Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT
2011-12-13
Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
Ferreira, Cecília F G; Benelli, Elaine M; Klein, Jorge J; Schreiner, Wido; Camargo, Paulo C
2009-10-15
The adsorption of proteins and its buffer solution on mica surfaces was investigated by atomic force microscopy (AFM). Different salt concentration of the Herbaspirillum seropedicae GlnB protein (GlnB-Hs) solution deposited on mica was investigated. This protein is a globular, soluble homotrimer (36kDa), member of PII-like proteins family involved in signal transducing in prokaryote. Supramolecular structures were formed when this protein was deposited onto bare mica surface. The topographic AFM images of the GlnB-Hs films showed that at high salt concentration the supramolecular structures are spherical-like, instead of the typical doughnut-like shape for low salt concentration. AFM images of NaCl and Tris from the buffer solution showed structures with the same pattern as those observed for high salt protein solution, misleading the image interpretation. XPS experiments showed that GlnB protein film covers the mica surface without chemical reaction.
Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F
2002-09-01
Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.
Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry.
Marák, Jozef; Stanová, Andrea
2014-05-01
In this work, the impact of buffer salts/matrix effects on the signal in direct injection MS with an electrospray interface (DI-ESI-MS) following pITP fractionation of the sample was studied. A range of buffers frequently used in CE analyses (pH 3-10) was prepared containing 10, 50, and 90% v/v of ACN, respectively. The sets of calibration solutions of cetirizine (an antihistaminic drug with an amphiprotic character) within a 0.05-2.0 mg/L concentration range were prepared in different buffers. The greatest enhancements in the MS signal (in terms of change in the slope of the calibration line) were obtained for the beta-alanine buffer (pH 3.5) in positive ionization and for the borate buffer (pH 9.2) in negative ionization, respectively. The procedure was successfully applied to the analysis of buserelin (a peptidic drug). The slope of the calibration line for solutions containing the beta-alanine buffer with 50% of ACN was 4 times higher than for water or urine, respectively. This study clearly demonstrates that the buffer salt/matrix effects in an offline combination of pITP and DI-ESI-MS can also play a positive role, as they can enhance the signal in MS. A similar influence of the above effects can also be presumed in the CE techniques combined on-line with ESI-MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj
2010-06-22
Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH < pK{sub a2} was cooled from room temperature (RT), the freeze-concentrate pH first increased and then decreased. This was attributed to the sequential crystallization of succinic acid, monosodium succinate, and finally disodium succinate. When buffered to pH > pK{sub a2}, the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followedmore » by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na{sub 2}(CH{sub 2}COO){sub 2} {center_dot} 6H{sub 2}O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.« less
Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.
Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer
2015-01-14
In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the kosmotropic or chaotropic behaviors of the investigated buffers at 25 °C have been examined.
Fukuda, Masakazu; Moriyama, Chifumi; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko
2015-12-01
To investigate the relationship between viscosity of concentrated MAb solutions and particle size parameters obtained from small-angle X-ray scattering (SAXS). The viscosity of three MAb solutions (MAb1, MAb2, and MAb3; 40-200 mg/mL) was measured by electromagnetically spinning viscometer. The protein interactions of MAb solutions (at 60 mg/mL) was evaluated by SAXS. The phase behavior of 60 mg/mL MAb solutions in a low-salt buffer was observed after 1 week storage at 25°C. The MAb1 solutions exhibited the highest viscosity among the three MAbs in the buffer containing 50 mM NaCl. Viscosity of MAb1 solutions decreased with increasing temperature, increasing salt concentration, and addition of amino acids. Viscosity of MAb1 solutions was lowest in the buffer containing histidine, arginine, and aspartic acid. Particle size parameters obtained from SAXS measurements correlated very well with the viscosity of MAb solutions at 200 mg/mL. MAb1 exhibited liquid-liquid phase separation at a low salt concentration. Simultaneous addition of basic and acidic amino acids effectively suppressed intermolecular attractive interactions and decreased viscosity of MAb1 solutions. SAXS can be performed using a small volume of samples; therefore, the particle size parameters obtained from SAXS at intermediate protein concentration could be used to screen for low viscosity antibodies in the early development stage.
Ferguson, J H
1942-03-20
By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (+/-0.2) pH in salt-containing buffer solutions and pH = 5.3 (+/-0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution.
Min, K R; Zimmer, M N; Rickard, A H
2010-11-01
The aim of this study was to explore the physicochemical parameters that influence coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Using visual coaggregation assays, the effect of different buffers, solutions of differing ionic strength, pH, temperature, and viscosity on the degree of coaggregation was assessed. Coaggregation occurred maximally in distilled water but was inhibited when coaggregates were suspended in a commonly-used oral bacterial coaggregation buffer, saline solutions, and Tris-Cl buffers. Coaggregation was weakly expressed in standard laboratory buffers. The ionic strength of inorganic salt solutions required to inhibit coaggregation depended upon the inorganic salt being tested. Coaggregation occurred at a pH of 3-10, between 5 and 80°C and was inhibited in solutions with a viscosity of 22.5 centipoises at 20°C. Inhibition of coaggregation with NaCl impaired biofilm development. When developing buffers to test for coaggregation, the natural liquid environment should be considered. Coaggregation between S. natatoria 2.1 and M. luteus 2.13 is only affected by physicochemical conditions beyond those typically found in natural freshwater ecosystems. Such a robust ability to coaggregate may enhance the ability of S. natatoria 2.1 and M. luteus 2.13 to develop a niche in freshwater biofilms.
Hankins, Matthew G [Albuquerque, NM
2009-10-06
Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.
Khalil, E; Sallam, A
1999-04-01
The copolymer of ammoniomethacrylate Eudragit RL (ERL) interacted with diclofenac acid salts (sodium and diethylamine salts) in aqueous solutions, forming a complex. Sorption experiments were done in aqueous solutions of either sodium lauryl sulfate (SLS), Tween 20, or Tween 80. The SLS competed strongly with the drug, even at low concentrations, and reduced significantly the amount of drug sorbed by ERL. Tweens at high concentrations exhibited two phase profiles: the sorption phase, which was short and during which drug concentration dropped sharply, and the release phase, during which the drug was released slowly over 24 hr and which was accompanied by dispersion of ERL particles into the colloidal dispersion. The interaction was dependent on temperature, ionic strength, and nature of the additives. The extent of interaction in water and phosphate buffer solutions was in the following order: water > pH 6 > pH 7-8. In-vitro dissolution studies of the dried complex were done over 24 hr. In water, the drug remained bound to the polymer. In aqueous surfactant solutions (SLS, Tween 20, and Tween 80) and phosphate buffer at pH 6.8, a linear relationship between drug concentration and the square root of time was obtained, indicating a matrix diffusion-controlled mechanism. However, 100% release was not reached, and resorption was observed in the phosphate buffer solution.
Ferguson, John H.
1942-01-01
By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (±0.2) pH in salt-containing buffer solutions and pH = 5.3 (±0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution. PMID:19873299
Common buffers, media, and stock solutions.
2001-05-01
This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.
SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS
Cowan, G.A.
1959-08-25
The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.
Brdicka, R
1936-07-20
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.
Hybridization parameters revisited: solutions containing SDS.
Rose, Ken; Mason, John O; Lathe, Richard
2002-07-01
Salt concentration governs nucleic acid hybridization according to the Schildkraut-Lifson equation. High concentrations of SDS are used in some common protocols, but the effects of SDS on hybridization stringency have not been reported. We investigated hybridization parameters in solutions containing SDS. With targets immobilized on nylon membranes and PCR- or transcription-generated probes, we report that the 50% dissociation temperature (Tm*) in the absence of SDS was 15 degrees C-17degrees C lower than the calculated Tm. SDS had only modest effects on Tm* [1% (w/v) equating to 8 mM NaCl]. RNA/DNA hybrids were approximately 11 degrees C more stable than DNA/DNA hybrids. Incomplete homology (69%) significantly reduced the Tm* for DNA/DNA hybrids (approximately /4degrees C; 0.45 degrees C/% nonhomology) but far less so for RNA/DNA hybrids (approximately 2.3 degrees C; approximately 0.07 degrees C/% non-homology); incomplete homology also markedly reduced the extent of hybridization. On these nylonfilters, SDS had a major effect on nonspecific binding. Buffers lacking SDS, or with low salt concentration, gave high hybridization backgrounds; buffers containing SDS, or high-salt buffers, gave reproducibly low backgrounds.
Buffer capacity of biologics--from buffer salts to buffering by antibodies.
Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick
2013-01-01
Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.
Brdička, R.
1936-01-01
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968
NASA Technical Reports Server (NTRS)
Bugbee, B. G.; Salisbury, F. B.
1985-01-01
All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.
Ichikawa, Makoto; Ide, Nagatoshi; Shiraishi, Sumihiro; Ono, Kazuhisa
2005-06-01
Combination of cyanocobalamin (VB12) and ascorbic acid (VC) has been widely seen in pharmaceutical products and dietary supplements. However, VB12 has been reported that its behavior in stability in aqueous solution is quite different when VC is mixed. In the present study, we examined the stabilities of these vitamins in acetate buffer (pH 4.8) using high performance liquid chromatography. Degradation of VB12 was not observed in the absence of VC in the buffer. However, when VC was mixed in the VB12 solution, VB12 concentrations decreased in accordance with VC degradation. VB12 and VC degradations were inhibited by adding sodium halides to acetate buffer at pH 4.8. These stabilization effects were also observed in the range from pH 3.5 to 5.3 and by adding potassium, magnesium, and calcium halides. Furthermore, our data demonstrated that increases in the halide anion concentrations and atomic number (Cl-
On the Preparation of Buffer Solutions.
ERIC Educational Resources Information Center
Thomson, Bruce M.; Kessick, Michael A.
1981-01-01
Presents a method, suitable for use on programmable calculators, which allows calculation of the pH and ionic strength (I) of a mixed solution of salts of an acid or amounts necessary to produce a solution of a particular pH and I. Includes limitations when using the calculations described. (SK)
NASA Technical Reports Server (NTRS)
Dorward, R. C.; Hasse, K. R.
1978-01-01
A comparison is made between measurements of stress-corrosion crack propagation made by a constant-load procedure and by a constant-deflection procedure. Precracked double cantilever beam specimens from 7075 aluminum alloy plate were used. The specimens were oriented in such a way that cracking would begin in the short-transverse plane and would propagate in the rolling direction. The specimens were subjected to a buffered salt-chromate solution and a 3.6% synthetic sea salt solution. The measurements were made optically with a binocular microscope. Stress intensities and crack lengths were calculated and crack velocities were obtained. Velocity was plotted against the average calculated stress intensity. Good agreement between the two methods was found for the salt-chromate solution, although some descrepancies were noted for the artificial sea salt solution.
Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.
1998-01-01
The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.
Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria
2013-01-01
Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm3 mol−1, than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about −25 cm3 mol−1. However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471
Free flow cell electrophoresis using zwitterionic buffer
NASA Technical Reports Server (NTRS)
Rodkey, R. Scott
1990-01-01
Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.
Mukai, Kazuo; Ouchi, Aya; Nagaoka, Shin-ichi; Nakano, Masahiko; Ikemoto, Kazuto
2016-01-01
Measurements of the reaction of sodium salt of pyrroloquinoline quinone (PQQNa2) with vitamin C (Vit C) were performed in phosphate-buffered solution (pH 7.4) at 25 °C under nitrogen atmosphere, using UV-vis spectrophotometry. The absorption spectrum of PQQNa2 decreased in intensity due to the reaction with Vit C and was changed to that of pyrroloquinoline quinol (PQQH2, a reduced form of PQQ). One molecule of PQQ was reduced by two molecules of Vit C producing a molecule of PQQH2 in the buffer solution. PQQH2, thus produced, was recycled to PQQ due to air oxidation. PQQ and Vit C coexist in many biological systems, such as vegetables, fruits, as well as in human tissues. The results obtained suggest that PQQ is reduced by Vit C and functions as an antioxidant in biological systems, because it has been reported that PQQH2 shows very high free-radical scavenging and singlet-oxygen quenching activities in buffer solutions.
NASA Astrophysics Data System (ADS)
Abidin, A. Z.; Graha, H. P. R.; Trirahayu, D. A.
2017-07-01
Copolymerization between bacterial cellulose nanocrystal (CN) and methyl cellulose (MC) was carried out using UV light to produce a biocompatible hydrogel at body temperature and liquid at room temperature. Viscosity and salt effect of the MC and copolymer solution at room temperature and its Lower Critical Solution Temperature (LCST) were evaluated. The analysis showed that the higher concentration of methyl cellulose and salt content in the solution produced lower LCST and higher solution viscosity. All samples of polymer solution with MC concentrations of 1 and 2% have a viscosity less than 5000 cP at room temperature. The solutions with MC concentration of 1, 2, and 3% have respectively LCST of 59, 58, and 57°C, while its copolymer solutions with CN concentration of 0.1, 0.3, and 0.5% have respectively LCST of 55, 51, and 41°C. The salt addition to the solution of MC-CN copolymer with concentrations of 1x and 1.5x Phosphat Buffered Saline (PBS) produces respectively LCST of 47 and 38°C. The results suggest that the copolymer solution of MC-CN could produce a lower LCST and the addition of salt could amplify the effect of LCST decrease that can be used to produce a biocompatible hydrogel with LCST as close as body temperature.
Gomes, Pedro Ferreira; Loureiro, José Miguel; Rodrigues, Alírio E
2017-11-17
It is commonly accepted that efficient protein separation and purification to the desired level of purity is one bottleneck in pharmaceutical industries. MabDirect MM is a new type of mixed mode adsorbent, especially designed to operate in expanded bed adsorption (EBA) mode. In this study, equilibrium and kinetics experiments were carried out for the adsorption of Human Immunoglobulin G (hIgG) protein on this new adsorbent. The effects of ionic strength and pH are assessed. Langmuir isotherms parameters are obtained along with the estimation of the effective pore diffusion coefficient (D pe ) by fitting the batch adsorption kinetics experiments with the pore diffusion model. The maximum adsorption of the IgG protein on the MabDirect MM adsorbent, 149.7±7.1mg·g dry -1 , was observed from a pH 5.0 buffer solution without salt addition. Adding salt to the buffer solution, and/or increasing pH, decreases the adsorption capacity which is 4.7±0.4mg·g dry -1 for pH 7.0 with 0.4M NaCl in solution. Regarding the D pe estimation, a value of 15.4×10 -6 cm 2 ·min -1 was obtained for a pH 5.0 solution without salt. Increasing the salt concentration and/or the pH value will decrease the effective pore diffusion, the lowest D pe (0.16×10 -6 cm 2 ·min -1 ) value being observed for an IgG solution at pH 7.0 with 0.4M NaCl. Fixed bed experiments were conducted with the purpose to validate the equilibrium and kinetic parameters obtained in batch. For a feed concentration of 0.5 g·L -1 of IgG in pH 5.0 buffer solution with 0.4M NaCl, a dynamic binding capacity at 10% of breakthrough of 5.3mg·g wet -1 (15.4mg IgG ·mL resin -1 ) was obtained, representing 62% of the saturation capacity. As far as the authors know, this study is the first one concerning the adsorption of hIgG on this type of mixed mode chromatography adsorbent. Copyright © 2017 Elsevier B.V. All rights reserved.
ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells
Bhattacharya, Raghu N [Littleton, CO
2009-11-03
The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Qiu; D Rau; V Parsegian
2011-12-31
Using solution synchrotron x-ray scattering, we measure the variation of DNA-DNA d spacings in bacteriophage {lambda} with mono-, di-, and polyvalent salt concentrations, for wild-type [48.5 x 10{sup 3} base pairs (bp)] and short-genome-mutant (37.8 kbp) strains. From the decrease in d spacings with increasing salt, we deduce the relative contributions of DNA self-repulsion and bending to the energetics of packaged phage genomes. We quantify the DNA-DNA interaction energies within the intact phage by combining the measured d spacings in the capsid with measurements of osmotic pressure in DNA assemblies under the same salt conditions in bulk solution. In themore » commonly used Tris-Mg buffer, the DNA-DNA interaction energies inside the phage capsids are shown to be about 1 kT/bp, an order of magnitude larger than the bending energies.« less
Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles
NASA Astrophysics Data System (ADS)
Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril
The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (<15 mM), the micelle radius was about 10nm but not very reproducible on account of unstable pH levels arising from low buffer concentrations. At intermediate salt concentrations (15 - 60 mM), the system formed spherically-shaped micelles, exhibiting a steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with increasing PBS concentration. Interestingly, higher salt concentrations (>60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.
Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model.
Dubochet, J; Adrian, M; Schultz, P; Oudet, P
1986-03-01
The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed.
In vitro degradation of ZM21 magnesium alloy in simulated body fluids.
Witecka, Agnieszka; Bogucka, Aleksandra; Yamamoto, Akiko; Máthis, Kristián; Krajňák, Tomáš; Jaroszewicz, Jakub; Święszkowski, Wojciech
2016-08-01
In vitro degradation behavior of squeeze cast (CAST) and equal channel angular pressed (ECAP) ZM21 magnesium alloy (2.0wt% Zn-0.98wt% Mn) was studied using immersion tests up to 4w in three different biological environments. Hanks' Balanced Salt Solution (Hanks), Earle's Balanced Salt Solution (Earle) and Eagle minimum essential medium supplemented with 10% (v/v) fetal bovine serum (E-MEM+10% FBS) were used to investigate the effect of carbonate buffer system, organic compounds and material processing on the degradation behavior of the ZM21 alloy samples. Corrosion rate of the samples was evaluated by their Mg(2+) ion release, weight loss and volume loss. In the first 24h, the corrosion rate sequence of the CAST samples was as following: Hanks>E-MEM+10% FBS>Earle. However, in longer immersion periods, the corrosion rate sequence was Earle>E-MEM+10% FBS≥Hanks. Strong buffering effect provided by carbonate buffer system helped to maintain the pH avoiding drastic increase of the corrosion rate of ZM21 in the initial stage of immersion. Organic compounds also contributed to maintain the pH of the fluid. Moreover, they adsorbed on the sample surface and formed an additional barrier on the insoluble salt layer, which was effective to retard the corrosion of CAST samples. In case of ECAP, however, this effect was overcome by the occurrence of strong localized corrosion due to the lower pH of the medium. Corrosion of ECAP samples was much greater than that of CAST, especially in Hanks, due to higher sensitivity of ECAP to localized corrosion and the presence of Cl(-). The present work demonstrates the importance of using an appropriate solution for a reliable estimation of the degradation rate of Mg-base degradable implants in biological environments, and concludes that the most appropriate solution for this purpose is E-MEM+10% FBS, which has the closest chemical composition to human blood plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Hildebrand, Viet; Laschewsky, André; Zehm, Daniel
2014-01-01
A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.
