Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
Cultures of preglobular stage proembryos (PGSPs) were initiated from mechanically wounded mature zygotic embryos of carrot, Daucus carota, on a hormone-free, semisolid medium. These PGSPs have been maintained and multiplied for extended periods without their progression into later embryo stages on the same hormone-free medium containing 1 mM NH4+ as the sole nitrogen source. Sustained maintenance of cultures comprised exclusively of PGSPs was dependent on medium pH throughout the culture period. Best growth and multiplication of PGSP cultures occurred when the pH of unbuffered, hormone-free medium fell from 4.5 to 4 over a 2-week period or when buffered medium was titrated to pH 4. If the hormone-free medium was buffered to sustain a pH at or above 4.5, PGSPs developed into later embryo stages. Maintenance with continuous multiplication of PGSPs occurred equally well on medium containing NH4+ or NH4+ and NO3-, but growth was poor with NO3- alone. Additional observations on the effects of medium components such as various nitrogen sources and levels, sucrose concentration, semisolid supports, type of buffer, borate concentration, activated charcoal, and initial pH that permit optimum maintenance of the PGSPs or foster their continued developmental progression into mature embryos and plantlets are reported. The influence of the pH of the hormone-free medium as a determinant in maintaining cultures as PGSPs or allowing their continued embryonic development are unequivocally demonstrated by gross morphology, scanning electron microscopy, and histological preparations.
Esteban, María-Dolores; Huertas, Juan-Pablo; Fernández, Pablo S; Palop, Alfredo
2013-05-01
In recent years, highly thermo-resistant mesophilic spore-forming bacteria belonging to the species Bacillus sporothermodurans have caused non-sterility problems in industrial sterilization processes. The aim of this research was to evaluate the effect of the heating medium characteristics (pH and buffer/food) on the thermal inactivation of B. sporothermodurans spores when exposed to isothermal and non-isothermal heating and cooling treatments and the suitability of non-linear Weibull and Geeraaerd models to predict the survivors of these thermal treatments. Thermal treatments were carried out in pH 3, 5 and 7 McIlvaine buffer and in a courgette soup. Isothermal survival curves showed shoulders that were accurately characterized by means of both models. A clear effect of the pH of the heating medium was observed, decreasing the D120 value from pH 7 to pH 3 buffer down to one third. Differences in heat resistance were similar, regardless of the model used and were kept at all temperatures tested. The heat resistance in courgette soup was similar to that shown in pH 7 buffer. When the heat resistance values obtained under isothermal conditions were used to predict the survival in the non-isothermical experiments, the predictions estimated the experimental data quite accurately, both with Weibull and Geeraerd models. Copyright © 2012 Elsevier Ltd. All rights reserved.
Influence of organic buffers on bacteriocin production by Streptococcus thermophilus ST110.
Somkuti, George A; Gilbreth, Stefanie E
2007-08-01
The effect of the organic buffer salts MES, MOPS, and PIPES on the growth of S. thermophilus ST110, medium pH, and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In nonbuffered medium, thermophilin 110 production at 37 degrees C paralleled the growth of S. thermophilus ST110 and reached a maximum after 8-10 h. Addition of organic buffer salts decreased the drop in medium pH and resulted in increased biomass (dry cells; microg/mL) and higher yields of thermophilin 110 (units/microg cells). The best results were obtained by the addition of 1% (w/v) MES to the medium, which reduced the pH drop to 1.8 units after 10 h of growth (compared to 2.3 pH units in the control) and resulted in a 1.5-fold increase in cell mass (495 microg/mL) and a 7-fold increase in thermophilin 110 yield (77 units/microg dry cells) over the control. The results showed that whey permeate-based media may be suitable for producing large amounts of thermophilin 110 needed for controlling spoilage pediococci in industrial wine and beer fermentations.
Common buffers, media, and stock solutions.
2001-05-01
This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.
Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A
2014-03-01
Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. Copyright © 2013 Wiley Periodicals, Inc.
Borgo, Lucélia
2017-06-01
Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pK a values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pK a1 4.4), 3,3-dimethylglutaric acid (pK a1 3.73), β-alanine (pK a1 3.70) and potassium biphthalate (pK a1 2.95; pK a2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H 2 A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cristofoletti, Rodrigo; Dressman, Jennifer B
2016-06-01
The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.
Zaslona, Halina; Trusek-Holownia, Anna
2015-01-01
Polygalacturonase (PG) production by Penicillium chrysogenum during solid-state fermentation was accompanied by decomposition of orange peels. A leaching procedure was developed through the selection of solvent, time and intensity of stirring. A maximum PG activity was observed after 48 h peel inoculation. Further cultivation decreased the enzyme activity significantly, up to 60% of the maximum PG activity. During fermentation, a rapid acidification of the solid medium which inhibited the pectinolytic enzyme, was observed. Buffering agents with different pH values and different ionic strengths were examined to identify the most suitable medium to avoid this problem. Buffer addition counteracted acidification and enhanced active protein production, which was observed for all of the applied pH values (6.5-8.0) of the buffering agent. The most satisfactory results were obtained when using the highest pH at 8.0. The protein content and PG activity increased from 3.5 mg/g and 1.09 U/g to 7.7 mg/g and 7.11 U/g during cultivation, with uncontrolled and pH-controlled medium, respectively. Measurements at wide pH and temperature ranges indicated an optimum for PG activity at pH 5.0 and 43°C; however, high thermal stability corresponded to lower temperatures, and a temperature of 37°C is thus recommended. Under these conditions, the operational stability was determined to be t1/2=570 h.
Liu, Fang; Shokrollahi, Honaz
2015-05-15
Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, Thomas W., E-mail: Thomas.Sawyer@drdc-rddc.gc.ca; Nelson, Peggy; Bjarnason, Stephen
The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1 h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC{sub 50} values of {approx} 100-150 {mu}M when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner tomore » values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.« less
Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S
2015-09-18
The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick
2015-04-01
Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Common stock solutions, buffers, and media.
2001-05-01
This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.
Meena, Vimlesh Kumar; Dhayal, Yogpal; Saxena, Deepa; Rani, Ashu; Chandel, C P Singh; Gupta, K S
2016-09-01
The automobile exhausts are one of the major sources of particulate matter in urban areas and these particles are known to influence the atmospheric chemistry in a variety of ways. Because of this, the oxidation of dissolved sulfur dioxide by oxygen was studied in aqueous suspensions of particulates, obtained by scraping the particles deposited inside a diesel truck exhaust pipe (DEP). A variation in pH showed the rate to increase with increase in pH from 5.22 to about ∼6.3 and to decrease thereafter becoming very slow at pH = 8.2. In acetate-buffered medium, the reaction rate was higher than the rate in unbuffered medium at the same pH. Further, the rate was found to be higher in suspension than in the leachate under otherwise identical conditions. And, the reaction rate in the blank reaction was the slowest. This appears to be due to catalysis by leached metal ions in leachate and due to catalysis by leached metal ions and particulate surface both in suspensions. The kinetics of dissolved SO2 oxidation in acetate-buffered medium as well as in unbuffered medium at pH = 5.22 were defined by rate law: k obs = k 0 + k cat [DEP], where k obs and k 0 are observed rate constants in the presence and the absence of DEP and k cat is the rate constant for DEP-catalyzed pathway. At pH = 8.2, the reaction rate was strongly inhibited by DEP in buffered and unbuffered media. Results suggest that the DEP would have an inhibiting effect in those areas where rainwater pH is 7 or more. These results at high pH are of particular significance to the Indian subcontinent, because of high rainwater pH. Conversely, it indicates the DEP to retard the oxidation of dissolved SO2 and control rainwater acidification.
The effect of environmental pH on polymeric transfection efficiency.
Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han
2012-02-01
Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6-7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1-2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. Copyright © 2011 Elsevier Ltd. All rights reserved.
2015-10-25
in a defined medium composed of half-strength Marine Broth adjusted to pH 6, 7, or 8 in a 50 mM phosphate buffer, both growth characteristics and...work had broad phylogenetic diversity (Fig. 1) and were isolated from mostly marine environments. S. putrefaciens was the only strain that was not...the defined medium that supported growth of most of the strains tested was marine broth diluted to half strength with 50 mM phosphate buffer (½-MB
Dias, B.A.; Neves, P.M.O.J.; Furlaneto-Maia, L.; Furlaneto, M.C.
2008-01-01
A Brazilian isolate of Beauveria bassiana (CG425) that shows high virulence against the coffee berry borer (CBB) was examined for the production of subtilisin-like (Pr1) and trypsin-like (Pr2) cuticle-degrading proteases. Fungal growth was either in nitrate-medium or in CBB cuticle-containing medium under both buffered and unbuffered conditions. In unbuffered medium supplemented with cuticle, the pH of cultures dropped and Pr1 and Pr2 activities were detected in high amounts only at a pH of 5.5 or higher. In buffered cultures, Pr1 and Pr2 activities were higher in medium supplemented with cuticle compared to activities with nitrate-medium. The Pr1 and Pr2 activities detected were mostly in the culture supernatant. These data suggest that Pr1 and Pr2 proteases produced by strain CG425 are induced by components of CBB cuticle, and that the culture pH influences the expression of these proteases, indicating the occurrence of an efficient mechanism of protein secretion in this fungus. The results obtained in this study extend the knowledge about protease production in B. bassiana CG425, opening new avenues for studying the role of secreted proteases in virulence against the coffee berry borer during the infection process. PMID:24031220
Fish Viruses: Buffers and Methods for Plaquing Eight Agents Under Normal Atmosphere
Wolf, Ken; Quimby, M. C.
1973-01-01
A universal procedure was sought for plaque assay of eight fish viruses (bluegill myxovirus, channel catfish virus, eel virus, Egtved virus, infectious hematopoietic necrosis virus, infectious pancreatic necrosis virus, lymphocystis virus, and the agent of spring viremia of carp (Rhabdovirus carpio), in dish cultures of various fish cells. Eagle minimal essential medium with sodium bicarbonate-CO2 buffer (Earle’s salt solution) was compared with minimal essential medium buffered principally with tris (hydroxymethyl)aminomethane or N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid at a pH or in the range of 7.6 to 8.0 depending upon temperature. Five fish cell lines collectively capable of replicating all fish viruses thus far isolated were tested and quantitatively found to grow comparably well in the three media. Two-phase (gel-liquid) media incorporating the various buffer systems allowed plaquing at 15 to 33 C either in partial pressures of CO2 or in normal atmosphere, but greater efficiency and sensitivity were obtained with the organic buffers, and, overall, the best results were obtained with tris(hydroxymethyl)aminomethane. Epizootiological data, specific fish cell line response, and plaque morphology permit presumptive identification of most of the agents. At proper pH, use of organic buffers obviates the need for CO2 incubators. Images PMID:4349252
Sustained Axenic Metabolic Activity by the Obligate Intracellular Bacterium Coxiella burnetii▿ †
Omsland, Anders; Cockrell, Diane C.; Fischer, Elizabeth R.; Heinzen, Robert A.
2008-01-01
Growth of Coxiella burnetii, the agent of Q fever, is strictly limited to colonization of a viable eukaryotic host cell. Following infection, the pathogen replicates exclusively in an acidified (pH 4.5 to 5) phagolysosome-like parasitophorous vacuole. Axenic (host cell free) buffers have been described that activate C. burnetii metabolism in vitro, but metabolism is short-lived, with bacterial protein synthesis halting after a few hours. Here, we describe a complex axenic medium that supports sustained (>24 h) C. burnetii metabolic activity. As an initial step in medium development, several biological buffers (pH 4.5) were screened for C. burnetii metabolic permissiveness. Based on [35S]Cys-Met incorporation, C. burnetii displayed optimal metabolic activity in citrate buffer. To compensate for C. burnetii auxotrophies and other potential metabolic deficiencies, we developed a citrate buffer-based medium termed complex Coxiella medium (CCM) that contains a mixture of three complex nutrient sources (neopeptone, fetal bovine serum, and RPMI cell culture medium). Optimal C. burnetii metabolism occurred in CCM with a high chloride concentration (140 mM) while the concentrations of sodium and potassium had little effect on metabolism. CCM supported prolonged de novo protein and ATP synthesis by C. burnetii (>24 h). Moreover, C. burnetii morphological differentiation was induced in CCM as determined by the transition from small-cell variant to large-cell variant. The sustained in vitro metabolic activity of C. burnetii in CCM provides an important tool to investigate the physiology of this organism including developmental transitions and responses to antimicrobial factors associated with the host cell. PMID:18310349
Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra
2014-01-23
The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.
Increased degradation rate of nitrososureas in media containing carbonate.
Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov
2009-01-01
The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.
Zail, S S; Hoek, V D
1975-04-16
Human erythrocyte membranes were prepared in three ways: washing in hypotonic Tris buffer, pH 7.6, by lysis in isotonic Tris buffer pH 7.6 after incubation at 37 degrees C for 2 hours and by ultrasonication in an isotonic medium, pH 7.6. Analysis of the major polypeptides of the erythrocyte membranes by sodium dodecylsulphate polyacrylamide gel electrophoresis revealed a selective depletion of a major polypeptide representing glyceraldehyde-3-phosphate dehydrogenase in the membranes prepared by high osmolarity lysis. The pattern of seperation of the remaining polypeptides was identical in the 3 different membrane preparations.
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1991-01-01
Callus cultures of the diploid daylily (Hemerocallis) clone Autumn Blaze' were initiated and maintained in hormone-containing nutrient medium. At various times (from 6 weeks to 1 year) after being initiated, hormone-derived cultures were evaluated for their ability to be maintained and to multiply on hormone-free medium at low pH (between pH 4 and 4.5). Cultures had to be exposed to hormone-containing medium for at least 12 weeks before they could be maintained on hormone-free medium at low pH. The transition to maintainability on low pH hormone-free medium included the production of many aberrant embryonal forms ( neomorphs'). However, all hormone-derived cultures tested consisted entirely of preglobular stage proembryos (PGSPs) after 12-24 weeks on low pH hormone-free medium. PGSP cultures have been maintained and multiplied as such for over 1 year on low pH hormone-free medium. PGSPs continue their development into various somatic embryo stages when cultured on hormone-free medium buffered at pH 5.8. The production of well-formed somatic embryos was greatly enhanced when PGSPs were plated on activated charcoal impregnated filter papers that were placed on top of the agar surface. The gross morphology and histology of the PGSPs and stages of somatic embryo development are presented. The work shows that the ability of hormone-free medium at low pH to permit PGSP multiplication without development into later stages of embryo development is not restricted to carrot.
Khemiss, Mehdi; Ben Khelifa, Mohamed; Ben Saad, Helmi
2017-12-01
The aim of the present comparative study was to compare some salivary characteristics between exclusive waterpipe smokers (EWPS) and non-smokers. 72 males (36 EWPS) were recruited. The volume of stimulated saliva was determined and divided by the duration of saliva collection. The pH was measured directly using a pH meter. The buffering capacity was determined using a quantitative method which involved the addition of 10 µl HCl. Up to a total of 160 µL was titrated up to obtain a pH titration curve. At 50 µL of titrated HCl, buffering capacity was ranked into three categories: high, medium and low. EWPS and non-smoker groups had similar flow rates (1.81 ± 0.79 and 1.78 ± 1.14 mL min-1) and similar baseline pH (6.60 ± 0.37 and 6.76 ± 0.39). Statistically significant differences in the two groups' pH were observed from 30 to 160 µL of titrated up HCl. At 50 µL of titrated up HCl, the EWPS group compared to the non-smoker group had a significantly higher pH (4.79 ± 0.72 vs. 5.32 ± 0.79). To conclude, waterpipe tobacco smoking alters the buffering capacity but does not alter either salivary flow rates or the baseline pH and consistency.
Butanol production from thin stillage using Clostridium pasteurianum.
Ahn, Jae-Hyung; Sang, Byoung-In; Um, Youngsoon
2011-04-01
The production of butanol from thin stillage by Clostridium pasteurianum DSM 525 was evaluated in the paper. At initial pH values ranging from 5.0 to 7.0 C. pasteurianum DSM 525 produced 6.2-7.2 g/L of butanol utilizing glycerol in thin stillage as the main carbon source, with yields of 0.32-0.44 g butanol produced/g glycerol consumed, which are higher than previously reported yields (e.g., 0.14-0.31 g butanol/g glycerol, Biebl, 2001). Lactic acid in the thin stillage acted as a buffering agent, maintaining the pH of the medium within a range of 5.7-6.1. Lactic acid was also utilized along with glycerol, enhancing butanol production (6.5 g/L butanol vs. 8.7 g/L butanol with 0 and 16 g/L lactic acid, respectively). These results demonstrate the feasibility of cost-effective butanol production using thin stillage as a nutrient-containing medium with a pH buffering capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Path of Carbon in Photosynthesis XIII. pH Effects in C{sup 14}O{sub 2} Fixation by Scenedesmus
DOE R&D Accomplishments Database
Ouellet, C.; Benson, A. A.
1951-10-23
The rates of photosynthesis and dark fixation of C{sup 14}O{sub 2} in Scenedesmus have been compared in dilute phosphate buffers of 1.6 to 11.4 pH; determination of C{sup 14} incorporation into the various products shows enhancement of uptake in an acid medium into sucrose, polysaccharides, alanine and serine, in an alkaline medium into malic asparctic acids. kinetic experiments at extreme pH values suggest that several paths are available for CO{sub 2} assimilation. A tentative correlation of the results with the pH optima of some enzymes and resultant effects upon concentrations of intermediates is presented.
The effect of reaction conditions on formation of wet precipitated calcium phosphates
NASA Astrophysics Data System (ADS)
Huang, Chen; Cao, Peng
2015-03-01
The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.
Khemiss, Mehdi; Ben Khelifa, Mohamed; Ben Saad, Helmi
2017-01-01
ABSTRACT The aim of the present comparative study was to compare some salivary characteristics between exclusive waterpipe smokers (EWPS) and non-smokers. 72 males (36 EWPS) were recruited. The volume of stimulated saliva was determined and divided by the duration of saliva collection. The pH was measured directly using a pH meter. The buffering capacity was determined using a quantitative method which involved the addition of 10 µl HCl. Up to a total of 160 µL was titrated up to obtain a pH titration curve. At 50 µL of titrated HCl, buffering capacity was ranked into three categories: high, medium and low. EWPS and non-smoker groups had similar flow rates (1.81 ± 0.79 and 1.78 ± 1.14 mL min-1) and similar baseline pH (6.60 ± 0.37 and 6.76 ± 0.39). Statistically significant differences in the two groups’ pH were observed from 30 to 160 µL of titrated up HCl. At 50 µL of titrated up HCl, the EWPS group compared to the non-smoker group had a significantly higher pH (4.79 ± 0.72 vs. 5.32 ± 0.79). To conclude, waterpipe tobacco smoking alters the buffering capacity but does not alter either salivary flow rates or the baseline pH and consistency. PMID:28266252
Euterpio, Maria Anna; Cavaliere, Chiara; Capriotti, Anna Laura; Crescenzi, Carlo
2011-11-01
Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.
New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell.
Helder, M; Strik, D P B T B; Hamelers, H V M; Kuijken, R C P; Buisman, C J N
2012-01-01
In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential losses over the membrane because of differences in pH between anode and cathode. We developed a new, improved plant-growth medium that improves current production, while the plant keeps growing. This medium is a nitrate-less, ammonium-rich medium that contains all macro- and micro-nutrients necessary for plant growth, with a balanced amount of bicarbonate buffer. Sulphate presence in the plant-growth medium helps to keep a low anode-potential. With the new plant-growth medium the maximum current production of the Plant-Microbial Fuel Cell increased from 186 mA/m(2) to 469 mA/m(2). Copyright © 2011 Elsevier Ltd. All rights reserved.
Parameterization of hyperpolarized (13)C-bicarbonate-dissolution dynamic nuclear polarization.
Scholz, David Johannes; Otto, Angela M; Hintermair, Josef; Schilling, Franz; Frank, Annette; Köllisch, Ulrich; Janich, Martin A; Schulte, Rolf F; Schwaiger, Markus; Haase, Axel; Menzel, Marion I
2015-12-01
(13)C metabolic MRI using hyperpolarized (13)C-bicarbonate enables preclinical detection of pH. To improve signal-to-noise ratio, experimental procedures were refined, and the influence of pH, buffer capacity, temperature, and field strength were investigated. Bicarbonate preparation was investigated. Bicarbonate was prepared and applied in spectroscopy at 1, 3, 14 T using pure dissolution, culture medium, and MCF-7 cell spheroids. Healthy rats were imaged by spectral-spatial spiral acquisition for spatial and temporal bicarbonate distribution, pH mapping, and signal decay analysis. An optimized preparation technique for maximum solubility of 6 mol/L and polarization levels of 19-21% is presented; T1 and SNR dependency on field strength, buffer capacity, and pH was investigated. pH mapping in vivo is demonstrated. An optimized bicarbonate preparation and experimental procedure provided improved T1 and SNR values, allowing in vitro and in vivo applications.
Karki, Neha; Tiwari, Himani; Pal, Mintu; Chaurasia, Alok; Bal, Rajaram; Joshi, Penny; Sahoo, Nanda Gopal
2018-05-18
In this work, the modification of graphene oxides (GOs) have been done with hydrophilic and biodegradable polymer, polyvinylpyrrolidone (PVP) and other excipient β -cyclodextrin (β-CD) through covalent functionalization for efficient loading and compatible release of sparingly water soluble aromatic anticancer drug SN-38 (7-ethyl-10-hydroxy camptothecin). The drug was loaded onto both GO-PVP and GO-β-CD through the π-π interactions.The release of drug from both the nanocarriers were analyzed in different pH medium of pH 7 (water, neutral medium), pH 5 (acidic buffer) and pH 12 (basic buffer). The loading capacity and the cell killing activity of SN-38 loaded on functionalized GO were investigated comprehensively in human breast cancer cells MCF-7.Our findings shown that the cytotoxicity of SN-38 loaded to the polymer modified GO was comparatively higher than free SN-38. In particular, SN-38 loaded GO-PVP nanocarrier has more cytotoxic effect than GO-β-CD nanocarrier against MCF-7 cells, indicating that SN-38 loaded GO-PVP nanocarrier can be used as promising material for drug delivery and biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Karkossa, Frank; Klein, Sandra
2017-10-01
The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.
Evaluation of h secretion relative to zeatin-induced growth of detached cucumber cotyledons.
Ross, C W; Rayle, D L
1982-11-01
Cytokinins promote expansion of cotyledons detached from seedlings of more than a dozen species. The zeatin-enhanced expansion of cucumber (Cucumis sativus L. cv Marketer) cotyledons was investigated. In addition, whether acid secretion is involved in wall loosening accompanying such accelerated growth was evaluated. For cotyledons abraded with carborundum or cut into either eight or 18 pieces, we detected no zeatin-enhanced acidification of the growth medium during growth periods of 3 days. Measurements of pH values on each surface of zeatin-treated, abraded cotyledons after 3 days of growth also showed no detectable acidification caused by the hormone. Furthermore, with several buffers at pH values ranging from 5 to 8, growth of nonabraded, abraded, or cut cotyledons with or without zeatin was independent of external pH. However, experiments restricted to about 12 hours indicated that certain acidic buffers enhanced growth of cotyledons cut into 18 pieces. Lastly, concentrations of fusicoccin that caused growth promotion equal to that of zeatin initiated substantial acidification of the medium. Collectively, these data suggest that zeatin-induced expansion of detached cucumber cotyledons is independent of H(+) secretion.
Cui, Heping; Duhoranimana, Emmanuel; Karangwa, Eric; Jia, Chengsheng; Zhang, Xiaoming
2018-04-25
The yield of the Maillard reaction intermediate (MRI), prepared in aqueous medium, is usually unsatisfactory. However, the addition of sodium sulfite could improve the conversion of xylose-phenylalanine (Xyl-Phe) to the MRI (N-(1-deoxy-d-xylulos-1-yl)-phenylalanine) in aqueous medium. Sodium sulfite (Na 2 SO 3 ) showed a significant pH-buffering effect during the Maillard reaction, which accounted for its facilitation of the N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. The results revealed that the pH could be maintained at a relatively high level (above 7.0) for an optimized pH-buffering effect when Na 2 SO 3 (4.0%) was added before the reaction of Xyl-Phe. Thus, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine increased from 47.23% to 74.86%. Furthermore, the addition moment of Na 2 SO 3 and corresponding solution pH were crucial factors in regulating the pH-buffering effect of Na 2 SO 3 on N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. Based on the pH-buffering effect of Na 2 SO 3 and maintaining the optimal pH 7.4 relatively stable, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine was successfully improved. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silla Santos, M H; Torres Zarzo, J
1997-03-03
The effect of ethylenediaminetetraacetic acid (EDTA) on the heat resistance of Clostridium sporogenes PA 3679 spores was studied. EDTA was added to heating substrates and recovery media in order to establish which stage of the heat treatment registered the greatest EDTA activity. The heating substrates assayed were phosphate buffer (pH 7.0) and white asparagus purée, at natural pH (5.8) and acidified with citric acid and glucono-delta-lactone (GDL) to pH 5.5, 5.0 and 4.5. Recovery of survivors was carried out in MPA3679A medium in various conditions of acidification with citric and GDL (250 and 500 ppm), at pH 7.5 6.5 and 6.0. The results show greater activity of EDTA on spores when it was applied in recovery of heat injured spores, than during heating. The strongest influence of EDTA during heating was found in phosphate buffer (pH 7.0), with the effect being most evident at 121 and 126 degrees C, and in asparagus purée, at 121 degrees C and pH 5.8 rather than acidified. In recovery, the inhibiting activity of EDTA was more evident in spores subjected to more severe heat treatment, either by increasing the exposure time or by raising the temperature to 130 or 135 degrees C. The pH level of the recovery medium also affected the antimicrobial activity of EDTA, which had a greater inhibiting effect at pH 7.5 than at lower pH levels (6.5, 6.0).
Indomethacin-Kollidon VA64 Extrudates: A Mechanistic Study of pH-Dependent Controlled Release.
Tres, Francesco; Treacher, Kevin; Booth, Jonathan; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C
2016-03-07
Because of its weakly acidic nature (pKa of 4.5), indomethacin presents an aqueous solubility that significantly increases when changing from acidic to neutral/alkaline pH (1.5 μg/mL at pH 1.2 and 105.2 μg/mL at pH 7.4). We have therefore investigated the impact of the dissolution medium pH on the dissolution performance of indomethacin:Kollidon VA64 extrudates. The impact of the drug loading on the dissolution properties of these systems was also examined (5%, 15%, 30%, 50%, 70%, and 90% drug loading). Time-resolved Raman spectroscopy along with in-line UV-vis spectrophotometry was employed to directly relate changes in dissolution behavior to physicochemical changes that occur to the extrudate during the test. The dissolution tests were performed in pH 2 HCl (to mimic the stomach conditions), and this was then switched during the experiment to pH 6.8 phosphate buffer (to simulate the poststomach conditions). The rotating disc dissolution rate test was also used to simultaneously measure the dissolution rate of both the drug and the polymer. We found that in pH 2 HCl buffer, for the 15% or higher drug-loaded extrudates, Kollidon VA64 preferentially dissolves from the exterior of the compact leaving an amorphous drug-rich hydrophobic shell, which, similarly to an enteric coating, inhibits the drug release. The in situ formation of an enteric coating has been previously hypothesized, and this has been the first time that is directly observed in a pH-variable dissolution test. The dissolution medium switch to pH 6.8 phosphate buffer, due to the large increase of the aqueous solubility of indomethacin at this pH, leads to rapid dissolution of the material forming the coating and therefore total drug release. In contrast, the 5% extrudate is fully hydrated and quickly dissolves at low pH pointing to a dissolution performance dependent on highly water-soluble Kollidon VA64.
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
A mixed culture comprised of both embryonic globules and nonembryogenic callus was derived from seedling hypocotyls of Daucus carota cv. Scarlet Nantes on 2,4-D- containing medium using well-established methods. Then the mixed cultures were transferred to, and serially subcultured on, a hormone-free medium near pH 4. The medium contained 1 mM NH4+ as the sole nitrogen source. When cultured in this way, embryonic globules were able to multiply without development into later embryo stages. Nonembryogenic callus did not survive. Continuous culture of embryonic globules on this low pH hormone-free medium yielded cultures consisting entirely of preglobular stage proembryos (PGSPs). PGSP cultures have been maintained as such with continuous multiplication for nearly 2 years without loss of embryogenic potential. These hormone-free-maintained PGSPs continue their development to later embryo stages when cultured on the same hormone-free medium buffered at pH 5.8. We show that hormone-free medium near pH 4 can replace 2,4-D in its ability to sustain multiplication of 2,4-D-initiated embryogenic cells of carrot at an acceptable growth rate without their development into later embryo stages. This procedure provides selective conditions that do not permit the growth of non-embryogenic cells while providing an adequate environment for embryogenic cell proliferation and should prove invaluable in studying habituation.
Moghimipour, Eskandar; Rezaei, Mohsen; Kouchak, Maryam; Fatahiasl, Jafar; Angali, Kambiz Ahmadi; Ramezani, Zahra; Amini, Mohsen; Dorkoosh, Farid Abedin; Handali, Somayeh
2018-05-01
The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank's solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank's solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.
Kawasaki, Kosei; Kamagata, Yoichi
2017-11-01
Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O 2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H 2 O 2 formation from agar. H 2 O 2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H 2 O 2 formation. Amendment of catalase or pyruvate, a well-known H 2 O 2 -scavenging agent, effectively eliminated H 2 O 2 Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium. Copyright © 2017 American Society for Microbiology.
Kamagata, Yoichi
2017-01-01
ABSTRACT Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H2O2) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659–7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H2O2 formation in agar. The H2O2 formation was pH dependent: H2O2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H2O2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H2O2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H2O2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H2O2 from PT medium, these observations indicate that although H2O2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H2O2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H2O2 formation from agar. H2O2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H2O2 formation. Amendment of catalase or pyruvate, a well-known H2O2-scavenging agent, effectively eliminated H2O2. Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium. PMID:28821549
Romanenko, V D; Kotsar', N I
1976-01-01
The role of a bicarbonate buffer system of fish (Cyprinidae family) blood was studied in their organism addaptive reactions to different levels of CO2 in the aqueous medium. The fish is established to prossess rather effective for maintaining blood acid-base balance. It permits the fish to endure for a long time essential fluctuations of carbonic acid concentration in water. In prevention of possible development of carbonic acid acidosis an essential role belongs to formation of bicarbonates as a blood buffer system stablizing pH is shown to be significant for preventing possible development of acidosis. The adaptation potentialities of Cyprinidae family permit them to endure an increase of CO2 in water and are determined by the ability of their organism to formations of bicarbonate and their retaining in blood.
Evaluation of H+ Secretion Relative to Zeatin-Induced Growth of Detached Cucumber Cotyledons 1
Ross, Cleon W.; Rayle, David L.
1982-01-01
Cytokinins promote expansion of cotyledons detached from seedlings of more than a dozen species. The zeatin-enhanced expansion of cucumber (Cucumis sativus L. cv Marketer) cotyledons was investigated. In addition, whether acid secretion is involved in wall loosening accompanying such accelerated growth was evaluated. For cotyledons abraded with carborundum or cut into either eight or 18 pieces, we detected no zeatin-enhanced acidification of the growth medium during growth periods of 3 days. Measurements of pH values on each surface of zeatin-treated, abraded cotyledons after 3 days of growth also showed no detectable acidification caused by the hormone. Furthermore, with several buffers at pH values ranging from 5 to 8, growth of nonabraded, abraded, or cut cotyledons with or without zeatin was independent of external pH. However, experiments restricted to about 12 hours indicated that certain acidic buffers enhanced growth of cotyledons cut into 18 pieces. Lastly, concentrations of fusicoccin that caused growth promotion equal to that of zeatin initiated substantial acidification of the medium. Collectively, these data suggest that zeatin-induced expansion of detached cucumber cotyledons is independent of H+ secretion. PMID:16662700
Reutilization of granite powder as an amendment and fertilizer for acid soils.
Barral Silva, M T; Silva Hermo, B; García-Rodeja, E; Vázquez Freire, N
2005-11-01
The properties of granite powders--a granite manufacturing waste product-were analyzed to assess their potential use as amendments and fertilizers on acid soils. Two types of powders were characterized: one produced during cutting of granite with a diamond-edged disc saw, comprising only rock powder, the other produced during cutting with a multi-blade bandsaw, containing calcium hydroxide and metal filings added during the cutting procedure. The acid neutralizing capacity of the granite powders was assessed in short- (2-3 h) and medium-term (1-30 d) experiments. The powders showed a buffering capacity at around pH 8, which corresponded to the rapid dissolution of basic cations, and another buffering effect at pH<4.5, attributable to the dissolution of Fe and Al. The acid neutralizing capacity (ANC) determined in the short-term experiments, to a final pH of 4.5, varied between 5 and 61 cmol H+kg(-1) powder. The ANC to pH 4.5 obtained in the medium-term experiments was much higher than that obtained in the short-term experiments, reaching a maximum ANC value of 200 cmol H+kg(-1) powder. There was no great difference in the neutralizing capacity determined at between 1 and 30 d. The most abundant elements in acid solutions obtained at the end of medium-term experiments were Mg and Ca for disc saw powders, whereas Ca and Fe (at pH<5) were the most soluble elements in the bandsaw powders. The rapid release of these cations suggests the possible effective use of the granite powders as a source of nutrients on being added to acid soils.
Hydrogen ion dynamics in human red blood cells
Swietach, Pawel; Tiffert, Teresa; Mauritz, Jakob M A; Seear, Rachel; Esposito, Alessandro; Kaminski, Clemens F; Lew, Virgilio L; Vaughan-Jones, Richard D
2010-01-01
Our understanding of pH regulation within red blood cells (RBCs) has been inferred mainly from indirect experiments rather than from in situ measurements of intracellular pH (pHi). The present work shows that carboxy-SNARF-1, a pH fluorophore, when used with confocal imaging or flow cytometry, reliably reports pHi in individual, human RBCs, provided intracellular fluorescence is calibrated using a ‘null-point’ procedure. Mean pHi was 7.25 in CO2/HCO3−-buffered medium and 7.15 in Hepes-buffered medium, and varied linearly with extracellular pH (slope of 0.77). Intrinsic (non-CO2/HCO3−-dependent) buffering power, estimated in the intact cell (85 mmol (l cell)−1 (pH unit)−1 at resting pHi), was somewhat higher than previous estimates from cell lysates (50–70 mmol (l cell)−1 (pH unit)−1). Acute displacement of pHi (superfusion of weak acids/bases) triggered rapid pHi recovery. This was mediated via membrane Cl−/HCO3− exchange (the AE1 gene product), irrespective of whether recovery was from an intracellular acid or base load, and with no evident contribution from other transporters such as Na+/H+ exchange. H+-equivalent flux through AE1 was a linear function of [H+]i and reversed at resting pHi, indicating that its activity is not allosterically regulated by pHi, in contrast to other AE isoforms. By simultaneously monitoring pHi and markers of cell volume, a functional link between membrane ion transport, volume and pHi was demonstrated. RBC pHi is therefore tightly regulated via AE1 activity, but modulated during changes of cell volume. A comparable volume–pHi link may also be important in other cell types expressing anion exchangers. Direct measurement of pHi should be useful in future investigations of RBC physiology and pathology. PMID:20962000
Fernandes, Christiane; Oliveira Moreira, Rafaela; Lube, Leonardo M; Horn, Adolfo; Szpoganicz, Bruno; Sherrod, Stacy; Russell, David H
2010-06-07
We report herein the characterization by electrospray ionization (ESI) mass spectrometry (MS), matrix assisted laser desorption ionization (MALDI-MS) and potentiometric titration of three iron(III) compounds: [Fe(III)(HPClNOL)Cl2]·NO3 (1), [Cl(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)Cl]·Cl2·H2O (2) and [(SO4)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(SO4)]·6H2O (3), where HPClNOL= 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol). Despite the fact that the compounds have distinct structures in solid state and non-buffered solution, all compounds present similar ESI and MALDI mass spectra in a buffered medium (pH 7.0). At this pH, the species [(PClNOL)Fe(III)-(μ-O)-Fe(III)(PClNOL)](2+) (m/z 354) was observed for all the compounds under investigation. Potentiometric titration confirms a similar behavior for all compounds, indicating that the dihydroxo form [(OH)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(OH)](2+) is the major species at pH 7.0, for all the compounds. The products of the interaction between compounds (1), (2) and (3) and dAMP (2'-deoxyadenosine-5'-monophosphate) in a buffered medium (pH 7.0) were identified by MALDI-MS/MS. The fragmentation data obtained by MS/MS allow one to identify the nature of the interaction between the iron(III) compounds and dAMP, revealing the direct interaction between the iron center and phosphate groups.
EFFECTS OF NITROGEN SOURCE ON CRUDE OIL BIODEGRADATION
The effects of NH4Cl and KNO3 on biodegradation of light Arabian crude oil by an oil-degrading enrichment culture were studied in respirometers. In poorly buffered sea salts medium, the pH decreased dramatically in cultures that contained NH4Cl, b...
Taylor, M J; Hunt, C J; Madden, P W
1989-01-01
Periods of preservation for donor corneas, even for short times, are necessary to facilitate optimum conditions in penetrating keratoplasty. However, current techniques for corneal storage at low temperatures may not provide optimal conditions for maintaining tissue integrity. In particular, the ionic composition of the storage medium has received little attention since it has been assumed throughout that the normal complement of ions in tissue culture media will also be suitable for preservation at reduced temperatures. This study extends our previous investigations on the merits of using CPTES (corneal-potassium-TES), a potassium-rich balanced salt solution containing an impermeant anionic pH buffer (TES), as a storage solution specifically designed to prevent the loss of intracellular potassium and minimise endothelial cell swelling during the time that the normal regulatory processes are switched off. The effect of adding the natural polymer chondroitin sulphate (CS) as a colloid osmotic agent to the hyperkalaemic storage medium is now examined. Corneas stored in CPTES containing 2.5% chondroitin sulphate retained a very high level of structural and functional integrity after three, five, and seven days storage at 0 degrees C; furthermore, stromal swelling was restricted to only 21%. All corneas stored in CPTES + 2.5% CS showed active endothelial function by thinning efficiently at rates that were greater than those previously reported for rabbit corneas stored for similar lengths of time in either M-K medium or K-sol. The zwitterionic buffers TES and HEPES were interchangeable in the hyperkalaemic solution and were non-toxic to corneal endothelium at a concentration of 100 mM. These compounds offer excellent pH buffering in bicarbonate-free medium. Images PMID:2510816
Desai, Divyakant; Wong, Benjamin; Huang, Yande; Tang, Dan; Hemenway, Jeffrey; Paruchuri, Srinivasa; Guo, Hang; Hsieh, Daniel; Timmins, Peter
2015-01-01
To investigate the influence of the pH of the dissolution medium on immediate release 850 mg metformin hydrochloride tablets. A traditional wet granulation method was used to manufacture metformin hydrochloride tablets with or without a disintegrant. Tablet dissolution was conducted using the USP apparatus I at 100 rpm. In spite of its pH-independent high solubility, metformin hydrochloride tablets dissolved significantly slower in 0.1 N HCl (pH 1.2) and 50 mM pH 4.5 acetate buffer compared with 50 mM pH 6.8 phosphate buffer, the dissolution medium in the USP. Metformin hydrochloride API compressed into a round 1200 mg disk showed a similar trend. When basket rotation speed was increased from 100 to 250 rpm, the dissolution of metformin hydrochloride tablets was similar in all three media. Incorporation of 2% w/w crospovidone in the tablet formulation improved the dissolution although the pH-dependent trend was still evident, but incorporation of 2% w/w croscarmellose sodium resulted in rapid pH-independent tablet dissolution. In absence of a disintegrant in the tablet formulation, the dissolution was governed by the erosion-diffusion process. Even for a highly soluble drug, a super-disintegrant was needed in the formulation to overcome the diffusion layer limitation and change the dissolution mechanism from erosion-diffusion to disintegration.
Effects of pH and Temperature on the Stability of Fumonisins in Maize Products.
Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata
2017-03-01
This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100-250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B₁ fumonisin (HFB₁) and partially hydrolysed B₁ fumonisin (isomers a and b: PHFB 1a and PHFB 1b , respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB₁, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB₁ molecules disintegrate.
Effects of pH and Temperature on the Stability of Fumonisins in Maize Products
Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata
2017-01-01
This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100–250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B1 fumonisin (HFB1) and partially hydrolysed B1 fumonisin (isomers a and b: PHFB1a and PHFB1b, respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB1, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB1 molecules disintegrate. PMID:28257053
Stabilization of pH in solid-matrix hydroponic systems
NASA Technical Reports Server (NTRS)
Frick, J.; Mitchell, C. A.
1993-01-01
2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.
Bradshaw, J G; Peeler, J T; Twedt, R M
1977-09-01
The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators.
Bradshaw, J G; Peeler, J T; Twedt, R M
1977-01-01
The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators. PMID:199113
Stöckmann, Christoph; Palmen, Thomas G; Schroer, Kirsten; Kunze, Gotthard; Gellissen, Gerd; Büchs, Jochen
2014-06-01
The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l(-1) was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l(-1). Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h(-1) and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.
1990-02-01
which appear to be directed to an epitope associated with the galactose-N-acetyl-D- glucosamine polysaccharide. Both demonstrated specificity in their...liquid composed primarily of D-galactose and N-acetyl-D-glu - R medium (28) buffered with 50 mM Tris hydrochloride , pH cosamine (12, 13) (Gal-NAG...Ascites fluid (5 ml) was dialyzed (Cel-Line Associates, Inc., Newfield, N.J.). Suspensions against 20 mM Tris hydrochloride (pH 8.0) for 18 to 20 h, were
Tiffert, T; Etzion, Z; Bookchin, R M; Lew, V L
1993-01-01
1. The effects of deoxygenation on cytoplasmic Ca2+ buffering, saturated Ca2+ extrusion rate through the Ca2+ pump (Vmax), passive Ca2+ influx and physiological [Ca2+]i level were investigated in human red cells to assess whether or not their Ca2+ metabolism might be altered by deoxygenation in capillaries and venous circulation. 2. The study was performed in fresh human red cells maintained in a tonometer either fully oxygenated or deoxygenated. Cytoplasmic Ca2+ buffering was estimated from the equilibrium distribution of 45Ca2+ induced by the divalent cation ionophore A23187 and the Vmax of the Ca2+ pump was measured either by the Co(2+)-exposure method or following ionophore wash-out. The passive Ca2+ influx and physiological [Ca2+]i were determined in cells preloaded with the Ca2+ chelator benz-2 and resuspended in autologous plasma. 3. Deoxygenation increased the fraction of ionized Ca2+ in cell water by 34-74% and reduced the Vmax of the Ca2+ pump by 18-32%. 4. To elucidate whether or not these effects were secondary to deoxygenation-induced pH shifts, the effects of deoxygenation on cell and medium pH, and of pH on cytoplasmic Ca2+ binding and Ca2+ pump Vmax in oxygenated cells were examined in detail. 5. Deoxygenation generated large alkaline pH shifts that could be explained if the apparent isoelectric point (pI) of haemoglobin increased by 0.2-0.4 pH units in intact cells, consistently higher than the value of 0.15 reported for pure haemoglobin solutions. 6. In oxygenated cells, the fraction of ionized cell calcium, alpha, was little affected by pH within the 7.0-7.7 range. Ca2+ pump Vmax was maximal at a medium pH of about 7.55. Comparison between pH effects elicited by HCl-NaOH additions and by replacing Cl- with gluconate suggested that Vmax was inhibited by both internal acidification and external alkalinization. Since deoxygenation alkalinized cells and medium within a range stimulatory for Vmax, the inhibition observed was not due to pH. 7. There was no significant effect of deoxygenation on passive Ca2+ uptake, or steady-state physiological [Ca2+]i level. 8. The deoxygenation-induced reduction in Ca2+ binding capacity may result from the increased protonation of haemoglobin on deoxygenation and from binding of 2,3-diphosphoglyceric acid (2,3-DPG) and ATP to deoxyhaemoglobin; inhibition of the Ca2+ pump may result from shifts in the [Mg2+]i/[ATP]i ratio away from a near optimal stimulatory value in the oxygenated state. PMID:8229816
Hamed, Rania; AlJanabi, Reem; Sunoqrot, Suhair; Abbas, Aiman
2017-08-01
The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel ® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol ® HD5 ATO). The two formulations attained release profiles of QF over 24 h similar to that of Seroquel ® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel ® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro-in vivo correlations.
Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde
2017-01-01
To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.
Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A.
Kim, Young-Jin; Nicell, James A
2006-08-01
The oxidative conversion of aqueous BPA catalyzed by laccase from Trametes versicolor was conducted in a closed, temperature-controlled system containing buffer for pH control. The effects of medium pH, buffer concentration, temperature and mediators and the impacts of dissolved wastewater constituents on BPA conversion were investigated. The optimal pH for BPA conversion was approximately 5, with greater than half maximal conversion and good enzyme stability in the range of 4-7. The stability of the enzyme was not impacted by buffer concentration, nor was BPA conversion. Despite the observation that the enzyme tended to be inactivated at elevated temperatures, enhanced conversion of BPA was observed up until a reaction temperature of 45 degrees C. Of the mediators studied, ABTS was most successful at enhancing the conversion of BPA. Dissolved wastewater constituents that were studied included various inorganic salts, organic compounds and heavy metal ions. BPA conversion was inhibited in the presence of anions such as sulfite, thiosulfate, sulfide, nitrite and cyanide. The metal ions Fe(III) and Cu(II) and the halogens chloride and fluoride substantially suppressed BPA conversion, but the presence of selected organic compounds did not significantly reduce the conversion of BPA.
Torgomyan, Heghine; Hovnanyan, Karlen; Trchounian, Armen
2013-04-01
Water is the major constituent of environmental medium and biological systems. The effects occurring in water as a result of low-intensity electromagnetic irradiation (EMI) in extremely high frequencies are supposed to be the primary mechanism to create conditions for biological responses. The EMI effects on Escherichia coli, after irradiation of their suspension, are most probably water-mediated. Indirect effects of EMI at 51.8, 53, 70.6, and 73 GHz frequencies on bacteria, through water, assay buffer (Tris-phosphate buffer with inorganic salts at low or moderate concentrations), or peptone growth medium were studied. The mediated effects of 70.6 and 73 GHz irradiated water, assay buffer, and growth medium on E. coli growth characteristics were insignificant. But the results were different for 51.8 and 53 GHz. EMI mediated effects on bacterial growth were clearly demonstrated. The effects were more strongly expressed with 53 GHz. Moreover, it was shown that 70.6 and 73 GHz similarly suppressed the cell growth after direct irradiation of E. coli in water or on solid medium. Interestingly, for 51.8 and 53 GHz the bacterial growth decreases after suspension irradiation was less, compared to the direct irradiation of bacteria on solid medium. Especially, it was also more expressed in case of 53 GHz. Also with electron microscopy, EMI-induced bacterial cell sizes and structure different changes were detected. In addition, the distinguished changes in surface tension, oxidation-reduction potential and pH of water, assay buffer, growth medium, and bacterial suspension were determined. They depended on EMI frequency used. The differences could be associated with the partial absorbance of EMI energy by the surrounding medium, which depends on a specific frequency. The results are crucial to understand biophysical mechanisms of EMI effects on bacteria.
NASA Astrophysics Data System (ADS)
Singh, Baljit; Kumar, S.
2008-08-01
In order to develop the hydrogels meant for the drug delivery, we have prepared psyllium- N-vinylpyrrolidone (NVP) based hydrogels by radiation induced crosslinking. Polymers were characterized with SEMs, FTIR and swelling studies. Swelling of the hydrogels was studied as a function of monomer concentration, total radiation dose, temperature, pH and [NaCl] of the swelling medium. The swelling kinetics of the hydrogels and release dynamics of anticancer model drug (5-fluorouracil) from the hydrogels have been carried out for the evaluation of swelling and drug release mechanism. It has been observed that diffusion exponent ' n' have 0.8, 0.9, 0.8 and gel characteristics constant ' k' have 9.22 × 10 -3, 2.06 × 10 -3, 11.72 × 10 -3 values for the release of drug from the drug loaded hydrogels in distilled water, pH 2.2 buffer and pH 7.4 buffer, respectively. The present study shows that the release of drug from the hydrogels occurred through Non-Fickian diffusion mechanism.
