Steinebach, Fabian; Angarita, Monica; Karst, Daniel J; Müller-Späth, Thomas; Morbidelli, Massimo

    2016-04-29

    A two-column capture process for continuous processing of cell-culture supernatant is presented. Similar to other multicolumn processes, this process uses sequential countercurrent loading of the target compound in order maximize resin utilization and productivity for a given product yield. The process was designed using a novel mechanistic model for affinity capture, which takes both specific adsorption as well as transport through the resin beads into account. Simulations as well as experimental results for the capture of an IgG antibody are discussed. The model was able to predict the process performance in terms of yield, productivity and capacity utilization. Compared to continuous capture with two columns operated batch wise in parallel, a 2.5-fold higher capacity utilization was obtained for the same productivity and yield. This results in an equal improvement in product concentration and reduction of buffer consumption. The developed model was used not only for the process design and optimization but also for its online control. In particular, the unit operating conditions are changed in order to maintain high product yield while optimizing the process performance in terms of capacity utilization and buffer consumption also in the presence of changing upstream conditions and resin aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Thermal buffering performance of composite phase change materials applied in low-temperature protective garments

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Jiao, Mingli; Yu, Yuanyuan; Zhu, Xueying; Liu, Rangtong; Cao, Jian

    2017-07-01

    Phase change material (PCM) is increasingly being applied in the manufacturing of functional thermo-regulated textiles and garments. This paper investigated the thermal buffering performance of different composite PCMs which are suitable for the application in functional low-temperature protective garments. First, according to the criteria selecting PCM for functional textiles/garments, three kinds of pure PCM were selected as samples, which were n-hexadecane, n-octadecane and n-eicosane. To get the adjustable phase change temperature range and higher phase change enthalpy, three kinds of composite PCM were prepared using the above pure PCM. To evaluate the thermal buffering performance of different composite PCM samples, the simulated low-temperature experiments were performed in the climate chamber, and the skin temperature variation curves in three different low temperature conditions were obtained. Finally composite PCM samples’ thermal buffering time, thermal buffering capacity and thermal buffering efficiency were calculated. Results show that the comprehensive thermal buffering performance of n-octadecane and n-eicosane composite PCM is the best.

  19. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  20. Effects of a new bicarbonate/lactate-buffered neutral peritoneal dialysis fluid for peritoneal failure in patients undergoing peritoneal dialysis.

    PubMed

    Hoshino, Taro; Ishii, Hiroki; Kitano, Taisuke; Shindo, Mitsutoshi; Miyazawa, Haruhisa; Yamada, Hodaka; Ito, Kiyonori; Ueda, Yuichiro; Kaku, Yoshio; Hirai, Keiji; Mori, Honami; Ookawara, Susumu; Tabei, Kaoru; Morishita, Yoshiyuki

    2016-02-01

    The highly concentrated lactate in peritoneal dialysis fluid (PDF) has been considered to contribute to peritoneal failure in patients undergoing PD. A new PDF containing a lower lactate concentration, physiological bicarbonate concentration, and neutral pH (bicarbonate/lactate-buffered neutral PDF) was recently developed. We compared the clinical effects of this bicarbonate/lactate-buffered neutral PDF and a lactate-buffered neutral PDF. Patients undergoing PD were changed from a lactate-buffered neutral PDF to a bicarbonate/lactate-buffered neutral PDF. We then investigated the changes in peritoneal functions as estimated by a peritoneal equilibration test (PET) and the following surrogate markers of peritoneal membrane failure in the drained dialysate: fibrin degradation products (FDP), vascular endothelial growth factor (VEGF), cancer antigen 125 (CA125), interleukin-6 (IL-6), and transforming growth factor beta 1 (TGF-β1). Fourteen patients undergoing PD were enrolled. The PET results were not different before and after use of the bicarbonate/lactate-buffered neutral PDF. The FDP concentration significantly decreased from 15.60 ± 13.90 to 6.04 ± 3.49 μg/mL (p = 0.02) and the VEGF concentration significantly decreased from 37.83 ± 15.82 to 27.70 ± 3.80 pg/mL (p = 0.02), while the CA125 and IL-6 concentrations remained unchanged before and after use of the bicarbonate/lactate-buffered neutral PDF. TGF-β1 was not detected in most patients. The bicarbonate/lactate-buffered neutral PDF decreased the FDP and VEGF concentrations in the drained dialysate. These results suggest that the decreased lactate level achieved by administration of bicarbonate with a neutral pH in PDF may contribute to decreased peritoneal membrane failure in patients undergoing PD.

  1. The effect of extracellular weak acids and bases on the intracellular buffering power of snail neurones.

    PubMed Central

    Szatkowski, M S

    1989-01-01

    1. Intracellular pH (pHi) was measured in snail neurones using pH-sensitive glass microelectrodes. The influence of externally applied weak acids and bases on the total intracellular buffering power (beta T) was investigated by monitoring the pHi changes caused by the intracellular ionophoretic injection of HCl. 2. In the absence of weak acids or bases a reduction in the extracellular HEPES concentration had no effect on pHi or on beta T. It did, however, reduce slightly the rate of pHi recovery following HCl injection. 3. The presence of CO2 greatly increased beta T. However, as predicted for an open buffer system, the contributions to intracellular buffering by CO2 (beta CO2) decreased as pHi decreased. 4. When added to the superfusate, procaine, 4-aminopyridine, trimethylamine and NH4Cl (1-10 mM) all increased steady-state pHi. Procaine was fastest at increasing pHi and 4-aminopyridine the slowest. All four of these weak bases increased beta T. 5. The intracellular buffering action by these weak bases varied. HCl injection in the presence of procaine usually resulted in steady-state pHi changes with no pHi transients. In the presence of the other three weak bases HCl injections resulted in intracellular acidifications which were followed by pHi recovery-like transients. However, these were not blocked by SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid) or by CaCl2 and I thus conclude that these transients were as a result of slow or incomplete intracellular buffering by the weak bases. 6. In many cells there was a good correlation between the measured contributions to intracellular buffering by the weak bases (beta base) and those predicted assuming a simple two-compartment open system. In all cases, as predicted, beta base increased as pHi decreased. 7. I found a clear relationship between the concentration of external buffer (HEPES) and the rate at which weak bases, applied to the superfusate, were able to increase pHi. The greater the extracellular buffer concentration the greater was the speed of intracellular alkalinization. 8. Lowering the extracellular buffer concentration reduced the efficiency of intracellular buffering by weak bases in response to an intracellular acid load. HCl injection in the presence of weak base caused a larger initial intracellular acidification if the extracellular HEPES concentration was reduced. 9. In conclusion, both weak acids and weak bases can make very large, pHi-dependent contributions to intracellular buffering by way of open buffer systems.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2555474

  2. Effects of Workplace Intervention on Affective Well-Being in Employees' Children

    ERIC Educational Resources Information Center

    Lawson, Katie M.; Davis, Kelly D.; McHale, Susan M.; Almeida, David M.; Kelly, Erin L.; King, Rosalind B.

    2016-01-01

    Using a group-randomized field experimental design, this study tested whether a workplace intervention--designed to reduce work-family conflict--buffered against potential age-related decreases in the affective well-being of employees' children. Daily diary data were collected from 9- to 17-year-old children of parents working in an information…

  3. A Physics-Based Engineering Methodology for Calculating Soft Error Rates of Bulk CMOS and SiGe Heterojunction Bipolar Transistor Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Fulkerson, David E.

    2010-02-01

    This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.

  4. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers.

    PubMed

    Van Blitterswyk, Jared; Rocha, Joana

    2017-02-01

    A more complete understanding of the physical relationships, between wall-pressure and turbulence, is required for modeling flow-induced noise and developing noise reduction strategies. In this study, the wall-pressure fluctuations, induced by low Reynolds number turbulent boundary layers, are experimentally studied using a high-resolution microphone array. Statistical characteristics obtained using traditional cross-correlation and cross-spectra analyses are complimented with wall-pressure-velocity cross-spectra and wavelet cross-correlations. Wall-pressure-velocity correlations revealed that turbulent activity in the buffer layer contributes at least 40% of the energy to the wall-pressure spectrum at all measured frequencies. As Reynolds number increases, the low-frequency energy shifts from the buffer layer to the logarithmic layer, as expected for regions of uniform streamwise momentum formed by hairpin packets. Conditional cross-spectra suggests that the majority of broadband wall-pressure energy is concentrated within the packets, with the pressure signatures of individual hairpin vortices estimated to decay on average within traveling ten displacement thicknesses, and the packet signature is retained for up to seven boundary layer thicknesses on average.

  5. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    PubMed

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  6. Recent Developments in the Study of Social Relationships, Stress Responses, and Physical Health

    PubMed Central

    Hostinar, Camelia E.

    2015-01-01

    This selective review aims to highlight some of the most recent empirical or theoretical advancements in the study of social relationships as buffers against stress and as protective factors against risk for disease, focusing on articles published between 2013 and 2015. The review summarizes novel findings showing that social relationships can protect individuals against negative health outcomes associated with chronic adversity and can be associated with reduced cumulative physiological damage (allostatic load). There is also evidence that some relationships can be a source of stress. Additionally, recent findings concerning the psychological and neurobiological mechanisms of action for social support, the developmental patterning of social stress-buffering and recent experimental studies attempting to change relationships to affect health are also reviewed. PMID:26366429

  7. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.

    1997-04-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5{times}10{sup 14}W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4{percent}{endash}7{percent} over a 600-{mu}m-diam region defined by the 90{percent} intensity contour. The temporal growth of the modulation in optical depth was measured usingmore » through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with {ital ORCHID} simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam. {copyright} {ital 1997 American Institute of Physics.}« less

  8. Thermometry in dielectrophoresis chips for contact-free cell handling

    NASA Astrophysics Data System (ADS)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  9. A thermodynamic and theoretical view for enzyme regulation.

    PubMed

    Zhao, Qinyi

    2015-01-01

    Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.

  10. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.

  11. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G.; White, S. M.

    2012-12-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg l-1 to 0.061 mg l-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  12. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G. Q.; White, S. M.

    2013-05-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus (P) behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg L-1 to 0.061 mg L-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  13. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S. A.; Tang, M. H., E-mail: mhtang@xtu.edu.cn, E-mail: lizheng@xtu.edu.cn; Xiao, Y. G.

    In this work, metal-ferroelectric-insulator-semiconductor (MFIS) structure capacitors with SrBi{sub 2}Ta{sub 2}O{sub 9} (300 nm) as ferroelectric thin film and HfTaO (6 nm, 8 nm, 10 nm, and 12 nm) as insulating buffer layer were proposed and investigated. The prepared capacitors were fabricated and characterized before radiation and then subjected to {sup 60}Co gamma irradiation in steps of two dose levels. Significant irradiation-induced degradation of the electrical characteristics was observed. The radiation experimental results indicated that stability and reliability of as-fabricated MFIS capacitors for nonvolatile memory applications could become uncontrollable under strong irradiation dose and/or long irradiation time.

  15. Microwave magnetic field detection based on Cs vapor cell in free space

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochi; Jiang, Zhiyuan; Qu, Jifeng; Hou, Dong; Huang, Xianhe; Sun, Fuyu

    2018-06-01

    In this study, we demonstrate the direct measurement of a microwave (MW) magnetic field through the detection of atomic Rabi resonances with Cs vapor cells in a free-space low-Q cavity. The line shape (amplitude and linewidth) of detected Rabi resonances is investigated versus several experimental parameters such as the laser intensity, cell buffer gas pressure, and cell length. The specially designed low-Q cavity creates a suitable MW environment allowing easy testing of different vapor cells with distinct properties. Obtained results are analyzed to optimize the performances of a MW magnetic field sensor based on the present atom-based detection technique.

  16. The mechanical response of talin

    NASA Astrophysics Data System (ADS)

    Yao, Mingxi; Goult, Benjamin T.; Klapholz, Benjamin; Hu, Xian; Toseland, Christopher P.; Guo, Yingjian; Cong, Peiwen; Sheetz, Michael P.; Yan, Jie

    2016-07-01

    Talin, a force-bearing cytoplasmic adapter essential for integrin-mediated cell adhesion, links the actin cytoskeleton to integrin-based cell-extracellular matrix adhesions at the plasma membrane. Its C-terminal rod domain, which contains 13 helical bundles, plays important roles in mechanosensing during cell adhesion and spreading. However, how the structural stability and transition kinetics of the 13 helical bundles of talin are utilized in the diverse talin-dependent mechanosensing processes remains poorly understood. Here we report the force-dependent unfolding and refolding kinetics of all talin rod domains. Using experimentally determined kinetics parameters, we determined the dynamics of force fluctuation during stretching of talin under physiologically relevant pulling speeds and experimentally measured extension fluctuation trajectories. Our results reveal that force-dependent stochastic unfolding and refolding of talin rod domains make talin a very effective force buffer that sets a physiological force range of only a few pNs in the talin-mediated force transmission pathway.

  17. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  18. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2(q) = [I(q) + const.]/(kq), whereI(q) is the scattering intensity as a function of the momentum transferq;kand const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurementmore » errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.« less

  19. Proton Transfer Dynamics at the Membrane/Water Interface: Dependence on the Fixed and Mobile pH Buffers, on the Size and Form of Membrane Particles, and on the Interfacial Potential Barrier

    PubMed Central

    Cherepanov, Dmitry A.; Junge, Wolfgang; Mulkidjanian, Armen Y.

    2004-01-01

    Crossing the membrane/water interface is an indispensable step in the transmembrane proton transfer. Elsewhere we have shown that the low dielectric permittivity of the surface water gives rise to a potential barrier for ions, so that the surface pH can deviate from that in the bulk water at steady operation of proton pumps. Here we addressed the retardation in the pulsed proton transfer across the interface as observed when light-triggered membrane proton pumps ejected or captured protons. By solving the system of diffusion equations we analyzed how the proton relaxation depends on the concentration of mobile pH buffers, on the surface buffer capacity, on the form and size of membrane particles, and on the height of the potential barrier. The fit of experimental data on proton relaxation in chromatophore vesicles from phototropic bacteria and in bacteriorhodopsin-containing membranes yielded estimates for the interfacial potential barrier for H+/OH− ions of ∼120 meV. We analyzed published data on the acceleration of proton equilibration by anionic pH buffers and found that the height of the interfacial barrier correlated with their electric charge ranging from 90 to 120 meV for the singly charged species to >360 meV for the tetra-charged pyranine. PMID:14747306

  20. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores.

    PubMed

    Esteban, María-Dolores; Huertas, Juan-Pablo; Fernández, Pablo S; Palop, Alfredo

    2013-05-01

    In recent years, highly thermo-resistant mesophilic spore-forming bacteria belonging to the species Bacillus sporothermodurans have caused non-sterility problems in industrial sterilization processes. The aim of this research was to evaluate the effect of the heating medium characteristics (pH and buffer/food) on the thermal inactivation of B. sporothermodurans spores when exposed to isothermal and non-isothermal heating and cooling treatments and the suitability of non-linear Weibull and Geeraaerd models to predict the survivors of these thermal treatments. Thermal treatments were carried out in pH 3, 5 and 7 McIlvaine buffer and in a courgette soup. Isothermal survival curves showed shoulders that were accurately characterized by means of both models. A clear effect of the pH of the heating medium was observed, decreasing the D120 value from pH 7 to pH 3 buffer down to one third. Differences in heat resistance were similar, regardless of the model used and were kept at all temperatures tested. The heat resistance in courgette soup was similar to that shown in pH 7 buffer. When the heat resistance values obtained under isothermal conditions were used to predict the survival in the non-isothermical experiments, the predictions estimated the experimental data quite accurately, both with Weibull and Geeraerd models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Stream Community Structure: An Analysis of Riparian Forest Buffer Restoration in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Orzetti, L. L.; Jones, R. C.

    2005-05-01

    Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.

  2. The acid-base buffer capacity of podzolic soils and its changes under the impact of treatment with the Mehra-Jackson and Tamm reagents

    NASA Astrophysics Data System (ADS)

    Maksimova, Yu. G.; Maryakhina, N. N.; Tolpeshta, I. I.; Sokolova, T. A.

    2010-10-01

    The acid-base buffer capacity before and after the treatment with the Mehra-Jackson and Tamm reagents was assessed by continuous potentiometric titration for the main genetic horizons of two profiles of podzolic soils in the Central Forest State Reserve. The total buffer capacity was calculated in the pH range from the initial titration point (ITP) to 3 for the acid titration and from the ITP to 10 for the base titration, as well as the buffer capacities in the pH intervals of 0.25. It was found that both treatments abruptly decreased the base buffer capacity, which reached 70-90% in the E horizons. The high direct linear correlation of the difference between the total base buffer capacities before and after each treatment with the content of Fe in the Tamm extract was revealed. From the results obtained, a conclusion was drawn that finely dispersed Fe hydroxides were the main solid-phase constituents ensuring the base buffer capacity, and the deprotonation of hydroxyl groups on the surface of Fe hydroxides was the essential buffer reaction during the base titration.

  3. [Quantification study on the runoff and seepage distribution and N, P pollutants removal of the vegetated buffer strips].

    PubMed

    Wang, Min; Huang, Yu-Chi; Wu, Jian-Qiang

    2010-11-01

    By using the constructed buffer strips test base and the runoff hydrometric devices, a research on stagnant runoff and nitrogen (N), phosphorous (P) pollutants removal capacity of the vegetated buffer strips was conducted. The results show that the vegetated buffer strips might reduce the speed of runoff significantly and improve the hydraulic permeability of soil. The runoff water output time of 19 m buffer strips planted with Cynodon dactylon, Festuca arundinacea and Trifolium repens are 2.46, 1.72 and 2.03 times higher than the control (no vegetation) respectively; The seepage water quantity of three vegetation buffer strips are 3.01, 2.16 and 2.45 times higher than the control respectively as well. Total removal efficiency of the three buffer strips increase about 237%, 268% and 274% comparing with the control respectively. The N, P removal capacity of seepage is significantly higher than that of the runoff, the larger seepage water quantity will cause higher N, P total removal efficiency and removal loads of unit area. With different vegetated buffer strips, the TN, NH4(+) -N, TP removal ratio of seepage and runoff are 2.79, 2.02 and 2.83 respectively.

  4. Cell membrane antigen-antibody complex dissociation by the widely used glycine-HCL method: an unreliable procedure for studying antibody internalization.

    PubMed

    Tsaltas, G; Ford, C H

    1993-02-01

    Methods following the process of binding and internalization of antibodies to cell surface antigens have often employed low pH isoosmolar buffers in order to dissociate surface antigen-antibody complexes. One of the most widely used buffers is a 0.05 M glycine-HCL buffer pH 2.8. Since the efficacy of action of this buffer was critical to a series of internalization experiments employing monoclonal antibodies (Mabs) to carcinoembryonic antigen (CEA) expressing cancer cell lines in this laboratory, we tested its performance in a number of different assays. Our results indicate that this buffer only partially dissociates antigen-antibody bonds and therefore can introduce major inaccuracies in internalization experiments.

  5. Effects of Buffer Size and Shape on Associations between the Built Environment and Energy Balance

    PubMed Central

    Berrigan, David; Hart, Jaime E.; Hipp, J. Aaron; Hoehner, Christine M.; Kerr, Jacqueline; Major, Jacqueline M.; Oka, Masayoshi; Laden, Francine

    2014-01-01

    Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature. PMID:24607875

  6. Secretin stimulates HCO3(-) and acetate efflux but not Na+/HCO3(-) uptake in rat pancreatic ducts.

    PubMed

    Novak, I; Christoffersen, B C

    2001-03-01

    Pancreatic ducts secrete HCO3(-), but transport mechanisms are unresolved and possibly vary between species. Our aim was to study the intracellular pH (pHi) regulation and thus H+/HCO3- transport in rat pancreatic ducts. Of particular interest was the Na+/HCO3(-) cotransporter, thought to be important in HCO3(-) -transporting epithelia. pHi was measured with BCECF in freshly isolated intralobular ducts. A reduction in extracellular Na+ concentration or application of HOE 694 (1 microM) decreased pHi by 0.1 to 0.6 pH units, demonstrating Na+/H+ exchanger activity. A reduction in extracellular Cl- concentration or addition of H2DIDS (10 microM) increased pHi by 0.1 to 0.5 pH units, demonstrating Cl-/ HCO(3)- (OH ) exchanger activity. In experimental acidosis, extracellular HCO3(-)/CO2 buffer did not increase the rate of pHi recovery, indicating that provision of HCO3(-) by the Na+/HCO3(-) cotransporter was not apparent. Most importantly, Na+/HCO3(-) cotransport was not stimulated by secretin (1 nM). In contrast, in experimental alkalosis the pHi recovery was increased in HCO3(-)/CO2 buffer, possibly due to Na+/HCO3(-) cotransport in the efflux mode. Secretin (1 nM) and carbachol (1 microM) stimulated HCO3(-) efflux, which can account for the observed HCO3(-) concentrations in rat pancreatic juice. Acetate and HCO3(-) buffers were handled similarly, indicating similar transport mechanisms in pancreatic ducts.