Legallais, C; Anspach, F B; Bueno, S M; Haupt, K; Vijayalakshmi, M A
1997-03-28
The depyrogenation of different IgG solutions using the histidine-linked hollow fiber membrane developed in our laboratory is presented here. Three strategies for endotoxin (ET) removal were investigated according to the immobilized histidine's ability to bind different immunoglobulins: (1) ET removal from 1 mg/ml non histidine-binding mouse monoclonal IgG1 (MabCD4) solution was achieved in the presence of acetate buffer (pH 5.0) without any protein loss. (2) For contaminated human IgG, combined adsorption of ET and IgG in the presence of MOPS of Tris buffer was tested, followed by differential elution using increasing salt concentrations. This attempt was not successful since ET were quantitatively found in the IgG elution fraction. (3) Alternatively, it was proposed to adsorb selectively ET in the presence of acetate buffer (pH 5.0) under non binding conditions for human IgG. Human IgG could then be purified if necessary with the same membrane in the presence of MOPS buffer (pH 6.5). With a 1 m2 histidine-PEVA module under these operating conditions, it is estimated that the depyrogenation of 3 l of 1 mg/ml IgG (human or murine) solution containing 80 EU/ml of ET should be possible.
NASA Technical Reports Server (NTRS)
Agena, S. M.; Pusey, M. L.; Bogle, I. D.
1999-01-01
A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.
Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine
2016-01-01
Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Minfen; Liu, Jingxian; Song, Jianxing
2006-08-01
The inability to determine the structure of the buffer-insoluble Nogo extracellular domain retarded further design of Nogo receptor (NgR) antagonists to treat CNS axonal injuries. Very surprisingly, we recently discovered that Nogo-60 was soluble and structured in salt-free water, thus allowing the determination of the first Nogo structure by heteronuclear NMR spectroscopy. Nogo-60 adopts an unusual helical structure with the N- and C-terminal helices connected by a long middle helix. While the N-helix has no contact with the rest of the molecule, the C-helix flips back to pack against the 20-residue middle helix. This packing appears to trigger the formation of the stable Nogo-60 structure because Nogo-40 with the last helix truncated is unstructured. The Nogo-60 structure offered us rationales for further design of the structured and buffer-soluble Nogo-54, which may be used as a novel NgR antagonist. Furthermore, our discovery may imply a general solution to solubilizing a category of buffer-insoluble proteins for urgent structural investigations.
Mazur, Peter; Pinn, Irina L.; Kleinhans, F.W.
2009-01-01
We have previously reported [11] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12% respectively even though the IIF temperatures varied from −14° to −41°C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratio of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20°C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred as noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5 to 8% for both glycerol and EG even though the IIF temperatures vary from −14°C to −50°C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: Substantially greater than isotonic in some solution; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature. PMID:17379206
Mazur, Peter; Pinn, Irina L; Kleinhans, F W
2007-04-01
We have previously reported [Cryobiology 51 (2005) 29-53] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12%, respectively, even though the IIF temperatures varied from -14 to -41 degrees C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratios of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20 degrees C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred was noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5-8% for both glycerol and EG even though the IIF temperatures vary from -14 to -50 degrees C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: substantially greater than isotonic in some solutions; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature.
Ex vivo study of transdermal permeation of four diclofenac salts from different vehicles.
Minghetti, Paola; Cilurzo, Francesco; Casiraghi, Antonella; Montanari, Luisa; Fini, Adamo
2007-04-01
The ex vivo permeation of diclofenac was studied using four different salts (sodium, potassium, diethylamine, and epolamine) dissolved in four different solvents (water, propylene glycol (PG), Transcutol, and oleic acid (OA)) as donor phases through a human skin membrane. The four salts show different solubility values and different behavior in the four solvents, which are also permeation enhancers and this fact further is connected to the permeation results. The same order of magnitude of fluxes through the membrane as those previously reported for acidic diclofenac released from buffer solutions of pH >7 were found, taking into account differences originated by different membranes and other parameters tested in the experiments. Saturation concentration for the four salts in different solvents, necessary to calculate permeation coefficients, was critically evaluated; a short discussion made it possible to explain that corrections in the solubility values must be considered, related to the complex behavior in solution of these salts. Statistical processing of the experimental data suggests that differences between the four salts in promoting absorption of the drug is unproven; while differences are evident between the solvents, water is the most effective enhancing vehicle. Aqueous formulations containing diclofenac salt with an organic base appear to be the best combination to promote permeation in topical applications. (c) 2007 Wiley-Liss, Inc.
Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators.
Berlin, J R; Konishi, M
1993-01-01
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters. PMID:8274651
Walter, A; Kuehl, G; Barnes, K; VanderWaerdt, G
2000-11-23
The vesicle-to-micelle transition of egg phosphatidylcholine LUVs induced by octylglucoside was studied in buffers with 0-4 M sodium chloride, sucrose or urea. We used both light scattering and fluorescent probes to follow the lipid-detergent complexes in these buffers. The vesicle-to-micelle transition process was fundamentally the same in each solute. However, the detergent-to-lipid ratio required for micelle formation shifted in ways that depended on the aqueous solute. The partitioning of octylglucoside between the vesicles and the aqueous phase was primarily determined by the change in its critical micelle concentration (cmc) induced by each solute. Specifically, the cmc decreased in high salt and sucrose buffers but increased in high concentrations of urea. Cmc for two additional nonionic detergents, decyl- and dodecyl-maltoside, and three zwittergents (3-12, 3-14 and 3-16) were determined as a function of concentration for each of the solutes. In all cases NaCl and sucrose decreased the solubility of the detergents, whereas urea increased their solubilities. The effects clearly depended on acyl chain length in urea-containing solutions, but this dependence was less clear with increasing NaCl and sucrose concentrations. The contributions of these solutes to solubility and to interfacial interactions in the bilayers, pure and mixed micelles are considered.
Fini, Adamo; Bassini, Glenda; Monastero, Annamaria; Cavallari, Cristina
2012-09-12
The following bases: monoethylamine (EtA), diethylamine (DEtA), triethylamine (TEtA), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), pyrrolidine (Py), piperidine (Pp), morpholine (M), piperazine (Pz) and their N-2-hydroxyethyl (HE) analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4); a saturated solution (5 mL) of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase-that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs) contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane.
Fini, Adamo; Bassini, Glenda; Monastero, Annamaria; Cavallari, Cristina
2012-01-01
The following bases: monoethylamine (EtA), diethylamine (DEtA), triethylamine (TEtA), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), pyrrolidine (Py), piperidine (Pp), morpholine (M), piperazine (Pz) and their N-2-hydroxyethyl (HE) analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4); a saturated solution (5 mL) of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase—that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs) contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane. PMID:24300300
2015-01-01
The effects of different anions on the extent of electrothermal supercharging of proteins from aqueous ammonium and sodium salt solutions were investigated. Sulfate and hydrogen phosphate are the most effective anions at producing high charge state protein ions from buffered aqueous solution, whereas iodide and perchlorate are ineffective with electrothermal supercharging. The propensity for these anions to produce high charge state protein ions follows the following trend: sulfate > hydrogen phosphate > thiocyanate > bicarbonate > chloride > formate ≈ bromide > acetate > iodide > perchlorate. This trend correlates with the reverse Hofmeister series over a wide range of salt concentrations (1 mM to 2 M) and with several physical properties, including solvent surface tension, anion viscosity B-coefficient, and anion surface/bulk partitioning coefficient, all of which are related to the Hofmeister series. The effectiveness of electrothermal supercharging does not depend on bubble formation, either from thermal degradation of the buffer or from coalescence of dissolved gas. These results provide evidence that the effect of different ions in the formation of high charge state ions by electrothermal supercharging is largely a result of Hofmeister effects on protein stability leading to protein unfolding in the heated ESI droplet. PMID:24410546
Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H
2016-01-01
Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further attention for robust systems science, and precision biomarkers that will stand the test of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.
Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that themore » following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate buffer would significantly reduce the solubility of PuCl 3 by the precipitation of PuPO 4.« less
Fe-SAPONITE and Chlorite Growth on Stainless Steel in Hydrothermal Engineered Barrier Experiments
NASA Astrophysics Data System (ADS)
Cheshire, M. C.; Caporuscio, F. A.; McCarney, M.
2012-12-01
The United States recently has initiated the Used Fuel Disposition campaign to evaluate various generic geological repositories for the disposal of high-level, spent nuclear fuel within environments ranging from hard-rock, salt/clay, to deep borehole settings. Previous work describing Engineered Barrier Systems (EBS) for repositories focused on low temperature and pressure conditions. The focus of this experimental work is to characterize the stability and alteration of a bentonite-based EBS with different waste container materials in brine at higher heat loads and pressures. All experiments were run at ~150 bar and 125 to 300 C for ~1 month. Unprocessed bentonite from Colony, Wyoming was used in the experiments as the clay buffer material. The redox conditions for each system were buffered along the magnetite-iron oxygen fugacity univariant curve using Fe3O4 and Feo filings. A K-Na-Ca-Cl-based salt solution was chosen to replicate deep groundwater compositions. The experimental mixtures were 1) salt solution-clay; 2) salt solution -clay-304 stainless steel; and 3) salt solution -clay-316 stainless steel with a water/bentonite ratio of ~9. Mineralogy and aqueous geochemistry of each experiment was evaluated to monitor the reactions that took place. No smectite illitization was observed in these reactions. However, it appears that K-smectite was produced, possibly providing a precursor to illitization. It is unclear whether reaction times were sufficient for bentonite illitization at 212 and 300 C or whether conditions conducive to illite formation were obtained. The more notable clay mineral reactions occurred at the stainless steel surfaces. Authigenic chlorite and Fe-saponite grew with their basal planes near perpendicular to the steel plate, forming a 10 - 40 μm thick 'corrosion' layer. Partial dissolution of the steel plates was the likely iron source for chlorite/saponite formation; however, dissolution of the Feo/Fe3O4 may also have acted as an iron source, with the steel plates acting as a substrate for chlorite/saponite growth. Trace amounts of pyrite in the bentonite appeared to have reacted to form H2S gas and pentlandite ((Ni,Fe)8S9). Mineral growth on the waste containers was influenced by the container, buffer, and fluid compositions, in addition to pressure and temperature conditions. No significant mineralogical changes were apparent away from the steel-smectite interface. Results of this research show that the waste container may act as a substrate for mineral growth in response to corrosion. However, it is presently unknown whether chlorite and Fe-saponite will act as passivating agents or whether their presence will facilitate further corrosion of the waste containers. The role of these Fe-rich minerals on the stability of steel canisters at elevated heat loads is currently under investigation. LA-UR-12-23845
Gordon, A. M.; Godt, R. E.; Donaldson, S. K. B.; Harris, C. E.
1973-01-01
The maximal calcium-activated isometric tension produced by a skinned frog single muscle fiber falls off as the ionic strength of the solution bathing this fiber is elevated declining to zero near 0.5 M as the ionic strength is varied using KCl. When other neutral salts are used, the tension always declines at high ionic strength, but there is some difference between the various neutral salts used. The anions and cations can be ordered in terms of their ability to inhibit the maximal calcium-activated tension. The order of increasing inhibition of tension (decreasing tension) at high ionic strength for anions is propionate- ≃ SO4 -- < Cl- < Br-. The order of increasing inhibition of calcium-activated tension for cations is K+ ≃ Na+ ≃ TMA+ < TEA+ < TPrA+ < TBuA+. The decline of maximal calcium-activated isometric tension with elevated salt concentration (ionic strength) can quantitatively explain the decline of isometric tetanic tension of a frog muscle fiber bathed in a hypertonic solution if one assumes that the internal ionic strength of a muscle fiber in normal Ringer's solution is 0.14–0.17 M. There is an increase in the base-line tension of a skinned muscle fiber bathed in a relaxing solution (no added calcium and 3 mM EGTA) of low ionic strength. This tension, which has no correlate in the intact fiber in hypotonic solutions, appears to be a noncalcium-activated tension and correlates more with a declining ionic strength than with small changes in [MgATP], [Mg], pH buffer, or [EGTA]. It is dependent upon the specific neutral salts used with cations being ordered in increasing inhibition of this noncalcium-activated tension (decreasing tension) as TPrA+ < TMA+ < K+ ≃ Na+. Measurements of potentials inside these skinned muscle fibers bathed in relaxing solutions produced occasional small positive values (<6 mV) which were not significantly different from zero. PMID:4543066
Effect of Hofmeister series salts on Absorptivity of aqueous solutions on Sodium polyacrylate
NASA Astrophysics Data System (ADS)
Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, U.
2017-11-01
Sodium polyacrylate (SPA) is a popular super absorbent commonly used in children diapers, sanitary pads, adult diapers etc. The use of SPA is in force from past 30 years and the newer applications like as food preservant are evolving. SPA is recently discovered by our group for improvement of sensitivity of colorimetric agents. Though the discovery of improvement in sensitivity is phenomenal, the mechanism still remains a puzzle. A typical assay reagent contains colorimetric/fluorescent reagents, buffers, salts, stabilizers etc. These chemicals are known to influence the water absorptivity of SPA. If we were to perform chemical/biochemical assays on SPA absorbed reagents effect of salts and other excipients on colorimetric/fluorescence compounds absorbed on SPA is very important. The hofmeister series are standard for studying effect of salts on permeability, stability, aggregation, fluorescence quenching etc. We recently studied affect of urea, sodium chloride, ammonium sulfate, guanidine thiocayanate on fluorescence characteristics of fluorescence compounds and noted that except urea all other reagents have resulted in fluorescence quenching and urea had an opposite effect and increased the fluorescence intensity. This result was attributed to the different water structure around fluorescent in urea solution versus other chaotropic agents.
Creasy, Arch; Barker, Gregory; Carta, Giorgio
2017-03-01
A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chou, I.-Ming; Seal, R.R.; Hemingway, B.S.
2002-01-01
Melanterite (FeSO4??7H2O)-rozenite (FeSO4??4H2O) and chalcanthite (CuSO4??5H2O)-bonattite (CuSO4??3H2O) equilibria were determined by humidity measurements at 0.1 MPa. Two methods were used; one is the gas-flow-cell method (between 21 and 98 ??C), and the other is the humidity-buffer method (between 21 and 70 ??C). The first method has a larger temperature uncertainty even though it is more efficient. With the aid of humidity buffers, which correspond to a series of saturated binary salt solutions, the second method yields reliable results as demonstrated by very tight reversals along each humidity buffer. These results are consistent with those obtained by the first method, and also with the solubility data reported in the literature. Thermodynamic analysis of these data yields values of 29.231 ?? 0.025 and 22.593 ?? 0.040 kJ/mol for standard Gibbs free energy of reaction at 298.15 K and 0.1 MPa for melanterite-rozenite and chalcanthite-bonattite equilibria, respectively. The methods used in this study hold great potential for unraveling the thermodynamic properties of sulfate salts involved in dehydration reactions at near ambient conditions.
Pinteric, L; Manery, J F; Chaudry, I H; Madapallimattam, G
1975-05-01
Membranes of human erythrocytes were prepared by stepwise osmotic hemolysis in Ca2+-free solutions. Examination with the electron microscope after negative staining showed some short, conelike protuberances on the surface of about 20 percent of the ghosts, while 80 percent were round, intact spheres. After Ca2+ treatment, all membranes were round and intact. After exposure to ethylenediaminetetraacetic acid (EDTA) (1.0 mM, pH 7.4), the entire ghost surface was covered with long, thin extrusions called stromalytic forms (about 460 per cell). Their sizes, shapes, and fine structure are described. Exposure to ionic calcium (1.4 times 10-minus 4M) abolished the EDTA-induced stromalytic forms. A second exposure to EDTA reversed this Ca2+ effect. ATP, like EDTA, produced stromalytic forms. EDTA-induced stromalytic forms were also abolished by Zn2+, La3+, and Nd3+ at concentrations of 1-5 times 10-minus 4 M. Mg2+ at 10-minus 2 M was ineffective. Ghosts were prepared by graded lysis in various buffers. Those prepared in phosphate were the most stable and provided consistent EDTA effects and Ca2+ reversal. Ghosts in Tris-HCl showed breakdown unless salt was added. Moderately satisfactory ghosts were also obtained in Hepes-NaOH buffer and salt.
Capacitive deionization on-chip as a method for microfluidic sample preparation.
Roelofs, Susan H; Kim, Bumjoo; Eijkel, Jan C T; Han, Jongyoon; van den Berg, Albert; Odijk, Mathieu
2015-03-21
Desalination as a sample preparation step is essential for noise reduction and reproducibility of mass spectrometry measurements. A specific example is the analysis of proteins for medical research and clinical applications. Salts and buffers that are present in samples need to be removed before analysis to improve the signal-to-noise ratio. Capacitive deionization is an electrostatic desalination (CDI) technique which uses two porous electrodes facing each other to remove ions from a solution. Upon the application of a potential of 0.5 V ions migrate to the electrodes and are stored in the electrical double layer. In this article we demonstrate CDI on a chip, and desalinate a solution by the removal of 23% of Na(+) and Cl(-) ions, while the concentration of a larger molecule (FITC-dextran) remains unchanged. For the first time impedance spectroscopy is introduced to monitor the salt concentration in situ in real-time in between the two desalination electrodes.
2010-07-05
aqueous solutions at a wide pH range.7 Silica forms rapidly at room temperature in the absence of other ionic catalysts or cofactors (buffers, salts...and other ionic species) that are normally required with in vitro biosilica synthesis. The silaffins are uniquely functionalized; serine residues are...alkaline conditions mimic the properties of the poly- ionic modifications on native silaffins.13,14 The zwitterionic properties facilitate intermolecular
Adair, Frank W.; Geftic, Sam G.; Gelzer, Justus
1969-01-01
Resistant cells of Pseudomonas aeruginosa and a waterborne Pseudomonas sp. (strain Z-R) were able to multiply in nitrogen-free minimal salts solution containing various concentrations of commercially prepared, ammonium acetate-buffered benzalkonium chloride (CBC), a potent antimicrobial agent. As the CBC concentration increased, growth increased until a point was reached at which the extent of growth leveled off or was completely depressed. Minimal salts solutions of pure benzalkonium chloride (PBC) containing no ammonium acetate did not support bacterial growth. When ammonium acetate was added to PBC solutions in the same concentrations found in CBC solutions, growth patterns developed that were comparable to those found with CBC. Likewise, (NH4)2SO4 added to PBC solutions supported growth of both organisms. P. aeruginosa was initially resistant to CBC levels of 0.02% and it was adapted to tolerate levels as high as 0.36%. Strain Z-R was naturally resistant to 0.4% CBC. Since ammonium acetate, carried over by the CBC used in drug formulations and disinfectant solutions, has the potential to support the growth of resistant bacteria and thus make possible the risk of serious infection, it is suggested that regulations allowing the presence of ammonium acetate in CBC solution be reconsidered. PMID:4984761
Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki
2013-01-01
We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379
Method for regeneration of electroless nickel plating solution
Eisenmann, Erhard T.
1997-01-01
An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.
Method for regeneration of electroless nickel plating solution
Eisenmann, E.T.
1997-03-11
An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.