Plum, J; Schoenicke, G; Grabensee, B
1997-09-01
Peritonitis remains a major problem in peritoneal dialysis. The incidence of peritonitis may be reduced by the use of more "biocompatible" peritoneal dialysis solutions that do not impair local host defense mechanisms, such as occurs with conventional lactate-buffered glucose solutions. In the present study, we investigated the use of bicarbonate and lactate as buffer systems and glucose, amino acids, and glucose polymer as osmotic agents on specific cellular functions of isolated fresh blood monocytes in vitro. The bicarbonate-buffered solutions had a physiologic pH (7.0 to 7.6). Lactate-buffered solutions were tested with a pH between 5.5 and 7.3. RPMI 1640 (Roswell Park Memorial Institute, supplied by Biochrom, Berlin, Germany) and phosphate-buffered saline were used as control mediums. The test solutions were incubated with 200,000 monocytes/mL for 45 minutes followed by a 1:1 mix with RPMI 1640 (with supplements) during a 24- or 4-hour tetrazolium bromide test (MTT test) recovery period. Constitutive and lipopolysaccharide (LPS)-stimulated release of interleukin-1beta (IL-1beta) and IL-6 in the supernatants as parameters of cellular host defense and lactate dehydrogenase concentrations and MTT-formazan production as parameters for cell cytotoxicity were measured. Significantly higher IL-6 and IL-1beta release was found in the bicarbonate-buffered solutions, both under basal conditions and after LPS stimulation, compared with the lactate-buffered solutions (LPS stimulation: 1% amino acids/34 mmol/L bicarbonate, IL-1beta: 1,166 +/- 192 pg/mL; 1.5% glucose/34 mmol/L bicarbonate, IL-1beta: 752 +/- 107 pg/mL; 1.5% glucose/35 mmol/L lactate/pH 5.5, IL-1beta: 174 +/- 51 pg/mL). Some of these differences could even be detected in spent dialysate after a 6-hour dwell in continuous ambulatory peritoneal dialysis patients (n = 10). A lower degree of cellular cytotoxicity (lactate dehydrogenase activity) and better-preserved metabolic activity (MTT test) also were found for the bicarbonate-buffered solutions. Amino acids (1%) proved to be comparable to glucose (1.5%) as an osmotic agent at a neutral pH with regard to LPS-stimulated cytokine release and cytotoxicity. The incubation with a glucose polymer solution (7.5% glucose polymer in phosphate-buffered saline, pH 7.3) resulted in a significantly lowered cytokine release (LPS stimulation: IL-1beta, 69 +/- 19 pg/mL) compared with the other solutions with neutral pH (P < 0.01). These results suggest that bicarbonate as a buffer provided better biocompatibility with regard to mononuclear cytokine release and viability compared with lactate. Amino acids and glucose were equivalent to these parameters at a physiologic pH. The glucose polymer solution, however, was associated with a marked depression of cytokine release.
Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys.
Zhen, Zhen; Liu, Xiaoli; Huang, Tao; Xi, TingFei; Zheng, Yufeng
2015-01-01
Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg(2+) concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl2 and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg(2+) reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg(2+) (<100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg(2+) (>300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg(2+) concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg(2+). The Mg extract culture media caused no cytotoxicity, with pH=8.44 and 47.80 μg/mL Mg(2+). It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. Copyright © 2014. Published by Elsevier B.V.
Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources.
Nguyen, T A V; Le, Truong D; Phan, Hoa N; Tran, Lam B
2018-01-01
Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).
Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources
Phan, Hoa N.; Tran, Lam B.
2018-01-01
Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL). PMID:29623233
Skripnik, K K S; Riekes, M K; Pezzini, B R; Cardoso, S G; Stulzer, H K
2017-07-01
In the absence of an official dissolution method for modified-release tablets of gliclazide, dissolution parameters, such as apparatuses (1, 2, and 3), rotation speeds, pH, and composition of the dissolution medium were investigated. The results show that although the drug presents a pH-mediated solubility (pH 7.0 > 6.8 > 6.4 > 6.0 > 5.5 > 4.5), the in vitro release of the studied tablets was not dependent on this parameter, despite of the apparatus tested. On the other hand, the rotation speed demonstrated a greater influence (100 rpm >50 rpm). Using similar hydrodynamic conditions, the three different apparatuses were compared in pH 6.8 and provided the following trend: apparatus 1 at 100 rpm >2 at 50 rpm ≈3 at 10 dpm. As a complete, but slow release is expected from modified-release formulations, apparatus 2, in phosphate buffer pH 6.8 and 100 rpm, were selected as the optimized dissolution method. In comparison to apparatus 1 under the same conditions, the paddle avoids the stickiness of formulation excipients at the mesh of the basket, which could prejudice the release of gliclazide. Results obtained with biorelevant medium through the developed dissolution method were similar to the buffer solution pH 6.8. The application of the optimized method as a quality control test between two different brands of gliclazide modified-release tablets showed that both dissolution profiles were considered similar by the similarity factor (f2 = 51.8). The investigation of these dissolution profiles indicated a dissolution kinetic following first-order model.
Sams, Laura; Amara, Sawsan; Chakroun, Almahdi; Coudre, Sébastien; Paume, Julie; Giallo, Jacqueline; Carrière, Frédéric
2017-10-01
The cDNA encoding human gastric lipase (HGL) was integrated into the genome of Pichia pastoris using the pGAPZα A transfer vector. The HGL signal peptide was replaced by the yeast α-factor to achieve an efficient secretion. Active rHGL was produced by the transformed yeast but its levels and stability were dependent on the pH. The highest activity was obtained upon buffering the culture medium at pH5, a condition that allowed preserving enzyme activity over time. A large fraction (72±2%) of secreted rHGL remained however bound to the yeast cells, and was released by washing the cell pellet with an acid glycine-HCl buffer (pH2.2). This procedure allowed establishing a first step of purification that was completed by size exclusion chromatography. N-terminal sequencing and MALDI-ToF mass spectrometry revealed that rHGL was produced in its mature form, with a global mass of 50,837±32Da corresponding to a N-glycosylated form of HGL polypeptide (43,193Da). rHGL activity was characterized as a function of pH, various substrates and in the presence of bile salts and pepsin, and was found similar to native HGL, except for slight changes in pH optima. We then studied by site-directed mutagenesis the role of three key residues (K4, E225, R229) involved in salt bridges stabilizing the lid domain that controls the access to the active site and is part of the interfacial recognition site. Their substitution has an impact on the pH-dependent activity of rHGL and its relative activities on medium and long chain triglycerides. Copyright © 2017 Elsevier B.V. All rights reserved.
Plaquing procedure for infectious hematopoietic necrosis virus
Burke, J.A.; Mulcahy, D.
1980-01-01
A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.
Pérez, M I Bailón; Rodríguez, L Cuadros; Cruces-Blanco, C
2007-01-17
The potential of micellar electrokinetic capillary chromatography (MEKC) for analyzing nine beta-lactams antibiotics (cloxacillin, dicloxacillin, oxacillin, penicillin G, penicillin V, ampicillin, nafcillin, piperacillin, amoxicillin) in different pharmaceutical preparations, have been demonstrated. An experimental design strategy has been applied to optimize the main variables: pH and buffer concentration, concentration of the micellar medium, separation voltage and capillary temperature. Borate buffer (26mM) at pH 8.5 containing 100mM sodium dodecyl sulphate (SDS) was used as the background electrolyte. The method was validated. Linearity, limit of detection and quantitation and precision were established for each compound. The analysis of some of the beta-lactams in Orbenin capsules, Britapen tables and in Veterin-Micipen injectable, all used in human and veterinary medicine, have demonstrated the applicability of these technique for quality control in the pharmaceutical industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Suryanarayanan, Raj
To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less
Singh, B P; Bohidar, H B; Chopra, S
1991-10-15
Dynamic laser light scattering studies on the heat aggregation behavior of phycobilisomes (PBS), ferritin, insulin, and immunoglobulin (IgG) in dilute aqueous solutions has been reported. Except for PBS, results are reported for heat aggregation trends in these proteins for three different pH environments (4.0, 7.5, 9.1). For PBS, studies were performed only in the neutral buffer medium (pH 7.5). The experiments were performed in the very dilute concentration regime (between 0.23 and 1.8 gL-1). For all these samples heat aggregation and dissociation trends were found to be linear with temperature. Upon temperature reversal (self-cooling), hysteresis-like behavior observed in insulin was found to be predominantly large at pH 7.5. PBS, ferritin, and IgG showed no such behavior at any of three pH values, and retraced their path of aggregation while dissociating on temperature reversal. Heat aggregation and dissociation processes in ferritin were found to be independent of pH. The IgG samples showed smooth aggregation tendency only up to 35 degrees C in the buffer media pH 4.0 and 9.1, whereas for pH 7.0 the same could be observed until 60 degrees C. Low polydispersity in the correlation spectra was observed in case of all these samples.
Martins, Dorival; English, Ann M.
2014-01-01
Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848
Binding of long-lasting local anesthetics to lipid emulsions.
Mazoit, Jean-Xavier; Le Guen, Régine; Beloeil, Hélène; Benhamou, Dan
2009-02-01
Rapid infusion of lipid emulsion has been proposed to treat local anesthetic toxicity. The authors wanted to test the buffering properties of two commercially available emulsions made of long- and of long- and medium-chain triglycerides. Using the shake-flask method, the authors measured the solubility and binding of racemic bupivacaine, levobupivacaine, and ropivacaine to diluted Intralipid (Fresenius Kabi, Paris, France) and Medialipide (B-Braun, Boulogne, France). The apparent distribution coefficient expressed as the ratio of mole fraction was 823 +/- 198 and 320 +/- 65 for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively, at 500 mg in the Medialipide/buffer emulsion; and 1,870 +/- 92 and 1,240 +/- 14 for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively, in the Intralipid/buffer emulsion. Decreasing the pH from 7.40 to 7.00 of the Medialipide/buffer emulsion led to a decrease in ratio of molar concentration from 121 +/- 3.8 to 46 +/- 2.8 for bupivacaine, and to a lesser extent from 51 +/- 4.0 to 31 +/- 1.6 for ropivacaine. The capacity of the 1% emulsions was 871 and 2,200 microM for the 1% Medialipide and Intralipid emulsions, respectively. The dissociation constant was 818 and 2,120 microM for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively. Increasing the temperature from 20 to 37 degrees C led to a greater increase in affinity for ropivacaine (55%) than for bupivacaine (27%). When the pH of the buffer was decreased from 7.40 to 7.00, the affinity was decreased by a factor of 1.68, similar for both anesthetics. The solubility of long-acting local anesthetics in lipid emulsions and the high capacity of binding of these emulsions most probably explain their clinical efficacy in case of toxicity. The long-chain triglyceride emulsion Intralipid appears to be about 2.5 times more efficacious than the 50/50 medium-chain/long-chain Medialipide emulsion. Also, because of their higher hydrophobicity, racemic bupivacaine and levobupivacaine seem to clear more rapidly than ropivacaine.
Processes controlling the physico-chemical micro-environments associated with Pompeii worms
NASA Astrophysics Data System (ADS)
Le Bris, N.; Zbinden, M.; Gaill, F.
2005-06-01
Alvinella pompejana is a tube-dwelling polychaete colonizing hydrothermal smokers of the East Pacific Rise. Extreme temperature, low pH and millimolar sulfide levels have been reported in its immediate surroundings. The conditions experienced by this organism and its associated microbes are, however, poorly known and the processes controlling the physico-chemical gradients in this environment remain to be elucidated. Using miniature in situ sensors coupled with close-up video imagery, we have characterized fine-scale pH and temperature profiles in the biogeoassemblage constituting A. pompejana colonies. Steep discontinuities at both the individual and the colony scale were highlighted, indicating a partitioning of the vent fluid-seawater interface into chemically and thermally distinct micro-environments. The comparison of geochemical models with these data furthermore reveals that temperature is not a relevant tracer of the fluid dilution at these scales. The inner-tube micro-environment is expected to be supplied from the seawater-dominated medium overlying tube openings and to undergo subsequent conductive heating through the tube walls. Its neutral pH is likely to be associated with moderately oxidative conditions. Such a model provides an explanation of the atypical thermal and chemical patterns that were previously reported for this medium from discrete samples and in situ measurements. Conversely, the medium surrounding the tubes is shown to be dominated by the fluid venting from the chimney wall. This hot fluid appears to be gradually cooled (120-30 °C) as it passes through the thickness of the worm colony, as a result of a thermal exchange mechanism induced by the tube assemblage. Its pH, however, remains very low (pH˜4), and reducing conditions can be expected in this medium. Such a thermal and chemical buffering mechanism is consistent with the mineralogical anomalies previously highlighted and provides a first explanation of the exceptional ability of these animals to colonize this hostile biotope. It furthermore suggests that A. pompejana, in providing various buffered micro-niches, would act as a primary player of microbial and related biogeochemical processes in this environment.
Algorithm for Calculating the Dissociation Constants of Ampholytes in Nonbuffer Systems
NASA Astrophysics Data System (ADS)
Lysova, S. S.; Skripnikova, T. A.; Zevatskii, Yu. E.
2018-05-01
An algorithm for calculating the dissociation constants of ampholytes in aqueous solutions is developed on the basis of spectrophotometric data in the UV and visible ranges without pH measurements of a medium and without buffer solutions. The proposed algorithm has been experimentally tested for five ampholytes of different strengths. The relative error of measuring dissociation constants is less than 5%.
Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí
2007-01-05
The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.
Long-term survival of Streptococcus pyogenes in rich media is pH-dependent
McShan, William M.
2012-01-01
The mechanisms that allow Streptococcus pyogenes to survive and persist in the human host, often in spite of antibiotic therapy, remain poorly characterized. Therefore, the determination of culture conditions for long-term studies is crucial to advancement in this field. Stationary cultures of S. pyogenes strain NZ131 and its spontaneous small-colony variant OK171 were found to survive in rich medium for less than 2 weeks, and this inability to survive resulted from the acidification of the medium to below pH 5.5, which the cells did not tolerate for longer than 6–7 days. The growth of NZ131 resulted in acidification of the culture to below pH 5.5 by the onset of stationary phase, and the loss of viability occurred in a linear fashion. These results were also found to be true for M49 strain CS101 and for M1 strain SF370. The S. pyogenes strains could be protected from killing by the addition of a buffer that stabilized the pH of the medium at pH 6.5, ensuring bacterial survival to at least 70 days. By contrast, increasing the glucose added to the medium accelerated the loss of culture viability in strain NZ131 but not OK171, suggesting that the small-colony variant is altered in glucose uptake or metabolism. Similarly, acidification of the medium prior to inoculation or at the middle of exponential phase resulted in growth inhibition of all strains. These results suggest that control of the pH is crucial for establishing long-term cultures of S. pyogenes. PMID:22361943
Stalheim, T; Ballance, S; Christensen, B E; Granum, P E
2009-03-01
Investigate if the antibacterial effect of sphagnan, a pectin-like carbohydrate polymer extracted from Sphagnum moss, can be accounted for by its ability to lower the pH. Antibacterial activity of sphagnan was assessed and compared to that of three other acids. Sphagnan in its acid form was able to inhibit growth of various food poisoning and spoilage bacteria on low-buffering solid growth medium, whereas sphagnan in its sodium form at neutral pH had no antibacterial activity. At similar acidic pH, sphagnan had comparable antibacterial activity to that of hydrochloric acid and a control rhamnogalacturonan pectin in its acid form. Sphagnan in its acid form is a weak macromolecular acid that can inhibit bacterial growth by lowering the pH of environments with a low buffering capacity. It has previously been suggested that sphagnan is an antimicrobial polysaccharide in the leaves of Sphagnum moss with a broad range of potential practical applications. Our results now show that sphagnan in its acid form can indeed inhibit bacterial growth, but only of acid-sensitive species. These findings represent increased knowledge towards our understanding on how sphagnan or Sphagnum moss might be used in practical applications.
Carvalho, Gabriela Guimarães; Felipe, Monalisa Poliana; Costa, Maricilia Silva
2009-10-01
Due to the increased number of immunocompromised patients, the infections associated with the pathogen of the genus Candida and other fungi have increased dramatically. Photodynamic antimicrobial chemotherapy (PACT) has been presented as a potential antimicrobial therapy, in a process that combines light and a photosensitizing drug, which promotes a phototoxic response by the treated cells. In this work, we studied the effects of the different medium conditions during PACT, using either methylene blue (MB) or toluidine blue (TB) on Candida albicans. The inhibition of the growth produced by PACT was decreased for different pH values (6.0, 7.0, and 8.0) in a buffered medium. The phototoxic effects were observed only in the presence of saline (not buffered medium). PACT was modulated by calcium in a different manner using either MB or TB. Also when using MB both verapamil or sodium azide were able to decrease the phototoxic effects on the C. albicans. These results show that PACT is presented as a new and promising antifungal therapy, however, new studies are necessary to understand the mechanism by which this event occurs.
Test of the mechanism of UV-induced K/sup +/ efflux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, T.M.; Huerta, A.J.
1987-04-01
UV radiation and certain plant pathogens stimulate a net efflux of K/sup +/ from cultured plant cells. Many aspects of the efflux are uncertain, including the counterion(s) involved. In the case of UV irradiation of rose cells, Murphy and Wilson suggest a coordinate loss of K/sup +/ and HCO/sub 3//sup -/; in contrast, Atkinson et al. suggest that treatment of tobacco cells with Erwinia pectate lyase introduces a counterflux of K/sup +/ and H/sup +/. In respiring cells, the cytoplasm and medium are buffered by respiratory CO/sub 2/, and it is difficult to distinguish between the two mechanisms. Still, themore » two models predict different influences of external pH on the rate of K/sup +/ flux. The authors have found that increasing pH from 4 to 8 by use of MES-TRIS buffer, pH state, or controlled external CO/sub 2/ concentration does not significantly decrease the rate of UV-induced K/sup +/ efflux. This evidence does not support the application of the K/sup +//H/sup +/ counterflux model to the case of the UV-irradiated rose cells.« less
Sun, Hong; Hu, Naifei
2004-08-01
A novel hemoglobin (Hb)-coated polystyrene (PS) latex bead film was deposited on pyrolytic graphite (PG) electrode surface. In the first step, positively charged Hb molecules in pH 5.0 buffers were adsorbed on the surface of negatively charged, 500 nm diameter PS latex beads bearing sulfate groups by electrostatic interaction. The aqueous dispersion of Hb-coated PS particles was then deposited on the surface of PG electrodes and, after evaporation of the solvent, Hb-PS films were formed. The Hb-PS film electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about -0.36 V vs. SCE in pH 7.0 buffers, characteristic of Hb heme Fe(III)/Fe(II) redox couples. Positions of Soret absorption band of Hb-PS films suggest that Hb retains its near-native structure in the films in its dry form and in solution at medium pH. The Hb in PS films was also acted as a catalyst to catalyze electrochemical reduction of various substrates such as trichloroacetic acid (TCA), nitrite, oxygen and hydrogen peroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paajanen, A.; Lehto, J.; Santapakka, T.
The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.
Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M
2016-05-30
The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Weng Larsen, S; Engelbrecht Thomsen, A E; Rinvar, E; Friis, G J; Larsen, C
2001-03-23
The rate constants for transfer of a homologous series of nicotinic acid esters from oil vehicles to aqueous buffer phases were determined using a rotating dialysis cell. The chemical stability of butyl nicotinate has been investigated at 60 degrees C over pH range 0.5--10. Maximum stability occurs at pH 4--5 and an inflection point was seen around the pK(a). For the nicotinic acid esters, a linear correlation was established between the first-order rate constant related to attainment of equilibrium, k(obs) and the apparent partition coefficient, P(app): log k(obs)=-0.83log P(app)+0.26 (k(obs) in h(-1), n=9). For hexyl nicotinate with a true partition coefficient of 4 it was possible to determine k(obs) by decreasing pH in the aqueous release medium to 2.05. Thus, under the latter experimental conditions estimation of the relative release rates for the esters were performed. The ratio between the specific rate constant k(ow), related to the transport from oil vehicle to aqueous phase, for ethyl and hexyl nicotinate was 139. The hydrophobic substituent constant for a methylene group, pi(CH(2)), was determined for nicotinic acid esters in different oil/buffer partitioning systems to 0.54--0.58. Addition of hydroxypropyl-beta-cyclodextrin to the aqueous release medium did not enhance the transport rate of the esters from the oil phase.
Bittner, B; Witt, C; Mäder, K; Kissel, T
1999-08-05
The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-06-02
Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.
Buffer capacity of biologics--from buffer salts to buffering by antibodies.
Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick
2013-01-01
Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.
Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.
2013-01-01
Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544
NASA Technical Reports Server (NTRS)
Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)
1995-01-01
A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.
NASA Technical Reports Server (NTRS)
Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Golden, Dadigamuwage C. (Inventor); Allen, Earl R. (Inventor)
1995-01-01
A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.
Zhai, Yihui; Bloch, Jacek; Hömme, Meike; Schaefer, Julia; Hackert, Thilo; Philippin, Bärbel; Schwenger, Vedat; Schaefer, Franz; Schmitt, Claus P
2012-07-01
Biocompatible peritoneal dialysis fluids (PDF) are buffered with lactate and/or bicarbonate. We hypothesized that the reduced toxicity of the biocompatible solutions might unmask specific effects of the buffer type on mesothelial cell functions. Human peritoneal mesothelial cells (HPMC) were incubated with bicarbonate (B-)PDF or lactate-buffered (L-)PDF followed by messenger RNA (mRNA) and protein analysis. Gene silencing was achieved using small interfering RNA (siRNA), functional studies using Transwell culture systems, and monolayer wound-healing assays. Incubation with B-PDF increased HPMC migration in the Transwell and monolayer wound-healing assay to 245 ± 99 and 137 ± 11% compared with L-PDF. Gene silencing showed this effect to be entirely dependent on the expression of aquaporin-1 (AQP-1) and independent of AQP-3. Exposure of HPMC to B-PDF increased AQP-1 mRNA and protein abundance to 209 ± 80 and 197 ± 60% of medium control; the effect was pH dependent. L-PDF reduced AQP-1 mRNA. Addition of bicarbonate to L-PDF increased AQP-1 abundance by threefold; mRNA half-life remained unchanged. Immunocytochemistry confirmed opposite changes of AQP-1 cell-membrane abundance with B-PDF and L-PDF. Peritoneal mesothelial AQP-1 abundance and migration capacity is regulated by pH and buffer agents used in PD solutions. In vivo studies are required to delineate the impact with respect to long-term peritoneal membrane integrity and function.
Sinha, Sanghamitra; Chowdhury, Bijit; Adarsh, Nayarassery N; Ghosh, Pradyut
2018-05-15
A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).
De Farias Silva, Carlos Eduardo; Sforza, Eleonora; Bertucco, Alberto
2017-02-01
Synechococcus PCC 7002 is an interesting species in view of industrial production of carbohydrates. The cultivation performances of this species are strongly affected by the pH of the medium, which also influences the carbohydrate accumulation. In this work, different methods of pH control were analyzed, in order to obtain a higher production of both Synechococcus biomass and carbohydrates. To better understand the influence of pH on growth and carbohydrate productivity, manual and automatic pH regulation in CO 2 and bicarbonate system were applied. The pH value of 8.5 resulted the best to achieve both of these goals. From an industrial point of view, an alternative way to maintain the pH practically constant during the entire period of cultivation is the exploitation of the bicarbonate-CO 2 buffer system, with the double aim to maintain the pH in the viability range and also to provide the amount of carbon required by growth. In this condition, a high concentration of biomass (6 g L -1 ) and carbohydrate content (around 60 %) were obtained, which are promising in view of a potential use for bioethanol production. The chemical equilibrium of C-N-P species was also evaluated by applying the ionic balance equations, and a relation between the sodium bicarbonate added in the medium and the equilibrium value of pH was discussed.
Hodne, Kjetil; von Krogh, Kristine; Weltzien, Finn-Arne; Sand, Olav; Haug, Trude M
2012-09-01
Protocols for primary cultures of teleost cells are commonly only moderately adjusted from similar protocols for mammalian cells, the main adjustment often being of temperature. Because aquatic habitats are in general colder than mammalian body temperatures and teleosts have gills in direct contact with water, pH and buffer capacity of blood and extracellular fluid are different in fish and mammals. Plasma osmolality is generally higher in marine teleosts than in mammals. Using Atlantic cod (Gadus morhua) as a model, we have optimized these physiological parameters to maintain primary pituitary cells in culture for an extended period without loosing key properties. L-15 medium with adjusted osmolality, adapted to low pCO(2) (3.8mm Hg) and temperature (12°C), and with pH 7.85, maintained the cells in a physiologically sounder state than traditional culture medium, significantly improving cell viability compared to the initial protocol. In the optimized culture medium, resting membrane potential and response to releasing hormone were stable for at least two weeks, and the proportion of cells firing action potentials during spawning season was about seven times higher than in the original culture medium. The cells were moderately more viable when the modified medium was supplemented with newborn calf serum or artificial serum substitute. Compared to serum-free L-15 medium, expression of key genes (lhb, fshb, and gnrhr2a) was better maintained in medium containing SSR, whereas NCS tended to decrease the expression level. Although serum-free medium is adequate for many applications, serum supplement may be preferable for experiments dependent on membrane integrity. Copyright © 2012 Elsevier Inc. All rights reserved.
In vitro degradation of ZM21 magnesium alloy in simulated body fluids.
Witecka, Agnieszka; Bogucka, Aleksandra; Yamamoto, Akiko; Máthis, Kristián; Krajňák, Tomáš; Jaroszewicz, Jakub; Święszkowski, Wojciech
2016-08-01
In vitro degradation behavior of squeeze cast (CAST) and equal channel angular pressed (ECAP) ZM21 magnesium alloy (2.0wt% Zn-0.98wt% Mn) was studied using immersion tests up to 4w in three different biological environments. Hanks' Balanced Salt Solution (Hanks), Earle's Balanced Salt Solution (Earle) and Eagle minimum essential medium supplemented with 10% (v/v) fetal bovine serum (E-MEM+10% FBS) were used to investigate the effect of carbonate buffer system, organic compounds and material processing on the degradation behavior of the ZM21 alloy samples. Corrosion rate of the samples was evaluated by their Mg(2+) ion release, weight loss and volume loss. In the first 24h, the corrosion rate sequence of the CAST samples was as following: Hanks>E-MEM+10% FBS>Earle. However, in longer immersion periods, the corrosion rate sequence was Earle>E-MEM+10% FBS≥Hanks. Strong buffering effect provided by carbonate buffer system helped to maintain the pH avoiding drastic increase of the corrosion rate of ZM21 in the initial stage of immersion. Organic compounds also contributed to maintain the pH of the fluid. Moreover, they adsorbed on the sample surface and formed an additional barrier on the insoluble salt layer, which was effective to retard the corrosion of CAST samples. In case of ECAP, however, this effect was overcome by the occurrence of strong localized corrosion due to the lower pH of the medium. Corrosion of ECAP samples was much greater than that of CAST, especially in Hanks, due to higher sensitivity of ECAP to localized corrosion and the presence of Cl(-). The present work demonstrates the importance of using an appropriate solution for a reliable estimation of the degradation rate of Mg-base degradable implants in biological environments, and concludes that the most appropriate solution for this purpose is E-MEM+10% FBS, which has the closest chemical composition to human blood plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei
2015-01-01
Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.
NASA Astrophysics Data System (ADS)
Brubaker, Timothy R.; Ishikawa, Kenji; Takeda, Keigo; Oh, Jun-Seok; Kondo, Hiroki; Hashizume, Hiroshi; Tanaka, Hiromasa; Knecht, Sean D.; Bilén, Sven G.; Hori, Masaru
2017-12-01
The liquid-phase chemical kinetics of a cell culture basal medium during treatment by an argon-fed, non-equilibrium atmospheric-pressure plasma source were investigated using real-time ultraviolet absorption spectroscopy and colorimetric assays. Depth- and time-resolved NO2- and NO3- concentrations were strongly inhomogeneous and primarily driven by convection during and after plasma-liquid interactions. H2O2 concentrations determined from deconvolved optical depth spectra were found to compensate for the optical depth spectra of excluded reactive species and changes in dissolved gas content. Plasma-activated media remained weakly basic due to NaHCO3 buffering, preventing the H+-catalyzed decomposition of NO2- seen in acidic plasma-activated water. An initial increase in pH may indicate CO2 sparging. Furthermore, the pH-dependency of UV optical depth spectra illustrated the need for pH compensation in the fitting of optical depth data.
Intestinal absorption of calcium from calcium ascorbate in rats.
Tsugawa, N; Yamabe, T; Takeuchi, A; Kamao, M; Nakagawa, K; Nishijima, K; Okano, T
1999-01-01
The intestinal absorption of calcium (Ca) from Ca ascorbate (Ca-AsA) was investigated in normal rats. Each animal was perorally administered either 5mg (low dose) or 10mg (high dose) of Ca in 1ml of distilled water as Ca-AsA, Ca carbonate (CaCO3), or Ca chloride (CaCl2), which were intrinsically labeled with 45Ca using 45CaCl2. The amount of radioactivity in plasma was measured periodically up to 34h after dosing, and pharmacokinetic parameters were calculated from the radioactivity in plasma. The time taken to reach the maximum 45Ca level (Tmax) did not differ among the three groups. The area under the plasma 45Ca level/time curve (AUCinfinity) value for the Ca-AsA group was significantly higher than those for the CaCO3 and the CaCl2 groups. The radioactivity at Tmax (Cmax) for the Ca-AsA group was significantly higher than those for the CaCO3 and the CaCl2 groups for the low dose, and comparable with or significantly higher than those for the CaCl2 and CaCO3 groups for the high dose. Similar results were observed for whole-body 45Ca retention. Radioactivity in the femur 34h after dosing was the highest in the Ca-AsA group and the lowest in the CaCO3 group. The rank order of solubility in water, the first fluid (pH 1.2, JP-1) of JPXIII disintegration medium, acetate buffer solution (pH 4.0), triethanolamine-malate buffer solution (pH 7.0) and ammonium chloride buffer solution (pH 10.0) at 37 degrees C was CaCl2 > Ca-AsA > CaCO3. In contrast, the rank order of the solubility in the second fluid (pH 6.8, JP-2) of JPXIII disintegration medium at 37 degrees C was Ca-AsA > CaCl2 > CaCO3. These results indicate that the absorbability of Ca from Ca-AsA is almost comparable with, or higher than, that from CaCl2 and significantly higher than that from CaCO3 because of its high degree of solubility in the intestine. Therefore, Ca-AsA would be useful as a Ca supplement with relatively high absorption from intestine.
Heat resistance of Alicyclobacillus acidocaldarius in water, various buffers, and orange juice.
Palop, A; Alvarez, I; Raso, J; Condón, S
2000-10-01
The effect of the pH or the composition of the heating medium and of the sporulation temperature on the heat resistance of spores of a thermoacidophilic spore-forming microorganism isolated from a dairy beverage containing orange fruit concentrate was investigated. The species was identified as Alicyclobacillus acidocaldarius. The spores showed the same heat resistance in citrate-phosphate buffers of pH 4 and 7, in distilled water, and in orange juice at any of the temperatures tested (D120 degrees C = 0.1 min and z = 7 degrees C). A raise in 20 degrees C in the sporulation temperature (from 45 to 65 degrees C) increased the heat resistance eightfold (from D110 degrees C = 0.48 min when sporulated at 45 degrees C to 3.9 min when sporulated at 65 degrees C). The z-values remained constant for all sporulation temperatures. The spores of this strain of A. acidocaldarius were very heat resistant and could easily survive any heat treatment currently applied to pasteurize fruit juices.
Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan
2014-01-01
To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.
Mapping Soil pH Buffering Capacity of Selected Fields
NASA Technical Reports Server (NTRS)
Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.
2003-01-01
Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.
Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH.
Zareie, Mohammad; Keuning, Eelco D; ter Wee, Piet M; Schalkwijk, Casper G; Beelen, Robert H J; van den Born, Jacob
2006-01-01
Chronic exposure to conventional peritoneal dialysis fluid (PDF) is associated with functional and structural alterations of the peritoneal membrane. The bioincompatibility of conventional PDF can be due to hypertonicity, high glucose concentration, lactate buffering system, presence of glucose degradation products (GDPs) and/or acidic pH. Although various investigators have studied the sole effects of hyperosmolarity, high glucose, GDPs and lactate buffer in experimental PD, less attention has been paid to the chronic impact of low pH in vivo. Rats received daily 10 ml of either conventional lactate-buffered PDF (pH 5.2; n=7), a standard bicarbonate/lactate-buffered PDF with physiological pH (n=8), bicarbonate/lactate-buffered PDF with acidic pH (adjusted to pH 5.2 with 1 N hydrochloride, n=5), or bicarbonate/lactate buffer, without glucose, pH 7.4 (n=7). Fluids were instilled via peritoneal catheters connected to implanted subcutaneous mini vascular access ports for 8 weeks. Control animals with or without peritoneal catheters served as control groups (n=8/group). Various functional (2 h PET) and morphological/cellular parameters were analyzed. Compared with control groups and the buffer group, conventional lactate-buffered PDF induced a number of morphological/cellular changes, including angiogenesis and fibrosis in various peritoneal tissues (all parameters P<0.05), accompanied by increased glucose absorption and reduced ultrafiltration capacity. Daily exposure to standard or acidified bicarbonate/lactate-buffered PDF improved the performance of the peritoneal membrane, evidenced by reduced new vessel formation in omentum (P<0.02) and parietal peritoneum (P<0.008), reduced fibrosis (P<0.02) and improved ultrafiltration capacity. No significant differences were found between standard and acidified bicarbonate/lactate-buffered PDF. During PET, acidic PDF was neutralized within 15 to 20 min. The bicarbonate/lactate-buffered PDF, acidity per se did not contribute substantially to peritoneal worsening in our in vivo model for PD, which might be explained by the buffering capacity of the peritoneum.
Cytoplasmic pH influences cytoplasmic calcium in MC3T3-E1 osteoblast cells
NASA Technical Reports Server (NTRS)
Lin, H. S.; Hughes-Fulford, M.; Kumegawa, M.; Pitts, A. C.; Snowdowne, K. W.
1993-01-01
We found that the cytoplasmic concentration of calcium (Cai) of MC3T3-E1 osteoblasts was influenced by the type of pH buffer we used in the perfusing medium, suggesting that intracellular pH (pHi) might influence Cai. To study this effect, the Cai and pHi were monitored as we applied various experimental conditions known to change pHi. Exposure to NH4Cl caused a transient increase in both pHi and Cai without a change in extracellular pH (pHo). Decreasing pHo and pHi by lowering the bicarbonate concentration of the medium decreased Cai, and increasing pHi by the removal of 5% CO2 increased Cai. Clamping pHi to known values with 10 microM nigericin, a potassium proton ionophore, also influenced Cai: acid pHi lowered Cai, whereas alkaline pHi increased it. The rise in Cai appears to be very sensitive to the extracellular concentration of calcium, suggesting the existence of a pH-sensitive calcium influx mechanism. We conclude that physiologic changes in pH could modulate Cai by controlling the influx of calcium ions and could change the time course of the Cai transient associated with hormonal activation.
Lu, Ping; Gao, Xinwei; Dong, Hao; Liu, Zhen; Secundo, Francesco; Xue, Changhu; Mao, Xiangzhao
2018-03-21
Astaxanthin is a pigment with various functions. Free astaxanthin is obtained mainly through saponification methods, which could result in many byproducts. Enzymatic methods using lipases have been used in a few cases, while there are no reports on the use of esterases for the production of free astaxanthin. Herein we present the screening and identification of a novel esterase (Est3-14) from a marine mud metagenomic library. Est3-14 is pH-sensitive and keeps good stability in alkaline buffers (residual activity 94%, pH 8.0, 4 °C, and 36 h). Meanwhile, Est3-14 keeps a good stability in the medium temperature condition (residual activity 56.7%, pH 8.0, 40 °C, and 84 h). Est3-14 displayed high hydrolysis activity to prepare free all- trans-astaxanthin in biphasic systems. Furthermore, under optimal conditions (0.5 mL ethanol, 6 mL 0.1 M Tris-HCl buffer, pH 8.0, 0.5% (w/v) H. pluvialis oil, 40 °C), the hydrolytic conversion ratio was 99.3% after 36 h.
NASA Astrophysics Data System (ADS)
Sharma, Vikas; Kumar, Ajit; Archana, G.; Kumar, G. Naresh
2016-10-01
The Escherichia coli phytase gene appA encoding enzyme AppA was cloned in a broad host range plasmid pBBR1MCS2 ( lac promoter), termed pVA1, and transformed into the Ensifer meliloti 1020. Transformation of pVA1 in Ensifer meliloti { E. m (pVA1)} increased its phosphatase and phytase activity by ˜9- and ˜50-fold, respectively, compared to the transformants containing empty plasmid as control { E. m (pBBR1MCS2)}. The western blot experiments using rabbit anti-AppA antibody showed that AppA is translocated into the periplasm of the host after its expression. Ensifer meliloti harboring AppA protein { E. m (pVA1)} and { E. m (pBBR1MCS2)} could acidify the unbuffered phytate minimal media (pH 8.0) containing Ca-phytate or Na-phytate as sole organic P (Po) source to below pH 5.0 and released P. However, both { E. m (pVA1)} and { E. m (pBBR1MCS2)} neither dropped pH of the medium nor released P when the medium was buffered at pH 8.0 using Tris-Cl, indicating that acidification of medium was important for the enzymatic hydrolysis of phytate. Further experiments proved that maize plants inoculated with { E. m. (pVA1)} showed increase in growth under sterile semi solid agar (SSA) medium containing Na-phytate as sole P source. The present study could be helpful in generating better transgenic bioinoculants harboring phosphate mineralization properties that ultimately promote plant growth.
Sharma, Vikas; Kumar, Ajit; Archana, G; Kumar, G Naresh
2016-10-01
The Escherichia coli phytase gene appA encoding enzyme AppA was cloned in a broad host range plasmid pBBR1MCS2 (lac promoter), termed pVA1, and transformed into the Ensifer meliloti 1020. Transformation of pVA1 in Ensifer meliloti {E. m (pVA1)} increased its phosphatase and phytase activity by ∼9- and ∼50-fold, respectively, compared to the transformants containing empty plasmid as control {E. m (pBBR1MCS2)}. The western blot experiments using rabbit anti-AppA antibody showed that AppA is translocated into the periplasm of the host after its expression. Ensifer meliloti harboring AppA protein {E. m (pVA1)} and {E. m (pBBR1MCS2)} could acidify the unbuffered phytate minimal media (pH 8.0) containing Ca-phytate or Na-phytate as sole organic P (Po) source to below pH 5.0 and released P. However, both {E. m (pVA1)} and {E. m (pBBR1MCS2)} neither dropped pH of the medium nor released P when the medium was buffered at pH 8.0 using Tris-Cl, indicating that acidification of medium was important for the enzymatic hydrolysis of phytate. Further experiments proved that maize plants inoculated with {E. m. (pVA1)} showed increase in growth under sterile semi solid agar (SSA) medium containing Na-phytate as sole P source. The present study could be helpful in generating better transgenic bioinoculants harboring phosphate mineralization properties that ultimately promote plant growth.
Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F
2002-09-01
Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.
Eich, Gwendolyn; Bartosova, Maria; Tischer, Christian; Wlodkowski, Tanja Tamara; Schaefer, Betti; Pichl, Sebastian; Kraewer, Nicole; Ranchin, Bruno; Vondrak, Karel; Liebau, Max Christoph; Hackert, Thilo; Schmitt, Claus Peter
2017-01-01
Ultrafiltration decline is a progressive issue for patients on chronic peritoneal dialysis (PD) and can be caused by peritoneal angiogenesis induced by PD fluids. A recent pediatric trial suggests better preservation of ultrafiltration with bicarbonate versus lactate buffered fluid; underlying molecular mechanisms are unknown. Angiogenic cytokine profile, tube formation capacity and Receptor Tyrosine Kinase translocation were assessed in primary human umbilical vein endothelial cells following incubation with bicarbonate (BPDF) and lactate buffered (LPDF), pH neutral PD fluid with low glucose degradation product content and lactate buffered, acidic PD fluid with high glucose degradation product content (CPDF). Peritoneal biopsies from age-, PD-vintage- and dialytic glucose exposure matched, peritonitis-free children on chronic PD underwent automated histomorphometry and immunohistochemistry. In endothelial cells angiopoietin-1 mRNA and protein abundance increased 200% upon incubation with BPDF, but decreased by 70% with LPDF as compared to medium control; angiopoietin-2 remained unchanged. Angiopoietin-1/Angiopoietin-2 protein ratio was 15 and 3-fold increased with BPDF compared to LPDF and medium. Time-lapse microscopy with automated network analysis demonstrated less endothelial cell tube formation with BPDF compared to LPDF and CPDF incubation. Receptor Tyrosine Kinase translocated to the cell membrane in BPDF but not in LPDF or CPDF incubated endothelial cells. In children dialyzed with BPDF peritoneal vessels were larger and angiopoietin-1 abundance in CD31 positive endothelium higher compared to children treated with LPDF. Bicarbonate buffered PD fluid promotes vessel maturation via upregulation of angiopoietin-1 in vitro and in children on dialysis. Our findings suggest a molecular mechanism for the observed superior preservation of ultrafiltration capacity with bicarbonate buffered PD fluid with low glucose degradation product content.
Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J
2012-04-01
An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.
Production of alkaline protease from Cellulosimicrobium cellulans
Ferracini-Santos, Luciana; Sato, Hélia H
2009-01-01
Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317
Hwang, Sz-Chwun John; Lin, Yun-Huin; Huang, Ku Shu; Lyuu, Jyuhn-Yih; Hou, Cheng-Ting; Chen, Hsin-Hua; He, Sin-Yi
2009-10-01
Acetone is the most common chemical used in the Hsin-chu Science Park in Taiwan. The three-phase airlift bioreactor was designed to absorb acetone into the 39 L of medium solution and then degraded by 2-L polyacrylamide (PAA)-entrapped Thiosphaera pantotropha cell beads. The airlift medium was successfully regenerated and circulated for more than 5 months. The elimination capacity of 350-part per million (ppm) acetone at 10 L x min(-1) was 258.4 g x m(-3) hr(-1) (160.4 g-C x m(-3) hr(-1)) with 100% removal efficiency in Stage II, higher than previously reported biofiltration results. The maximum chemical oxygen demand:nitrogen ratio of 100:2.9 is achieved, and a balanced nutrient state was indicated by the change in redox potential. The pH of the system was maintained at neutral because of the strong buffer agent added to the medium (final buffer intensity, beta = 1.18 x 10(-2) M). The PAA-entrapped cell beads could also provide a good barrier for high salinity gradient environment and the inoculum source to maintain steady operation of the system.
Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).
Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L
2013-12-01
Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.
Lukondeh, Tredwell; Ashbolt, Nicholas J; Rogers, Peter L
2003-12-01
Mannoprotein with emulsification properties was extracted from the cell walls of Kluyveromyces marxianus grown on a lactose-based medium by autoclaving cells in a citrate buffer at pH 7. The purified product was evaluated for chemical and physical stability to establish its potential use as a natural emulsifier in processed foods. The yield of purified bioemulsifier from this strain of K. marxianus was 4-7% of the original dry cell weight. The purified product, at a concentration of 12 g l(-1), formed emulsions that were stable for 3 months when subjected to a range of pH (3-11) and NaCl concentrations (2-50 g l(-1)). The composition of this mannoprotein was 90% carbohydrate (mannan) and 4-6% protein. These values are similar to mannoprotein extracted from cells of Saccharomyces cerevisiae, which is the traditional source. Consequently K. marxianus cultivated on a low-cost lactose-based medium such as whey, a lactose-rich clean waste of the dairy industry, could be developed as a source of bioemulsifier for use in the food industry.
Kröner, Frieder; Hubbuch, Jürgen
2013-04-12
pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Salivary characteristics of children and its relation to oral microorganism and lip mucosa dryness.
Alamoudi, Najlaa; Farsi, Najat; Faris, Jamila; Masoud, Ibrahim; Merdad, Khaled; Meisha, Dalia
2004-01-01
The aim of this paper was to present baseline data on various saliva properties among a group of Saudi children aged 5 to 11 years and to study the relationship of these properties to some oral micro-organisms as well as to lip and oral mucosa dryness. The results showed a mean of resting and stimulated flow rate of 0.54 +/- 0.40 and 1.23 +/- 0.59 respectively and mean pH value of 7.27 +/- 0.38 and 7.5 +/- .035 respectively. Fluoride concentration was estimated to be 0.151 +/- 0.07 and 0.145 +/- 0.06 in resting and stimulated saliva respectively. Children with dry lip represented 33.9% of the sample population, whereas, those with dry mucosa represented only 0.8%. No significant sex difference was evident in all parameters. 59.1% of children showed medium buffering capacity in the resting saliva, whereas, the majority of children (73.7%) showed high stimulated buffering capacity. Children showed generally high Lactobacillus counts (Lb) in the resting and stimulated saliva (57.9% and 60.5% of children). The presence of yeast also in resting and stimulated saliva seemed high in general (40% and 53% of children had high count). However, Streptococcus mutans (S. mutans) counts showed no discriminating trend in both types of saliva. The data showed no significant association between flow rate and Lb counts in both resting and stimulated saliva although there was a trend toward higher counts associated with low flow rate. The same trend was observed in resting saliva although not significant. Similarly, low resting buffering capacity was associated with high counts of Lb among a high proportion of children (68.6% of children) although not significant. A significant reverse relation was evident between S. mutans counts and stimulated flow rate (p=0.049). The majority of children with normal level of saliva pH showed no yeast colonization (62.1%). The association was significant (p=.024). Similarly, the same association was observed in the medium and high buffering group (66.2%) (p=.040). It was concluded that salivary Lb count seems to be primarily affected by some local factors other than salivary properties, such as diet. Significant inverse relationship was found between S. mutans and stimulated salivary flow. Children in general showed high percentage of yeast reflecting the affect of poor diet among the studied population group. Buffering capacity and pH had an important role in yeast colonization.
Chakraborty, Subhashis; Shukla, Dali; Jain, Achint; Mishra, Brahmeshwar; Singh, Sanjay
2009-07-15
The effect of surfactants on the solubility of a new phosphate salt of carvedilol was investigated at different biorelevent pH to evaluate their solubilization capacity. Solutions of different classes of surfactants viz., anionic-sodium dodecyl sulfate (SDS) and sodium taurocholate (STC), cationic-cetyltrimethylammonium bromide (CTAB) and non-ionic-Tween 80 (T80) were prepared in the concentration range of 5-35 mmol dm(-3) in buffer solutions of pH 1.2, 3.0, 4.5, 5.8, 6.8 and 7.2. The solubility data were used to calculate the solubilization characteristics viz. molar solubilization capacity, water micelle partition coefficient, free energy of solubilization and binding constant. Solubility enhancement in basic pH was in following order: CTAB>T80>SDS>STC. CTAB and T80 showed remarkable solubility enhancement in acidic pH as well. Among the anionic surfactants, solubility in acidic medium was retarded except at pH 1.2 in case of SDS. Cationic and non-ionic surfactants were found to be suitable for enhancing the solubility of CP which can be employed for maintaining the in vitro sink condition in the basic dissolution medium. While anionic surfactants showed solubility retardant behavior which may be exploited in increasing the drug entrapment efficiency of a colloidal drug delivery system formulated by emulsification technique.
Salivary buffer capacity, pH, and stimulated flow rate of crack cocaine users.
Woyceichoski, Iverson Ernani Cogo; Costa, Carlos Henrique; de Araújo, Cristiano Miranda; Brancher, João Armando; Resende, Luciane Grochocki; Vieira, Iran; de Lima, Antonio Adilson Soares
2013-08-01
Crack cocaine is the freebase form of cocaine that can be smoked. The use of this drug has been considered a public health problem in many countries. The aim of this study was to assess the stimulated salivary flow rate (SSFR), pH, and the buffer capacity of saliva in crack cocaine users. Stimulated whole saliva was collected from 54 selected crack cocaine users and 40 non-users. All samples were analyzed for SSFR, pH, and buffer capacity. SSFR was analyzed by gravimetric method. The buffer capacity and pH were determined using a digital pH meter. The crack cocaine users demonstrated higher buffer capacity than the control group (P > 0.05). Salivary pH was lower in crack cocaine users (P < 0.05). Mean values of the SSFR for the experimental and control groups were 1.1 and 1.3 mL/min, respectively (P > 0.05). Crack cocaine users might exhibit a significant decrease in salivary pH, but not in salivary flow rate or buffer capacity. © 2012 Blackwell Publishing Asia Pty Ltd.