  7. Ca2+ current vs. Ca2+ channel cooperativity of exocytosis

    PubMed Central

    Matveev, Victor; Bertram, Richard; Sherman, Arthur

    2009-01-01

    Recently there has been significant interest and progress in the study of spatio-temporal dynamics of Ca2+ that triggers exocytosis at a fast chemical synapse, which requires understanding the contribution of individual calcium channels to the release of a single vesicle. Experimental protocols provide insight into this question by probing the sensitivity of exocytosis to Ca2+ influx. While varying extracellular or intracellular Ca2+ concentration assesses the intrinsic biochemical Ca2+ cooperativity of neurotransmitter release, varying the number of open Ca2+ channels using pharmacological channel block or the tail current titration probes the cooperativity between individual Ca2+ channels in triggering exocytosis. Despite the wide use of these Ca2+ sensitivity measurements, their interpretation often relies on heuristic arguments. Here we provide a detailed analysis of the Ca2+ sensitivity measures probed by these experimental protocols, present simple expressions for special cases, and demonstrate the distinction between the Ca2+ current cooperativity, defined by the relationship between exocytosis rate and the whole-terminal Ca2+ current magnitude, and the underlying Ca2+ channel cooperativity, defined as the average number of channels involved in the release of a single vesicle. We find simple algebraic expressions that show that the two are different but linearly related. Further, we use 3D computational modeling of buffered Ca2+ diffusion to analyze these distinct Ca2+ cooperativity measures, and demonstrate the role of endogenous Ca2+ buffers on such measures. We show that buffers can either increase or decrease the Ca2+ current cooperativity of exocytosis, depending on their concentration and the single-channel Ca2+ current. PMID:19793978

  8. Experimental and Numerical Investigation of Internal Gravity Waves Excited by Turbulent Penetrative Convection in Water Around Its Density Maximum

    NASA Astrophysics Data System (ADS)

    Perrard, Stéphane; Le Bars, Michaël; Le Gal, Patrice

    This study is devoted to the experimental and numerical analysis of the excitation of gravity waves by turbulent convection. This situation is representative of many geophysical or astrophysical systems such as the convective bottom layer of the atmosphere that radiates internal waves in the stratosphere, or the interaction between the convective and the radiative zones in stars. In our experiments, we use water as a working fluid as it possesses the remarkable property of having a maximum density at 4 °C. Therefore, when establishing on a water layer a temperature gradient between 0 °C at the bottom and room temperature at the top, a turbulent convective region appears spontaneously under a stably stratified zone. In these conditions, gravity waves are excited by the convective fluid motions penetrating the stratified layer. Although this type of flow, called penetrative convection, has already been described, we present here the first velocity field measurement of wave emission and propagation. We show in particular that an intermediate layer that we call the buffer layer emerges between the convective and the stratified zones. In this buffer layer, the angle of propagation of the waves varies with the altitude since it is slaved to the Brunt-Väisälä frequency which evolves rapidly between the convective and the stratified layer. A minimum angle is reached at the end of the buffer layer. Then we observe that an angle of propagation is selected when the waves travel through the stratified layer. We expect this process of wave selection to take place in natural situations.

  9. Development and Optimization of HPLC Analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in Pharmaceutical Dosage Forms Using Experimental Design.

    PubMed

    Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M

    2016-11-01

    A new simple, sensitive, rapid and accurate gradient reversed-phase high-performance liquid chromatography with photodiode array detector (RP-HPLC-DAD) was developed and validated for simultaneous analysis of Metronidazole (MNZ), Spiramycin (SPY), Diloxanidefuroate (DIX) and Cliquinol (CLQ) using statistical experimental design. Initially, a resolution V fractional factorial design was used in order to screen five independent factors: the column temperature (°C), pH, phosphate buffer concentration (mM), flow rate (ml/min) and the initial fraction of mobile phase B (%). pH, flow rate and initial fraction of mobile phase B were identified as significant, using analysis of variance. The optimum conditions of separation determined with the aid of central composite design were: (1) initial mobile phase concentration: phosphate buffer/methanol (50/50, v/v), (2) phosphate buffer concentration (50 mM), (3) pH (4.72), (4) column temperature 30°C and (5) mobile phase flow rate (0.8 ml min -1 ). Excellent linearity was observed for all of the standard calibration curves, and the correlation coefficients were above 0.9999. Limits of detection for all of the analyzed compounds ranged between 0.02 and 0.11 μg ml -1 ; limits of quantitation ranged between 0.06 and 0.33 μg ml -1 The proposed method showed good prediction ability. The optimized method was validated according to ICH guidelines. Three commercially available tablets were analyzed showing good % recovery and %RSD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Pasquini, Benedetta; Cooley, Scott K.

    In recent years, multivariate optimization has played an increasing role in analytical method development. ICH guidelines recommend using statistical design of experiments to identify the design space, in which multivariate combinations of composition variables and process variables have been demonstrated to provide quality results. Considering a microemulsion electrokinetic chromatography method (MEEKC), the performance of the electrophoretic run depends on the proportions of mixture components (MCs) of the microemulsion and on the values of process variables (PVs). In the present work, for the first time in the literature, a mixture-process variable (MPV) approach was applied to optimize a MEEKC method formore » the analysis of coenzyme Q10 (Q10), ascorbic acid (AA), and folic acid (FA) contained in nutraceuticals. The MCs (buffer, surfactant-cosurfactant, oil) and the PVs (voltage, buffer concentration, buffer pH) were simultaneously changed according to a MPV experimental design. A 62-run MPV design was generated using the I-optimality criterion, assuming a 46-term MPV model allowing for special-cubic blending of the MCs, quadratic effects of the PVs, and some MC-PV interactions. The obtained data were used to develop MPV models that express the performance of an electrophoretic run (measured as peak efficiencies of Q10, AA, and FA) in terms of the MCs and PVs. Contour and perturbation plots were drawn for each of the responses. Finally, the MPV models and criteria for the peak efficiencies were used to develop the design space and an optimal subregion (i.e., the settings of the mixture MCs and PVs that satisfy the respective criteria), as well as a unique optimal combination of MCs and PVs.« less

  11. Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change.

    PubMed

    Thompson, Patrick L; Shurin, Jonathan B

    2012-01-01

    1. Climate change and other human-driven environmental perturbations are causing reductions in biodiversity and impacting the functioning of ecosystems on a global scale. Metacommunity theory suggests that ecosystem connectivity may reduce the magnitude of these impacts if the regional species pool contains functionally redundant species that differ in their environmental tolerances. Dispersal may increase the resistance of local ecosystems to environmental stress by providing regional species with traits adapted to novel conditions. 2. We tested this theory by subjecting freshwater zooplankton communities in mesocosms that were either connected to or isolated from the larger regional species pool to a factorial manipulation of experimental warming and increased salinity. 3. Compensation by regional taxa depended on the source of stress. Warming tolerant regional taxa partially compensated for reductions in heat sensitive local taxa but similar compensation did not occur under increased salinity. 4. Dispersal-mediated species invasions dampened the effects of warming on summer net ecosystem productivity. However, this buffering effect did not occur in the fall or for periphyton growth, the only other ecosystem function affected by the stress treatments. 5. The results indicate that regional biodiversity can provide insurance in a dynamic environment but that the buffering capacity is limited to some ecosystem processes and sources of stress. Maintaining regional biodiversity and habitat connectivity may therefore provide some limited insurance for local ecosystems in changing environments, but is unable to impart resistance against all sources of environmental stress. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  12. High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport.

    PubMed

    Theparambil, Shefeeq M; Deitmer, Joachim W

    2015-09-01

    Cytosolic H(+) buffering plays a major role for shaping intracellular H(+) shifts and hence for the availability of H(+) for biochemical reactions and acid/base-coupled transport processes. H(+) buffering is one of the prime means to protect the cell from large acid/base shifts. We have used the H(+) indicator dye BCECF and confocal microscopy to monitor the cytosolic H(+) concentration, [H(+)]i, in cultured cortical astrocytes of wild-type mice and of mice deficient in sodium/bicarbonate cotransporter NBCe1 (NBCe1-KO) or in carbonic anhydrase isoform II (CAII-KO). The steady-state buffer strength was calculated from the amplitude of [H(+)]i transients as evoked by CO2/HCO3(-) and by butyric acid in the presence and absence of CO2/HCO3(-). We tested the hypotheses if, in addition to instantaneous physicochemical H(+) buffering, rapid acid/base transport across the cell membrane contributes to the total, "effective" cytosolic H(+) buffering. In the presence of 5% CO2/26 mM HCO3(-), H(+) buffer strength in astrocytes was increased 4-6 fold, as compared with that in non-bicarbonate, HEPES-buffered solution, which was largely attributable to fast HCO3 (-) transport into the cells via NBCe1, supported by CAII activity. Our results show that within the time frame of determining physiological H(+) buffering in cells, fast transport and equilibration of CO2/H(+)/HCO3(-) can make a major contribution to the total "effective" H(+) buffer strength. Thus, "effective" cellular H(+) buffering is, to a large extent, attributable to membrane transport of base equivalents rather than a purely passive physicochemical process, and can be much larger than reported so far. Not only physicochemical H(+) buffering, but also rapid import of HCO3(-) via the electrogenic sodium-bicarbonate cotransporter NBCe1, supported by carbonic anhydrase II (CA II), was identified to enhance cytosolic H(+) buffer strength substantially. © 2015 Wiley Periodicals, Inc.

  13. a Buffer Analysis Based on Co-Location Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, S.; Wang, H.; Zhang, R.; Wang, Q.; Sha, H.; Liu, X.; Pan, Q.

    2018-05-01

    Buffer analysis is a common tool of spatial analysis, which deals with the problem of proximity in GIS. Buffer analysis researches the relationship between the center object and other objects around a certain distance. Buffer analysis can make the complicated problem be more scientifically and visually, and provide valuable information for users. Over the past decades, people have done a lot of researches on buffer analysis. Along with the constantly improvement of spatial analysis accuracy needed by people, people hope that the results of spatial analysis can be more exactly express the actual situation. Due to the influence of some certain factors, the impact scope and contact range of a geographic elements on the surrounding objects are uncertain. As all we know, each object has its own characteristics and changing rules in the nature. They are both independent and relative to each other. However, almost all the generational algorithms of existing buffer analysis are based on fixed buffer distance, which do not consider the co-location relationship among instances. Consequently, it is a waste of resource to retrieve the useless information, and useful information is ignored.

  14. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls.

    PubMed

    Kiyokawa, Yasushi; Hennessy, Michael B

    2018-03-01

    KIYOKAWA, Y. and HENNESSY, M.B. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls…NEUROSCI BIOBEHAV REV XXX-XXX, .- Over the past decades, there has been an increasing number of investigations of the impact of social variables on neural, endocrine, and immune outcomes. Among these are studies of "social buffering"-or the phenomenon by which affiliative social partners mitigate the response to stressors. Yet, as social buffering studies have become more commonplace, the variety of approaches taken, definitions employed, and divergent results obtained in different species can lead to confusion and miscommunication. The aim of the present paper, therefore, is to address terminology and approaches and to highlight potential pitfalls to the study of social buffering across nonhuman species. We review and categorize variables currently being employed in social buffering studies and provide an overview of responses measured, mediating sensory modalities and underlying mechanisms. It is our hope that the paper will be useful to those contemplating examination of social buffering in the context of their own research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion

    NASA Astrophysics Data System (ADS)

    Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak

    2018-02-01

    The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.

  16. Proceedings of the conference on coastal watersheds: the Caspar Creek story. May 6, 1998, Ukiah, California

    Treesearch

    Robert R. Ziemer

    1998-01-01

    These proceedings report on 36 years of research at the Caspar Creek Experimental Watershed, Jackson Demonstration State Forest in northwestern California. The 16 papers include discussions of streamflow, sediment production and routing, stream channel condition, soil moisture and subsurface water, nutrient cycling, aquatic and riparian habitat, streamside buffers,...

  17. Optical Pumping of Molecular Gases

    DTIC Science & Technology

    1976-04-01

    ser emission ott a The typical experimental apparatus is shown i.- Fig. *series of green and yellow molecular B-X’-basnd transi- 2. For B-bantd optical...with A, at 0. 473 pim and that Na2 may operate as a flash -lamp -pumped laser X,... at 0. 54 umn the Doppler widths are AwD - 12.42 source with buffer

  18. Effects of treating sorghum wet distillers grains with solubles with fibrolytic enzymes on nutrient digestibility and performance in finishing beef steers

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to determine the effects of treating sorghum WDG with solubles (SWDG) with an enzyme, or enzyme-buffer combination on diet digestibility and feedlot performance. Experimental treatments are; 1) untreated SWDG (control), 2) addition of an enzyme complex to SWDG (enzyme...

  19. Impact of asymmetrical flow field-flow fractionation on protein aggregates stability.

    PubMed

    Bria, Carmen R M; Williams, S Kim Ratanathanawongs

    2016-09-23

    The impact of asymmetrical flow field-flow fractionation (AF4) on protein aggregate species is investigated with the aid of multiangle light scattering (MALS) and dynamic light scattering (DLS). The experimental parameters probed in this study include aggregate stability in different carrier liquids, shear stress (related to sample injection), sample concentration (during AF4 focusing), and sample dilution (during separation). Two anti-streptavidin (anti-SA) IgG1 samples composed of low and high molar mass (M) aggregates are subjected to different AF4 conditions. Aggregates suspended and separated in phosphate buffer are observed to dissociate almost entirely to monomer. However, aggregates in citric acid buffer are partially stable with dissociation to 25% and 5% monomer for the low and high M samples, respectively. These results demonstrate that different carrier liquids change the aggregate stability and low M aggregates can behave differently than their larger counterparts. Increasing the duration of the AF4 focusing step showed no significant changes in the percent monomer, percent aggregates, or the average Ms in either sample. Syringe-induced shear related to sample injection resulted in an increase in hydrodynamic diameter (dh) as measured by batch mode DLS. Finally, calculations showed that dilution during AF4 separation is significantly lower than in size exclusion chromatography with dilution occurring mainly at the AF4 channel outlet and not during the separation. This has important ramifications when analyzing aggregates that rapidly dissociate (<∼2s) upon dilution as the size calculated by AF4 theory may be more accurate than that measured by online DLS. Experimentally, the dhs determined by online DLS generally agreed with AF4 theory except for the more well retained larger aggregates for which DLS showed smaller sizes. These results highlight the importance of using AF4 retention theory to understand the impacts of dilution on analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass

    NASA Astrophysics Data System (ADS)

    Colegrove, E.; Banai, R.; Blissett, C.; Buurma, C.; Ellsworth, J.; Morley, M.; Barnes, S.; Gilmore, C.; Bergeson, J. D.; Dhere, R.; Scott, M.; Gessert, T.; Sivananthan, Siva

    2012-10-01

    Multiple polycrystalline CdS/CdTe solar cells with efficiencies greater than 15% were produced on buffered, commercially available Pilkington TEC Glass at EPIR Technologies, Inc. (EPIR, Bolingbrook, IL) and verified by the National Renewable Energy Laboratory (NREL). n-CdS and p-CdTe were grown by chemical bath deposition (CBD) and close space sublimation, respectively. Samples with sputter-deposited CdS were also investigated. Initial results indicate that this is a viable dry-process alternative to CBD for production-scale processing. Published results for polycrystalline CdS/CdTe solar cells with high efficiencies are typically based on cells using research-grade transparent conducting oxides (TCOs) requiring high-temperature processing inconducive to low-cost manufacturing. EPIR's results for cells on commercial glass were obtained by implementing a high-resistivity SnO2 buffer layer and by optimizing the CdS window layer thickness. The high-resistivity buffer layer prevents the formation of CdTe-TCO junctions, thereby maintaining a high open-circuit voltage and fill factor, whereas using a thin CdS layer reduces absorption losses and improves the short-circuit current density. EPIR's best device demonstrated an NREL-verified efficiency of 15.3%. The mean efficiency of hundreds of cells produced with a buffer layer between December 2010 and June 2011 is 14.4%. Quantum efficiency results are presented to demonstrate EPIR's progress toward NREL's best-published results.

  1. Optimizing Fungal DNA Extraction Methods from Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Jimenez, G.; Mescioglu, E.; Paytan, A.

    2016-12-01

    Fungi and fungal spores can be picked up from terrestrial ecosystems, transported long distances, and deposited into marine ecosystems. It is important to study dust-borne fungal communities, because they can stay viable and effect the ambient microbial populations, which are key players in biogeochemical cycles. One of the challenges of studying dust-borne fungal populations is that aerosol samples contain low biomass, making extracting good quality DNA very difficult. The aim of this project was to increase DNA yield by optimizing DNA extraction methods. We tested aerosol samples collected from Haifa, Israel (polycarbonate filter), Monterey Bay, CA (quartz filter) and Bermuda (quartz filter). Using the Qiagen DNeasy Plant Kit, we tested the effect of altering bead beating times and incubation times, adding three freeze and thaw steps, initially washing the filters with buffers for various lengths of time before using the kit, and adding a step with 30 minutes of sonication in 65C water. Adding three freeze/thaw steps, adding a sonication step, washing with a phosphate buffered saline overnight, and increasing incubation time to two hours, in that order, resulted in the highest increase in DNA for samples from Israel (polycarbonate). DNA yield of samples from Monterey (quart filter) increased about 5 times when washing with buffers overnight (phosphate buffered saline and potassium phophate buffer), adding a sonication step, and adding three freeze and thaw steps. Samples collected in Bermuda (quartz filter) had the highest increase in DNA yield from increasing incubation to 2 hours, increasing bead beating time to 6 minutes, and washing with buffers overnight (phosphate buffered saline and potassium phophate buffer). Our results show that DNA yield can be increased by altering various steps of the Qiagen DNeasy Plant Kit protocol, but different types of filters collected at different sites respond differently to alterations. These results can be used as preliminary results to continue developing fungi DNA extraction methods. Developing these methods will be important as dust storms are predicted to increase due to increased draughts and anthropogenic activity, and the fungal communities of these dust-storms are currently relatively understudied.

  2. Seven perspectives on GPCR H/D-exchange proteomics methods

    PubMed Central

    Zhang, Xi

    2017-01-01

    Recent research shows surging interest to visualize human G protein-coupled receptor (GPCR) dynamic structures using the bottom-up H/D-exchange (HDX) proteomics technology. This opinion article clarifies critical technical nuances and logical thinking behind the GPCR HDX proteomics method, to help scientists overcome cross-discipline pitfalls, and understand and reproduce the protocol at high quality. The 2010 89% HDX structural coverage of GPCR was achieved with both structural and analytical rigor. This article emphasizes systematically considering membrane protein structure stability and compatibility with chromatography and mass spectrometry (MS) throughout the pipeline, including the effects of metal ions, zero-detergent shock, and freeze-thaws on HDX result rigor. This article proposes to view bottom-up HDX as two steps to guide choices of detergent buffers and chromatography settings: (I) protein HDX labeling in native buffers, and (II) peptide-centric analysis of HDX labels, which applies (a) bottom-up MS/MS to construct peptide matrix and (b) HDX MS to locate and quantify H/D labels. The detergent-low-TCEP digestion method demystified the challenge of HDX-grade GPCR digestion. GPCR HDX proteomics is a structural approach, thus its choice of experimental conditions should let structure lead and digestion follow, not the opposite. PMID:28529698

  3. Rational Development of Neutral Aqueous Electrolytes for Zinc–Air Batteries

    PubMed Central

    Clark, Simon; Latz, Arnulf

    2017-01-01

    Abstract Neutral aqueous electrolytes have been shown to extend both the calendar life and cycling stability of secondary zinc–air batteries (ZABs). Despite this promise, there are currently no modeling studies investigating the performance of neutral ZABs. Traditional continuum models are numerically insufficient to simulate the dynamic behavior of these complex systems because of the rapid, orders‐of‐magnitude concentration shifts that occur. In this work, we present a novel framework for modeling the cell‐level performance of pH‐buffered aqueous electrolytes. We apply our model to conduct the first continuum‐scale simulation of secondary ZABs using aqueous ZnCl2–NH4Cl as electrolyte. We first use our model to interpret the results of two recent experimental studies of neutral ZABs, showing that the stability of the pH value is a significant factor in cell performance. We then optimize the composition of the electrolyte and the design of the cell considering factors including pH stability, final discharge product, and overall energy density. Our simulations predict that the effectiveness of the pH buffer is limited by slow mass transport and that chlorine‐containing solids may precipitate in addition to ZnO. PMID:28898553

  4. Social media as a shield: Facebook buffers acute stress.

    PubMed

    Rus, Holly M; Tiemensma, Jitske

    2018-03-01

    Facebook remains the most widely used social media platform. Research suggests that Facebook may both enhance and undermine psychosocial constructs related to well-being, and that it may impair physiological stress recovery. However, little is known about its influence on stress reactivity. Using novel experimental methods, this study examined how Facebook influences reactivity to an acute social stressor. Facebook users (n=104, 53 males, mean age 19.50, SD=1.73) were randomly assigned to use their own Facebook account or sit quietly with the option of reading electronic magazines before experiencing an acute social stressor. All participants showed significant changes in subjective and physiological stress markers in response to the stressor. However, participants who used Facebook experienced lower levels of psychosocial stress, physiological stress, and rated the stressor as less threatening (p's<0.05) when controlling for gender and emotional investment in the website compared to controls. Results suggest that Facebook use may buffer stress-in particular psychosocial stress-if used before experiencing an acute social stressor. This study is among the first to incorporate both objective and subjective measures in investigating the complex relationship between Facebook use and well-being. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hierarchy stability moderates the effect of status on stress and performance in humans

    PubMed Central

    Knight, Erik L.; Mehta, Pranjal H.