Fundamental and Applied Studies of Polymer Membranes
NASA Astrophysics Data System (ADS)
Imbrogno, Joseph
Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells. We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries. We have developed hydrophobic brush membranes that were able to selectively separate valuable organics (isobutanol) from water, while rejecting other undesirable species, such as enzymes, using pervaporation (PV). These membranes (grafted from nanofiltration (NF) support membranes) had a selectivity ˜1.5x higher than the current industrial standard, polydimethylsiloxane (PDMS), with alpha = 10.1 +/- 0.9 for our brush membranes and alpha = 6.7 +/- 0.1 for PDMS membranes. Since the mechanism of pervaporation is based on the solution diffusion (SD) model, these membranes may be used to desalinate water or fractionate gases since they are also based on the SD mechanism. We have discovered that hydrophobic brush membranes are able to reject monovalent salt ions. This type of membrane is analogous to carbon nanotubes (CNTs), which are believed to have extremely high water fluxes through them due to near frictionless flow caused by a lack of hydrogen bonding. Using these brush membranes we were able to achieve 42% monovalent (NaCl) salt rejection of simulated seawater (32,000 ppm salt). These membranes are easier to scale-up than current composite membranes produced using interfacial polymerization. We have been using SFG to study interfacial water on membrane surfaces. We believe that water interactions with the membrane surface and with the feed species, e.g. proteins, play a critical role during the fouling process. Relevant buffers, such as phosphate buffered saline (PBS) and phosphate buffer, contain ions that are known to restructure water at interfaces. Sum frequency generation spectroscopy (SFG) was used to characterize interfacial water structure at poly(ether sulfone) (PES) thin films in the presence of 0.01 M phosphate buffer (low salt) and 0.01 M phosphate buffered saline (high salt). Three model surfaces were studied: unmodified PES, hydrophobic alkane (C18) modified PES, and poly(ethylene glycol) (PEG) modified PES. In the presence of the low salt phosphate buffer (10 mM salt), phosphate anions were excluded from the PEG-modified PES film. This led to a charge separation between the phosphate anions and sodium cations, creating a surface potential which strongly ordered water molecules into the bulk. When using high salt PBS (138 mM salt) the sodium chloride ions screened this charge and reduced water ordering. Interestingly, this effect was the greatest for the PEG modified surface, with minor or no effects observed for the C18 modified PES and unmodified PES, respectively. Using our high throughput screening platform, we were able to determine that (N-[3-(dimethylamino)propyl] methacrylamide), DMAPMA, supported strong attachment and long-term self-renewal of mouse embryonic stem (ES) cells while preventing differentiation (maintaining pluripotency). After developing this platform, it was used to screen for a surface that could instead induce differentiation of bovine and human retinal pigment epithelium (RPE) cells while promoting cell growth. Several PEG based surfaces were able to induce cobblestone morphology of the RPE cells, which is indicative of differentiation. (Abstract shortened by UMI.).
Effect of modulator sorption on gradient shape in ion-exchange chromatography
NASA Technical Reports Server (NTRS)
Velayudhan, A.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1995-01-01
Mobile phase additives, or modulators, are used in gradient elution chromatography to facilitate separation and reduce separation time. The modulators are usually assumed to be linearly adsorbed or unadsorbed. Here, the consequences of nonlinear modulator adsorption are examined for ion-exchange gradient elution through a series of simulations. Even when the buffer salt is identical to the modulator salt, gradient deformation is observed; the extent of deformation increases as the volume of the feed is increased. When the modulator salt is different from the buffer salt, unusual effects are observed, and the chromatograms are quite different from those predicted by classical gradient elution theory. In particular, local increases in the buffer concentration are found between feed bands, and serve to improve the separation. These effects become more pronounced as the feed volume increases, and could therefore prove valuable in preparative applications.
Controlled Assembly of Ag Nanoparticles and Carbon Nanotube Hybrid Structures for Biosensing
2010-01-01
to∼190 kΩ. The same device was again washed with DI water and treated with the thiolated ssDNA in high salt buffer. After a 2 h treatment, the device...after the cleaning only thiolated DNA should be present on the device, whereas the nonspecifically bound DNA as well as the buffer salts should be...ssDNA molecules for 2 h. Specific immobiliza- tion of thiolated ssDNA (sequence: 50thiol_TCATAC AGCTAGATA ACC AAAGA) was carried out in high salt
Fish Viruses: Buffers and Methods for Plaquing Eight Agents Under Normal Atmosphere
Wolf, Ken; Quimby, M. C.
1973-01-01
A universal procedure was sought for plaque assay of eight fish viruses (bluegill myxovirus, channel catfish virus, eel virus, Egtved virus, infectious hematopoietic necrosis virus, infectious pancreatic necrosis virus, lymphocystis virus, and the agent of spring viremia of carp (Rhabdovirus carpio), in dish cultures of various fish cells. Eagle minimal essential medium with sodium bicarbonate-CO2 buffer (Earle’s salt solution) was compared with minimal essential medium buffered principally with tris (hydroxymethyl)aminomethane or N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid at a pH or in the range of 7.6 to 8.0 depending upon temperature. Five fish cell lines collectively capable of replicating all fish viruses thus far isolated were tested and quantitatively found to grow comparably well in the three media. Two-phase (gel-liquid) media incorporating the various buffer systems allowed plaquing at 15 to 33 C either in partial pressures of CO2 or in normal atmosphere, but greater efficiency and sensitivity were obtained with the organic buffers, and, overall, the best results were obtained with tris(hydroxymethyl)aminomethane. Epizootiological data, specific fish cell line response, and plaque morphology permit presumptive identification of most of the agents. At proper pH, use of organic buffers obviates the need for CO2 incubators. Images PMID:4349252
Application of hanging drop technique to optimize human IgG formulations.
Li, Guohua; Kasha, Purna C; Late, Sameer; Banga, Ajay K
2010-01-01
The purpose of this work is to assess the hanging drop technique in screening excipients to develop optimal formulations for human immunoglobulin G (IgG). A microdrop of human IgG and test solution hanging from a cover slide and undergoing vapour diffusion was monitored by a stereomicroscope. Aqueous solutions of IgG in the presence of different pH, salt concentrations and excipients were prepared and characterized. Low concentration of either sodium/potassium phosphate or McIlvaine buffer favoured the solubility of IgG. Addition of sucrose favoured the stability of this antibody while addition of NaCl caused more aggregation. Antimicrobial preservatives were also screened and a complex effect at different buffer conditions was observed. Dynamic light scattering, differential scanning calorimetry and size exclusion chromatography studies were performed to further validate the results. In conclusion, hanging drop is a very easy and effective approach to screen protein formulations in the early stage of formulation development.
Yatsukawa, Yoh-Ichi; Ito, Hironobu; Matsuda, Takahiro; Nakamura, Munetomo; Watai, Masatoshi; Fujita, Kazuhiro
2011-01-01
A new analytical method for the simultaneous determination of seven fluoroquinolones, namely, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, orbifloxacin, sarafloxacin, and difloxacin, especially in dark-colored honey, has been developed. Fluoroquinolone antibiotics were extracted from samples with MacIlvaine buffer solution (pH 4.0) containing EDTA disodium salt dihydrate. The extracts were treated with both a polymeric cartridge and a metal chelate affinity column preloaded with ferric ion (Fe3+). LC separation with fluorescence detection was performed at 40 degrees C using an Inertsil ODS-4 analytical column (150 x 4.6 mm, 3 microm). The mobile phase was composed of 20 mM/L citrate buffer solution (pH 3.1)-acetonitrile mixture (70 + 30, v/v) containing 1 mM/L sodium dodecyl sulfate. Lomefloxacin was used as an internal standard. The developed method was validated according to the criteria of European Commission Decision 2002/657/EC. Decision limits and detection capabilities were below 2.9 and 4.4 microg/kg, respectively.
Zabusky, N J; Deem, G S
1979-01-01
We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570
Graphene decorated with mu-opioid receptor: the ionic screening effect and detection of enkephalin
NASA Astrophysics Data System (ADS)
Ping, Jinglei; Johnson, A. T. Charlie; Liu, Renyu; A. T. Charlie Johnson Team; Renyu Liu Collaboration
2015-03-01
We investigated the properties of graphene field effect transistors (GFETs) decorated with a computaionally redesigned, water-soluble variant of the human mu-opioid receptor (wsMOR) in physiological buffer solution. The shift of the Fermi level in the GFETs is quantitatively described by chemical-gating effect of charges on the wsMOR that are screened by the ionic solution. Our results suggest that sensitivity to the molecular target is lost when the Debye screening length of the solution is shorter than the distance from the graphene to the wsMOR; thus de-salting may be necessary when wsMOR decorated GFETs are used as biosensors in solution. We used this insight to detect DAMGO, a synthetic analog to the endogenous opioid peptide encephalin, at a concentration of 10 pM (5.1 pg/mL) in artificial cerebrospinal fluid (aCSF) diluted to 5% of its normal salt concentration. When the sensors were measured in a dry state, the limit of detection for DAGMO was 1 pM (0.5 pg/mL), one-third of the baseline in human body.Funding for this work was provided by DARPA.
Kan, Hyo; Tsukagoshi, Kazuhiko
2017-07-01
Protein mixtures were separated using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) separation tube. Separation by TRDC is based on the annular flow in phase separation multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the phase diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was separated on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.
Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.
Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S
2015-09-01
The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.
Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice
2009-10-01
The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.
Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara
2012-01-01
X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called “crystallization bottleneck”. Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals. PMID:22949879
Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara
2012-01-01
X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called "crystallization bottleneck". Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals.
Li, Yongxin; Wills, Ron B H; Golding, John B; Huque, Roksana
2015-03-30
The postharvest life of fresh-cut apple slices is limited by browning on cut surfaces. Dipping in halide salt solutions was examined for their inhibition of surface browning on 'Granny Smith' apple slices and the effects on biochemical factors associated with browning. Delay in browning by salts was greatest with chloride = phosphate > sulfate > nitrate with no difference between sodium, potassium and calcium ions. The effectiveness of sodium halides on browning was fluoride > chloride = bromide > iodide = control. Polyphenol oxidase (PPO) activity of tissue extracted from chloride- and fluoride-treated slices was not different to control but when added into the assay solution, NaF > NaCl both showed lower PPO activity at pH 3-5 compared to control buffer. The level of polyphenols in treated slices was NaF > NaCl > control. Addition of chlorogenic acid to slices enhanced browning but NaCl and NaF counteracted this effect. There was no effect of either halide salt on respiration, ethylene production, ion leakage, and antioxidant activity. Dipping apple slices in NaCl is a low cost treatment with few impediments to commercial use and could be a replacement for other anti-browning additives. The mode of action of NaCl and NaF is through decreasing PPO activity resulting in reduced oxidation of polyphenols. © 2014 Society of Chemical Industry.
Stability of polymer encapsulated quantum dots in cell culture media
NASA Astrophysics Data System (ADS)
Ojea-Jiménez, I.; Piella, J.; Nguyen, T.-L.; Bestetti, A.; Ryan, A. D.; Puntes, V.
2013-04-01
The unique optical properties of Quantum Dots have attracted a great interest to use these nanomaterials in diverse biological applications. The synthesis of QDs by methods from the literature permits one to obtain nanocrystals coated by hydrophobic alkyl coordinating ligands and soluble in most of the cases in organic solvents. The ideal biocompatible QD must be homogeneously dispersed and colloidally stable in aqueous solvents, exhibit pH and salt stability, show low levels of nonspecific binding to biological components, maintain a high quantum yield, and have a small hydrodynamic diameter. Polymer encapsulation represents an excellent scaffold on which to build additional biological function, allowing for a wide range of grafting approaches for biological ligands. As these QD are functionalized with poly(ethylene)glycol (PEG) derivatives on their surface, they show long term stability without any significant change in the optical properties, and they are also highly stable in the most common buffer solutions such as Phosphate Buffer Saline (PBS) or borate. However, as biological studies are normally done in more complex biological media which contain a mixture of amino acids, salts, glucose and vitamins, it is essential to determine the stability of our synthesized QDs under these conditions before tackling biological studies.
Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick
2015-04-01
Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Status of CdS/CdTe solar cell research at NREL
NASA Astrophysics Data System (ADS)
Ramanathan, K.; Dhere, R. G.; Coutts, T. J.; Chu, T.; Chu, S.
1992-12-01
We report on the deposition of thin cadmium sulfide (CdS) layers from aqueous solutions and their optical properties. CdS layers have been deposited on soda lime glass, tin oxide coated glass and copper indium diselenide (CuInSe2) thin films. A systematic increase in the absorption is found to occur with increasing concentration of the buffer salt used in the bath. CdS/CdTe thin film solar cells have been fabricated by close spaced sublimation of CdTe, yielding 11.3% devices.
NASA Astrophysics Data System (ADS)
Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong
2014-06-01
Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.
NASA Astrophysics Data System (ADS)
Maißer, Anne; Attoui, Michel B.; Gañán-Calvo, Alfonso M.; Szymanski, Wladyslaw W.
2013-01-01
A charge reduced electro-hydrodynamic atomization (EHDA) device has been used to generate airborne salt clusters in the sub 10 nm size range. The focus of this study on that specific sub-micron range of electrospray droplets with relatively high electrical conductivities and permittivities aims to address the still existing controversy on the scaling laws of electrosprayed droplet diameters. In this study different concentrations of sodium chloride and potassium chloride—both show strong electrolytic behavior—have been electrosprayed from solutions in pure water, or from aqueous ammonium acetate buffer liquids of varying concentrations. The dry residue salt cluster diameter generated by the EHDA process have been measured using a differential mobility analyzer. The initial droplet diameter has been determined indirectly from the measured particle size following the steps of Chen et al. (J Aerosol Sci 26:963-977, 1995). Results have been compared to existing scaling laws valid for direct droplet measurements. They can be interpreted concisely on the basis of a realistic hypothesis on possible electrochemical effects taking place and affecting the droplet and thus nanoparticle formation in EHDA. The hypothesis developed in this work and the comparison with the experimental results are shown and discussed in the manuscript.
NASA Astrophysics Data System (ADS)
Shtykova, E. V.; Bogacheva, E. N.; Dadinova, L. A.; Jeffries, C. M.; Fedorova, N. V.; Golovko, A. O.; Baratova, L. A.; Batishchev, O. V.
2017-11-01
A complex structural analysis of nuclear export protein NS2 (NEP) of influenza virus A has been performed using bioinformatics predictive methods and small-angle X-ray scattering data. The behavior of NEP molecules in a solution (their aggregation, oligomerization, and dissociation, depending on the buffer composition) has been investigated. It was shown that stable associates are formed even in a conventional aqueous salt solution at physiological pH value. For the first time we have managed to get NEP dimers in solution, to analyze their structure, and to compare the models obtained using the method of the molecular tectonics with the spatial protein structure predicted by us using the bioinformatics methods. The results of the study provide a new insight into the structural features of nuclear export protein NS2 (NEP) of the influenza virus A, which is very important for viral infection development.
Taylor, M J; Hunt, C J; Madden, P W
1989-01-01
Periods of preservation for donor corneas, even for short times, are necessary to facilitate optimum conditions in penetrating keratoplasty. However, current techniques for corneal storage at low temperatures may not provide optimal conditions for maintaining tissue integrity. In particular, the ionic composition of the storage medium has received little attention since it has been assumed throughout that the normal complement of ions in tissue culture media will also be suitable for preservation at reduced temperatures. This study extends our previous investigations on the merits of using CPTES (corneal-potassium-TES), a potassium-rich balanced salt solution containing an impermeant anionic pH buffer (TES), as a storage solution specifically designed to prevent the loss of intracellular potassium and minimise endothelial cell swelling during the time that the normal regulatory processes are switched off. The effect of adding the natural polymer chondroitin sulphate (CS) as a colloid osmotic agent to the hyperkalaemic storage medium is now examined. Corneas stored in CPTES containing 2.5% chondroitin sulphate retained a very high level of structural and functional integrity after three, five, and seven days storage at 0 degrees C; furthermore, stromal swelling was restricted to only 21%. All corneas stored in CPTES + 2.5% CS showed active endothelial function by thinning efficiently at rates that were greater than those previously reported for rabbit corneas stored for similar lengths of time in either M-K medium or K-sol. The zwitterionic buffers TES and HEPES were interchangeable in the hyperkalaemic solution and were non-toxic to corneal endothelium at a concentration of 100 mM. These compounds offer excellent pH buffering in bicarbonate-free medium. Images PMID:2510816
Rizzi, George P
2008-08-27
Effects of cationic species on Maillard browning were examined after heating (ca. 100 degrees C) aqueous pH 7.2 buffered solutions of amino acids and pentose sugars. Metallic ions of Group I metals (Li, Na, K, Rb and Cs) produced a small increase in browning (A420), but somewhat greater effects were observed with ions of Group II metals Ca and Mg. Browning was suppressed by triethylammonium ion, but unaffected by a salt of the stronger base, guanidine. The quaternary amine salt choline chloride produced enhanced browning and served as a model for phospholipid involvement in Maillard reactions. With alpha,omega-diamino acids increases in browning were observed which related to lowered pK2 values resulting from positively charged omega-substituents in these molecules.
Specific radioisotopic assay for cholinesterase. Technical report, December 1987-March 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talbot, B.G.; Anderson, D.R.; Harris, L.W.
1990-05-01
The radiometric method (I) for measuring ChE activity was modified to preclude the use of p-dioxane, a hazardous material. The modified procedure (II) uses 0.4 N perchloric acid (PCA), instead of p-dioxane, to denature the ChE and stop hydrolysis of 14C-acetylcholine (ACh). The unreacted substrate (ACh) is removed by cationic exchange resin suspended in water. The supernatant (acidic water solution) containing the product of hydrolysis, 14C-acetic acid, is mixed with nonhazardous scintillation cocktail and counted. The incubation mixture (37 degrees C) for II is similar to I and is composed of 0.1 ml of buffer-salt solution (pH 7.8), 0.1 mlmore » of guinea pig whole blood (WB)-water suspension and 0.1 ml of 3mM ACh solution.« less
Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin
2012-01-01
Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947
Single tag for total carbohydrate analysis.
Anumula, Kalyan Rao
2014-07-15
Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation. Monosaccharides, oligosaccharides (N-, O-, and lipid linked and glycans in secretory fluids), glycosaminoglycans, and polysaccharides can be easily labeled with 2-AA. With 2-AA, labeling is simple in aqueous solutions containing proteins, peptides, buffer salts, and other ingredients (e.g., PNGase F, glycosidase, and transferase reaction mixtures). In contrast, other tags require relatively pure glycans for labeling in anhydrous dimethyl sulfoxide-acetic acid medium. Acidic conditions are known to cause desialylation, thus requiring a great deal of attention to sample preparation. Simpler labeling is achieved with 2-AA within 30-60 min in mild acetate-borate buffered solution. 2-AA provides the highest sensitivity and resolution in chromatographic methods for carbohydrate analysis in a simple manner. Additionally, 2-AA is uniquely qualified for quantitative analysis by mass spectrometry in the negative mode. Analyses of 2-AA-labeled carbohydrates by electrophoresis and other techniques have been reported. Examples cited here demonstrate that 2-AA is the universal tag for total carbohydrate analysis. Copyright © 2014 Elsevier Inc. All rights reserved.
Apparatus for molecular weight separation
Smith, Richard D.; Liu, Chuanliang
2001-01-01
The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).
Microdialysis unit for molecular weight separation
Smith, Richard D.; Liu, Chuanliang
1999-01-01
The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).
NASA Technical Reports Server (NTRS)
Fowlis, William W.; Delucas, Lawrence J.; Twigg, Pamela J.; Howard, Sandra B.; Meehan, Edward J.