Krause, K M; Dhuyvetter, D V; Oetzel, G R
2009-01-01
The objective of this study was to evaluate the effect of a low-moisture buffer block on ruminal pH and milk production in cows induced with subacute ruminal acidosis (SARA). Sixteen ruminally cannulated cows were randomly assigned to treatment (access to buffer blocks) or control (no buffer blocks). Ruminal pH was recorded each minute; dry matter intake (DMI), milk yield, and milk composition were measured daily. The experiment lasted 12 d and consisted of a 3-d pre-SARA period (without access to buffer blocks; d 1 to 3), after which 8 cows were given access to buffer blocks and 8 cows continued without access to buffer blocks. The next 4 d (d 4 to 7) were for evaluating the response to buffer blocks. On d 8, cows were restricted to 50% of previous DMI, and on d 9 SARA was induced (addition of 4 kg of wheat/barley pellet to pre-SARA total mixed ration (TMR). Cows were then monitored for a 3-d recovery period (d 10 to 12). The SARA challenge was successful in decreasing mean ruminal pH and time and area below pH 5.6. Intake of buffer blocks averaged 0.33 kg of DM/cow per day and was greatest on d 4 and d 8. Total DMI (TMR plus buffer block) and yields of milk and milk components were not affected by treatment. Although there was no overall effect of treatment on any of the ruminal pH variables measured, there were significant treatment by period interactions for several ruminal pH variables. Cows on the control treatment tended to experience a greater decrease in mean ruminal pH when induced with SARA than cows with access to buffer blocks (-0.55 vs. -0.20 pH units). Cows on the control treatment also experienced a greater increase in time (9.7 vs. 4.1 h/d) and area (249 vs. 83 min x pH units/d) below pH 5.6 compared with cows with access to buffer blocks. Ruminal volatile fatty acids, lactate, ethanol, and succinate concentrations during the SARA challenge did not differ between treatments. Eating behavior was not affected by treatment. Size of the first meal of the day was greater on the SARA challenge day than during the pre-SARA period (11.0 vs. 5.7 kg, as fed). Giving cows access to a buffer-containing molasses block may reduce the duration and the severity of a 1-d SARA challenge.
Upreti, P; Bühlmann, P; Metzger, L E
2006-03-01
The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows that the buffering properties of the precipitate can be explained, assuming that it consists of hydroxyapatite [Ca5(OH)(PO4)3] or Ca3(PO4)2. The pH buffering in the region from pH 3.5 to 4.5 is due to protonation of side-chain carboxylates of protein-bound glutamate, aspartate, and lactate, in order of decreasing significance. In addition, pH buffering between pH 5 to 8 in the backtitration results from the reprecipitation of calcium and phosphate either as CaHPO4 or Ca4H(PO4)3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj
2010-06-22
Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH < pK{sub a2} was cooled from room temperature (RT), the freeze-concentrate pH first increased and then decreased. This was attributed to the sequential crystallization of succinic acid, monosodium succinate, and finally disodium succinate. When buffered to pH > pK{sub a2}, the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followedmore » by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na{sub 2}(CH{sub 2}COO){sub 2} {center_dot} 6H{sub 2}O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.« less
Sifuna, Fred W; Orata, Francis; Okello, Veronica; Jemutai-Kimosop, Selly
2016-09-18
In this study, the electro-oxidation capacities of Na2SO4 and potassium phosphate buffer supporting electrolytes were tested and compared for destruction of the sulfamethoxazole (SMX) and diclofenac (DCF) on platinum (Pt) electrode and graphite carbon electrode in aqueous medium. The suitability of pharmaceutical active compounds (PhACs) for electrochemical oxidation was tested by cyclic voltammetry (CV) technique performed in the potential range -1.5 to +1.5 V versus Ag/AgCl, which confirmed the electro-activity of the selected PhACs. The degradation and mineralization were monitored by ultraviolet (UV)-Vis spectrophotometry and HPLC. 0.1 M Na2SO4 supporting electrolyte was found to be more effective for mineralization of SMX and DCF, with efficiency of 15-30% more than the 0.1 M phosphate buffer supporting electrolyte on the platinum (Pt) and carbon electrodes. The Pt electrode showed better performance in the degradation of the two PhACs while under the same conditions than the carbon electrode for both 0.1 M Na2SO4 and 0.1 M potassium phosphate buffer supporting electrolytes. The SMX and DCF degradation kinetics best fitted the second-order reaction, with rate constants ranging between 0.000389 and 0.006 mol(2) L(-2) min(-1) and correlation coefficient (R(2)) above 0.987. The second-order degradation kinetics indicated that the rate-determining step in the degradation could be a chemical process, thus suggesting the active involvement of electrolyte radical species in the degradation of SMX and DCF. Results obtained from a real field sample showed a more than 98% removal of the PhACs from the wastewater by electrochemical degradation.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-04-01
Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH
Yin, Changna; Cao, Yuhua; Ding, Shaodong; Wang, Yun
2008-06-06
A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.
NASA Astrophysics Data System (ADS)
Dianursanti, Taurina, Zarahmaida; Indraputri, Claudia Maya
2018-02-01
Spirulina platensis has the potential to be developed because of essential chemical compounds in the form of phycocyanin that can be used as an antioxidant. The growth of microalgae and phycocyanin depends on the availability of nutrition contained in culture medium. The cultivation will be carried out at 1 L reactor with continuous aeration, light intensity is 3000-4000 lux, and temperature is 27-30°C. Phycocyanin is obtained by liquid-liquid extraction method using phosphate buffer pH 7. Phycocyanin test performed by using UV-Vis spectrophotometry. The result show that the highest dry biomass is obtained on bean sprouts extract medium 8% (v/v) with the addition of urea fertilizer 120 ppm. The highest content of phycocyanin is obtained on bean sprouts extract medium 8% (v/v) with the addition of urea fertilizer 100 ppm with phycocyanin concentration of 257.12 mg/L.
The growth of Treponema hyodysenteriae and other porcine intestinal spirochaetes in a liquid medium.
Lemcke, R M; Bew, J; Burrows, M R; Lysons, R J
1979-05-01
A new simple method for the preparation of a liquid medium containing rabbit serum for the propagation of Treponema hyodysenteriae and other porcine intestinal spirochaetes is described. The medium, when dispensed in shallow layers and sealed under 10 per cent CO2 in nitrogen, had a redox potential not greater than -125mV and an initial pH of about 6.9 when buffered with bicarbonate. Growth of T hyodysenteriae developed more rapidly and viable counts reached higher levels at 42 degrees C than at 37 degrees C. Viable counts increased at least 10,000-fold after two to five days' incubation, depending on the temperature. Growth could be initiated from small inocula that failed to produce colonies on blood agar. Using a 1 per cent inoculum, the medium supported the growth of two strains of T hyodysenteriae through 10 serial passages.
Peterson, Eric C; Daugulis, Andrew J
2014-03-01
Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR. © 2013 Wiley Periodicals, Inc.
Bottrel, Sue Ellen C; Pereira, Pedro C; de Oliveira Pereira, Renata; Leão, Mônica M D; Amorim, Camila C
2018-06-25
Ethylenethiourea (ETU) is a toxic degradation product of one class of fungicide which is largely employed in the world, the ethylenebisdithiocarbamates. In this study, ETU was degraded by ozonation enhanced by UV-C light irradiation (O 3 /UV-C) in aqueous medium. Degradation experiments were conducted at natural pH (6.8) and neutral pH (7.0, buffered). ETU was promptly eliminated from the reactive medium during ozonation in the presence and absence of light. Within the first few minutes of reaction conducted in natural pH, the pH decreased quickly from 6.8 to 3.0. Results show that ETU mineralization occurs only in the reaction conducted in neutral pH and that it takes place in a higher rate when enhanced by UV-C irradiation. Main intermediates formed during the O3/UV-C experiments in different conditions tested were also investigated and three different degradation mechanisms were proposed considering the occurrence of direct and indirect ozone reactions. At pH 7, ethylene urea (EU) was quickly generated and degraded. Meanwhile, at natural pH, besides EU, other compounds originated from the electrophilic attack of ozone to the sulfur atom present in the contaminant molecule were also identified during reaction and EU was detected within 60 min of reaction. Results showed that ozonation enhanced by UV-C promotes a faster reaction than the same system in the absence of light, and investigation of the toxicity is recommended.
Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing
NASA Astrophysics Data System (ADS)
Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.
Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.
Stankovičová, Mária; Lašáková, Andrea; Medlenová, Veronika; Bezáková, Zelmíra; Cižmárik, Jozef
2014-08-01
The paper studies the kinetics of alkaline hydrolysis and stability under non-isothermal conditions of heptacainium chloride and carbisocainium chloride in the medium of aqueous-ethanolic solution of sodium hydroxide c = 0.1 mol/l and buffer solutions of values of pH 7.0 and pH 8.0. The results of the study of the kinetics of hydrolysis by means of a non-isothermal test - rate constants and activation energy values served as the basis for exact evaluation of the stability of these potential pharmaceuticals. The objective of the paper links up with the previous studies of these substances.
NASA Astrophysics Data System (ADS)
Tatikolov, Alexander S.; Akimkin, Timofey M.; Panova, Ina G.; Yarmoluk, Sergiy M.
2017-04-01
The noncovalent interaction of the polymethine dye probe 3,3‧,9-trimethylthiacarbocyanine iodide (Cyan 2) with chondroitin-4-sulfate (C4S) in buffer solutions with different pH and in water in the absence of buffers has been studied by spectral-fluorescent methods. It has been shown that in all media studied, at relatively high concentrations, the dye is bound to C4S mainly as a monomer, which is accompanied by a steep rise of fluorescence (the intermediate formation of dye aggregates on the biopolymer is also observed). From the dependence of the fluorescence quantum yield on the concentration of C4S, the parameters of binding of the dye monomer to C4S were obtained: the effective binding constant K, the number of the monomeric C4S units n per one dye monomer bound to C4S, and the fluorescence quantum yield of the bound dye monomer Φfb. The dependence of Φfb (and K) on pH of the medium is not monotonic: it has a minimum in the region of neutral pH and a growth in the regions of acid and basic pH. This can be explained by changing the charge of a C4S macromolecule as a function of pH and related conformational alterations in the biopolymer, which can affect the rigidity of a dye molecule and the energy of its interaction with the biopolymer.
The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica.
Lusk, Bradley G; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, Cesar I
2016-12-01
We assessed the effects of pH and buffer concentration on current production and growth of biofilms of Thermincola ferriacetica - a thermophilic, Gram-positive, anode-respiring bacterium (ARB) - grown on anodes poised at a potential of -0.06V vs. SHE in microbial electrolysis cells (MECs) at 60°C. T. ferriacetica generated current in the pH range of 5.2 to 8.3 with acetate as the electron donor and 50mM bicarbonate buffer. Maximum current density was reduced by ~80% at pH5.2 and ~14% at 7.0 compared to pH8.3. Increasing bicarbonate buffer concentrations from 10mM to 100mM resulted in an increase in the current density by 40±6%, from 6.8±1.1 to 11.2±2.7Am(-2), supporting that more buffer alleviated pH depression within T. ferriacetica biofilms. Confocal laser scanning microscopy (CLSM) images indicated that higher bicarbonate buffer concentrations resulted in larger live biofilm thicknesses: from 68±20μm at 10mM bicarbonate to >150μm at 100mM, supporting that buffer availability was a strong influence on biofilm thickness. In comparison to mesophilic Geobacter sulfurreducens biofilms, the faster transport rates at higher temperature and the ability to grow at relatively lower pH allowed T. ferriacetica to produce higher current densities with lower buffer concentrations. Published by Elsevier B.V.
Biokinetics and Biodynamics of Nanomaterial Interactions
2009-09-30
HEK viability. The medium from each treatment set of the dosed cells was removed, pooled into a microfuge tube , and quickly frozen to -80ºC until...Trump’s fixative at 4ºC. The cells were rinsed in 0.1M phosphate buffer (pH 7.2), pelleted in a microfuge tube , resuspended, and quickly pelleted in 3...formulation on in vitro human skin localized NP in the upper stratum corneum with minimal penetration (Cross et al., 2007) and microfine zinc oxide with a
Sun, Xiaodong; Qiu, Haiying; Jin, Yiguang
2017-06-15
Aerobic vaginitis (AV) leads to uterus deep infection or preterm birth. Antibacterial agents are not optimal therapeutics of AV. Here, we report a series of temperature-sensitive in situ forming acidic buffered gels for topical treatment of AV, involving lactate, acetate, and citrate gels at pH 3.5, 5.0, and 6.5. AV rat models were prepared following vaginal infection with Staphylococcus aureus and Escherichia coli. In vitro/in vivo studies of the buffered gels were performed compared with ofloxacin gels and blank gels. All the buffered gels showed the lower in vitro antibacterial activities than ofloxacin gels but the better in vivo anti-S. aureus effects and similar anti-E. coli effects. The buffered gels improved Lactobacillus growth in the vaginas. Both the healthy rat vaginal pH and the pH of rat vaginas treated with the buffered gels were about 6.5 though the AV rat models or ones treated with ofloxacin gels still remained at the high pH more than 7.0. After treatments with the buffered gels, the vaginal smears changed to a clean state nearly without aerobic bacteria, the vaginal tissues were refreshed, and the immunoreactions were downregulated. The acidic buffered gels bring rapid decrease of local vaginal pH, high antibacterial activities, improvement of probiotics, and alleviation of inflammation. They are simple, highly efficient, and safe anti-AV formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Silva, Ariosto S.; Yunes, Jose A.; Gillies, Robert J.; Gatenby, Robert A.
2013-01-01
A number of studies have shown that the extracellular pH (pHe) in cancers is typically lower than that in normal tissue and that an acidic pHe promotes invasive tumor growth in primary and metastatic cancers. Here, we investigate the hypothesis that increased systemic concentrations of pH buffers reduce intratumoral and peritumoral acidosis and, as a result, inhibit malignant growth. Computer simulations are used to quantify the ability of systemic pH buffers to increase the acidic pHe of tumors in vivo and investigate the chemical specifications of an optimal buffer for such purpose. We show that increased serum concentrations of the sodium bicarbonate (NaHCO3) can be achieved by ingesting amounts that have been used in published clinical trials. Furthermore, we find that consequent reduction of tumor acid concentrations significantly reduces tumor growth and invasion without altering the pH of blood or normal tissues. The simulations also show that the critical parameter governing buffer effectiveness is its pKa. This indicates that NaHCO3, with a pKa of 6.1, is not an ideal intratumoral buffer and that greater intratumoral pHe changes could be obtained using a buffer with a pKa of ~7. The simulations support the hypothesis that systemic pH buffers can be used to increase the tumor pHe and inhibit tumor invasion. PMID:19276380
Imon, M A; White, J F
1981-01-01
1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption. PMID:7310697
Imon, M A; White, J F
1981-05-01
1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption.
pH-dependent effect of pectinase secretion in Penicillium griseoroseum recombinant strains.
Teixeira, Janaina Aparecida; Corrêa, Thamy Lívia Ribeiro; de Queiroz, Marisa Vieira; de Araújo, Elza Fernandes
2014-02-01
A number of parameters, including culture medium pH, affect growth and enzyme production by microorganisms. In the present study, the production and secretion of pectin lyase (PL) and polygalacturonase (PG) by recombinant strains of Penicillium griseoroseum cultured in mineral-buffered media (MBM; initial pH 6.8) and mineral-unbuffered medium (MUM; initial pH 6.3) were evaluated. Under these culture conditions, no change in the transcriptional levels of plg1 and pgg2 was observed. However, the levels of secreted total protein ranged from 7.80 ± 1.1 to 3.25 ± 1.50 µg ml(-1) in MBM and MUM, respectively, and were evaluated by SDS-PAGE. PL and PG enzymatic activities decreased 6.4 and 3.6 times, respectively, when P. griseoroseum was cultivated under acidic pH conditions (MUM). Furthermore, differences were observed in the hypha and mycelium morphology. These findings suggest that acidic growing conditions affect PL and PG secretion, even though the transcription and translation processes are successful. The data obtained in this study will help to establish optimal culture conditions that increase production and secretion of recombinant proteins by filamentous fungi. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan
2014-01-01
The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.
Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E
2010-01-15
Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.
Kim, Nam Ah; Song, Kyoung; Lim, Dae Gon; Hada, Shavron; Shin, Young Kee; Shin, Sangmun; Jeong, Seong Hoon
2015-10-12
The purpose of this study was to develop a basal buffer system for a biobetter version of recombinant human interferon-β 1a (rhIFN-β 1a), termed R27T, to optimize its biophysical stability. The protein was pre-screened in solution as a function of pH (2-11) using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the result, its experimental pI and optimal pH range were 5.8 and 3.6-4.4, respectively. Design of experiment (DoE) approach was developed as a practical tool to aid formulation studies as a function of pH (2.9-5.7), buffer (phosphate, acetate, citrate, and histidine), and buffer concentration (20 mM and 50 mM). This method employed a weight-based procedure to interpret complex data sets and to investigate critical key factors representing protein stability. The factors used were Tm, enthalpy, and relative helix contents which were obtained by DSC and Fourier Transform Infrared spectroscopy (FT-IR). Although the weights changed by three responses, objective functions from a set of experimental designs based on four buffers were highest in 20 mM acetate buffer at pH 3.6 among all 19 scenarios tested. Size exclusion chromatography (SEC) was adopted to investigate accelerated storage stability in order to optimize the pH value with susceptible stability since the low pH was not patient-compliant. Interestingly, relative helix contents and storage stability (monomer remaining) increased with pH and was the highest at pH 4.0. On the other hand, relative helix contents and thermodynamic stability decreased at pH 4.2 and 4.4, suggesting protein aggregation issues. Therefore, the optimized basal buffer system for the novel biobetter was proposed to be 20 mM acetate buffer at pH 3.8±0.2. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc
2000-01-01
We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.
Voelker, Marsha A; Simmer-Beck, Melanie; Cole, Molly; Keeven, Erin; Tira, Daniel
2013-02-01
The purpose of this preliminary study was to examine the relationship of caries risk, salivary buffering capacity, salivary pH, salivary quality (flow, consistency) and levels of Streptococcus mutans in relation to cigarette smoking. This clinical trial consisted of 53 volunteer patients receiving care in a university based dental hygiene clinic. Participants completed a questionnaire specific to their social history in regards to tobacco use, oral health and dietary history. Measurements of unstimulated saliva were collected followed by collection of stimulated saliva samples. These samples were used to measure salivary pH, buffering capacity and Streptococcus mutans levels. The subject's smoking status was significantly associated with caries risk (p= 0.001), with 25% of the variability of caries risk attributed to smoking. The smoking status was significantly associated with buffering capacity (p=0.025), with 9% of the variability of buffering status attributed to the smoking. Associations between smoking status and salivary pH were not statistically significant. The subject's caries risk was significantly associated with buffering capacity (p= 0.001), with 25% of the variability of caries risk attributed to the buffering capacity. The subject's caries risk was significantly associated with salivary pH (p= 0.031), with 9% of the variability of caries risk attributed to the salivary pH. The Streptococcus mutans test showed no statistical significance (p>0.05) possibly due to the number and low variance in the subjects. A relationship between caries risk and smoking, buffering capacity and smoking, and stimulated salivary pH and smoking were concluded. No significance difference (p>0.05) between caries risk and salivary pH, salivary quality and smoking, S. mutans and smoking were noted from the preliminary results.
Aranibar Quiroz, E M; Alstad, T; Campus, G; Birkhed, D; Lingström, P
2014-01-01
The pH response of the dental biofilm after a sugar challenge can be considered to mirror the acidogenic potential and thereby the caries risk of an individual. The aim of this cross-sectional study was to evaluate the relationship between plaque pH and different caries variables in adolescents with varying caries prevalence. One hundred individuals, aged 14-15 years, were examined regarding different caries-related variables: (i) caries score (DSm, DSi, DSm + i, DTm), (ii) salivary secretion rate and buffer capacity, (iii) oral microflora of plaque and saliva, (iv) plaque amount, (v) plaque pH and (vi) dietary intake, oral hygiene habits and fluoride use. Plaque pH was assessed using the microtouch method before and after a 1-min mouthrinse with 10 ml 10% sucrose. Depending on the minimum pH, the participants were divided into three groups: low pH (≤5.3), medium pH (>5.3-6.3) and high pH (>6.3). Statistically significant differences between the three groups (p < 0.01) were found for initial caries (DSi) and combined manifest and initial caries (DSm + i). A statistically significant difference was also found in the log values for salivary lactobacilli (p = 0.02) within the three groups, and for the total number of bacteria in plaque (p = 0.04); for both variables, the low-pH group had the highest values. The only covariate significantly associated was the Cariogram score in the medium-pH group (p < 0.01) and the number of meals per day in the high-pH group (p = 0.02). To conclude, plaque pH measured by the microtouch method is a method that can be used for discriminating between individuals with varying caries prevalence.
NASA Technical Reports Server (NTRS)
Bugbee, B. G.; Salisbury, F. B.
1985-01-01
All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.
Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander
2015-01-01
Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296
Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria
Nancharaiah, Y. V.; Francis, A. J.
2015-02-19
The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L -1 and inhibited at > 2.5 g L -1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L -1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] wasmore » mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less
Inactivation of viruses using novel protein A wash buffers.
Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J
2015-01-01
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.
Raybaud, Virginie; Tambutté, Sylvie; Ferrier-Pagès, Christine; Reynaud, Stéphanie; Venn, Alexander A; Tambutté, Éric; Nival, Paul; Allemand, Denis
2017-07-07
Critical to determining vulnerability or resilience of reef corals to Ocean Acidification (OA) is a clearer understanding of the extent to which corals can control carbonate chemistry in their Extracellular Calcifying Medium (ECM) where the CaCO 3 skeleton is produced. Here, we employ a mathematical framework to calculate ECM aragonite saturation state (Ω arag.(ECM) ) and carbonate system ion concentration using measurements of calcification rate, seawater characteristics (temperature, salinity and pH) and ECM pH (pH (ECM) ). Our calculations of ECM carbonate chemistry at current-day seawater pH, indicate that Ω arag.(ECM) ranges from ∼10 to 38 (mean 20.41), i.e. about 5 to 6-fold higher than seawater. Accordingly, Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) were calculated to be around 3 times higher in the ECM than in seawater. We also assessed the effects of acidification on ECM chemical properties of the coral Stylophora pistillata. At reduced seawater pH our calculations indicate that Ω arag.(ECM) remains almost constant. DIC (ECM) and TA (ECM) gradually increase as seawater pH declines, reaching values about 5 to 6-fold higher than in seawater, respectively for DIC and TA. We propose that these ECM characteristics buffer the effect of acidification and explain why certain corals continue to produce CaCO 3 even when seawater chemistry is less favourable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study.
Jayaraj, D; Ganesan, S
2015-01-01
The diagnostic utility of saliva is currently being explored in various branches of dentistry, remarkably in the field of caries research. This study was aimed to determine if assessment of salivary pH and buffering capacity would serve as reliable tools in risk prediction of early childhood caries (ECC). Paraffin-stimulated salivary samples were collected from 50 children with ECC (group I) and 50 caries free children (group II). Salivary pH and buffering capacity (by titration with 0.1 N hydrochloric acid) were assessed using a handheld digital pH meter in both groups. The data obtained were subjected to statistical analysis. Statistically, no significant difference was observed between both the groups for all salivary parameters assessed, except for the buffering capacity level at 150 μl titration of 0.1 N hydrochloric acid (p = 0.73; significant at 1% level). Salivary pH and buffering capacity may not serve as reliable markers for risk prediction of ECC. How to cite this article: Jayaraj D, Ganesan S. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study. Int J Clin Pediatr Dent 2015;8(3):167-171.
Aqueous photolysis of niclosamide
Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.
2004-01-01
The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.
Prauchner, Carlos A; Kozloski, Gilberto V; Farenzena, Roberta
2013-05-01
The methodological procedures for studying the fibrolytic activity of rumen bacteria are not clearly established. In this study the efficiency of sonication treatment and buffer composition (i.e. buffer varying in tonicity or pH) on the level of protein extraction from the residue of forage samples incubated in the rumen of a grazing steer and the effect of buffer composition or CaCl₂ concentration on the carboxymethylcellulase (CMCase) activity of the released protein were evaluated. The amount of protein released from the residue of incubation was higher (P < 0.05) for the sonicated material and increased linearly with increasing buffer pH (P < 0.05). The CMCase activity of the released protein was not improved by sonication treatment, whereas it was higher (P < 0.05) for hypotonic than for hypertonic buffer. Both linear and quadratic effects (P < 0.05) of buffer pH on CMCase activity were significant, with CMCase activity being maximal at pH 5.4-6.1. CMCase activity was higher (P < 0.05) at a CaCl₂ concentration of 1 mmol L(-1) compared with lower values. Although sonication treatment increases the amount of protein extracted from rumen bacteria adhered to the residue of incubation, the CMCase activity of the released protein might be measured without sonication treatment and should be carried out with a hypotonic buffer solution that includes a calcium source. When pH is not a treatment factor, the buffer pH should be between 5.5 and 6. © 2012 Society of Chemical Industry.
Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui
2016-11-01
Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.
Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak
2008-08-01
A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.
NASA Astrophysics Data System (ADS)
Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian
2015-07-01
The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.
Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien
2015-01-01
Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.
He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L
2017-06-15
Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of catabolism. IMPORTANCE Experimental evolution of an enteric bacterium under a narrow buffered range of acid pH leads to loss of genes that enhance fitness above or below the buffered pH range, including loss of enzymes that may raise external pH in the absence of buffer. Prominent modes of evolutionary change involve IS-mediated insertions and deletions that knock out key regulators. Over generations of acid stress, catabolism undergoes reregulation in ways that differ for each evolving strain. Copyright © 2017 American Society for Microbiology.
Code of Federal Regulations, 2011 CFR
2011-04-01
... buffer. First standardize the electrodes using a pH 4.0 buffer at or near 25 °C. Standardization control..., the optimum being 25 °C. Any temperature determinations made without meter compensation may affect pH... approximately ±0.01 pH unit and a reproducibility of ±0.005 pH units. (4) General procedure for determining pH...
Code of Federal Regulations, 2010 CFR
2010-04-01
... buffer. First standardize the electrodes using a pH 4.0 buffer at or near 25 °C. Standardization control..., the optimum being 25 °C. Any temperature determinations made without meter compensation may affect pH... approximately ±0.01 pH unit and a reproducibility of ±0.005 pH units. (4) General procedure for determining pH...
NASA Astrophysics Data System (ADS)
Chopra, Shruti; Motwani, Sanjay K.; Ahmad, Farhan J.; Khar, Roop K.
2007-11-01
Simple, accurate, reproducible, selective, sensitive and cost effective UV-spectrophotometric methods were developed and validated for the estimation of trigonelline in bulk and pharmaceutical formulations. Trigonelline was estimated at 265 nm in deionised water and at 264 nm in phosphate buffer (pH 4.5). Beer's law was obeyed in the concentration ranges of 1-20 μg mL -1 ( r2 = 0.9999) in deionised water and 1-24 μg mL -1 ( r2 = 0.9999) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.04 × 10 3 L mol -1 cm -1 and 0.0422 μg cm -2/0.001A in deionised water; and 3.05 × 10 3 L mol -1 cm -1 and 0.0567 μg cm -2/0.001A in phosphate buffer media, respectively. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.12 and 0.37 μg mL -1 in deionised water and 0.13 and 0.40 μg mL -1 in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of trigonelline in pharmaceutical formulations (vaginal tablets and bioadhesive vaginal gels). The results demonstrated that the procedure is accurate, precise, specific and reproducible (percent relative standard deviation <2%), while being simple and less time consuming and hence can be suitably applied for the estimation of trigonelline in different dosage forms and dissolution studies.
A technique for collection of exudate from pea seedlings
NASA Technical Reports Server (NTRS)
Hanson, S. D.; Cohen, J. D.; Bandurski, R. S. (Principal Investigator)
1985-01-01
Ethylenediaminetetraacetic acid (EDTA), at concentrations higher than 1.0 millimolar, is phytotoxic to etiolated seedlings of Pisum sativum. Substantial vascular exudation from pea epicotyls could be obtained without tissue damage at 0.5 millimolar EDTA if the solution was buffered at pH 7.5 with sodium N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid. Treated seedlings exuded 950 micrograms (leucine equivalents) of ninhydrin-positive material per day and 870 micrograms (glucose equivalents) of anthrone-positive material per day. Amino acid analysis showed the exudate to have glutamine as the major amido nitrogen containing compound and sucrose was shown to be the major sugar. Radiolabeled tryptophan and sucrose applied to cotyledons were transferred through the epicotyl and into the collection medium. The pH profile for exudation shows half maximal exudation at pH 7.2, indicating the promotion of exudation by EDTA is probably not due simply to Ca2+ chelation.
The potential effects of pH and buffering capacity on dental erosion.
Owens, Barry M
2007-01-01
Soft drink pH (initial pH) has been shown to be a causative factor--but not necessarily the primary initiating factor--of dental erosion. The titratable acidity or buffering capacity has been acknowledged as playing a significant role in the etiology of these lesions. This in vitro study sought to evaluate five different soft drinks (Coca-Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappucino coffee drink) and tap water (control) in terms of initial pH and buffering capacity. Initial pH was measured in triplicate for the six beverages. The buffering capacity of each beverage was assessed by measuring the weight (in grams) of 0.10 M sodium hydroxide necessary for titration to pH levels of 5.0, 6.0, 7.0, and 8.3. Coca-Cola Classic produced the lowest mean pH, while Starbucks Frappucino produced the highest pH of any of the drinks except for tap water. Based on statistical analysis using ANOVA and Fisher's post hoc tests at a P < 0.05 level of significance, Red Bull had the highest mean buffering capacity (indicating the strongest potential for erosion of enamel), followed by Gatorade, Coca-Cola Classic, Diet Coke, and Starbucks Frappucino.
Chemin, Caroline; Bourgaux, Claudie; Péan, Jean-Manuel; Pabst, Georg; Wüthrich, Patrick; Couvreur, Patrick; Ollivon, Michel
2008-06-01
For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.
Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.
2017-01-24
A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.
Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.
Liu, S Y; Kono, M; Ebrey, T G
1991-01-01
The effect of pH buffers on the microsecond photocurrent component, B2, of oriented purple membranes has been studied. We found that under low salt conditions (less than 10 mM monovalent cationic salt) pH buffers can dramatically alter the waveform of the B2 component. The effect is induced by the protonation process of the buffer molecules by protons expelled from the membrane. These effects can be classified according to the charge transition upon protonation of the buffer. Buffers that carry two positive charges in their protonated form add a negative current component (N component) to B2. Almost all of the other buffers add a positive current component (P component) to B2, which is essentially a mirror image of the N component. Buffers with a pK less than 5.5 have only a small positive buffer component. The pH dependence of the buffer effect is closely related to the pK of the buffer; it requires that the buffer be in its unprotonated form. The rise time of the buffer component increases with the concentration of the buffer molecules. All the buffer effects can be inhibited by the addition of 5 mM of a divalent cation such as Ca2+. Reducing the surface potential slows down the N component but accelerates the P component without affecting the amplitude of the buffer effect significantly. Many of the buffer effects can be explained if we assume that upon protonation of the buffer by a proton expelled from the membrane by light, the buffer molecules move toward the membrane. This backward movement of buffer molecules forms a counter current very similar to that due to cations discussed in Liu, S. Y., R. Govindjee, and T. G. Ebrey. (1990. Biophys. J. 57:951-963). PMID:1883939
Fluorophotometric measurement of the buffering action of human tears in vivo.
Yamada, M; Kawai, M; Mochizuki, H; Hata, Y; Mashima, Y
1998-10-01
The buffering action of human tears is thought to be important to keep its pH constant. We measured the change in pH in the precorneal tear film in vivo when the acidic solution is challenged, using a fluorophotometric technique. Twelve eyes from 6 healthy subjects were entered in this study. Each subject was pretreated with either one drop of 0.4% oxybuprocaine for once (light anesthesia), three times (deep anesthesia), or none (controls). The measurement was initiated by instilling 20 microl of 0.067 M phosphate buffer at pH 5.5 containing 2 mM bis-carboxyethyl-carboxyfluorescein free acid, a pH sensitive dye, into the subject's eye. The pH was determined by the ratio of fluorescent intensities at two excitation wavelengths (490 and 430 nm). pH recovery time (PHRT) as defined by the time required for pH to reach 95% of pH at equilibrium was used for the marker of tear buffering action. Tear turnover rate was also determined using the fluorescent decay curve at 430 nm, which was independent of pH, but dependent on dye concentration. Immediately after the instillation, the pH value in the tear film was around 6.0-6.5 in all cases. The tear film rapidly became more alkaline, reaching its normal value in 2.3 +/- 0.5 min in untreated eyes. The pretreatment with 0.4% oxybuprocaine retarded the neutralization process. A single regression analysis revealed that the PHRT had a significant negative correlation with the tear turnover rate (r = -0.78). Our results suggest that the neutralization process of tears largely depends on the tear turnover rate. The buffering action of tears in vivo consists of the tear turnover as well as its chemical buffering capacity.
Van Der Heyden, N; Docampo, R
2000-02-05
Regulation of intracellular pH (pHi) was investigated in Trypanosoma cruzi amastigotes and trypomastigotes using 2',7'-bis-(carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF). pHi was determined to be 7.33 +/- 0.08 and 7.35 +/- 0.07 in amastigotes and trypomastigotes, respectively, and there were no significant differences in the regulation of pH, between the two stages. Steady-state pHi, recovery of pHi from acidification, and H+-efflux were all decreased markedly by the H+-ATPase inhibitors N,N'-dicyclohexylcarbodi-imide (DCCD), diethylstilbestrol (DES) and N-ethylmaleimide (NEM) supporting a significant role for a plasma membrane H+-ATPase in the regulation of pHi. pHi was maintained at neutrality over a range of external pH (pHe) from 5-8 in parasites suspended in a buffer containing Na+ and K+ (standard buffer) but was acidified at low pHe in the absence of these cations (choline buffer). The pHi of trypomastigotes decreased significantly when they transformed into amastigotes. The rate of recovery of pHi by acidified parasites was similar in Na+-free buffer and standard buffer but was slower in the absence of K+ (K+-free or choline buffer) and parasites suspended in choline buffer were acidic by 0.25 pH units as compared with controls. Ba2+ and Cs+ decreased the pHi of parasites suspended in standard but not choline buffer suggesting the presence of an inward directed K+ channel. The pHi of amastigotes and trypomastigotes suspended in Cl(-)-free buffer was decreased by 0.13 and 0.2 pH units, respectively, supporting the presence of a chloride conductive channel. No evidence of pH regulation via a Na+/H+ or Cl-/HCO3- exchanger was found. These results are consistent with the presence of a plasma membrane H+-ATPase that regulates pHi and is supported by K+ and Cl- channels.
NASA Astrophysics Data System (ADS)
Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Ketrin, Rosi; Nuryatini; Thanh, Ngo Huy; Truong Chinh, Nguyen; Vospelova, Alena; Bastkowski, Frank; Sander, Beatrice; Matzke, Jessica; Prokunin, Sergey; Frolov, Dmitry; Aprelev, Alexey; Dobrovolskiy, Vladimir; Uysal, Emrah; Liv, Lokman; Velina Lara-Manzano, Judith; Montero-Ruiz, Jazmin; Ortiz-Aparicio, JosÉ Luis; Ticona Canaza, Galia; Anuar Mohd Amin, Khirul; Abd Kadir, Haslina; Bakovets, Nickolay; Wong, Siu-Kay; Lam, Wai-Hing
2017-01-01
The APMP.QM-K91 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phthalate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan at the APMP-TCQM meeting held September 22-23, 2014. After approval by TCQM, the comparison has been conducted by NMIJ. The comparison is a key comparison following CCQM-K91. The comparison material was a phthalate buffer of pH around 4.0 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the third APMP key comparison on pH measurement and the fifth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006, APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011 and APMP.QM-K19/APMP.QM-P25 (a borate buffer) in 2013-2014. The results can be used further by any participant to support its CMC claim at least for a phthalate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Variation in Hydraulic Conductivity with Decreasing pH in a Biologically-Clogged Porous Medium
NASA Astrophysics Data System (ADS)
Kirk, M. F.; Santillan, E.; McGrath, L. K.; Altman, S. J.
2011-12-01
Biological clogging can significantly lower the hydraulic conductivity of porous media, potentially helping to limit CO2 transport from geological carbon storage reservoirs. How clogging is affected by CO2 injection, however, is unclear. We used column experiments to examine how decreasing pH, a geochemical change associated with CO2 injection, will affect the hydraulic conductivity (K) of biologically clogged porous medium. Four biologically-active experiments and two control experiments were performed. Columns consisted of 1 mm2 capillary tubes filled with 105-150 μm diameter glass beads. Artificial groundwater medium containing 1 mM glucose was pumped through the columns at a rate of 0.015 mL/min (q = 21.6 m/day; Re = 0.045). Each column was inoculated with 10^8 CFU of Pseudomonas fluorescens tagged with a green fluorescent protein; cells introduced to control columns were heat sterilized. Biomass distribution and transport was monitored using scanning laser confocal microscopy and effluent plating. Growth was allowed to occur for 5 days in medium with pH 7 in the biologically active columns. During that time, K decreased to values ranging from 10 to 27% of the average control K and effluent cell levels increased to about 10^8 CFU/mL. Next, the pH of the inflowing medium was lowered to 4 in three experiments and 5.5 in one experiment. After pH 4 medium was introduced, K increased to values ranging from 21 to 64% of the average control K and culturable cell levels in the effluent fell by about 4 log units. Confocal images show that clogging persisted in the columns at pH 4 because most of the microbial biomass remained attached to bead surfaces. In the experiment where pH was lowered to 5.5, K changed little because biological clogging remained entirely intact. The concentration of culturable cells in the effluent was also invariant. These results suggest that biomass in porous medium will largely remain in place following exposure to acidic water in a CO2 storage reservoir, particularly where buffering is able to limit the extent of acidification. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Richert, Ludovic; Arntz, Youri; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine
2004-10-01
The short-term interaction of chondrosarcoma cells with (PGA/PLL) polyelectrolyte multilayers was investigated in a serum-containing medium for films built at different pHs and subsequently exposed to the culture medium. The buildup of the films and their stability was first investigated by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, streaming potential measurements and atomic force microscopy. While film growth is linear at all pHs, after a few layers have been deposited the growth is much larger for the films built at basic pH and even more pronounced for those built at acidic pH. However, these latter films remain stable in the culture medium only if they have been crosslinked prior to the ionic strength and pH jumps. The films built at acidic pH were found to swell in water by about 200% whereas those built at other pHs did not swell in a physiological buffer. For thin films (≈20 nm) built at pH = 7.4, the detachment forces were dependent on the outermost layer, the forces being significantly higher on PLL-ending films than on PGA-ending ones. In contrast, for the thick films built at pH = 4.4 and at pH = 10.4 (thickness of the order of few hundred of nanometers), the detachment forces were independent of the outermost layer of the film. The films built at pH = 10.4, which shrink in contact with salt containing solutions, were highly cell adhesive whereas those built at acidic pH were highly cell resistant. Protein adsorption and film roughness (as measured by AFM) could not explain these striking differences. The high adhesion observed on the film built at pH 10.4 may rather be related to the secondary structure of the film and to its relatively low swellability in water, whereas the cell resistance of the films built at pH 4.4 may be linked to their high swellability. Therefore, for the PGA/PLL films, the cell adhesion properties can be tuned depending on the deposition pH of the polyelectrolyte solutions. This study reveals the importance of the multilayer structure and architecture to control the detachment force of cells onto such films.
Improved pH buffering agent for sodium hypochlorite
NASA Technical Reports Server (NTRS)
Nash, J. R.; Veeder, L. N.
1969-01-01
Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.
Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes
1983-01-01
Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold increase in hydrogen ion concentration, free calcium must also be raised tenfold to elicit the calcium transient. PMID:6411737
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md Mainul
2016-01-01
BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…
Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai
2009-01-01
A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41-47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.
Elkafri, I H; Mashlah, A; Shaqifa, A
2014-03-13
This study was evaluated the relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetic patients. The sample comprised 210 participants (age ranged 40-60 years). Based on fasting blood glucose levels the participants were divided into 3 groups: controls with normal blood glucose levels; diabetic patients with levels ≤ 200 mg/dL; and diabetic patients with levels > 200 mg/dL. Salivary pH and buffering capacity were determined in a sample of resting (non-stimulated) saliva taken from each participant. Salivary pH levels in diabetic patients with blood glucose levels > 200 mg/dL were lower than in the controls and diabetic patients with levels ≤ 200 mg/dL. Salivary pH levels were comparable in controls and diabetic patients with blood glucose levels ≤ 200 mg/dL. Salivary buffering capacity in the 3 groups was comparable.
NASA Technical Reports Server (NTRS)
Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike
2014-01-01
The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mhlanga, Nikiwe; Ray, Suprakas Sinha; DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001
Magnetic iron oxide nanoparticles have potential to transform conventional therapeutics, through targeted delivery by external magnetic field modulation. Conventional drug delivery lacks specificity; both normal and infected cells are exposed to toxic drugs. Consequently, the toxicity towards healthy cells leads to detrimental side effects which are formidable. However, iron oxide research in biomedicine has been hindered by their lack of stability. This study reports on the stabilization of iron oxide by polylactide (PLA). Besides affording stable iron oxide, PLA is also good for sustained delivery of the drug. PLA/doxorubicin/magnetic nanoparticles (PLA/DOX/MNPs) spheres were synthesized by solvent evaporation method and DOXmore » anticancer drug was encapsulated. The spheres were characterized using scanning electron microscope, Fourier transform infrared microscope, thermogravimetric analyzer and UV-visible spectroscopy, which ascertained formation of the anticipated spheres and incorporation of DOX. In vitro drug release studies were carried out in both phosphate buffer (pH 7.4) and acetate buffer (pH 4.6) and they showed the same trend in both mediums. Drug release kinetics followed Higuchi model, which proved drug release by diffusion via a diffusion gradient.« less
NASA Astrophysics Data System (ADS)
Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan
2017-04-01
We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.
Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine
2016-01-01
Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). Copyright © 2015 Elsevier B.V. All rights reserved.
Validated spectrofluorometric methods for determination of amlodipine besylate in tablets
NASA Astrophysics Data System (ADS)
Abdel-Wadood, Hanaa M.; Mohamed, Niveen A.; Mahmoud, Ashraf M.
2008-08-01
Two simple and sensitive spectrofluorometric methods have been developed and validated for determination of amlodipine besylate (AML) in tablets. The first method was based on the condensation reaction of AML with ninhydrin and phenylacetaldehyde in buffered medium (pH 7.0) resulting in formation of a green fluorescent product, which exhibits excitation and emission maxima at 375 and 480 nm, respectively. The second method was based on the reaction of AML with 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl) in a buffered medium (pH 8.6) resulting in formation of a highly fluorescent product, which was measured fluorometrically at 535 nm ( λex, 480 nm). The factors affecting the reactions were studied and optimized. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9949-0.9997) were found between the fluorescence intensity and the concentrations of AML in the concentration range of 0.35-1.8 and 0.55-3.0 μg ml -1 for ninhydrin and NBD-Cl methods, respectively. The limits of assays detection were 0.09 and 0.16 μg ml -1 for the first and second method, respectively. The precisions of the methods were satisfactory; the relative standard deviations were ranged from 1.69 to 1.98%. The proposed methods were successfully applied to the analysis of AML in pure and pharmaceutical dosage forms with good accuracy; the recovery percentages ranged from 100.4-100.8 ± 1.70-2.32%. The results were compared favorably with those of the reported method.
Free flow cell electrophoresis using zwitterionic buffer
NASA Technical Reports Server (NTRS)
Rodkey, R. Scott
1990-01-01
Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.
Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.
Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A
2011-09-01
Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (<1%), whereas substantial (>10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Report of the key comparison APMP.QM-K19. APMP comparison on pH measurement of borate buffer
NASA Astrophysics Data System (ADS)
Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Obromsook, Krairerk; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Wong, Siu-Kay; Lam, Wai-Hing; Zakaria, Osman; Anuar Mohd. Amin, Khirul; Thanh, Ngo Huy; Máriássy, Michal; Vyskocil, Leos; Hankova, Zuzana; Fisicaro, Paola; Stoica, Daniela; Singh, Nahar; Soni, Daya; Ticona Canaza, Galia; Kutovoy, Viatcheslav; Barbieri Gonzaga, Fabiano; Dias, Júlio Cesar; Vospelova, Alena; Bakovets, Nickolay; Zhanasbayeva, Bibinur
2015-01-01
The APMP.QM-K19 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a borate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan (NMIJ) and the National Institute of Metrology (Thailand) (NIMT) at the APMP-TCQM meeting held 26-27 November 2012. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K19 and CCQM-K19.1. The comparison material was a borate buffer of pH around 9.2 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the second APMP key comparison on pH measurement and the fourth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006 and APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011. The results can be used further by any participant to support its CMC claim at least for a borate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Gilligan, Peter H.; Robertson, Donald C.
1979-01-01
Optimal growth conditions have been established for production of heat-labile enterotoxin (LT) by both porcine and human strains of enterotoxigenic (ENT+) Escherichia coli. There were no unusual growth factor requirements, and some strains produced fairly high levels of LT in a basal salts medium containing 0.5% glucose if the pH was carefully controlled. Several amino acids markedly stimulated LT synthesis when added to the basal salts-glucose medium. Methionine and lysine were the most stimulatory for both human and porcine strains. Either aspartic acid or glutamic acid further enhanced LT synthesis in the presence of methionine and lysine, with aspartic acid being more stimulatory for porcine strains and glutamic acid more stimulatory for human strains. There were no apparent vitamin requirements and no unusual cations needed for toxin synthesis except that Fe3+ was slightly stimulatory for porcine strains. The stimulation by Fe3+ was observed only in the presence of the three amino acids, suggesting that the effect was indirect rather than on toxin synthesis. The carbon source also influenced the yield of LT. Glucose supported maximal synthesis, but other carbon sources which exhibit a high degree of catabolite repression also supported high levels of synthesis. Little or no LT was released below pH 7.0; therefore, because the pH drops during growth from 7.5 to 6.8, even in highly buffered media, it was necessary to adjust the pH to 8.0 to effect complete release of cell-associated toxin. The defined medium containing three amino acids reduced the amount of UV-absorbing material in culture supernatants about fivefold and increased LT activity for various strains from two- to fivefold over a complex Casamino Acids-yeast extract medium. Conditions found to be optimal for synthesis of LT were inhibitory for the heat-stable enterotoxin. PMID:33900
Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.
Abel, K M
1984-11-01
Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.
pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery.
Curcio, Manuela; Diaz-Gomez, Luis; Cirillo, Giuseppe; Concheiro, Angel; Iemma, Francesca; Alvarez-Lorenzo, Carmen
2017-08-01
pH/redox dual-responsive nanogels (DEX-SS) were prepared by precipitation polymerization of methacrylated dextran (DEXMA), 2-aminoethylmethacrylate (AEMA) and N,N'-bis(acryloyl)cystamine (BAC), and then loaded with methotrexate (MTX). Nanogels were spherical and exhibited homogeneous size distribution (460nm, PDI<0.30) as observed using dynamic light scattering (DLS) and scanning electron microscopy (SEM). DEX-SS were sensitive to the variations of pH and redox environment. Nanogels incubated in buffer pH 5.0 containing 10mM glutathione (GSH) synergistically increased the mean diameter and the PDI to 750nm and 0.42, respectively. In vitro release experiments were performed at pH 7.4 and 5.0 with and without GSH. The cumulative release of MTX in pH 5.0 medium with 10mMGSH was 5-fold higher than that recorded at pH 7.4 without GSH. Fibroblasts and tumor cells were used to tests the effects of blank DEX-SS and MTX@DEX-SS nanogels on cell viability. Remarkable influence of pH on nanogels internalization into HeLa cells was evidenced by means of confocal microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.
Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer
NASA Astrophysics Data System (ADS)
Hioki, Akiharu; Ohata, Masaki; Cherdchu, Chainarong; Tangpaisarnkul, Nongluck
2011-01-01
The APMP.QM-K9 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phosphate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan, NMIJ, and the National Institute of Metrology of Thailand, NIMT, in August 2009. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K9, CCQM-K9.1 and CCQM-K9.2. The comparison material was a phosphate buffer of pH around 6.86 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the first APMP key comparison on pH measurement and the third APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004 and APMP.QM-P09 (a phthalate buffer) in 2006. The results can be used further by any participant to support its CMC claim for a phosphate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the temperature(s) used or the full temperature range between 15 °C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.
Bae, Sungjun; Hanna, Khalil
2015-09-01
While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).
Formation kinetics of a novel product from photolysis of cytosine in phosphate-buffered solutions
NASA Astrophysics Data System (ADS)
Wenqing, Wang; Feng, Lin; Jilan, Wu
1999-01-01
For studying the role of phosphate in the origin of life and the effect of far-ultraviolet light induced photochemical damage to RNA, DNA and its components, it was found that the photolysis of nucleobases, nucleosides and nucleotides was strongly enhanced by phosphate under the irradiation of medium pressure mercury lamp (MPML). Ultraviolet irradiation (190-220 nm) of cytosine in 0.05 mol dm -3 phosphate buffered solution at pH 8-9 leads to the production of a novel compound C 4H 6N 3O 5P in the presence of oxygen. The main photoproduct has been isolated, purified and characterized by use of 1H- and 31P-NMR spectroscopy, elemental analysis, ultraviolet and infrared spectroscopy and electron impact mass spectrometry. Phosphate effect can be inhibited by amino acids. The formation mechanism of the photoproduct and the kinetics was studied.
Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon
2012-09-01
In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.