    2017-01-01

    High social status reduces stress responses in numerous species, but the stress-buffering effect of status may dissipate or even reverse during times of hierarchical instability. In an experimental test of this hypothesis, 118 participants (57.3% female) were randomly assigned to a high- or low-status position in a stable or unstable hierarchy and were then exposed to a social-evaluative stressor (a mock job interview). High status in a stable hierarchy buffered stress responses and improved interview performance, but high status in an unstable hierarchy boosted stress responses and did not lead to better performance. This general pattern of effects was observed across endocrine (cortisol and testosterone), psychological (feeling in control), and behavioral (competence, dominance, and warmth) responses to the stressor. The joint influence of status and hierarchy stability on interview performance was explained by feelings of control and testosterone reactivity. Greater feelings of control predicted enhanced interview performance, whereas increased testosterone reactivity predicted worse performance. These results provide direct causal evidence that high status confers adaptive benefits for stress reduction and performance only when the social hierarchy is stable. When the hierarchy is unstable, high status actually exacerbates stress responses. PMID:27994160

  6. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan

    NASA Astrophysics Data System (ADS)

    Tokuchi, Naoko; Ohte, Nobuhito; Hobara, Satoru; Kim, Su-Jin; Masanori, Katsuyama

    2004-10-01

    Changes in nutrient budgets and hydrological processes due to the natural disturbance of pine wilt disease (PWD) were monitored in a small, forested watershed in Japan. The disturbance caused changes in soil nitrogen transformations. Pre-disturbance, mineralized nitrogen remained in the form of NH4+, whereas in disturbed areas most mineralized nitrogen was nitrified. Stream NO3- concentrations increased following PWD. There was a delay between time of disturbance and the increase of NO3- in ground and stream waters. Stream concentrations of NO3- and cations (Ca2+ + Mg2+) were significantly correlated from 1994 to 1996, whereas the correlation among NO3-, H+, and SO42- was significant only in 1995. Although both cation exchange and SO42- adsorption buffered protons, cation exchange was the dominant and continuous mechanism for acid buffering. SO42- adsorption was variable and highly pH dependent. The disturbance also resulted in slight delayed changes of input-output nutrient balances. The nitrogen contribution to PWD litter inputs was 7.39 kmol ha-1, and nitrogen loss from streamwater was less than 0.5 kmol ha-1 year-1 throughout the observation period. This large discrepancy suggested substantial nitrogen immobilization.

  7. Hierarchy stability moderates the effect of status on stress and performance in humans.

    PubMed

    Knight, Erik L; Mehta, Pranjal H

    2017-01-03

    High social status reduces stress responses in numerous species, but the stress-buffering effect of status may dissipate or even reverse during times of hierarchical instability. In an experimental test of this hypothesis, 118 participants (57.3% female) were randomly assigned to a high- or low-status position in a stable or unstable hierarchy and were then exposed to a social-evaluative stressor (a mock job interview). High status in a stable hierarchy buffered stress responses and improved interview performance, but high status in an unstable hierarchy boosted stress responses and did not lead to better performance. This general pattern of effects was observed across endocrine (cortisol and testosterone), psychological (feeling in control), and behavioral (competence, dominance, and warmth) responses to the stressor. The joint influence of status and hierarchy stability on interview performance was explained by feelings of control and testosterone reactivity. Greater feelings of control predicted enhanced interview performance, whereas increased testosterone reactivity predicted worse performance. These results provide direct causal evidence that high status confers adaptive benefits for stress reduction and performance only when the social hierarchy is stable. When the hierarchy is unstable, high status actually exacerbates stress responses.

  8. Morphological examination of the effects of defibrotide on experimentally induced bladder injury and its relation to interstitial cystitis.

    PubMed

    Aydin, H; Ercan, F; Cetinel, S; San, T

    2001-08-01

    This morphological study aims to investigate the effects of defibrotide, a deoxyribonucleic acid derivative drug with cytoprotective, immunosuppressive and vasorelaxant effects, on protamine sulfate induced bladder injury. Wistar albino female rats were catheterized and intravesically infused with phosphate buffered solution (control group) or, either protamine sulfate (bladder injury group) or protamine sulfate+defibrotide (bladder injury+defibrotide group) dissolved in phosphate buffered solution. The morphology of the urinary bladder was investigated using light and electron microscopy. The number of mast cells in the mucosa, mucosal alterations, intercellular junctions, surface topography and the glycosaminoglycan (GAG) layer as well as microvillus formation on the luminal surface were evaluated. In the bladder injury group, ulcerated areas, irregularity of the GAG layer, increased number of mast cells, vacuole formation, dilated perinuclear cistern, formation of pleomorphic and uniform microvilli and dilatations in the intercellular spaces in the urothelium were observed. In the bladder injury+defibrotide group a relatively normal urothelial topography, GAG layer and a few mast cells in the mucosa, some dilatations between the intercellular areas, less uniform microvilli, regular perinuclear cistern and tight junctions were observed. These results show that defibrotide can inhibit PS induced bladder damage.

  9. Climacteric symptoms and their relation to feminine self-concept.

    PubMed

    Quiroga, A; Larroy, C; González-Castro, P

    2017-06-01

    To investigate women's subjective experiences in the climacteric transition, especially the impact of self-concept, quality of life and depression on the severity of climacteric symptoms. Non-experimental, cross-sectional study, purpose sampling. To analyze the results, we proposed a three-way interaction, in which the direct effect of depression on the severity of climacteric symptoms would be buffered by perceived sexual quality of life, and mediated by self-concept. As hypothesized, depression significantly predicted self-concept, which in turn mediated the severity of climacteric symptoms. In a second stage of the model, sexual quality of life moderated the direct effect of depression on climacteric symptoms, such that women with a better sexual quality of life would perceive less severity of climacteric symptoms than those with a less favorable sexual quality of life. Physical quality of life did not significantly buffer the direct effect of depression on climacteric symptoms, nor did vasomotor or psychosocial quality of life. Our study confirmed the impact of subjective factors such as satisfaction, self-concept, and quality of life on climacteric symptoms; specifically, we observed the moderating effect of the sexual quality of life on the previously established correlation between depression and aggravation of climacteric symptoms.

  10. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; He, Yu-Chen; Zhang, Qiang; Li, Guo-Qing; Fan, Liu-Yin; Xiao, Hua; Li, Shan; Cao, Cheng-Xi

    2016-09-01

    In this work, charge-to-mass ratio (C/M) and band broadening analyses were combined to provide better guidance for the design of free-flow zone electrophoresis carrier buffer (CB). First, the C/M analyses of hemoglobin and C-phycocyanin (C-PC) under different pH were performed by CLC Protein Workbench software. Second, band dispersion due to the initial bandwidth, diffusion, and hydrodynamic broadening were discussed, respectively. Based on the analyses of the C/M and band broadening, a better guidance for preparation of free-flow zone electrophoresis CB was obtained. Series of experiments were performed to validate the proposed method. The experimental data showed high accordance with our prediction allowing the CB to be prepared easily with our proposed method. To further evaluate this method, C-PC was purified from crude extracts of Spirulina platensis with the selected separation condition. Results showed that C-PC was well separated from other phycobiliproteins that have similar physicochemical properties, and analytical grade product with purity up to 4.5 (A620/A280) was obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. THESEUS: A wavelength division multiplexed/microwave subcarrier multiplexed optical network, its ATM switch applications and device requirements

    NASA Astrophysics Data System (ADS)

    Xin, Wei

    1997-10-01

    A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.

  12. Transfer buffer containing methanol can be reused multiple times in protein electrotransfer.

    PubMed

    Pettegrew, Colin J; Jayini, Renuka; Islam, M Rafiq

    2009-04-01

    We investigated the feasibility of repeated use of transfer buffer containing methanol in electrotransfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to polyvinylidene difluoride (PVDF) membrane using a prestained protein marker of broad molecular sizes. Transfer of the antitumor protein p53 in HEK293T cell extracts, using fresh and used transfer buffer, followed by detection with anti-p53 antibody was also performed to test detectability in immunoblot. Results from these experiments indicate that the transfer buffer can be reused at least five times and maintain a similar extent of protein transfer to PVDF membrane. Repeated use of the transfer buffer containing methanol will significantly reduce the volume of hazardous waste generated and its disposal cost as well as its adverse effect on environment.

  13. Effects of Different Buffers on the Construction of Aptamer Sensors

    NASA Astrophysics Data System (ADS)

    Yu, Quan; Dai, Zhao; Wu, Wenjing; Zhu, Haijia; Ji, Luyu

    2017-12-01

    In this paper, the effect of different buffers, PBS and TBE, on the construction of an aptamer sensor (apt sensor) for ATP was investigated. The apt sensor was based on fluorescence energy resonance transfer (FRET), when the energy donor was 5'-carboxyfluorescein (5'-FAM) and the energy receptor was Au nanoparticles (AuNPs), respectively. Both the donor and acceptor were conjugated with complementary and single stranded DNA (ssDNA). The fluorescent changes of the sensors were measured to investigate the influence of different buffers during the whole preparation and detection process. The results indicated that when the AuNPs and ssDNA (Au-DNA1) were conjugated in PBS buffer, the corresponding apt sensors would obtain a better detection ability of ATP than in TBE buffer.

  14. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal–Limbal and Human Conjunctival Epithelial Cells

    PubMed Central

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline

    2017-01-01

    Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036

  15. Demonstration of an all-optical feed-forward delay line buffer using the quadratic Stark effect and two-photon absorption in an SOA.

    PubMed

    Soto, Horacio; Tong, Miriam A; Domínguez, Juan C; Muraoka, Ramón

    2017-09-04

    We have inserted into an unbiased semiconductor optical amplifier (SOA) a powerful control beam, with photon energy slightly smaller than that of the band-gap of its active region, for exciting two-photon absorption and the quadratic Stark effect. For the available SOA, we estimated these phenomena generated a nonlinear absorption coefficient β= -865 cm/GW and induced an appreciable birefringence inside the amplifier waveguide, which significantly modified the polarization-state of a probe beam. Based on these effects, we have experimentally demonstrated the operation of an all-optical buffer, using an 80 Gb/s optical pulse comb, as well as an unbiased SOA, which was therefore, devoid of amplified spontaneous emission and pattern effects.

  16. Plasma assisted molecular beam epitaxy growth and effect of varying buffer thickness on the formation of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructure on Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302

    2015-02-23

    This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600 nm, 400 nm, and 200 nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5 nm, In{sub 0.17}Al{sub 0.83}N–1.25 nm, GaN–1.5 nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10 }cm{sup −2} to 10{sup 8 }cm{sup −2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure.more » Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89 nm, 1.2 nm, and 1.45 nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.« less

  17. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Miae; Wu, May

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) wasmore » employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.« less

  18. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    DOE PAGES

    Ha, Miae; Wu, May

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) wasmore » employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.« less

  19. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein

    NASA Astrophysics Data System (ADS)

    Arai, Hirofumi; Berlett, Barbara S.; Chock, P. Boon; Stadtman, Earl R.

    2005-07-01

    Oxidation of low-density lipoprotein (LDL) may play an important role in atherosclerosis. We studied the effects of bicarbonate/CO2 and phosphate buffer systems on metal ion-catalyzed oxidation of LDL to malondialdehyde (MDA) and to protein carbonyl and MetO derivatives. Our results revealed that LDL oxidation in mixtures containing free iron or heme derivatives was much greater in bicarbonate/CO2 compared with phosphate buffer. However, when copper was substituted for iron in these mixtures, the rate of LDL oxidation in both buffers was similar. Iron-catalyzed oxidation of LDL was highly sensitive to inhibition by phosphate. Presence of 0.3-0.5 mM phosphate, characteristic of human serum, led to 30-40% inhibition of LDL oxidation in bicarbonate/CO2 buffer. Iron-catalyzed oxidation of LDL to MDA in phosphate buffer was inhibited by increasing concentrations of albumin (10-200 μM), whereas MDA formation in bicarbonate/CO2 buffer was stimulated by 10-50 μM albumin but inhibited by higher concentrations. However, albumin stimulated the oxidation of LDL proteins to carbonyl derivatives at all concentrations examined in both buffers. Conversion of LDL to MDA in bicarbonate/CO2 buffer was greatly stimulated by ADP, ATP, and EDTA but only when EDTA was added at a concentration equal to that of iron. At higher than stoichiometric concentrations, EDTA prevented oxidation of LDL. Results of these studies suggest that interactions between bicarbonate and iron or heme derivatives leads to complexes with redox potentials that favor the generation of reactive oxygen species and/or to the generation of highly reactive CO2 anion or bicarbonate radical that facilitates LDL oxidation. Freely available online through the PNAS open access option.Abbreviations: LDL, low-density lipoprotein; MDA, malondialdehyde; MetO, methionine sulfoxide.

  20. Length scales involved in decoherence of trapped bosons by buffer-gas scattering

    NASA Astrophysics Data System (ADS)

    Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.

    2014-05-01

    We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.

  1. The Influence of Ca2+ Buffers on Free [Ca2+] Fluctuations and the Effective Volume of Ca2+ Microdomains

    PubMed Central

    Weinberg, Seth H.; Smith, Gregory D.

    2014-01-01

    Intracellular calcium (Ca2+) plays a significant role in many cell signaling pathways, some of which are localized to spatially restricted microdomains. Ca2+ binding proteins (Ca2+ buffers) play an important role in regulating Ca2+ concentration ([Ca2+]). Buffers typically slow [Ca2+] temporal dynamics and increase the effective volume of Ca2+ domains. Because fluctuations in [Ca2+] decrease in proportion to the square-root of a domain’s physical volume, one might conjecture that buffers decrease [Ca2+] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca2+ signaling. We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their stochastic dynamics during free Ca2+ influx with passive exchange of both Ca2+ and buffer with bulk concentrations. We derive Langevin equations for the fluctuating dynamics of Ca2+ and buffer and use these stochastic differential equations to determine the magnitude of [Ca2+] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models of Ca2+ signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca2+] fluctuations during periods of Ca2+ influx, whereas stationary (immobile) Ca2+ buffers do not. Also contrary to expectations, we find that in the absence of Ca2+ influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca2+] fluctuations. We derive an analytical formula describing the influence of rapid Ca2+ buffers on [Ca2+] fluctuations and, importantly, identify the stochastic analog of (deterministic) effective domain volume. Our results demonstrate that Ca2+ buffers alter the dynamics of [Ca2+] fluctuations in a nonintuitive manner. The finding that Ca2+ buffers do not suppress intrinsic domain [Ca2+] fluctuations raises the intriguing question of whether or not [Ca2+] fluctuations are a physiologically significant aspect of local Ca2+ signaling. PMID:24940787

  2. The influence of Ca²⁺ buffers on free [Ca²⁺] fluctuations and the effective volume of Ca²⁺ microdomains.

    PubMed

    Weinberg, Seth H; Smith, Gregory D

    2014-06-17

    Intracellular calcium (Ca(2+)) plays a significant role in many cell signaling pathways, some of which are localized to spatially restricted microdomains. Ca(2+) binding proteins (Ca(2+) buffers) play an important role in regulating Ca(2+) concentration ([Ca(2+)]). Buffers typically slow [Ca(2+)] temporal dynamics and increase the effective volume of Ca(2+) domains. Because fluctuations in [Ca(2+)] decrease in proportion to the square-root of a domain's physical volume, one might conjecture that buffers decrease [Ca(2+)] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca(2+) signaling. We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their stochastic dynamics during free Ca(2+) influx with passive exchange of both Ca(2+) and buffer with bulk concentrations. We derive Langevin equations for the fluctuating dynamics of Ca(2+) and buffer and use these stochastic differential equations to determine the magnitude of [Ca(2+)] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models of Ca(2+) signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca(2+)] fluctuations during periods of Ca(2+) influx, whereas stationary (immobile) Ca(2+) buffers do not. Also contrary to expectations, we find that in the absence of Ca(2+) influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca(2+)] fluctuations. We derive an analytical formula describing the influence of rapid Ca(2+) buffers on [Ca(2+)] fluctuations and, importantly, identify the stochastic analog of (deterministic) effective domain volume. Our results demonstrate that Ca(2+) buffers alter the dynamics of [Ca(2+)] fluctuations in a nonintuitive manner. The finding that Ca(2+) buffers do not suppress intrinsic domain [Ca(2+)] fluctuations raises the intriguing question of whether or not [Ca(2+)] fluctuations are a physiologically significant aspect of local Ca(2+) signaling. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoqing, E-mail: steelxu@stanford.edu; Parizi, Kokab B.; Huo, Yijie

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surfacemore » leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.« less

  4. Monitoring Liverworts to Evaluate the Effectiveness of Hydroriparian Buffers

    NASA Astrophysics Data System (ADS)

    Higgins, Kellina L.; Yasué, Maï

    2014-01-01

    In the coastal temperate rainforest of British Columbia (BC) in western Canada, government policies stipulate that foresters leave unlogged hydroriparian buffer strips up to 25 m on each side of streams to protect wildlife habitat. At present, studies on the effectiveness of these buffers focus on mammals, birds, and amphibians while there is comparably little information on smaller organisms such as liverworts in these hydroriparian buffers. To address this gap of knowledge, we conducted field surveys of liverworts comparing the percent cover and community composition in hydroriparian forested areas ( n = 4 sites, n = 32 plots with nested design) to hydroriparian buffer zones ( n = 4 sites, n = 32 plots). We also examined how substrate type affected the cover of liverworts. Liverwort communities in buffers were similar to those in riparian forest areas and most liverworts were found on downed wood. Thus, hydroriparian buffers of 25-35 m on each side in a coastal temperate rainforest effectively provide habitat for liverworts as long as downed wood is left intact in the landscape. Because liverworts are particularly sensitive to changes in humidity, these results may indicate that hydroriparian buffers are an effective management strategy for bryophytes and possibly for a range of other riparian species that are particularly sensitive to forestry-related changes in microclimate.

  5. Purification and Characterization of [NiFe]-Hydrogenase of Shewanella oneidensis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Liang; Belchik, Sara M.; Plymale, Andrew E.

    2011-08-02

    The γ-proteobacterium Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H2ase) that was implicated in both H2 production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H2ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H2ase were cloned into a protein expression vector. The resulting plasmid was transformed into a MR-1 mutant deficient in H2 formation. Expression of MR-1 [NiFe]-H2ase in trans restored the mutant’s ability to produce H2 at 37% of that for wild type. Following expression, MR-1 [NiFe]-H2ase was purified to near homogeneity. The purified MR-1 [NiFe]-H2ase could couplemore » H2 oxidation to reduction of Tc(VII) and methyl viologen directly. Change of the buffers used affected MR-1 [NiFe]-H2ase-mediated Tc(VII) but not methyl viologen reductions. Under the conditions tested, Tc(VII) reduction was complete in Tris buffer but not in HEPES buffer. The reduced Tc(IV) was soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc(IV) precipitates formed in HEPES buffer were packed with crystallites. Although X-ray absorption near-edge spectroscopy measurements confirmed that the reduction products found in both buffers were Tc(IV), extended X-ray adsorption fine-structure measurements revealed that these products were very different. While the product in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O2•nH2O. These results shows for the first time that MR-1 [NiFe]-H2ase is a bidirectional enzyme that catalyzes both H2 formation and oxidation as well as Tc(VII) reduction directly by coupling H2 oxidation.« less

  6. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers

    PubMed Central

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-01-01

    Background and Aims Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. Methods The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G0/G1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain–nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Key Results Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Conclusions Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family. PMID:27594649

  7. Effects of buffer size and shape on associations between the built environment and energy balance.

    PubMed

    James, Peter; Berrigan, David; Hart, Jaime E; Hipp, J Aaron; Hoehner, Christine M; Kerr, Jacqueline; Major, Jacqueline M; Oka, Masayoshi; Laden, Francine

    2014-05-01

    Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Grass buffers for playas in agricultural landscapes: An annotated bibliography

    USGS Publications Warehouse

    Melcher, Cynthia P.; Skagen, Susan K.