1988-01-01
The principles of the hanging-drop method of crystal growth are discussed, and the rate of water evaporation in a water droplet (containing protein, buffer, and a precipitating agent) suspended above a well containing a double concentration of precipitating agent is investigated theoretically. It is shown that, on earth, the rate of evaporation may be determined from diffusion theory and the colligative properties of solutions. The parameters affecting the rate of evaporation include the temperature, the vapor pressure of water, the ionization constant of the salt, the volume of the drop, the contact angle between the droplet and the coverslip, the number of moles of salt in the droplet, the number of moles of water and salt in the well, the molar volumes of water and salt, the distance from the droplet to the well, and the coefficient of diffusion of water vapor through air. To test the theoretical equations, hanging-drop experiments were conducted using various reagent concentrations in 25-microliter droplets and measuring the evaporation times at 4 C and 25 C. The results showed good agreement with the theory.
Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W
2006-01-23
Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.
DENITRIFICATION ENZYME ACTIVITY OF FRINGE SALT MARSHES IN NEW ENGLAND (USA)
Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seaso...
1993-12-01
Stopper the flask and shake vigorously. The mixture was titrated with 0.003 N sodium lauryl sulfate drcpwise. The endpoint was the first definite...100 g sodium sulfate and 1000 mL distilled water, pill0) and three drops of 0.1% bracu 1henol blue indicator to 50 ML of sample in a 250 mL flask...Product QDS (Syncide Plus) (1) was determined by a bromcphenol blue nethod (7). Add 25 mL of chloroform, 25 mL salt buffer solution (7 g sodium carbonate
Solution dynamics of synthetic and natural polyelectrolytes
NASA Astrophysics Data System (ADS)
Krause, Wendy E.
Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied in the presence and absence of the seven selected anti-inflammatory agents. Only hydroxychloroquine (HCQ) and (D)-penicillamine strongly influence the theology of the synovial fluid model. HCQ reduces the viscosity of the model solution as well as the model's viscoelasticity. (D)-Penicillamine also reduces the viscosity of the synovial fluid model, but has little effect on the viscoelasticity of the solution. None of the additives effected the osmotic pressure of the synovial fluid model.
Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.
Liu, S Y; Kono, M; Ebrey, T G
1991-01-01
The effect of pH buffers on the microsecond photocurrent component, B2, of oriented purple membranes has been studied. We found that under low salt conditions (less than 10 mM monovalent cationic salt) pH buffers can dramatically alter the waveform of the B2 component. The effect is induced by the protonation process of the buffer molecules by protons expelled from the membrane. These effects can be classified according to the charge transition upon protonation of the buffer. Buffers that carry two positive charges in their protonated form add a negative current component (N component) to B2. Almost all of the other buffers add a positive current component (P component) to B2, which is essentially a mirror image of the N component. Buffers with a pK less than 5.5 have only a small positive buffer component. The pH dependence of the buffer effect is closely related to the pK of the buffer; it requires that the buffer be in its unprotonated form. The rise time of the buffer component increases with the concentration of the buffer molecules. All the buffer effects can be inhibited by the addition of 5 mM of a divalent cation such as Ca2+. Reducing the surface potential slows down the N component but accelerates the P component without affecting the amplitude of the buffer effect significantly. Many of the buffer effects can be explained if we assume that upon protonation of the buffer by a proton expelled from the membrane by light, the buffer molecules move toward the membrane. This backward movement of buffer molecules forms a counter current very similar to that due to cations discussed in Liu, S. Y., R. Govindjee, and T. G. Ebrey. (1990. Biophys. J. 57:951-963). PMID:1883939
Hirsh, Allen G; Tsonev, Latchezar I
2017-04-28
This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein-membrane interactions are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longo, Gabriel S.; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208
2014-09-28
We use a molecular theory to study the thermodynamics of a weak-polyacid hydrogel film that is chemically grafted to a solid surface. We investigate the response of the material to changes in the pH and salt concentration of the buffer solution. Our results show that the pH-triggered swelling of the hydrogel film has a non-monotonic dependence on the acidity of the bath solution. At most salt concentrations, the thickness of the hydrogel film presents a maximum when the pH of the solution is increased from acidic values. The quantitative details of such swelling behavior, which is not observed when themore » film is physically deposited on the surface, depend on the molecular architecture of the polymer network. This swelling-deswelling transition is the consequence of the complex interplay between the chemical free energy (acid-base equilibrium), the electrostatic repulsions between charged monomers, which are both modulated by the absorption of ions, and the ability of the polymer network to regulate charge and control its volume (molecular organization). In the absence of such competition, for example, for high salt concentrations, the film swells monotonically with increasing pH. A deswelling-swelling transition is similarly predicted as a function of the salt concentration at intermediate pH values. This reentrant behavior, which is due to the coupling between charge regulation and the two opposing effects triggered by salt concentration (screening electrostatic interactions and charging/discharging the acid groups), is similar to that found in end-grafted weak polyelectrolyte layers. Understanding how to control the response of the material to different stimuli, in terms of its molecular structure and local chemical composition, can help the targeted design of applications with extended functionality. We describe the response of the material to an applied pressure and an electric potential. We present profiles that outline the local chemical composition of the hydrogel, which can be useful information when designing applications that pursue or require the absorption of biomolecules or pH-sensitive molecules within different regions of the film.« less
Determination of picomole quantities of acetylcholine and choline in physiologic salt solutions.
Gilberstadt, M L; Russell, J A
1984-04-01
An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10-3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95-98% of both choline and acetylcholine. Of the bound choline 84-87% was eluted in 1.5 ml of 0.075 N HCl, whereas 95-98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 N HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [gamma-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10-3000 pmol) and choline (30-3000 pmol) standards. The "limit sensitivity" was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.
Micro-apparatus for rapid determinations of protein solubilities
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Munson, Sibyl
1991-01-01
We have developed a column-based micro-technique for rapid determinations of protein solubilities. While retaining a large crystal surface area, the column dead volume has been reduced to equal to or less than 5 micro liters. The technique was tested with tetragonal lysozyme (pH 4.5, 0.1 M acetate, 3.0 percent NaCl, 5-25 C) and column volumes of about 60, 300, and 900 micro liters. Identical solubility data were obtained, indicating that equilibration was obtained even in the smallest columns. In addition, solubility data for Br- and I- salts of lysozyme (pH 4.5, 0.1 M acetate buffer, 0.5 M salt concentrations) were obtained. It appears that the technique can be further miniaturized. The limit in further reducing the crystalline column volume is determined by the minimum solution sample size needed to determine the protein concentration.
Bae, Y-M; Yoon, J-H; Kim, J-Y; Lee, S-Y
2018-01-01
In this study, the effects of the addition of salt to treatment with acids (one of several organic acids and salt in various solutions including rich or minimal broth, buffer, or distilled water) on the reduction of Escherichia coli O157:H7 were investigated. The protein expression profiles corresponding to acid stress (acetic acid) with or without salt addition were studied using a comparative proteomic analysis of E. coli O157:H7. When acetic, lactic, or propionic acid was combined with 3% NaCl, mutually antagonistic effects of acid and salt on viability of E. coli O157:H7 were observed only in tryptone and yeast extract broth. After exposure to acetic acid alone or in combination with salt, approximately 851 and 916 protein spots were detected, respectively. Analysis of 10 statistically significant differentially expressed proteins revealed that these proteins are mainly related to energy metabolism. When we compared protein expression of E. coli O157:H7 treated with acetic acid and the combination of the acid and salt, the differentially expressed proteins were not related to acid stress- and salt stress-inducible proteins such as stress shock proteins. According to these results, the increased resistance of E. coli O157:H7 to acetic acid after the addition of salt may not be the result of synthesis of proteins related to these phenomena; therefore, further research needs to be conducted to identify the mechanism of the mutually antagonistic effect of some organic acids and salt. © 2017 The Society for Applied Microbiology.
The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth; Pusey, Marc Lee
1994-01-01
Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.
Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.
2014-01-01
This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325
SAMPLING DEVICE FOR pH MEASUREMENT IN PROCESS STREAMS
Michelson, C.E.; Carson, W.N. Jr.
1958-11-01
A pH cell is presented for monitoring the hydrogen ion concentration of a fluid in a process stream. The cell is made of glass with a side entry arm just above a reservoir in which the ends of a glass electrode and a reference electrode are situated. The glass electrode contains the usual internal solution which is connected to a lead. The reference electrode is formed of saturated calomel having a salt bridge in its bottom portion fabricated of a porous glass to insure low electrolyte flow. A flush tube leads into the cell through which buffer and flush solutions are introduced. A ground wire twists about both electrode ends to insure constant electrical grounding of the sample. The electrode leads are electrically connected to a pH meter of aay standard type.
Common stock solutions, buffers, and media.
2001-05-01
This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.
USDA-ARS?s Scientific Manuscript database
Inhibition of Clostridium perfringens spore germination and outgrowth in ground turkey roast containing minimal ingredients (salt and sugar), by buffered vinegar (MoStatin V) and a blend (buffered) of lemon juice concentrate and vinegar (MoStatin LV) was evaluated. Ground turkey roast was formulat...
Suzuki, Yuji
2006-06-01
In a dye-binding method using a pH indicator, color development has reportedly been affected by the kind of buffer solution used in the color reagent. This phenomenon was analyzed by using a calculation based on the assumption that the anion of the buffer solution also reacts with protein. Color development decreases with increases in the anion concentration of the buffer solution and in the equilibrium constant of the reaction between the anion and protein. The differences in color development due to the kind of buffer solution can be attributed to differences in the equilibrium constant of the reaction forming the anion-protein complex and to the concentration of the anion between the buffer solutions.
The influence of bile salts on the distribution of simvastatin in the octanol/buffer system.
Đanić, Maja; Pavlović, Nebojša; Stanimirov, Bojan; Vukmirović, Saša; Nikolić, Katarina; Agbaba, Danica; Mikov, Momir
2016-01-01
Distribution coefficient (D) is useful parameter for evaluating drugs permeability properties across biological membranes, which are of importance for drugs bioavailability. Given that bile acids are intensively studied as drug permeation-modifying and -solubilizing agents, the aim of this study was to estimate the influence of sodium salts of cholic (CA), deoxycholic (DCA) and 12-monoketocholic acids (MKC) on distribution coefficient of simvastatin (SV) (lactone [SVL] and acid form [SVA]) which is a highly lipophilic compound with extremely low water solubility and bioavailability. LogD values of SVA and SVL with or without bile salts were measured by liquid-liquid extraction in n-octanol/buffer systems at pH 5 and 7.4. SV concentrations in aqueous phase were determined by HPLC-DAD. Chem3D Ultra program was applied for computation of physico-chemical properties of analyzed compounds and their complexes. Statistically significant decrease in both SVA and SVL logD was observed for all three studied bile salts at both selected pH. MKC exerted the most pronounced effect in the case of SVA while there were no statistically significant differences between observed bile salts for SVL. The calculated physico-chemical properties of analyzed compounds and their complexes supported experimental results. Our data indicate that the addition of bile salts into the n-octanol/buffer system decreases the values of SV distribution coefficient at both studied pH values. This may be the result of the formation of hydrophilic complexes increasing the solubility of SV that could consequently impact the pharmacokinetic parameters of SV and the final drug response in patients.
Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir
2014-01-01
Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N—H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM) hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate and is able to overcome the hydration tendency of the reference drug. PMID:25075330
Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir
2014-03-01
Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate and is able to overcome the hydration tendency of the reference drug.
NASA Astrophysics Data System (ADS)
Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander
2017-01-01
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.
Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander
2017-01-01
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies. PMID:28112214
Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan
2015-01-01
A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.
Search for extraterrestrial life using chiral molecules: mandelate racemase as a test case.
Thaler, Tracey L; Gibbs, Phillip R; Trebino, Rick P; Bommarius, Andreas S
2006-12-01
We have investigated an enzymatic racemization reaction as a marker for extraterrestrial life, which resulted in a change in optical rotation of a mandelic acid over time, as measured by polarimetry. Mandelate racemase was active in aqueous buffer in a temperature range between 0 degrees C and 70 degrees C and also in concentrated ammonium salt solutions and water-in-oil microemulsions in a temperature range between -30 degrees C and 60-70 degrees C; however, the enzyme was not active in several organic cryosolvents. Thus, we have demonstrated that concentrated ammonium salt solutions and water-in-oil microemulsions, both of which are able to form on extraterrestrial planets and moons in the presence of liquid water, are suitable media for enzyme reactions at subzero temperatures. Kinetic data for the mandelate racemase reaction obtained by polarimetry, while reproducible and internally consistent, differed significantly from several sets of data obtained previously by other methods such as chromatography and hydrogen-deuterium exchange. However, we conclude that reactions yielding a polarimetric signal, such as the racemizations employed in this work, are suitable mechanisms by which to utilize a change in chirality over time as a tool to detect signs of life.
Acquisition and evaluation of thermodynamic data for morenosite-retgersite equilibria at 0.1 MPa
Chou, I.-Ming; Seal, R.R.
2003-01-01
Metal-sulfate salts in mine drainage environments commonly occur as solid solutions containing Fe, Cu, Mg, Zn, Al, Mn, Ni, Co, Cd, and other elements. Thermodynamic data for some of the end-member salts containing Fe, Cu, Zn, and Mg have been collected and evaluated previously, and the present study extends to the system containing Ni. Morenosite (NiSO4-7H2O)-retgersite (NiSO4-6H2O) equilibria were determined along five humidity buffer curves at 0.1 MPa and between 5 and 22??C. Reversals along these humidity-buffer curves yield In K = 17.58-6303.35/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84 kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor pressure measurements of Schumb (1923), Bonnell and Burridge (1935), and Stout et al. (1966). respectively. This value also agrees reasonably well with the values of 8.65 and 9.56 kJ/mol calculated from the data compiled by Wagman et al. (1982) and DeKock (1982), respectively. The temperature-humidity relationships defined by this study for dehydration equilibria between morenosite and retgersite explain the more common occurrence of retgersite relative to morenosite in nature.
Aluminum elution and precipitation in glass vials: effect of pH and buffer species.
Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide
2015-02-01
Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.
NASA Astrophysics Data System (ADS)
Andrejuk, D. D.; Hernandez Santiago, A. A.; Khomich, V. V.; Voronov, V. K.; Davies, D. B.; Evstigneev, M. P.
2008-10-01
The hetero-association of theophylline (THP) with other biologically-active aromatic molecules ( e.g. the anti-cancer drugs daunomycin and novantrone, the antibiotic norfloxacin, the vitamin flavin-mononucleotide and two mutagens ethidium bromide and proflavine) has been studied by NMR in aqueous-salt solution (0.1 M Na-phosphate buffer, p D 7.1). It was found that THP shows an essentially similar hetero-association ability as caffeine (CAF) towards aromatic drugs, except for novantrone (NOV), which has much less affinity to THP than CAF as a result of energetically unfavourable orthogonal orientation of the chromophores of THP and NOV in the hetero-complex.
Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J
2016-12-01
During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).
The use of spin desalting columns in DMSO-quenched H/D-exchange NMR experiments
Chandak, Mahesh S; Nakamura, Takashi; Takenaka, Toshio; Chaudhuri, Tapan K; Yagi-Utsumi, Maho; Chen, Jin; Kato, Koichi; Kuwajima, Kunihiro
2013-01-01
Dimethylsulfoxide (DMSO)-quenched hydrogen/deuterium (H/D)-exchange is a powerful method to characterize the H/D-exchange behaviors of proteins and protein assemblies, and it is potentially useful for investigating non-protected fast-exchanging amide protons in the unfolded state. However, the method has not been used for studies on fully unfolded proteins in a concentrated denaturant or protein solutions at high salt concentrations. In all of the current DMSO-quenched H/D-exchange studies of proteins so far reported, lyophilization was used to remove D2O from the protein solution, and the lyophilized protein was dissolved in the DMSO solution to quench the H/D exchange reactions and to measure the amide proton signals by two-dimensional nuclear magnetic resonance (2D NMR) spectra. The denaturants or salts remaining after lyophilization thus prevent the measurement of good NMR spectra. In this article, we report that the use of spin desalting columns is a very effective alternative to lyophilization for the medium exchange from the D2O buffer to the DMSO solution. We show that the medium exchange by a spin desalting column takes only about 10 min in contrast to an overnight length of time required for lyophilization, and that the use of spin desalting columns has made it possible to monitor the H/D-exchange behavior of a fully unfolded protein in a concentrated denaturant. We report the results of unfolded ubiquitin in 6.0M guanidinium chloride. PMID:23339068
Gong, Xiaoyun; Xiong, Xingchuang; Wang, Song; Li, Yanyan; Zhang, Sichun; Fang, Xiang; Zhang, Xinrong
2015-10-06
Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.
Litou, Chara; Vertzoni, Maria; Xu, Wei; Kesisoglou, Filippos; Reppas, Christos
2017-06-01
To propose media for simulating the intragastric environment under reduced gastric acid secretion in the fasted state at three levels of simulation of the gastric environment and evaluate their usefulness in evaluating the intragastric dissolution of salts of weak bases. To evaluate the importance of bicarbonate buffer in biorelevant in vitro dissolution testing when using Level II biorelevant media simulating the environment in the fasted upper small intestine, regardless of gastric acid secretions. Media for simulating the hypochlorhydric and achlorhydric conditions in stomach were proposed using phosphates, maleates and bicarbonates buffers. The impact of bicarbonates in Level II biorelevant media simulating the environment in upper small intestine was evaluated so that pH and bulk buffer capacity were maintained. Dissolution data were collected using two model compounds, pioglitazone hydrochloride and semifumarate cocrystal of Compound B, and the mini-paddle dissolution apparatus in biorelevant media and in human aspirates. Simulated gastric fluids proposed in this study were in line with pH, buffer capacity, pepsin content, total bile salt/lecithin content and osmolality of the fasted stomach under partial and under complete inhibition of gastric acid secretion. Fluids simulating the conditions under partial inhibition of acid secretion were useful in simulating concentrations of both model compounds in gastric aspirates. Bicarbonates in Level III biorelevant gastric media and in Level II biorelevant media simulating the composition in the upper intestinal lumen did not improve simulation of concentrations in human aspirates. Level III biorelevant media for simulating the intragastric environment under hypochlorhydric conditions were proposed and their usefulness in the evaluation of concentrations of two model salts of weak bases in gastric aspirates was shown. Level II biorelevant media for simulating the environment in upper intestinal lumen led to underestimation of concentrations in aspirates, even when bicarbonate buffer was used. Copyright © 2017 Elsevier B.V. All rights reserved.
A Janus cobalt-based catalytic material for electro-splitting of water
NASA Astrophysics Data System (ADS)
Cobo, Saioa; Heidkamp, Jonathan; Jacques, Pierre-André; Fize, Jennifer; Fourmond, Vincent; Guetaz, Laure; Jousselme, Bruno; Ivanova, Valentina; Dau, Holger; Palacin, Serge; Fontecave, Marc; Artero, Vincent
2012-09-01
The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable and efficient systems for the conversion and storage of renewable energy sources. The production of hydrogen through water splitting seems a promising and appealing solution. We found that a robust nanoparticulate electrocatalytic material, H2-CoCat, can be electrochemically prepared from cobalt salts in a phosphate buffer. This material consists of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte and mediates H2 evolution from neutral aqueous buffer at modest overpotentials. Remarkably, it can be converted on anodic equilibration into the previously described amorphous cobalt oxide film (O2-CoCat or CoPi) catalysing O2 evolution. The switch between the two catalytic forms is fully reversible and corresponds to a local interconversion between two morphologies and compositions at the surface of the electrode. After deposition, the noble-metal-free coating thus functions as a robust, bifunctional and switchable catalyst.
Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L
1999-12-01
The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate formation. Both sodium and potassium chloride contribute more to turbidity of the reconstituted solid than either sodium or potassium phosphate buffers at similar ionic strength, with sodium chloride resulting in a substantially higher level of aggregates than potassium chloride. At a given cooling rate, the specific surface area of dried solids is approximately a factor of 2 higher for the formulation containing sodium chloride than the formulation containing potassium chloride. Turbidity is also influenced by the extent of secondary drying, which underscores the importance of minimizing secondary drying of this system. Including a surfactant such as polysorbate 80, either in the formulation or in the water used for reconstitution, decreased, but did not eliminate, insoluble aggregates. There was no correlation between pharmaceutically acceptability of the freeze-dried cake and insoluble aggregate levels in the reconstituted product.
Method for improving performance of high temperature superconductors within a magnetic field
Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo
2010-01-05
The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.
Mengistu Lemma, Solomon; Bossard, Frédéric; Rinaudo, Marguerite
2016-01-01
Electrospinning was employed to obtain chitosan nanofibers from blends of chitosans (CS) and poly(ethylene oxide) (PEO). Blends of chitosan (MW (weight-average molecular weight) = 102 kg/mol) and PEO (M (molecular weight) = 1000 kg/mol) were selected to optimize the electrospinning process parameters. The PEO powder was solubilized into chitosan solution at different weight ratios in 0.5 M acetic acid. The physicochemical changes of the nanofibers were determined by scanning electron microscopy (SEM), swelling capacity, and nuclear magnetic resonance (NMR) spectroscopy. For stabilization, the produced nanofibers were neutralized with K2CO3 in water or 70% ethanol/30% water as solvent. Subsequently, repeated washings with pure water were performed to extract PEO, potassium acetate and carbonate salts formed in the course of chitosan nanofiber purification. The increase of PEO content in the blend from 20 to 40 w% exhibited bead-free fibers with average diameters 85 ± 19 and 147 ± 28 nm, respectively. Their NMR analysis proved that PEO and the salts were nearly completely removed from the nanostructure of chitosan, demonstrating that the adopted strategy is successful for producing pure chitosan nanofibers. In addition, the nanofibers obtained after neutralization in ethanol-aqueous solution has better structural stability, at least for six months in aqueous solutions (phosphate buffer (PBS) or water). PMID:27792192
Shibata, Hiroko; Izutsu, Ken-Ichi; Yomota, Chikako; Okuda, Haruhiro; Goda, Yukihiro
2015-01-01
Establishing appropriate drug release testing methods of liposomal products for assuring quality and performance requires the determination of factors affecting in vitro drug release. In this study, we investigated the effects of test conditions (human plasma lot, pH/salt concentration in the test media, dilution factor, temperature, ultrasound irradiation, etc.), and liposomal preparation conditions (pH/concentration of ammonium sulfate solution), on doxorubicin (DXR) release from PEGylated liposomal DXR. Higher temperature and lower pH significantly increased DXR release. The evaluation of DXR solubility indicated that the high DXR release induced by low pH may be attributed to the high solubility of DXR at low pH. Ultrasound irradiation induced rapid DXR release in an amplitude-dependent manner. The salt concentration in the test solution, human plasma lot, and dilution factor had a limited impact on DXR-release. Variations in the ammonium sulfate concentration used in solutions for the formation/hydration of liposomes significantly affected DXR release behavior, whereas differences in pH did not. In addition, heating condition in phosphate-buffered saline at lower pH (<6.5) exhibited higher discriminative ability for the release profiles from various liposomes with different concentrations of ammonium sulfate than did ultrasound irradiation. These results are expected to be helpful in the process of establishing appropriate drug release testing methods for PEGylated liposomal DXR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, Thomas W., E-mail: Thomas.Sawyer@drdc-rddc.gc.ca; Nelson, Peggy; Bjarnason, Stephen
The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1 h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC{sub 50} values of {approx} 100-150 {mu}M when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner tomore » values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Suryanarayanan, Raj
To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less
Lupton, Emily J; Roth, Alison; Patrapuvich, Rapatbhorn; Maher, Steve P; Singh, Naresh; Sattabongkot, Jetsumon; Adams, John H
2015-04-01
The pre-erythrocytic stages of Plasmodium vivax and Plasmodium falciparum remain challenging for experimental research in part due to limited access to sporozoites. An important factor limiting availability is the laboratory support required for producing infected mosquitoes and the ephemeral nature of isolated extracellular sporozoites. This study was undertaken to investigate methods to improve the availability of this limited resource by extending the longevity of the extracellular sporozoites after mosquito dissection. Our goal in this study was to determine whether buffer conditions more closely mimicking the insect microenvironment could prolong longevity of ex vivo P. vivax and P. falciparum sporozoites. The study compared the current standard dissection buffer RPMI1640 to Hank's Balanced Salt Solution with 1g/L glucose (HBSS-1) or 2g/L glucose (HBSS-2) and Grace's Insect Medium for ability to extend longevity of ex vivo P. vivax and P. falciparum sporozoites. The effect of each buffer on sporozoite viability was evaluated by measuring sporozoite gliding motility at 0, 4, 8, and 24h post-dissection from mosquito salivary glands. Comparisons of mean gliding percentages of ex vivo sporozoites in the different buffers and time points found that RPMI and Grace's both showed strong gliding at 0h. In contrast, by 4h post-dissection sporozoites in RPMI consistently had the lowest gliding activity, whereas sporozoites in Grace's had significantly more gliding compared to all other buffers at almost all time points. Our results indicate that P. vivax and P. falciparum sporozoites maintained in insect media rather than the standard dissection buffer RPMI and HBSS retain viability better over time. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NUTRITION AND METABOLISM OF MARINE BACTERIA1
Takacs, Frank P.; Matula, Tibor I.; MacLeod, Robert A.
1964-01-01
Takacs, Frank P. (McGill University, Montreal, Quebec, Canada), Tibor I. Matula, and Robert A. MacLeod. Nutrition and metabolism of marine bacteria. XIII. Intracellular concentrations of sodium and potassium ions in a marine pseudomonad. J. Bacteriol. 87:510–518. 1964.—Washed cells of a marine pseudomonad were suspended in buffered salt solutions containing, in addition to MgSO4, NaCl and KCl at various concentrations. The cells were centrifuged from the medium and analyzed for Na+ and K+. Inulin and C14-carboxypolyglucose were employed to estimate the volume of extracellular fluid associated with the packed cells. Intracellular Na+ and K+ concentrations were determined by correcting for the amount of Na+ and K+ in the extracellular fluid. At all levels of Na+ in the suspending medium (0 to 1 m), the intracellular and extracellular Na+ concentrations within the limits of experimental error were the same. The intracellular K+ concentrations were approximately double the extracellular concentrations at the two levels of K+ tested (0.01 and 0.15 m) and were not influenced by the amount of Na+ present. Intracellular and extracellular Cl− concentrations were the same at the one level of Cl− examined. The intracellular fluid volume varied with the NaCl or KCl concentration of the suspending medium, being greatest in the absence of added salts, decreasing to a minimum at 0.3 m salt, and then increasing slightly at higher salt concentrations. Most of the intracellular Na+ could be removed by washing with solutions of MgSO4 or sucrose, but a small amount [10 to 15 μmoles/g (dry weight)] remained bound to the cells. PMID:14129666
WATER LEVEL AND OXYGEN DELIVERY/UTILIZATION IN POROUS SALT MARSH SEDIMENTS
Increasing terrestrial nutrient inputs to coastal waters is a global water quality issue worldwide, and salt marshes may provide a valuable nutrient buffer, either by direct removal or by smoothing out pulse inputs between sources and sensitive estuarine habitats. A major challen...
Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy
Guilinger, Terry R.
1990-01-01
Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.
Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion
NASA Astrophysics Data System (ADS)
Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.
2009-06-01
In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.
The Survival of Burkholderia pseudomallei in Liquid Media
Robertson, Jeannie; Levy, Avram; Sagripanti, Jose-Luis; Inglis, Timothy J. J.
2010-01-01
We studied the effect of environmental parameters on the survival of Burkholderia pseudomallei. There was a small increase in bacterial count for up to 28 days in sterilized distilled water or rain water, in water at 20°C or 40°C, and in buffered solutions of pH 4 or higher. Counts of culturable B. pseudomallei declined at pH 3, in the presence of seawater or water with concentrations of 4% salt or higher, and under refrigeration. The morphological appearances of B. pseudomallei changed under conditions that maintained culturable numbers from bacilli to coccoid cells and spiral forms under pH or salt stress. These observations indicate that B. pseudomallei can endure nutrient-depleted environments as well as a wide range of pH, salt concentrations, and temperatures for periods of up to 28 days. The relative stability of B. pseudomallei under these conditions underlines the tenacity of this species and its potential for natural dispersal in water: in surface water collections, in managed water distribution systems, and through rainfall. These survival properties help explain the recent expansion of the known melioidosis endemic zone in Australia and may have played a part in recent melioidosis outbreaks. PMID:20065001
Exposure to buffer solution alters tendon hydration and mechanics.
Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M
2017-08-16
A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chaotropic salts: novel modifiers for the capillary electrophoretic analysis of benzodiazepines.
Su, Hsiu-Li; Lan, Min-Tsu; Lin, Kuan-Wen; Hsieh, You-Zung
2008-08-01
This paper describes a CE method for analyzing benzodiazepines using the chaotropic salts lithium trifluoromethanesulfonate (LiOTf), lithium hexafluorophosphate (LiPF(6)), and lithium bis(trifluoromethanesulfonyl)imide (LiNTf(2)) as modifiers in the running buffer. Although adequate resolution of seven benzodiazepine analytes occurred under the influence of each of the chaotropic anions, the separation efficiency was highest when bis(trifluoromethanesulfonyl)imide (Tf(2)N(-)) was the modifier. We applied affinity CE in conjunction with linear analysis to determine the association constants for the formation of complexes between the Tf(2)N(-) anion and the benzodiazepines. According to the estimated Gibbs free energies, the interactions between this chaotropic anion and the benzodiazepines were either ion-dipole or ion-induced dipole interactions. Adding chaotropic salts as modifiers into CE buffers is a simple and reproducible technique for separating benzodiazepines.
Mattanovich, Matthias; Russmayer, Hannes; Scharl-Hirsch, Theresa; Puxbaum, Verena; Burgard, Jonas; Mattanovich, Diethard; Hann, Stephan
2017-05-01
Mass spectrometry-based metabolomic profiling is a powerful strategy to quantify the concentrations of numerous primary metabolites in parallel. To avoid distortion of metabolite concentrations, quenching is applied to stop the cellular metabolism instantly. For yeasts, cold methanol quenching is accepted to be the most suitable method to stop metabolism, while keeping the cells intact for separation from the supernatant. During this treatment, metabolite loss may occur while the cells are suspended in the quenching solution. An experiment for measuring the time-dependent loss of selected primary metabolites in differently buffered quenching solutions was conducted to study pH and salt concentration-dependent effects. Molecular properties of the observed metabolites were correlated with the kinetics of loss to gain insight into the mechanisms of metabolite leakage. Size and charge-related properties play a major role in controlling metabolite loss. We found evidence that interaction with the cell wall is the main determinant to retain a molecule inside the cell. Besides suggesting an improved quenching protocol to keep loss at a minimum, we could establish a more general understanding of the process of metabolite loss during quenching, which will allow to predict optimal conditions for hitherto not analysed metabolites. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dynamically controlled crystallization method and apparatus and crystals obtained thereby
NASA Technical Reports Server (NTRS)
Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)
1999-01-01
A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.
Chemin, Caroline; Bourgaux, Claudie; Péan, Jean-Manuel; Pabst, Georg; Wüthrich, Patrick; Couvreur, Patrick; Ollivon, Michel
2008-06-01
For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.
Déjugnat, Christophe; Dufrêche, Jean-François; Zemb, Thomas
2011-04-21
An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.
Haushild, W.L.; Prych, Edmund A.
1976-01-01
Total- and fecal-coliform bacteria, plus pH, alkalinity, and dissolved inorganic carbon are water-quality parameters that have been added to an existing numerical model of water quality in the salt-wedge reach of the Duwamish River estuary in Washington. The coliform bacteria are modeled using a first-order decay (death) rate, which is a function of the local salinity, temperature, and daily solar radiation. The pH is computed by solving a set of chemical-equilibrium equations for carbonate-bicarbonate buffered aqueous solutions. Concentrations of total- and fecal-coliform bacteria computed by the model for the Duwamish River estuary during June-September 1971 generally agreed with observed concentrations within about 40 and 60 percent, respectively. The computed pH generally agreed with observed pH within about a 0.2 pH unit; however, for one 3-week period the computed pH was about a 0.4 unit lower than the observed pH. (Woodard-USGS)
Hydration patterns and salting effects in sodium chloride solution.
Li, Weifeng; Mu, Yuguang
2011-10-07
The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics
Drake, Andrew C; Lee, Youngjoo; Burgess, Emma M; Karlsson, Jens O M; Eroglu, Ali; Higgins, Adam Z
2018-01-01
Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.
Burgess, Emma M.; Karlsson, Jens O. M.; Eroglu, Ali
2018-01-01
Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants. PMID:29304068
Inactivation of viruses using novel protein A wash buffers.
Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J
2015-01-01
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.
Visible‐Light‐Mediated Selective Arylation of Cysteine in Batch and Flow
Bottecchia, Cecilia; Rubens, Maarten; Gunnoo, Smita B.; Hessel, Volker; Madder, Annemieke
2017-01-01
Abstract A mild visible‐light‐mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal‐free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine‐containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate‐buffered saline (PBS) buffer) within a short reaction time. PMID:28805276
DNA adsorption to and elution from silica surfaces: influence of amino acid buffers.
Vandeventer, Peter E; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S; Niemz, Angelika
2013-09-19
Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction.
Xie, Yan; Lan, Xiao-Rong; Bao, Rui-Ying; Lei, Yang; Cao, Zhi-Qiang; Yang, Ming-Bo; Yang, Wei; Wang, Yun-Bing
2018-09-01
Biodegradable stereocomplex crystallite polylactide (SC-PLA) porous scaffolds with well-defined pore structures, high heat resistance, mechanical strength, and solvent resistance together with good biocompatibility, were obtained through solution casting of mixed poly(l-lactide) and poly(d-lactide) solution and subsequent leaching of sodium chloride particles. The pore structure of the SC-PLA scaffolds can be perfectly maintained after a high-pressure sterilization treatment at 121 °C, owing to the extensive formation of stereocomplex crystallites in the scaffolds. In vivo pilot study demonstrates that the fibroblasts of rats can infiltrate into the SC-PLA scaffolds well through the open pores. Degradation tests in phosphate-buffered saline solution reveal that the structure of SC-PLA scaffolds was quite stable due to the enhanced hydrolysis-resistance and improved mechanical properties of the scaffolds. These results reveal that SC-PLA scaffolds with good biocompatibility are potentially to be used as implanted biomaterials for the regeneration and restoration of tissues or organs. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana
Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-{beta} (A{beta}) protein bound primarily to copper ions. The evidence for an oxidative stress role of A{beta}-Cu redox chemistry is still incomplete. Details of the copper binding site in A{beta} may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of A{beta} peptides complexed with Cu{sup 2+} in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl)more » concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length A{beta}-Cu{sup 2+} peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the A{beta}-Cu{sup 2+} complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu{sup 2+} binding site is consistent with the hypothesis that the redox activity of the metal ion bound to A{beta} can lead to the formation of dityrosine-linked dimers found in AD.« less
Optimization of protein buffer cocktails using Thermofluor.
Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S
2013-02-01
The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.
Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E
2010-01-15
Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.
West, Caroline; Auroux, Emeline
2016-08-26
Quantitative structure-retention relationships (QSRRs) furnish a detailed and reliable description of the role and extent of different molecular interactions that can be established between the analytes and the chromatographic system. Among QSRRs, the solvation parameter model using Abraham descriptors has gained acceptance as a general tool to explore the factors affecting retention in chromatographic systems. We have previously shown how a modified version of the solvation parameter model, with two extra terms to take account of interactions occurring with ionic and ionizable species (with positive and/or negative charges), could be applied to the characterization of hydrophilic interaction chromatographic (HILIC) systems. In the present study, we will show how this methodology can be used to evaluate the effects of increasing buffer salt concentration on retention and separation in a HILIC system. A commercial stationary phase possessing a sulfobetaine zwitterionic bonded ligand (Nucleodur HILIC) was used with a mobile phase composed of 80% acetonitrile and 20% pwwH4 ammonium acetate buffer, with aqueous buffer concentrations varying from 10 to 100mM, resulting in overall concentrations ranging from 2 to 20mM in the mobile phase. Retention factors were measured for a selection of 76 probe analytes. The chosen compounds are small molecules presenting a wide diversity of molecular structures and are relevant to biomedical and pharmaceutical applications. The QSRR models obtained allow for a rationalization of the interactions contributing to retention and separation in the HILIC system considered and shed some light on the effect of varying buffer salt concentration, namely the progressive transition from ion-exchange and electrostatic-repulsion mechanisms to hydrophilic partitioning. Copyright © 2016 Elsevier B.V. All rights reserved.
Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations
Stein, Hannah; Spindler, Susann; Bonakdar, Navid; Wang, Chun; Sandoghdar, Vahid
2017-01-01
The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its in vivo studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions. Giant unilamellar vesicles (GUVs) offer a powerful model system for the cell membrane, but many previous studies have been performed in unphysiologically low ionic strength solutions which might lead to altered membrane properties, protein stability and lipid-protein interaction. In the present work, we give an overview of the existing methods for GUV production and present our efforts on forming single, free floating vesicles up to several tens of μm in diameter and at high yield in various buffer solutions with physiological ionic strength and pH. PMID:28243205
Thivierge, M C; Chouinard, P Y; Lévesque, J; Girard, V; Seoane, J R; Brisson, G J
1998-07-01
Ten Holstein cows in early lactation were used in a replicated 5 x 5 Latin square design to study the effects of MgO and three buffers added to diets containing Ca salts of canola oil fatty acids. Treatments were 1) control (basal diet; no buffer). 2) 1.1% NaHCO3 plus 1.1% KHCO3, 3) 1.9% NaHCO3, 4) 0.5% MgO, and 5) 2.0% Na sesquicarbonate (percentage of dry matter). The control diet contained 53% grass silage, 43% concentrate, and 4% Ca salts. Body weight, intake, milk yield, and percentages of milk fat, protein, and lactose were unaffected by treatments. Buffers and MgO tended to increase triacylglycerol extraction by the mammary gland and changed the proportions of some fatty acids in milk. Arterial concentrations of acetate and triacylglycerol were correlated with their respective arteriovenous differences. Extraction by the mammary gland was high for acetate (approximately equal to 58.2%), triacylglycerol (approximately equal to 47.3%) propionate (approximately equal to 34.6%), and glucose (approximately equal to 24.3%). Extraction of free fatty acids, phospholipids, or cholesterol was negligible. Mammary triacylglycerol arteriovenous difference tended to be higher than when MgO was fed than when NaHCO3 was fed. Sodium sesquicarbonate, NaHCO3, and the blend of bicarbonate buffers increased C18:2 in milk fat when compared with the control treatment. The concentration of C18:2 in milk fat decreased when MgO was fed, but the ratio of cis-C18:1 to trans-C18:1 increased compared with effects of dietary NaHCO3. Medium-chain fatty acids in milk fat tended to be higher than Na sesquicarbonate than with NaHCO3. Buffers and MgO modified the profiles of fatty acids in milk.