Pekel, Nursel; Salih, Bekir; Güven, Olgun
2005-05-10
Poly[(N-vinylimidazole)-maleic acid] (poly(VIm-MA)), copolymeric hydrogels were prepared by gamma-irradiating ternary mixtures of N-vinylimidazole-maleic acid-water in a (60)Co-gamma source. Cu(II) and Co(II) ions were chelated within the gels at pH=5.0. The maximum adsorption capacity of the gels were 3.71 mmol/g dry gel for Cu(II) and 1.25 mmol/g dry gel for Co(II) at pH=5.0. The swelling ratios of the gels were 1200% for poly(VIm-MA), 60 and 45% for Cu(II) and Co(II)-chelated poly(VIm-MA) gels at pH=5.0 in acetate buffer solution. These affinity gels with different swelling ratios for plain poly(VIm-MA), Cu(II)-, and Co(II)-chelated poly(VIm-MA), in acetate and phosphate buffers were used in the bovine serum albumin (BSA) adsorption/desorption studies in batch reactor. The maximum BSA adsorption capacities of the gels were 0.38 g/g dry gel for plain, 0.88 g/g dry gel for Cu(II)-chelated poly(VIm-MA) and 1.05 g/g dry gel for Co(II)-chelated poly(VIm-MA) gels. Adsorption capacity of BSA by the gels was reduced dramatically by increasing the ionic strength adjusted with NaCl. More than 95% of BSA were desorbed in 10 h in desorption medium containing 0.1M of EDTA for metal ion-chelated gels at pH=4.7.
Ashfaq, Maria; Sial, Ali Akber; Bushra, Rabia; Rehman, Atta-Ur; Baig, Mirza Tasawur; Huma, Ambreen; Ahmed, Maryam
2018-01-01
Spectrophotometric technique is considered to be the simplest and operator friendly among other available analytical methods for pharmaceutical analysis. The objective of the study was to develop a precise, accurate and rapid UV-spectrophotometric method for the estimation of chlorpheniramine maleate (CPM) in pure and solid pharmaceutical formulation. Drug absorption was measured in various solvent systems including 0.1N HCl (pH 1.2), acetate buffer (pH 4.5), phosphate buffer (pH 6.8) and distil water (pH 7.0). Method validation was performed as per official guidelines of ICH, 2005. High drug absorption was observed in 0.1N HCl medium with λ max of 261nm. The drug showed the good linearity from 20 to 60μg/mL solution concentration with the correlation coefficient linear regression equation Y= 0.1853 X + 0.1098 presenting R 2 value of 0.9998. The method accuracy was evaluated by the percent drug recovery, presents more than 99% drug recovery at three different levels assessed. The % RSD value <1 was computed for inter and intraday analysis indicating the high accuracy and precision of the developed technique. The developed method is robust because it shows no any significant variation in with minute changes. The LOD and LOQ values were assessed to be 2.2μg/mL and 6.6μg/mL respectively. The investigated method proved its sensitivity, precision and accuracy hence could be successfully used to estimate the CPM content in bulk and pharmaceutical matrix tablets.
Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas
2012-10-15
In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.
Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester
NASA Technical Reports Server (NTRS)
Weber, A. L.
1986-01-01
The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.
Effects of pH buffering agents on the anaerobic hydrolysis acidification stage of kitchen waste.
Wang, Yaya; Zang, Bing; Gong, Xiaoyan; Liu, Yu; Li, Guoxue
2017-10-01
This study investigated effects of initial pH buffering agents on the lab-scale anaerobic hydrolysis acidification stage of kitchen waste (KW). Different cheap, available and suitable buffering agents (NaOH(s), NaOH(l), CaO(s)-NaOH, KOH(l)-NaOH, K 2 HPO 4 (s)-KOH, Na 2 CO 3 (s)-NaOH) were added under optimal adjusting mode (first two days: per 16h, after: one time per day) which was obtained in previous work. The effects of buffering agents were evaluated according to indexes of pH, VFAs, NH 4 + -N, TS, VS, VS/TS, TS and VS removal rate. The results showed treatment 5 with adding K 2 HPO 4 -KOH buffering agents had the most stable pH (6.7-7.0). Also treatment 5, 2, 4 and 6 provided stable pH ranging in 5-8. Among the treatments, treatment 6 with adding Na 2 CO 3 as initial buffering agents and 10mol/L NaOH as regulator was chosen as the optimal mode for highest VFAs content (44.05g/L) with high acetic acid and butyrate acid proportion (42.64%), TS and VS removal rate (44.84% and 58.67%, respectively), low VS/TS ratio (58.55), fewer adding dosage and low adjusting frequency. The VFAs content of treatment 6 at the end of hydrolysis acidification stage could be used for methanogenic phase of anaerobic two-phase digestion. Thus, treatment 6 (adding Na 2 CO 3 as initial buffering agents and 10mol/L NaOH as regulator) with highest VFAs content and TS and VS removal rate could be considered using in anaerobic hydrolysis acidification stage pH adjustment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity
NASA Technical Reports Server (NTRS)
Smolka, A. J. K.; Mcguire, J. K.
1978-01-01
The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan
1985-01-01
Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.
Free Available Chlorine Disinfection Criteria for Fixed Army Installation Primary Drinking Water
1981-12-01
Buffered Water with Fuivic Acid (5 C.U.) at pH 9 and 60C ............................................ 6. FAC Disinfection of f 2 Coliphage in Buffered Water ...with and without 250 mg/L -Ca+ at pH 5, 7, and 9 and 6°C ............... 31 10. FAC Disinfection of f 2 Coliphage in Water Containing 5 NTU Bentonite2...rngi L Ca+ 2 at pH- 5, 7, and q and 60C ...... ........................ 34 13. FAC Disinfection of f 2 Coliphage in Borate-Buffered Water with 250 mg
On the pH of Aqueous Attoliter-Volume Droplets
NASA Astrophysics Data System (ADS)
Ramos, Kieran P.; Velpula, Samson S.; Demille, Trevor B.; Pajela, Ryan; Goldner, Lori S.
Droplets of water dispersed in perfluorinated liquids have widespread use including microfluidics, drug delivery and single-molecule measurements. Perfluorinated liquids are distinctly biocompatible due to their stability, low surface tension, lipophobicity, and hydrophobicity. For this reason, the effect of the perfluorinated surface on droplet contents is usually ignored. However, as the droplet diameter is reduced, we expect that any effect of the water/oil interface on droplet contents will become more obvious. We studied the pH of attoliter-volume aqueous droplets in perfluorinated liquids using pH-sensing fluorescent dyes. Droplets were prepared either by sonication or extrusion from buffer and perfluorinated liquids (FC40 or FC77). A non-ionic surfactant was used to stabilize the droplets. Buffer strength, ionic strength, and pH of the aqueous phase were varied and resulting droplet pH compared to the pH of the buffer from which they were formed. Preliminary data are consistent with a pH in droplets that depends on the concentration of non-ionic surfactant. At low surfactant concentrations, the pH in droplets is distinctly lower than the stock buffer. However, as the concentration of non-ionic surfactant is increased the change in pH decreases. This work was funded by NSF/DBI-1152386.
Marlewski, M; Smolenski, R T; Szolkiewicz, M; Aleksandrowicz, Z; Rutkowski, B; Swierczynski, J
2000-11-01
Elevated purine nucleotide pool (mainly ATP) in erythrocytes of patients with chronic renal failure (CRF) is a known phenomenon, however the mechanism responsible for this abnormality is far from being clear. We hypothesize that the increased rate of adenine incorporation into adenine nucleotide pool is responsible for the elevated level of ATP in uremic erythrocytes. In chronically uremic patients we evaluated using HPLC technique: (a) plasma adenine concentration; (b) the rate of adenine incorporation into adenine nucleotide pool in uremic erythrocytes. Additionally, the effect of higher than physiological phosphate concentration (2.4 mM) and lower than physiological pH (7.1) on adenine incorporation into erythrocytes adenine nucleotide pool was investigated. Healthy volunteers with normal renal function served as control. The concentration of adenine in plasma of CRF patients was found to be significantly higher than in plasma of healthy subjects. In contrast, adenosine concentration was similar both in healthy humans and in CRF patients. In isolated erythrocytes of uremic patients (incubated in the medium pH 7.4, containing 1.2 mM inorganic phosphate) adenine was incorporated into adenine nucleotide pool at a rate approximately 2-fold higher than in erythrocytes from healthy subjects. The rate of adenosine incorporation into adenine nucleotide pool was similar in erythrocytes of both studied groups. Incubation of erythrocytes obtained from healthy subjects in the medium pH 7.4, containing 2.4 mM inorganic phosphate, caused the increase of adenine incorporation into adenine nucleotide pool by about 60%. Incubation of the cells in the pH 7.1 buffer containing 2. 4 mM inorganic phosphate increased the rate of adenine incorporation into adenylate approximately 2-fold as compared to erythrocytes incubated in the medium pH 7.4 containing 1.2 mM inorganic phosphate. Erythrocytes obtained from uremic patients and incubated in the pH 7.1 medium containing 2.4 mM phosphate incorporated adenine into adenine nucleotide pool at a rate similar to erythrocytes incubated in the medium pH 7.4 containing 1.2 mM phosphate. Erythrocytes obtained from either healthy subjects or from patients with CRF and incubated in the presence of higher than physiological concentration of inorganic phosphate (2.4 mM) and lower than physiological pH (7. 1) did not exhibit any increase in the rate of adenisine incorporation into adenine nucleotide pool. These results suggest that the increased rate of adenine incorporation into adenine nucleotide pool could be partially responsible for the increased concentration of ATP in uremic erythrocytes. Copyright 2000 S. Karger AG, Basel
Tian, Yanqing; Shumway, Bradley R; Youngbull, A Cody; Li, Yongzhong; Jen, Alex K-Y; Johnson, Roger H; Meldrum, Deirdre R
2010-06-03
Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pK(a) values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values.
Berrang, M E; Cosby, D E; Cox, N A; Cason, J A; Richardson, K E
2015-12-01
Salmonella is a human pathogen that can accompany live broilers to the slaughter plant, contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practice. The first step in culturing feed for Salmonella (which may be at low numbers and sub-lethally stressed) is to add it to a pre-enrichment broth which is incubated for 24 h. During the course of pre-enrichment, extraneous bacteria metabolize carbohydrates in some feed and excrete acidic byproducts, causing the pH to drop dramatically. An acidic pre-enrichment pH can injure or kill Salmonella resulting in a failure to detect, even if it is present and available to infect chickens. The objective of this study was to test an array of buffering chemistries to prevent formation of an injurious acidic environment during pre-enrichment of feed in peptone water. Five grams of feed were added to 45 mL of peptone water buffered with carbonate, Tris pH 8, and phosphate buffering ingredients individually and in combination. Feed was subjected to a pre-enrichment at 35°C for 24 h; pH was measured at 0, 18, and 24 h. Standard phosphate buffering ingredients at concentrations up to 4 times the normal formulation were unable to fully prevent acidic conditions. Likewise, carbonate and Tris pH 8 were not fully effective. The combination of phosphate, carbonate, and Tris pH 8 was the most effective buffer tested. It is recommended that a highly buffered pre-enrichment broth be used to examine feed for the presence of Salmonella. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
New electrochemiluminescent biosensors combining polyluminol and an enzymatic matrix.
Sassolas, Audrey; Blum, Loïc J; Leca-Bouvier, Béatrice D
2009-06-01
Performant reagentless electrochemiluminescent (ECL) (bio)sensors have been developed using polymeric luminol as the luminophore. The polyluminol film is obtained by cyclic voltammetry (CV) on a screen-printed electrode either in a commonly used H(2)SO(4) medium or under more original near-neutral buffered conditions. ECL responses obtained after performing polymerization either at acidic pH or at pH 6 have been compared. It appears that polyluminol formed in near-neutral medium gives the best responses for hydrogen peroxide detection. Polymerization at pH 6 by cyclic voltammetry gives a linear range extending from 8 x 10(-8) to 1.3 x 10(-4) M H(2)O(2) concentrations. Based on this performant sensor for hydrogen peroxide detection, an enzymatic biosensor has been developed by associating the polyluminol film with an H(2)O(2)-producing oxidase. Here, choline oxidase (ChOD) has been chosen as a model enzyme. To develop the biosensor, luminol has been polymerized at pH 6 by CV, and then an enzyme-entrapping matrix has been formed on the above modified working electrode. Different biological (chitosan, agarose, and alginate) and chemical (silica gels, photopolymers, or reticulated matrices) gels have been tested. Best performances have been obtained by associating a ChOD-immobilizing photopolymer with the polyluminol film. In this case, choline can be detected with a linear range extending from 8 x 10(-8) to 1.3 x 10(-4) M.
Wang, Lai-Hao; Li, Wen-Jie
2011-09-06
The electrochemical behaviors of thiazolidine (tetrahydrothiazole) on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77-11.61), acetate buffer (pH 4.31), phosphate buffer solutions (pH 2.11 and 6.38) and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate) as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L-1 was found. The limit of quantification (LOQ) of the method for thiazolidine was found to be 1 ng.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...
Regional postprandial differences in pH within the stomach and gastroesophageal junction.
Simonian, Hrair P; Vo, Lien; Doma, Siva; Fisher, Robert S; Parkman, Henry P
2005-12-01
Our objective was to determine regional differences in intragastric pH after different types of meals. Ten normal subjects underwent 27-hr esophagogastric pH monitoring using a four-probe pH catheter. Meals were a spicy lunch, a high-fat dinner, and a typical bland breakfast. The fatty dinner had the highest postprandial buffering effect, elevating proximal and mid/distal gastric pH to 4.9 +/- 0.4 and 4.0 +/- 0.4, respectively, significantly (P < 0.05) higher compared to 4.2 +/- 0.3 and 3.0 +/- 0.4 for the spicy lunch and 3.0 +/- 0.3 and 2.5 +/- 0.8 for the breakfast. The buffering effect of the high-volume fatty meal to pH > 4 was also longer (150 min) compared to that of the spicy lunch (45 min) and the bland breakfast, which did not increase gastric pH to > 4 at any time. Proximal gastric acid pockets were seen between 15 and 90 min postprandially. These were located 3.4 +/- 0.8 cm below the proximal LES border, extending for a length of 2.3 +/- 0.8 cm, with a drop in mean pH from 4.7 +/- 0.4 to 1.5 +/- 0.9. Acid pockets were seen equally after the spicy lunch and fatty dinner but less frequently after the bland breakfast. We conclude that a high-volume fatty meal has the highest buffering effect on gastric pH compared to a spicy lunch or a bland breakfast. Buffering effects of meals are significantly higher in the proximal than in the mid/distal stomach. Despite the intragastric buffering effect of meals, focal areas of acidity were observed in the region of the cardia-gastroesophageal junction during the postprandial period.
Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.
Nwokoro, Ogbonnaya; Anthonia, Odiase
2015-01-01
Amylases are among the main enzymes used in food and other industries. They hydrolyse starch molecules into polymers composing glucose units. Amylases have potential applications in a number of industrial processes including foods and pharmaceutical industries. Alkaline α-amylase has the potential of hydrolysing starch under alkaline pH and is useful in the starch and textile industries and as an ingredient of detergents. Amylases are produced from plants, however, microbial production processes have dominated applications in the industries. Optimization of microbial production processes can result in improved enzyme yields. Amylase activity was assayed by incubating the enzyme solution (0.5 ml) with 1% soluble starch (0.5 ml) in 0.1 M Tris/HCl buffer (pH 8.5). After 30 minutes, the reaction was stopped by the addition of 4 mL of 3,5-dinitrosalicylic acid (DNS) reagent then heated for 10 min in boiling water bath and cooled in a refrigerator. Absorbance readings were used to estimate the units of enzyme activity from glucose standard curve. Hydrolysed native starches from cassava, rice, corn, coco yam, maize and potato and soluble starch were adjusted to pH 8.5 prior to incubation with crude enzyme solution. Reducing sugars produced were therefore determined. The effect of pH on enzyme activity of the alkaline α-amylase was determined by using buffer solutions of different pH (potassium phosphate buffer, 6.0-7.0; Tris-HCl buffer 7.5 to 9.0 and carbonate/bicarbonate buffer, pH 9.5-11) for enzyme assay. The pH stability profile of the enzyme was determined by incubating 0.5 ml of α-amylase enzyme in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h in various buffers. The effect of temperature on enzyme activity was studied by incubating 0.5 mL of the enzyme solution contained in the test tube and 0.5 mL of 1% soluble starch (Merck) solution prepared in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (25, 30, 35, 40, 45, 50, 55 and 60°C) in a thermo static water bath. The reactions were stopped by adding DNS reagent. The enzyme activity was therefore determined. Thermal stability was studied by incubating 0.5 ml of enzyme solution in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (20, 30, 40, 50, 60 and 70°C) for 60 min. The enzyme displayed optimal activity at pH 8.0 at which it produced maximum specific activity of 34.3 units/mg protein. Maximum stability was at pH 8.0 to 9.0. Maximum activity was observed at temperature of 50°C while thermo stability of the enzyme was observed at 40-50°C. The enzyme displayed a wide range of activities on starch and caused the release of 5.86, 4.75, 5.98, 3.44, 3.96, 8.84 mg/mL reducing sugar from cassava, potato, cocoyam, corn, rice and soluble starch respectively. This investigation reports some biochemical characterization of alkaline α-amylase from Bacillus subtilis CB-18. The substrate specificities of this enzyme on various starches suggested that the alkaline α-amylase enzyme had combined activities on raw and soluble starch.
Oliver, Christine M; Mawson, Raymond; Melton, Laurence D; Dumsday, Geoff; Welch, Jessica; Sanguansri, Peerasak; Singh, Tanoj K; Augustin, Mary Ann
2014-10-13
The consequences of ultrasonic pre-treatment using low (40 kHz) and medium (270 kHz) frequency (40 kHz followed by 270 kHz) on the degradation of wheat chaff (8 g 100ml(-1) acetate buffer, pH 5) were evaluated. In addition, the effects of the ultrasonic pre-treatment on the degradation of the wheat chaff when subsequently exposed to enzyme extracts from two white rot fungi (Phanerochaete chrysosporium and Trametes sp.) were investigated. Pre-treatment by sequential low and medium frequency ultrasound had a disruptive effect on the lignocellulosic matrix. Analysis of the phenolic-derived volatiles after enzymatic hydrolysis showed that biodegradation with the enzyme extract obtained from P. chrysosporium was more pronounced compared to that of the Trametes sp. The efficacy of the ultrasonic pre-treatment was attributed to increased enzyme accessibility of the cellulose fibrils due to sonication-induced disruption of the plant surface structure, as shown by changes in the microstructure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Salivary pH and buffering capacity in early and late human immunodeficiency virus infection.
Hegde, Mithra N; Malhotra, Amit; Hegde, Nidarsh D
2013-11-01
Human immunodeficiency virus (HIV) causes severe immunosuppression due to progressive decrease in the CD4 T lymphocyte cells during the course of the disease and this affects all the body systems including glandular secretions. A number of lesions affecting the salivary glands have been noted in HIV infection. The objective of this study was to evaluate the salivary pH and the buffering capacity in HIV positive individuals and comparing it with the HIV negative healthy individuals. The study was carried out on 200 HIV positive subjects aged 20-40 years, divided into two groups on the basis of CD4 count and 100 HIV negative healthy individuals as control group. Both unstimulated and stimulated saliva were collected and the pH and buffering capacity ascertained using the saliva check kit. (GC Asia Dental Pvt. Ltd., Singapore, 508724). All the three groups were compared using the ANOVA and it was found there was highly significant decrease in pH and buffering capacity with increase in immunosuppression. The intergroup comparison was carried out using the Tukey honestly significant difference (HSD) and the Chi square test. Group 1; CD4 count <200 and Group 2, CD4 count >200 showed a significant decrease in unstimulated salivary flow, stimulated salivary flow, and pH in comparison to HIV negative individuals; however, change in buffering capacity in Group 2 was not significant. There is a decrease in pH and buffering capacity in HIV infected patients. This decrease may be one of the factors responsible for increased caries in HIV infected population.
[Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].
Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo
2012-04-01
Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.
The Determination of the pH of Standard Buffer Solution: A Laboratory Experiment.
ERIC Educational Resources Information Center
Harris, K. R.
1985-01-01
Describes an experiment which shows: (1) how measurements of the reaction electromotive force for the cell (Pt/glass/NaCl(aq,m),buffer/AgCl/Ag/Pt) can be utilized in determining the absolute pH of the buffer; and (2) the demonstration of the use of the Debye-Huckel model of an electrolyte solution in solving an important electrochemical problem.…
NASA Astrophysics Data System (ADS)
Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.
2008-12-01
Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range to aquifer heterogeneity and groundwater velocity. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aims to evaluate and improve enhanced bioremediation of chlorinated solvent source zones. In this context, numerical simulations are supporting the upscaling of the technique, including identifying the most appropriate buffer injection strategies for field applications
Buffer capacity of the coelomic fluid in echinoderms.
Collard, Marie; Laitat, Kim; Moulin, Laure; Catarino, Ana I; Grosjean, Philippe; Dubois, Philippe
2013-09-01
The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8mmolkg(-1) SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4mmolkg(-1) SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3mmolkg(-1) SW compared to unfed ones who showed a difference of about 0.5mmolkg(-1) SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH7.7 to about twice that of the control individuals and, for those at pH7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH7.7 but not for those at pH7.4. Copyright © 2013 Elsevier Inc. All rights reserved.
Biophysical stability of hyFc fusion protein with regards to buffers and various excipients.
Lim, Jun Yeul; Kim, Nam Ah; Lim, Dae Gon; Eun, Chang-yong; Choi, Donghoon; Jeong, Seong Hoon
2016-05-01
A novel non-cytolytic hybrid Fc (hyFc) with an intact Ig structure without any mutation in the hyFc region, was developed to construct a long-acting agonistic protein. The stability of interleukin-7 (IL-7) fused with the hyFc (GXN-04) was evaluated to develop early formulations. Various biophysical methods were utilized and three different buffer systems with various pH ranges were investigated including histidine-acetate, sodium citrate, and tris buffers. Various excipients were incorporated into the systems to obtain optimum protein stability. Two evident thermal transitions were observed with the unfolding of IL-7 and hyFc. The Tm and ΔH increased with pH, suggesting increased conformational stability. Increased Z-average size with PDI and decreased zeta potential with pH increase, with the exception of tris buffer, showed aggregation issues. Moreover, tris buffer at higher pH showed aggregation peaks from DLS. Non-ionic surfactants were effective against agitation by outcompeting protein molecules for hydrophobic surfaces. Sucrose and sorbitol accelerated protein aggregation during agitation, but exhibited a protective effect against oxidation, with preferential exclusion favoring the compact states of GXN-04. The stability of GXN-04 was varied by basal buffers and excipients, hence the buffers and excipients need to be evaluated carefully to achieve the maximum stability of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.
Formulation studies for mirtazapine orally disintegrating tablets.
Yıldız, Simay; Aytekin, Eren; Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen
2016-01-01
Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab). Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900 mL 0.1 N HCl medium, 900 mL pH 6.8 phosphate buffer or 900 mL pH 4.5 acetate buffer at 37 ± 0.2 °C as dissolution medium. Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media. Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles. Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.
el-Ghannam, A; Ducheyne, P; Shapiro, I M
1997-02-01
The objective of the study was to examine the effect of alkali ion release, pH control and buffer capacity on the expression of the osteoblastic phenotype. In addition we determined the importance of modifications of the surface of porous bioactive glass (BG) on the activity of rat calvaria osteoblasts in vitro. We found that at a low tissue culture medium (TCM) volume to BG surface area (Vol/SA) ratio, the products of glass corrosion elevated the pH of the TCM to a value that adversely affected cellular activity; thus, the matrix synthesized by the cells was non-mineralized. On the other hand, when the Vol/SA was high and the buffer capacity of the medium was not exceeded, the cells generated a mineralized extracellular matrix. Addressing the second issue, we observed that modification of the composition of the BG surface markedly influenced osteoblast activity. BG that was coated with either a calcium phosphate-rich layer only or a serum protein layer changed the phenotypic characteristics of the osteoblasts. The presence of either of these surfaces lowered the alkaline phosphatase activity of the attached cells; this finding indicated that the osteoblast phenotype was not conserved. However, when the BG was coated with a bilayer of calcium phosphate and serum proteins, the alkaline phosphatase (AP) activity was elevated and the extracellular matrix contained characteristic bone markers. Our findings indicate that the calcium phosphate-rich layer promotes adsorption and concentration of proteins from the TCM, and it is utilized by the osteoblasts to form the mineralized extracellular matrix.
Hegde, Rahul J; Thakkar, Janhavi B
2017-01-01
This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children. Sixty children aged between 8 and 12 years were selected for the study. They were randomly divided into Group 1 (CPP-ACP chewing gum) and Group 2 (xylitol-containing chewing gum) comprising thirty children each. Unstimulated and stimulated saliva samples at 15 and 30 min interval were collected from all children. All the saliva samples were estimated for salivary flow rate, pH, and buffering capacity. Significant increase in salivary flow rate, pH, and buffering capacity from baseline to immediately after spitting the chewing gum was found in both the study groups. No significant difference was found between the two study groups with respect to salivary flow rate and pH. Intergroup comparison indicated a significant increase in salivary buffer capacity in Group 1 when compared to Group 2. Chewing gums containing CPP-ACP and xylitol can significantly increase the physiochemical properties of saliva. These physiochemical properties of saliva have a definite relation with caries activity in children.
Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi.
DePasquale, D A; Montville, T J
1990-01-01
In this study we examined the mechanism by which ammonium bicarbonate inhibits mycotoxigenic fungi. Elevated extracellular pH, alone, was not responsible for the antifungal activity. Although conidia of Penicillium griseofulvum and Fusarium graminearum had internal pH (pHi) values as high as 8.0 in buffer at an external pH (pHo) of 9.5, their viability was not markedly affected. The pHi values from conidia equilibrated in glycine-NaOH-buffered treatments without ammonium bicarbonate or ammonium sulfate were similar to values obtained from buffered treatments containing the ammonium salts. Thus, inhibition did not appear to be directly related to increased pHi. Ammonium sulfate in buffered media at pH greater than or equal to 8.7 was as inhibitory as ammonium bicarbonate, but was completely ineffective at pH less than or equal to 7.8. The hypothesis that free ammonia caused the fungal inhibition was tested by using ammonium sulfate as a model for ammonium bicarbonate. Viability, expressed as log CFU/ml, and percent germination of P. griseofulvum and F. graminearum decreased dramatically as the free ammonia concentration increased. Germination rate ratios (the germination rate in buffered ammonium sulfate divided by the germination rate in buffer alone) decreased linearly as the free ammonia concentration increased, further establishing NH3 as the toxic agent. Ammonium bicarbonate inhibits fungi because the bicarbonate anion supplies the alkalinity necessary to establish an antifungal concentration of free ammonia. PMID:2082821
Code of Federal Regulations, 2012 CFR
2012-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.... 3.8Timer. 4. Reagents 4.1Standardized 1.0 N sodium hydroxide solution. 4.2Hydroxylamine.... Start the timer. 5.6Stir for 5 minutes. Titrate to pH 4.0 with standardized 1.0 N sodium hydroxide...
Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles.
Keawchaoon, Lalita; Yoksan, Rangrong
2011-05-01
The fabrication of carvacrol-loaded chitosan nanoparticles was achieved by a two-step method, i.e., oil-in-water emulsion and ionic gelation of chitosan with pentasodium tripolyphosphate. The obtained particles possessed encapsulation efficiency (EE) and loading capacity (LC) in the ranges of 14-31% and 3-21%, respectively, when the initial carvacrol content was 0.25-1.25 g/g of chitosan. The individual particles exhibited a spherical shape with an average diameter of 40-80 nm, and a positively charged surface with a zeta potential value of 25-29 mV. The increment of initial carvacrol content caused a reduction of surface charge. Carvacrol-loaded chitosan nanoparticles showed antimicrobial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli with an MIC of 0.257 mg/mL. The release of carvacrol from chitosan nanoparticles reached plateau level on day 30, with release amounts of 53% in acetate buffer solution with pH of 3, and 23% and 33% in phosphate buffer solutions with pH of 7 and 11, respectively. The release mechanism followed a Fickian behavior. The release rate was superior in an acidic medium to either alkaline or neutral media, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Masarik, Michal; Gumulec, Jaromir; Sztalmachova, Marketa; Hlavna, Marian; Babula, Petr; Krizkova, Sona; Ryvolova, Marketa; Jurajda, Michal; Sochor, Jiri; Adam, Vojtech; Kizek, Rene
2011-12-01
Prostate cancer with altered zinc(II) cell metabolism is the second most frequently diagnosed cancer in developed countries. The alterations of zinc(II) metabolism can influence metabolism of other metal ions and can also be associated with the expression and translation of metal-binding proteins including metallothioneins. The aim of this article was to optimize immunoseparation protocol based on paramagnetic beads conjugated with protein G for the isolation of metallothionein. Isolated metallothionein was determined by differential pulse voltammetry Brdicka reaction and SDS-PAGE. Optimal conditions: antigen-binding time - 60 min, temperature - 70°C, and buffer composition and pH - acetate buffer, pH 4.3, were determined. Under the optimized conditions, lysates from 22Rv1 prostate cancer cells treated with various concentrations of cadmium(II) and copper(II) ions were analyzed. We observed strong correlation in all experimental groups and all lysate types (r>0.83 at p<0.041) between metallothionein concentration related to viability and concentration of copper(II) ions and cadmium(II) ions in medium. Moreover, the results were compared with standard sample preparation as heat treatment and SDS-PAGE analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli
Clark, Michelle W.; Yie, Anna M.; Eder, Elizabeth K.; Dennis, Richard G.; Basting, Preston J.; Martinez, Keith A.; Jones, Brian D.; Slonczewski, Joan L.
2015-01-01
Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress. PMID:26713733
Wine pH Prevails over Buffering Capacity of Human Saliva.
Obreque-Slier, Elías; Espínola-Espínola, Valeria; López-Solís, Remigio
2016-11-02
Wine is an acidic beverage; its pH (2.9-3.8) is critically important to its organoleptic properties. During degustation, wine interacts with <1 mL of mouth saliva, the pH of which is near 7.0. This is buffered predominantly by the carbonate/bicarbonate pair (pK a = 6.1). Few data are available on whether the buffering capacity of saliva may alter the pH of wine and thus its sensorial properties. In this study both in vitro and in vivo approaches were conducted to measure pH in mixtures of representative red and white wines with human saliva. Continuous additions of microvolumes of either wine to a definite volume (3 mL) of saliva in vitro resulted in a progressive and steep decline in the pH of the wine/saliva mixture. Thus, a few microliters of either wine (<0.27 mL) was sufficient to reduce the pH of saliva by 1 pH unit. Further additions of wine to saliva lowered the pH to that of the corresponding wine. In the in vivo assay, definite volumes (1.5-18 mL) of either wine were mixed for 15 s with the mouth saliva of individual healthy subjects before pH determination in the expectorated wine/saliva mixtures. Compared to saliva, pronounced decreases in pH were observed, thus approaching the pH of wine even with the smallest volume of wine in the assay. Altogether, these results demonstrate that the buffering capacity of wine prevails over that of saliva and that during degustation the pH of the wine/saliva mixture in the mouth is, at least temporarily, that of the corresponding wine.
Sajeesh, S; Sharma, Chandra P
2006-11-15
Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.
Fangueiro, Joana F; Parra, Alexander; Silva, Amélia M; Egea, Maria A; Souto, Eliana B; Garcia, Maria L; Calpena, Ana C
2014-11-20
Epigallocatechin gallate (EGCG) is a green tea catechin with potential health benefits, such as anti-oxidant, anti-carcinogenic and anti-inflammatory effects. In general, EGCG is highly susceptible to degradation, therefore presenting stability problems. The present paper was focused on the study of EGCG stability in HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) medium regarding the pH dependency, storage temperature and in the presence of ascorbic acid a reducing agent. The evaluation of EGCG in HEPES buffer has demonstrated that this molecule is not able of maintaining its physicochemical properties and potential beneficial effects, since it is partially or completely degraded, depending on the EGCG concentration. The storage temperature of EGCG most suitable to maintain its structure was shown to be the lower values (4 or -20 °C). The pH 3.5 was able to provide greater stability than pH 7.4. However, the presence of a reducing agent (i.e., ascorbic acid) was shown to provide greater protection against degradation of EGCG. A validation method based on RP-HPLC with UV-vis detection was carried out for two media: water and a biocompatible physiological medium composed of Transcutol®P, ethanol and ascorbic acid. The quantification of EGCG for purposes, using pure EGCG, requires a validated HPLC method which could be possible to apply in pharmacokinetic and pharmacodynamics studies. Copyright © 2014. Published by Elsevier B.V.
Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica
Ferrara, Maria Antonieta; Almeida, Débora S.; Siani, Antonio C.; Lucchetti, Leonardo; Lacerda, Paulo S.B.; Freitas, André; Tappin, Marcelo R.R.; Bon, Elba P.S.
2013-01-01
Perillyl derivatives are increasingly important due to their flavouring and antimicrobial properties as well as their potential as anticancer agents. These terpenoid species, which are present in limited amounts in plants, may be obtained via bioconversion of selected monoterpene hydrocarbons. In this study, seventeen yeast strains were screened for their ability to oxidize the exocyclic methyl group in the p-menthene moiety of limonene into perillic acid. Of the yeast tested, the highest efficiency was observed for Yarrowia lipolytica ATCC 18942. The conversion of R (+)-limonene by Y. lipolytica was evaluated by varying the pH (3 to 8) and the temperature (25 to 30 °C) in a reaction medium containing 0.5% v/v limonene and 10 g/L of stationary phase cells (dry weight). The best results, corresponding to 564 mg/L of perillic acid, were obtained in buffered medium at pH 7.1 that was incubated at 25 °C for 48 h. The stepwise addition of limonene increased the perillic acid concentration by over 50%, reaching 855 mg/L, whereas the addition of glucose or surfactant to the reaction medium did not improve the bioconversion process. The use of Y. lipolytica showed promise for ease of further downstream processing, as perillic acid was the sole oxidised product of the bioconversion reaction. Moreover, bioprocesses using safe and easy to cultivate yeast cells have been favoured in industry. PMID:24688495
Brillas, Enric; Garcia-Segura, Sergi; Skoumal, Marcel; Arias, Conchita
2010-04-01
The degradation of diclofenac, a common non-steroidal anti-inflammatory drug, in aqueous medium has been studied by anodic oxidation (AO) using an undivided cell with a Pt or boron-doped diamond (BDD) anode. Operating without pH regulation, AO with Pt acidifies the solution with precipitation of its protonated form, whereas using BDD, the solution becomes alkaline and only attains partial mineralization. Total incineration of low contents of the drug is feasible by AO with BDD in a neutral buffer medium of pH 6.5. Comparative treatment with Pt gives poor decontamination. The diclofenac decay always follows a pseudo first-order reaction. The increase in current for AO with BDD accelerates the degradative process, but decreases its efficiency. 2-Hydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid, 2,6-dichloroaniline and 2,6-dichlorohydroquinone have been identified as aromatic intermediates. For AO with Pt, high amounts of malic, succinic, tartaric and oxalic acids are accumulated in the bulk and the N-derivatives produced are rapidly destroyed with loss of NH4+. When BDD is employed, some carboxylic acids are also accumulated in small extent, with a larger persistence of oxalic and oxamic acids. The process involves the formation of different N-derivatives that slowly release NH4+ and NO3(-) ions. Chloride ion is lost in all cases. 2010 Elsevier Ltd. All rights reserved.
Zhu, S; Schnell, S; Fischer, M
2013-09-01
Cronobacter is associated with outbreaks of rare, but life-threatening cases of meningitis, necrotizing enterocolitis, and sepsis in newborns. This study was conducted to determine the effect of organic acids on growth of Cronobacter in laboratory medium and reconstituted powdered infant formula (PIF) as well as the bacteriostatic effect of slightly acidified infant formula when combined with neonatal gastric acidity. Inhibitory effect of seven organic acids on four acid sensitive Cronobacter strains was determined in laboratory medium with broth dilution method at pH 5.0, 5.5 and 6.0. Acetic, butyric and propionic acids were most inhibitive against Cronobacter in the laboratory medium. The killing effect of these three acids was partially buffered in reconstituted PIF. Under neonatal gastric acid condition of pH 5.0, the slightly acidified formula which did not exert inhibition effect solely reduced significantly the Cronobacter populations. A synergistic effect of formula moderately acidified with organic acid combined with the physiological infant gastric acid was visible in preventing the rapid growth of Cronobacter in neonatal stomach. The study contributed to a better understanding of the inhibitory effect of organic acids on Cronobacter growth in different matrixes and provided new ideas in terms of controlling bacteria colonization and translocation by acidified formula. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pelagio-Flores, Ramón; Esparza-Reynoso, Saraí; Garnica-Vergara, Amira; López-Bucio, José; Herrera-Estrella, Alfredo
2017-01-01
Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants. PMID:28567051
ERIC Educational Resources Information Center
McIntosh, Elizabeth; Moss, Robert
1995-01-01
Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)
Kebede, Noah; Francis, Paul S; Barbante, Gregory J; Hogan, Conor F
2015-11-07
A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.
NASA Astrophysics Data System (ADS)
Karaman, Rafik; Ghareeb, Hiba; Dajani, Khuloud Kamal; Scrano, Laura; Hallak, Hussein; Abu-Lafi, Saleh; Mecca, Gennaro; Bufo, Sabino A.
2013-07-01
Based on density functional theory (DFT) calculations for the acid-catalyzed hydrolysis of several maleamic acid amide derivatives four tranexamic acid prodrugs were designed. The DFT results on the acid catalyzed hydrolysis revealed that the reaction rate-limiting step is determined on the nature of the amine leaving group. When the amine leaving group was a primary amine or tranexamic acid moiety, the tetrahedral intermediate collapse was the rate-limiting step, whereas in the cases by which the amine leaving group was aciclovir or cefuroxime the rate-limiting step was the tetrahedral intermediate formation. The linear correlation between the calculated DFT and experimental rates for N-methylmaleamic acids 1- 7 provided a credible basis for designing tranexamic acid prodrugs that have the potential to release the parent drug in a sustained release fashion. For example, based on the calculated B3LYP/6-31G(d,p) rates the predicted t1/2 (a time needed for 50 % of the prodrug to be converted into drug) values for tranexamic acid prodrugs ProD 1- ProD 4 at pH 2 were 556 h [50.5 h as calculated by B3LYP/311+G(d,p)] and 6.2 h as calculated by GGA: MPW1K), 253 h, 70 s and 1.7 h, respectively. Kinetic study on the interconversion of the newly synthesized tranexamic acid prodrug ProD 1 revealed that the t1/2 for its conversion to the parent drug was largely affected by the pH of the medium. The experimental t1/2 values in 1 N HCl, buffer pH 2 and buffer pH 5 were 54 min, 23.9 and 270 h, respectively.
Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng
2018-06-01
Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.
1991-01-01
The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.
Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...
2016-04-27
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less
Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E
2016-09-01
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.
Islas-Granillo, H; Borges-Yañez, SA; Medina-Solís, CE; Galan-Vidal, CA; Navarrete-Hernández, JJ; Escoffié-Ramirez, M; Maupomé, G
2014-01-01
ABSTRACT Objective: To compare a limited array of chewing-stimulated saliva features (salivary flow, pH and buffer capacity) in a sample of elderly Mexicans with clinical, sociodemographic and socio-economic variables. Subjects and Methods: A cross-sectional study was carried out in 139 adults, 60 years old and older, from two retirement homes and a senior day care centre in the city of Pachuca, Mexico. Socio-demographic, socio-economic and behavioural variables were collected through a questionnaire. A trained and standardized examiner obtained the oral clinical variables. Chewing-stimulated saliva (paraffin method) was collected and the salivary flow rate, pH and buffer capacity were measured. The analysis was performed using non-parametric tests in Stata 9.0. Results: Mean age was 79.1 ± 9.8 years. Most of the subjects included were women (69.1%). Mean chewing-stimulated salivary flow was 0.75 ± 0.80 mL/minute, and the pH and buffer capacity were 7.88 ± 0.83 and 4.20 ± 1.24, respectively. Mean chewing-stimulated salivary flow varied (p < 0.05) across type of retirement home, tooth brushing frequency, number of missing teeth and use of dental prostheses. pH varied across the type of retirement home (p < 0.05) and marginally by age (p = 0.087); buffer capacity (p < 0.05) varied across type of retirement home, tobacco consumption and the number of missing teeth. Conclusions: These exploratory data add to the body of knowledge with regard to chewing-stimulated salivary features (salivary flow rate, pH and buffer capacity) and outline the variability of those features across selected sociodemographic, socio-economic and behavioural variables in a group of Mexican elders. PMID:25867562
Islas-Granillo, H; Borges-Yañez, S A; Medina-Solís, C E; Galan-Vidal, C A; Navarrete-Hernández, J J; Escoffié-Ramirez, M; Maupomé, G
2014-12-01
To compare a limited array of chewing-stimulated saliva features (salivary flow, pH and buffer capacity) in a sample of elderly Mexicans with clinical, sociodemographic and socio-economic variables. A cross-sectional study was carried out in 139 adults, 60 years old and older, from two retirement homes and a senior day care centre in the city of Pachuca, Mexico. Sociodemographic, socio-economic and behavioural variables were collected through a questionnaire. A trained and standardized examiner obtained the oral clinical variables. Chewing-stimulated saliva (paraffin method) was collected and the salivary flow rate, pH and buffer capacity were measured. The analysis was performed using non-parametric tests in Stata 9.0. Mean age was 79.1 ± 9.8 years. Most of the subjects included were women (69.1%). Mean chewing-stimulated salivary flow was 0.75 ± 0.80 mL/minute, and the pH and buffer capacity were 7.88 ± 0.83 and 4.20 ± 1.24, respectively. Mean chewing-stimulated salivary flow varied (p < 0.05) across type of retirement home, tooth brushing frequency, number of missing teeth and use of dental prostheses. pH varied across the type of retirement home (p < 0.05) and marginally by age (p = 0.087); buffer capacity (p < 0.05) varied across type of retirement home, tobacco consumption and the number of missing teeth. These exploratory data add to the body of knowledge with regard to chewing-stimulated salivary features (salivary flow rate, pH and buffer capacity) and outline the variability of those features across selected sociodemographic, socio-economic and behavioural variables in a group of Mexican elders.
Leone, Laura; Ferri, Diego; Manfredi, Carla; Persson, Per; Shchukarev, Andrei; Sjöberg, Staffan; Loring, John
2007-09-15
In this study, macroscopic and spectroscopic data were combined to develop a surface complexation model that describes the acid-base properties of Bacillus subtilis. The bacteria were freeze-dried and then resuspended in 0.1 M NaCl ionic medium. Macroscopic measurements included potentiometric acid-base titrations and electrophoretic mobility measurements. In addition, ATR-FTIR spectra of wet pastes from suspensions of Bacillus subtilis at different pH values were collected. The least-squares program MAGPIE was used to generate a surface complexation model that takes into account the presence of three acid-base sites on the surface: tripple bond COOH, tripple bond NH+, and tripple bond PO-, which were identified previously by XPS measurements. Both potentiometric titration data and ATR-FTIR spectra were used quantitatively, and electrostatic effects at the charged bacterial surface were accounted for using the constant capacitance model. The model was calculated using two different approaches: in the first one XPS data were used to constrain the ratio of the total concentrations of all three surface sites. The capacitance of the double layer, the total buffer capacity, and the deprotonation constants of the tripple bond NH+, tripple bond POH, and tripple bond COOH species were determined in the fit. A second approach is presented in which the ratio determined by XPS of the total concentrations of tripple bond NH+ to tripple bond PO- sites is relaxed. The total concentration of tripple bond PO- sites was determined in the fit, while the deprotonation constant for tripple bond POH was manually varied until the minimization led to a model which predicted an isoelectric point that resulted in consistency with electrophoretic mobility data. The model explains well the buffering capacity of Bacillus subtilis suspensions in a wide pH range (between pH=3 and pH=9) which is of considerable environmental interest. In particular, a similar quantitative use of the IR data opens up possibilities to model other bacterial surfaces at the laboratory scale and help estimate the buffering capacity of carboxylate-containing compounds in natural samples.
Veenendaal, Harm R; Brouwer-Hanzens, Anke J; van der Kooij, Dick
2017-10-15
Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r 2 = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conditions affecting transformation of a group H streptococcus.
Schlissel, H J; Sword, C P
1966-11-01
Schlissel, Harvey J. (The University of Kansas, Lawrence), and C. P. Sword. Conditions affecting transformation of a group H streptococcus. J. Bacteriol. 92:1357-1363. 1966.-A defined transforming medium (DTM) containing buffer and 5 to 10 mug per ml of deoxyribonucleic acid was developed to study the physical and chemical requirements for optimal transformation in streptococcal strain SBE. Optimal transformation in DTM occurred at pH 7.5 and 7.0 in 0.07 m sodium phosphate buffer and 0.05 m tris(hydroxymethyl)aminomethane buffer, respectively. In the presence of either a monovalent or a divalent cation, transformation was stimulated maximally by Mn(+2) (10(-3)m) and K(+) (0.05 m). Other cations tested (Na(+), Mg(+2), Ca(+2)) were less stimulatory. A mixture of K(+) and Mn(+2) stimulated transformation to a level higher than either cation alone. Kinetic studies showed that the stimulating effect of cations was greatest during the early part of the transformation reaction and decreased with time. Transformation was inhibited by Cu(+2) (10(-5)m) and Mn(+2) (10(-2)m). Ethylenediaminetetraacetic acid (EDTA) inhibited transformation at 10(-5)m. The inhibition by EDTA could be overcome by Mn(+2) during the early part of the transformation reaction.
NASA Astrophysics Data System (ADS)
Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun
2013-10-01
Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.
Tadevosian, A; Kalantarian, V; Trchunian, A
2007-01-01
It has been shown that coherent electromagnetic irradiation (EMI) of extremely high frequency (45-53 GHz) or millimeter waves (wavelength 5.6-6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) of Escherichia coli K12, grown under anaerobic conditions during the fermentation of sugar (glucose) for 30 min or 1 h, caused a decrease in their growth rate, the maximum inhibitory effect being achieved at a frequency of 51.8 or 53 GHz. This effect depended on medium pH when the maximal action was determined at pH 7.5. In addition, separate 30-min of 1-h irradiation (frequency 51.8 or 53 GHz) of doubly distilled water or some inorganic ions contained in Tris-phosphate buffer where the cells were transferred induced oppositely directed changes in further growth of these bacteria under anaerobic conditions; irradiation of water caused a decrease in the growth rate of bacteria. A significant change in pH of water (0.5-1.5 unit) was induced by a 30-irradiation at a frequency of 49, 50.3, 51.8, or 53 GHz, when the initial pH value was 6.0 or 8.0, but not 7.5. These results indicate the changes in the properties of water and its role in the effects of EMI of extremely high frequency. The marked effect of EMI on bacteria disappeared upon repeated irradiation for 1 h at a frequency of 51.8 or 53 GHz with an interval of 2 hours. This result indicates some compensatory mechanisms in bacteria.
Fadda, Angela; Barberis, Antonio; Sanna, Daniele
2018-02-01
The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.
Donnini, Serena; Ullmann, R Thomas; Groenhof, Gerrit; Grubmüller, Helmut
2016-03-08
In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.
Optimization of growth for the hyperthermophilic archaeon Aeropyrum pernix on a small-batch scale.
Milek, Igor; Cigic, Blaz; Skrt, Mihaela; Kaletunç, Gönül; Ulrih, Natasa Poklar
2005-09-01
Growth of Aeropyrum pernix, the first reported aerobic neutrophilic hyperthermophilic archaeon, was investigated under different cultivation parameters. Different sources of seawater, pH, and the cultivation methods were tested with the aim to improve the biomass production. A 1-L glass flask fitted with a condenser and air diffuser was used as a bioreactor. The optimum conditions for maximizing A. pernix biomass were obtained when Na2S2O3.5H2O (1 g/L) with added marine broth 2216 at pH 7.0 (20 mmol HEPES buffer/L) was used as a growing medium in a 1-L flask. The biomass production was 0.45 g dry cell mass/L in 40 h under the optimum conditions, which is more than the 0.42 g dry cell mass/L in 60 h previously obtained.
[Study on preparation of sagittatoside B with epimedin B converted from cellulase].
Xu, Feng-Juan; Sun, E; Zhang, Zhen-Hai; Cui, Li; Jia, Xiao-Bin
2014-01-01
To prepare sagittatoside B with epimedin B Hydrolyzed from cellulase. With the conversion ratio as the index, the effects of pH value, temperature, reaction time, dosage of enzyme and concentration of substrates on the conversion ratio were detected. L9 (3(4)) orthogonal design was adopted to optimize the preparation process. Hydrolyzed products were identified by MS, 1H-NMR, and 13C-NMR. The results showed that the optimum reaction conditions for the enzymatic hydrolysis were that the temperature was 50 degrees C, the reaction medium was pH 5.6 acetic acid-sodium acetate buffer solution, the concentration of substrates was 20 g x L(-1), the mass ratio between enzyme and substrate was 3: 5, and the relative molecular mass of the reaction product was 646.23. NMR data proved that the product was sagittatoside B. The process is simple and reliable under mild reaction conditions, thus suitable for industrial production.