    2005-01-01

    References on best management practices (BMPs) for agricultural lands were included because certain BMPs are crucial for informing decisions about buffer design/ effectiveness and overall playa ecology. We also included various papers that increase the spectrum of time over which buffer theories and practices have evolved. An unannotated section lists references that we did not prioritize for annotation and references that may be helpful but were beyond the scope of this document. Finally, we provide notes on conversations we had with scientists, land managers, and other buffer experts whom we consulted, and their contact information. We conclude the bibliography with appendices of common and scientific names of birds and plants and acronyms used in both the bibliography. In the annotations, italicized text signifies our own editorial remarks. Readers should also note that much of the work on buffers has been designed using English units of measure rather than metrics; in most cases, their results have been converted to metrics for publication, explaining the seemingly odd or irregular buffer widths and other parameters reported.

  9. Measurement of radon concentration in super-Kamiokande's buffer gas

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Sekiya, H.; Tasaka, S.; Takeuchi, Y.; Wendell, R. A.; Matsubara, M.; Nakahata, M.

    2017-09-01

    To precisely measure radon concentrations in purified air supplied to the Super-Kamiokande detector as a buffer gas, we have developed a highly sensitive radon detector with an intrinsic background as low as 0 . 33 ± 0 . 07 mBq /m3. In this article, we discuss the construction and calibration of this detector as well as results of its application to the measurement and monitoring of the buffer gas layer above Super-Kamiokande. In March 2013, the chilled activated charcoal system used to remove radon in the input buffer gas was upgraded. After this improvement, a dramatic reduction in the radon concentration of the supply gas down to 0 . 08 ± 0 . 07 mBq /m3. Additionally, the Rn concentration of the in-situ buffer gas has been measured 28 . 8 ± 1 . 7 mBq /m3 using the new radon detector. Based on these measurements we have determined that the dominant source of Rn in the buffer gas arises from contamination from the Super-Kamiokande tank itself.

  10. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland

    NASA Astrophysics Data System (ADS)

    Cai, Jiangping; Luo, Wentao; Liu, Heyong; Feng, Xue; Zhang, Yongyong; Wang, Ruzhen; Xu, Zhuwen; Zhang, Yuge; Jiang, Yong

    2017-12-01

    Atmospheric nitrogen (N) deposition can result in soil acidification and reduce soil acid buffering capacity. However, it remains poorly understood how changes in precipitation regimes with elevated atmospheric N deposition affect soil acidification processes in a water-limited grassland. Here, we conducted a 9-year split-plot experiment with water addition as the main factor and N addition as the second factor. Results showed that soil acid buffering capacity significantly decreased with increased N inputs, mainly due to the decline of soil effective cation exchange capacity (ECEC) and exchangeable basic cations (especially Ca2+), indicating an acceleration of soil acidification status in this steppes. Significant interactive N and water effects were detected on the soil acid buffering capacity. Water addition enhanced the soil ECEC and exchangeable base cations and thus alleviated the decrease of soil acid buffering capacity under N addition. Our findings suggested that precipitation can mitigate the impact of increased N deposition on soil acidification in semi-arid grasslands. This knowledge should be used to improve models predicting soil acidification processes in terrestrial ecosystems under changing environmental conditions.

  11. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    PubMed

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Free vibration analysis of linear particle chain impact damper

    NASA Astrophysics Data System (ADS)

    Gharib, Mohamed; Ghani, Saud

    2013-11-01

    Impact dampers have gained much research interest over the past decades that resulted in several analytical and experimental studies being conducted in that area. The main emphasis of such research was on developing and enhancing these popular passive control devices with an objective of decreasing the three parameters of contact forces, accelerations, and noise levels. To that end, the authors of this paper have developed a novel impact damper, called the Linear Particle Chain (LPC) impact damper, which mainly consists of a linear chain of spherical balls of varying sizes. The LPC impact damper was designed utilizing the kinetic energy of the primary system through placing, in the chain arrangement, a small-sized ball between each two large-sized balls. The concept of the LPC impact damper revolves around causing the small-sized ball to collide multiple times with the larger ones upon exciting the primary system. This action is believed to lead to the dissipation of part of the kinetic energy at each collision with the large balls. This paper focuses on the outcome of studying the free vibration of a single degree freedom system that is equipped with the LPC impact damper. The proposed LPC impact damper is validated by means of comparing the responses of a single unit conventional impact damper with those resulting from the LPC impact damper. The results indicated that the latter is considerably more efficient than the former impact damper. In order to further investigate the LPC impact damper effective number of balls and efficient geometry when used in a specific available space in the primary system, a parametric study was conducted and its result is also explained herein. Single unit impact damper [14-16]. Multiunit impact damper [17,18]. Bean bag impact damper [19,20]. Particle/granular impact damper [21,23,22]. Resilient impact damper [24]. Buffered impact damper [25-27]. Multiunit impact damper consists of multiple masses instead of a single mass. This produces a smaller contact force for each mass while maintaining the same effect of the single unit impact damper. The analytical and experimental work showed that the multiunit impact damper is more functional than the conventional single unit impact damper in reducing noise and vibration [17]. The bean bag impact damper is considered as another form of multiunit impact damper. It consists of a flexible bag packed with small spherical particles (e.g. lead shots). The resilience of the damper can be varied by adjusting the tightness of the flexible bag. It is found that the bean bag impact damper is better than the conventional impact damper in vibration suppression, contact forces reductions, and noise attenuation [19]. The particle/granular impact damper consists of a cavity(s) filled with ceramic/metal particles or powders with small granule sizes. Better damping performances are achieved when using metal particles with high density (lead or tungsten steel) [23]. Other investigations recommended using multiple particle impact dampers that involve friction, impact and shear mechanisms to achieve optimal damping effect [22]. The resilient impact damper is similar to the conventional impact dampers. The only difference is that the deformation of the impact damper with the stops during the collision is taken into account [24]. The buffered impact damper is an extension of the resilient impact damper by adding a flexible buffer layer to the stops to absorb the energy of the moving mass. The experimental work shows that the buffer zone reduces the impact forces, avoids high acceleration and reduces the contact forces by absorbing more of the impact energy and increasing the contact time [25].

  13. Development of n-ZnO/p-Si single heterojunction solar cell with and without interfacial layer

    NASA Astrophysics Data System (ADS)

    Hussain, Babar

    The conversion efficiency of conventional silicon (Si) photovoltaic cells has not been improved significantly during last two decades but their cost decreased dramatically during this time. However, the higher price-per-watt of solar cells is still the main bottleneck in their widespread use for power generation. Therefore, new materials need to be explored for the fabrication of solar cells potentially with lower cost and higher efficiency. The n-type zinc oxide (n-ZnO) and p-type Si (p-Si) based single heterojunction solar cell (SHJSC) is one of the several attempts to replace conventional Si single homojunction solar cell technology. There are three inadequacies in the literature related to n-ZnO/p-Si SHJSC: (1) a detailed theoretical analysis to evaluate potential of the solar cell structure, (2) inconsistencies in the reported value of open circuit voltage (VOC) of the solar cell, and (3) lower value of experimentally achieved VOC as compared to theoretical prediction based on band-bending between n-ZnO and p-Si. Furthermore, the scientific community lacks consensus on the optimum growth parameters of ZnO. In this dissertation, I present simulation and experimental results related to n-ZnO/p-Si SHJSC to fill the gaps mentioned above. Modeling and simulation of the solar cell structure are performed using PC1D and AFORS-HET software taking practical constraints into account to explore the potential of the structure. Also, unnoticed benefits of ZnO in solar cells such as an additional antireflection (AR) effect and low temperature deposition are highlighted. The growth parameters of ZnO using metal organic chemical vapor deposition and sputtering are optimized. The structural, optical, and electrical characterization of ZnO thin films grown on sapphire and Si substrates is performed. Several n-ZnO/p-Si SHJSC devices are fabricated to confirm the repeatability of the VOC. Moreover, the AR effect of ZnO while working as an n-type layer is experimentally verified. The spatial analysis for thickness uniformity and optical quality of ZnO films is carried out. These properties turn out to play a fundamental role in device performance and so far have been overlooked by the research community. Three different materials are used as a quantum buffer layer at the interface of ZnO and Si to suppress the interface states and improve the VOC. The best measured value of VOC of 359 mV is achieved using amorphous-ZnO (a-ZnO) as the buffer layer at the interface. Finally, supplementary simulations are performed to optimize the valence-band and conduction-band offsets by engineering the bandgap and electron affinity of ZnO. After we published our initial results related to the feasibility of n-ZnO/p-Si SHJSC [Sol. Energ. Mat. Sol. Cells 139 (2015) 95-100], different research groups have fabricated and reported the solar cell performance with the best efficiency of 7.1% demonstrated very recently by Pietruszka et al. [Sol. Energ. Mat. Sol. Cells 147 (2016) 164-170]. We conclude that major challenge in n-ZnO/p-Si SHJSC is to overcome Fermi-level pinning at the hetero-interface. A potential solution is to use the appropriate material as buffer layer which is confirmed by observing an improvement in VOC using a-ZnO at the interface as buffer layer. Once the interface quality is improved and the experimental value of VOC matched the theoretical prediction, the n-ZnO/p-Si SHJSC can potentially have significant contribution in solar cells industry.

  14. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.

    Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.

  15. Job Shop Scheduling Focusing on Role of Buffer

    NASA Astrophysics Data System (ADS)

    Hino, Rei; Kusumi, Tetsuya; Yoo, Jae-Kyu; Shimizu, Yoshiaki

    A scheduling problem is formulated in order to consistently manage each manufacturing resource, including machine tools, assembly robots, AGV, storehouses, material shelves, and so on. The manufacturing resources are classified into three types: producer, location, and mover. This paper focuses especially on the role of the buffer, and the differences among these types are analyzed. A unified scheduling formulation is derived from the analytical results based on the resource’s roles. Scheduling procedures based on dispatching rules are also proposed in order to numerically evaluate job shop-type production having finite buffer capacity. The influences of the capacity of bottle-necked production devices and the buffer on productivity are discussed.

  16. Increased degradation rate of nitrososureas in media containing carbonate.

    PubMed

    Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov

    2009-01-01

    The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.

  17. Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli

    2016-12-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.

  18. Assessing critical source areas in watersheds for conservation buffer planning and riparian restoration.

    PubMed

    Qiu, Zeyuan

    2009-11-01

    A science-based geographic information system (GIS) approach is presented to target critical source areas in watersheds for conservation buffer placement. Critical source areas are the intersection of hydrologically sensitive areas and pollutant source areas in watersheds. Hydrologically sensitive areas are areas that actively generate runoff in the watershed and are derived using a modified topographic index approach based on variable source area hydrology. Pollutant source areas are the areas in watersheds that are actively and intensively used for such activities as agricultural production. The method is applied to the Neshanic River watershed in Hunterdon County, New Jersey. The capacity of the topographic index in predicting the spatial pattern of runoff generation and the runoff contribution to stream flow in the watershed is evaluated. A simple cost-effectiveness assessment is conducted to compare the conservation buffer placement scenario based on this GIS method to conventional riparian buffer scenarios for placing conservation buffers in agricultural lands in the watershed. The results show that the topographic index reasonably predicts the runoff generation in the watershed. The GIS-based conservation buffer scenario appears to be more cost-effective than the conventional riparian buffer scenarios.

  19. Joint Services Electronics Program.

    DTIC Science & Technology

    1985-12-31

    year a comprehensive experimental study of the collision- enhanced Hanle-type resonances in Na vapor with various buffer gases has been completed...demonstrated theoretically that the collision-enhanced Hanle resonances are equivalent to the phenomenon of collision-induced transverse optical pumping. The...for the sensitivity of the mean sojourn times. We also developed a set of new equations based on perturbation analysis which calculates theoretically

  20. A memory module for experimental data handling

    NASA Astrophysics Data System (ADS)

    De Blois, J.

    1985-02-01

    A compact CAMAC memory module for experimental data handling was developed to eliminate the need of direct memory access in computer controlled measurements. When using autonomous controllers it also makes measurements more independent of the program and enlarges the available space for programs in the memory of the micro-computer. The memory module has three modes of operation: an increment-, a list- and a fifo mode. This is achieved by connecting the main parts, being: the memory (MEM), the fifo buffer (FIFO), the address buffer (BUF), two counters (AUX and ADDR) and a readout register (ROR), by an internal 24-bit databus. The time needed for databus operations is 1 μs, for measuring cycles as well as for CAMAC cycles. The FIFO provides temporary data storage during CAMAC cycles and separates the memory part from the application part. The memory is variable from 1 to 64K (24 bits) by using different types of memory chips. The application part, which forms 1/3 of the module, will be specially designed for each application and is added to the memory chian internal connector. The memory unit will be used in Mössbauer experiments and in thermal neutron scattering experiments.

  1. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    NASA Astrophysics Data System (ADS)

    Barbour, Michele E.; Shellis, R. Peter

    2007-02-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.

  2. Stand-off thermal IR minefield survey: system concept and experimental results

    NASA Astrophysics Data System (ADS)

    Cremer, Frank; Nguyen, Thanh T.; Yang, Lixin; Sahli, Hichem

    2005-06-01

    A detailed description of the CLEARFAST system for thermal IR stand-off minefield survey is given. The system allows (i) a stand-off diurnal observation of hazardous area, (ii) detecting anomalies, i.e. locating and searching for targets which are thermally and spectrally distinct from their surroundings, (iii) estimating the physical parameters, i.e. depth and thermal diffusivity, of the detected anomalies, and (iv) providing panoramic (mosaic) images indicating the locations of suspect objects and known markers. The CLEARFAST demonstrator has been successfully deployed and operated, in November 2004, in a real minefield within the United Nations Buffer Zone in Cyprus. The paper describes the main principles of the system and illustrates the processing chain on a set of real minefield images, together with qualitative and quantitative results.

  3. Zeeman relaxation of MnH (X7Σ+) in collisions with He3: Mechanism and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Turpin, F.; Stoecklin, T.; Halvick, Ph.

    2011-03-01

    We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of MnH (7Σ) in collisions with He3. We analyze the collisional Zeeman transition mechanism as a function of the final diatomic state and its variation as a function of an applied magnetic field. We show that as a result of this mechanism the levels with ΔMj>2 give negligible contributions to the Zeemam relaxation cross section. We also compare our results to the experimental cross sections obtained from the buffer-gas cooling and magnetic trapping of this molecule and investigate the dependence of the Zeeman relaxation cross section on the accuracy of the three-body interaction at ultralow energies.

  4. Electrochemical study of the interaction between dsDNA and copper(I) using carbon paste and hanging mercury drop electrode.

    PubMed

    Stanić, Z; Girousi, S

    2008-06-30

    The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.

  5. Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers

    PubMed Central

    Ngoka, Lambert CM

    2008-01-01

    Background An important step in the proteomics of solid tumors, including breast cancer, consists of efficiently extracting most of proteins in the tumor specimen. For this purpose, Radio-Immunoprecipitation Assay (RIPA) buffer is widely employed. RIPA buffer's rapid and highly efficient cell lysis and good solubilization of a wide range of proteins is further augmented by its compatibility with protease and phosphatase inhibitors, ability to minimize non-specific protein binding leading to a lower background in immunoprecipitation, and its suitability for protein quantitation. Results In this work, the insoluble matter left after RIPA buffer extraction of proteins from breast tumors are subjected to another extraction step, using a urea-based buffer. It is shown that RIPA and urea lysis buffers fractionate breast tissue proteins primarily on the basis of molecular weights. The average molecular weight of proteins that dissolve exclusively in urea buffer is up to 60% higher than in RIPA. Gene Ontology (GO) and Directed Acyclic Graphs (DAG) are used to map the collective biological and biophysical attributes of the RIPA and urea proteomes. The Cellular Component and Molecular Function annotations reveal protein solubilization preferences of the buffers, especially the compartmentalization and functional distributions. It is shown that nearly all extracellular matrix proteins (ECM) in the breast tumors and matched normal tissues are found, nearly exclusively, in the urea fraction, while they are mostly insoluble in RIPA buffer. Additionally, it is demonstrated that cytoskeletal and extracellular region proteins are more soluble in urea than in RIPA, whereas for nuclear, cytoplasmic and mitochondrial proteins, RIPA buffer is preferred. Extracellular matrix proteins are highly implicated in cancer, including their proteinase-mediated degradation and remodelling, tumor development, progression, adhesion and metastasis. Thus, if they are not efficiently extracted by RIPA buffer, important information may be missed in cancer research. Conclusion For proteomics of solid tumors, a two-step extraction process is recommended. First, proteins in the tumor specimen should be extracted with RIPA buffer. Second, the RIPA-insoluble material should be extracted with the urea-based buffer employed in this work. PMID:18950484

  6. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    DOEpatents

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  7. Comparison of presumptive blood test kits including hexagon OBTI.

    PubMed

    Johnston, Emma; Ames, Carole E; Dagnall, Kathryn E; Foster, John; Daniel, Barbara E

    2008-05-01

    Four presumptive blood tests, Hexagon OBTI, Hemastix(R), Leucomalachite green (LMG), and Kastle-Meyer (KM) were compared for their sensitivity in the identification of dried bloodstains. Stains of varying blood dilutions were subjected to each presumptive test and the results compared. The Hexagon OBTI buffer volume was also reduced to ascertain whether this increased the sensitivity of the kit. The study found that Hemastix(R) was the most sensitive test for trace blood detection. Only with the reduced buffer volume was the Hexagon OBTI kit as sensitive as the LMG and KM tests. However, the Hexagon OBTI kit has the advantage of being a primate specific blood detection kit. This study also investigated whether the OBTI buffer within the kit could be utilized for DNA profiling after presumptive testing. The results show that DNA profiles can be obtained from the Hexagon OBTI kit buffer directly.

  8. Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zheng, Xin; Liu, Fei; Wang, Pei; Gan, Lin; Wang, Jing-jing

    2017-09-01

    Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.

  9. Venus Surface Composition Constrained by Observation and Experiment

    NASA Astrophysics Data System (ADS)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-11-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to the rarity of wollastonite and instability of carbonate at the Venus surface. Sulfur in the Venus atmosphere has been shown experimentally to react with Ca in surface minerals to produce anhydrite. The extent of this SO2 buffer is constrained by the Ca content of surface rocks and sulfur content of the atmosphere, both of which are likely variable, perhaps due to active volcanism. Experimental work on a range of semiconductor and ferroelectric minerals is placing constraints on the cause(s) of Venus' anomalously radar bright highlands.

  10. Bus operators' responses to job strain: An experimental test of the job demand-control model.

    PubMed

    Cendales-Ayala, Boris; Useche, Sergio Alejandro; Gómez-Ortiz, Viviola; Bocarejo, Juan Pablo

    2017-10-01

    The research aim was to test the Job Demand-Control (JDC) Model demands × Control interaction (or buffering) hypothesis in a simulated bus driving experiment. The buffering hypothesis was tested using a 2 (low and high demands) × 2 (low and high decision latitude) design with repeated measures on the second factor. A sample of 80 bus operators were randomly assigned to the low (n = 40) and high demands (n = 40) conditions. Demands were manipulated by increasing or reducing the number of stops to pick up passengers, and decision latitude by imposing or removing restrictions on the Rapid Transit Bus (BRT) operators' pace of work. Outcome variables include physiological markers (heart rate [HR], heart rate variability [HRV], breathing rate [BR], electromyography [EMG], and skin conductance [SC]), objective driving performance and self-report measurements of psychological wellbeing (psychological distress, interest/enjoyment [I/E], perceived competence, effort/importance [E/I], and pressure/tension [P/T]). It was found that job decision latitude moderates the effect of job demands on both physiological arousal (BR: F(1, 74) = 4.680, p = .034, SC: F(1, 75) = 6.769, p = .011, and EMG: F(1, 75) = 6.550, p = .013) and psychological well-being (P/T: F(1, 75) = 4.289, p = .042 and I/E: F(1, 74) = 4.548, p = .036). Consistently with the JDC model buffering hypothesis, the experimental findings suggest that increasing job decision latitude can moderate the negative effect of job demands on different psychophysiological outcomes. This finding is useful for designing organizational and clinical interventions in an occupational group at high risk of work stress-related disease. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. A continuously pulsed copper halide laser with a cable-capacitor Blumlein discharge circuit

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.; Bhanji, A. M.; Russell, G. R.