Kalantzi, Lida; Persson, Eva; Polentarutti, Britta; Abrahamsson, Bertil; Goumas, Konstantinos; Dressman, Jennifer B; Reppas, Christos
2006-06-01
This study was conducted to assess the relative usefulness of canine intestinal contents and simulated media in the prediction of solubility of two weak bases (dipyridamole and ketoconazole) in fasted and fed human intestinal aspirates that were collected under conditions simulating those in bioavailability/bioequivalence studies. After administration of 250 mL of water or 500 mL of Ensure plus [both containing 10 mg/mL polyethylene glycol (PEG) 4000 as nonabsorbable marker], intestinal aspirates were collected from the fourth part of the duodenum of 12 healthy adults and from the mid-jejunum of four Labradors. Pooled samples were analyzed for PEG, pH, buffer capacity, osmolality, surface tension, pepsin, total carbohydrates, total protein content, bile salts, phospholipids, and neutral lipids. The shake-flask method was used to measure the solubility of dipyridamole and ketoconazole in pooled human and canine intestinal contents and in fasted-state-simulating intestinal fluid (FaSSIF) and fed-state-simulating intestinal fluid (FeSSIF) containing various bile salts and pH-buffering agents. For both compounds, solubility in canine contents may be predictive of human intralumenal solubility in the fasting state but not in the fed state. The poor agreement of results in canine and human aspirates can be attributed to the higher bile salt content in canine bile. Solubility in FaSSIF containing a mixture of bile salts from crude bile predicted satisfactorily the intralumenal solubility of both drugs in the fasted state in humans. Solubility in FeSSIF, regardless of the identity of bile salts or of the buffering species, deviated from intralumenal values in the fed human aspirates by up to 40%. This was attributed to the lack of lipolytic products in FeSSIF, the higher bile salt content of FeSSIF, and the lower pH of FeSSIF. FaSSIF containing a mixture of bile salts from crude bile, and FeSSIF containing lipolytic products and, perhaps, having lower bile salt content but slightly higher pH, should be more useful than canine intestinal aspirates for predicting intralumenal solubilities in humans.
Cooperativity between various types of polar solute-solvent interactions in aqueous media.
Madeira, Pedro P; Bessa, Ana; Loureiro, Joana A; Álvares-Ribeiro, Luís; Rodrigues, Alírio E; Zaslavsky, Boris Y
2015-08-21
Partition coefficients of seven low molecular weight compounds were measured in multiple aqueous two-phase systems (ATPSs) formed by pairs of different polymers. The ionic composition of each ATPS was varied to include 0.01M sodium phosphate buffer (NaPB), pH 7.4 and 0.1M Na2SO4, 0.15M NaCl, and 0.15M NaClO4 all in 0.01M NaPB, pH 7.4. The differences between the solvent features of the coexisting phases in all the ATPSs were estimated from partitioning of a homologous series of dinitrophenylated-amino acids and by the solvatochromic method. The solute-specific coefficients for the compounds examined were determined by the multiple linear regression analysis using the modified linear solvation energy relationship equation. It is established that the solute specific coefficients characterizing different types of the solute-water interactions (dipole-dipole, dipole-ion, and H-bonding) for a given solute change in the presence of different salt additives in the solute specific manner. It is also found that these characteristics are linearly interrelated. It is suggested that there is a cooperativity between various types of solute-water interactions governed by the solute structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Gossip-based solutions for discrete rendezvous in populations of communicating agents.
Hollander, Christopher D; Wu, Annie S
2014-01-01
The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm.
Gossip-Based Solutions for Discrete Rendezvous in Populations of Communicating Agents
Hollander, Christopher D.; Wu, Annie S.
2014-01-01
The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm. PMID:25397882
Inhibition of Protein Carbamylation in Urea Solution Using Ammonium Containing Buffers
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui
2013-01-01
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N-termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium containing buffers was developed to facilitate its application in proteomic research. PMID:24161613
Kumar, Raja; Sinha, Alok
2017-02-01
Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe 0 was investigated. Organic acids improved dye reduction by augmenting Fe 0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its 'salting out' effect on the bulk solution and by Cl - anion-mediated pitting corrosion of iron surface. (NH 4 ) 2 SO 4 induced 'salting out' effect accompanied by enhanced iron corrosion by SO 4 2- anion and buffering effect of NH 4 + improved the reduction rates. However, at 2g/L (NH 4 ) 2 SO 4 concentration, complexating of SO 4 2- with iron oxides decreased Fe 0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and 'salting in' effect in solution, and due to it masking the Fe 0 surface. Decolouration obeyed biphasic reduction kinetics (R 2 >0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH2. Copyright © 2016. Published by Elsevier B.V.
Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.
Berlin, J R; Bassani, J W; Bers, D M
1994-01-01
Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires approximately 50 microM Ca2+ to be added to the cytosol. PMID:7819510
Method for preparing salt solutions having desired properties
Ally, Moonis R.; Braunstein, Jerry
1994-01-01
The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-04-01
Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH
Electrodialysis operation with buffer solution
Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL
2009-12-15
A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.
Polyamine binding to proteins in oat and Petunia protoplasts
NASA Technical Reports Server (NTRS)
Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.
1989-01-01
Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.
Polyamine binding to proteins in oat and Petunia protoplasts.
Mizrahi, Y; Applewhite, P B; Galston, A W
1989-01-01
Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.
Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions
NASA Astrophysics Data System (ADS)
Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome
1986-08-01
It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.
DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers
Vandeventer, Peter E.; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S.; Niemz, Angelika
2014-01-01
Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed, and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction. PMID:23931415
Water purification using organic salts
Currier, Robert P.
2004-11-23
Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.
Enrichment and characterization of anaerobic TNT-degrading bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.J.; Pendharkar, S.
1995-12-31
Three media constitutions were used to enrich for mixed cultures capable of degrading 2,4,6-trinitrotoluene (TNT) under strictly anaerobic conditions. The media were derived from a mineral salts solution buffered to pH 7 with CO{sub 2}/bicarbonate and all contained TNT. The cultures were enriched in the TNT mineral salts medium or the TNT mineral salts medium supplemented with glucose, yeast extract, or ammonia in various combinations. Inocula were obtained from a treated soil, previously contaminated with dinoseb and then treated using anaerobic procedures, or from a bench-top aqueous culture, maintained with an extract from a munitions-contaminated soil for more than 4more » years. Several cultures reduced TNT, producing 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene as the major products. The cultures were unable to effectively remove TNT when cross-transferred to the media they were not enriched on, suggesting that different media had enriched different subcultures form the original inoculum. The treated soil provided the most successful inoculum. Two media were chosen for further studies. Medium 1 contained TNT and glucose and produced a culture that might have used TNT as a nitrogen source. Medium 2, containing TNT and yeast extract, enriched cultures that degraded TNT, accumulating small amounts of p-cresol during the degradation.« less
Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient.
Fritze, Andreas; Hens, Felicitas; Kimpfler, Andrea; Schubert, Rolf; Peschka-Süss, Regine
2006-10-01
This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependent drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 degrees C or 30% at 37 degrees C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5.
Salt marshes supply many ecosystem services, such as fish, crab and bird habitat, flood abatement and carbon sequestration. Since salt marshes function as a moderating buffer between ocean and land, they are one of the first lines of defense to absorb the effects of sea level ris...
Polymeric micellar pH-sensitive drug delivery system for doxorubicin.
Hrubý, Martin; Konák, Cestmír; Ulbrich, Karel
2005-03-02
A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-06-02
Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.
Inhibition of protein carbamylation in urea solution using ammonium-containing buffers.
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui
2014-02-01
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times, and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium-containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium-containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium-containing buffers was developed to facilitate its application in proteomic research. Copyright © 2013 Elsevier Inc. All rights reserved.
Preservation of corals in salt-saturated DMSO buffer is superior to ethanol for PCR experiments
NASA Astrophysics Data System (ADS)
Gaither, M. R.; Szabó, Z.; Crepeau, M. W.; Bird, C. E.; Toonen, R. J.
2011-06-01
Specimen collection is time consuming and expensive, yet few laboratories test preservation methods before setting out on field expeditions. The most common preservation buffer used for coral specimens is >70% EtOH. However, alternatives exist that are less flammable, easier to ship, and are widely used in other taxa. Here, we compare the effects of salt-saturated DMSO (SSD) and EtOH preservation buffers on post-extraction DNA quantity and quality. We found that soft tissue integrity was better maintained and higher quantities of DNA were extracted from EtOH-preserved specimens; however, by all other measures, SSD was a superior preservative to EtOH. Extractions of SSD-preserved specimens resulted in higher molecular weight DNA, higher PCR success, and more efficient amplification than specimens preserved in EtOH. Our results show that SSD is generally a superior preservative to EtOH for specimens destined for PCR studies, but species-specific differences indicate that preservation comparisons should be undertaken before collection and storage of samples.
Mariette, B; Coudane, J; Vert, M
2005-09-02
The administration of the GRF(1-29)NH2 Growth Hormone Releasing Hormone analog is known as relevant of the concept of drug delivery system using a bioresorbable matrix. However, the release of this peptide from poly(dl-lactic acid-co-glycolic acid) matrices is affected by its insolubility at neutral in salted media and in plasma as well. In order to investigate the origin and the nature of the insolubility in these media in more details, the precipitates collected when the peptide was set in contact with saline, isotonic pH=7.4 phosphate buffer and plasma were analyzed by various techniques, namely weighting, gel chromatography, 1D- and 2D-immunoelectrophoresis, and dialysis to discern the soluble from the insoluble or aggregated fractions. It is shown that precipitation in protein-free salted media is due to a salting out phenomenon complemented by the neutralization of the solubilizing electrostatic charges in the isotonic buffer. In contrast, the precipitation in plasma is due to inter polyelectrolyte-type complexation that involved polyanionic proteins having a rather low isoelectric point like albumin, transferin, haptoglobulin and IgG immunoglobulins. When a rather large quantity of GRF(1-29)NH2 was entrapped in bioresorbable pellets working at a percolating regime after subcutaneous implantation in rats, the peptide was slowly released despite the complexation with plasma proteins. However only a very small part of the peptide was found in blood, this small part being still large enough to cause a detectable increase of the circulating growth hormone concentration. Attempts made to increase the solubility of the peptide in plasma were successful when the peptide was combined with arginine, an amino acid known to promote the poor hormonal activity of injected GRF(1-29)NH2 solutions under clinical conditions.
Complex fluids with mobile charge-regulating macro-ions
NASA Astrophysics Data System (ADS)
Markovich, Tomer; Andelman, David; Podgornik, Rudi
2017-10-01
We generalize the concept of charge regulation of ionic solutions, and apply it to complex fluids with mobile macro-ions having internal non-electrostatic degrees of freedom. The suggested framework provides a convenient tool for investigating systems where mobile macro-ions can self-regulate their charge (e.g., proteins). We show that even within a simplified charge-regulation model, the charge dissociation equilibrium results in different and notable properties. Consequences of the charge regulation include a positional dependence of the effective charge of the macro-ions, a non-monotonic dependence of the effective Debye screening length on the concentration of the monovalent salt, a modification of the electric double-layer structure, and buffering by the macro-ions of the background electrolyte.
Pawelczyk, E; Marciniec, B; Matlak, B
1975-01-01
Thermal degradation of aqueous and buffered solutions of perazine, prochlorperazine, trifluoperazine, thioproperazine, thiethylperazine and butaperazine salts was examined by kinetic method using an accelerated testing of pharmaceutical preparations. The order, rate constants and activation parameters (Q100, E, delta H not equal to, delta S not equal to, delta G not equal to ) of the reaction given were discussed. The predicted stability of the examined derivatives was compared on the grounds of a calculated time t10% and K293 kappa. A dependence between the stability and kind of substituent in the C2 positions was discussed in terms of the Hammett equation.
In-situ Optical Waveguides for Monitoring and Modifying Protein Crystal Growth
NASA Technical Reports Server (NTRS)
Gibson, Ursula; Osterberg, Ulf
2004-01-01
The use of electric fields in the growth of protein crystals was investigated, both theoretically and experimentally. We used dc, ac and optical fields to change the spatial distribution of proteins. Dc fields had only local effects, due to the conductivity of the growth solution. We found that for low frequency fields, movement of the buffer and salt ions dominated, and that for high frequency ac fields, &electrophoretic effects could be useful for relocating growing protein crystals. The most promising result was that for optical fields, a large gradient in the field could be used to capture a crystal, and observe growth in-situ. This concept could be developed into an experimental setup compatible with automated x-ray diffraction measurements in microgravity.
Gao, Jing; Zhong, Shaoyun; Zhou, Yanting; He, Han; Peng, Shuying; Zhu, Zhenyun; Liu, Xing; Zheng, Jing; Xu, Bin; Zhou, Hu
2017-06-06
Detergents and salts are widely used in lysis buffers to enhance protein extraction from biological samples, facilitating in-depth proteomic analysis. However, these detergents and salt additives must be efficiently removed from the digested samples prior to LC-MS/MS analysis to obtain high-quality mass spectra. Although filter-aided sample preparation (FASP), acetone precipitation (AP), followed by in-solution digestion, and strong cation exchange-based centrifugal proteomic reactors (CPRs) are commonly used for proteomic sample processing, little is known about their efficiencies at removing detergents and salt additives. In this study, we (i) developed an integrative workflow for the quantification of small molecular additives in proteomic samples, developing a multiple reaction monitoring (MRM)-based LC-MS approach for the quantification of six additives (i.e., Tris, urea, CHAPS, SDS, SDC, and Triton X-100) and (ii) systematically evaluated the relationships between the level of additive remaining in samples following sample processing and the number of peptides/proteins identified by mass spectrometry. Although FASP outperformed the other two methods, the results were complementary in terms of peptide/protein identification, as well as the GRAVY index and amino acid distributions. This is the first systematic and quantitative study of the effect of detergents and salt additives on protein identification. This MRM-based approach can be used for an unbiased evaluation of the performance of new sample preparation methods. Data are available via ProteomeXchange under identifier PXD005405.
Gäb, Jürgen; John, Harald; Melzer, Marco; Blum, Marc-Michael
2010-05-15
Buffering compounds like TRIS are frequently used in chemical, biochemical and biomedical applications to control pH in solution. One of the prerequisites of a buffer compound, in addition to sufficient buffering capacity and pH stability over time, is its non-reactivity with other constituents of the solution. This is especially important in the field of analytical chemistry where analytes are to be determined quantitatively. Investigating the enzymatic hydrolysis of G-type nerve agents sarin, soman and cyclosarin in buffered solution we have identified stable buffer adducts of TRIS, TES and other buffer compounds with the nerve agents. We identified the molecular structure of these adducts as phosphonic diesters using 1D (1)H-(31)P HSQC NMR and LC-ESI-MS/MS techniques. Reaction rates with TRIS and TES are fast enough to compete with spontaneous hydrolysis in aqueous solution and to yield substantial amounts (up to 20-40%) of buffer adduct over the course of several hours. A reaction mechanism is proposed in which the amino function of the buffer serves as an intramolecular proton acceptor rendering the buffer hydroxyl groups nucleophilic enough for attack on the phosphorus atom of the agents. Results show that similar buffer adducts are formed with a range of hydroxyl and amino function containing buffers including TES, BES, TRIS, BIS-TRIS, BIS-TRIS propane, Tricine, Bicine, HEPES and triethanol amine. It is recommended to use alternative buffers like MOPS, MES and CHES when working with G-type nerve agents especially at higher concentrations and over prolonged times. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng
2014-01-01
It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.
Peptide adsorption to cyanine dye aggregates revealed by cryo-transmission electron microscopy.
von Berlepsch, Hans; Brandenburg, Enrico; Koksch, Beate; Böttcher, Christoph
2010-07-06
The binding interaction between aggregates of the 5-chloro-2-[[5-chloro-3-(3-sulfopropyl)-3H-benzothiazol-2-ylidene]methyl]-3-(3-sulfopropyl)benzothiazolium hydroxide inner salt ammonium salt (CD-1) and alpha-helix, as well as beta-sheet forming de novo designed peptides, was investigated by absorption spectroscopy, circular dichroism spectroscopy, and cryogenic transmission electron microscopy. Both pure dye and pure peptides self-assembled into well-defined supramolecular assemblies in acetate buffer at pH = 4. The dye formed sheetlike and tubular H- and J-aggregates and the peptides alpha-helical coiled-coil assemblies or beta-sheet rich fibrils. After mixing dye and peptide solutions, tubular aggregates with an unusual ultrastructure were found, most likely due to the decoration of dye tubes with monolayers of peptide assemblies based on the strong electrostatic attraction between the oppositely charged species. There was neither indication of a transfer of chirality from the peptides to the dye aggregates nor the opposite effect of a structural transfer from dye aggregates onto the peptides secondary structure.
Konkayan, Mongkol; Limchoowong, Nunticha; Sricharoen, Phitchan; Chanthai, Saksit
2016-01-01
A simple, rapid, and sensitive malachite green-based spectrophotometric method for the selective trace determination of an iodate has been developed and presented for the first time. The reaction mixture was specifically involved in the liberation of iodine in the presence of an excess of iodide in an acidic condition following an instantaneous reaction between the liberated iodine and malachite green dye. The optimum condition was obtained with a buffer solution pH of 5.2 in the presence of 40 mg L -1 potassium iodide and 1.5 × 10 -5 M malachite green for a 5-min incubation time. The iodate contents in some table-salt samples were in the range of 26 to 45 mg kg -1 , while those of drinking water, tap water, canal water, and seawater samples were not detectable (< 96 ng mL -1 of limits of detection, LOQ) with their satisfied method of recoveries of between 93 and 108%. The results agreed with those obtained using ICP-OES for comparison.
Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion
Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian
2017-01-01
Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm2 for 4-fluoroaniline formed during 30 s to 442 ng/cm2 for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found. PMID:28772600
Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion.
Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian
2017-02-28
Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm² for 4-fluoroaniline formed during 30 s to 442 ng/cm² for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.
Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur
2016-01-01
Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053
Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur
2016-01-01
Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.
Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water.