Shepodd, Timothy J.
2002-01-01
Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.
Donaldson, K; Addison, J; Miller, B G; Cullen, R T; Davis, J M
1994-01-01
We used a special-purpose glass microfiber sample, Johns-Manville Code 100/475, to study the effects of various acid and alkali treatments on biological activity as assessed by inflammation in the mouse peritoneal cavity, the leaching of Si, and the phase contrast optical microscopy (PCOM) fiber number. We used mild and medium treatments with oxalic acid and Tris buffer and harsh treatment with concentrated HCl and NaOH. Mild oxalic acid and Tris treatment for 2 weeks had no effect on any of the end-points, but prolonging the mild oxalic acid treatment time to 2 months reduced the biological activity and the fiber number. Medium oxalic acid treatment reduced the biological activity and the fiber number and caused a loss of Si. Medium Tris alkali treatment reduced the PCOM-countable fibers and the biological activity but did not cause a substantial loss of Si. Harsh treatment with strong HCl did not affect the fiber number or cause leaching but the biological activity was reduced; strong NaOH reduced the fiber number and biological activity, and caused marked leaching of Si. The medium oxalic acid conditions (pH 1.4) were more acid than those found in lung cells but produced the same effects (reduction in fiber number and biological activity) as the more physiological mild treatment (pH 4.0), when prolonged. This study suggests that medium oxalic acid treatment can be used as a short-term assay to compare loss of Si, reduction in fiber number, and change in biological activity of vitreous fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882922
Azizi, Ebrahim; Namazi, Alireza; Haririan, Ismaeil; Fouladdel, Shamileh; Khoshayand, Mohammad R; Shotorbani, Parisa Y; Nomani, Alireza; Gazori, Taraneh
2010-01-01
Chitosan/alginate nanoparticles which had been optimized in our previous study using two different N/P ratios were chosen and their ability to release epidermal growth factor receptor (EGFR) antisense was investigated. In addition, the stability of these nanoparticles in aqueous medium and after freeze-drying was investigated. In the case of both N/P ratios (5, 25), nanoparticles started releasing EGFR antisense as soon as they were exposed to the medium and the release lasted for approximately 50 hours. Nanoparticle size, shape, zeta potential, and release profile did not show any significant change after the freeze-drying process (followed by reswelling). The nanoparticles were reswellable again after freeze-drying in phosphate buffer with a pH of 7.4 over a period of six hours. Agarose gel electrophoresis of the nanoparticles with the two different N/P ratios showed that these nanoparticles could protect EGFR antisense molecules for six hours. PMID:20957167
Inorganic Substrates and Encapsulation Layers for Transient Electronics
2014-07-01
surface oxidation of the nitrides, the measurements were conducted shortly after oxide removal in buffered oxide etchant (BOE) 6:1 (Transene Company Inc...values for the time-dependent dissolution of thermally grown SiO2 (dry oxidation) in buffer solutions (black, pH 7.4; red, pH 8; blue, pH 10...22 5.1.3 Contractor will Identify and Measure Key Performance Characteristics of Candidate Metal Conductive Layers for
Sullivan, Annett B.; Rounds, Stewart A.; Asbill-Case, Jessica R.; Deas, Michael L.
2013-01-01
A hydrodynamic, water temperature, and water-quality model of the Link River to Keno Dam reach of the upper Klamath River was updated to account for macrophytes and enhanced pH buffering from dissolved organic matter, ammonia, and orthophosphorus. Macrophytes had been observed in this reach by field personnel, so macrophyte field data were collected in summer and fall (June-October) 2011 to provide a dataset to guide the inclusion of macrophytes in the model. Three types of macrophytes were most common: pondweed (Potamogeton species), coontail (Ceratophyllum demersum), and common waterweed (Elodea canadensis). Pondweed was found throughout the Link River to Keno Dam reach in early summer with densities declining by mid-summer and fall. Coontail and common waterweed were more common in the lower reach near Keno Dam and were at highest density in summer. All species were most dense in shallow water (less than 2 meters deep) near shore. The highest estimated dry weight biomass for any sample during the study was 202 grams per square meter for coontail in August. Guided by field results, three macrophyte groups were incorporated into the CE-QUAL-W2 model for calendar years 2006-09. The CE-QUAL-W2 model code was adjusted to allow the user to initialize macrophyte populations spatially across the model grid. The default CE-QUAL-W2 model includes pH buffering by carbonates, but does not include pH buffering by organic matter, ammonia, or orthophosphorus. These three constituents, especially dissolved organic matter, are present in the upper Klamath River at concentrations that provide substantial pH buffering capacity. In this study, CE-QUAL-W2 was updated to include this enhanced buffering capacity in the simulation of pH. Acid dissociation constants for ammonium and phosphoric acid were taken from the literature. For dissolved organic matter, the number of organic acid groups and each group's acid dissociation constant (Ka) and site density (moles of sites per mole of carbon) were derived by fitting a theoretical buffering response to measured upper Klamath River alkalinity titration curves. The organic matter buffering in the Klamath River was modeled with two monoprotic organic acids: carboxylic acids with a mean pKa of 5.584 and site density of 0.1925, and phenolic organic acids with a mean pKa of 9.594 and site density of 0.6466. Total inorganic carbon concentrations in the model boundary inputs were recalculated based on the new buffering equations. CE-QUAL-W2 was also adjusted to allow the simulation of nonconservative alkalinity caused by nitrification, denitrification, photosynthesis, and respiration. The Klamath River model was recalibrated after the macrophyte and pH buffering updates producing improved predictions for pH, dissolved oxygen, and particulate carbon.
Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald
2018-01-13
Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter ( n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA ( p < 0.05) while maximum calcium ion release was dependent on Vol of TSC ( p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution ( p < 0.05).
Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald
2018-01-01
Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter (n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA (p < 0.05) while maximum calcium ion release was dependent on Vol of TSC (p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution (p < 0.05). PMID:29342837
Ren, Yueping; Chen, Jinli; Shi, Yugang; Li, Xiufen; Yang, Na; Wang, Xinhua
2017-11-01
Anolyte acidification is an inevitable restriction for the bioelectricity generation of buffer-free microbial fuel cells (MFCs). In this work, acidification of the buffer-free KCl anolyte has been thoroughly eliminated through anolyte recycling. The accumulated HCO 3 - concentration in the recycled KCl anolyte was above 50mM, which played as natural buffer and elevated the anolyte pH to above 8. The maximum power density (P max ) increased from 322.9mWm -2 to 527.2mWm -2 , which is comparable with the phosphate buffered MFC. Besides Geobacter genus, the gradually increased anolyte pH and conductivity induced the growing of electrochemically active Geoalkalibacter genus, in the anode biofilm. Anolyte recycling is a feasible strategy to strengthen the self-buffering capacity of buffer-free MFCs, thoroughly eliminate the anolyte acidification and prominently enhance the electric power. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rivelli, Graziella Gomes; Ricoy, Letícia Brandão Magalhães; César, Isabela Costa; Fernandes, Christian; Pianetti, Gérson Antônio
2018-06-05
Malaria is the most incident parasite infection worldwide. Artemisinin based combination therapy (ACT) has been proposed as a promising treatment for malaria, and artemether + lumefantrine (20 + 120 mg) is the recommended association in endemic areas. Despite its widespread use, there is still scarce information about dissolution of artemether and lumefantrine, reflecting in the absence of a specific method in pharmacopoeias and international compendia. Because the of their low solubility, both artemether and lumefantrine are candidates for in vitro-in vivo correlation (IVIVC) studies. Previous equilibrium solubility studies have been carried out for both drugs using the shake-flask method and dissolution profiles. Experiments were conducted with a range of parameters such as medium composition, pH and surfactants. In vivo data obtained in a previous pharmacokinetic study was used to select the optimum conditions for dissolution test, based on IVIVC. For drug quantitation, a selective method by high performance liquid chromatography was optimized and validated. For this dosage form, the best dissolution conditions found for artemether were: paddles, 900 mL of dissolution medium containing phosphate buffer pH 6.8 with 1.0% sodium lauryl sulfate and rotation speed of 100 rpm. The same was obtained for lumefantrine, except the dissolution medium, which was pH 1.2 with 1.0% polysorbate 80. After obtaining the curve of in vitro dissolved fraction versus in vivo absorbed fraction, the calculated coefficient of determination (R squared) was close to 1.00 for both drugs, indicating a level A correlation. Therefore, a novel method for assessing dissolution of arthemeter and lumefantrine tablets was established and validated. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, Sijin; Wang, Jialei; Shang, Qing
2017-02-01
A monomer of sucrose acrylate (AC-sucrose) was synthesized by conjugating starting compound sucrose with methyl acrylate (MA). The obtained AC-sucrose was characterized by mass spectrometry (MS) and Fourier transform infrared (FTIR) spectroscopy. AC-sucrose was selected as a monomer to fabricate a novel pH sensitive hydrogel via free radical polymerization. The inner morphology of the final hydrogel was observed with an S-4800 scanning electron microscope (SEM). The swelling and de-swelling behaviors of the hydrogel chips were also studied. Curcumin (CUR) was selected as a model drug and loaded into the final hydrogel. The release profiles of CUR were performed via dialysis method in pH 1.2, 6.8 and 7.4 buffers, respectively. Mass and FTIR spectra confirmed the synthesis of AC-sucrose. SEM photographs showed that poly(AC-sucrose-co-MAA) hydrogels had many 3D meshes. In pH 1.2 buffer, the hydrogel chips showed the biggest swelling ratio (SR) of 34.4 ± 1.9%. However, in pH 7.4 buffer, the SRs of the hydrogel chips reached to 368.7 ± 28.0%, which suggested that the hydrogel had an excellent pH sensibility. The releasing profiles showed that only 4.6 ± 0.4% of CUR was released in pH 1.2 buffer but 93.7 ± 4.7% of CUR was diffused into pH 7.4 buffer. These data suggested that the CUR-loaded poly (AC-sucrose-co-MAA) hydrogel could direct CUR to release in basic environments.
Zheng, Songyan; Qiu, Difei; Adams, Monica; Li, Jinjiang; Mantri, Rao V; Gandhi, Rajesh
2017-01-01
This study aimed in understanding the degradation behaviors of an IgG 1 subtype therapeutic monoclonal antibody A (mAb-A) associated with pH and buffer species. The information obtained in this study can augment conventional, stability-based screening paradigms by providing the direction necessary for efficient experimental design. Differential scanning calorimetry (DSC) was used for studying conformational stability. Dynamic light scattering (DLS) was utilized to generate B 22 *, a modified second virial coefficient for the character of protein-protein interaction. Size-exclusion chromatography (SEC) and hydrophobic interaction chromatography (HIC) were employed to separate degradation products. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for determining the molecular size and liquid chromatography mass spectrometry (LC-MS) were used for identifying the sequence of the separated fragments. The results showed that both pH and buffer species played the roles in controlling the degradation behaviors of mAb-A, but the pH was more significant. In particular, pH 4.5 induced additional thermal transition peaks occurring at a low temperature compared with pH 6.5. A continual temperature-stress study illustrated that the additional thermal transition peaks related to the least stable structure and a greater fragmentation. Although mAb-A showed the comparable conformational structures and an identical amount of aggregates at time zero between the different types of buffer species at pH 6.5, the aggregation formation rate showed a buffer species-dependent discrepancy over a temperature-stress period. It was found that the levels of aggregations associated with the magnitudes of protein-protein interaction forces.
Biochar contribution to soil pH buffer capacity
NASA Astrophysics Data System (ADS)
Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit
2014-05-01
Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type, organic matter and type of added carbonizated material. Our study showed that the biochar content has significant role in total pH buffer capacity in soil:biochar system . References. Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J., Riha, S.J., Verchot, L., Recha, J.W., Pell, A.N. 2008. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. Ecosystems, 11, 726-739. Krull, E. S., Skjemstad, J.O., Baldock, J.A. 2004 'Functions of Soil Organic Matter and the Effect on Soil Properties'. GRDC report. Project CSO 00029. Mutezo, W.T., 2013. Early crop growth and yield responses of maize (Zea mays) to biochar applied on soil. International Working Paper Series, 13/03, 50 pp.
Anand, Siddharth; Masih, Updesh; Yeluri, Ramakrishna
If a relation exists between salivary I PHA , buffer capacity and caries experience, then this relationship could be used as screening chair side test for caries risk assessment. One hundred ninety seven children aged 4 to 6 years were examined. Data was collected by interview and clinical examination. They were divided into low, moderate and high caries experience group of 20 children each. Two ml of each sample was used to measure the pH value with pH meter. Regarding the buffering capacity, freshly prepared hydrochloric acid (HCl) was titrated into saliva and pH was recorded. The collected saliva samples were sent to Laboratory for measurement of calcium and phosphorus. I PHA was calculated and the negative logarithms of I PHA were used to determine the enamel solubility. The correlation between salivary I PHA , buffering capacity and caries experience were evaluated. There was a significant relation between pH, log I PHA and dental caries experience, it could be considered as a predictor of dental caries. pH measurement after HCl titration in saliva could be used as chair side screening test for the assessment of caries risk.
Zhou, Marilyn X; Foley, Joe P
2006-03-15
To optimize separations in capillary electrophoresis, it is important to control the electroosmotic mobility of the running buffer and the factors that affect it. Through the application of a site-dissociation-site-binding model, we demonstrated that the electroosmotic mobility could be controlled qualitatively and quantitatively by the parameters related to the physical and chemical properties of the running buffer: pH, cation valence, ionic strength, viscosity, activity, and dissociation constant. Our study illustrated that the logarithm of the number of apparent silanol sites on a fused-silica surface has a linear relationship with the pH of a buffer solution. The extension of the chemical kinetics approach allowed us to obtain the thickness of the electrical double layer when multivalent inorganic cations are present with monovalent cations in a buffer solution, and we found that the thickness of the electrical double layer does not depend on the charge of anions. The general equation to predict the electroosmotic mobility suggested here also indicates the increase of electroosmotic mobility with temperature. The general equation was experimentally verified by three buffer scenarios: (i) buffers containing only monovalent cations; (ii) buffers containing multivalent inorganic cations; and (iii) buffers containing cations and neutral additives. The general equation can explain the experimental observations of (i) a maximum electroosmotic mobility for the first scenario as the pH was varied at constant ionic strength and (ii) the inversion and maximum value of the electroosmotic mobility for the second scenario when the concentration of divalent cations was varied at constant pH. A good agreement between theory and experiment was obtained for each scenario.
Sak-Bosnar, M; Kovar, K
2005-10-01
This paper describes the use of potentiometric titration to determine the relevant acid-base properties of 5-hydroxypyrazine-2-carboxylic acid (5OH-PYCA), an important intermediate in the production of tuberculostatics. The data obtained were used for calculation of the dissociation constants of 5OH-PYCA. It was found that 5OH-PYCA dissociates in two steps, with the corresponding dissociation constants pK (a1)=3.42 and pK (a2)=7.96, designating 5OH-PYCA as a medium weak acid (1st step). The distribution diagram of dissociated species and the buffer-strength diagram of 5OH-PYCA provide useful information about its behaviour at different pH. The ionic equilibria data obtained can be used for selection of the optimum pH for biotransformation of pyrazine-2-carboxylic acid (PYCA) and for prediction of pH changes during the biotransformation. These data can also be used for selection of the optimum pH for precipitating 5OH-PYCA in downstream processing. All computations have been optimized by mathematical modelling using Solver.
Singh, R; Kristensen, S; Tønnesen, H H
2013-03-01
The influence of vehicle properties and excipients on the hydrolytic and photochemical stability of curcumin in Pluronic preparations, and the interactions between curcumin and Pluronics was investigated. Curcumin was found to be degraded by general acid-base catalyzed hydrolytic degradation in alkaline preparations. The degradation rate of curcumin was higher in carbonate buffer than in phosphate buffer (pH 8.8), while it was higher in phosphate buffer than in citrate buffer (pH 7.8). At pH 8.0-8.8 the degradation rate of curcumin increased compared to preparations with pH <8.0. The stabilizing effect of the Pluronics against hydrolytic degradation of curcumin was only detectable at pH 8.0-8.8, and it was highest for F127 and lowest for P85, in phosphate buffer pH 8.8. An increase in the ionic strength increased the stabilization against hydrolytic degradation of curcumin by all Pluronics. Addition of ethanol decreased the hydrolytic stability of curcumin in all Pluronics. Addition of PEG 400 decreased the hydrolytic stability in preparation with either P123 or F127 while the degradation in preparations with P85 remained the same as in P85 preparations without PEG 400. Vehicle properties and excipients did not to any large degree influence the spectroscopic properties or the photostability of curcumin in Pluronic preparations. Photochemical half life of curcumin was in the minutes range. Spectrophotometric data indicate that Pluronic aggregates most likely solubilize curcumin through hydrophobic interactions, although hydrogen-bonding may also be involved.
Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry.
Marák, Jozef; Stanová, Andrea
2014-05-01
In this work, the impact of buffer salts/matrix effects on the signal in direct injection MS with an electrospray interface (DI-ESI-MS) following pITP fractionation of the sample was studied. A range of buffers frequently used in CE analyses (pH 3-10) was prepared containing 10, 50, and 90% v/v of ACN, respectively. The sets of calibration solutions of cetirizine (an antihistaminic drug with an amphiprotic character) within a 0.05-2.0 mg/L concentration range were prepared in different buffers. The greatest enhancements in the MS signal (in terms of change in the slope of the calibration line) were obtained for the beta-alanine buffer (pH 3.5) in positive ionization and for the borate buffer (pH 9.2) in negative ionization, respectively. The procedure was successfully applied to the analysis of buserelin (a peptidic drug). The slope of the calibration line for solutions containing the beta-alanine buffer with 50% of ACN was 4 times higher than for water or urine, respectively. This study clearly demonstrates that the buffer salt/matrix effects in an offline combination of pITP and DI-ESI-MS can also play a positive role, as they can enhance the signal in MS. A similar influence of the above effects can also be presumed in the CE techniques combined on-line with ESI-MS.
Tsaltas, G; Ford, C H
1993-02-01
Methods following the process of binding and internalization of antibodies to cell surface antigens have often employed low pH isoosmolar buffers in order to dissociate surface antigen-antibody complexes. One of the most widely used buffers is a 0.05 M glycine-HCL buffer pH 2.8. Since the efficacy of action of this buffer was critical to a series of internalization experiments employing monoclonal antibodies (Mabs) to carcinoembryonic antigen (CEA) expressing cancer cell lines in this laboratory, we tested its performance in a number of different assays. Our results indicate that this buffer only partially dissociates antigen-antibody bonds and therefore can introduce major inaccuracies in internalization experiments.
Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme
NASA Technical Reports Server (NTRS)
Gibson, Ursula J.
1999-01-01
The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.
Johansson, M; Lenngren, S
1988-11-18
Extraction of the hydrophobic tertiary amine bromhexine from plasma using cyclohexane-heptafluorobutanol (99.5:0.5, v/v) was studied at different pH values. The extraction yield from buffer solutions was quantitative at pH greater than 4.1, but from plasma the extraction yield decreased with increasing pH. Furthermore, at pH 8.4 the extraction yield varied greatly (56-99%) in different human plasma. The addition of lipoproteins to phosphate buffer, at pH 8.1, decreased the extraction yields considerably. Quantitative extraction from plasma was obtained by using a very long extraction time at pH 8.4 or by decreasing the pH to 5.4. The chromatographic system consisted of a reversed-phase column (Nucleosil C18, 5 microns) with an acidic mobile phase (methanol-phosphate buffer, pH 2) containing an aliphatic tertiary amine. UV detection at 308 or 254 nm was used. The limit of quantitation was 5 ng/ml using 3.00 ml of plasma and detection at 254 nm. The intra-assay precision for bromhexine was better than 3.6% at 5 ng/ml.
LaMere, Brandon J; Howell, Renee; Fetterman, Barbara; Shieh, Jen; Castle, Philip E
2008-08-01
The impact of 6-month storage of cervical specimens under alkaline conditions that occurs as the result of Hybrid Capture 2 testing on human papillomavirus (HPV) genotyping is not well documented. To examine this issue, 143 frozen hc2-positive specimens in specimen transport medium were selected at random from each of the following groups: specimens stored for 6 months, 4 months, and 2.5 months under alkaline pH (pH 12-13) and specimens stored 1 month at neutral pH (pH 6-7) as controls. Specimens were tested in a masked fashion for 20 HPV genotypes (HPV6, 11, 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, and 82) using a prototype, research-use-only GP5+/6+ L1 consensus PCR method and multiplex hybridization using Luminex xMAP for detection of specific HPV genotypes One control specimen had missing test results. There were no statistical differences in the number of HPV genotypes detected, number of carcinogenic HPV genotypes detected, or in the signal strength among HPV-positive results across groups. Six-month frozen storage of cervical specimens at alkaline pH had little impact on testing for HPV genotypes among hc2-positive women using this HPV genotyping method.
The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.
Metrick, Michael A; Temple, Joshua E; MacDonald, Gina
2013-12-31
The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.
Erosive and buffering capacities of yogurt.
Kargul, Betul; Caglar, Esber; Lussi, Adrian
2007-05-01
The capability of drinks and foods to resist pH changes brought about by salivary buffering may play an important role in the erosion of dental enamel. The aim of the present study was to measure the initial pH of several types of yogurt and to test the degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite to determine the buffering capacity and related erosive potential of yogurt. Twenty-five milliliters of 7 types of freshly opened yogurt was titrated with 1 mol/L of sodium hydroxide, added in 0.5 mL increments, until the pH reached 10, to assess the total titratable acidity, a measure of the drink's own buffering capacity. The degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite were also calculated, using a computer program developed for this purpose. For statistical analysis, samples were compared using Kruskal-Wallis test. The buffering capacities can be ordered as follows: fruit yogurt >low-fat yogurt >bioyogurt >butter yogurt >natural yogurt >light fruit yogurt >light yogurt. The results suggest that, in vitro, fruit yogurt has the greatest buffering capacity. It can be stated that it is not possible to induce erosion on enamel with any type of yogurt.
Pharmaceutical Evaluation of Cefuroxime Axetil Tablets Available in Drug Market of Pakistan
Israr, F.; Mahmood, Z. A.; Hassan, F.; Hasan, S. M. F.
2016-01-01
Cefuroxime is a second generation cephalosporin antibiotic with a broad spectrum activity against Gram positive and Gram negative bacteria. The purpose of this research work was to evaluate the pharmaceutical quality standards of four different brands of cefuroxime axetil 125 mg tablets with different price ranges purchased from retail pharmacies of Pakistan. The brands were tested for physicochemical evaluation and in vitro dissolution studies in different medium like 0.07N HCl, distilled water, 0.1N HCl of pH 1.2 and phosphate buffers of pH 4.5 and pH 6.8. Statistical analysis, model dependent (zero order, first order, Korsmeyer-Peppas, Hixson-Crowell, Weibull) and model independent (Difference f1, similarity f2) approaches were applied to multiple dissolution profile of all brands. All brands were found to be similar with reference and meeting the compendial quality standard. Inter brand variation was observed in disintegration time and assay which was resulted in significant differences (P<0.05) in drug release data and Weibull was observed as best fill model. PMID:27168677
Uptake and Accumulation of the Herbicides Chlorsulfuron and Clopyralid in Excised Pea Root Tissue 1
Devine, Malcolm D.; Bestman, Hank D.; Vanden Born, William H.
1987-01-01
The herbicides chlorsulfuron and clopyralid were taken up rapidly by excised pea root tissue and accumulated in the tissue to concentrations ten and four times those in the external medium, respectively. Uptake was related linearly to external herbicide concentration over a wide concentration range, implying that transport across the membrane is by nonfacilitated diffusion. Uptake of both compounds was influenced by pH, with greatest uptake at low pH. The pH dependence of uptake suggests that the herbicides (both of which are weak acids) are transported across the plasma membrane in the undissociated form, and accumulate in the cytoplasm by an ion trap mechanism. Most of the absorbed herbicide effluxed from the tissue when it was transferred to herbicide-free buffer, indicating that the accumulation was not due to irreversible binding. Consequently, both herbicides remain available for transfer to the phloem. These results can explain the high reported phloem mobility of clopyralid in intact plants. The low phloem mobility of chlorsulfuron must be accounted for by factors that override its ability to accumulate in the symplast. PMID:16665689
Huang, Guozhen; Li, Chuang; Han, Xintong; Aderinto, Stephen Opeyemi; Shen, Kesheng; Mao, Shanshan; Wu, Huilu
2018-06-01
The present study reports the development of a new 1,8-naphthalimide-based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52-9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO-HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence 'turn off' mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 10 6 M -1 and 4.67 × 10 -8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples. Copyright © 2018 John Wiley & Sons, Ltd.
Sun, Chong; Yang, Xiao-Di; Fan, Liu-Yin; Zhang, Wei; Xu, Yu-Quan; Cao, Cheng-Xi
2011-04-01
As shown herein, a normal moving reaction boundary (MRB) formed by an alkaline buffer and a single acidic buffer had poor stacking to the new important plant growth promoter of phenazine-1-carboxylic acid (PCA) in soil due to the leak induced by its low pK(a). To stack the PCA with low pK(a) efficiently, a novel stacking system of MRB was developed, which was formed by an alkaline buffer and double acidic buffers (viz., acidic sample and blank buffers). With the novel system, the PCA leaking into the blank buffer from the sample buffer could be well stacked by the prolonged MRB formed between the alkaline buffer and blank buffer. The relevant mechanism of stacking was discussed briefly. The stacking system, coupled with sample pretreatment, could achieve a 214-fold increase of PCA sensitivity under the optimal conditions (15 mM (pH 11.5) Gly-NaOH as the alkaline buffer, 15 mM (pH 3.0) Gly-HCl-acetonitrile (20%, v/v) as the acidic sample buffer, 15 mM (pH 3.0) Gly-HCl as the blank buffer, 3 min 13 mbar injection of double acidic buffers, benzoic acid as the internal standard, 75 μm i.d. × 53 cm (44 cm effective length) capillary, 25 kV and 248 nm). The limit of detection of PCA in soil was decreased to 17 ng/g, the intra-day and inter-day precision values (expressed as relative standard deviations) were 3.17-4.24% and 4.17-4.87%, respectively, and the recoveries of PCA at three concentration levels changed from 52.20% to 102.61%. The developed method could be used for the detection of PCA in soil at trace level.
NASA Astrophysics Data System (ADS)
Barbour, Michele E.; Shellis, R. Peter
2007-02-01
Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.
Geochemical and lithological factors in acid precipitation
James R. Kramer
1976-01-01
Acid precipitation is altered by interaction with rocks, sediment and soil. A calcareous region buffers even the most intense loading at pH ~8; an alumino silicate region with unconsolidated sediment buffers acid loadings at pH ~6.5; alumino silicate outcrops are generally acidified. Either FeOOH or alumino silicates are probable H+...
Tanabe, Mai; Takahashi, Toshiyuki; Shimoyama, Kazuhiro; Toyoshima, Yukako; Ueno, Toshiaki
2013-10-28
The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett's test (p < 0.05). The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food.
Hirsh, Allen G; Tsonev, Latchezar I
2017-04-28
This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein-membrane interactions are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Developing procedures for the large-scale purification of human serum butyrylcholinesterase.
Saxena, Ashima; Luo, Chunyuan; Doctor, Bhupendra P
2008-10-01
Human serum butyrylcholinesterase (Hu BChE) is the most viable candidate for the prophylactic treatment of organophosphate poisoning. A dose of 200 mg/70 kg is predicted to protect humans against 2x LD(50) of soman. Therefore, the aim of this study was to develop procedures for the purification of gram quantities of this enzyme from outdated human plasma or Cohn Fraction IV-4. The purification of Hu BChE was accomplished by batch adsorption on procainamide-Sepharose-CL-4B affinity gel followed by ion-exchange chromatography on a DEAE-Sepharose column. For the purification of enzyme from Cohn Fraction IV-4, it was resuspended in 25 mM sodium phosphate buffer, pH 8.0, and fat was removed by decantation, prior to batch adsorption on procainamide-Sepharose gel. In both cases, the procainamide gel was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0, containing 0.05 M NaCl, and the enzyme was eluted with the same buffer containing 0.1 M procainamide. The enzyme was dialyzed and the pH was adjusted to 4.0 before loading on the DEAE column equilibrated in sodium acetate buffer, pH 4.0. The column was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0 containing 0.05 M NaCl before elution with a gradient of 0.05-0.2M NaCl in the same buffer. The purity of the enzyme following these steps ranged from 20% to 40%. The purity of the enzyme increased to >90% by chromatography on an analytical procainamide affinity column. Results show that Cohn Fraction IV-4 is a much better source than plasma for the large-scale isolation of purified Hu BChE.
Development and Validation of New Discriminative Dissolution Method for Carvedilol Tablets
Raju, V.; Murthy, K. V. R.
2011-01-01
The objective of the present study was to develop and validate a discriminative dissolution method for evaluation of carvedilol tablets. Different conditions such as type of dissolution medium, volume of dissolution medium and rotation speed of paddle were evaluated. The best in vitro dissolution profile was obtained using Apparatus II (paddle), 50 rpm, 900 ml of pH 6.8 phosphate buffer as dissolution medium. The drug release was evaluated by high-performance liquid chromatographic method. The dissolution method was validated according to current ICH and FDA guidelines using parameters such as the specificity, accuracy, precision and stability were evaluated and obtained results were within the acceptable range. The comparison of the obtained dissolution profiles of three different products were investigated using ANOVA-based, model-dependent and model-independent methods, results showed that there is significant difference between the products. The dissolution test developed and validated was adequate for its higher discriminative capacity in differentiating the release characteristics of the products tested and could be applied for development and quality control of carvedilol tablets. PMID:22923865
Plasmalemma Redox Activity and H+ Extrusion in Roots of Fe-Deficient Cucumber Plants 1
Alcántara, Esteban; de la Guardia, Manuel D.; Romera, Francisco J.
1991-01-01
Cucumber plants (Cucumis sativus L.) with incipient Fe deficiency showed increased root capacity to reduce chelated Fe3+ compared to Fe-sufficient plants. When Fe-ethylenediaminete-traacetate was added to the root medium of the Fe-deficient plants, the reductase activity was associated with acidification of the medium and an increase in the net apparent K+ efflux. In the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide the net apparent H+ efflux was completely suppressed, though some reductase activity was preserved, and the net apparent K+ efflux was significantly increased. The inhibition of the reductase activity by N,N′-dicyclohexylcarbodiimide was similar whether the pH of the medium was buffered or not. Anoxia and the protonophore carbonyl cyanide m-chlorophenyl hydrazone also caused a similar inhibition of the reductase activity. It is proposed that this redox system transports electrons only and that its activity is inhibited by plasmamembrane depolarization and anoxia. The H+ and K+ efflux associated with the reductase activity may be a result of the plasmamembrane depolarization it causes. PMID:16668294
Koufman, Jamie A; Johnston, Nikki
2012-07-01
At the cellular level, tissue-bound pepsin is fundamental to the pathophysiologic mechanism of reflux disease, and although the thresholds for laryngeal damage in laryngopharyngeal reflux and for esophageal damage in gastroesophageal reflux disease differ, both forms of damage are due to pepsin, which requires acid for its activation. In addition, human pepsin remains stable at pH 7.4 and may be reactivated by hydrogen ions from any source. Thus, most tap and bottled waters (typically pH 6.7 to 7.4) would not be expected to affect pepsin stability. The purposes of these in vitro studies were to investigate whether artesian well water containing natural bicarbonate (pH 8.8) might irreversibly denature (inactivate) human pepsin, and to establish its potential acid-buffering capacity. Laboratory studies were performed to determine whether human pepsin was inactivated by pH 8.8 alkaline water. In addition, the buffering capacity of the alkaline water was measured and compared to that of the two most popular commercially available bottled waters. The pH 8.8 alkaline water irreversibly inactivated human pepsin (in vitro), and its hydrochloric acid-buffering capacity far exceeded that of the conventional-pH waters. Unlike conventional drinking water, pH 8.8 alkaline water instantly denatures pepsin, rendering it permanently inactive. In addition, it has good acid-buffering capacity. Thus, the consumption of alkaline water may have therapeutic benefits for patients with reflux disease.
Ambika, Selvaraj; Devasena, M; Nambi, Indumathi Manivannan
2016-10-01
Understanding contaminant degradation by different sized zero valent iron (ZVI) particles is one important aspect in addressing the long-term stability of these particles in field studies. In this study, meso zero valent iron (mZVI) particles were synthesised in a milling time of 10 h using ball milling technique. The efficacy of mZVI particles for removal of phenol was quantitatively evaluated in comparison with coarse zero valent iron (cZVI) and nano zero valent iron (nZVI) particles. Phenol degradation experiments were carried out in sacrificial batch mode at room temperature independently with cZVI, nZVI and mZVI under varied pH conditions of 3, 4, 6, 7, 8 and 10. Batch experiments substantiating the reactivity of mZVI under unbuffered pH system were also carried out and compared with buffered and poorly buffered pH systems. mZVI particles showed consistent phenol degradation at circum-neutral pH with efficiency of 44%, 67%, and 89% in a span of 5, 10 and 20 min respectively. The dissolved iron species and residual iron formation were also measured as a function of pH. Unbuffered systems at circum-neutral pH produced less residual iron when compared to buffered and poorly buffered systems. At this pH, oxidation of Fe(2+) produced a different oxidant Ferryl ion, which was found to effectively participate in phenol degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enzymatic hydrolysis of organic phosphorus in swine manure and soil.
He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne
2004-01-01
Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.
Lemna paucicostata Hegelm. 6746
Datko, Anne H.; Mudd, S. Harvey; Giovanelli, John
1980-01-01
Photoautotrophic and mixotrophic growth of Lemna paucicostata Hegelm. 6746 (formerly Lemna perpusilla Torr. 6746) was investigated to establish standardized conditions for biochemical studies. Optimal temperature for growth was 29 to 30 C. The medium used previously (Datko AH, Mudd SH, Giovanelli J 1977 J Biol Chem 252: 3436-3445) was modified by inclusion of NH4Cl, decreasing macronutrient and ethylenediamine tetraacetate concentration, increasing micronutrient concentration, and inclusion of bicarbonate (for photoautotrophic growth) or 2-(N-morpholino)ethanesulfonic acid (for mixotrophic growth) buffers. Varying the sulfate concentration between 14 and 1 millimolar had no effect on growth. For photoautotrophic growth in the new medium (medium 4), the effects of CO2 concentration, light intensity, and pH were measured. Under the optimal conditions, a multiplication rate (MR) of 300 to 315, equivalent to a doubling time of 23 to 24 hours was obtained. Addition of glutamine or asparagine did not increase this MR. For mixotrophic growth in low light, the effects of sucrose concentration and pH were determined. Under optimal conditions, MR was 210. A concentration of sucrose less than maximal for growth was chosen for the medium for experiments which will include 14C-labeling of intermediates. MR under these conditions was 184. Growth was equally good in medium 4 and in half-strength Hutner's medium when sulfate was high (0.4 to 1 millimolar), but better in medium 4 when sulfate was low (20 micromolar). Growth rates could be restored to normal in half-strength Hutner's with low sulfate by decreasing the molybdate concentration. By modifying medium 4 to contain very low amounts of sulfate, and by preconditioning medium and plants, it was shown that there was an increment in plant protein of approximately 2.5 micrograms per nanomole of added MgSO4. Colonies undergoing sulfur limitation exhibited a slow growth rate and a high frond to colony ratio. Molybdate and selenate produced growth inhibition reversible by sulfate. Conditions were developed in which the plants could be maintained indefinitely in the presence of either molybdate or selenate in altered metabolic steady-states with lowered growth rates and protein per frond. Images PMID:16661306
Márquez, Lorenzo; Robles, Rocío; Morales, Gabriel A; Moyano, Francisco J
2012-06-01
After the development of the gastric function in juvenile fish, dietary proteins enter a two-phase digestive process comprising an acidic gastric phase followed by an alkaline intestinal phase. However, the main gastric protease, pepsin, is strictly dependent on the existence of a low-enough environmental pH. In 20-g gilthead sea bream, Sparus aurata, the mean minimal gastric pH is close to 4.5, while the mean pH in the duodenal portion of the intestine was nearly fixed at 6.5. The mean maximal gastric content of HCl was approximately 20 microEq for a low-buffering diet. Gastric proteases were more severely affected than intestinal proteases when assayed at actual sub-optimal pH values, 4.5 and 6.5, respectively. When the gastric proteases of juvenile fish were pre-incubated with a citric acid buffer at pH 6.0, the activity at pH 4.5 was very low, whereas when they were pre-incubated with the same buffer at pH 3.0, the activity at pH 4.5 was significantly increased; this fact suggests a deficient activation of zymogens during the gastric digestion and points to a potential approach to improve protein digestion in juvenile gilthead sea bream.
Myricetin solid lipid nanoparticles: Stability assurance from system preparation to site of action.
Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y
2017-11-15
Myricetin - a natural flavonoid - has attracted a great interest due to its antioxidant and free-radical scavenging potential. However, its physicochemical instability critically impairs its dosage form design, evaluation and administration. In an attempt to protect from degradation, MYR was encapsulated into Gelucire-based solid lipid nanoparticles (SLNs). The impact of medium pH, processing temperature and different additives on the drug degradation either in free or nanoencapsulated form was assessed. MYR stability was further monitored in essential biorelevant fluids. Investigations have led to the recommendation that the presence of fat-soluble antioxidant is necessary during SLN preparation to protect the drug at high temperature. Meanwhile, physiological buffers as well as simulated fluids should be supplemented with stabilizers as tween 80 and Poloxamer 407, in addition to water-soluble antioxidant such as sodium sulfite. Interestingly, mucin-containing fluids are suggested to provide better protection to MYR, in contrast, cell culture media do not guarantee MYR stability. The degradation kinetics changed from 1st to 2nd order mechanism after MYR nanoencapsulation. In presence of the aforementioned additives, MYR-SLNs significantly reduced the drug degradation rate constant up to 300-folds and prolonged the half-life time up to 4500-folds compared to free MYR in physiological buffers (One-way ANOVA, p<0.05). As a proof of concept, in vitro release experiment in presence of phosphate buffer (pH7.4) supplemented with these additives ensured sustained release of MYR over >8h with no signs of degradation. The study emphasizes virtuous guidance regarding appropriate nanoencapsulation conditions and evaluation attributes ensuing MYR physicochemical stability. Copyright © 2017. Published by Elsevier B.V.
Varum, Felipe J O; Merchant, Hamid A; Goyanes, Alvaro; Assi, Pardis; Zboranová, Veronika; Basit, Abdul W
2014-07-01
Despite rapid dissolution in compendial phosphate buffers, gastro resistant (enteric coated) products can take up to 2 h to disintegrate in the human small intestine, which clearly highlights the inadequacy of the in vitro test method to predict in vivo behaviour of these formulations. The aim of this study was to establish the utility of a novel pH 5.6 bicarbonate buffer, stabilized by an Auto pH™ System, as a better surrogate of the conditions of the proximal small intestine to investigate the dissolution behaviour of standard and accelerated release enteric double coating formulations. Prednisolone tablets were coated with 3 or 5 mg/cm(2) of partially neutralized EUDRAGIT(®) L 30 D-55, HP-55 or HPMC adjusted to pH 6 or 8. An outer layer of EUDRAGIT(®) L 30 D-55 was applied at 5mg/cm(2). For comparison purposes, a standard single layer of EUDRAGIT(®) L 30 D-55 was applied to the tablets. Dissolution was carried out using USP II apparatus in 0.1 M HCl for 2 h, followed by pH 5.6 bicarbonate buffer. EUDRAGIT(®) L 30 D-55 single-coated tablets showed a slow drug release with a lag time of 75 min in buffer, whereas release from the EUDRAGIT(®) L 30 D-55 double-coated tablets was accelerated. These in vitro lag times closely match the in vivo disintegration times for these coated tablets reported previously. Drug release was further accelerated from modified double coatings, particularly in the case of coatings with a thinner inner layer of HP-55 or HPMC (pH 8 and KH2PO4). This study confirms that the pH 5.6 bicarbonate buffer system offers significant advantages during the development of dosage forms designed to release the drug in the upper small intestine. Copyright © 2014. Published by Elsevier B.V.
Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis.
Lin, Yan-Ren; Li, Chao-Jui; Syu, Shih-Han; Wen, Cheng-Hao; Buddhakosai, Waradee; Wu, Han-Ping; Hsu Chen, Cheng; Lu, Huai-En; Chen, Wen-Liang
2016-01-01
Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2) were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n = 20) and control (normal saline, n = 20) groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control). Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group ( p < 0.05). In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53) and apoptosis (caspase-3, Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5). More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells' beating function at a low pH level.
Chen, Chien-Chih; Bates, Rick; Carlson, John
2015-01-01
The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabilizer, 2-(N-morpholino)ethanesulfonic acid (MES) that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth. PMID:26535110
Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik
2017-09-15
The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.
Savitha, S; Sadhasivam, S; Swaminathan, K
2010-01-01
The fungal strains Graphium putredinis and Trichoderma harzianum were selected as parents for fusant development. Protoplasts were isolated using the combination of lysing enzymes Novozym 234 and cellulase with 0.6M KCl as osmotic stabilizer. The optimum conditions for release of viable protoplasts from the fungal mycelium viz. age of the mycelium, lytic enzymes, osmotic stabilizers, pH, incubation period and regeneration medium were determined. Intergeneric protoplast fusion was carried out using 50% polyethylene glycol with calcium chloride (CaCl(2)) and glycine buffer and the conditions for effective protoplast fusion, viz. fusogen, osmotic stabilizer, pH, incubation period and regeneration medium were optimized. At optimum conditions, the regeneration frequency of the fused protoplasts on potato dextrose agar (PDA) medium and fusion frequency were calculated. The regeneration frequency on non-selective (PDA) and selective media (PDA amended with starch) was determined for the parental and fusant strains in which, fusant showed a higher rate of regeneration. Fusant formation was confirmed by morphological markers (colony morphology and spore size and shape) and genetical markers like, mycelial protein pattern, restriction digestion pattern and random amplified polymorphic DNA (RAPD) analysis. The efficiency of these parental strains and their intergeneric fusant in the production of hydrolytic enzymes - amylases (treatment plant for sago factory effluent), cellulases (bioethanol), xylanases (bleaching agents for waste paper pulp) and proteases (additives in commercial detergents) - have probable applications in various industrial processes. (c) 2010 Elsevier Inc. All rights reserved.
Behavior of soluble and immobilized acid phosphatase in hydro-organic media.
Wan, H; Horvath, C
1975-11-20
The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.
Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.
Chen, Z L; Huang, R Q
2014-06-20
Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission, which is mediated by both presynaptic and postsynaptic mechanisms. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Characterization of pH-fractionated humic acids with respect to their dissociation behaviour.
Klučáková, Martina
2016-04-01
Humic acids were divided into several fractions using buffer solutions as extraction agents with different pH values. Two methods of fractionation were used. The first one was subsequent dissolution of bulk humic acids in buffers adjusted to different pH. The second one was sequential dissolution in buffers with increasing pH values. Experimental data were compared with hypothesis of partial solubility of humic acids in aqueous solutions. Behaviour of humic fractions obtained by sequential dissolution, original bulk sample and residual fractions obtained by subsequent dissolution at pH 10 and 12 agrees with the hypothesis. Results demonstrated that regardless the common mechanism, solubility and dissociation degree of various humic fractions may be very different and can be estimated using parameters of the model based on the proposed mechanism. Presented results suggest that dissolving of solid humic acids in water environment is more complex than conventional solubility behaviour of sparingly soluble solids.
Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima
NASA Technical Reports Server (NTRS)
Cleland, R. E.
1992-01-01
Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.
Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae.
Adams, J; Puskas-Rozsa, S; Simlar, J; Wilke, C M
1992-07-01
Thirteen independent populations of Saccharomyces cerevisiae (nine haploid and four diploid) were maintained in continuous culture for up to approximately 1000 generations, with growth limited by the concentration of organic phosphates in medium buffered at pH 6. Analysis of clones isolated from these populations showed that a number (17) of large-scale chromosomal-length variants and rearrangements were present in the populations at their termination. Nine of the 16 yeast chromosomes were involved in such changes. Few of the changes could be explained by copy-number increases in the structural loci for acid phosphatase. Several considerations concerning the nature and frequency of the chromosome-length variants observed lead us to conclude that they are selectively advantageous.
The effect of DNA replication on mutation of the Saccharomyces cerevisiae CDC8 gene.
Zaborowska, D; Zuk, J
1990-04-01
Incubation in YPD medium under permissive conditions when DNA replication is going on, strongly stimulates the induction of cdc+ colonies of UV-irradiated cells of yeast strains HB23 (cdc8-1/cdc8-3), HB26 (cdc8-3/cdc8-3) and HB7 (cdc8-1/cdc8-1). Inhibition of DNA replication by hydroxyurea, araCMP, cycloheximide or caffeine or else by incubation in phosphate buffer pH 7.0, abolishes this stimulation. Thus the replication of DNA is strongly correlated with the high induction of cdc+ colonies by UV irradiation. It is postulated that these UV-induced cdc+ colonies arise as the result infidelity in DNA replication.
Safety of an alkalinizing buffer designed for inhaled medications in humans.
Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F
2013-07-01
Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.
Suzuki, Sho W; Onodera, Jun; Ohsumi, Yoshinori
2011-02-25
Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.
Zhang, Jiewen; Bell, Leonard N
2017-04-01
Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.
Structure-Function Relationship of Hydrophiidae Postsynaptic Neurotoxins
1990-09-18
24 hr. Buffer F consisted of 10 mM sodium phosphate, pH 7.5. containing 0.02% (w/v) lauryl sulfate (SDS), and 0.04% (w/v) sodium cholate. The...subjected to gel filtration on Sephadex G-50-50 using 10 mM sodium phosphate buffer (pH 6.5) containing 0.1 M NaCl. Samples were dissolved in 3.5 ml buffer...sequencing. Isolation of Cobrotoxin. The venom from NaJa naia atra was subjected to Sephadex G50-50 gel filtration pre-equilibrated with 10 mM sodium
Soy matrix drug delivery systems obtained by melt-processing techniques.
Vaz, Cláudia M; van Doeveren, Patrick F N M; Reis, Rui L; Cunha, António M
2003-01-01
The aim of this study was to develop new soy protein drug delivery matrix systems by melt-processing techniques, namely, extrusion and injection moulding. The soy matrix systems with an encapsulated drug (theophylline, TH) were previously compounded by extrusion performed at two different pH values, (i) pH 4 (SIpDtp) and (ii) pH 7 (SIDtp), and further injection-moulded into a desired shape. During the extrusion process the matrixes SIDtp were also cross-linked with glyoxal (0.6X-SIDtp) and reinforced with a bioactive filler, hydroxylapatite (SI-HADtp). The obtained mouldings were used to study the drug-release mechanisms from the plastic soy-TH matrixes. In an isotonic saline solution (ISS) buffered at pH 5.0 (200 mM acetate buffer), the resulting release kinetics could be described using the Fick's second law of diffusion. Because the diffusion coefficients were found to be constant and the boundary conditions to be stationary, these systems are drug-diffusion controlled. Conversely, the dominant phenomena in an isotonic saline solution buffered at pH 7.4 (200 mM Tris/HCl buffer) are more complex. In fact, because of the higher polymer solubility, the resulting matrix is time-variant. So, the drug release is affected by swelling, drug diffusion, and polymer dissolution, being faster when compared to ISS-200 mM acetate buffer, pH 5.0. The changes in the formulation composition affecting the correspondent release rates were also investigated. At pH 7.4, increasing the cross-linking degree of the polymer matrix (via reaction with glyoxal or heat treatment) or decreasing the net charge (extruding at pH near its isoelectric point) led to lower release rates. The incorporation of ceramic filler caused the opposite effect. Because of the low solubility of the matrix at pH 5.0, no significant variations were detected with variations in the selected formulations. These systems, based on a nonstandard protein-based material, seem to be very promising to be used as carriers for drug delivery.
Buffer-regulated biocorrosion of pure magnesium.
Kirkland, Nicholas T; Waterman, Jay; Birbilis, Nick; Dias, George; Woodfield, Tim B F; Hartshorn, Richard M; Staiger, Mark P
2012-02-01
Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO(2) atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.
Repurposing tromethamine as inhaled therapy to treat CF airway disease
Alaiwa, Mahmoud H. Abou; Launspach, Janice L.; Sheets, Kelsey A.; Rivera, Jade A.; Gansemer, Nicholas D.; Taft, Peter J.; Thorne, Peter S.; Welsh, Michael J.; Stoltz, David A.