    1978-01-01

    Experimental characteristics of a continuously pulsed copper halide laser with a cable-capacitor Blumlein discharge circuit are reported. Quartz laser tubes 1 m in length and 1.5 and 2.5 cm in diameter were employed to study the effects of the electrical circuit, lasant, and buffer gas on laser performance. Measured properties of the Blumlein circuit are compared with an analytic solution for an idealized circuit. Both CuCl and CuBr with neon and helium buffer gas were studied. A maximum average power of 12.5 W was obtained with a 1.5 nF capacitor charged to 8 kV and discharged at 31 kHz with CuCl and neon buffer gas at 0.7 kPa in a 2.5-cm-diam tube. A maximum efficiency of 0.72 percent was obtained at 9 W average power. Measurements of the radial distribution of the power in the laser beam and the variation of laser power at 510.6 and 578.2 nm with halide vapor density are also reported. Double and continuously pulsed laser characteristics are compared, and the role of copper metastable level atoms in limiting the laser pulse energy density is discussed.

  12. Influence of buffer-layer construction and substrate orientation on the electron mobilities in metamorphic In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As structures on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulbachinskii, V. A., E-mail: kulb@mig.phys.msu.ru; Oveshnikov, L. N.; Lunin, R. A.

    The influence of construction of the buffer layer and misorientation of the substrate on the electrical properties of In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As quantum wells on a GaAs substrate is studied. The temperature dependences (in the temperature range of 4.2 K < T < 300 K) and field dependences (in magnetic fields as high as 6 T) of the sample resistances are measured. Anisotropy of the resistances in different crystallographic directions is detected; this anisotropy depends on the substrate orientation and construction of the metamorphic buffer layer. In addition, the Hall effect and the Shubnikov–de Haas effect aremore » studied. The Shubnikov–de Haas effect is used to determine the mobilities of electrons separately in several occupied dimensionally quantized subbands in different crystallographic directions. The calculated anisotropy of mobilities is in agreement with experimental data on the anisotropy of the resistances.« less

  13. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.

    PubMed

    Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš

    2011-06-01

    The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Activation of a Ca-bentonite as buffer material

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid-shaped time-swell curves of typical bentonites. That is, a greater part of swelling strain develops after the completion of primary swelling strain. At an optimal amount of 1% Na2CO3 in weight, the maximum swelling strain was found to be 3 times as much as that of untreated Zhisin clay. Furthermore, the Na2CO3-activated Zhisin clay exhibited improved resistance to thermal environments and behaved similar to Na-type bentonites under various hydrothermal temperatures.

  15. Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1-xN Buffer Layer.

    PubMed

    Lee, Chang-Ju; Won, Chul-Ho; Lee, Jung-Hee; Hahm, Sung-Ho; Park, Hongsik

    2017-07-21

    The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded Al x Ga -x N buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded Al x Ga 1-x N buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 10 - ² A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers.

  16. Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments.

    PubMed

    Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas

    2012-10-15

    In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.

  17. The Potential Role of Systemic Buffers in Reducing Intratumoral Extracellular pH and Acid-Mediated Invasion

    PubMed Central

    Silva, Ariosto S.; Yunes, Jose A.; Gillies, Robert J.; Gatenby, Robert A.

    2013-01-01

    A number of studies have shown that the extracellular pH (pHe) in cancers is typically lower than that in normal tissue and that an acidic pHe promotes invasive tumor growth in primary and metastatic cancers. Here, we investigate the hypothesis that increased systemic concentrations of pH buffers reduce intratumoral and peritumoral acidosis and, as a result, inhibit malignant growth. Computer simulations are used to quantify the ability of systemic pH buffers to increase the acidic pHe of tumors in vivo and investigate the chemical specifications of an optimal buffer for such purpose. We show that increased serum concentrations of the sodium bicarbonate (NaHCO3) can be achieved by ingesting amounts that have been used in published clinical trials. Furthermore, we find that consequent reduction of tumor acid concentrations significantly reduces tumor growth and invasion without altering the pH of blood or normal tissues. The simulations also show that the critical parameter governing buffer effectiveness is its pKa. This indicates that NaHCO3, with a pKa of 6.1, is not an ideal intratumoral buffer and that greater intratumoral pHe changes could be obtained using a buffer with a pKa of ~7. The simulations support the hypothesis that systemic pH buffers can be used to increase the tumor pHe and inhibit tumor invasion. PMID:19276380

  18. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  19. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou

    2016-12-01

    In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  20. Association between airborne PM2.5 chemical constituents and birth weight—implication of buffer exposure assignment

    NASA Astrophysics Data System (ADS)

    Ebisu, Keita; Belanger, Kathleen; Bell, Michelle L.

    2014-08-01

    Several papers reported associations between airborne fine particulate matter (PM2.5) and birth weight, though findings are inconsistent across studies. Conflicting results might be due to (1) different PM2.5 chemical structure across locations, and (2) various exposure assignment methods across studies even among the studies that use ambient monitors to assess exposure. We investigated associations between birth weight and PM2.5 chemical constituents, considering issues arising from choice of buffer size (i.e. distance between residence and pollution monitor). We estimated the association between each pollutant and term birth weight applying buffers of 5 to 30 km in Connecticut (2000-2006), in the New England region of the USA. We also investigated the implication of the choice of buffer size in relation to population characteristics, such as socioeconomic status. Results indicate that some PM2.5 chemical constituents, such as nitrate, are associated with lower birth weight and appear more harmful than other constituents. However, associations vary with buffer size and the implications of different buffer sizes may differ by pollutant. A homogeneous pollutant level within a certain distance is a common assumption in many environmental epidemiology studies, but the validity of this assumption may vary by pollutant. Furthermore, we found that areas close to monitors reflect more minority and lower socio-economic populations, which implies that different exposure approaches may result in different types of study populations. Our findings demonstrate that choosing an exposure method involves key tradeoffs of the impacts of exposure misclassification, sample size, and population characteristics.

  1. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  2. Experimental Studies on role of pH, potential and concentration of buffer solution for chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Suresha, B. L.; Sumantha, H. S.; Salman, K. Mohammed; Pramod, N. G.; Abhiram, J.

    2018-04-01

    The ionization potential is usually found to be less in acid and more in base. The experiment proves that the ionization potential increases on dilution of acid to base and reduces from base to acid. The potential can be tailored according to the desired properties based on our choice of acid or base. The experimental study establishes a direct relationship between pH and electric potential. This work provides theoretical insights on the need for a basic media of pH 10 in chemical thin film growth techniques called Chemical Bath Deposition Techniques.

  3. Determination of the mitigating effect of colon-specific bioreversible codrugs of mycophenolic acid and aminosugars in an experimental colitis model in Wistar rats

    PubMed Central

    Chopade, Shakuntala Santosh; Dhaneshwar, Suneela Sunil

    2018-01-01

    AIM To design colon-targeted codrugs of mycophenolic acid (MPA) and aminosugars as a safer option to mycophenolate mofetil (MMF) in the management of inflammatory bowel disease. METHODS Codrugs were synthesized by coupling MPA with aminosugars (D-glucosamine and D-galactosamine) using EDCI coupling. The structures were confirmed by infrared radiation, nuclear magnetic resonance, mass spectroscopy and elemental analysis. The release profile of codrugs was extensively studied in aqueous buffers, upper gastrointestinal homogenates, faecal matter and caecal homogenates (in vitro) and rat blood (in vitro). Anti-colitic activity was assessed in 2,4,6-trinitrobezenesulfonic acid-induced colitis in Wistar rats by the estimation of various demarcating parameters. Statistical evaluation was performed by applying one-way and two-way ANOVA when compared with the disease control. RESULTS The prodrugs resisted activation in HCl buffer (pH 1.2) and stomach homogenates of rats with negligible hydrolysis in phosphate buffer (pH 7.4) and intestinal homogenates. Incubation with colon homogenates (in vitro) produced 76% to 89% release of MPA emphasizing colon-specific activation of codrugs and the release of MPA and aminosugars at the site of action. In the in vitro studies, the prodrug of MPA with D-glucosamine (MGLS) was selected which resulted in 68% release of MPA in blood. in vitro studies on MGLS revealed its colon-specific activation after a lag time of 8 h which could be ascribed to the hydrolytic action of N-acyl amidases found in the colon. The synthesized codrugs markedly diminished disease activity score and revived the disrupted architecture of the colon that was comparable to MMF but superior to MPA. CONCLUSION The significant attenuating effect of prodrugs and individual aminosugars on colonic inflammation proved that the rationale of the codrug approach is valid. PMID:29563754

  4. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN.

  5. Tested Demonstrations: Visualization of Buffer Action and the Acidifying Effect of Carbon Dioxide.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Presents a buffer demonstration which features visualization of the effects of carbon dioxide on pH. Background information, list of materials needed, procedures used, and a discussion of results obtained are included. (JN)

  6. A capillary electrophoresis chip for the analysis of print and film photographic developing agents in commercial processing solutions using indirect fluorescence detection.

    PubMed

    Sirichai, S; de Mello, A J

    2001-01-01

    The separation and detection of both print and film developing agents (CD-3 and CD-4) in photographic processing solutions using chip-based capillary electrophoresis is presented. For simultaneous detection of both analytes under identical experimental conditions a buffer pH of 11.9 is used to partially ionise the analytes. Detection is made possible by indirect fluorescence, where the ions of the analytes displace the anionic fluorescing buffer ion to create negative peaks. Under optimal conditions, both analytes can be analyzed within 30 s. The limits of detection for CD-3 and CD-4 are 0.17 mM and 0.39 mM, respectively. The applicability of the method for the analysis of seasoned photographic processing developer solutions is also examined.

  7. A self-powered kinesin-microtubule system for smart cargo delivery

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Dong, Weiguang; Feng, Xiyun; Li, Jieling; Li, Junbai

    2014-11-01

    A smart self-powered cargo delivery system that is composed of creatine phosphate kinase (CPK) microspheres, kinesins and microtubules is demonstrated. The CPK microsphere not only acts as an ATP generation and buffering system, but also as a carrier for cargo transport, thus realizing the easy loading and self-powered delivery of cargos at the same time.A smart self-powered cargo delivery system that is composed of creatine phosphate kinase (CPK) microspheres, kinesins and microtubules is demonstrated. The CPK microsphere not only acts as an ATP generation and buffering system, but also as a carrier for cargo transport, thus realizing the easy loading and self-powered delivery of cargos at the same time. Electronic supplementary information (ESI) available: Experimental details, Fig. S1-S4, and Mov. S1-S6. See DOI: 10.1039/c4nr04454a

  8. Amplification of spontaneous emission on sodium D-lines using nonresonance broadband optical pumping

    NASA Astrophysics Data System (ADS)

    Petukhov, T. D.; Evtushenko, G. S.; Tel'minov, E. N.

    2018-04-01

    This work describes an experimental study of obtaining the amplified spontaneous emission (ASE) on sodium D-lines using nonresonance broadband optical pumping. ASE is observed at transitions D2 and D1 line: 589 nm (32 P3/2 - 32 S1/2) and 589.6 nm (32 P1/2 - 32 S1/2). The active medium was pumped by the dye laser with FWHM of 5 nm, maximum radiation in the range 584.5-586.5 nm, and pulse energy above 2 mJ. The working temperature of the active medium was 260 °C, initial pressure of buffer gas-helium was 300 torr (operating pressure - 500 torr). A change in the absorption spectra at D lines at different temperatures of the active medium and buffer gas pressures was observed

  9. Investigation of solid nitrogen for cryogenic thermal storage in superconducting cable terminations for enhanced resiliency

    NASA Astrophysics Data System (ADS)

    Suttell, N.; Zhang, Z.; Kweon, J.; Nes, T.; Kim, C. H.; Pamidi, S.; Ordonez, J. C.

    2017-12-01

    Low heat capacity of helium makes the helium gas cooled high temperature superconducting (HTS) power devices susceptible to large temperature rises during unexpected heat loads such as electrical faults or cryogenic system failures. Cryogenic thermal storage in the form of solid nitrogen designed in the terminations is explored as a means to increase the thermal stability and operational time of HTS power cables in the event of unexpected heat loads. An external tank containing activated charcoal is used as an adsorption buffer tank for nitrogen gas. The use of activated charcoal minimizes the volume of the buffer tank and prevents pressure rises during melting and boiling of the solid nitrogen. Calculations of the cryogenic thermal storage needed and a description of the experimental setup used to understand the design constraints are discussed.

  10. FIBER OPTICS: Investigation of the spectral dependences of some of the polarization characteristics of fiber waveguides with an elliptic stress-inducing cladding and a circular core

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.; Surin, S. Yu

    1991-01-01

    An experimental investigation was made of the spectral dependences of the modal birefringence B, of the polarization dispersion τp, and of the difference Dx-Dy between the chromatic dispersions of polarization modes in fiber waveguides with an elliptic stress-inducing cladding, a second circular buffer cladding, and a circular core. The investigation was carried out in the wavelength range 1.15-1.75 μm. The magnitude of the changes in B, τp, and Dx-Dy depended on the dimensions of the buffer cladding. The dependences obtained were explained satisfactorily by an analysis of the similarity of the distributions of the intensity of the fundamental mode and of the difference of the stresses along the optic axes of the investigated fiber waveguides.

  11. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  12. Study on the reduction and hysteresis effect of soil nitrogen pollution by Alfalfa in channel buffer bank

    NASA Astrophysics Data System (ADS)

    Chi, Yixia; Xue, Lianqing; Zhang, Zhanyu; Li, Dongying

    2018-01-01

    Based on the simulation experiments of solute transport in channel buffer bank and pot experiments, this study analyzed the transport of nitrogen pollution from farmland drains along the South-North Water Transfer east route project; and compared the nitrogen transport rule and purification effect of alfalfa in channel buffer bank soil under situations of bare land and alfalfa mulching. The results showed that: (1) soil nitrogen content decreased gradually with the width increase of channel buffer bank by the soil adsorption and decomposition; (2) the migration rates of nitrogen were 0.06 g·kg-1 by the alfalfa mulching; (3) the removed rates of nitrogen from the soil were 0.088 g·kg-1 by cutting alfalfa; (4) the residual nitrogen of soil with alfalfa was 10% of the bare land. Alfalfa in channel buffer bank had obvious reduction and hysteresis effect to soil nitrogen pollution.

  13. Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation.

    PubMed

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Mason, Thomas G; Kraut, Jeffrey A; Gazmuri, Raúl J

    2016-11-01

    Major myocardial abnormalities occur during cardiac arrest and resuscitation including intracellular acidosis-partly caused by CO 2 accumulation-and activation of the Na + -H + exchanger isoform-1 (NHE-1). We hypothesized that a favorable interaction may result from NHE-1 inhibition during cardiac resuscitation followed by administration of a CO 2 -consuming buffer upon return of spontaneous circulation (ROSC). Ventricular fibrillation was electrically induced in 24 male rats and left untreated for 8 min followed by defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Rats were randomized 1:1:1 to the NHE-1 inhibitor zoniporide or vehicle during CPR and disodium carbonate/sodium bicarbonate buffer or normal saline (30 ml/kg) after ROSC. Survival at 240 min declined from 100% with Zoniporide/Saline to 50% with Zoniporide/Buffer and 25% with Vehicle/Buffer (P = 0.004), explained by worsening postresuscitation myocardial dysfunction. Marked alkalemia occurred after buffer administration along with lactatemia that was maximal after Vehicle/Buffer, attenuated by Zoniporide/Buffer, and minimal with Zoniporide/Saline [13.3 ± 4.8 (SD), 9.2 ± 4.6, and 2.7 ± 1.0 mmol/l; P ≤ 0.001]. We attributed the intense postresuscitation lactatemia to enhanced glycolysis consequent to severe buffer-induced alkalemia transmitted intracellularly by an active NHE-1. We attributed the worsened postresuscitation myocardial dysfunction also to severe alkalemia intensifying Na + entry via NHE-1 with consequent Ca 2+ overload injuring mitochondria, evidenced by increased plasma cytochrome c Both buffer-induced effects were ameliorated by zoniporide. Accordingly, buffer-induced alkalemia after ROSC worsened myocardial function and survival, likely through enhancing NHE-1 activity. Zoniporide attenuated these effects and uncovered a complex postresuscitation acid-base physiology whereby blood pH drives NHE-1 activity and compromises mitochondrial function and integrity along with myocardial function and survival.

  14. Role of block copolymer-micelle nanocomposites in dye-bovine serum albumin binding: a combined experimental and molecular docking study.

    PubMed

    Manna, Anamika; Chakravorti, Sankar

    2013-02-02

    The role of a nanocomposite (NC), composed of intercalation of the diblock copolymer polyethylene-b-polyethylene glycol (PE-b-PEG) with the anionic surfactant sodium dodecyl sulphate (SDS), on the binding characteristics of bovine serum albumin (BSA) with a dye (1,8-naphthalimide, NAPMD) compared to the interaction between the same players in aqueous solution has been examined comprehensively in this paper. Static quenching due to complex formation in both NC medium and in buffer solution has been inferred on the basis of considerable changes in the absorption spectra of BSA on addition of NAPMD, of which the interaction is found to be stronger in NC medium. Temperature dependent fluorescence data also confirm an effective static quenching and stronger binding of NAPMD with BSA in NC medium. Peptide chain unfolding and denaturing of BSA in NC medium have been confirmed from steady state and time-resolved emission and circular dichroism data. This exposes both the tyrosine and tryptophan moieties as a unique case. Increased energy transfer between NAPMD and the tryptophan residue in the unfolded form of BSA helps in the appearance of tyrosine fluorescence in NC medium by quenching the tryptophan band. Ionization of the hydroxyl group in the aromatic ring of the tyrosine residue by the PEG group present in the NC medium produces a downshift of the tyrosine fluorescence band. The use of site selective markers confirms that NAPMD is near tryptophan in Sudlow's site I in NC medium and in buffer solution it is away from tryptophan in Sudlow's site II. The theoretical docking studies also vindicate the results of binding of NAPMD with BSA in site I or site II in NC and buffer media, as observed from different emission experiments including the site selective markers study.

  15. Thermodynamic data from redox reactions at high temperatures. II. The MnO-0Mn3O4 oxygen buffer, and implications for the thermodynamic properties of MnO and Mn3O4

    NASA Astrophysics Data System (ADS)

    O'Neill, Hugh St. C.; Pownceby, Mark I.

    1993-09-01

    Theμ _{O_2 } defined by the reaction 6 MnO+O2 =2 Mn3O4 has been determined from 917 to 1,433 K using electrochemical cells (with calcia-stabilized zirconta, CSZ) of the type: MediaObjects/410_2005_BF01046534_f2.tif Steady emfs were achieved rapidly at all temperatures on both increasing and decreasing temperature, indicating that the MnO-Mn3O4 oxygen buffer equilibrates relatively easily. It therefore makes a useful alternative choice in experimental petrology to Fe2O3-Fe3O4 for buffering oxygen potentials at oxidized values. The results are (in J/mol, temperature in K, reference pressure 1 bar);μ _{O_2 } (±200)=-563,241+1,761.758 T-220.490 T in T+0.101819 T 2 with an uncertainty of ±200 J/mol. Third law analysis of these data, including a correction for the deviations in stoichiometry of MnO, implies S 298.15 for Mn3O4 of 166.6 J/K · mol, which is 2.5 J/K · mol higher than the calorimetric determination of Robie and Hemingway (1985). The low value of the calorimetric entropy may be due to incomplete ordering of the magnetic spins. The third law value of Δ r H {298.15/0} is-450.09 kJ/mol, which is significantly different from the calorimetric value of-457.5±3.4 kJ/mol, calculated from Δ f H {298.15/0} of MnO and Mn3O4, implying a small error in one or both of these latter.

  16. Coupling Molecular Beacons to Barcoded Metal Nanowires for Multiplexed, Sealed Chamber DNA Bioassays

    PubMed Central

    Stoermer, Rebecca L.; Cederquist, Kristin B.; McFarland, Sean K.; Sha, Michael Y.; Penn, Sharron G.