Beltrán, Fernando J; Aguinaco, Almudena; García-Araya, Juan F; Oropesa, Ana
2008-08-01
In this study, water containing the pharmaceutical compound sulfamethoxazole (SMT) was subjected to the various treatments of different oxidation processes involving ozonation, and photolysis and catalysis under different experimental conditions. Removal rates of SMT and total organic carbon (TOC), from experiments of simple UVA radiation, ozonation (O(3)), catalytic ozonation (O(3)/TiO(2)), ozone photolysis (O(3)/UVA), photocatalytic oxidation (O(2)/TiO(2)/UVA) and photocatalytic ozonation (O(3)/UVA/TiO(2)), have been compared. Photocatalytic ozonation leads to the highest SMT removal rate (pH 7 in buffered systems, complete removal is achieved in less than 5min) and total organic carbon (in unbuffered systems, with initial pH=4, 93% TOC removal is reached). Also, lowest ozone consumption per TOC removed and toxicity was achieved with the O(3)/UVA/TiO(2) process. Direct ozone and free radical reactions were found to be the principal mechanisms for SMT and TOC removal, respectively. In photocatalytic ozonation, with buffered (pH 7) aqueous solutions phosphates (buffering salts) and accumulation of bicarbonate scavengers inhibit the reactions completely on the TiO(2) surface. As a consequence, TOC removal diminishes. In all cases, hydrogen peroxide plays a key role in TOC mineralization. According to the results obtained in this work the use of photocatalytic ozonation is recommended to achieve a high mineralization degree of water containing SMT type compounds.
Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A
2014-03-01
Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. Copyright © 2013 Wiley Periodicals, Inc.
Karki, Ichhuk; Christen, Martin T; Spiriti, Justin; Slack, Ryan L; Oda, Masayuki; Kanaori, Kenji; Zuckerman, Daniel M; Ishima, Rieko
2016-12-15
This article communicates our study to elucidate the molecular determinants of weak Mg 2+ interaction with the ribonuclease H (RNH) domain of HIV-1 reverse transcriptase in solution. As the interaction is weak (a ligand-dissociation constant >1 mM), nonspecific Mg 2+ interaction with the protein or interaction of the protein with other solutes that are present in the buffer solution can confound the observed Mg 2+ -titration data. To investigate these indirect effects, we monitored changes in the chemical shifts of backbone amides of RNH by recording NMR 1 H- 15 N heteronuclear single-quantum coherence spectra upon titration of Mg 2+ into an RNH solution. We performed the titration under three different conditions: (1) in the absence of NaCl, (2) in the presence of 50 mM NaCl, and (3) at a constant 160 mM Cl - concentration. Careful analysis of these three sets of titration data, along with molecular dynamics simulation data of RNH with Na + and Cl - ions, demonstrates two characteristic phenomena distinct from the specific Mg 2+ interaction with the active site: (1) weak interaction of Mg 2+ , as a salt, with the substrate-handle region of the protein and (2) overall apparent lower Mg 2+ affinity in the absence of NaCl compared to that in the presence of 50 mM NaCl. A possible explanation may be that the titrated MgCl 2 is consumed as a salt and interacts with RNH in the absence of NaCl. In addition, our data suggest that Na + increases the kinetic rate of the specific Mg 2+ interaction at the active site of RNH. Taken together, our study provides biophysical insight into the mechanism of weak metal interaction on a protein.
Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.
Ragoonanan, Vishard; Suryanarayanan, Raj
2014-06-01
We hypothesize that ultrasonication can accelerate solute crystallization in freeze-concentrates. Our objective is to demonstrate ultrasonication as a potential predictive tool for evaluating physical stability of excipients in frozen solutions. The crystallization tendencies of lyoprotectants (trehalose, sucrose), carboxylic acid buffers (citric, tartaric, malic, and acetic) and an amino acid buffer (histidine HCl) were studied. Aqueous solutions of buffers, lyoprotectants and mixtures of the two were cooled from room temperature to -20°C and sonicated to induce solute crystallization. The crystallized phases were identified by X-ray diffractometry (laboratory or synchrotron source). Sonication accelerated crystallization of trehalose dihydrate in frozen trehalose solutions. Sonication also enhanced solute crystallization in tartaric (200 mM; pH 5), citric (200 mM pH 4) and malic (200 mM; pH 4) acid buffers. At lower buffer concentrations, longer annealing times following sonication were required to facilitate solute crystallization. The time for crystallization of histidine HCl progressively increased as a function of sucrose concentration. The insonation period required to effect crystallization also increased with sucrose concentration. Sonication can substantially accelerate solute crystallization in the freeze-concentrate. Ultrasonication may be useful in assessing the crystallization tendency of formulation constituents used in long term frozen storage and freeze-drying.
Spradley, Frank T.; Ho, Dao H.
2015-01-01
Perivascular adipose tissue (PVAT) mediates buffering of vasoconstriction through activation of endothelium-derived factors. We hypothesized that the PVAT of Dahl salt-sensitive (Dahl SS) rats has reduced ability to buffer vasoconstriction. Vascular reactivity experiments were performed on aortic rings with PVAT intact (+PVAT) or removed (−PVAT), and endothelium intact (+ENDO) or removed (−ENDO) from Dahl SS rats and control SS.13BN rats (Dahl SS rats that have had chromosome 13 completely replaced with that of the Brown Norway rat, rendering this strain insensitive to high-salt or high-fat diet-induced hypertension). Endothelial dysfunction, assessed by ACh-mediated vasorelaxation, was confirmed in aortic rings of Dahl SS rats. The +PVAT+ENDO aortic rings had indistinguishable phenylephrine-induced vasoconstriction between genotypes. In both strains, removal of PVAT significantly enhanced vasoconstriction. Dahl SS rat −PVAT+ENDO aortic rings displayed exaggerated vasoconstriction to phenylephrine vs. SS.13BN rats, indicating that PVAT-mediated buffering of vasoconstriction was greater in Dahl SS rats. Removal of both the ENDO and PVAT restored vasoconstriction in both strains. The nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester (l-NAME), produced a similar effect as that seen with −ENDO. These data indicate that the function of the PVAT to activate endothelium-derived NOS is enhanced in Dahl SS compared with SS.13BN rats and, most likely, occurs through a pathway that is distinct from ACh-mediated activation of NOS. PVAT weight and total PVAT leptin levels were greater in Dahl SS rats. Leptin induced a significantly decreased vasoconstriction in −PVAT+ENDO aortic rings from Dahl SS rats, but not SS.13BN rats. In contrast to our initial hypothesis, PVAT in Dahl SS rats buffers vasoconstriction by activating endothelial NOS via mechanisms that may include the involvement of leptin. Thus, the PVAT serves a vasoprotective role in Dahl SS rats on normal-salt diet. PMID:26608658
Daniels, Edward J.; Jody, Bassam J.; Bonsignore, Patrick V.
1994-01-01
A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.
Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.
1994-07-19
A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.
NASA Astrophysics Data System (ADS)
Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.
2014-12-01
Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.
Plum, J; Schoenicke, G; Grabensee, B
1997-09-01
Peritonitis remains a major problem in peritoneal dialysis. The incidence of peritonitis may be reduced by the use of more "biocompatible" peritoneal dialysis solutions that do not impair local host defense mechanisms, such as occurs with conventional lactate-buffered glucose solutions. In the present study, we investigated the use of bicarbonate and lactate as buffer systems and glucose, amino acids, and glucose polymer as osmotic agents on specific cellular functions of isolated fresh blood monocytes in vitro. The bicarbonate-buffered solutions had a physiologic pH (7.0 to 7.6). Lactate-buffered solutions were tested with a pH between 5.5 and 7.3. RPMI 1640 (Roswell Park Memorial Institute, supplied by Biochrom, Berlin, Germany) and phosphate-buffered saline were used as control mediums. The test solutions were incubated with 200,000 monocytes/mL for 45 minutes followed by a 1:1 mix with RPMI 1640 (with supplements) during a 24- or 4-hour tetrazolium bromide test (MTT test) recovery period. Constitutive and lipopolysaccharide (LPS)-stimulated release of interleukin-1beta (IL-1beta) and IL-6 in the supernatants as parameters of cellular host defense and lactate dehydrogenase concentrations and MTT-formazan production as parameters for cell cytotoxicity were measured. Significantly higher IL-6 and IL-1beta release was found in the bicarbonate-buffered solutions, both under basal conditions and after LPS stimulation, compared with the lactate-buffered solutions (LPS stimulation: 1% amino acids/34 mmol/L bicarbonate, IL-1beta: 1,166 +/- 192 pg/mL; 1.5% glucose/34 mmol/L bicarbonate, IL-1beta: 752 +/- 107 pg/mL; 1.5% glucose/35 mmol/L lactate/pH 5.5, IL-1beta: 174 +/- 51 pg/mL). Some of these differences could even be detected in spent dialysate after a 6-hour dwell in continuous ambulatory peritoneal dialysis patients (n = 10). A lower degree of cellular cytotoxicity (lactate dehydrogenase activity) and better-preserved metabolic activity (MTT test) also were found for the bicarbonate-buffered solutions. Amino acids (1%) proved to be comparable to glucose (1.5%) as an osmotic agent at a neutral pH with regard to LPS-stimulated cytokine release and cytotoxicity. The incubation with a glucose polymer solution (7.5% glucose polymer in phosphate-buffered saline, pH 7.3) resulted in a significantly lowered cytokine release (LPS stimulation: IL-1beta, 69 +/- 19 pg/mL) compared with the other solutions with neutral pH (P < 0.01). These results suggest that bicarbonate as a buffer provided better biocompatibility with regard to mononuclear cytokine release and viability compared with lactate. Amino acids and glucose were equivalent to these parameters at a physiologic pH. The glucose polymer solution, however, was associated with a marked depression of cytokine release.
Guo, Zheng; Chen, Alvin; Nassar, Roger A; Helk, Bernhard; Mueller, Claudia; Tang, Yu; Gupta, Kapil; Klibanov, Alexander M
2012-11-01
To discover, elucidate the structure-activity relationship (SAR), and explore the mechanism of action of excipients able to drastically lower the viscosities of concentrated aqueous solutions of humanized monoclonal antibodies (MAbs). Salts prepared from hydrophobic cations and anions were dissolved into humanized MAbs solutions. Viscosities of the resulting solutions were measured as a function of the nature and concentration of the salts and MAbs. Even at moderate concentrations, some of the salts prepared herein were found to reduce over 10-fold the viscosities of concentrated aqueous solutions of several MAbs at room temperature. To be potent viscosity-lowering excipients, the ionic constituents of the salts must be hydrophobic, bulky, and aliphatic. A mechanistic hypothesis explaining the observed salt effects on MAb solutions' viscosities was proposed and verified.
Zhou, Zhou; Dunn, Claire; Khadra, Ibrahim; Wilson, Clive G; Halbert, Gavin W
2017-03-01
Gastrointestinal fluid is a complex milieu and it is recognised that gut drug solubility is different to that observed in simple aqueous buffers. Simulated gastrointestinal media have been developed covering fasted and fed states to facilitate in vitro prediction of gut solubility and product dissolution. However, the combination of bile salts, phospholipids, fatty acids and proteins in an aqueous buffered system creates multiple phases and drug solubility is therefore a complex interaction between these components, which may create unique environments for each API. The impact on solubility can be assessed through a statistical design of experiment (DoE) approach, to determine the influence and relationships between factors. In this paper DoE has been applied to fed simulated gastrointestinal media consisting of eight components (pH, bile salt, lecithin, sodium oleate, monoglyceride, buffer, salt and pancreatin) using a two level D-optimal design with forty-four duplicate measurements and four centre points. The equilibrium solubility of a range of poorly soluble acidic (indomethacin, ibuprofen, phenytoin, valsartan, zafirlukast), basic (aprepitant, carvedilol, tadalafil, bromocriptine) and neutral (fenofibrate, felodipine, probucol, itraconazole) drugs was investigated. Results indicate that the DoE provides equilibrium solubility values that are comparable to literature results for other simulated fed gastrointestinal media systems or human intestinal fluid samples. For acidic drugs the influence of pH predominates but other significant factors related to oleate and bile salt or interactions between them are present. For basic drugs pH, oleate and bile salt have equal significance along with interactions between pH and oleate and lecithin and oleate. Neutral drugs show diverse effects of the media components particularly with regard to oleate, bile salt, pH and lecithin but the presence of monoglyceride, pancreatin and buffer have significant but smaller effects on solubility. There are fourteen significant interactions between factors mainly related to the surfactant components and pH, indicating that the solubility of neutral drugs in fed simulated media is complex. The results also indicate that the equilibrium solubility of each drug can exhibit individualistic behaviour associated with the drug's chemical structure, physicochemical properties and interaction with media components. The utility of DoE for fed simulated media has been demonstrated providing equilibrium solubility values comparable with similar in vitro systems whilst also providing greater information on the influence of media factors and their interactions. The determination of a drug's gastrointestinal solubility envelope provides useful limits that can potentially be applied to in silico modelling and in vivo experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
On the Growth of Ice in Aqueous Solutions Contained in Capillaries
NASA Astrophysics Data System (ADS)
Pruppracher, H. R.
1967-06-01
The growth rate of ice in supercooled water and in dilute aqueous solutions of various salts which dissociate in water into univalent ions was studied. The solutions contained in polyethylene tubes of small bore had concentrations between 10-6 and 10-1 moles liter-1 and were investigated at bath supercoolings between 1° and 15°C. The growth rate of ice which in pure water was found to vary approximately with the square of the bath supercooling was affected in a systematic manner by the type and concentration of the salt in solution. At salt concentrations smaller than 5 × 10-2 moles liter-1 most salts did not affect the growth rate. However, the fluorides were found to increase the growth rate over and above the one in pure water. At concentrations larger than 5 × 10-2 moles liter-1 all the salts reduced the growth rate of ice below the one in pure water. By comparing solutions of salts with common anion it was found that at a particular bath supercooling and salt concentration the growth rate of ice was reduced most in lithium solutions and least in cesium and ammonium solutions. By comparing solutions of salts with common cation it was found that the growth rate of ice was reduced most in fluoride solutions and least in bromide solutions. It was concluded that in solutions with salt concentrations larger than 5 × 10-2 moles liter-1 the rate of dissipation of latent heat which controls the growth rate of ice is affected in a systematic manner by the freezing point lowering effects which result from pure mass transfer conditions prevailing at the ice-solution interface of a stagnant system. Some features of the observed growth rates are discussed in terms of the effect of dissolved salts on the growth forms of ice in aqueous solutions.
NASA Astrophysics Data System (ADS)
Qiao, Congde; Zhang, Jianlong; Kong, Aiqun
2017-02-01
An investigation of the influences of pH, salt type, and salt concentration on the conformations of gelatin molecules in trivalent chromium salt solutions was performed by viscosity and dynamic light scattering (DLS) techniques. It was found that the viscosity behaviors as polyelectrolytes or polyampholytes depended on the charge distribution on the gelatin chains, which can be tuned by the value of pH of the gelatin solution. The intrinsic viscosity of gelatin in basic chromium sulfate aqueous solution at pH = 2.0 first decreased and then increased with increasing Cr(OH)SO4 concentration, while a monotonic decrease of the intrinsic viscosity of gelatin was observed in CrCl3 solution. However, the intrinsic viscosity of gelatin at pH = 5.0 was found to be increased first and then decreased with an increase in salt concentration in Cr(OH)SO4 solution, as well as in CrCl3 solution. We suggested that the observed viscosity behavior of gelatin in trivalent chromium salt solutions was attributed to the comprehensive effects of shielding, overcharging, and crosslinking (complexation) caused by the introduction of the different counterions. In addition, the average hydrodynamic radius ( R h ) of gelatin molecules in various salt solutions was determined by DLS. It was found that the change trend of R h with salt concentration was the same as the change of intrinsic viscosity. Based on the results of the viscosity and DLS, a possible mechanism for the conformational transition of gelatin chains with external conditions including pH, salt concentration, and salt type is proposed.
Methods and systems for utilizing carbide lime or slag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devenney, Martin; Fernandez, Miguel; Chen, Irvin
Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammoniamore » during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.« less
Minute synthesis of extremely stable gold nanoparticles.
Zhou, Min; Wang, Baoxiang; Rozynek, Zbigniew; Xie, Zhaohui; Fossum, Jon Otto; Yu, Xiaofeng; Raaen, Steinar
2009-12-16
We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.
NASA Astrophysics Data System (ADS)
Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.
2009-11-01
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the RÃo Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A
2009-11-01
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Wagner, R M; Fraser, B A
1987-05-01
beta-Lipotrophin (62-77) or Ac-gastrin releasing peptide was incubated with immobilized carboxypeptidase Y or aminopeptidase M. Subsequent aliquots of each incubation mixture were analysed by fast atom bombardment mass spectrometry using a dithiothreitol/dithioerythritol liquid matrix. The use of immobilized enzymes and volatile buffers for exopeptidase digestions enabled rapid and facile separation of enzyme from digestion products. This approach to mass spectral peptide analysis reduced spectral background arising from a glycerol matrix, buffer salts, or enzyme proteins and contaminants, enabling analysis of as little as 200 picomoles of a suitable peptide.
Nau, Barbara; Schmitt, Claus P; Almeida, Margarida; Arbeiter, Klaus; Ardissino, Gianluigi; Bonzel, Klaus E; Edefonti, Alberto; Fischbach, Michel; Haluany, Karin; Misselwitz, Joachim; Kemper, Markus J; Rönnholm, Kai; Wygoda, Simone; Schaefer, Franz
2004-01-01
Background Peritoneal dialysis (PD) is the preferred dialysis modality in children. Its major drawback is the limited technique survival due to infections and progressive ultrafiltration failure. Conventional PD solutions exert marked acute and chronic toxicity to local tissues. Prolonged exposure is associated with severe histopathological alterations including vasculopathy, neoangiogenesis, submesothelial fibrosis and a gradual loss of the mesothelial cell layer. Recently, more biocompatible PD solutions containing reduced amounts of toxic glucose degradation products (GDPs) and buffered at neutral pH have been introduced into clinical practice. These solutions contain lactate, bicarbonate or a combination of both as buffer substance. Increasing evidence from clinical trials in adults and children suggests that the new PD fluids may allow for better long-term preservation of peritoneal morphology and function. However, the relative importance of the buffer in neutral-pH, low-GDP fluids is still unclear. In vitro, lactate is cytotoxic and vasoactive at the concentrations used in PD fluids. The BIOKID trial is designed to clarify the clinical significance of the buffer choice in biocompatible PD fluids. Methods/design The objective of the study is to test the hypothesis that bicarbonate based PD solutions may allow for a better preservation of peritoneal transport characteristics in children than solutions containing lactate buffer. Secondary objectives are to assess any impact of the buffer system on acid-base status, peritoneal tissue integrity and the incidence and severity of peritonitis. After a run-in period of 2 months during which a targeted cohort of 60 patients is treated with a conventional, lactate buffered, acidic, GDP containing PD fluid, patients will be stratified according to residual renal function and type of phosphate binding medication and randomized to receive either the lactate-containing Balance solution or the bicarbonate-buffered Bicavera® solution for a period of 10 months. Patients will be monitored by monthly physical and laboratory examinations. Peritoneal equilibration tests, 24-h dialysate and urine collections will be performed 4 times. Peritoneal biopsies will be obtained on occasion of intraabdominal surgery. Changes in small solute transport rates, markers of peritoneal tissue turnover in the effluent, acid-base status and peritonitis rates and severity will be analyzed. PMID:15485574
Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng
2014-01-01
Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060
Increased degradation rate of nitrososureas in media containing carbonate.
Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov
2009-01-01
The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.