2016-01-01
In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3– and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3– increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3–-independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease. PMID:27390778
Role of histidine-related compounds to intracellular buffering in fish skeletal muscle.
Abe, H; Dobson, G P; Hoeger, U; Parkhouse, W S
1985-10-01
Histidine-related compounds (HRC) were analyzed in fish skeletal muscle as a means of identifying their precise role in intracellular buffering. Fish muscle was used because it contains two functionally and spatially distinct fiber types, red and white. Two fish species, rainbow trout (Salmo gairdneri) and the Pacific blue marlin (Makaira nigricans), were studied because these species demonstrate widely different activity patterns. Marlin red and white muscle buffer capacity was two times higher than trout with white muscle, buffering being two times greater than red in both species. Buffer capacity was highest in the 6.5-7.5 pH range for all tissues, which corresponded to their high anserine levels. The titrated HRC buffering was greater than the observed HRC buffering, which suggested that not all HRC were available to absorb protons. The HRC contribution to total cellular buffering varied from a high of 62% for marlin white to a low of 7% for trout red. The other principal buffers were found to be phosphate and protein with taurine contributing within red muscle in the 7.0-8.0 pH range. HRC were found to be dominant in skeletal muscle buffering by principally accounting for the buffering capacity differences found between the species and fiber types.
Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.
1998-01-01
The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.
Thermal stability of tagatose in solution.
Luecke, Katherine J; Bell, Leonard N
2010-05-01
Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.
Method for detecting coliform organisms
NASA Technical Reports Server (NTRS)
Nishioka, K.; Nibley, D. A.; Jeffers, E. L.; Brooks, R. L. (Inventor)
1983-01-01
A method and apparatus are disclosed for determining the concentration of coliform bacteria in a sample. The sample containing the coliform bacteria is cultured in a liquid growth medium. The cultured bacteria produce hydrogen and the hydrogen is vented to a second cell containing a buffer solution in which the hydrogen dissolves. By measuring the potential change in the buffer solution caused by the hydrogen, as a function of time, the initial concentration of bacteria in the sample is determined. Alternatively, the potential change in the buffer solution can be compared with the potential change in the liquid growth medium to verify that the potential change in the liquid growth medium is produced primarily by the hydrogen gas produced by the coliform bacteria.
Narendranath, Neelakantam V.; Power, Ronan
2005-01-01
The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306
2013-01-01
Background The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Methods Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett’s test (p < 0.05). Results The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. Conclusions The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food. PMID:24160307
NASA Astrophysics Data System (ADS)
Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta
2017-07-01
Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.
Erol, Özge Ö; Erdoğan, Behice Y; Onar, Atiye N
2017-03-01
Simultaneous determination of nitrate and nitrite in gunshot residue has been conducted by capillary electrophoresis using an acidic run buffer (pH 3.5). In previously developed capillary electrophoretic methods, alkaline pH separation buffers were used where nitrite and nitrate possess similar electrophoretic mobility. In this study, the electroosmotic flow has been reversed by using low pH running buffer without any additives. As a result of reversing the electroosmotic flow, very fast analysis has been actualized, well-defined and separated ion peaks emerge in less than 4 min. Besides, the limit of detection was improved by employing large volume sample stacking. Limit of detection values were 6.7 and 4.3 μM for nitrate and nitrite, respectively. In traditional procedure, mechanical agitation is employed for extraction, while in this work the extraction efficiency of ultrasound mixing for 30 min was found sufficient. The proposed method was successfully applied to authentic gunshot residue samples. © 2016 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia
The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.
Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav
2013-09-17
The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.
NASA Astrophysics Data System (ADS)
Pérez, Sebastián Ezequiel; Gándola, Yamila; Carlucci, Adriana Mónica; González, Lorena
2015-03-01
Phosphatidylcholine-sodium cholate (SC)-based nanoparticles were designed, characterized, and evaluated as plausible oligonucleotides delivery systems. For this purpose, formulation of the systems was optimized to obtain low cytotoxic vehicles with high siRNA-loading capacity and acceptable transfection ability. Mixtures of soybean phosphatidylcholine (SPC) and SC were prepared at different molar ratios with 2 % w/v total concentration; distilled water and two different buffers were used as dispersion medium. Nanoparticles below 150 nm were observed showing spherical shape which turned smaller in diameter as the SC molar proportion increased, accounting for small unilamellar vesicles when low proportions of SC were present in the formulation, but clear mixed micellar solutions at higher SC percentages. Macroscopic characteristics along with physico-chemical parameters values supported the presence of these types of structures. SYBR green displacement assays demonstrated an important oligonucleotide binding that increased as bile salt relative content got higher. Within the same molar ratio, nanoparticles showed the following binding efficiency order: pH 7.4 > pH 5.0 > distilled water. siRNA-loading capacity assays confirmed the higher siRNA binding by the mixed micelles containing higher SC proportion; moreover, the complexes formed were smaller as the SC:SPC ratio increased. Considering cytotoxicity and siRNA-loading capacity, 1:2 and 1:4 SPC:SC formulations were selected for further biological assays. Nanoparticles prepared in any of the three media were able to induce dsRNA uptake and efficiently transfect RNA for gene silencing, for the compositions prepared in buffer pH 5.0 being the most versatile.
Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.
Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T
2002-04-01
Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.
Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.
Murase, Akio; Nakao, Kazunari; Takada, Junji
2008-01-01
In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.
Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle.
Irving, M; Maylie, J; Sizto, N L; Chandler, W K
1990-04-01
Junge and McLaughlin (1987) derived an expression for the apparent diffusion constant of protons in the presence of both mobile and immobile buffers. Their derivation applies only to cases in which the values of pH are considerably greater than the largest pK of the individual buffers, a condition that is not expected to hold in skeletal muscle or many other cell types. Here we show that, if the pH gradients are small, the same expression for the apparent diffusion constant of protons can be derived without such constraints on the values of the pK's. The derivation is general and can be used to estimate the apparent diffusion constant of any substance that diffuses in the presence of both mobile and immobile buffers. The apparent diffusion constant of protons is estimated to be 1-2 x 10(-6) cm2/s at 18 degrees C inside intact frog twitch muscle fibers. It may be smaller inside cut fibers, owing to a reduction in the concentration of mobile myoplasmic buffers, so that in this preparation a pH gradient, if established within a sarcomere following action potential stimulation, could last 10 ms or longer after stimulation ceased.
Indrasumunar, Arief; Gresshoff, Peter M
2013-11-14
Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.
Mockus, Linas N; Paul, Timothy W; Pease, Nathan A; Harper, Nancy J; Basu, Prabir K; Oslos, Elizabeth A; Sacha, Gregory A; Kuu, Wei Y; Hardwick, Lisa M; Karty, Jacquelyn J; Pikal, Michael J; Hee, Eun; Khan, Mansoor A; Nail, Steven L
2011-01-01
A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.
NASA Astrophysics Data System (ADS)
Sumathi, Shanmugam; Gopal, Buvaneswari
2015-07-01
Structure of hydroxyapatite (HAP) is more flexible towards ionic substitutions. Properties such as solubility, antimicrobial property can be tailored by substitutions. Substituted hydroxyapatite and fluorapatite of formulae BiNaCa3(PO4)3OH, Bi0.5M0.5Ca4(PO4)3OH (M=K, Ag), Ca10-xCux(PO4)6(OH/F)2 d(x=0.05-0.25) and Bi0.5Na0.5Ca4(PO4)3F were synthesized and characterized by powder XRD, FT-IR, SEM-EDAX and TGA. In vitro solubility of the synthesized compounds was studied in the phosphate buffered medium of pH 7.4 at 37 °C. Based on the release of calcium and phosphorus ion concentration and pH, the solubility of these compounds is discussed. Bismuth and sodium co-substituted hydroxyapatite are found to be more soluble compared with other substituted apatite compounds and unsubstituted hydroxyapatite.
Meena, Ganga Sahay; Singh, Ashish Kumar; Gupta, Vijay Kumar; Borad, Sanket; Arora, Sumit; Tomar, Sudhir Kumar
2018-04-01
Poor solubility is the major limiting factor in commercial applications of milk protein concentrates (MPC) powders. Retentate treatments such as pH adjustment using disodium phosphate (Na 2 HPO 4 ), also responsible for calcium chelation with homogenization and; its diafiltration with 150 mM NaCl solution were hypothesized to improve the functional properties of treated MPC70 powders. These treatments significantly improved the solubility, heat stability, water binding, dispersibility, bulk density, flowability, buffer index, foaming and emulsifying capacity of treated powders over control. Rheological behaviour of reconstituted MPC solutions was best explained by Herschel Bulkley model. Compared to rough, large globular structures with dents in control; majorly intact, separate, smaller particles of smooth surface, without any aggregation were observed in SEM micrograph of treated powders. Applied treatments are easy, cost-effective and capable to improve functional properties of treated powders that could replace control MPC70 powder in various food applications where protein functionality is of prime importance.
Zheng, Xueqin; Sun, Hong; Hou, Shifeng
2015-01-01
In this work, an electroactive porous Mb-CA's composite film was fabricated by incorporating myoglobin (Mb) in a three-dimension (3D) porous calcium alginate (CA) film with polyvinyl alcohol, glycerol, and gelatin. The porous Mb-CA's film modified electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about -0.37 V vs. SCE in pH 7.0 buffers, characteristic of Mb heme Fe((III))/Fe((II)) redox couples. The electrochemical parameters, such as formal potentials (E(o')) and apparent heterogeneous electron-transfer rate constants (ks), were estimated by square-wave voltammetry with nonlinear regression analysis. The porous CA's composite film could form hydrogel in aqueous solution. The positions of the Soret absorbance band suggest that Mb in the CA's composite film kept its native states in the medium pH range. Hydrogen peroxide, oxygen, and nitrite were electrochemically catalyzed by the Mb-CA's composite film with significant lowering of the reduction overpotential.
Physiological responses of Daphnia pulex to acid stress
Weber, Anna K; Pirow, Ralph
2009-01-01
Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of whether a carbonic anhydrase (CA) is involved in the catalysis of the reaction, which led to the discovery of 31 CA-genes in the genome of D. pulex. PMID:19383148
Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.
Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica
2016-04-15
Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mazzer, Alice R.; Perraud, Xavier; Halley, Jennifer; O’Hara, John; Bracewell, Daniel G.
2015-01-01
Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. PMID:26346187
Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong
2016-02-01
The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.
Smoot, L M; Pierson, M D
1998-10-01
Attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel under different temperature and pH conditions at the time of cell growth or at the time of attachment was investigated. All experiments were conducted using sterile phosphate buffer to avoid cell growth during exposure to the test surfaces. Numbers of attached cells increased with increasing attachment temperature (10 to 45 degrees C) and exposure time for both test surfaces. Maximum levels of attached cells were obtained when cell growth occurred at 30 degrees C. Downward, but not upward, shifts in the cell suspension holding temperature prior to attachment to Buna-N rubber resulted in reduced adhered cell populations. Maximum levels of adhered cells to Buna-N rubber were not affected by adjustments of the attachment medium pH between 4 and 9. However, after short contact times (i.e., less than 30 min), levels of attached cells were lower when attachment occurred under alkaline conditions. Growth pH was also found to affect the levels of adhered cell populations to Buna-N rubber. L. monocytogenes Scott A attached to stainless steel at higher levels for all temperature and pH parameters evaluated in this study.
Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad
2017-01-01
In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks ( M c ), crosslink density ( M r ), volume interaction parameter ( v 2, s ), Flory Huggins water interaction parameter and diffusion coefficient ( Q ) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM.
W/O/W multiple emulsions containing nitroimidazole derivates for vaginal delivery.
Ozer, Ozgen; Ozyazici, Mine; Tedajo, Muriel; Taner, Memduh S; Köseoglu, Kamil
2007-03-01
The aim of our study was to formulate a stable multiple emulsions containing two nitroimidazole derivates, metronidazole (MT) and ornidazole (OR), for vaginal therapy. MT and OR were located internal and external phases of multiple emulsion, respectively, and the in vitro release studies were realized in phosphate (pH 7) and lactate buffer (pH 4.5) solutions to investigate better the effect of pH and location of active substance on the release. The imaging studies were realized in rabbits following labeling MT and OR with Technethium-99m ((99m)Tc) to evaluate the in vivo absorption characteristics. The percentage of MT and OR released from the multiple emulsions in alkaline media were 3.2- and 2.8-fold greater than that observed in acidic media, respectively, when they were introduced in the internal phase of the multiple emulsions. The absorption rate of MT from vaginal epithelium was faster than OR. We observed that especially in alkaline medium a high release was found that was convenient for the vaginal infections seen in the alkaline pH. We concluded that W/O/W multiple emulsions were locally effective in vagina and they could be introduced as a new drug carrier system for vaginal delivery.
Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E
2016-03-24
The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zinc(II) complexation by some biologically relevant pH buffers.
Wyrzykowski, D; Tesmar, A; Jacewicz, D; Pranczk, J; Chmurzyński, L
2014-12-01
The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd.
Rate of Glycolate Formation During Photosynthesis at High pH 1
Orth, Gertrude M.; Tolbert, N. E.; Jimenez, Eduardo
1966-01-01
The products of C14O2 fixation by Chlamydomonas and Chlorella were studied under conditions most favorable for glycolate synthesis. The highest percentage of the C14 was incorporated into glycolate in the pH range of 8 to 9. After 1 to 2 minutes as much as 40% of the C14 was found in glycolate products and only a trace of C14 was present as phosphoglycerate. Below pH 8 the rate of photosynthesis was much faster, but only a small percent of the C14 was incorporated into glycolate in 1 or 2 minutes, while a high percent of the C14 accumulated in phosphoglycerate. C14 labeling of glycolate even at pH 8 or above did not occur at times shorter than 10 seconds. During the first seconds of photosynthesis, nearly all of the C14 was found in phosphoglycerate and sugar phosphates. Thus glycolate appears to be formed after the phosphate esters of the photosynthetic carbon cycle. Washing Chlamydomonas with water 2 or 3 times resulted in the loss of most of their free phosphate. When a small aliquot of NaHC14O3 was added to washed algae in the absence of this buffering capacity, the pH of the algal medium became 8 or above and much of the fixed C14 accumulated in glycolate. PMID:16656223
Pellegrini, Paola; Strambi, Angela; Zipoli, Chiara; Hägg-Olofsson, Maria; Buoncervello, Maria; Linder, Stig; De Milito, Angelo
2014-04-01
Acidic pH is an important feature of tumor microenvironment and a major determinant of tumor progression. We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress. Inhibition of autophagy by administration of chloroquine (CQ) in combination anticancer therapies is currently evaluated in clinical trials. We observed in 3 different human cancer cell lines cultured at acidic pH that autophagic flux is not blocked by CQ. This was consistent with a complete resistance to CQ toxicity in cells cultured in acidic conditions. Conversely, the autophagy-inhibiting activity of Lys-01, a novel CQ derivative, was still detectable at low pH. The lack of CQ activity was likely dependent on a dramatically reduced cellular uptake at acidic pH. Using cell lines stably adapted to chronic acidosis we could confirm that CQ lack of activity was merely caused by acidic pH. Moreover, unlike CQ, Lys-01 was able to kill low pH-adapted cell lines, although higher concentrations were required as compared with cells cultured at normal pH conditions. Notably, buffering medium pH in low pH-adapted cell lines reverted CQ resistance. In vivo analysis of tumors treated with CQ showed that accumulation of strong LC3 signals was observed only in normoxic areas but not in hypoxic/acidic regions. Our observations suggest that targeting autophagy in the tumor environment by CQ may be limited to well-perfused regions but not achieved in acidic regions, predicting possible limitations in efficacy of CQ in antitumor therapies.
Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.
Montrose, M H; Murer, H
1986-01-01
Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05 +/- 0.01, n = 5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 microM amiloride or removal of extracellular Na+ (Na+o less than 1 mM). In contrast, when the cells recover from an acid load (caused by NH4 preincubation and removal), the recovery is largely Na+ dependent and is sensitive to 100 microM amiloride. These results suggest that with resting pH near neutrality, both Na+o/H+i and Na+i/H+o exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na+o/H+i exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a "set point" of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.
NASA Astrophysics Data System (ADS)
Ghosh, Goutam; Panicker, Lata
2014-12-01
Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.
Enteric coating of granules containing the probiotic Lactobacillus acidophilus.
Pyar, Hassan; Peh, Kok-Khiang
2014-06-01
In the present study, a capsule formulation composed of enteric coated granules of Lactobacillus acidophilus ATCC 4962 was developed using Eudragit L30D-55 as enteric polymer. Optimization of the capsule formulation was achieved with a maximum viable cell count after 2 h of incubation in acid medium and disintegration time of 1 h in buffer pH 6.8. The amount of Eudragit L30D-55 in the capsules correlated with gastric juice resistance. The best protective qualities against artificial gastric juice were observed when capsules were prepared from granules composed of L. acidophilus, corn starch, lactose monohydrate, polyvinylpyrrolidone and coated with 12.5 % (m/V) of Eudragit L30D-55. Capsule formulation of L. acidophilus in edible broth medium suspension serves as a cheap alternative to the expensive freeze-drying procedure for preparing L. acidophilus. In addition, the enteric coating using Eudragit L30D-55 could protect probiotics from the acidic gastric environment and enhance the bioactivity of probiotics along with replacement of pathogenic microbes in human intestine.
Arai, Teppei; Umemura, Sara; Ota, Tamaki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi
2012-01-01
A fungal strain, Penicillium sp. AZ, produced the azaphilone Monascus pigment homolog when cultured in a medium composed of soluble starch, ammonium nitrate, yeast extract, and citrate buffer, pH 5.0. One of the typical features of violet pigment PP-V [(10Z)-12-carboxyl-monascorubramine] is that pyranoid oxygen is replaced with nitrogen. In this study, we found that ammonia and nitrate nitrogen are available for PP-V biosynthesis, and that ammonia nitrogen was much more effective than nitrate nitrogen. Further, we isolated nitrate assimilation gene cluster, niaD, niiA, and crnA, and analyzed the expression of these genes. The expression levels of all these genes increased with sodium nitrate addition to the culture medium. The results obtained here strongly suggest that Penicillium sp. AZ produced PP-V using nitrate in the form of ammonium reduced from nitrate through a bioprocess assimilatory reaction.
Miyaguchi, Hajime; Kuwayama, Kenji
2017-10-13
Zopiclone and its (S)-enantiomer (eszopiclone) are commonly prescribed for insomnia. Despite the high demand for enantioselective differentiation, the chiral analysis of zopiclone in hair has not been reported. In this study, a method for the enantioselective quantification of zopiclone in human hair was developed. The extraction medium and duration were optimized using real eszopiclone-positive hair samples. Specifically, micropulverized extraction with 3.0M ammonium phosphate buffer (pH 8.4) involving salting-out assisted liquid-liquid extraction with acetonitrile was utilized to minimize the degradation of zopiclone and for rapid and facile operation. On the other hand, recovery of the conventional solid-liquid extraction involved overnight soaking in 3.0M ammonium phosphate buffer (pH 8.4) was only 0.58±0.12% of the maximum recovery achieved by the present method due to the decomposition in the phosphate buffer. An excellent chiral separation (Rs=5.0) was achieved using a chiral stationary phase comprising cellulose tris(3,5-dichlorophenylcarbamate) and a volatile mobile phase of 10mM ammonium carbonate (pH 8.0)-acetonitrile (25:75, v/v). Detection was carried out using liquid chromatography/high resolution mass spectrometry (LC/HRMS) with electrospray ionization. A Q Exactive mass spectrometer equipped with a quadrupole-Orbitrap analyzer was used for detection. The concentration of 0.50pg/mg was defined as the lowest limit of quantification using 5mg of hair sample. Using the developed approach, the concentration of eszopiclone in hair after a single 2-mg dose was found to be 441pg/mg, which was higher than all the reported values regarding a single administration of zopiclone. After daily administration of racemic zopiclone (3.75mg/day), the concentrations of (R)-enantiomer and (S)-enantiomer in the black hair were 5.30-8.31ng/mg and 7.96-12.8ng/mg, respectively, and the concentration of the (S)-enantiomer was always higher than that of the (R)-enantiomer due to the enantioselective difference in the pharmacokinetics. Copyright © 2017 Elsevier B.V. All rights reserved.
McShane, Colleen M; Choi, Kyoung-Shin
2009-02-25
Cu(2)O electrodes composed of dendritic crystals were produced electrochemically using a slightly acidic medium (pH 4.9) containing acetate buffer. The buffer played a key role for stabilizing dendritic branching growth as a pH drop during the synthesis prevents formation of morphologically unstable branches and promotes faceted growth. Dendritic branching growth enabled facile coverage of the substrate with Cu(2)O while avoiding growth of a thicker Cu(2)O layer and increasing surface areas. The resulting electrodes showed n-type behavior by generating anodic photocurrent without applying an external bias (zero-bias photocurrent under short-circuit condition) in an Ar-purged 0.02 M K(2)SO(4) solution. The zero-bias photocurrent of crystalline dendritic electrodes was significantly higher than that of the electrodes containing micrometer-size faceted crystals deposited without buffer. In order to enhance photocurrent further a strategy of improving charge-transport properties by increasing dendritic crystal domain size was investigated. Systematic changes in nucleation density and size of the dendritic Cu(2)O crystals were achieved by altering the deposition potential, Cu(2+) concentration, and acetate concentration. Increasing dendritic crystal size consistently resulted in the improvement of photocurrent regardless of the method used to regulate crystal size. The electrode composed of dendritic crystals with the lateral dimension of ca. 12000 microm(2) showed more than 20 times higher zero-bias photocurrent than that composed of dendritic crystals with the lateral dimension of ca. 100 microm(2). The n-type nature of the Cu(2)O electrodes prepared by this study were confirmed by linear sweep voltammetry with chopped light and capacitance measurements (i.e., Mott-Schottky plots). The flatband potential in a 0.2 M K(2)SO(4) solution (pH 6) was estimated to be -0.78 vs Ag/AgCl reference electrode. The IPCE measured without applying an external bias was approximately 1% for the visible region. With appropriate doping studies and surface treatment to improve charge transport and interfacial kinetics more efficient n-type Cu(2)O electrodes will be prepared for use in various photoelectrochemical and photovoltaic devices.
The influence of calcium and pH on growth in primary roots of Zea mays
NASA Technical Reports Server (NTRS)
Hasenstein, K. H.; Evans, M. L.
1988-01-01
We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.
Enrichment and characterization of anaerobic TNT-degrading bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.J.; Pendharkar, S.
1995-12-31
Three media constitutions were used to enrich for mixed cultures capable of degrading 2,4,6-trinitrotoluene (TNT) under strictly anaerobic conditions. The media were derived from a mineral salts solution buffered to pH 7 with CO{sub 2}/bicarbonate and all contained TNT. The cultures were enriched in the TNT mineral salts medium or the TNT mineral salts medium supplemented with glucose, yeast extract, or ammonia in various combinations. Inocula were obtained from a treated soil, previously contaminated with dinoseb and then treated using anaerobic procedures, or from a bench-top aqueous culture, maintained with an extract from a munitions-contaminated soil for more than 4more » years. Several cultures reduced TNT, producing 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene as the major products. The cultures were unable to effectively remove TNT when cross-transferred to the media they were not enriched on, suggesting that different media had enriched different subcultures form the original inoculum. The treated soil provided the most successful inoculum. Two media were chosen for further studies. Medium 1 contained TNT and glucose and produced a culture that might have used TNT as a nitrogen source. Medium 2, containing TNT and yeast extract, enriched cultures that degraded TNT, accumulating small amounts of p-cresol during the degradation.« less
NASA Astrophysics Data System (ADS)
Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong
2014-06-01
Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.
A calorimetric investigation of the interaction of the lac repressor with inducer.
Donnér, J; Caruthers, M H; Gill, S J
1982-12-25
A calorimetric study has been made of the interaction between the lac repressor and isopropyl-1-thio-beta-D-galactopyranoside (IPTG). The buffer-corrected enthalpy of reaction at 25 degrees C was found to be -15.6, -24.7, -4.6 kJ/mol of bound IPTG at pH 7.0, pH 8.1, and pH 9.0, respectively. This large range of enthalpy values is in contrast to a maximum difference in the free energy of the reaction of only 1.5 kJ/mol of bound IPTG between these pH values. The reaction was found by calorimetric measurements in different buffers to be accompanied by an uptake of 0.29 mol of protons/mol of bound IPTG at pH 8.1. The pH dependency of the reaction enthalpy suggests differences in the extent of protonation of the binding site and the involvement of H bonding with IPTG. The lack of strong hydrophobic contributions in the IPTG binding process is revealed by the absence of any determinable heat capacity change for the reaction at pH 7.0. The presence of phosphate buffer significantly alters the enthalpy of IPTG binding at higher pH values, but has little effect upon the binding constant. This implies that highly negative phosphate species change the nature of the IPTG binding site without any displacement of phosphate upon IPTG binding.
NASA Astrophysics Data System (ADS)
Maksimova, Yu. G.; Maryakhina, N. N.; Tolpeshta, I. I.; Sokolova, T. A.
2010-10-01
The acid-base buffer capacity before and after the treatment with the Mehra-Jackson and Tamm reagents was assessed by continuous potentiometric titration for the main genetic horizons of two profiles of podzolic soils in the Central Forest State Reserve. The total buffer capacity was calculated in the pH range from the initial titration point (ITP) to 3 for the acid titration and from the ITP to 10 for the base titration, as well as the buffer capacities in the pH intervals of 0.25. It was found that both treatments abruptly decreased the base buffer capacity, which reached 70-90% in the E horizons. The high direct linear correlation of the difference between the total base buffer capacities before and after each treatment with the content of Fe in the Tamm extract was revealed. From the results obtained, a conclusion was drawn that finely dispersed Fe hydroxides were the main solid-phase constituents ensuring the base buffer capacity, and the deprotonation of hydroxyl groups on the surface of Fe hydroxides was the essential buffer reaction during the base titration.
Jiang, Shan; Chen, Shuai; Zhang, Chengfei; Zhao, Xingfu; Huang, Xiaojing; Cai, Zhiyu
2017-03-30
Streptococcus mutans ( S. mutans ) is considered a leading cause of dental caries. The capability of S. mutans to tolerate low pH is essential for its cariogenicity. Aciduricity of S. mutans is linked to its adaptation to environmental stress in oral cavity. This study aimed to investigate the effect of biofilm age and starvation condition on acid tolerance of biofilm formed by S. mutans clinical isolates. S. mutans clinical strains isolated from caries-active (SM593) and caries-free (SM18) adults and a reference strain (ATCC25175) were used for biofilm formation. (1) Both young and mature biofilms were formed and then exposed to pH 3.0 for 30 min with (acid-adapted group) or without (non-adapted group) pre-exposure to pH 5.5 for three hours. (2) The mature biofilms were cultured with phosphate-buffered saline (PBS) (starved group) or TPY (polypeptone-yeast extract) medium (non-starved group) at pH 7.0 for 24 h and then immersed in medium of pH 3.0 for 30 min. Biofilms were analyzed through viability staining and confocal laser scanning microscopy. In all three strains, mature, acid-adapted and starved biofilms showed significantly less destructive structure and more viable bacteria after acid shock than young, non-adapted and non-starved biofilms, respectively (all p < 0.05). Furthermore, in each condition, SM593 biofilm was denser, with a significantly larger number of viable bacteria than that of SM18 and ATCC25175 (all p < 0.05). Findings demonstrated that mature, acid-adapted and starvation might protect biofilms of all three S. mutans strains against acid shock. Additionally, SM593 exhibited greater aciduricity compared to SM18 and ATCC25175, which indicated that the colonization of high cariogenicity of clinical strains may lead to high caries risk in individuals.
Hamed, Rania; Awadallah, Areeg; Sunoqrot, Suhair; Tarawneh, Ola; Nazzal, Sami; AlBaraghthi, Tamadur; Al Sayyad, Jihan; Abbas, Aiman
2016-04-01
The objective of this study was to investigate the pH-dependent solubility and dissolution of weakly basic Biopharmaceutical Classification Systems (BCS) class II drugs, characterized by low solubility and high permeability, using carvedilol, a weak base with a pK a value of 7.8, as a model drug. A series of solubility and in vitro dissolution studies was carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH range of the GI from 1.2 to 7.8. The effect of ionic strength, buffer capacity, and buffer species of the dissolution media on the solubility and dissolution behavior of carvedilol was also investigated. The study revealed that carvedilol exhibited a typical weak base pH-dependent solubility profile with a high solubility at low pH (545.1-2591.4 μg/mL within the pH range 1.2-5.0) and low solubility at high pH (5.8-51.9 μg/mL within the pH range 6.5-7.8). The dissolution behavior of carvedilol was consistent with the solubility results, where carvedilol release was complete (95.8-98.2% released within 60 min) in media simulating the gastric fluid (pH 1.2-5.0) and relatively low (15.9-86.2% released within 240 min) in media simulating the intestinal fluid (pH 6.5-7.8). It was found that the buffer species of the dissolution media may influence the solubility and consequently the percentage of carvedilol released by forming carvedilol salts of varying solubilities. Carvedilol solubility and dissolution decreased with increasing ionic strength, while lowering the buffer capacity resulted in a decrease in carvedilol solubility and dissolution rate.
Alkhateeb, Alaa A; Mancl, Lloyd A; Presland, Richard B; Rothen, Marilynn L; Chi, Donald L
2017-01-01
Salivary flow rate, pH, and buffering capacity are associated with dental caries, but studies from the cystic fibrosis (CF) literature are inconclusive regarding these salivary factors and caries. The aim of this study was to evaluate these factors and their associations with dental caries in individuals with CF. Unstimulated whole saliva was collected from individuals aged 6-20 years at Seattle Children's Hospital CF Clinic, USA (n = 83). Salivary flow rate was measured in milliliters per minute. Salivary pH was assessed using a laboratory pH meter. Buffering capacity was assessed by titration with HCl. The outcome measure was caries prevalence, defined as the number of decayed, missing, or filled primary and permanent tooth surfaces. Spearman's rank correlation coefficient and the t test were used to test for bivariate associations. Multiple variable linear regression models were used to (1) run confounder-adjusted analyses and (2) assess for potential interactions. There was no significant association between salivary flow rate or buffering capacity and caries prevalence. There was a significant negative association between salivary pH and caries prevalence, but this association was no longer significant after adjusting for age. There was no significant interaction between salivary flow rate and buffering capacity or between antibiotic use and the 3 salivary factors. Our results indicate that unstimulated salivary factors are not associated with dental caries prevalence in individuals with CF. Future studies should investigate other potential saliva-related caries risk factors in individuals with CF such as cariogenic bacteria levels, salivary host defense peptide levels, and medication use. © 2016 S. Karger AG, Basel.
Hosseini-Yekani, Amene; Nadjarzadeh, Azadeh; Vossoughi, Mehrdad; Reza, Javad Zavvar; Golkari, Ali
2018-01-01
Objectives: There are inconsistent data about the association between saliva properties, dental caries, and periodontal status. In this study, we tried to examine the association between dental caries and periodontal status with salivary viscosity, flow rate, pH, and buffering capacity in adults. Methods: In the present cross-sectional study, 450 female teachers were randomly selected from schools located in Yazd, Iran. Oral examinations were conducted, and unstimulated saliva samples were collected. Salivary viscosity, flow rate, pH, and buffering capacity were assessed. The salivary physicochemical properties were compared among teachers with different types of oral health. Analyses were done using the Statistical Package for the Social Sciences version 16. Results: In total, 431 female teachers aged 40.45 ± 8.18 years were included in the study. Salivary flow rate, buffering capacity, pH, and viscosity, community periodontal index status were not significantly different in participants with and without tooth caries. There was a reverse linear association between salivary pH and flow rate with the decayed, missed, and filled teeth index (P < 0.05). The saliva buffering capacity was not significantly related to dental properties. Those with bleeding on probing had lower salivary pH, and buffering capacity compared to those with healthy gum. However, the salivary resting flow rate was not different in participants with bleeding on probing and healthy participants. Conclusion: Based on our results, saliva properties might be important predictors in oral health status. This means that any change in saliva combination might affect periodontal and dental diseases. Future prospective studies are recommended to confirm these results. PMID:29629329
Cell wall pH and auxin transport velocity
NASA Technical Reports Server (NTRS)
Hasenstein, K. H.; Rayle, D.
1984-01-01
According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.
Optically pumped alkali laser and amplifier using helium-3 buffer gas
Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan
2010-09-28
In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.
Sidebotham, Ramon L; Worku, Mulugeta L; Karim, Q Najma; Dhir, Nirmal K; Baron, J Hugh
2003-04-01
Survival of Helicobacter pylori is dependent upon urease in the cytoplasm and at the bacterial surface. We have sought to clarify how alkaline ammonium salts, released from urea by this enzyme, might alter mucus pH and so affect growth and motility of the bacterium in the gastric mucus environment. Experiments were conducted in vitro to determine how the growth and motility of H. pylori are affected by changes in external pH, and how the bacterium, by hydrolysing urea, alters the pH of the bicarbonate buffer that occurs at the gastric mucosal surface. These data were fitted into experimental models that describe how pH varies within the mucus layer in the acid-secreting stomach. H. pylori was motile between pH 5 and 8, with optimal motility at pH 5. It grew between pH 6 and 8, with optimal growth at pH 6. The bacterium had urease activity between pH 2.7 and 7.4, as evidenced by pH rises in bicarbonate-buffered solutions of urea. Changes in buffer pH were dependent upon initial pH and urea concentration, with the greatest rate of pH change occurring at pH 3. Modelling experiments utilizing these data indicated that (1) in the absence of urease, H. pylori growth and motility in the mucus layer would be restricted severely by low mucus pH in the acid-secreting stomach, and (2) urease will sometimes inhibit H. pylori growth and motility in the mucus layer by elevating the pH of the mucus environment above pH 8. Urease is essential to the growth and motility of H. pylori in the mucus layer in the acid-secreting stomach, but, paradoxically, sometimes it might suppress colonization by raising the mucus pH above 8. This latter effect may protect the bacteria from the adverse consequences of overpopulation.
Mechanisms of buffer therapy resistance.
Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J
2014-04-01
Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.
Mechanisms of buffer therapy resistance
Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.
2014-01-01
Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761
Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.
Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E
2014-11-01
Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of two mouthwashes on salivary ph.
Belardinelli, Paola A; Morelatto, Rosana A; Benavidez, Tomás E; Baruzzi, Ana M; López de Blanc, Silvia A
2014-01-01
To analyze the effect of two mouthwashes on salivary pH and correlate it with age, buffer capacity and saliva flow rate in healthy volunteers, a crossover phase IV clinical study involving three age-based groups was designed. Two commercial mouthwashes (MW), Cool Mint ListerineR (MWa) and Periobacter R (MWb) were used. The unstimulated saliva of each individual was first characterized by measuring flow rate, pH, and buffer capacity. Salivary pH was evaluated before rinsing with a given MW, immediately after rinsing, 5 minutes later, and then every 10 min (at 15, 25, 35 min) until the baseline pH was recovered. Paired t-test, ANOVA with a randomized block design, and Pearson correlation tests were used. Averages were 0.63 mL/min, 7.06, and 0.87 for flow rate, pH, and buffer capacity, respectively. An immediate significant increase in salivary pH was observed after rinsing, reaching average values of 7.24 (MWb) and 7.30 (MWa), which declined to an almost stable value 15 minutes. The great increase in salivary pH, after MW use shows that saliva is a dynamic system, and that the organism is capable of responding to a stimulus with changes in its composition. It is thus evident that pH of the external agent alone is not a good indicator for its erosive potential because biological systems tend to neutralize it. The results of this study enhance the importance of in vivo measurements and reinforce the concept of the protective action of saliva.
Maternal and fetal Acid-base chemistry: a major determinant of perinatal outcome.
Omo-Aghoja, L
2014-01-01
Very small changes in pH may significantly affect the function of various fetal organ systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome.
NASA Astrophysics Data System (ADS)
Stalin, T.; Rajendiran, N.
2006-08-01
Effect of solvents, buffer solutions of different pH and β-cyclodextrin (β-CD) on the absorption and fluorescence spectra of 4-hydroxy-3-methoxybenzoic acid (vanillic acid, HMB) have been investigated and compared with 4-hydroxy-3,5-dimethoxybenzoic acid (HDMB). The inclusion complex of β-CD with HMB is investigated by UV-vis, fluorimetry, FT-IR, 1H NMR, scanning electron microscope (SEM) and semiempirical methods. The thermodynamic parameters (Δ G, Δ H and Δ S) of inclusion process are also determined. Solvent study shows in the S 0 state, HMB is more polar than HDMB, whereas the polarity is same in the S 1 state. pH studies suggest proton transfer reactions follow the same trend in HMB and HDMB molecules. β-CD studies indicates (i) HMB forms 1:1 inclusion complex with β-CD and (ii) unusual blue shift of hydroxyl ion (dianion) in the β-CD medium confirms OH group present in the interior part of the β-CD cavity and COOH group present in the upper part of the β-CD cavity. A mechanism is proposed to explain the inclusion process.
Sung, Nackmoon; Collins, Michael T.
2000-01-01
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20°C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log10 concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 103 cells of M. avium subsp. paratuberculosis per ml. PMID:10742208
Isolation and Purification of Antibiotic Material from Physarum gyrosum
Schroeder, H. R.; Mallette, M. F.
1973-01-01
The myxomycete Physarum gyrosum was cultured in its plasmodial stage on agar plates containing 0.025 M phosphate buffer at pH 6.5, 2% bakers' yeast, and 0.2% glucose and was supplemented with live Escherichia coli. Extracts of these plasmodia contained several antibiotic substances. Antibiotic materials were partially purified by dialysis of the agar medium-mold mixture, evaporation of the dialyzate, and butanol extraction of the residue. Further purification in two paper and two thin-layer chromatographic systems gave one product which was pure in six thin-layer chromatographic systems. Antibiotic activity against some gram-positive and gram-negative bacteria and yeasts was demonstrated with partially purified extracts and a paper-chromatographically separated fraction. One pure antibiotic was effective against Bacillus cereus. PMID:4799591
Streptomyces plicatus as a model biocontrol agent.
Abd-Allah, E F
2001-01-01
Three hundred and seventy two isolates belonging to the genus Streptomyces were isolated and screened for chitinase production. Streptomyces plicatus was found to be the best producer. The highest chitinase production were incubated for 3 d at 30 degrees C on buffered culture medium (pH 8.0) containing chitin plus sucrose and calcium nitrate as carbon and nitrogen sources. S. plicatus chitinase had a highly significant inhibitory effect on spore germination, germ tube elongation and radial growth of Fusarium oxysporum f.sp. lycopersici, Altrernaria alternata and Verticillium albo-atrum, the causal organisms of Fusarium wilt, stem canker and Verticillium wilt diseases of tomato. Application of S. plicatus to the root system of tomato plants before transplantation markedly protected tomato plants against the tested phytopathogenic fungi in vivo.
NASA Astrophysics Data System (ADS)
Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.
2012-05-01
The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.
NASA Technical Reports Server (NTRS)
Tsai, Amos; Mosher, Richard A.; Bier, Milan
1986-01-01
Computer simulation is used to analyze a system of two electrophoretic columns coupled by mixing the anolyte of one with the catholyte of the other. A mathematical model is presented which is used to predict the pH gradients formed by monovalent buffers in this system, when the currents in the columns are unequal. In the column with the higher current a pH gradient is created which increases from anode to cathode and is potentially useful for isoelectric focusing. The breadth of this gradient is dependent upon the ratio of the currents. The function of the second column is the compensation of buffer migration which occurs in the first column, thereby maintaining constant electrolyte composition. The effects of buffer pKs and mobilities are evaluated.
NASA Astrophysics Data System (ADS)
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-01
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu2 + ions in the presence of other competitive ions through ;naked eye; in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10 mM, pH = 7.4)). The presence of Cu2 + induce color change from light yellow green to yellow with the appearance of a new band at 450 nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10 μM) was quenched completely in the presence of 2.7 equiv. of Cu2 + ions. Sub-micromolar limit of detection (LOD = 3.4 × 10- 7 M), efficient Stern-Volmer quenching constant (KSV = 1.8 × 105 L mol- 1) and strong binding constant (log Kb = 5.92) has been determined with the help of fluorescence titration profile. Further, 1 - Cu2 + complex was employed for the detection of phosphate ions (PO43 -, HPO42 - and H2PO4-) at micromolar concentrations in EtOH-buffer of pH 7.4 based on fluorescence recovery due to the binding of Cu2 + with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406 nm) and emission wavelength (537 nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging.
Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F.
2013-01-01
The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective tri-functionalization of proteins is readily achieved. In particular cases, we noted PTAD decomposition resulted in formation of a putative isocyanate by-product that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene) glycol chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These studies support the broad utility of this reaction in the chemoselective modification of small molecules, peptides, and proteins under mild aqueous conditions over a broad pH range using a wide variety of biologically acceptable buffers such as phosphate buffered saline (PBS) and 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffers as well as others and mixed buffered compositions. PMID:23534985
Gabboun, N H; Najib, N M; Ibrahim, H G; Assaf, S
2001-01-05
Release of salicylic acid, diclofenac acid, diclofenac diethylamine and diclofenac sodium, from lyotropic structured systems, namely; neat and middle liquid crystalline phases, across mid-dorsal hairless rat skin into aqueous buffer were studied. Release results were compared with those from the isotropic systems. The donor systems composed of the surfactant polyoxyethylene (20) isohexadecyl ether, HCl buffer of pH 1 or distilled water and the specific drug. High performance liquid chromatography (HPLC) methods were used to monitor the transfer of the drugs across the skin barrier. Results indicated that the rate-determining step in the transport process was the release of the drug from the specified donor system. Further, apparent zero order release was demonstrated with all systems. Except for diclofenac sodium, drug fluxes decreased as the donor medium changed from isotropic to anisotropic. The decrease in fluxes was probably due to the added constrains on the movement of drug molecules. By changing the anisotropic donor medium from neat to middle phase, drug flux decreased in case of salicylic acid and diclofenac sodium. In the mean time, flux increased in case of the diethylamine salt and appeared nearly similar in case of diclofenac acid. Rates of drug transfer across the skin from the anisotropic donors seemed to be largely controlled by the entropy contribution to the transport process. The type and extent of drug-liquid crystal interactions probably influenced the latter.
Kelly, M; Vardhanabhuti, B; Luck, P; Drake, M A; Osborne, J; Foegeding, E A
2010-05-01
Whey protein beverages are adjusted to pH <4.5 to enhance clarity and stability, but this pH level is also associated with increased astringency. The goal of this investigation was to determine the effects of protein concentration on astringency and interactions between whey and salivary proteins. Whey protein beverages containing 0.25 to 13% (wt/wt) beta-lactoglobulin and 0.017% (wt/wt) sucralose at pH 2.6 to 4.2 were examined using descriptive sensory analysis. Controls were similar pH phosphate buffers at phosphate concentrations equivalent to the amount of phosphoric acid required to adjust the pH of the protein solution. Changes in astringency with protein concentration depended on pH. At pH 3.5, astringency significantly increased with protein concentration from 0.25 to 4% (wt/wt) and then remained constant from 4 to 13% (wt/wt). Conversely, at pH 2.6, astringency decreased with an increase in protein concentration [0.5-10% (wt/wt)]. This suggests a complex relationship that includes pH and buffering capacity of the beverages. Furthermore, saliva flow rates increased with increasing protein concentrations, showing that the physiological conditions in the mouth change with protein concentration. Maximum turbidity of whey protein-saliva mixtures was observed between pH 4.6 and 5.2. Both sensory evaluation and in vitro study of interactions between beta-LG and saliva indicate that astringency of whey proteins is a complex process determined by the extent of aggregation occurring in the mouth, which depends on the whey protein beverage pH and buffering capacity in addition to saliva flow rate. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.
Chase, P B; Kushmerick, M J
1988-01-01
We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH. Images FIGURE 1 PMID:2969265
Ribelles Llop, M; Guinot Jimeno, F; Mayné Acién, R; Bellet Dalmau, L J
2010-03-01
The first studies on the use of chewing gum in dentistry were done in the 1970s. The Turku Sugar Studies, carried out between 1970 and 1973, showed the excellent anticaries properties of xylitol chewing gums. Since then, many dentists, particularly in Scandinavian countries, have studied the role of chewing xylitol-sweetened chewing gums as another preventive strategy in the control of dental caries. To compare variations in salivary flow rate, pH, buffering capacity, and levels of Streptococcus mutans in baseline conditions and after chewing paraffin pellets or xylitol chewing gum in children between the ages of 6 and 12 years who eat lunch in a school canteen. The study sample consisted of 90 children divided into 2 study groups, and a control group. The children ate lunch at the canteen of the Escultor Ortells state school in the town of Vila-real (Castellón, Spain). The baseline data recorded in the first phase of the study were compared with the data recorded in the second phase, after 15 minutes of chewing xylitol- sweetened chewing gums or paraffin pellets, depending on the study group. Salivary flow rate was measured by collecting the stimulated saliva in a graduated beaker. Levels of pH were measured using a Cyberscan pH 110 pH meter (Eutech Instruments). CRT buffer strips and the CRT bacteria test (Ivoclar-Vivadent) were used to measure buffering capacity and levels of S. mutans, respectively. The data obtained after sample collection were compared by means of a 1-way analysis of variance using the StatGraphics Plus statistical software package, version 5.0. Statistically significant differences were found (p<.05) when pH, buffering capacity and levels of S. mutans were compared between the 3 groups. Comparison of salivary flow rates revealed no statistically significant differences (p>.05), though salivary flow rates were higher in the groups where gum was chewed. The effect of chewing is essential to the stimulation of salivary flow and the resulting recovery of pH levels and reduction of levels of S. mutans in saliva.
Sahle, Fitsum Feleke; Gerecke, Christian; Kleuser, Burkhard; Bodmeier, Roland
2017-01-10
pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit ® L 100, Eudragit ® L 100-55, Eudragit ® S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10mM pH 7.5 buffer and released>80% of the drug within 7h. The acrylate nanoparticles dissolved in 40mM pH 7.5 buffer and released 65-70% of the drug within 7h. The nanoparticles remained intact in 10 and 40mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.
Sonawane, N D; Szoka, Francis C; Verkman, A S
2003-11-07
The "proton sponge hypothesis" postulates enhanced transgene delivery by cationic polymer-DNA complexes (polyplexes) containing H+ buffering polyamines by enhanced endosomal Cl- accumulation and osmotic swelling/lysis. To test this hypothesis, we measured endosomal Cl- concentration, pH, and volume after internalization of polyplexes composed of plasmid DNA and polylysine (POL), a non-buffering polyamine, or the strongly buffering polyamines polyethylenimine (PEI) or polyamidoamine (PAM). [Cl-] and pH were measured by ratio imaging of fluorescently labeled polyplexes containing Cl- or pH indicators. [Cl-] increased from 41 to 80 mM over 60 min in endosomes-contained POL-polyplexes, whereas pH decreased from 6.8 to 5.3. Endosomal Cl- accumulation was enhanced (115 mM at 60 min) and acidification was slowed (pH 5.9 at 60 min) for PEI and PAM-polyplexes. Relative endosome volume increased 20% over 75 min for POL-polyplexes versus 140% for PEI-polyplexes. Endosome lysis was seen at >45 min for PEI but not POL-containing endosomes, and PEI-containing endosomes showed increased osmotic fragility in vitro. The slowed endosomal acidification and enhanced Cl- accumulation and swelling/lysis were accounted for by the greater H+ buffering capacity of endosomes containing PEI or PAM versus POL (>90 mM versus 46 H+/pH unit). Our results provide direct support for the proton sponge hypothesis and thus a rational basis for the design of improved non-viral vectors for gene delivery.
Acid-base metabolism: implications for kidney stones formation.
Hess, Bernhard
2006-04-01
The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ <--> NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.
Gas diffusion liquid storage bag and method of use for storing blood
NASA Technical Reports Server (NTRS)
Bank, H.; Cleland, E. L. (Inventor)
1979-01-01
The shelf life of stored whole blood may be doubled by adding a buffer which maintains a desired pH level. However, this buffer causes the generation of CO2 which, if not removed at a controlled rate, causes the pH value of the blood to decrease, which shortens the useful life of the blood. A blood storage bag is described which permits the CO2 to be diffused out at a controlled rate into the atmosphere, thereby maintaining the desired pH value and providing a bag strong enough to permit handling.
Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.