    2010-01-01

    We have combined molecular beacon (MB) probes with barcoded metal nanowires to enable no-wash, sealed chamber, multiplexed detection of nucleic acids. Probe design and experimental parameters important in nanowire-based MB assays are discussed. Loop regions of 24 bases and 5 base pair stem regions in the beacon probes gave optimal performance. Our results suggest that thermodynamic predictions for secondary structure stability of solution-phase MB can guide probe design for nanowire-based assays. Dengue virus-specific probes with predicted solution-phase ΔG of folding in 500 mM buffered NaCl of approximately −4 kcal/mol performed better than those with ΔG > −2 or < −6 kcal/mol. Buffered 300–500 mM NaCl was selected after comparison of several buffers previously reported for similar types of assays, and 200–500 mM NaCl was found to be the optimal ionic strength for the hybridization temperatures (25 and 50 °C) and probe designs used here. Target binding to the surface as a function of solution concentration fit a Sips isotherm with Kd = 1.7 ± 0.3 nM. The detection limit was ∼100 pM, limited by incomplete quenching. Single base mismatches could be discriminated from fully complementary targets. Oligonucleotide target sequences specific for human immunodeficiency, hepatitis C, and severe acute respiratory viruses were assayed simultaneously in a no-wash, sealed chamber, multiplexed experiment in which each of three probe sequences was attached to a different pattern of encoded nanowires. Finally, we demonstrated that probe-coated nanowires retain their selectivity and sensitivity in a triplexed assay after storage for over 3 months. PMID:17177440

  17. Automatized sspKa measurements of dihydrogen phosphate and Tris(hydroxymethyl) aminomethane in acetonitrile/water mixtures from 20 to 60°C.

    PubMed

    Acquaviva, A; Tascon, M; Padró, J M; Gagliardi, L G; Castells, C B

    2014-09-01

    We measured pKa values of Tris(hydroxymethyl)aminomethane and dihydrogen phosphate; both are commonly used to prepare buffers for reverse-phase liquid chromatography (RPLC), in acetonitrile/water mixtures from 0% to 70% (v/v) (64.6% (w/w)) acetonitrile and at 20, 30, 40, 50, and 60°C. The procedure is based on potentiometric measurements of pH of buffer solutions of variable solvent compositions using a glass electrode and a novel automated system. The method consists in the controlled additions of small volumes of a thermostated solution from an automatic buret into another isothermal solution containing exactly the same buffer-component concentrations, but a different solvent composition. The continuous changes in the solvent composition induce changes in the potentials. Thus, only two sequences of additions are needed: increasing the amount of acetonitrile from pure water and decreasing the content of acetonitrile from 70% (v/v) (64.6% (w/w)). In the procedure with homemade apparatus, times for additions, stirring, homogenization, and data acquisition are entirely controlled by software programmed for this specific routine. This rapid, fully automated method was applied to acquire more than 40 potential data covering the whole composition range (at each temperature) in about two hours and allowed a systematic study of the effect of temperature and acetonitrile composition on acid-base equilibria of two widely used substances to control pH close to 7. The experimental pKa results were fitted to empirical functions between pKa and temperature and acetonitrile composition. These equations allowed predictions of pKa to estimate the pH of mixtures at any composition and temperature, which would be very useful, for instance, during chromatographic method development. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Estimation of the Contribution of CYP2C8 and CYP3A4 in Repaglinide Metabolism by Human Liver Microsomes Under Various Buffer Conditions.

    PubMed

    Kudo, Toshiyuki; Goda, Hitomi; Yokosuka, Yuki; Tanaka, Ryo; Komatsu, Seina; Ito, Kiyomi

    2017-09-01

    We have previously reported that the microsomal activities of CYP2C8 and CYP3A4 largely depend on the buffer condition used in in vitro metabolic studies, with different patterns observed between the 2 isozymes. In the present study, therefore, the possibility of buffer condition dependence of the fraction metabolized by CYP2C8 (fm2C8) for repaglinide, a dual substrate of CYP2C8 and CYP3A4, was estimated using human liver microsomes under various buffer conditions. Montelukast and ketoconazole showed a potent and concentration-dependent inhibition of CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α-hydroxylation, respectively, without dependence on the buffer condition. Repaglinide depletion was inhibited by both inhibitors, but the degree of inhibition depended on buffer conditions. Based on these results, the contribution of CYP2C8 in repaglinide metabolism was estimated to be larger than that of CYP3A4 under each buffer condition, and the fm2C8 value of 0.760, estimated in 50 mM phosphate buffer, was the closest to the value (0.801) estimated in our previous modeling analysis based on its concentration increase in a clinical drug interaction study. Researchers should be aware of the possibility of buffer condition affecting the estimated contribution of enzyme(s) in drug metabolism processes involving multiple enzymes. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Pharmacokinetic study of a new oral buffered acetylsalicylic acid (ASA) formulation in comparison with plain ASA in healthy volunteers.

    PubMed

    Viganò, G; Garagiola, U; Gaspari, F

    1991-01-01

    A single-blind, randomized, crossover pharmacokinetic study was carried out to investigate the bioavailability of a new oral buffered 325 mg acetylsalicylic acid (ASA) formulation (ASPIRINA 03) in comparison with a 325 mg plain tablet. Twelve healthy volunteers of both sexes, aged between 20 and 37 years, received buffered or plain ASA on two separate occasions with a wash-out interval of at least two weeks. ASA and salicylic acid (SA) plasma levels were determined by a chromatographic method. The results showed no difference between the area under concentration time curve (AUC0-infinity) ASA values of both formulations (p = 0.19), and buffered ASA relative bioavailability was 102.49% (= bioequivalence). A significant difference was found between the AUC0-30 min ASA values: 90.5 micrograms. min/ml with buffered and 67.7 micrograms. min/ml with the plain tablet (p less than 0.05). The buffered ASA time of maximum concentration was shorter (28 +/- 8 min) than the plain one (38 +/- 19 min, p less than 0.05). The plasma concentrations and pharmacokinetic parameters of SA were not significantly different after the administration of the two ASA formulations. The plain ASA tablet had a significantly lower (p less than 0.05) dissolution rate than buffered ASA tablet. Moreover, the buffered ASA tablet significantly (p less than 0.01) increased the pH by 0.5 units. In conclusion, the bioavailability of the new oral buffered ASA was equivalent to that of plain ASA, but the plasma concentration peak was reached in a shorter time.

  20. Effect of hydrogen on the device performance and stability characteristics of amorphous InGaZnO thin-film transistors with a SiO2/SiNx/SiO2 buffer

    NASA Astrophysics Data System (ADS)

    Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong

    2017-08-01

    We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.

  1. Optimization of the buffer surface of CoFeB/MgO/CoFeB-based magnetic tunnel junctions by ion beam milling

    NASA Astrophysics Data System (ADS)

    Martins, L.; Ventura, J.; Ferreira, R.; Freitas, P. P.

    2017-12-01

    Due to their high tunnel magnetoresistance (TMR) ratios at room temperature, magnetic tunnel junctions (MTJs) with a crystalline MgO insulating barrier and CoFeB ferromagnetic (FM) layers are the best candidates for novel magnetic memory applications. To overcome impedance matching problems in electronic circuits, the MgO barrier must have an ultra-low thickness (∼1 nm). Therefore, it is mandatory to optimize the MTJ fabrication process, in order to prevent relevant defects in the MgO barrier that could affect the magnetic and electrical MTJ properties. Here, a smoothing process aiming to decrease the roughness of the buffer surface before the deposition of the full MTJ stack is proposed. An ion beam milling process was used to etch the surface of an MTJ buffer structure with a Ru top layer. The morphologic results prove an effective decrease of the Ru surface roughness with the etching time. The electrical and magnetic results obtained for MTJs with smoothed buffer structures show a direct influence of the buffer roughness and coupling field on the improvement of the TMR ratio.

  2. Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization

    NASA Astrophysics Data System (ADS)

    Liu, Hongpeng; Yu, Dan; Zhou, Ke; Wang, Shichan; Luo, Suhua; Li, Li; Wang, Weibo; Song, Qinggong

    2018-05-01

    Optical sensor based on pH-sensitive hydrogel has important practical applications in medical diagnosis and bio-sensor areas. This report details the experimental and theoretical results from a novel photosensitive polymer hydrogel holographic sensor, which formed by thermal polymerization of 2-hydroxyethyl methacrylate, for the detection of pH in buffer. Volume grating recorded in the polymer hydrogel was employed in response to the performance of solution. Methacrylic acid with carboxyl groups was selected as the primary co-monomer to functionalize the matrix. Peak diffraction spectrum of holographic grating determined as a primary sensing parameter was characterized to reflect the change in pH. The extracted linear relation between peak wavelength and pH value provided a probability for the practical application of holographic sensor. To explore the sensing mechanism deeply, a theoretical model was used to describe the relevant holographic processes, including grating formation, dark diffusional enhancement, and final fringe swelling. Numerical result further showed all of the dynamic processes and internal sensing physical mechanism. These experimental and numerical results provided a significant foundation for the development of novel holographic sensor based on polymer hydrogel and improvement of its practical applicability.

  3. Experimental and DFT studies on DNA binding and photocleavage of two cationic porphyrins. Effects of the introduction of a carboxyphenyl into pyridinium porphyrin.

    PubMed

    Zhao, Ping; Xu, Lian-Cai; Huang, Jin-Wang; Liu, Jie; Yu, Han-Cheng; Zheng, Kang-Cheng; Ji, Liang-Nian

    2008-12-15

    The DNA-binding affinities and DNA photocleavage abilities of cationic porphyrin, 5-(4-carboxyphenyl)-10,15,20-tris(4-methylpyridiniumyl)porphyrin (CTMPyP), and its reference compound meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (H2TMPyP) have been investigated. The DNA-binding behaviors of the two compounds in NaH2PO4 buffer were compared systematically by using absorption, fluorescence and circular dichroism (CD) spectra, thermal denaturation as well as viscosity measurements. The experimental results show that CTMPyP binds to DNA in an outside binding mode, while H2TMPyP in an intercalative mode. Photocleavage experiments reveal that both two compounds employ 1O2-mediated mechanism in cleaving DNA and H2TMPyP can cleave DNA more efficiently than CTMPyP. Theoretical calculations were carried out with the density functional theory (DFT), and the calculated results indicate that the character and energies of some frontier orbitals of CTMPyP are quite different from those of H2TMPyP. These theoretical results can be used to explain their different DNA-binding modes and affinities to a certain extent.

  4. Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes

    PubMed Central

    1983-01-01

    Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold increase in hydrogen ion concentration, free calcium must also be raised tenfold to elicit the calcium transient. PMID:6411737

  5. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    PubMed

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( < 0.02) in annual NO emission between the riparian buffers was detected (4.32 vs. 1.03 kg NO-N ha at WR and LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00465b

  7. Sulfide and Oxide Heterostructures For the SrTiO3 Thin Film Growth on Si and Their Structural and Interfacial Stabilities

    NASA Astrophysics Data System (ADS)

    Yoo, Young‑Zo; Song, Jeong‑Hwan; Konishi, Yoshinori; Kawasaki, Masashi; Koinuma, Hideomi; Chikyow, Toyohiro

    2006-03-01

    Epitaxial SrTiO3 (STO) thin films with high electrical properties were grown on Si using ZnS single- and SrS/MnS hetero-buffer layers. STO films on both ZnS-buffered and SrS/MnS-buffered Si showed two growth orientations, (100) and (110). The temperature dependence of the growth orientation for STO films was different for the ZnS single-buffer layer in comparison with the SrS/MnS heterobuffer layers. (100) growth of STO films on SrS/MnS-buffered Si became dominant at high temperatures about 700 °C, while (100) growth of STO films on ZnS-buffered Si became dominant at a relatively low growth temperature of 550 °C. STO(100) films on ZnS-buffered and SrS/MnS-buffered Si showed lattice and domain matches for epitaxial relationships with [001]ZnS\\parallel[011]STO and SrS[001]\\parallel[011]STO, respectively via 45° in-plane rotation of STO films relative to both ZnS and SrS layers. The ZnS buffer layer contained many stacking faults because of the mismatch between ZnS and Si, however, those defects were terminated at the ZnS/STO interface. In contrast, the MnS buffer was very stable against stacking defect formation. Transmission electron microscopy measurements revealed the presence of a disordered region at the ZnS/Si and MnS/Si interfaces. Auger electron spectroscopy and transmission electron microscopy results showed that a good MnS/Si interface at the initial growth stage degraded to a SiS2-x-rich phase during MnS deposition and again into a SiO2-x-rich phase during STO deposition at the high growth temperature of 700 °C. It was also observed that STO on SrS/MnS-buffered Si showed a markedly high dielectric constant compared with that of STO on ZnS-buffered Si.

  8. Low-Cd CIGS solar cells made with a hybrid CdS/Zn(O,S) buffer layer

    DOE PAGES

    Garris, Rebekah L.; Mansfield, Lorelle M.; Egaas, Brian; ...

    2016-10-27

    In Cu(In,Ga)Se2 (CIGS) solar cells, CdS and Zn(O,S) buffer layers were compared with a hybrid buffer layer consisting of thin CdS followed Zn(O,S). We explore the physics of this hybrid layer that combines the standard (Cd) approach with the alternative (Zn) approach in the pursuit to unlock further potential for CIGS technology. CdS buffer development has shown optimal interface properties, whereas Zn(O,S) buffer development has shown increased photocurrent. Although a totally Cd-free solar module is more marketable, the retention of a small amount of Cd can be beneficial to achieve optimum junction properties. As long as the amount of Cdmore » is reduced to less than 0.01% by weight, the presence of Cd does not violate the hazardous substance restrictions of the European Union (EU). We estimate the amount of Cd allowed in the EU for CIGS on both glass and stainless steel substrates, and we show that reducing Cd becomes increasingly important as substrate weights decrease. As a result, this hybrid buffer layer had reduced Cd content and a wider space charge region, while achieving equal or better solar cell performance than buffer layers of either CdS or Zn(O,S) alone.« less

  9. Buffered versus non-buffered ocean carbon reservoir variations: Application to the sensitivity of atmospheric pCO2 to ocean circulation changes

    NASA Astrophysics Data System (ADS)

    d'Orgeville, M.; England, M. H.; Sijp, W. P.

    2011-12-01

    Changes in the ocean circulation on millenial timescales can impact the atmospheric CO2 concentration by two distinct mechanisms: either by modifying the non-buffered ocean carbon storage (through changes in the physical and biological oceanic pumps) or by directly varying the surface mean oceanic partial pressure of pCO2 (through changes in mean surface alkalinity, temperature or salinity). The equal importance of the two mechanisms is illustrated here by introducing a diagnostic buffered carbon budget on the results of simulations performed with an Earth System Climate Model. For all the circulation changes considered in this study (due to a freshening of the North Atlantic, or a change in the Southern Hemisphere Westerly winds), the sign of the atmospheric CO2 response is opposite to the sign of the non-buffered ocean carbon storage change, indicating a transfer of carbon between ocean and atmosphere reservoirs. However the concomitant changes in the buffered ocean carbon reservoir can either greatly enhance or almost inhibit the atmospheric response depending on its sign. This study also demonstrates the utility of the buffered carbon budget approach in diagnosing the transient response of the global carbon cycle to climatic variations.

  10. Experimental scleral cross-linking increases glaucoma damage in a mouse model

    PubMed Central

    Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.

    2014-01-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

  11. Algorithm for Calculating the Dissociation Constants of Ampholytes in Nonbuffer Systems

    NASA Astrophysics Data System (ADS)

    Lysova, S. S.; Skripnikova, T. A.; Zevatskii, Yu. E.

    2018-05-01

    An algorithm for calculating the dissociation constants of ampholytes in aqueous solutions is developed on the basis of spectrophotometric data in the UV and visible ranges without pH measurements of a medium and without buffer solutions. The proposed algorithm has been experimentally tested for five ampholytes of different strengths. The relative error of measuring dissociation constants is less than 5%.

  12. Early Social Deprivation and the Social Buffering of Cortisol Stress Responses in Late Childhood: An Experimental Study

    ERIC Educational Resources Information Center

    Hostinar, Camelia E.; Johnson, Anna E.; Gunnar, Megan R.

    2015-01-01

    The goal of the present study was to investigate the role of early social deprivation in shaping the effectiveness of parent support to alleviate hypothalamic-pituitary-adrenal (HPA)-axis-stress responses of children (ages 8.9-11, M = 9.83 years, SD = 0.55). The sample was equally divided between children who had been adopted internationally from…

  13. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... test system has been designed that is buffered to maintain pH and is pre-aged in sunlight to produce, subsequently, a predictable bleaching behavior. (v) The purpose of Phase 1 is to prepare, pre-age, and dilute... reason, kpE, which contains kIE, is likewise valid only for the experimental data and latitude. (8) The...

  14. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... test system has been designed that is buffered to maintain pH and is pre-aged in sunlight to produce, subsequently, a predictable bleaching behavior. (v) The purpose of Phase 1 is to prepare, pre-age, and dilute... reason, kpE, which contains kIE, is likewise valid only for the experimental data and latitude. (8) The...

  15. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... test system has been designed that is buffered to maintain pH and is pre-aged in sunlight to produce, subsequently, a predictable bleaching behavior. (v) The purpose of Phase 1 is to prepare, pre-age, and dilute... reason, kpE, which contains kIE, is likewise valid only for the experimental data and latitude. (8) The...

  16. Performance and Metastability of CdTe Solar Cells with a Te Back-Contact Buffer Layer

    NASA Astrophysics Data System (ADS)

    Moore, Andrew

    Thin-film CdTe photovoltaics are quickly maturing into a viable clean-energy solution through demonstration of competitive costs and performance stability with existing energy sources. Over the last half decade, CdTe solar technology has achieved major gains in performance; however, there are still aspects that can be improved to progress toward their theoretical maximum efficiency. Perhaps equally valuable as high photovoltaic efficiency and a low levelized cost of energy, is device reliability. Understanding the root causes for changes in performance is essential for accomplishing long-term stability. One area for potential performance enhancement is the back contact of the CdTe device. This research incorporated a thin-film Te-buffer layer into the contact structure, between the CdTe and contact metal. The device performance and characteristics of many different back contact configurations were rigorously studied. CdTe solar cells fabricated with the Te-buffer contact showed short-circuit current densities and open-circuit voltages that were on par with the traditional back-contacts used at CSU. However, the Te-buffer contact typically produced 2% larger fill-factors on average, leading to greater conversation efficiency. Furthermore, using the Te buffer allowed for incorporation of 50% less Cu, which is used for p-type doping but is also known to decrease lifetime and stability. This resulted in an additional 3% fill-factor gain with no change in other parameters compared to the standard-Cu treated device. In order to better understand the physical mechanisms of the Te-buffer contact, electrical and material properties of the Te layer were extracted and used to construct a simple energy band diagram. The Te layer was found to be highly p-type (>1018 cm-3) and possess a positive valence-band offset of 0.35-0.40 eV with CdTe. An existing simulation model incorporating the Te-layer properties was implemented and validated by comparing simulated results of CdTe device performance to experimental values. The Te layer improves performance is attributed to a reduction in the downward energy band bending between the CdTe and typical contact metals. The stability, or rather the metastability, of CdTe solar cells was also studied with a focus on the Te back contact. A metastable device has a series of quasi-stable local energy-minimuma which the device may transition among. This work primarily focused on changes, both beneficial and detrimental, caused by diffusion and drift of atoms in the CdTe lattice. As atoms moved and/or became ionized their defect states were shifted, which resulted in changes in the CdTe doping and recombination. Changes in performance for devices in equilibrium and under stress conditions were analyzed by electrical and material characterization. Mobile impurities and mechanisms responsible for the changes were identified--primarily the migration of interstitial Cu and Cl. The stability of CdTe solar cells with different back contacts were compared. It was found that any contact that included the Te layer was almost always more stable than the traditional contact used at CSU, most likely because of less sensitivity to the impurity profiles in the CdTe. Moreover, the Te contact configuration that introduced the least amount of Cu into the CdTe was discovered to be the most stable, both in storage and under stress conditions.

  17. Systematic assessment of different solvents for the extraction of drugs of abuse and pharmaceuticals from an authentic hair pool.