Ragoonanan, Vishard; Suryanarayanan, Raj
2014-06-01
We hypothesize that ultrasonication can accelerate solute crystallization in freeze-concentrates. Our objective is to demonstrate ultrasonication as a potential predictive tool for evaluating physical stability of excipients in frozen solutions. The crystallization tendencies of lyoprotectants (trehalose, sucrose), carboxylic acid buffers (citric, tartaric, malic, and acetic) and an amino acid buffer (histidine HCl) were studied. Aqueous solutions of buffers, lyoprotectants and mixtures of the two were cooled from room temperature to -20°C and sonicated to induce solute crystallization. The crystallized phases were identified by X-ray diffractometry (laboratory or synchrotron source). Sonication accelerated crystallization of trehalose dihydrate in frozen trehalose solutions. Sonication also enhanced solute crystallization in tartaric (200 mM; pH 5), citric (200 mM pH 4) and malic (200 mM; pH 4) acid buffers. At lower buffer concentrations, longer annealing times following sonication were required to facilitate solute crystallization. The time for crystallization of histidine HCl progressively increased as a function of sucrose concentration. The insonation period required to effect crystallization also increased with sucrose concentration. Sonication can substantially accelerate solute crystallization in the freeze-concentrate. Ultrasonication may be useful in assessing the crystallization tendency of formulation constituents used in long term frozen storage and freeze-drying.
Linder, R; Salton, M R
1975-06-16
Conversion of whole cells of Micrococcus lysodeikticus to protoplasts allowed the release of a soluble form of a D-alanine carboxypeptidase into the protoplasting medium. The enzyme cleaves the terminal D-alanine from the radioactively labelled UDP-N-acetylmuramyl-pentapeptide containing L-lysine as the diamino acid. However, the enzyme is only minimally active in this fraction so that it had to be enriched and partially purified before its properties could be studied. Chromatography on carboxymethyl-Sephadex removed the lysozyme used in the protoplasting of the cells. The material which was unadsorbed to the column was applied to an affinity chromatography column of Ampicillin-Sepharose. Most of the contaminating protein was washed from the column while the D-alanine carboxypeptidase adhered to the resin and could be eluted with 0.5 M Tris-HCl buffer pH 8.6. Some of the properties of the enzymic activity were studied using this preparation. The enzyme was activated by Mg2+ ions with a broad optimum from 15--35 mM. It was maximally active when NaCl at a concentrations of 0.06--0.08 M was added to the assay, and the pH curve was biphasic with an alkaline optimum. The Km for substrate was found to be 0.118 mM. Enzymic activity was completely inhibited by low concentrations of Ampicillin and penicillin G.
Low Medium pH Value Enhances Anthocyanin Accumulation in Malus Crabapple Leaves
Tian, Ji; Jin, Kaina; Yao, Yuncong
2014-01-01
Anthocyanin is a critical factor involved in coloration of plant tissues, but the mechanism how medium pH values affect anthocyanin accumulation in woody plants is unknown. We analyzed anthocyanin composition and the expression of elements encoding anthocyanin and flavonols biosynthesis underlying different medium pH values by using three different leave color type cultivars. HPLC analysis demonstrated that high medium pH values treatment induced a dramatic decrease in the concentration of cyaniding in crabapple leaves. Conversely, the high medium pH values induced up-regulation of the content of flavones and flavonols, suggesting that low pH treatment-induced anthocyanin accumulation. Quantitative real time PCR experiment showed the expression level of anthocyanidin synthase (McANS) and uridine diphosphate glucose flavonoid 3-O-glucosyltransferase (McUFGT) was up-regulated by low pH values treatment, and high medium pH value treatment up-regulate the transcription level of flavonol synthase (McFLS). Meanwhile, several MYB TFs have been suggested in the regulation of pH responses. These results strongly indicate that the low pH treatment-induced anthocyanin accumulation is mediated by the variation of mRNA transcription of the anthocyanin biosynthetic genes. PMID:24914811
Aluminum elution and precipitation in glass vials: effect of pH and buffer species.
Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide
2015-02-01
Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.
Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W
2012-01-16
Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this resulted in up to 3.5 and 2.0 log inactivation for A. acidoterrestris and B. coagulans respectively. We conclude that HP treatment can induce germination and inactivation of spores from thermoacidophilic bacteria in acidic foods, and may thus be useful to reduce spoilage of such foods caused by these bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.
Functional Analysis of Human NF1 in Drosophila
2007-01-01
adjusted to 1 mg/ml. Fifty microlitres of 2 assay buffer (50 mM Tris– acetate buffer at pH 7.5, 20 mM MgCl2, 2 mM dithiothreitol, 10 mM creatine phosphate...200 units/ml creatinine kinase, 0.1 mM cAMP at pH 7.5, 0.2 mg/ml bovine serum albumin, 0.02 mg/ml aprotinin, 0.02 mg/ml pepstatin and fresh 0.2 mg
Influence of succinylation on physicochemical property of yak casein micelles.
Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing
2016-01-01
Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH < 3. Succinylation increased yak casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of pilocarpine and its trans epimer, isopilocarpine, by capillary electrophoresis.
Baeyens, W; Weiss, G; Van Der Weken, G; Van Den Bossche, W
1993-05-28
Capillary zone electrophoresis was used for the separation of pilocarpine from its epimer, isopilocarpine, using coated fused-silica capillaries of 20 cm x 25 microm I.D., 8 kV running voltage, migration buffer of 0.1 M sodium dihydrogenphosphate pH 8, detection at 217 nm and injection by electromigration. Injections of aqueous, acid and basic solutions were compared. Linearity of the signal for pilocarpine hydrochloride up to 200 microg ml(-1) in 0.05 M hydrochloric acid was obtained, using naphazoline nitrate as internal standard. Optimization of migration buffer pH using coated silica capillaries of 50 cm x 50 microm I.D. showed that at pH 6.9 pilocarpine can be separated from ++isopilocarpine. Inclusion of beta-cyclodextrin in the buffer allows full baseline separation of both epimers. The method was applied to the analysis of a commercial ophthalmic pilocarpine solution.
L'Hocine, Lamia; Pitre, Mélanie
2016-03-01
A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barantsev, K. A., E-mail: kostmann@yandex.ru; Popov, E. N.; Litvinov, A. N., E-mail: andrey.litvinov@mail.ru
2015-11-15
The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.
Lu, Shih-Chin; Lin, Sung-Chyr
2012-01-05
Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.
Causes of acidification of four streams on Laurel Hilld in southwestern Pennsylvania
Sharpe, William E.; DeWalle, David R.; Leibfried, Robert T.; Dinicola, Richard S.; Kimmel, William G.; Sherwin, Lysle S.
1984-01-01
Atmospheric deposition, soils developed from bedrock, a natural bog, gas wells, and a ski area were all investigated as possible sources of water quality degradation for four streams on Laurel Hill in southwestern Pennsylvania where fish kills have been reported since 1960. An intensive study of the chemistry of atmospheric deposition, soil leachate, and stream water and fish populations was conducted on these basins during 1980–1981 with emphasis on dormant season periods with runoff from snowmelt and rain. Although bedrock geology was found to control the natural buffering capacity of these streams, only acid precipitation could be linked to sharp drops in pH and increases in total Al concentrations observed during stormflows in the poorly buffered streams. Three poorly buffered streams exhibited drops to pH 4.4 to 4.5 and increases in total Al concentrations up to 1.5 mg/L during observed peak flows. Mineral soil leachate from the three major soil series on the basins during this time exhibited a low pH of 4.3 and mean total Al concentrations of 3.6 mg/L, indicating stream response during storms was closely linked to chemistry of soil leachate. Poorly buffered streams did not support reproducing populations of trout (Salmonidae sp.) or other fishes. In contrast, one well-buffered stream (20 mg/L CaCO3) exhibited drops to pH 5.5 during peak flow and supported reproducing trout and sculpin (Cottus bairdi) populations. The acidification of the four streams studied was attributed to atmospheric deposition.
Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L
2012-10-01
The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.
Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.
2012-01-01
The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122
Maternal and Fetal Acid-Base Chemistry: A Major Determinant of Perinatal Outcome
Omo-Aghoja, L
2014-01-01
Very small changes in pH may significantly affect the function of various fetal organ systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome. PMID:24669324
Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven
2015-11-01
We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer-based formulations, especially at protein concentrations up to and including 115 mg/mL. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esswein, AJ; Surendranath, Y; Reece, SY
A high surface area electrode is functionalized with cobalt-based oxygen evolving catalysts (Co-OEC = electrodeposited from pH 7 phosphate, Pi, pH 8.5 methylphosphonate, MePi, and pH 9.2 borate electrolyte, Bi). Co-OEC prepared from MePi and operated in Pi and Bi achieves a current density of 100 mA cm(-2) for water oxidation at 442 and 363 mV overpotential, respectively. The catalyst retains activity in near-neutral pH buffered electrolyte in natural waters such as those from the Charles River (Cambridge, MA) and seawater (Woods Hole, MA). The efficacy and ease of operation of anodes functionalized with Co-OEC at appreciable current density togethermore » with its ability to operate in near neutral pH buffered natural water sources bodes well for the translation of this catalyst to a viable renewable energy storage technology.« less
KEY COMPARISON: Final report of EUROMET Project 696: pH determination of a phthalate buffer
NASA Astrophysics Data System (ADS)
Spitzer, Petra; Charlet, Philippe; Eberhard, Ralf; Karpov, Oleg V.; Philippe, Rachel; Rivier, Cedric; Maximov, Igor; Sudmeier, Uwe
2005-01-01
The EUROMET project 696, a trilateral comparison between PTB, Germany, LNE, France and VNIIFTRI, Russia was performed in order to demonstrate and document the capability of the participants to measure the pH of a phthalate buffer by the primary measurement procedure for pH. Good agreement of the reported results was observed. The sample was very similar to the one used in the comparison CCQM-K17. PTB acts as pilot laboratory in CCQM-K17 and in EUROMET 696. This comparison allows one to link the results obtained by LNE to the CCQM-K17 key comparison through the degree of equivalence of PTB. On the other hand, the discrepancy between measured pH values at the VNIIFTRI and PTB for the same type of buffer solution decreased, as compared with a bilateral comparison in 1997. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the Mutual Recognition Arrangement (MRA).
LED-CT Scan for pH Distribution on a Cross-Section of Cell Culture Medium.
Higashino, Nobuya; Takayama, Toshio; Ito, Hiroaki; Horade, Mitsuhiro; Yamaguchi, Yasutaka; Dylan Tsai, Chia-Hung; Kaneko, Makoto
2018-01-11
In cell culture, the pH of the culture medium is one of the most important conditions. However, the culture medium may have non-uniform pH distribution due to activities of cells and changes in the environment. Although it is possible to measure the pH distribution with an existing pH meter using distributed electrodes, the method involves direct contact with the medium and would greatly increase the risk of contamination. Here in this paper, we propose a computed tomography (CT) scan for measuring pH distribution using the color change of phenol red with a light-emitting diode (LED) light source. Using the principle of CT scan, we can measure pH distribution without contacting culture medium, and thus, decrease the risk of contamination. We have developed the device with a LED, an array of photo receivers and a rotation mechanism. The system is firstly calibrated with different shapes of wooden objects that do not pass light, we succeeded in obtaining their 3D topographies. The system was also used for measuring a culture medium with two different pH values, it was possible to obtain a pH distribution that clearly shows the boundary.
Gaudreault, Pierre-Richard; Webb, John A.
1983-01-01
A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant. Images Fig. 1 PMID:16662884
USDA-ARS?s Scientific Manuscript database
Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...
Brdicka, R
1936-07-20
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.
Investigations Concerning Hydrolysis and Stabilization of Antiradiation Compounds
1982-01-01
Stability of Unencapsulated WR 2721 31 V. DISCUSSION 35 A. Microencapsulation 35 1. Microspheres 35 2. Microcapsules 35 B. Hydrolytic Stability of...in 1.5 hours at 370C in buffered solutions of pH 1.0 or 3.0. 3^ The more promising microspheres and microcapsules released the WR 2721 within two...hours at pH 7.5 in buffered solutions. 4) Analytical procedures were developed for: "♦ WR 2721 (directly) in microcapsules using an HPLC
Stability and tribological performances of fluid phospholipid bilayers: effect of buffer and ions.
Dekkiche, F; Corneci, M C; Trunfio-Sfarghiu, A-M; Munteanu, B; Berthier, Y; Kaabar, W; Rieu, J-P
2010-10-15
We have investigated the mechanical and tribological properties of supported Dioleoyl phosphatidylcholine (DOPC) bilayers in different solutions: ultrapure water (pH 5.5), saline solution (150 mM NaCl, pH 5.8), Tris buffer (pH 7.2) and Tris saline buffer (150 mM NaCl, pH 7.2). Friction forces are measured using a homemade biotribometer. Lipid bilayer degradation is controlled in situ during friction tests using fluorescence microscopy. Mechanical resistance to indentation is measured by force spectroscopy with an atomic force microscope. This study confirms that mechanical stability under shear or normal load is essential to obtain low and constant friction coefficients. In ultrapure water, bilayers are not resistant and have poor lubricant properties. On the other hand, in Tris saline buffer, they fully resist to indentation and exhibit low (micro=0.035) and stable friction coefficient with no visible wear during the 50 min of the friction test. The unbuffered saline solution improves the mechanical resistance to indentation but not the lubrication. These results suggest that the adsorption of ions to the zwiterrionic bilayers has different effects on the mechanical and tribological properties of bilayers: higher resistance to normal indentation due to an increase in bilayer cohesion, higher lubrication due to an increase in bilayer-bilayer repulsion. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Cherepanov, Dmitry A.; Junge, Wolfgang; Mulkidjanian, Armen Y.
2004-01-01
Crossing the membrane/water interface is an indispensable step in the transmembrane proton transfer. Elsewhere we have shown that the low dielectric permittivity of the surface water gives rise to a potential barrier for ions, so that the surface pH can deviate from that in the bulk water at steady operation of proton pumps. Here we addressed the retardation in the pulsed proton transfer across the interface as observed when light-triggered membrane proton pumps ejected or captured protons. By solving the system of diffusion equations we analyzed how the proton relaxation depends on the concentration of mobile pH buffers, on the surface buffer capacity, on the form and size of membrane particles, and on the height of the potential barrier. The fit of experimental data on proton relaxation in chromatophore vesicles from phototropic bacteria and in bacteriorhodopsin-containing membranes yielded estimates for the interfacial potential barrier for H+/OH− ions of ∼120 meV. We analyzed published data on the acceleration of proton equilibration by anionic pH buffers and found that the height of the interfacial barrier correlated with their electric charge ranging from 90 to 120 meV for the singly charged species to >360 meV for the tetra-charged pyranine. PMID:14747306
Gäb, Jürgen; John, Harald; Melzer, Marco; Blum, Marc-Michael
2010-05-15
Buffering compounds like TRIS are frequently used in chemical, biochemical and biomedical applications to control pH in solution. One of the prerequisites of a buffer compound, in addition to sufficient buffering capacity and pH stability over time, is its non-reactivity with other constituents of the solution. This is especially important in the field of analytical chemistry where analytes are to be determined quantitatively. Investigating the enzymatic hydrolysis of G-type nerve agents sarin, soman and cyclosarin in buffered solution we have identified stable buffer adducts of TRIS, TES and other buffer compounds with the nerve agents. We identified the molecular structure of these adducts as phosphonic diesters using 1D (1)H-(31)P HSQC NMR and LC-ESI-MS/MS techniques. Reaction rates with TRIS and TES are fast enough to compete with spontaneous hydrolysis in aqueous solution and to yield substantial amounts (up to 20-40%) of buffer adduct over the course of several hours. A reaction mechanism is proposed in which the amino function of the buffer serves as an intramolecular proton acceptor rendering the buffer hydroxyl groups nucleophilic enough for attack on the phosphorus atom of the agents. Results show that similar buffer adducts are formed with a range of hydroxyl and amino function containing buffers including TES, BES, TRIS, BIS-TRIS, BIS-TRIS propane, Tricine, Bicine, HEPES and triethanol amine. It is recommended to use alternative buffers like MOPS, MES and CHES when working with G-type nerve agents especially at higher concentrations and over prolonged times. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Hematin crystallization from aqueous and organic solvents
NASA Astrophysics Data System (ADS)
Ketchum, Megan A.; Olafson, Katy N.; Petrova, Elena V.; Rimer, Jeffrey D.; Vekilov, Peter G.
2013-09-01
Hematin crystallization is the main mechanism of detoxification of heme that is released in malaria-infected erythrocytes as a byproduct of the hemoglobin catabolism by the parasite. A controversy exists over whether hematin crystals grow from the aqueous medium of the parasite's digestive vacuole or in the lipid bodies present in the vacuole. To this end, we compare the basic thermodynamic and structural features of hematin crystallization in an aqueous buffer at pH 4.8, as in the digestive vacuole, and in water-saturated octanol that mimics the environment of the lipid nanospheres. We show that in aqueous solutions, hematin aggregation into mesoscopic disordered clusters is insignificant. We determine the solubility of the β-hematin crystals in the pH range 4.8-7.6. We image by atomic force microscopy crystals grown at pH 4.8 and show that their macroscopic and mesoscopic morphology features are incompatible with those reported for biological hemozoin. In contrast, crystals grown in the presence of octanol are very similar to those extracted from parasites. We determine the hematin solubility in water-saturated octanol at three temperatures. These solubilities are four orders of magnitude higher than that at pH 4.8, providing for faster crystallization from organic than from aqueous solvents. These observations further suggest that the lipid bodies play a role in mediating biological hemozoin crystal growth to ensure faster heme detoxification.
Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad
2017-01-01
Abstract In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks (M c), crosslink density (M r), volume interaction parameter (v 2,s), Flory Huggins water interaction parameter and diffusion coefficient (Q) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM. PMID:29491802
Polyelectrolyte polymer properties in relation to male contraceptive RISUG action.
Roy, Sohini; Ghosh, Debidas; Guha, Sujoy K
2009-02-15
RISUG a polyelectrolytic hydrogel (styrene maleic anhydride and dimethyl sulfoxide) has proven to be efficacious as a contraceptive for a long term when injected into the lumen of vas deferens. Currently it is in advanced phase III clinical trials in India. Present investigation analyzes the swelling characteristics of RISUG hydrogel in different pH buffers and various biological fluids to understand its retention in the vas deferens as reported in previous studies. Significant variation in degree of swelling and equilibrium swelling ratio with transformation of Fickian to non-Fickian mode of diffusion was observed with increased pH. This might be due to ionization of carboxylic groups at high pH resulting in increased electrostatic repulsive force and high osmotic pressure inside the hydrogel network affecting its physical cross-linking and increases the free volume. Conversely, at low pH the dissociation of carboxylic group is limited making the hydrogel more stable. Interaction with various biomolecules present in various biological fluids was also studied. SEM, AFM and FTIR were used to analyze the topological and structural parameters of the polymer in different mediums. Loosening of structure and increasing porosity with significant adsorption of various biomolecules was observed. AFM revealed a significant change in overall roughness of polymer surface on interaction with different biological fluids. These observations suggest that the swelling and increased roughness will lead to increased resistance to sperm movement in the vas deferens.
Valenzuela-Reyes, Edgardo; Casas-Flores, Sergio; Isordia-Jasso, Isabel; Arriaga, Sonia
2014-09-01
In this work, several conditions of pH and inlet load (IL) were applied to a scale laboratory biofilter treating n-hexane vapors during 143 days. During the first 79 days of operation (period 1, P1), the system was fed with neutral pH mineral medium (MM) and the IL was progressively decreased from 177 to 16 g m(-3) h(-1). A maximum elimination capacity (EC) of 30 g m(-3) h(-1) was obtained at an IL of 176.9 ± 9.8 g m(-3) h(-1). During the following 64 days (period 2, P2), acidic conditions were induced by feeding the biofilter with acidic buffer solution and pH 4 MM in order to evaluate the effect of bacterial community changes on EC. Within the acidic period, a maximum EC of 54 g m(-3) h(-1) (IL 132.3 ± 13 g m(-3) h(-1)) was achieved. Sequence analysis of 16S rDNA genes amplified from the consortium revealed the presence of Sphingobacteria, Actinobacteria, and α-, β- and γ-Proteobacteria. An Actinobacteria of the Mycobacterium genus had presence throughout the whole experiment of biofiltration showing resistance to fluctuating pH and IL conditions. Batch tests confirm the bacterial predominance and a negligible contribution of fungi in the degradation of n-hexane.
Effect of Tris-acetate buffer on endotoxin removal from human-like collagen used biomaterials.
Zhang, Huizhi; Fan, Daidi; Deng, Jianjun; Zhu, Chenghui; Hui, Junfeng; Ma, Xiaoxuan
2014-09-01
Protein preparation, which has active ingredients designated for the use of biomaterials and therapeutical protein, is obtained by genetic engineering, but products of genetic engineering are often contaminated by endotoxins. Because endotoxin is a ubiquitous and potent proinflammatory agent, endotoxin removal or depletion from protein is essential for researching any biomaterials. In this study, we have used Tris-acetate (TA) buffer of neutral pH value to evaluate endotoxins absorbed on the Pierce high-capacity endotoxin removal resin. The effects of TA buffer on pH, ionic strength, incubation time as well as human-like collagen (HLC) concentration on eliminating endotoxins are investigated. In the present experiments, we design an optimal method for TA buffer to remove endotoxin from recombinant collagen and use a chromogenic tachypleus amebocyte lysate (TAL) test kit to measure the endotoxin level of HLC. The present results show that, the endotoxins of HLC is dropped to 8.3EU/ml at 25 mM TA buffer (pH7.8) with 150 mM NaCl when setting incubation time at 6h, and HLC recovery is about 96%. Under this experimental condition, it is proved to exhibit high efficiencies of both endotoxin removal and collagen recovery. The structure of treated HLC was explored by Transmission Electron Microscopy (TEM), demonstrating that the property and structure of HLC treated by TA buffer are maintained. Compared to the most widely used endotoxin removal method, Triton X-114 extraction, using TA buffer can obtain the non-toxic HLC without extra treatment for removing the toxic substances in Triton X-114. In addition, the present study aims at establishing a foundation for further work in laboratory animal science and providing a foundation for medical grade biomaterials. Copyright © 2014 Elsevier B.V. All rights reserved.
Saliva characteristics, diet and carioreceptivity in dental students.
Chifor, Ioana; Badea, Iulia; Chifor, Radu; Popa, Dan; Staniste, Liviu; Tarmure, Dragos; Avram, Ramona
2014-01-01
The use of sugar by dental plaque microorganisms leads to acid formation from the bacteria metabolism, which determines a decrease of pH onto teeth surfaces. The value of the critical pH is 5.2-5.5. We aimed to evaluate the capacity of patients to change their diet towards caries prevention after acknowledging the values of saliva parameters (pH, buffer capacity). A group of 52 subjects were clinically examined according to the International Caries Assessment and Detection System protocol. They were required to complete a diet questionnaire and salivary tests were made for the oral mucosa hydration level, pH, buffer capacity, salivary flow rate at rest and upon stimulation. 4 pre-calibrated 6th year students and 2 dentists performed the tests and the ICDAS examination. One week after the tests, the subjects were asked to complete the diet questionnaire again. The studied group consisted of students aged between 23-26 years, randomly selected among 6(th) year students of the Faculty of Dentistry from Cluj-Napoca. The mean DMF-S index was 18.39. Most of the patients (65%) had a DMF-S index between 9 and 21. Just 2.5% had an index of 3, which was the lowest value recorded. 5% of the patients had a DMFS of 35, which was the maximal value recorded. The distribution of DMF-S was normal. 50% of the patients had no active caries. Even though most subjects (19.23%) had a pH within the normal interval, most of them were at the bottom value of the interval (6.8). Most subjects had a pH of 6.4, which is moderately acid. The mean pH was 6.7, therefore, a moderately acid one. The Pearson correlation coefficient between DMFS and pH was 0.255. A mild negative correlation (-0.275) was found between the cariogenic food and buffer capacity. A week later we noticed a statistically significant decrease of cariogenic foods and drinks in students with acid pH and with low buffer capacity. A regular intake of cakes, bonbons and chocolate was reported by subjects who had a high DMF-S value and a low saliva buffer capacity. Only after the patients were aware of their caries risk, did they change their diet towards a non-cariogenic one, even though they had had the theoretical knowledge regarding caries prevention for at least 3 years. We conclude that the use of the chair-side salivary test should be highly recommended for cario-receptive patients.
Dias, Carla; Silva, Corália; Freitas, Claudia; Reis, Alberto; da Silva, Teresa Lopes
2016-07-01
The effect of the culture medium pH (3.5-6.0) on the carotenoid and lipid (as fatty acids) production by the yeast Rhodosporidium toruloides NCYC 921 was studied. Flow cytometry was used to evaluate the yeast's physiological response to different culture medium pH values. The yeast biomass concentration and lipid content were maxima at pH 4.0 (5.90 g/L and 21.85 % w/w, respectively), while the maximum carotenoid content (63.37 μg/g) was obtained at pH 5.0. At the exponential phase, the yeast cell size and internal complexity were similar, at different medium pH. At the stationary phase, the yeast cell size and internal complexity decreased as the medium pH increased. At the exponential phase, the proportion of cells with polarized membranes was always high (>80 %) but at the stationary phase, the proportion of yeast cells with depolarized membranes was dominant (>65 %) and increased with the medium pH increase. The results here reported may contribute for yeast bioprocesses optimization. For the first time, multiparameter flow cytometry was used to evaluate the impact of medium pH changes on the yeast cell physiological status, specifically on the yeast membrane potential, membrane integrity, cell size and internal complexity.
NASA Astrophysics Data System (ADS)
Kobayashi, Tsuyoshi; Hashizume, Hiroshi; Ohta, Takayuki; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi
2015-09-01
The inactivation of microorganisms using nonequilbrium atmospheric pressure plasmas has been attracted much attention due to the low temperature processing and high speed treatment. In this study, we have inactivated E. coli suspended in solutions with neutral pH using an atmospheric-pressure oxygen radical source which can selectively supply electrically neutral oxygen radicals. E. coli cells were suspended with deionized distilled water (DDW) (pH = 6.8) or phosphate buffered saline (PBS) (pH = 7.4) or Citrate-Na buffer (pH = 6.5). The treated samples were diluted and spread on nutrient agar (Nutrient Broth). They were cultured at 37° C. The inactivation effects of oxygen radicals on those cells in solutions were evaluated by colony-counting method. O2 diluted by Ar gas were employed as a working gas for the radical source. The total gas flow rate and the gas mixture ratio of O2/(Ar + O2) were set at 5 slm and 0.6%, respectively. The distance between the radical exit and the suspension surface were set at 10 mm. As a result, the D values for DDW(pH = 6.8), PBS(pH = 7.4) and Citrate-Na buffer(pH = 6.5) were estimated to be 1.4 min, 0.9 min and 16.8 min respectively. The inactivation rates in DDW, PBS were significantly different from that in Citrate-Na buffer. This work was partly supported by JSPS KAKENHI Grant Number 26286072 and project for promoting Research Center in Meijo University.
Mioni, Roberto; Mioni, Giuseppe
2015-10-01
In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.
Missaghi, Shahrzad; Young, Cara; Fegely, Kurt; Rajabi-Siahboomi, Ali R
2010-02-01
Formulation of proton pump inhibitors (PPIs) into oral solid dosage forms is challenging because the drug molecules are acid-labile. The aim of this study is to evaluate different formulation strategies (monolithic and multiparticulates) for three PPI drugs, that is, rabeprazole sodium, lansoprazole, and esomeprazole magnesium, using delayed release film coating applications. The core tablets of rabeprazole sodium were prepared using organic wet granulation method. Multiparticulates of lansoprazole and esomeprazole magnesium were prepared through drug layering of sugar spheres, using powder layering and suspension layering methods, respectively. Tablets and drug-layered multiparticulates were seal-coated, followed by delayed release film coating application, using Acryl-EZE(R), aqueous acrylic enteric system. Multiparticulates were then filled into capsules. The final dosage forms were evaluated for physical properties, as well as in vitro dissolution testing in both compendial acid phase, 0.1N HCl (pH 1.2), and intermediate pH, acetate buffer (pH 4.5), followed by phosphate buffer, pH 6.8. The stability of the delayed release dosage forms was evaluated upon storage in accelerated conditions [40 degrees C/75% relative humidity] for 3 months. All dosage forms demonstrated excellent enteric protection in the acid phase, followed by rapid release in their respective buffer media. Moreover, the delayed release dosage forms remained stable under accelerated stability conditions for 3 months. Results showed that Acryl-EZE enteric coating systems provide excellent performance in both media (0.1N HCl and acetate buffer pH 4.5) for monolithic and multiparticulate dosage forms.
Microenvironmental pH is a key factor for exosome traffic in tumor cells.
Parolini, Isabella; Federici, Cristina; Raggi, Carla; Lugini, Luana; Palleschi, Simonetta; De Milito, Angelo; Coscia, Carolina; Iessi, Elisabetta; Logozzi, Mariantonia; Molinari, Agnese; Colone, Marisa; Tatti, Massimo; Sargiacomo, Massimo; Fais, Stefano
2009-12-04
Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.
Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose
2018-05-01
The work found that the electron-donating properties of ferrous ions (Fe 2+ ) can be used for the conversion of nitrite (NO 2 - ) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe 2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe 2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe 2+ -to-Fe 3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe 2+ and reduce its autoxidation to Fe 3+ . These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe 2+ was observed on nitrifying bacteria biofilms in PBS at pH 6. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutkins, R.W.; Ponne, C.
1991-04-01
Galactose-nonfermenting (Gal{sup {minus}}) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal{sup {minus}} cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated ({sup 14}C)lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloadedmore » cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force ({Delta}p) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a {Delta}p of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal{sup {minus}} S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system.« less
Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.
Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O
1982-10-01
The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.
Pan, Zhongqin; Liu, Xiaojun; Xie, Jing; Bao, Ning; He, Hong; Li, Xiaodong; Zeng, Jiang; Gu, Haiying
2015-05-01
Although pH-switchable behaviors have been reported based on multilayer films modified electrodes, their pH-switchable biosensing is still difficult due to the existence of the electroactive mediator. In this study, we report the pH-dependable determination of hydrogen peroxide (H2O2) based on a four-bilayer film fabricated through layer by layer assembly between hemoglobin (Hb) and multiwall carbon nanotubes (MWCNTs). We observed that response of electroactive probe Fe(CN)6(3-) at the multilayer films was very sensitive and reversible to pH values of phosphate buffer solutions phosphate buffer solution with cyclic voltammetry. The reduction peak height of Fe(CN)6(3-) at the multilayer film could reach ∼221μA at pH 3.0 while 0μA at pH 9.0. The linear range for the detection of H2O2 at pH 3.0 was from 12.5μM to 10.4mM, which was much wider than that at pH 9.0. Our results demonstrated that the detection of H2O2 with the proposed modified electrode is dependent on pH values of phosphate buffer solution. Moreover, the component of multilayer films has impacts on the performance of biosensors with pH-switchable behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.
Taylor, Allen D; Ladd, Jon; Yu, Qiuming; Chen, Shengfu; Homola, Jirí; Jiang, Shaoyi
2006-12-15
We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus analyte concentration were established for each species of bacteria in buffer at pH 7.4, apple juice at native pH 3.7, and apple juice at an adjusted pH of 7.4, as well as for a mixture containing all four species of bacteria in buffer. Control experiments were performed to show the non-fouling characteristics of the sensor surface as well as the specificity of the amplification antibodies used in this study. The limit of detection (LOD) for each of the four species of bacteria in the tested matrices ranges from 3.4 x 10(3) to 1.2 x 10(5) cfu/ml. Detection curves in buffer of an individual species of bacteria in a mixture of all four species of bacteria correlated well with detection curves of the individual species of bacteria alone. SPR responses were higher for bacteria in apple juice at pH 7.4 than in apple juice at pH 3.7. This difference in sensor response could be partly attributed to the pH dependence of antibody-antigen binding.
Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces.
Couto, José António; Neves, Filipe; Campos, Francisco; Hogg, Tim
2005-10-25
The heat resistance of three strains of Dekkera/Brettanomyces (Dekkera anomala PYCC 5,153, Dekkera bruxellensis PYCC 4,801 and Dekkera/Brettanomyces 093) was evaluated at different temperatures between 32.5 and 55 degrees C. Thermal inactivation tests were performed in tartrate buffer solution (pH 4.0) and in wines. In the studies employing buffer as the heating menstruum, measurable thermal inactivation began only at temperatures of 50 degrees C. When heating was performed in wine, significant inactivation begins at 35 degrees C. Subsequent thermal inactivation tests were performed in buffer at various levels of pH, ethanol concentration, and various phenolic acids. Results from experiments in buffer with added ethanol suggest that the greater heat sensitivity shown in wines can be largely attributed to ethanol, although potentiation of this effect might be due to the phenolic content, particularly from ferulic acid. In the range of pH values tested (2.5-4.5), this factor had no influence in the heat inactivation kinetics. Relevant data, in the form of D and Z values calculated in the various environments, potentially useful for the establishment of regimes of thermal control of Dekkera/Brettanomyces yeasts in wine and contaminated equipment is presented.
Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.
Lin, Ya-Ting; Liang, Chenju
2015-10-01
Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Frank, Alexis; Kumar Rath, Santosh; Boey, Freddy; Venkatraman, Subbu
2004-02-01
The initial stages of the in vitro degradation of and the drug release from a matrix made of poly(d,l-lactide-co-glycolide) was carried out in a phosphate buffer saline (pH 7.0) medium. It has been observed that substantial matrix degradation occurs at the end of 2 weeks of immersion. The drug release using films of the polymer shows a tri-phasic pattern, unlike the bi-phasic patterns usually seen. Mechanisms are proposed for each phase of release, based on results from weight loss, amount of water absorption and scanning electron microscopy. The details of the structural changes and their effects on drug release may have implications for delivering potent drugs over a 2-week period.
Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A
2006-03-01
The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.
Recovery of a marker strain of Escherichia coli from ozonated water by membrane filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, G.R.; Stiles, M.E.; Smith, D.W.
1987-12-01
Selective and nonselective growth media were evaluated at two incubation temperatures, 35 and 44.5 degrees C, for the recovery of a nalidixic acid-resistant marker strain of Escherichia coli ATCC 11775 by membrane filtration from ozonated 0.05 M phosphate buffer (pH 6.9). There were significantly fewer bacteria recovered with the standard m-FC agar when compared with the same growth medium prepared without bile salts and rosolic acid. This effect was particularly noticeable at the elevated incubation temperature of 44.5 degrees C. These findings are contrary to previous work which concluded that the standard American Public Health Association membrane filtration procedure ismore » suitable for recovery of fecal coliform indicator bacteria from ozonated wastewater.« less
Salicylate effects on proton gradient dissipation by isolated gastric mucosal surface cells.
Olender, E J; Woods, D; Kozol, R; Fromm, D
1986-11-01
The effects of salicylate were examined on Na+/H+ exchange by isolated gastric mucosal surface cells loaded with H+ and resuspended in a buffered medium. Choline salicylate (pH 7.4) increases the dissipation of an intracellular proton gradient which was measured using acridine orange. The exchange of extracellular Na+ with intracellular H+ by surface cells not only remains intact but also is enhanced upon exposure to salicylate. This was confirmed by cellular uptake of 22Na and titration of cellular H+ efflux. Salicylate increases Na+/H+ exchange via a pathway predominantly sensitive to amiloride. However, the data also suggest that salicylate dissipates an intracellular proton gradient by an additional mechanism. The latter is independent of extracellular Na+ and not due to a generalized increase in cellular permeability.
Synthesis of glyceryl ferulate by immobilized ferulic acid esterase.
Matsuo, Takemasa; Kobayashi, Takashi; Kimura, Yukitaka; Tsuchiyama, Moriyasu; Oh, Tadanobu; Sakamoto, Tatsuji; Adachi, Shuji
2008-12-01
Glyceryl ferulate was synthesized by the condensation of ferulic acid with glycerol using Pectinase PL "Amano" from Aspergillus niger, which contained ferulic acid esterase, to improve the water-solubility of ferulic acid. The optimum reaction medium was glycerol/0.1 M acetate buffer, pH 4.0, (98:2 v/v). The enzyme immobilized onto Chitopearl BCW3003 exhibited the highest activity among the those immobilized onto various kinds of Chitopearl BCW resins. The optimum temperature for the immobilized enzyme was 50 degrees C, and it could be reused at least five times without a significant loss in activity for the synthesis of glyceryl ferulate in batch reaction. Storage of the reaction mixture at 25 degrees C improved the molar fraction of glyceryl ferulate relative to the dissolved ferulic residues.
Effect of Storage Temperature on Structure and Function of Cultured Human Oral Keratinocytes
Islam, Rakibul; Jackson, Catherine; Eidet, Jon R.; Messelt, Edward B.; Corraya, Rima Maria; Lyberg, Torstein; Griffith, May; Dartt, Darlene A.; Utheim, Tor P.
2015-01-01
Purpose/Aims To assess the effect of storage temperature on the viability, phenotype, metabolism, and morphology of cultured human oral keratinocytes (HOK). Materials and Methods Cultured HOK cells were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium (MEM) at nine temperatures in approximately 4°C increments from 4°C to 37°C for seven days. Cells were characterized for viability by calcein fluorescence, phenotype retention by immunocytochemistry, metabolic parameters (pH, glucose, lactate, and O2) within the storage medium by blood gas analysis, and morphology by scanning electron microscopy and light microscopy. Results Relative to the cultured, but non-stored control cells, a high percentage of viable cells were retained only in the 12°C and 16°C storage groups (85%±13% and 68%±10%, respectively). Expression of ABCG2, Bmi1, C/EBPδ, PCNA, cytokeratin 18, and caspase-3 were preserved after storage in the 5 groups between 4°C and 20°C, compared to the non-stored control. Glucose, pH and pO2 in the storage medium declined, whereas lactate increased with increasing storage temperature. Morphology was best preserved following storage of the three groups between 12°C, 16°C, and 20°C. Conclusion We conclude that storage temperatures of 12°C and 16°C were optimal for maintenance of cell viability, phenotype, and morphology of cultured HOK. The storage method described in the present study may be applicable for other cell types and tissues; thus its significance may extend beyond HOK and the field of ophthalmology. PMID:26052937
Influence of environmental pH on G2-phase arrest caused by ionizing radiation.
Park, Heon Joo; Lee, Sang Hwa; Chung, HyunSook; Rhee, Yun Hee; Lim, Byung Uk; Ha, Sung Whan; Griffin, Robert J; Lee, Hyung Sik; Song, Chang Won; Choi, Eun Kyung
2003-01-01
We investigated the effects of an acidic environment on the G2/M-phase arrest, apoptosis, clonogenic death, and changes in cyclin B1-CDC2 kinase activity caused by a 4-Gy irradiation in RKO.C human colorectal cancer cells in vitro. The time to reach peak G2/M-phase arrest after irradiation was delayed in pH 6.6 medium compared to that in pH 7.5 medium. Furthermore, the radiation-induced G2/M-phase arrest decayed more slowly in pH 6.6 medium than in pH 7.5 medium. Finally, there was less radiation-induced apoptosis and clonogenic cell death in pH 6.6 medium than in pH 7.5 medium. It appeared that the prolongation of G2-phase arrest after irradiation in the acidic environment allowed for greater repair of radiation-induced DNA damage, thereby decreasing the radiation-induced cell death. The prolongation of G2-phase arrest after irradiation in the acidic pH environment appeared to be related at least in part to a prolongation of the phosphorylation of CDC2, which inhibited cyclin B1-CDC2 kinase activity.
Akiyama, C; Kobayashi, S; Nonaka, I
1992-01-01
We compared the morphologic characteristics of muscle fiber necrosis and subsequent regeneration after injury induced by intramuscular injections of bupivacaine hydrochloride (BPVC) and a variety of solutions at acid and alkaline pH (acetic anhydride, citric acid buffer, and sodium carbonate buffer). After BPVC injection the necrotic muscle fibers were rapidly invaded by phagocytic cells, followed by active regeneration and very little fibrous scar formation. The regenerating muscle fibers increased rapidly in size and attained complete fiber type differentiation and regained their initial fiber diameter within 1 month. Both alkaline and acid solutions induced muscle fiber necrosis followed by regeneration. Fiber necrosis induced by alkaline buffers and acetic anhydride solutions above pH 5.0 produced changes quite similar to that induced by BPVC. However, injection with 0.1 M acetic anhydride at pH below 4.0 resulted in coagulative necrosis of the injured muscle with very little phagocytic infiltration with poor regenerative activity and dense fibrous tissue scarring. Thus, pH 4.0 appears to be the critical pH determining the type of muscle injury and subsequent poor phagocytic and regenerative activities. This model of acidic acetic anhydride injury may lead to the identification of factors which interfere with regeneration and cause fibrous tissue scarring in human muscular dystrophy.
Laser Raman spectra of mono-, oligo- and polysaccharides in solution
NASA Astrophysics Data System (ADS)
Barrett, T. W.
We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.
[Key factors in the control of electroosmosis with external radial electric field in CE].
Zhu, Y; Chen, Y
1999-11-01
Direct control of electroosmosis flow (EOF) by external radial electric field was performed at room temperature using a home-made field-modulated capillary electrophoresis (CE) system. The EOF was monitored at 206 nm by using DMSO as a probe. To apply a radial electric field across the CE capillary wall, the capillary was cased with a wide column. Both of the concentric space and the capillary bore were then filled with an identical running buffer and applied with an axial electric field of 150 V/cm but starting from different levels. All of the tubes used were made of fused silica with polyimide over-coating (from the Yongnian Optical Fiber Work, Hebei, P. R. China). The size of the CE capillaries adopted was 25-100 microns i.d. (375 microns o.d.) x 28.5/45 cm (effective/total length), and that of the casing column 400 microns i.d. x 32 cm. To investigate the fundamentals of the external EOF control when using the flexible fused silica capillaries, various parameters have been inspected such as pH, buffer composition, additives and capillary wall feature etc.. As expected, to well control both of the magnitude and direction of the electroosmosis, the buffer pH should be kept below 4 and the buffer concentration below 50 mmol/L. However, buffers below 1 mmol/L should be avoided because such a diluted running buffer may result in poor CE separation. Weak electrolytes like citric acid, tartaric acid and acetic acid were found to be capable of generating better EOF control than the strong electrolytes such as phosphate and chlorides. This is possibly due to the formation of looser electric double layer with the weak rather than the strong electrolytes. Some wall coatings like calix arene and its derivatives can evidently improve the EOF control even at pH 5. This reveals an exciting way to expend the controllable pH range. In addition, narrow-bore capillaries were demonstrated to be better than wide-bore tubes. Other conditions such as buffer additives and capillary rinse procedure were shown to have only negligible influence on the control.
Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution.
Harden, Mark M; He, Amanda; Creamer, Kaitlin; Clark, Michelle W; Hamdallah, Issam; Martinez, Keith A; Kresslein, Robert L; Bush, Sean P; Slonczewski, Joan L
2015-03-01
Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N'-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Acid-Adapted Strains of Escherichia coli K-12 Obtained by Experimental Evolution
Harden, Mark M.; He, Amanda; Creamer, Kaitlin; Clark, Michelle W.; Hamdallah, Issam; Martinez, Keith A.; Kresslein, Robert L.; Bush, Sean P.
2015-01-01
Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N′-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH. PMID:25556191
Synthesis and characterization of oxytetracycline imprinted magnetic polymer for application in food
NASA Astrophysics Data System (ADS)
Aggarwal, Sneha; Rajput, Yudhishthir Singh; Singh, Gulab; Sharma, Rajan
2016-02-01
Magnetic imprinted polymer was prepared by polymerization of methacrylate and ethyleneglycoldimethacrylate in the presence of oxytetracycline on the surface of iron magnetite. Selectivity of prepared polymer was calculated from ratio of partition coefficient of oxytetracycline for imprinted and non- imprinted polymer in water, acetonitrile, methanol and at different pH in aqueous buffer. pH of solvent exhibited pronounced effect on selectivity. Selectivity at pH 7.0, 6.0 and 5.0 was 36.0, 2.25 and 1.61 fold higher than at pH 4.0. Imprinted polymer was not selective for oxytetracycline in methanol. However, selectivity in water and acetonitrile was 19.42 and 2.86, respectively. Oxytetracycline did bind to imprinted polymer in water or aqueous buffer (pH 7.0) and could be eluted with methanol. Prepared polymer extracted 75-80 % oxytetracycline from water, honey and egg white.
Hormone-Dependence of Sarin Lethality in Rats: Sex Differences and Stage of the Estrous Cycle
2015-06-12
that causes numerous physiological events including miosis, salivation , respiratory failure, tremors, seizures, and death. Treatment regimens that...into 96-well plates. The reactions were initiated by the addition of 290 μL of 50 mM sodium phosphate buffer ( pH 8.0) containing one of the following...buffer containing 50mMHEPES pH 7.4 in a total volume of 280 μL. Treat- ed samples were loaded into a 96-microtiter plate well, and the reaction was
Development of an On-Demand, Generic, Drug-Delivery System
1985-08-06
systems Two systems were evaluated for CO2 evolution. The first of these was an enzymatic system based on urea and urease . The second system was based...PHM 84 Research pH Meter was used te monitor pH. Solutions of various buffer concen- trations and pHs were prepared for each buffer system. One urease ...Measurement of carbon dio~ide production was accomplished using the apparatus shown in Figure 2. Carbon dioxide was generated by putting a urease tablet in the
High-performance cation-exchange chromatofocusing of proteins.
Kang, Xuezhen; Frey, Douglas D
2003-03-28
Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.
Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, F. W.; Lane, M. W., E-mail: mlane@ehc.edu; Gates, S. M.
2014-05-15
Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, thismore » work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.« less
Towards a rational approach for heavy-atom derivative screening in protein crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agniswamy, Johnson; Joyce, M. Gordon; Hammer, Carl H.
2008-04-01
Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity of more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity ofmore » more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Met-, Cys- and His-containing peptides were derivatized against Hg, Au and Pt compounds, while Tyr-, Glu-, Asp-, Asn- and Gln-containing peptides were assessed against Pb compounds. A total of 1668 reactive conditions were examined using mass spectrometry and were compiled into heavy-atom reactivity tables. The results showed that heavy-atom derivatization reactions are highly linked to buffer and pH, with the most accommodating buffer being MES at pH 6. A group of 21 compounds were identified as most successful irrespective of ligand or buffer/pH conditions. To assess the applicability of the peptide heavy-atom reactivity to proteins, lysozyme crystals were derivatized with a list of peptide-reactive compounds that included both known and new compounds for lysozyme derivatization. The results showed highly consistent heavy-atom reactivities between the peptides and lysozyme.« less
Carbonyl reductase of dog liver: purification, properties, and kinetic mechanism.
Hara, A; Nakayama, T; Deyashiki, Y; Kariya, K; Sawada, H
1986-01-01
A carbonyl reductase has been extracted into 0.5 M KCl from dog liver and purified to apparent homogeneity by a three-step procedure consisting of chromatography on CM-Sephadex, Matrex green A, and Sephadex G-100 in high-ionic-strength buffers. The enzyme is a dimer composed of two identical subunits of molecular weight 27,000. The pH optimum is 5.5 and the isoelectric point of the enzyme is 9.3. The enzyme reduces aromatic ketones and aldehydes; the aromatic ketones with adjacent medium alkyl chains are the best substrates. Quinones, ketosteroids, prostaglandins, and aliphatic carbonyl compounds are poor or inactive substrates for the enzyme. As a cofactor the enzyme utilizes NADPH, the pro-S hydrogen atom of which is transferred to the substrate. Two moles of NADPH bind to one mole of the enzyme molecule, causing a blue shift and enhancement of the cofactor fluorescence. The reductase reaction is reversible and the equilibrium constant determined at pH 7.0 is 12.8. Steady-state kinetic measurements in both directions suggest that the reaction proceeds through a di-iso ordered bi-bi mechanism.
Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poznanski, Jaroslaw; Szczesny, Pawel; Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw
Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in themore » cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.« less
Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A
2015-05-19
In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.
Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution.
Tang, Jianting; Liu, Jian; Yang, Jie; Feng, Zhaochi; Fan, Fengtao; Yang, Qihua
2009-07-15
Mesoporous titanosilicates with high titanium content were synthesized under mild acidic conditions (pH=4.4, HAc-NaAc buffer solution) by co-condensation of acetylacetone-modified titanium isopropoxide (Ti(OBu(n))(3) (acac)) and mixture of sodium silicate with tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) or tetrakis(2-hydroxyethyl)orthosilicate (EGMS), using block copolymer Pluronic P123 as template. The combined results of XRD, N(2) sorption and TEM show that the highly regular structure of the mesoporous titanosilicates can still be obtained when Ti/Si molar ratio in the final product is as high as 0.059. The results of UV-vis diffuse reflectance spectra and UV resonance Raman spectra show that the framework titanium species are predominant in the mesoporous titanosilicates when Ti/Si molar ratio in the final product is less than 0.042. The mixture of sodium silicate and EGMS was proved to be the best silicon source for the synthesis of titanosilicates with ordered mesostructure and high titanium content. The efficiency of this synthetic method may be attributed to the mild acidic medium as well as the modified hydrolysis-condensation rate and hydrophility of the precursors.
Slock, J. A.; Stahly, D. P.