    PubMed

    Madry, Milena M; Kraemer, Thomas; Baumgartner, Markus R

    2018-01-01

    Hair analysis has been established as a prevalent tool for retrospective drug monitoring. In this study, different extraction solvents for the determination of drugs of abuse and pharmaceuticals in hair were evaluated for their efficiency. A pool of authentic hair from drug users was used for extraction experiments. Hair was pulverized and extracted in triplicate with seven different solvents in a one- or two-step extraction. Three one- (methanol, acetonitrile, and acetonitrile/water) and four two-step extractions (methanol two-fold, methanol and methanol/acetonitrile/formate buffer, methanol and methanol/formate buffer, and methanol and methanol/hydrochloric acid) were tested under accurately equal experimental conditions. The extracts were directly analyzed by liquid chromatography-tandem mass spectrometry for opiates/opioids, stimulants, ketamine, selected benzodiazepines, antidepressants, antipsychotics, and antihistamines using deuterated internal standards. For most analytes, a two-step extraction with methanol did not significantly improve the yield compared to a one-step extraction with methanol. Extraction with acetonitrile alone was least efficient for most analytes. Extraction yields of acetonitrile/water, methanol and methanol/acetonitrile/formate buffer, and methanol and methanol/formate buffer were significantly higher compared to methanol. Highest efficiencies were obtained by a two-step extraction with methanol and methanol/hydrochloric acid, particularly for morphine, 6-monoacetylmorphine, codeine, 6-acetylcodeine, MDMA, zopiclone, zolpidem, amitriptyline, nortriptyline, citalopram, and doxylamine. For some analytes (e.g., tramadol, fluoxetine, sertraline), all extraction solvents, except for acetonitrile, were comparably efficient. There was no significant correlation between extraction efficiency with an acidic solvent and the pka or log P of the analyte. However, there was a significant trend for the extraction efficiency with acetonitrile to the log P of the analyte. The study demonstrates that the choice of extraction solvent has a strong impact on hair analysis outcomes. Therefore, validation protocols should include the evaluation of extraction efficiency of drugs by using authentic rather than spiked hair. Different extraction procedures may contribute to the scatter of quantitative results in inter-laboratory comparisons. Harmonization of extraction protocols is recommended, when interpretation is based on same cut-off levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Determination of Five Major 8-Prenylflavones in Leaves of Epimedium by Solid-Phase Extraction Coupled with Capillary Electrophoresis

    PubMed Central

    Xie, Juan-ping; Xiang, Ji-ming; Zhu, Zhong-liang

    2016-01-01

    A simple, accurate and reproducible method which is based on the capillary electrophoresis, coupled with solid-phase extraction, has been developed for simultaneous determination of multiple 8-prenylflavones from Chinese Herba Epimedii. In this study, the author has mainly illustrated the experimental process and research results of five major components including epimedin C, icariin, diphylloside A, epimedoside A and icarisoside A that have been extracted and identified from Herba Epimedii for the first time. Experimental conditions have been optimized to achieve the best separation efficiency for the following factors: the buffer pH, buffer concentration and applied voltage. The experiment can be conducted through two separable stages: the first stage is to obtain the crude extracts through the solid-phase extraction; and the second stage is to further separate five major components by using the capillary electrophoresis. The separation of the five components and the analysis of the experiment are relatively fast and can be completed within 20 min. The concentration ranges of the construction of standard curves of five major 8-prenylflavones are 32.0–395.0, 23.4–292.0, 42.1–526.0, 18.8–233.5 and 29.7–371.0 µg mL−1 respectively, which have showed acceptable linearity with a correlation coefficient, r ≥ 0.999. The coefficient varies within 2.0% for both intra- and inter-days tests. The recoveries of five components range from 92.3 to 104.1%. The relative standard deviations of recoveries of five components range from 1.2 and 2.8%. This new method will facilitate the extraction and expedite the determination of medical components from Herba Epimedii. PMID:26865656

  19. Design, synthesis and in vitro kinetic study of tranexamic acid prodrugs for the treatment of bleeding conditions

    NASA Astrophysics Data System (ADS)

    Karaman, Rafik; Ghareeb, Hiba; Dajani, Khuloud Kamal; Scrano, Laura; Hallak, Hussein; Abu-Lafi, Saleh; Mecca, Gennaro; Bufo, Sabino A.

    2013-07-01

    Based on density functional theory (DFT) calculations for the acid-catalyzed hydrolysis of several maleamic acid amide derivatives four tranexamic acid prodrugs were designed. The DFT results on the acid catalyzed hydrolysis revealed that the reaction rate-limiting step is determined on the nature of the amine leaving group. When the amine leaving group was a primary amine or tranexamic acid moiety, the tetrahedral intermediate collapse was the rate-limiting step, whereas in the cases by which the amine leaving group was aciclovir or cefuroxime the rate-limiting step was the tetrahedral intermediate formation. The linear correlation between the calculated DFT and experimental rates for N-methylmaleamic acids 1- 7 provided a credible basis for designing tranexamic acid prodrugs that have the potential to release the parent drug in a sustained release fashion. For example, based on the calculated B3LYP/6-31G(d,p) rates the predicted t1/2 (a time needed for 50 % of the prodrug to be converted into drug) values for tranexamic acid prodrugs ProD 1- ProD 4 at pH 2 were 556 h [50.5 h as calculated by B3LYP/311+G(d,p)] and 6.2 h as calculated by GGA: MPW1K), 253 h, 70 s and 1.7 h, respectively. Kinetic study on the interconversion of the newly synthesized tranexamic acid prodrug ProD 1 revealed that the t1/2 for its conversion to the parent drug was largely affected by the pH of the medium. The experimental t1/2 values in 1 N HCl, buffer pH 2 and buffer pH 5 were 54 min, 23.9 and 270 h, respectively.

  20. Discontinuous gas-exchange cycle characteristics are differentially affected by hydration state and energy metabolism in gregarious and solitary desert locusts.

    PubMed

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2015-12-01

    The termination of discontinuous gas exchange cycles (DGCs) in severely dehydrated insects casts doubt on the generality of the hygric hypothesis, which posits that DGCs evolved as a water conservation mechanism. We followed DGC characteristics in the two density-dependent phases of the desert locust Schistocerca gregaria throughout exposure to an experimental treatment of combined dehydration and starvation stress, and subsequent rehydration. We hypothesized that, under stressful conditions, the more stress-resistant gregarious locusts would maintain DGCs longer than solitary locusts. However, we found no phase-specific variations in body water content, water loss rates (total and respiratory) or timing of stress-induced abolishment of DGCs. Likewise, locusts of both phases re-employed DGCs after ingesting comparable volumes of water when rehydrated. Despite comparable water management performances, the effect of exposure to stressful experimental conditions on DGC characteristics varied significantly between gregarious and solitary locusts. Interburst duration, which is affected by the ability to buffer CO2, was significantly reduced in dehydrated solitary locusts compared with gregarious locusts. Moreover, despite similar rehydration levels, only gregarious locusts recovered their initial CO2 accumulation capacity, indicating that cycle characteristics are affected by factors other than haemolymph volume. Haemolymph protein measurements and calculated respiratory exchange ratios suggest that catabolism of haemolymph proteins may contribute to a reduced haemolymph buffering capacity, and thus a compromised ability for CO2 accumulation, in solitary locusts. Nevertheless, DGC was lost at similar hydration states in the two phases, suggesting that DGCs are terminated as a result of inadequate oxygen supply to the tissues. © 2015. Published by The Company of Biologists Ltd.

  1. Quantifying Phosphorus Retnention in Soils of Riparian Buffers Influenced by Different Land Use Practices

    NASA Astrophysics Data System (ADS)

    Lancellotti, B.; Ross, D. S.; Adair, C.; Schroth, A. W.; Perdrial, J. N.

    2017-12-01

    Excess phosphorus (P) loading to freshwater systems can lead to eutrophication, resulting in algal blooms and subsequent fish kills. Lake Champlain, located between Vermont, New York, and Quebec, has historically exhibited negative effects of eutrophication due to P overloading from non-point sources. To reduce P inputs to the Lake, the Vermont Agency of Natural Resources requires and provides guidelines for the management of riparian buffers, which help protect adjacent water bodies from nutrient and sediment runoff. To better understand how phosphorous retention in riparian buffers is influenced by soil wetness and adjacent land use, we explored differences in P content between riparian buffers located in forested and agricultural watersheds. Within each land use type, we focused on two paired riparian buffers with contrasting soil moisture levels (one wet transect and one dry transect). At each of the four sites, soil pits were dug along a transect perpendicular to the streambank and were placed strategically to capture convergent and divergent landscape positions. Soil samples were collected from each horizon within 0-30cm. In each of these samples, we measured orthophosphate, degree of phosphorus saturation (DPS), and trace elements. We investigated the relationship between DPS and aluminum (Al) and iron (Fe) concentrations to determine how much of the variability in DPS was explained by Al and Fe concentrations, and compared these relationships between the four riparian buffer sites. We also assessed how these relationships varied with depth in the soil profile. The results of these analyses allow us to identify the characteristics of riparian buffers that promote the most effective P sequestration, which is beneficial to the effective management of riparian areas within the Lake Champlain basin.

  2. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    PubMed

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  3. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    NASA Astrophysics Data System (ADS)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  4. Micromixer utilizing electrokinetic instability-induced shedding effect.

    PubMed

    Tai, Chang-Hsien; Yang, Ruey-Jen; Huang, Min-Zhong; Liu, Chia-Wei; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2006-12-01

    This paper presents a T-shaped micromixer featuring 45 degrees parallelogram barriers (PBs) within the mixing channel. The presented device obtains a rapid mixing of two sample fluids with conductivity ratio of 10:1 (sample concentration:running buffer concentration) by means of the electrokinetic instability-induced shedding effects which are produced when a direct current (DC) electric field of an appropriate intensity is applied. The presented device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the PBs obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct 4/5 of the channel width and an electrical field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.

  5. Investigating the kinetics of the enzymatic depolymerization of polygalacturonic acid in continuous UF-membrane reactors.

    PubMed

    Gallifuoco, Alberto; Cantarella, Maria; Marucci, Mariagrazia

    2007-01-01

    A stirred tank membrane reactor is used to study the kinetics of polygalacturonic acid (PGA) enzymatic hydrolysis. The reactor operates in semicontinuous configuration: the native biopolymer is loaded at the initial time and the system is continuously fed with the buffer. The effect of retention time (from 101 to 142 min) and membrane molecular weight cutoff (from 1 to 30 kDa) on the rate of permeable oligomers production is investigated. Reaction products are clustered in two different classes, those sized below the membrane cutoff and those above. The reducing power measured in the permeate is used as an estimate of total product concentration. The characteristic breakdown times range from 40 to 100 min. The overall kinetics obeys a first-order law with a characteristic time estimated to 24 min. New mathematical data handling are developed and illustrated using the experimental data obtained. Finally, the body of the experimental results suggests useful indications (reactor productivity, breakdown induction period) for implementing the bioprocess at the industrial scale.

  6. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Interaction of HEPES buffer with glass-ceramic scaffold: Can HEPES replace TRIS in SBF?

    PubMed

    Rohanová, Dana; Horkavcová, Diana; Paidere, Laine; Boccaccini, Aldo Roberto; Bozděchová, Pavlína; Bezdička, Petr

    2018-01-01

    An international standard (ISO: 23317:2014) exists for the in vitro testing of inorganic biomaterials in simulated body fluid (SBF). This standard uses TRIS buffer to maintain neutral pH in SBF, but in our previous paper, we showed that the interaction of a tested glass-ceramic material with TRIS can produce false-positive results. In this study, we evaluated whether the HEPES buffer, which also belongs to the group of Good´s buffers, would be more suitable for SBF. We compared its suitability in two media: SBF with HEPES and demineralized water with HEPES. The tested scaffold (45S5 bioactive glass-based) was exposed to the media under a static-dynamic arrangement (solutions were replaced on a daily basis) for 15 days. Leachate samples were collected daily for the analysis of Ca 2+ ions and Si (AAS), (PO 4 ) 3- ions (UV-VIS), and to measure pH. The glass-ceramic scaffold was analyzed by SEM/EDS, XRD, and WD-XRF before and after 0.3, 1, 3, 7, 11, and 15 days of exposure. Our results confirmed the rapid selective dissolution of the glass-ceramic crystalline phase (Combeite) containing Ca 2+ ions due to the presence of HEPES, hydroxyapatite supersaturation being reached within 24 h in both solutions. These new results suggest that, like TRIS, HEPES buffer is not suitable for the in vitro testing of highly reactive inorganic biomaterials (glass, glass-ceramics). The ISO standard for such tests requires revision, but HEPES is not a viable alternative to TRIS buffer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 143-152, 2018. © 2016 Wiley Periodicals, Inc.

  8. Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Lekang; Li, Chunbo

    2016-03-01

    VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.

  9. Effecting a broadcast with an allreduce operation on a parallel computer

    DOEpatents

    Almasi, Gheorghe; Archer, Charles J.; Ratterman, Joseph D.; Smith, Brian E.

    2010-11-02

    A parallel computer comprises a plurality of compute nodes organized into at least one operational group for collective parallel operations. Each compute node is assigned a unique rank and is coupled for data communications through a global combining network. One compute node is assigned to be a logical root. A send buffer and a receive buffer is configured. Each element of a contribution of the logical root in the send buffer is contributed. One or more zeros corresponding to a size of the element are injected. An allreduce operation with a bitwise OR using the element and the injected zeros is performed. And the result for the allreduce operation is determined and stored in each receive buffer.

  10. Research on inosculation between master of ceremonies or players and virtual scene in virtual studio

    NASA Astrophysics Data System (ADS)

    Li, Zili; Zhu, Guangxi; Zhu, Yaoting

    2003-04-01

    A technical principle about construction of virtual studio has been proposed where orientation tracker and telemeter has been used for improving conventional BETACAM pickup camera and connecting with the software module of the host. A model of virtual camera named Camera & Post-camera Coupling Pair has been put forward, which is different from the common model in computer graphics and has been bound to real BETACAM pickup camera for shooting. The formula has been educed to compute the foreground frame buffer image and the background frame buffer image of the virtual scene whose boundary is based on the depth information of target point of the real BETACAM pickup camera's projective ray. The effect of real-time consistency has been achieved between the video image sequences of the master of ceremonies or players and the CG video image sequences for the virtual scene in spatial position, perspective relationship and image object masking. The experimental result has shown that the technological scheme of construction of virtual studio submitted in this paper is feasible and more applicative and more effective than the existing technology to establish a virtual studio based on color-key and image synthesis with background using non-linear video editing technique.

  11. Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries.

    PubMed

    Clark, Simon; Latz, Arnulf; Horstmann, Birger

    2017-12-08

    Neutral aqueous electrolytes have been shown to extend both the calendar life and cycling stability of secondary zinc-air batteries (ZABs). Despite this promise, there are currently no modeling studies investigating the performance of neutral ZABs. Traditional continuum models are numerically insufficient to simulate the dynamic behavior of these complex systems because of the rapid, orders-of-magnitude concentration shifts that occur. In this work, we present a novel framework for modeling the cell-level performance of pH-buffered aqueous electrolytes. We apply our model to conduct the first continuum-scale simulation of secondary ZABs using aqueous ZnCl 2 -NH 4 Cl as electrolyte. We first use our model to interpret the results of two recent experimental studies of neutral ZABs, showing that the stability of the pH value is a significant factor in cell performance. We then optimize the composition of the electrolyte and the design of the cell considering factors including pH stability, final discharge product, and overall energy density. Our simulations predict that the effectiveness of the pH buffer is limited by slow mass transport and that chlorine-containing solids may precipitate in addition to ZnO. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chiral analysis of UV nonabsorbing compounds by capillary electrophoresis using macrocyclic antibiotics: 1. Separation of aspartic and glutamic acid enantiomers.

    PubMed

    Bednar, P; Aturki, Z; Stransky, Z; Fanali, S

    2001-07-01

    Glycopeptide antibiotics, namely vancomycin or teicoplanin, were evaluated in capillary electrophoresis for the analysis of UV nonabsorbing compounds such as aspartic and glutamic acid enantiomers. Electrophoretic runs were performed in laboratory-made polyacrylamide-coated capillaries using the partial filling-counter current method in order to avoid the presence on the detector path of the absorbing chiral selector. The background electrolyte consisted of an aqueous or aqueous-organic buffer in the pH range of 4.5-6.5 of sorbic acid/histidine and the appropriate concentration of chiral selector. Several experimental parameters such as antibiotic concentration and type, buffer pH, organic modifier, type and concentration of absorbing co-ion (for the indirect UV detection) were studied in order to find the optimum conditions for the chiral resolution of the two underivatized amino acids in their enantiomers. Among the two investigated chiral selectors, vancomycin resulted to be the most useful chiral selector allowing relatively high chiral resolution of the studied compounds even at low concentration. The optimized method (10 mM sorbic acid/histidine, pH 5, and 10 mM of vancomycin) was used for the analysis of real samples such as teeth dentine and beer.

  13. Isolation of metallothionein from cells derived from aggressive form of high-grade prostate carcinoma using paramagnetic antibody-modified microbeads off-line coupled with electrochemical and electrophoretic analysis.

    PubMed

    Masarik, Michal; Gumulec, Jaromir; Sztalmachova, Marketa; Hlavna, Marian; Babula, Petr; Krizkova, Sona; Ryvolova, Marketa; Jurajda, Michal; Sochor, Jiri; Adam, Vojtech; Kizek, Rene

    2011-12-01

    Prostate cancer with altered zinc(II) cell metabolism is the second most frequently diagnosed cancer in developed countries. The alterations of zinc(II) metabolism can influence metabolism of other metal ions and can also be associated with the expression and translation of metal-binding proteins including metallothioneins. The aim of this article was to optimize immunoseparation protocol based on paramagnetic beads conjugated with protein G for the isolation of metallothionein. Isolated metallothionein was determined by differential pulse voltammetry Brdicka reaction and SDS-PAGE. Optimal conditions: antigen-binding time - 60 min, temperature - 70°C, and buffer composition and pH - acetate buffer, pH 4.3, were determined. Under the optimized conditions, lysates from 22Rv1 prostate cancer cells treated with various concentrations of cadmium(II) and copper(II) ions were analyzed. We observed strong correlation in all experimental groups and all lysate types (r>0.83 at p<0.041) between metallothionein concentration related to viability and concentration of copper(II) ions and cadmium(II) ions in medium. Moreover, the results were compared with standard sample preparation as heat treatment and SDS-PAGE analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Velocity gap mode of capillary electrophoresis developed for high-resolution chiral separations.

    PubMed

    Li, Xue; Li, Youxin; Zhao, Lumeng; Shen, Jianguo; Zhang, Yong; Bao, James J

    2014-10-01

    A new CE method based on velocity gap (VG) theory has been developed for high-resolution chiral separations. In VG, two consecutive electric fields are adopted to drive analytes passing through two capillaries, which are linked together through a joint. The joint is immersed inside another buffer vial which has conductivity communication with the buffer inside the capillary. By adjusting the field strengths onto the two capillaries, it is possible to observe different velocities of an analyte when it passes through those two capillaries and there would be a net velocity change (NVC) for the same analyte. Different analytes may have different NVC which may be specifically meaningful for enantioseparations because enantiomers are usually hard to resolve. By taking advantage of this NVC, it is possible to enhance the resolution of a chiral separation if a proper voltage program is applied. The feasibility of using NVC to enhance chiral separation was demonstrated in the separations of three pairs of enantiomers: terbutaline, chlorpheniramine, and promethazine. All separations started with partial separation in a conventional CE and were significantly improved under the same experimental conditions. The results indicated that VG has the potential to be used to improve the resolving power of CE in chiral separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analgesic effect of Facebook: Priming with online social networking may boost felt relatedness that buffers against physical pain.

    PubMed

    Ho, Liang-Chu; Wu, Wen-Hsiung; Chiou, Wen-Bin

    2016-10-01

    Social networking sites (SNSs) are extremely popular for providing users with a convenient platform for acquiring social connections and thereby feeling relatedness. Plenty of literature has shown that mental representations of social support can reduce the perception of physical pain. The current study tested whether thinking about SNS would interfere with users' perceptions of experimentally induced pain. Ninety-six undergraduate Facebook users were recruited to participate in a priming-based experiment. They were randomly assigned to one of the three study conditions (SNS prime, neutral prime, or no prime) via rating the aesthetics of logos. The results showed that participants exposed to SNS primes reported less pain of immersion in hot water than did both control groups (neutral- and no-prime). Felt relatedness mediated the link between SNS primes and diminished pain perceptions. This research provides the first demonstration that thinking about SNS can lower experienced physical pain among Facebook users. Online social networking may serve as an analgesic buffer against pain experience than previously thought. The SNS-enabled analgesia has far reaching implications for pain relief applications and the enhancement of well-being in human-interaction techniques. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  16. pH Control for Effective Anaerobic Bioremediation of Chlorinated Solvents

    NASA Astrophysics Data System (ADS)

    Robinson, C.; Barry, D.; Gerhard, J. I.; Kouznetsova, I.

    2007-12-01

    SABRE (Source Area BioREmediation) is a 4-year collaborative project that aims to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated solvent DNAPL source areas. The project focuses on a pilot scale demonstration at a trichloroethene (TCE) DNAPL field site, and includes complementary laboratory and modelling studies. Organic acids and hydrogen ions (HCl) typically build up in the treatment zone during anaerobic bioremediation. In aquifer systems with relatively low buffering capacity the generation of these products can cause significant groundwater acidification thereby inhibiting dehalogenating activity. Where the soil buffering capacity is exceeded, addition of buffer may be needed for the effective continuation of TCE degradation. As an aid to the design of remediation schemes, a geochemical model was designed to predict the amount of buffer required to maintain the source zone pH at a suitable level for dechlorinating bacteria (i.e. > 6.5). The model accounts for the amount of TCE to be degraded, site water chemistry, type of organic amendment and soil mineralogy. It assumes complete dechlorination of TCE, and further considers mineral dissolution and precipitation kinetics. The model is applicable to a wide range of sites. For illustration we present results pertinent to the SABRE field site. Model results indicate that, for the extensive dechlorination expected in proximity to the SABRE DNAPL source zone, significant buffer addition may be necessary. Additional simulations are performed to identify buffer requirements over a wider range of field conditions.

  17. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.

    PubMed

    Lu, Shih-Chin; Lin, Sung-Chyr

    2012-01-05

    Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Using Aerial Photography to Estimate Riparian Zone Impacts in a Rapidly Developing River Corridor

    NASA Astrophysics Data System (ADS)

    Owers, Katharine A.; Albanese, Brett; Litts, Thomas

    2012-03-01

    Riparian zones are critical for protecting water quality and wildlife, but are often impacted by human activities. Ongoing threats and uncertainty about the effectiveness of buffer regulations emphasize the importance of monitoring riparian buffers through time. We developed a method to rapidly categorize buffer width and landuse attributes using 2007 leaf-on aerial photography and applied it to a 65 km section of the Toccoa River in north Georgia. We repeated our protocol using 1999 leaf-off aerial photographs to assess the utility of our approach for monitoring. Almost half (45%) of the length of the Toccoa River was bordered by buffers less than 50 ft wide in 2007, with agricultural and built-up lands having the smallest buffers. The percentage of river length in each buffer width category changed little between 1999 and 2007, but we did detect a 5% decrease in agricultural land use, a corresponding increase in built-up land use, and an additional 149 buildings within 100 ft of the river. Field verification indicated that our method overestimated buffer widths and forested land use and underestimated built-up land use and the number of buildings within 100 ft of the river. Our methodology can be used to rapidly assess the status of riparian buffers. Including supplemental data (e.g., leaf-off imagery, road layers) will allow detection of the fine-scale impacts underestimated in our study. Our results on the Toccoa River reflect historic impacts, exemptions and variances to regulations, and the ongoing threat of vacation home development. We recommend additional monitoring, improvements in policy, and efforts to increase voluntary protection and restoration of stream buffers.

  19. Using aerial photography to estimate riparian zone impacts in a rapidly developing river corridor.

    PubMed

    Owers, Katharine A; Albanese, Brett; Litts, Thomas

    2012-03-01

    Riparian zones are critical for protecting water quality and wildlife, but are often impacted by human activities. Ongoing threats and uncertainty about the effectiveness of buffer regulations emphasize the importance of monitoring riparian buffers through time. We developed a method to rapidly categorize buffer width and landuse attributes using 2007 leaf-on aerial photography and applied it to a 65 km section of the Toccoa River in north Georgia. We repeated our protocol using 1999 leaf-off aerial photographs to assess the utility of our approach for monitoring. Almost half (45%) of the length of the Toccoa River was bordered by buffers less than 50 ft wide in 2007, with agricultural and built-up lands having the smallest buffers. The percentage of river length in each buffer width category changed little between 1999 and 2007, but we did detect a 5% decrease in agricultural land use, a corresponding increase in built-up land use, and an additional 149 buildings within 100 ft of the river. Field verification indicated that our method overestimated buffer widths and forested land use and underestimated built-up land use and the number of buildings within 100 ft of the river. Our methodology can be used to rapidly assess the status of riparian buffers. Including supplemental data (e.g., leaf-off imagery, road layers) will allow detection of the fine-scale impacts underestimated in our study. Our results on the Toccoa River reflect historic impacts, exemptions and variances to regulations, and the ongoing threat of vacation home development. We recommend additional monitoring, improvements in policy, and efforts to increase voluntary protection and restoration of stream buffers.

  20. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NASA Astrophysics Data System (ADS)

    de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.

    2001-12-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions in the seagrass meadows.

  1. Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure.

    PubMed

    Takahashi, Shuntaro; Bhowmik, Sudipta; Sugimoto, Naoki

    2017-01-01

    DNA guanine-quadruplexes (G-quadruplexes) complexed with the Fe-containing porphyrin, hemin (iron(III)-protoporphyrin IX), can catalyze oxidation reactions. This so-called DNAzyme has been widely used in the field of DNA nanotechnology. To improve DNAzyme properties, we sought to elucidate the interaction mechanism between G-quadruplex DNA and hemin. Here, we performed volumetric analyses of formation of the complex between an oligonucleotide with the sequence of human telomeric DNA (h-telo) and hemin. The G-quadruplex DNA alone and the G-quadruplex DNA-hemin complex were destabilized with increasing pressure in Na + buffer. The pressure required to destabilize the h-telo-hemin complex was less in K + -containing buffer than in buffer with Na + , which indicates that there was a smaller volumetric change upon h-telo formation in K + buffer than in Na + buffer. The calculated change in h-telo-hemin binding volume (∆V b ) in the Na + buffer was 2.5mLmol -1 , whereas it was -41.7 in mLmol -1 the K + buffer. The DNAzyme activity in the K + buffer was higher than that in the Na + buffer at atmospheric pressure. Interestingly, the pressure effect on the destabilization of the h-telo-hemin complex in the presence of poly(ethylene glycol)200 (PEG200) was repressed compared to that in the absence of PEG200. These results suggest that differences in volumetric parameters reflect different mechanisms of interaction between hemin and h-telo due to differences in both the fit of hemin into the h-telo structure and hydration. Thus, the pressure-based thermodynamic analysis provided important information about complex formation and could be a useful index to improve function of DNAzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Do you get where I'm coming from?: Perceived understanding buffers against the negative impact of conflict on relationship satisfaction.

    PubMed

    Gordon, Amie M; Chen, Serena

    2016-02-01

    Conflict can have damaging effects on relationship health. But is all conflict detrimental? Across 7 studies, we tested the overarching hypothesis that conflict in close relationships is only detrimental when people do not feel their thoughts, feelings, and point of view are understood by their relationship partners. Supporting this, conflict was negatively associated with relationship satisfaction among participants who perceived their romantic partner as less understanding, but not among those who felt more understood by their partners. This was true cross-sectionally (Study 1), experimentally (Studies 2, 3, 6a, and 6b), in daily life (Study 4), and for both members of couples pre- to postconflict conversation in the laboratory (Study 5). The buffering effects of feeling understood could not be explained by people who felt more understood being more understanding themselves, having more general positive perceptions of their partners, fighting about less important or different types of issues, engaging in more pleasant conflict conversations, or being more satisfied with their relationships before the conflict. Perceived understanding was positively associated with conflict resolution, but this did not explain the benefits of feeling understood. Evidence from Studies 6a and 6b suggests that feeling understood during conflict may buffer against reduced relationship satisfaction in part because it strengthens the relationship and signals that one's partner is invested. Overall, these studies suggest that perceived understanding may be a critical buffer against the potentially detrimental effects of relationship conflict. (c) 2016 APA, all rights reserved).

  3. Protofit: A program for determining surface protonation constants from titration data

    NASA Astrophysics Data System (ADS)

    Turner, Benjamin F.; Fein, Jeremy B.

    2006-11-01

    Determining the surface protonation behavior of natural adsorbents is essential to understand how they interact with their environments. ProtoFit is a tool for analysis of acid-base titration data and optimization of surface protonation models. The program offers a number of useful features including: (1) enables visualization of adsorbent buffering behavior; (2) uses an optimization approach independent of starting titration conditions or initial surface charge; (3) does not require an initial surface charge to be defined or to be treated as an optimizable parameter; (4) includes an error analysis intrinsically as part of the computational methods; and (5) generates simulated titration curves for comparison with observation. ProtoFit will typically be run through ProtoFit-GUI, a graphical user interface providing user-friendly control of model optimization, simulation, and data visualization. ProtoFit calculates an adsorbent proton buffering value as a function of pH from raw titration data (including pH and volume of acid or base added). The data is reduced to a form where the protons required to change the pH of the solution are subtracted out, leaving protons exchanged between solution and surface per unit mass of adsorbent as a function of pH. The buffering intensity function Qads* is calculated as the instantaneous slope of this reduced titration curve. Parameters for a surface complexation model are obtained by minimizing the sum of squares between the modeled (i.e. simulated) buffering intensity curve and the experimental data. The variance in the slope estimate, intrinsically produced as part of the Qads* calculation, can be used to weight the sum of squares calculation between the measured buffering intensity and a simulated curve. Effects of analytical error on data visualization and model optimization are discussed. Examples are provided of using ProtoFit for data visualization, model optimization, and model evaluation.

  4. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must seriously consider metastable equilibria; those most likely involve redox disequilibrium among the sulfur species in solution and perhaps also involve organic compounds. ?? 1981.

  5. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    DOEpatents

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  6. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Mirkarimi, Paul B.; Montcalm, Claude

    2000-01-01

    A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.

  7. Self-distancing Buffers High Trait Anxious Pediatric Cancer Caregivers against Short- and Longer-term Distress

    PubMed Central

    Penner, Louis A; Guevarra, Darwin A.; Harper, Felicity W. K.; Taub, Jeffrey; Phipps, Sean; Albrecht, Terrance L.; Kross, Ethan

    2015-01-01

    Pediatric cancer caregivers are typically present at their child’s frequent, invasive treatments, and such treatments elicit substantial distress. Yet, variability exists in how even the most anxious caregivers cope. Here we examined one potential source of this variability: caregivers’ tendencies to self-distance when reflecting on their feelings surrounding their child’s treatments. We measured caregivers’ self-distancing and trait anxiety at baseline, anticipatory anxiety during their child’s treatment procedures, and psychological distress and avoidance three months later. Self-distancing buffered high (but not low) trait anxious caregivers against short- and long-term distress without promoting avoidance. These findings held when controlling for other buffers, highlighting the unique benefits of self-distancing. These results identify a coping process that buffers vulnerable caregivers against a chronic life stressor while also demonstrating the ecological validly of laboratory research on self-distancing. Future research is needed to explicate causality and the cognitive and physiological processes that mediate these results. PMID:27617183

  8. Explaining the Spatial Variability in Stream Acid Buffering Chemistry and Aquatic Biota in the Neversink River Watershed, Catskill Mountains, New York State

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.; Walter, M. T.

    2009-12-01

    The Neversink River Watershed (NRW) originates at the highest point in the Catskill Mountains and is sensitive to changing patterns in acidic deposition, precipitation, and air temperature. Despite reductions in fossil fuel emission since the Clean Air Act, past acidic deposition has accelerated the leaching of cations from the soil and reduced the stores of base cations necessary for buffering stream acidity. The goal of this study was to investigate connections between different watershed ‘features’ and the apparently complex spatial patterns of stream buffering chemistry (specifically, acid neutralizing capacity ANC and Ca concentrations) and aquatic biota (macroinvertebrate and fish populations). The ten nested NRW watersheds (2.0 km^2 to 176.0 km^2) have relatively homogeneous bedrock geology, forested cover, and soil series; therefore, we hypothesized that differing distributions of hydrological flowpaths between the watersheds control the variability in stream buffering chemistry and aquatic biota. However because the flowpath distributions are not directly measurable, this study used step-wise linear regression to develop relationships between watershed ‘features’ and buffering chemistry. The regression results showed that the mean ratio of precipitation to stream runoff (or runoff ratio) from twenty non-winter storm events explained more than 81% of the variability in mean summer ANC and Ca concentrations. The results also suggested that steeper (higher mean slope) more channelized watersheds (larger drainage density) are more susceptible to stream acidity and negative impacts on biota. A simple linear relationship (using no discharge or water chemistry measurements) was able to explain buffering chemistry and aquatic biota populations in 17 additional NRW watersheds (0.3 km^2 to 160.0 km^2), including 60-80% of the variability in macroinvertebrate populations (EPT richness and BAP) and 50-60% of the variability in fish density and species richness. These results have several important implications for understanding the effects of climate change on buffering chemistry and aquatic biota in this well-studied watershed. First, the results demonstrate that geomorphological and hydrogeological ‘features’ control the spatial variability of stream buffering chemistry, suggesting that acidification ‘hot-spots’ could be predicted a priori. Second, the connection between event-scale processes (runoff ratio) and average stream chemistry imply that changing precipitation patterns in the Catskills may have uneven effects on long-term buffering chemistry between ‘flashy’ and ‘damped’ watersheds. Specifically, an increasing trend in precipitation in the last 25 years in the Catskill Mountains makes it difficult to compare base cation recovery across NRW streams, even if the concentrations are normalized by discharge. The results of this study could improve the modeling of base cation recovery in surface waters in other mountainous Northeastern U.S. watersheds with future reductions in acidic deposition and differing climate scenarios.

  9. Superheat in magma oceans

    NASA Technical Reports Server (NTRS)

    Jakes, Petr

    1992-01-01

    The existence of 'totally molten' planets implies the existence of a superheat (excess of heat) in the magma reservoirs since the heat buffer (i.e., presence of crystals having high latent heat of fusion) does not exist in a large, completely molten reservoir. Any addition of impacting material results in increase of the temperature of the melt and under favorable circumstances heat is stored. The behavior of superheat melts is little understood; therefore, we experimentally examined properties and behavior of excess heat melts at atmospheric pressures and inert gas atmosphere. Highly siliceous melts (70 percent SiO2) were chosen for the experiments because of the possibility of quenching such melts into glasses, the slow rate of reaction in highly siliceous composition, and the fact that such melts are present in terrestrial impact craters and impact-generated glasses. Results from the investigation are presented.

  10. Penetration of alkali atoms throughout a graphene membrane: theoretical modeling

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Virojanadara, C.

    2012-02-01

    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.

  11. Penetration of alkali atoms throughout a graphene membrane: theoretical modeling.

    PubMed

    Boukhvalov, D W; Virojanadara, C

    2012-03-07

    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.

  12. Modeling Proton Irradiation in AlGaN/GaN HEMTs: Understanding the Increase of Critical Voltage

    NASA Astrophysics Data System (ADS)

    Patrick, Erin; Law, Mark E.; Liu, Lu; Cuervo, Camilo Velez; Xi, Yuyin; Ren, Fan; Pearton, Stephen J.

    2013-12-01

    A combination of TRIM and FLOODS models the effect of radiation damage on AlGaN/GaN HEMTs. While excellent fits are obtained for threshold voltage shift, the models do not fully explain the increased reliability observed experimentally. In short, the addition of negatively-charged traps in the GaN buffer layer does not significantly change the electric field at the gate edges at radiation fluence levels seen in this study. We propose that negative trapped charge at the nitride/AlGaN interface actually produces the virtual-gate effect that results in decreasing the magnitude of the electric field at the gate edges and thus the increase in critical voltage. Simulation results including nitride interface charge show significant changes in electric field profiles while the I-V device characteristics do not change.

  13. Attachment dynamics of Photosystem I on nano-tailored surfaces for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dibyendu; Bruce, Barry D.; Khomami, Bamin

    2010-03-01

    Photosystem I (PSI), a biological photodiode, is a supra-molecular protein complex that charge separates upon exposure to light. Effective use of photo-electrochemical activities of PSI for hybrid photovoltaic (PV) device fabrications requires optimal encapsulation of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface attachment dynamics of PSI deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate/Au SAM substrates, thereby resulting in complex structural arrangements which affect the electron transfer and capture pathway of PSI. We present surface topographical, specific adsorption and polarization fluorescence characterizations of PSI/Au SAM substrates to elucidate the protein-surface interaction kinetics as well as the directional attachment dynamics of PSI. Our final goal is to enable site-specific homogeneous attachment of directionally aligned PSI onto chemically tailored nano-patterned substrates.

  14. Design and analysis of multihypothesis motion-compensated prediction (MHMCP) codec for error-resilient visual communications

    NASA Astrophysics Data System (ADS)

    Kung, Wei-Ying; Kim, Chang-Su; Kuo, C.-C. Jay

    2004-10-01

    A multi-hypothesis motion compensated prediction (MHMCP) scheme, which predicts a block from a weighted superposition of more than one reference blocks in the frame buffer, is proposed and analyzed for error resilient visual communication in this research. By combining these reference blocks effectively, MHMCP can enhance the error resilient capability of compressed video as well as achieve a coding gain. In particular, we investigate the error propagation effect in the MHMCP coder and analyze the rate-distortion performance in terms of the hypothesis number and hypothesis coefficients. It is shown that MHMCP suppresses the short-term effect of error propagation more effectively than the intra refreshing scheme. Simulation results are given to confirm the analysis. Finally, several design principles for the MHMCP coder are derived based on the analytical and experimental results.

  15. Experimental Constraints on the Partitioning and Valence of V and Cr in Garnet and Coexisting Glass

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.; Berthet, S.; Newville, M.

    2008-01-01

    A series of experiments with garnet and coexisting melt have been carried out across a range of oxygen fugacities (near hematite-magnetite (HM) to below the iron-wustite (IW) buffers) at 1.7 GPa to study the partitioning and valence of Cr and V in both phases. Experiments were carried out in a non end loaded piston cylinder apparatus, and the run products were analyzed with electron microprobe and xray absorption near edge structure (XANES) analysis at beamline 13-ID at the Advanced Photon Source of Argonne National Lab. The valence of vanadium and chromium were determined using the position and intensity of the Ka pre-edge peaks, calibrated on a series of Cr and Vbearing standard glasses. This technique has been applied to V and Cr in glasses and V in spinels previously, and in these isotropic phases there are no orientational effects on the XANES spectra (Righter et al., 2006, Amer. Mineral. 91, 1643-1656). We also now demonstrate this to be true for V and Cr in garnet. Also, previous work has shown that V has a higher valence in the glass (or melt) than in the coexisting spinel. This is also true for V in garnet-glass pairs in this study. Vanadium valence in garnets varies from 2.7 below the IW buffer to 3.7 near HM, and for coexisting glass it varies from 3.2 to 4.3. Vanadium valence measured in some natural garnets from mantle localities indicates V in the more reduced range at 2.5. Comparisons will be made between fO2 estimated from V valence and other methods for garnet-bearing mantle samples. In contrast, Cr valence measured in garnet and coexisting glass for all experimental and natural samples is 2.9- 3.0, suggesting that the valence of Cr does not vary within either phase across a large fO2 range. These results demonstrate that while V varies from 2+ to 3+ to 4+ in garnet-melt systems, Cr does not, and this will ultimately affect the partitioning behavior of these two elements in natural systems. Garnet/melt D(Cr) are between 12 and 17 across this range of fO2, whereas D(V) has the highest partition coefficient approx.3, near the IW buffer where the valence of V is almost entirely 3+.

  16. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  17. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research†

    PubMed Central

    Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325

  18. Capacity improvement using simulation optimization approaches: A case study in the thermotechnology industry

    NASA Astrophysics Data System (ADS)

    Yelkenci Köse, Simge; Demir, Leyla; Tunalı, Semra; Türsel Eliiyi, Deniz

    2015-02-01

    In manufacturing systems, optimal buffer allocation has a considerable impact on capacity improvement. This study presents a simulation optimization procedure to solve the buffer allocation problem in a heat exchanger production plant so as to improve the capacity of the system. For optimization, three metaheuristic-based search algorithms, i.e. a binary-genetic algorithm (B-GA), a binary-simulated annealing algorithm (B-SA) and a binary-tabu search algorithm (B-TS), are proposed. These algorithms are integrated with the simulation model of the production line. The simulation model, which captures the stochastic and dynamic nature of the production line, is used as an evaluation function for the proposed metaheuristics. The experimental study with benchmark problem instances from the literature and the real-life problem show that the proposed B-TS algorithm outperforms B-GA and B-SA in terms of solution quality.

  19. Analysis of different beta-lactams antibiotics in pharmaceutical preparations using micellar electrokinetic capillary chromatography.

    PubMed

    Pérez, M I Bailón; Rodríguez, L Cuadros; Cruces-Blanco, C

    2007-01-17

    The potential of micellar electrokinetic capillary chromatography (MEKC) for analyzing nine beta-lactams antibiotics (cloxacillin, dicloxacillin, oxacillin, penicillin G, penicillin V, ampicillin, nafcillin, piperacillin, amoxicillin) in different pharmaceutical preparations, have been demonstrated. An experimental design strategy has been applied to optimize the main variables: pH and buffer concentration, concentration of the micellar medium, separation voltage and capillary temperature. Borate buffer (26mM) at pH 8.5 containing 100mM sodium dodecyl sulphate (SDS) was used as the background electrolyte. The method was validated. Linearity, limit of detection and quantitation and precision were established for each compound. The analysis of some of the beta-lactams in Orbenin capsules, Britapen tables and in Veterin-Micipen injectable, all used in human and veterinary medicine, have demonstrated the applicability of these technique for quality control in the pharmaceutical industry.

  20. Kinetic buffers.

    PubMed

    Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio

    2015-01-12

    This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top