1974-01-01
An intracellular, glucose-containing polysaccharide accumulates in Bacillus cereus early in sporulation and is degraded at the time of spore maturation. This pattern of accumulation and degradation occurred when growth was limited by glucose or a component of yeast extract. These data suggest that the polysaccharide may be serving as a carbon and energy storage compound for sporulation. A somewhat similar pattern of accumulation and degradation of poly-β-hydroxybutyric acid (PHB) was shown earlier by Kominek and Halvorson (1965) to occur in Bacillus cereus. When cells were grown in a medium buffered strongly at pH 7.4, however, very little accumulation of PHB occurred. We have found that polysaccharide accumulates in cells grown in both the strong and weakly buffered media. Perhaps polysaccharide is the major carbon and energy storage compound when cells are grown under conditions preventing significant accumulation of PHB. The lack of polysaccharide accumulation during the exponential phase of growth may be an indication that the needed biosynthetic enzymes are controlled by catabolite repression during growth. The polysaccharide was purified and found to consist of glucose. The iodine absorption spectrum suggests a degree of branching between that of glycogen and amylopectin. PMID:4214355
Rapid hydrogen ion uptake of rod outer segments and rhodopsin solutions on illumination
Falk, G.; Fatt, P.
1966-01-01
1. Flash illumination of a suspension of frog rod outer segments or rhodopsin solution in contact with a platinum electrode produces a rapidly developing negative displacement of potential of the electrode (with respect to a reversible electrode). 2. The amplitude of the potential change varies inversely with the H+ buffering capacity of the medium. It is inferred that the response is due to an uptake of H+ by the rod outer segments or rhodopsin, with the platinum surface acting as a pH electrode. 3. Determination of the action spectrum shows that the response depends on the absorption of light by rhodopsin. 4. In frog rods one acid-binding group with a pK of about 7·9 is produced for each molecule of rhodopsin bleached, consistent with a rhodopsin concentration in frog rods of 1·7 mM. 5. It is suggested that the time course of the response with rhodopsin solutions reflects the kinetics of the conversion of metarhodopsin I to metarhodopsin II. 6. A slower time course of voltage change observed for suspensions of outer segments is attributable to the time required for the diffusion of H+ buffer out of the rods. PMID:5945249
Tested Demonstrations: Visualization of Buffer Action and the Acidifying Effect of Carbon Dioxide.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1985-01-01
Presents a buffer demonstration which features visualization of the effects of carbon dioxide on pH. Background information, list of materials needed, procedures used, and a discussion of results obtained are included. (JN)
Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level.
Liu, Liming; Li, Yin; Zhu, Yang; Du, Guocheng; Chen, Jian
2007-01-01
Manipulation of cofactor (thiamine, biotin and Ca(2+)) levels as a potential tool to redistribute carbon flux was studied in Torulopsis glabrata. With sub-optimization of vitamin in fermentation medium, the carbon flux was blocked at the key node of pyruvate, and 69 g/L pyruvate was accumulated. Increasing the concentrations of thiamine and biotin could selectively open the valve of carbon flux from pyruvate to pyruvate dehydrogenase complex, the pyruvate carboxylase (PC) pathway and the channel into the TCA cycle, leading to the over-production of alpha-ketoglutarate. In addition, the activity of PC was enhanced with Ca(2+) present in fermentation medium. By combining high concentration's vitamins and CaCO(3) as the pH buffer, a batch culture was conducted in a 7-L fermentor, with the pyruvate concentration decreased to 21.8 g/L while alpha-ketoglutarate concentration increased to 43.7 g/L. Our study indicated that the metabolic flux could be redistributed to overproduce desired metabolites with manipulating the cofactor levels. Furthermore, the manipulation of vitamin level provided an alternative tool to realize metabolic engineering goals.
Uffen, R L
1976-01-01
A species of Rhodopseudomonas that grows under strict anaerobic conditions in the dark and requires CO was isolated from lake and pond sediments. Although anaerobic growth in the dark occurs in a chemically defined mineral medium with CO as the only carbon and energy source, growth is stimulated by adding trypticase. Under these conditions, cells exhibit a generation time of 6.7 hr and reach a final concentration of 1 to 3 X 10(9) cells per ml of liquid medium. Resting suspensions of CO-grown cells metabolize about 6.7 mumol of CO per mg of protein in 1 hr and produce equimolar amounts of CO2 and H2 according to the equation CO + H2O leads to CO2 + H2. As predicted by this equation, when cells were suspended in tritium-labeled water containing potassium phosphate buffer at pH 7.0 and incubated with pure CO, 3H2 gas was produced at linear rate with a constant specific activity. PMID:1067620
Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media
NASA Astrophysics Data System (ADS)
Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa; Hsu, Todd; Tsai, Huei-Ting; Chen, Chien-Chon; Liu, Shiu-Mei; Lin, Tai-Yuan; Chen, Chin-Hsing
2011-02-01
The use of titanium dioxide (TiO2) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH4F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously.
Edelstein, P H; Pasiecznik, K A; Yasui, V K; Meyer, R D
1982-01-01
Thirty-three strains of Legionella spp., 29 of which were L. pneumophila, were tested for their susceptibilities to erythromycin (EM), rosaramicin, tylosin, mycinamicin I (Sch-27897), and mycinamicin II (Sch-27896). Testing was performed using an agar dilution method with two different types of media: buffered charcoal yeast extract medium supplemented with 0.1% alpha-ketoglutarate (BCYE alpha) and filter-sterilized yeast extract medium with 0.1% alpha-ketoglutarate (BYE alpha). The minimal inhibitory concentrations (MICs) of the drugs tested relative to the MICs of erythromycin were: rosaramicin, MIC approximately equal to 0.2 EM MIC; tylosin, MIC approximately equal to 2 EM MIC; mycinamicin I, MIC approximately equal to 0.5 EM MIC; and mycinamicin II, MIC approximately equal to EM MIC. Both types of media caused equivalent partial inactivation of the macrolides which was apparently due entirely to pH effect. MICs on BCYE alpha were one to five times more than those observed on BYE alpha; this may be due to poorer growth on BYE alpha. PMID:7125633
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-15
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu 2+ ions in the presence of other competitive ions through "naked eye" in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10mM, pH=7.4)). The presence of Cu 2+ induce color change from light yellow green to yellow with the appearance of a new band at 450nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10μM) was quenched completely in the presence of 2.7 equiv. of Cu 2+ ions. Sub-micromolar limit of detection (LOD=3.4×10 -7 M), efficient Stern-Volmer quenching constant (K SV =1.8×10 5 Lmol -1 ) and strong binding constant (log K b =5.92) has been determined with the help of fluorescence titration profile. Further, 1-Cu 2+ complex was employed for the detection of phosphate ions (PO 4 3- , HPO 4 2- and H 2 PO 4 - ) at micromolar concentrations in EtOH-buffer of pH7.4 based on fluorescence recovery due to the binding of Cu 2+ with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406nm) and emission wavelength (537nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Genes Required for Vacuolar Acidity in Saccharomyces Cerevisiae
Preston, R. A.; Reinagel, P. S.; Jones, E. W.
1992-01-01
Mutations that cause loss of acidity in the vacuole (lysosome) of Saccharomyces cerevisiae were identified by screening colonies labeled with the fluorescent, pH-sensitive, vacuolar labeling agent, 6-carboxyfluorescein. Thirty nine vacuolar pH (Vph(-)) mutants were identified. Four of these contained mutant alleles of the previously described PEP3, PEP5, PEP6 and PEP7 genes. The remaining mutants defined eight complementation groups of vph mutations. No alleles of the VAT2 or TFP1 genes (known to encode subunits of the vacuolar H(+)-ATPase) were identified in the Vph(-) screen. Strains bearing mutations in any of six of the VPH genes failed to grow on medium buffered at neutral pH; otherwise, none of the vph mutations caused notable growth inhibition on standard yeast media. Expression of the vacuolar protease, carboxypeptidase Y, was defective in strains bearing vph4 mutations but was apparently normal in strains bearing any of the other vph mutations. Defects in vacuolar morphology at the light microscope level were evident in all Vph(-) mutants. Strains that contained representative mutant alleles of the 17 previously described PEP genes were assayed for vacuolar pH; mutations in seven of the PEP genes (including PEP3, PEP5, PEP6 and PEP7) caused loss of vacuolar acidity. PMID:1628805
Isolation of Active Mitochondria From Tomato Fruit 1
Ku, Han San; Pratt, Harlan K.; Spurr, Arthur R.; Harris, William M.
1968-01-01
An improved method for isolating mitochondria from tomato fruit (Lycopersicon esculentum Mill.) is described. The fruit is chilled, and the tissue of the fruit wall cut by hand into very thin slices with a razor blade while immersed in a buffer containing 0.4 m sucrose, 2 mm MgCl2, 8 mm EDTA, 4 mm cysteine, 10 mm KCl, 0.5 mg per ml bovine serum albumin 50 mm tris-HCl, pH 7.6. The pH is monitored and kept within the range of 7.0 to 7.2 by dropwise addition of 1 n KOH during cutting. The tissue is strained through 8 layers of cheesecloth and centrifuged at 2000 × g for 15 minutes. The supernatant is then centrifuged at 11,000 × g for 20 minutes, and the sediment is washed once with a medium containing 0.4 m sucrose, 10 mm KCl, 1 mm MgCl2, 10 mm tris-HCl, 10 mm KH2PO4 and bovine serum albumin (0.5 mg per ml), pH 7.2. Electron microscope studies show that this method gives homogeneous, relatively intact mitochondria; they have a higher respiratory control ratio than those reported by other workers. The method was also tested successfully on fruits of cantaloupe and `Honey Dew' melon. Images PMID:16656857
Protein Buffering in Model Systems and in Whole Human Saliva
Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian
2007-01-01
The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and α-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva. PMID:17327922
Evaluation of Salivary Flow Rate, pH and Buffer in Pre, Post & Post Menopausal Women on HRT.
D R, Mahesh; G, Komali; K, Jayanthi; D, Dinesh; T V, Saikavitha; Dinesh, Preeti
2014-02-01
Climateric is considered to be a natural phase of life which by definition is the period of life starting from decline in ovarian activity until after the end of ovarian function. It is accompanied by various health consequences that include the changes in saliva too. This study was carried out to evaluate the salivary flow rate, pH, buffering capacity in pre-menopausal, post-menopausal and post-menopausal women on HRT. (1) To evaluate the salivary flow rate, pH of resting saliva and stimulated saliva and buffer capacity of stimulated saliva in pre-menopausal, post-menopausal and post-menopausal women on Hormone Replacement Therapy (HRT). (2) To compare the above salivary findings between pre-menopausal, post-menopausal and post-menopausal women on HRT. The study was carried out on 60 patients. These patients were divided into three groups of 20 patients: Group 1: Pre-menopausal women (control), Group 2: post-menopausal women (case), Group 3: post-menopausal women on HRT (case). The control group consisted of 20 women volunteers, having regular ovulatory menstrual cycles with no known systemic illness and deleterious habits and Group 2 consists of 20 post-menopausal women and Group 3 will consist of 20 post-menopausal women on HRT. After clearing the mouth by swallowing, stimulated saliva was collected after chewing paraffin for 10 mins in to a glass centrifuge tube graded in 0.1 mL increments up to 10mL.in rare cases the collection time will be reduced or extended (5-15 min), salivary flow rate will be determined as ml/min, immediately after collection, pH was determined by dipping pH test paper directly into the sample of oral fluid, salivary buffer capacity was determined by using saliva check buffer kit (GC corporation). The data obtained was statistically evaluated using chi-square test, fisher exact test ANOVA analysis. In our study we found salivary flow rate significantly lower in the post-menopausal women in comparison with the menstruating women and also there was improvement in the flow rate in individuals who were on HRT, it was also observed that salivary pH of the post-menopausal group was significantly lower than that of the control group, statistically significant difference in buffer capacity values was found between the groups however buffer capacity values were higher in the post-menopausal group than the control group. From the above study it is clear that post-menopausal women will present with oral discomfort, while HRT can improve the same. Hence our role as physicians and health care providers is to incorporate preventive dental health care in post-menopausal women and clearly inform patients about both the benefits and the limitations of HRT.
Brdička, R.
1936-01-01
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968
Kinetics and equilibria of cyanide binding to prostaglandin H synthase.
MacDonald, I D; Dunford, H B
1989-09-01
Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.
Desiderio, C; Fanali, S
2000-10-20
In this study capillary electrochromatography (CEC) was utilized for the separation of ten non-steroidal anti-inflammatory drugs (NSAIDs). Experiments were carried out in a commercially available CE instrument using a packed capillary with RP-18 silica particles where the stationary phase completely filled the capillary. The mobile phase consisted of a mixture of ammonium formate buffer pH 2.5 and acetonitrile. Selectivity and resolution were studied changing the pH and the concentration of the buffer, the acetonitrile content mobile phase and the capillary temperature. The optimum experimental conditions for CEC separation of the studied drug mixture were found using 50 mM ammonium formate pH 2.5-acetonitrile (40:60) at 25 degrees C. The CEC capillary was coupled to an electrospray mass spectrometer for the characterization of the NSAIDs. A mobile phase composed by the same buffer but with a higher concentration of acetonitrile (90%) was used in order to speed up the separation of analytes.
Development and testing of a human collagen graft material.
Quteish, D; Singh, G; Dolby, A E
1990-06-01
Human Type I collagen was extracted from placenta using pepsin and salt fractionation. The collagen was characterized by SDS-PAG electrophoresis dispersed in acidic medium, freeze-dried, and cross-linked in an 0.25% glutaraldehyde solution pH 4.5 for 2 days. After washing for 7 days and freeze drying the resultant collagen sponge was tested with regard to mechanical, physical, enzymatic degradation properties and biological responses. The modulus of elasticity was found to be 289 +/- 10 g/mm2 and the sponge was insoluble in water, buffered saline, or tissue culture medium over a period of 6 weeks with swelling occurring at less than 5% of volume. The sponge had a high fluid binding capacity, amounting to 56 +/- 5 mL tissue culture medium per gram of dry weight. Bacterial collagenase produced slow degradation of the sponge with complete disappearance by 24 h only when high concentrations (200 units enzyme per mg of the collagen sponge) were used. Cytotoxicity studies using human gingival and periodontal ligament fibroblasts revealed less than 5% apparent cytotoxicity or proliferation. Subcutaneous implantation was followed by resorption and vascularization over a period of 6-8 weeks. It was concluded that the collagen sponge prepared from human Type I collagen has potential as a graft material in oral surgical procedures.
Wolters, Niklas; Schembecker, Gerhard; Merz, Juliane
2015-12-01
Erinacine C is a cyathane scaffold-based secondary metabolite, which is naturally produced by the filamentous fungus Hericium erinaceus and has a high potential to treat nervous diseases such as Alzheimer's disease. The investigated approach consists of combining an optimised precultivation of H. erinaceus with an enhanced erinacine C production by developing a suitable main cultivation medium enabling the utilisation of high biomass contents. The final erinacine C production medium is buffered by 100 mM HEPES to ensure a stable pH value of 7.5 during main cultivation at inoculation ratios of up to 5:10 (v/v). The medium components, such as 5.0 g L(-1) oatmeal, 1.5 g L(-1) calcium carbonate, and 0.5 g L(-1) Edamin(®) K are crucial for an increased erinacine C production. Besides, different carbon to nitrogen ratios of 25, 64, and 103 do not affect the erinacine C synthesis. The investigated approach enables the production of 2.73 g erinacine C per litre main cultivation broth, which is tenfold higher than published data. In addition, erinacine C biosynthesis is determined to occur mainly in the first six days of main cultivation. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Electrodialysis operation with buffer solution
Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL
2009-12-15
A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.
Abdul Manap, Mohd Yazid; Zohdi, Norkhanani
2014-01-01
The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403
Friuli, Valeria; Bruni, Giovanna; Musitelli, Giorgio; Conte, Ubaldo; Maggi, Lauretta
2018-01-01
The purpose of this investigation is to determine how the dissolution media may influence the release rate of an insoluble drug in in vitro conditions. Some oral dosage forms containing ibuprofen, a molecule that shows pH-dependent solubility, are tested. They are evaluated in different media to simulate the gastrointestinal transit at paddle rotation speeds of 50 and 100 rpm. Moreover, the potential effect of different ethanol concentrations on drug release is tested. The dissolution profiles of the tablets show a similar behavior in water (pH 1.0) and phosphate buffer (pH 4.5) where the 2 doses are not completely dissolved. The soft capsules show a different behavior: a certain amount of ibuprofen, which is in solution inside the capsule, reprecipitates in water and in the pH 4.5 buffer. Instead, ibuprofen dissolves rapidly in the pH 6.8 buffer from all the formulations. In the water-ethanol solutions, the dissolution curves show a valuable increase in the drug dissolved at higher ethanol concentrations. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P
2015-03-04
XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants.
Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.
2015-01-01
XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants. PMID:25735451
Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects.
Chu, Bei; Goyne, Keith W; Anderson, Stephen H; Lin, Chung-Ho; Lerch, Robert N
2013-01-01
Elucidating veterinary antibiotic interactions with soil is important for assessing and mitigating possible environmental hazards. The objectives of this study were to investigate the effects of vegetative management, soil properties, and >1000 Da dissolved organic matter (DOM) on sulfamethazine (SMZ) behavior in soil. Sorption experiments were performed over a range of SMZ concentrations (2.5-50 μmol L) using samples from three soils (Armstrong, Huntington, and Menfro), each planted to one of three vegetation treatments: agroforestry buffers strips (ABS), grass buffer strips (GBS), and row crops (RC). Our results show that SMZ sorption isotherms are well fitted by the Freundlich isotherm model (log = 0.44-0.93; Freundlich nonlinearity parameter = 0.59-0.79). Further investigation of solid-to-solution distribution coefficients () demonstrated that vegetative management significantly ( < 0.05) influences SMZ sorption (ABS > GBS > RC). Multiple linear regression analyses indicated that organic carbon (OC) content, pH, and initial SMZ concentration were important properties controlling SMZ sorption. Study of the two most contrasting soils in our sample set revealed that increasing solution pH (pH 6.0-7.5) reduced SMZ sorption to the Armstrong GBS soil, but little pH effect was observed for the Huntington GBS soil containing 50% kaolinite in the clay fraction. The presence of DOM (150 mg L OC) had little significant effect on the Freundlich nonlinearity parameter; however, DOM slightly reduced SMZ values overall. Our results support the use of vegetative buffers to mitigate veterinary antibiotic loss from agroecosystems, provide guidance for properly managing vegetative buffer strips to increase SMZ sorption, and enhance understanding of SMZ sorption to soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang
2008-11-01
Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).
Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin
TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less
Thriveni, T; Rajesh Kumar, J; Sujatha, D; Sreedhar, N Y
2007-05-01
The cyclic voltammograms of terbacil and lenacil at the hanging mercury drop electrode showed a single well defined four electron irreversible peak in universal buffer of pH 4.0 for both compounds. The peak potentials were shifted to more negative values on the increase of pH of the medium, implying the involvement of protons in the electrode reaction and that the proton transfer reaction precedes the proper electrode process. The four electron single peak may be attributed to the simultaneous reduction of carbonyl groups present in 2 and 4 in pyrimidine ring of terbacil and lenacil to the corresponding hydroxy derivative. Based on the interfacial adsorptive character of the terbacil and lenacil onto the mercury electrode surface, a simple sensitive and low cost differential pulse adsorptive stripping voltammetric procedure was optimized for the analysis of terbacil and lenacil. The optimal operational conditions of the proposed procedure were accumulation potential E (acc) = -0.4 V, accumulation time t (acc) = 80 s, scan rate = 40 mV s(-1), pulse amplitude = 25 mV using a universal buffer pH 4.0 as a supporting electrolyte. The linear concentration range was found to be 1.5 x 10(-5) to 1.2 x 10(-9) mol/l and 1.5 x 10(-5) to 2.5 x 10(-8) mol/l with the lower detection limit of 1.22 x 10(-9) and 2.0 x 10(-8) mol/l. The correlation coefficient and relative standard deviation values are found to be 0.942, 0.996, 1.64% and 1.23%, respectively, for 10 replicants. The procedure was successfully applied for determination of terbacil and lenacil in formulations, mixed formulations, environmental samples such as fruit samples and spiked water samples.
Ocean acidification buffering effects of seagrass in Tampa Bay
Yates, Kimberly K.; Moyer, Ryan P.; Moore, Christopher; Tomasko, David A.; Smiley, Nathan A.; Torres-Garcia, Legna; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana; Smiley, Nathan; Torres-Garcia, Legna M.; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana
2016-01-01
The Intergovernmental Panel on Climate Change has identified ocean acidification as a critical threat to marine and estuarine species in ocean and coastal ecosystems around the world. However, seagrasses are projected to benefit from elevated atmospheric pCO2, are capable of increasing seawater pH and carbonate mineral saturation states through photosynthesis, and may help buffer against the chemical impacts of ocean acidification. Additionally, dissolution of carbonate sediments may also provide a mechanism for buffering seawater pH. Long-term water quality monitoring data from the Environmental Protection Commission of Hillsborough County indicates that seawater pH has risen since the 1980‘s as seagrass beds have continued to recover since that time. We examined the role of seagrass beds in maintaining and elevating pH and carbonate mineral saturation state in northern and southern Tampa Bay where the percent of carbonate sediments is low (<3%) and high (>40%), respectively. Basic water quality and carbonate system parameters (including pH, total alkalinity, dissolved inorganic carbon, partial pressure of CO2, and carbonate mineral saturation state) were measured over diurnal time periods along transects (50-100 m) including dense and sparse Thalassia testudinum. seagrass beds, deep edge seagrass, and adjacent bare sand bottom. Seagrass density and productivity, sediment composition and hydrodynamic parameters were also measured, concurrently. Results indicate that seagrass beds locally elevate pH by up to 0.5 pH unit and double carbonate mineral saturation states relative to bare sand habitats. Thus, seagrass beds in Tampa Bay may provide refuge for marine organisms from the impacts of ocean acidification.
Initial pH of medium affects organic acids production but do not affect phosphate solubilization.
Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S
2015-06-01
The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., readable to 0.01 g or better. 3.2pH meter, standardized to pH 4.0 with pH 4.0 buffer and pH 7 with pH 7.0... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0, using the...
NASA Astrophysics Data System (ADS)
Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana
2016-07-01
In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Rohanieza Abdul, E-mail: rohanieza.abdrahman@gmail.com; Zulkefle, Muhammad Al Hadi, E-mail: alhadizulkefle@gmail.com; Abdullah, Wan Fazlida Hanim, E-mail: wanfaz@salam.uitm.edu.my
In this study, titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO{sub 2}/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V)more » biasing interfacing circuit. TiO{sub 2}/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.« less
Ye, Ran; Harte, Federico
2015-01-01
Although conditions favoring casein micelle aggregation are well known, factors promoting the dissociation of the casein micelle are not fully understood. It was our objective to investigate the ethanol-induced dissociation of micellar casein as affected by temperature and a wide range of pH, along with the concentrations of calcium and casein. Two different concentrations of casein micelles were dispersed in imidazole buffer with 0 to 80% ethanol (vol/vol) and 2 and 10 mM calcium. Apparent micelle size was determined by dynamic light scattering at 5, 30, and 60°C. In the absence of ethanol, casein precipitation occurred at pH 4.6 in imidazole buffer. Ten to forty percent ethanol promoted casein aggregation (>1,000 nm) and higher temperature (30 and 60°C) enhanced this effect. Higher ethanol concentrations at 50 to 80% induced the dissociation (<40 nm) of the casein micelle upon acidification (pH <5) and alkalization (pH >8) in imidazole buffer. In addition, higher concentrations of casein (0.25 mg/mL) and calcium (20 mM) caused the formation of larger aggregates (>1,000 nm) in the presence of ethanol when comparing with the initial lower concentrations of casein (0.1 mg/mL) and calcium (2 mM). Casein micelle dissociation can be achieved near the isoelectric pH by modifying the solvent composition and temperature. PMID:23200467
Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J
2008-07-01
The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.
Ye, Ran; Harte, Federico
2013-02-01
Although conditions favoring casein micelle aggregation are well known, factors promoting the dissociation of the casein micelle are not fully understood. It was our objective to investigate the ethanol-induced dissociation of micellar casein as affected by temperature and a wide range of pH, along with the concentrations of calcium and casein. Two different concentrations of casein micelles were dispersed in imidazole buffer with 0 to 80% ethanol (vol/vol) and 2 and 10mM calcium. Apparent micelle size was determined by dynamic light scattering at 5, 30, and 60°C. In the absence of ethanol, casein precipitation occurred at pH 4.6 in imidazole buffer. Ten to forty percent ethanol promoted casein aggregation (>1,000 nm) and higher temperature (30 and 60°C) enhanced this effect. Higher ethanol concentrations at 50 to 80% induced the dissociation (<40 nm) of the casein micelle upon acidification (pH <5) and alkalization (pH>8) in imidazole buffer. In addition, higher concentrations of casein (0.25mg/mL) and calcium (20mM) caused the formation of larger aggregates (>1,000 nm) in the presence of ethanol when comparing with the initial lower concentrations of casein (0.1mg/mL) and calcium (2mM). Casein micelle dissociation can be achieved near the isoelectric pH by modifying the solvent composition and temperature. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Method for electrically producing dispersions of a nonconductive fluid in a conductive medium
DePaoli, D.W.; Tsouris, C.; Feng, J.Q.
1998-06-09
A method is described for use in electrically forming dispersions of a nonconducting fluid in a conductive medium that minimizes power consumption, gas generation, and sparking between the electrode of the nozzle and the conductive medium. The method utilizes a nozzle having a passageway, the wall of which serves as the nozzle electrode, for the transport of the nonconducting fluid into the conductive medium. A second passageway provides for the transport of a flowing low conductivity buffer fluid which results in a region of the low conductivity buffer fluid immediately adjacent the outlet from the first passageway to create the necessary protection from high current drain and sparking. An electrical potential difference applied between the nozzle electrode and an electrode in contact with the conductive medium causes formation of small droplets or bubbles of the nonconducting fluid within the conductive medium. A preferred embodiment has the first and second passageways arranged in a concentric configuration, with the outlet tip of the first passageway withdrawn into the second passageway. 4 figs.
Method for electrically producing dispersions of a nonconductive fluid in a conductive medium
DePaoli, David W.; Tsouris, Constantinos; Feng, James Q.
1998-01-01
A method for use in electrically forming dispersions of a nonconducting fluid in a conductive medium that minimizes power consumption, gas generation, and sparking between the electrode of the nozzle and the conductive medium. The method utilizes a nozzle having a passageway, the wall of which serves as the nozzle electrode, for the transport of the nonconducting fluid into the conductive medium. A second passageway provides for the transport of a flowing low conductivity buffer fluid which results in a region of the low conductivity buffer fluid immediately adjacent the outlet from the first passageway to create the necessary protection from high current drain and sparking. An electrical potential difference applied between the nozzle electrode and an electrode in contact with the conductive medium causes formation of small droplets or bubbles of the nonconducting fluid within the conductive medium. A preferred embodiment has the first and second passageways arranged in a concentric configuration, with the outlet tip of the first passageway withdrawn into the second passageway.
Beneficial effects of humic acid on micronutrient availability to wheat
NASA Technical Reports Server (NTRS)
Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.
2001-01-01
Humic acid (HA) is a relatively stable product of organic matter decomposition and thus accumulates in environmental systems. Humic acid might benefit plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA on growth and micronutrient uptake in wheat (Triticum aestivum L.) grown hydroponically. Four root-zone treatments were compared: (i) 25 micromoles synthetic chelate N-(4-hydroxyethyl)ethylenediaminetriacetic acid (C10H18N2O7) (HEDTA at 0.25 mM C); (ii) 25 micromoles synthetic chelate with 4-morpholineethanesulfonic acid (C6H13N4S) (MES at 5 mM C) pH buffer; (iii) HA at 1 mM C without synthetic chelate or buffer; and (iv) no synthetic chelate or buffer. Ample inorganic Fe (35 micromoles Fe3+) was supplied in all treatments. There was no statistically significant difference in total biomass or seed yield among treatments, but HA was effective at ameliorating the leaf interveinal chlorosis that occurred during early growth of the nonchelated treatment. Leaf-tissue Cu and Zn concentrations were lower in the HEDTA treatment relative to no chelate (NC), indicating HEDTA strongly complexed these nutrients, thus reducing their free ion activities and hence, bioavailability. Humic acid did not complex Zn as strongly and chemical equilibrium modeling supported these results. Titration tests indicated that HA was not an effective pH buffer at 1 mM C, and higher levels resulted in HA-Ca and HA-Mg flocculation in the nutrient solution.
Pop-cola acids and tooth erosion: an in vitro, in vivo, electron-microscopic, and clinical report.
Borjian, Amirfirooz; Ferrari, Claudia C F; Anouf, Antoni; Touyz, Louis Z G
2010-01-01
Introduction. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare. Aim. To assess (i) cola acidity and buffering capacity in vitro, (ii) tooth erosion after swishing with colas in vivo (iii) scanning electron microscopic effects on teeth of colas, and tooth-brush abrasion, and (iv) report a clinical case of erosion from cola consumption. Materials and Methods. (i) We measured six commercially available pop "Cola beverages", pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one with teeth, the second without teeth rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described. Results. Comparisons among pop colas tested in vitro reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing in vivo with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion. Conclusions. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a clinical case of pop-cola erosion confirms this.
Pop-Cola Acids and Tooth Erosion: An In Vitro, In Vivo, Electron-Microscopic, and Clinical Report
Borjian, Amirfirooz; Ferrari, Claudia C. F.; Anouf, Antoni; Touyz, Louis Z. G.
2010-01-01
Introduction. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare. Aim. To assess (i) cola acidity and buffering capacity in vitro, (ii) tooth erosion after swishing with colas in vivo (iii) scanning electron microscopic effects on teeth of colas, and tooth-brush abrasion, and (iv) report a clinical case of erosion from cola consumption. Materials and Methods. (i) We measured six commercially available pop “Cola beverages”, pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one with teeth, the second without teeth rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described. Results. Comparisons among pop colas tested in vitro reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing in vivo with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion. Conclusions. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a clinical case of pop-cola erosion confirms this. PMID:21151663
Effects of sucking acidic candy on whole-mouth saliva composition.
Jensdottir, T; Nauntofte, B; Buchwald, C; Bardow, A
2005-01-01
Limited information is available on the effects of sucking acidic candies on saliva composition and the protective role of saliva in this relation. Therefore the aim of this study was to determine salivary effects of sucking acidic candies in vivo in relation to individual variations in whole-saliva flow rate (WSFR) and buffer capacity (WSbeta). Ten healthy young males (24 +/- 2 years) sucked a rhubarb-flavoured acidic hard-boiled candy with tartaric acid available on the Danish market. The whole saliva was collected into a closed system, regarding CO2, at different times as follows: firstly, unstimulated saliva for 5 min (baseline), secondly stimulated saliva for 4 min upon sucking the candy, and finally post-stimulated saliva for 10 min. Saliva pH was determined on a blood gas analyser and WSbeta was estimated from the saliva bicarbonate concentration obtained by the analyser and by ionic balance calculation. The erosive potential of the candy in saliva was estimated from the saliva pH values and degree of saturation with respect to hydroxyapatite (DS(HAp)). The results showed that saliva pH dropped from 6.5 (baseline) down to 4.5 at the fourth minute of sucking the candy, and returned to pH 6.5 five minutes after stimulation (post-stimulated). DS(HAp) decreased upon sucking the candy and saliva from all subjects became undersaturated with respect to HAp. Significant positive correlations were obtained between pH and WSFR (r(s) = 0.47; p < 0.05) and between pH and WSbeta (r(s) = 0.65; p < 0.01). In relation to WSbeta we found that 70% of the buffer capacity originating from the bicarbonate buffer system upon sucking the candy was exerted as phase buffering. We conclude that sucking this type of acidic candies changes whole-mouth saliva composition so that it may have erosive potential and that high WSFR and WSbeta have protective effects against these salivary changes. Copyright 2005 S. Karger AG, Basel.
Ma, Lina; Wu, Dan; Bian, Liujiao
2012-08-01
The Kringle 5 domain of plasminogen is one of the most potent angiogenesis inhibitors known to date, which can inhibit cell proliferation and migration efficiently. In the study, on the foundation of successful clone and expression of recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5, a two-step chromatographic method, including the use of SP Sepharose Fast Flow cation exchanger and Sephacryl S-100 HR size exclusion chromatography in sequence, was established to separate and purify angiogenesis inhibitor Kringle 5. On the SP Sepharose Fast Flow column, the buffer A consisted of 50.0 mmol/L acetic acid-sodium acetate (pH 5.2), and the buffer B consisted of buffer A with the addition of 0.5 mol/L sodium chloride (pH 5.2); on Sephacryl S-100 HR column, the elution buffer was 5.0 mmol/L phosphate solution (pH 7.0). Through the two-step chromatographic purification process, the purity of the obtained Kringle 5 was more than 98%. In addition, it was found that the obtained Kringle 5 could inhibit the blood vessel growth of chick embryo chorioallantoic membrane effectively. Finally it is concluded that this method can effectively separate active recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5.
Mohtashamian, Shahab; Boddohi, Soheil; Hosseinkhani, Saman
2018-02-01
Self-assembled nanogel was prepared by electrostatic complexation of two oppositely charged biological macromolecules, which were cationic nisin and anionic chondroitin sulfate (ChS). The critical factors affected the physical properties of ChS-nisin nanogel was screened and optimized by Plackett-Burman design (PB) and central composite design (CCD). The independent factors selected were: concentration ratio of nisin to ChS, injection rate of nisin solution, buffer solvent type, magnetic stirring rate, pH of initial buffer solution, centrifuge-cooling temperature, and centrifuge rotation speed. Among these factors, concentration ratio changed the entrapment efficiency and loading capacity significantly. In addition, the hydrodynamic diameter and loading capacity were significantly influenced by injection rate and pH of initial buffer solution. The optimized nanogel structure was obtained by concentration ratio of 6.4mg/mL nisin to 1mg/mL ChS, pH of buffer solution at 4.6, and nisin solution injection rate of 0.2mL/min. The observed values of dependent responses were close to predicted values confirmed by model from response surface methodology. The results obviously showed that quality by design concept (QbD) could be effectively applied to optimize the developed ChS-nisin nanogel. Copyright © 2017 Elsevier B.V. All rights reserved.
pH-based fiber optic biosensors for use in clinical and biotechnological applications
NASA Astrophysics Data System (ADS)
Mueller, Cord; Hitzmann, Bernd; Schubert, Florian; Scheper, Thomas
1995-05-01
The development of pH-based fiber optic biosensors and their uses in clinical and biotechnological applications are described. Based on a pH-sensitive optode, different biosensors for urea, penicillin, glucose and creatinine were developed. A multichannel modular fluorimeter was used to measure signals from up to three optodes simultaneously. The pH value and the buffer capacity are critical factors for biosensors based on pH probes and influence the biosensor signal. A flow injection analysis (FIA) system is used to eliminate the latter influences. With this integrated system, samples can be analyzed sequentially by the injection of a defined volume of each sample into a continuously flowing buffer stream that transports the samples to the sensors. The complex signal is transformed and analyzed by a computer system. Characteristic features of the FIA peak give information about the buffer capacity in the solution. With the help of intelligent computing (neural networks) it is possible to recognize these features and relate them to the respective buffer capacity to obtain more accurate values. Various applications of these biosensors are discussed. The pH optode is also used to monitor enzymatic reactions in non aqueous solvents. In this case the production of acetic acid can be detected on line.
Legallais, C; Anspach, F B; Bueno, S M; Haupt, K; Vijayalakshmi, M A
1997-03-28
The depyrogenation of different IgG solutions using the histidine-linked hollow fiber membrane developed in our laboratory is presented here. Three strategies for endotoxin (ET) removal were investigated according to the immobilized histidine's ability to bind different immunoglobulins: (1) ET removal from 1 mg/ml non histidine-binding mouse monoclonal IgG1 (MabCD4) solution was achieved in the presence of acetate buffer (pH 5.0) without any protein loss. (2) For contaminated human IgG, combined adsorption of ET and IgG in the presence of MOPS of Tris buffer was tested, followed by differential elution using increasing salt concentrations. This attempt was not successful since ET were quantitatively found in the IgG elution fraction. (3) Alternatively, it was proposed to adsorb selectively ET in the presence of acetate buffer (pH 5.0) under non binding conditions for human IgG. Human IgG could then be purified if necessary with the same membrane in the presence of MOPS buffer (pH 6.5). With a 1 m2 histidine-PEVA module under these operating conditions, it is estimated that the depyrogenation of 3 l of 1 mg/ml IgG (human or murine) solution containing 80 EU/ml of ET should be possible.
NASA Astrophysics Data System (ADS)
Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.
2009-11-01
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the RÃo Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A
2009-11-01
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Asparagine deamidation dependence on buffer type, pH, and temperature.
Pace, Amanda L; Wong, Rita L; Zhang, Yonghua Taylor; Kao, Yung-Hsiang; Wang, Y John
2013-06-01
The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments. From this, deamidation rates of each fragment can be calculated. To generate kinetic parameters useful in setting shelf life, buffers prepared at room temperature and then placed at the appropriate stability temperatures. Solution pH was not adjusted to the same at different temperatures. Deamidation rate at 40°C was faster in acidic buffers than in basic buffers. However, this trend is reversed at 5°C, attributed to the change in hydroxide ion concentration influenced by buffer and temperature. The apparent activation energy was higher for rates generated in an acidic buffer than in a basic buffer. The rate-pH profile for mAb1 can be deconvoluted to Fc and Fab. The Fc deamidation showed a V-shaped profile: deamidation of PENNY peptide is responsible for the rate at high-pH, whereas deamidation of a new site, Asn323, may be responsible for the rate at low-pH. The profile for Fab is a straight line without curvature. Copyright © 2013 Wiley Periodicals, Inc.
Partition coefficients of some purine derivatives and its application to pharmacokinetics.
Chrzanowska, M; Sobiak, J; Kuehn, M; Dorawa, E; Hermann, T
2009-12-01
Metazathioprine (MAZA), a methylated derivative of azathioprine (AZA), demonstrated the greatest values of apparent and specific partition coefficients in n-octanol/phosphate buffer at pH 5.7 and pH 7.4 among purine derivatives such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and AZA. Introduction of a methyl group into the imidazole ring of AZA increases lipophilic properties of MAZA compared to AZA. Mass balance of purine derivatives in n-octanol and in phosphate buffer indicated their chemical stability in those media.
Kotova, Oxana; Comby, Steve; Gunnlaugsson, Thorfinnur
2011-06-28
1·Eu·BPS was developed as a luminescent lanthanide sensor for use in displacement assays for detection of d-metal ions by monitoring the changes in the europium emission, which was quenched for iron(II), with a detection limit of ∼10 pM (0.002 μg L(-1)) for Fe(II) in buffered pH 7.4 solution. This journal is © The Royal Society of Chemistry 2011
Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua
2008-11-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.
Pratt, Kenneth W
2015-04-01
This meta-analysis assesses the long-term (up to 70 years) within-laboratory variation of the NIST pH Standard Reference Material® (SRM) tetroxalate, phthalate, phosphate, borate, and carbonate buffers. Values of ΔpH(S), the difference between the certified pH value, pH(S), of each SRM issue and the mean of all pH(S) values for the given SRM at that Celsius temperature, t, are graphed as a function of the SRM issue and t. In most cases, |ΔpH(S)| < 0.004. Deviations from the nominal base:acid amount (mole) ratio of a buffer yield t-independent, constant shifts in ΔpH(S). The mean ΔpH(S) characterizes such deviations. The corresponding mole fraction of impurity in the conjugate buffer component is generally <0.3 %. Changes in the equipment, personnel, materials, and methodology of the pH(S) measurement yield t-dependent variations. The standard deviation of ΔpH(S) characterizes such changes. Standard deviations of ΔpH(S) are generally 0.0015 or less. The results provide a long-term, single-institution complement to the time-specific, multi-institution results of pH key comparisons administered by the Consultative Committee for Metrology in Chemistry and Biology (CCQM).
Dutta, Raj Kumar; Sahu, Saurabh
2012-09-01
A novel probe sonication method is developed to enhance loading of 5-fluorouracil (5-FU) in SPION encalsulated pectin nanocarriers of 100-150 nm size (referred here as MP-5FU nanocarriers). Probe sonication at 20 kHz for 60 min resulted in 5-FU loading efficiency of 33.2 ± 2.5%w/w and corresponding drug loading content of 18.2 ± 1.1 wt%. These are two folds higher than literature report of 5-FU loading in pectin. The enhanced loading is attributed to increase in the rate of dissolution of 5-FU in pectin due to transmission of kHz order sonic waves which increases temperature and pressure in the medium due to formation and collapsing of cavitation bubbles. The fabricated MP-5FU nanocarriers with saturation magnetization (43.13 emu/g) exhibited pH responsive, swelling controlled in vitro release of 5-FU in simulated gastric fluid at pH 1.2, in simulated intestinal fluid at pH 6.8, in simulated colonic fluid at pH 5.5, and in phosphate buffer solution at pH 7.4. The cytotoxicity of MP-5FU was measured by sulforhodamine B (SRB) assay and its GI(50) was more than 5mg/mL for cancer cells of HT-29 (colon) and Hep G2 (liver), while it was 3.7 mg/mL for cancer cells of MIA-PaCa-2 (Pancreas). Copyright © 2012 Elsevier B.V. All rights reserved.
Oral pH in gastroesophageal reflux disease.
Sujatha, S; Jalihal, Umesh; Devi, Yashoda; Rakesh, N; Chauhan, Pallavi; Sharma, Shivani
2016-05-01
The aim of this study is to compare surface pH in various parts of the oral cavity between patients with gastroesophageal reflux disease (GERD) and healthy controls. Using a flat pH meter sensor, fixed electrode pen type digital pH meter, oral pH levels were assessed at different mucosal sites among 34 GERD patients and 32 healthy controls. Salivary flow rates and buffering capacity were also assessed in them. A thorough oral examination was performed to screen for any oral and dental changes. A significantly lower pH of 6.65 ± 0.13 (mean ± SD) was found in the GERD group compared to control group 7.23 ± 0.12 (p < 0.05). Least pH was found in the floor of the mouth 6.594 ± 0.17 and highest in the lower labial mucosa among the GERD patients. Salivary flow rate and buffering capacity were low in these patients. Significant changes were noticed in the hard and soft tissues of the oral cavity among the GERD group. Oral mucosal pH is altered in GERD patients and may contribute to effects on the oral cavity.
Taha, Mohamed; Lee, Ming-Jer
2010-10-21
In a situation which is far from ideal, many buffers have been found to be quite reactive, besides maintaining their stable pH values. On the basis of apparent transfer free energies (ΔG(tr)'), through solubility measurements the interactions of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), and tetraglycine (Gly(4)), with several common neutral pH, amine-based buffers have been studied. The biological buffers studied in this work, including TRIS, TES, TAPS, TAPSO, and TABS are structurally related and all contain TRIS groups. These buffers have pK(a) values ranging from 7.5-9.0, which allow them to be used in biological, biochemical or environmental studies. We observed negative values of ΔG(tr)' for Gly(3) and Gly(4) from water to buffer, indicating that the interactions are favorable. However, the ΔG(tr)' values are positive for Gly and Gly(2), revealing unfavorable interactions, which except for the latter in TRIS buffer are negative. The surprising result in our data is the unexpected extraordinarily high favorable interactions between TRIS buffer and peptides (in comparison with the effect of the most common denaturants, urea and guanidine hydrochloride). The transfer free energies (ΔG(tr)') of the peptide backbone unit (-CH(2)C=O-NH-) contributions have been estimated from ΔG(tr)' values. We have also investigated the interactions of TRIS buffer with Bovine Serum Albumin (BSA), as a globular protein, using dynamic light scattering (DLS), zeta potential, UV-Visible absorption, fluorescence and Raman spectroscopy measurements. The results indicated that TRIS buffer stabilized the BSA molecules.
Product development studies of amino acid conjugate of Aceclofenac.
Singh, Ajay Pal; Ramadan, Wafa Mossa; Dahiya, Rajiv; Sarpal, A S; Pathak, Kamla
2009-04-01
The prodrugs designed by classical approach increase lipophilicity of the drug, which decreases the water solubility thus decreasing the concentration gradient, which controls drug absorption. To overcome the limitations of traditional prodrug approach, water soluble prodrugs can be designed by adding selected amino acid to the drug moiety that are the substrates for the enzyme located at the intestinal brush border thus overcoming pharmaceutical problem without compromising bioavailability. ACaa (Amino acid conjugate of Aceclofenac) was synthesized by conjugation with l-phenylalanine by conventional coupling method using N, N-dicyclohexylcarbodiimide and ACaa was characterized by melting point, TLC, photomicrograph, UV, FT-IR, FT-NMR, MS-FAB, XRD and DSC. As a part of product development study ACaa was subjected to studies like In-vivo in albino rats and in-vitro like ACaa reversion to AC (Aceclofenac) in aqueous buffers of pH 1.21, 2.38. 3.10, 6.22 and 7.41, at a constant concentration (0.05M), ionic strength (micro = 0.5) and at a temperature of 37 degrees C +/- 0.5 degrees C, ACaa showed negligible reversion (2.15 %) up to 24 hrs study at acidic pH thus suggesting stability in acidic environment of stomach, the rate of reversion increased as pH of medium increased. pH- partition profile, pH- solubility profile and micromeritic studies were also carried out in comparison to pure drug. The solubility and lipophilicity of ACaa exhibited higher values at all pH range when compared to AC. The micromeritic properties also evaluated in terms of particle shape and size, IQCS and kurtosis. Resulting IQCS value approached zero thus suggesting reducing in the degree of skewness.
Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells*
Parolini, Isabella; Federici, Cristina; Raggi, Carla; Lugini, Luana; Palleschi, Simonetta; De Milito, Angelo; Coscia, Carolina; Iessi, Elisabetta; Logozzi, Mariantonia; Molinari, Agnese; Colone, Marisa; Tatti, Massimo; Sargiacomo, Massimo; Fais, Stefano
2009-01-01
Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies. PMID:19801663
A sensitive new fluorescence assay for measuring proton transport across liposomal membranes.
Orosz, D E; Garlid, K D
1993-04-01
6-Methoxy-N-(3-sulfopropyl)-quinolinium (SPQ) is a fluorophore that is collisionally quenched by halide anions and is widely used to measure chloride ion transport across cellular and liposomal membranes. We report a new finding that SPQ fluorescence is also quenched by the zwitterionic hydrogen ion buffers introduced by Good et al. [(1966) Biochemistry 5, 467-477]. Although buffer quenching interferes with chloride ion measurements using SPQ, it can be turned to good advantage for measurements of proton flux. The basis for this application is that, for most buffers, the anion quenches and the zwitterion does not. Accordingly, buffer quenching of SPQ can be used to assay proton transport across liposomal membranes. We describe application of the technique to liposomes in which proton transport was mediated by ionophores and by the purified, reconstituted uncoupling protein of brown adipose tissue mitochondria. Because SPQ detects changes in buffer anion concentration, it can be used to measure changes in total acidity, which is the parameter desired when measuring net proton transport. Furthermore, this technique can be used to measure proton transport under conditions in which pH changes are minimized with buffers, and, consequently, effects of pH on proton transport can be dissociated from the transport itself.
Mohanty, Ranjeet Kumar; Thennarasu, Sathiah; Mandal, Asit Baran
2014-02-01
The green synthesis of gold nanoparticles was achieved by exploiting the antioxidant property of resveratrol (R). The formation of resveratrol stabilized gold nanoparticles (R-GNPs) was confirmed by the observation of the surface plasmon resonance band at 537 nm. The average size of R-GNPs produced in resveratrol medium was ~35nm. The geometrical shape and zeta potential of the gold nanoparticles were spherical and -21.2 mV, respectively. R-GNPs showed excellent stability in saline and other buffers mimicking the physiological pH. The MTT assay using fibroblast cells from explants tissue revealed the biocompatibility of R-GNPs. The cytotoxic activity of doxorubicin loaded R-GNPs against glioma carcinoma cell line (LN 229), showed the suitability of R-GNPs as a carrier for anticancer drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Aliaga, Carolina; López de Arbina, Amaia; Rezende, Marcos Caroli
2016-09-01
The activities of two hydrophilic (ascorbic acid and Trolox) and two hydrophobic (α-tocopherol and BHT) antioxidants were measured by reaction with a series of 4-alkanoyloxyTEMPO radical probes 1 in buffered (pH 7), aqueous, micellar solutions of reduced Triton-X 100. In all cases, a cut-off effect was observed, in line with previous observations of the same effect for the partitioning of probe series 1 in this medium. These results support an interpretation of the cut-off effect in food emulsions, based on the "amphiphobic" nature of either the antioxidants or probes: competition between two molecular moieties, for the micellar hydrophobic core, tends to expose a reacting fragment differently to a more hydrophilic microenvironment, as the probe or antioxidant hydrophobicity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.