Larson, E L; Strom, M S; Evans, C A
1980-01-01
Tests were performed using the sterile bag technique to determine the effects of type of sampling solution, use of antiseptic neutralizers, and solution temperature on the detection and quantitation of bacteria on hands. Using paired hand cultures, three sampling solutions were compared: quarter-strength Ringer solution, a phosphate buffer containing Triton X-100, and the same buffer containing antiseptic neutralizers. The phosphate buffer containing Triton X-100 was significantly better than quarter-strength Ringer solution in mean bacterial yield; the neutralizer-containing sampling solution was slightly better than Triton X-100-containing solution, although differences were not significant at the P = 0.05 level. Temperature (6 or 23 degrees C) of the sampling solution showed no consistent effect on bacterial yield from hands tested with the fluid containing neutralizers. PMID:7012171
Methods of making metal oxide nanostructures and methods of controlling morphology of same
Wong, Stanislaus S; Hongjun, Zhou
2012-11-27
The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
Role of Buffers in Protein Formulations.
Zbacnik, Teddy J; Holcomb, Ryan E; Katayama, Derrick S; Murphy, Brian M; Payne, Robert W; Coccaro, Richard C; Evans, Gabriel J; Matsuura, James E; Henry, Charles S; Manning, Mark Cornell
2017-03-01
Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Varum, F J O; Hatton, G B; Freire, A C; Basit, A W
2013-08-01
The in vivo proof of concept of a novel double-coating system, based on enteric polymers, which accelerated drug release in the ileo-colonic region, was investigated in humans. Prednisolone tablets were coated with a double-coating formulation by applying an inner layer composed of EUDRAGIT S neutralised to pH 8.0 and a buffer salt (10% KH₂PO₄), which was overcoated with layer of standard EUDRAGIT S organic solution. For comparison, a single coating system was produced by applying the same amount of EUDRAGIT S organic solution on the tablet cores. Dissolution tests on the tablets were carried out using USP II apparatus in 0.1N HCl for 2 h and subsequently in pH 7.4 Krebs bicarbonate buffer. For comparison, tablets were also tested under the USP method established for modified release mesalamine formulations. Ten fasted volunteers received the double-coated and single-coated tablets in a two-way crossover study. The formulations were radiolabelled and followed by gamma scintigraphy; the disintegration times and positions were recorded. There was no drug release from the single-coated or double-coated tablets in 0.1N HCl for 2h. The single-coated tablets showed slow release in subsequent Krebs bicarbonate buffer with a lag time of 120 min, while in contrast drug release from the double-coated tablets was initiated at 60 min. In contrast, using the USP dissolution method, normally employed for modified release mesalamine products, no discrimination was attained. The in vivo disintegration of the single-coated EUDRAGIT S tablets in the large intestine was erratic. Furthermore, in 2 volunteers, the single-coated tablet was voided intact. Double-coated tablets disintegrated in a more consistent way, mainly in the ileo-caecal junction or terminal ileum. The accelerated in vivo disintegration of the double-coating EUDRAGIT S system can overcome the limitations of conventional enteric coatings targeting the colon and avoid the pass-through of intact tablets. Moreover, Krebs bicarbonate buffer has the ability to discriminate between formulations designed to target the ileo-colonic region. Copyright © 2013 Elsevier B.V. All rights reserved.
A Study of Novel Hexavalent Phosphazene Salts as Draw Solutes in Forward Osmosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark L. Stone; Aaron D. Wilson; Mason K. Harrup
2013-03-01
Two novel multi-valent salts based on phosphazene chemistry have been synthesized and characterized as forward osmosis (FO) draw solutes. Commercially obtained hexachlorocyclotriphosphazene was reacted with the sodium salt of 4-ethylhydroxybenzoate to yield hexa(4-ethylcarboxylatophenoxy)phosphazene. Hydrolysis, followed by and neutralization with NaOH or LiOH, of the resulting acidic moieties yielded water soluble sodium and lithium phosphazene salts, respectively. Degrees of dissociation were determined through osmometry over the range of 0.05-0.5 m, giving degrees of 3.08-4.95 per mole, suggesting a high osmotic potential. The Li salt was found to be more ionized in solution than the sodium salt, and this was reflected inmore » FO experiments where the Li salt gave higher initial fluxes (~ 7 L/m2h) as compared to the sodium salt (~6 L/m2h) at identical 0.07 m draw solution concentrations at 30 °C. Longer term experiments revealed no detectable degradation of the salts; however some hydrolysis of the cellulose acetate membrane was observed, presumably due to the pH of the phosphazene salt draw solution (pH = ~8).« less
Zhang, Wei; Fan, Liuyin; Shao, Jing; Li, Si; Li, Shan; Cao, Chengxi
2011-04-15
To demonstrate the theoretic method on the stacking of zwitterion with moving reaction boundary (MRB) in the accompanying paper, the relevant experiments were performed. The experimental results quantitatively show that (1) MRB velocity, including the comparisons between MRB and zwitterionic velocities, possesses key importance to the design of MRB stacking; (2) a much long front alkaline plug without sample should be injected before the sample injection for a complete stacking of zwitterion if sample buffer is prepared with strong base, conversely no such plug is needed if using a weak base as the sample buffer with proper concentration and pH value; (3) the presence of salt in MRB system holds dramatic effect on the MRB stacking if sample solution is a strong base, but has no effect if a weak alkali is used as sample solution; (4) all of the experiments of this paper, including the previous work, quantitatively manifest the theory and predictions shown in the accompanying paper. In addition, the so-called derivative MRB-induced re-stacking and transient FASI-induced re-stacking were also observed during the experiments, and the relevant mechanisms were briefly demonstrated with the results. The theory and its calculation procedures developed in the accompanying paper can be well used for the predictions to the MRB stacking of zwitterion in CE. Copyright © 2011 Elsevier B.V. All rights reserved.
Lucangioli, S E; Carducci, C N; Tripodi, V P; Kenndler, E
2001-12-25
The capacity factors of 16 anionic cholates (from six bile salts, including their glyco- and tauro-conjugates) were determined in a micellar electrokinetic chromatography (MEKC) system consisting of buffer, pH 7.5 (phosphate-boric acid; 20 mmol/l) with 50 mmol/l sodium dodecyl sulfate (SDS) as micelle former and 10% acetonitrile as organic modifier. The capacity factors of the fully dissociated, negatively charged analytes (ranging between 0.2 and 60) were calculated from their mobilities, with a reference background electrolyte (BGE) without SDS representing "free" solution. For comparison, the capacity factors were derived for a second reference BGE where the SDS concentration (5 mmol/l) is close to the critical micellar concentration (CMC). The capacity factors are compared with the logarithm of the octanol-water partition coefficient, log Pow, as measure for lipophilicity. Clear disagreement between these two parameters is found especially for epimeric cholates with the hydroxy group in position 7. In contrast, fair relation between the capacity factor of the analytes and their CMC is observed both depending strongly on the orientation of the OH groups, and tauro-conjugation as well. In this respect the retention behaviour of the bile salts in MEKC seems to reflect their role as detergents in living systems, and might serve as model parameter beyond lipophilicity.
Hu, Michael Z.
2006-05-23
Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... highly under § 1410.31(b) and may include high priority practices such as filter strips, riparian buffers, shelterbelts, field windbreaks, and living snow fences, grass waterways, shallow water areas for wildlife, salt...
Code of Federal Regulations, 2010 CFR
2010-01-01
... highly under § 1410.31(b) and may include high priority practices such as filter strips, riparian buffers, shelterbelts, field windbreaks, and living snow fences, grass waterways, shallow water areas for wildlife, salt...
Code of Federal Regulations, 2014 CFR
2014-01-01
... highly under § 1410.31(b) and may include high priority practices such as filter strips, riparian buffers, shelterbelts, field windbreaks, and living snow fences, grass waterways, shallow water areas for wildlife, salt...
Code of Federal Regulations, 2011 CFR
2011-01-01
... highly under § 1410.31(b) and may include high priority practices such as filter strips, riparian buffers, shelterbelts, field windbreaks, and living snow fences, grass waterways, shallow water areas for wildlife, salt...
Code of Federal Regulations, 2013 CFR
2013-01-01
... highly under § 1410.31(b) and may include high priority practices such as filter strips, riparian buffers, shelterbelts, field windbreaks, and living snow fences, grass waterways, shallow water areas for wildlife, salt...
Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael
2013-01-01
Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of
NASA Astrophysics Data System (ADS)
Lara, Nadia Chantal
Use of radiofrequency (RF) electric fields coupled with nanoparticles to enhance non-invasive hyperthermia in cancer cells and tumors sparked debate over the RF heating mechanisms of nanoparticles and the role of salts in heating. Under RF field exposure at 13.56 MHz, aqueous systems including electrolyte solutions, buffers, and blood, were shown to heat according to bulk material properties, regardless of composition. This universal aqueous heating behavior extended to suspensions of nanoparticles such as gold nanoparticles, full-length and ultra-short single-walled carbon nanotubes, and water-soluble fullerene derivatives. These suspensions displayed the same RF heating properties as saline solutions of the same conductivity, indicating that these nanoparticles themselves do not contribute to RF heating by any unique mechanism; rather, they modulate bulk conductivity, which in turn affects bulk RF heating. At 13.56 MHz, peak heating for an aqueous system occurs at a conductivity of 0.06 S/m, beyond which increases in conductivity result in reduced heating rates. Biologically relevant materials, such as blood, intra- and extracellular fluids, and most human tissues, exceed this peak heating conductivity, precluding the use of conductive materials for RF heating rate enhancement. Instead, kosmotropic or water-structuring materials, including sugars, glycols, zwitterionic molecules, and a water-soluble fullerene derivative, when added to blood or phosphate buffered saline reduced the bulk conductivity of these materials and enhanced their heating rates accordingly. A dielectric heating rate model taking into account the geometry of the sample under RF exposure was used to explain the experimental RF heating behavior of aqueous solutions and semi-aqueous materials, which generated distinct RF heating curves due to differences in bulk dielectric and physical properties.
Eshtaya, Majd; Ejigu, Andinet; Stephens, Gill; Walsh, Darren A; Chen, George Z; Croft, Anna K
2016-08-15
Environmental concerns have brought attention to the requirement for more efficient and renewable processes for chemicals production. Lignin is the second most abundant natural polymer, and might serve as a sustainable resource for manufacturing fuels and aromatic derivatives for the chemicals industry after being depolymerised. In this work, the mediator 2,2'-azino-bis(3-ethylbenthiazoline-6-sulfonic acid) diammonium salt (ABTS), commonly used with enzyme degradation systems, has been evaluated by means of cyclic voltammetry (CV) for enhancing the oxidation of the non-phenolic lignin model compound veratryl alcohol and three types of lignin (organosolv, Kraft and lignosulfonate) in the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate, ([C2mim][C2SO4]). The presence of either veratryl alcohol or organosolv lignin increased the second oxidation peak of ABTS under select conditions, indicating the ABTS-mediated oxidation of these molecules at high potentials in [C2mim][C2SO4]. Furthermore, CV was applied as a quick and efficient way to explore the impact of water in the ABTS-mediated oxidation of both organosolv and lignosulfonate lignin. Higher catalytic efficiencies of ABTS were observed for lignosulfonate solutions either in sodium acetate buffer or when [C2mim][C2SO4] (15 v/v%) was present in the buffer solution, whilst there was no change found in the catalytic efficiency of ABTS in [C2mim][C2SO4]-lignosulfonate mixtures relative to ABTS alone. In contrast, organosolv showed an initial increase in oxidation, followed by a significant decrease on increasing the water content of a [C2mim][C2SO4] solution.
Thermal buffering of concrete by seaweeds during a prolonged summer heatwave
NASA Astrophysics Data System (ADS)
Naylor, Larissa; Coombes, Martin
2014-05-01
Hard coastal infrastructure is subject to aggressive environmental conditions, including a suite of weathering processes in the intertidal zone. These processes, along with waves, lead to costly deterioration of coastal structures. Existing methods (e.g. coatings, less porous concrete) to reduce the risk of concrete deterioration rapidly lose their effectiveness in the intertidal zone. Additionally, a changing climate will lead to increased frequency of storms, higher sea level and higher extreme temperatures - and therefore, pose an increased risk of deterioration. Might there be a biogenic solution? New research (Coombes et al. 2013) has shown that fucoid seaweeds reduce microclimatic extremes and variability under normal summer conditions. The results presented here supplement these findings in two ways. First, they demonstrate that fucoid seaweeds act as a thermal buffer during a prolonged summer heatwave in Britain (July 2013). Over 36 days of continuous monitoring at two sites in Cornwall, UK, 19 of which were during the official heatwave, there were statistically significant differences (p = 0.000) in the maximum temperatures between thick seaweed (7.5 - 9.5 cm thickness) and thin seaweed (2 - 2.5 cm thickness) plots. Maximum temperatures reached 22°C and 33°C, for thick seaweed and thin seaweed plots, respectively. Variations in maximum temperatures between the two sites appear to be related to aspect. Second, the significantly different maximum temperature results between plots also demonstrate that seaweed thickness is an important factor influencing thermal buffering capacity. These data clearly demonstrate that fucoid seaweeds buffer concrete seawalls against extreme temperature fluxes during a heatwave, probably limiting the efficiency of deteriorative processes such as thermal expansion and contraction and salt crystallisation.
The Receptacle Model of Salting-In by Tetramethylammonium Ions
Hribar–Lee, Barbara; Dill, Ken A.; Vlachy, Vojko
2010-01-01
Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the MB + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series’ as atomic ions do. PMID:21028768
Receptacle model of salting-in by tetramethylammonium ions.
Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko
2010-11-25
Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do.
Bureau, A; Lahet, J-J; Lenfant, F; Bouyer, F; Petitjean, M; Chaillot, B; Freysz, M
2005-08-01
The aggression of erythrocytes by an oxidative stress induces hemolysis. This paper aims to valid a model of erythrocytes in terms of composition of the phosphate buffer solution and of concentration of a well-known oxidant, AAPH. Three compositions of phosphate buffer solution are mixed with three concentrations of oxidant. The influence of these two parameters on hemolysis is independently studied by a variance analysis and a Kruskal-Wallis test when ANOVA is not available. The hemolysis rate increases with time at fixed oxidant concentration, but is not influenced by the composition of the buffer solution. The highest hemolysis rate, 90%, was only measured within 2 h with the highest oxidant concentration. If we retain this concentration of oxidant, the lower concentration of the buffer can by eliminated by a significant less hemolysis and the highest concentration of the buffer can by chosen in regard of the better precision for a similar hemolysis compared to the mean buffer. We hope to study the effect of anti-oxidant agent with such a model of erythrocytes.
Pyrolytic sugars from cellulosic biomass.
Kuzhiyil, Najeeb; Dalluge, Dustin; Bai, Xianglan; Kim, Kwang Ho; Brown, Robert C
2012-11-01
Depolymerization of cellulose offers the prospect of inexpensive sugars from biomass. Breaking the glycosidic bonds of cellulose to liberate glucose has usually been pursued by acid or enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily the anhydrosugar levoglucosan (LG) whereas the presence of naturally occurring alkali and alkaline earth metals (AAEMs) in biomass strongly catalyzes ring-breaking reactions that favor formation of light oxygenates. Here, we show a method of significantly increasing the yield of sugars from biomass by purely thermal means through infusion of certain mineral acids (phosphoric and sulfuric acid) into the biomass to convert the AAEMs into thermally stable salts (particularly potassium sulfates and phosphates). These salts not only passivate AAEMs that normally catalyze fragmentation of pyranose rings, but also buffer the system at pH levels that favor glycosidic bond breakage. It appears that AAEM passivation contributes to 80 % of the enhancement in LG yield while the buffering effect of the acid salts contributes to the balance of the enhancement. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Y; McMahon, D J
2015-01-01
A challenge in manufacturing reduced-sodium cheese is that whey expulsion after salting decreases when less salt is applied. Our objectives were (1) to determine whether changing the salting method would increase whey syneresis when making a lower sodium cheese and (2) to better understand factors contributing to salt-induced curd syneresis. Unsalted milled Cheddar curds were salted using different salting intervals (5 or 10 min), different salting levels (20, 25, or 30g/kg), different numbers of applications when using only 20g/kg salt (1, 2, or 3 applications), and salting with the equivalent of 30g/kg NaCl using a 2:1 molar ratio of NaCl and KCl. Whey from these curds was collected every 5 or 10 min until 30 or 40 min after the start of salting, and curds were subsequently pressed for 3h. Additional trials were conducted in which salted milled Cheddar cheese curd was immersed at 22°C for 6h in various solutions to determine how milled curd pieces respond to different levels of salt and Ca. The use of 10-min intervals delayed whey syneresis without influencing total whey expulsion or cheese composition after pressing. Lowering the salt level reduced whey expulsion, resulting in cheeses with higher moisture and slightly lower pH. Adding salt faster did not increase whey expulsion in reduced-salt cheese. Partial substitution with KCl restored the extent of whey expulsion. When salted milled curd was immersed in a 30g/L salt solution, there was a net influx of salt solution into the curd and curd weight increased. When curd was immersed in 60g/L salt solution, a contraction of curd occurred. Curd shrinkage was more pronounced as the salt solution concentration was increased to 90 and 120g/L. Increasing the Ca concentration in test solutions (such that both serum and total Ca in the curd increased) also promoted curd contraction, resulting in lower curd moisture and pH and less weight gain by the curd. The proportion of Ca in the curd that was bound to the para-casein protein matrix changed with the Ca content of the test solution. Compared with test solutions containing 10g/L Ca, at low Ca levels (i.e., 1 and 5g/L) the proportion of bound Ca was lower, whereas at 20g/L Ca, the proportion of bound Ca was higher. Both Ca and salt concentration influence the physicochemical properties of the protein matrix such that at low concentrations the curd expands, whereas at high concentrations the curd contracts and expels whey. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Al Omari, Mahmoud M; Daraghmeh, Nidal H; El-Barghouthi, Musa I; Zughul, Mohammad B; Chowdhry, Babur Z; Leharne, Stephen A; Badwan, Adnan A
2009-10-15
Guest-host interactions of ibuprofen tromethamine salt (Ibu.T) with native and modified cyclodextrins (CyDs) have been investigated using several techniques, namely phase solubility diagrams (PSDs), proton nuclear magnetic resonance ((1)H NMR), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRPD), scanning-electron microscopy (SEM) and molecular mechanics (MM). From the analysis of PSD data (A(L)-type) it is concluded that the anionic tromethamine salt of ibuprofen (pK(a)=4.55) forms 1:1 soluble complexes with all CyDs investigated in buffered water at pH 7.0, while the neutral form of Ibu forms an insoluble complex with beta-CyD (B(S)-type) in buffered water at pH 2.0. Ibu.T has a lower tendency to complex with beta-CyD (K(11)=58 M(-1) at pH 7.0) compared with the neutral Ibu (K(11)=4200 M(-1)) in water. Complex formation of Ibu.T with beta-CyD (DeltaG(o)=-20.4 kJ/mol) is enthalpy driven (DeltaH(o)=-22.9 kJ/mol) and is accompanied by a small unfavorable entropy (DeltaS(o)=-8.4 J/mol K) change. (1)H NMR studies and MM computations revealed that, on complexation, the hydrophobic central benzene ring of Ibu.T and part of the isobutyl group reside within the beta-CyD cavity leaving the peripheral groups (carboxylate, tromethamine and methyl groups) located near the hydroxyl group networks at either rim of beta-CyD. PSD, (1)H NMR, DSC, FT-IR, XRPD, SEM and MM studies confirmed the formation of Ibu.T/beta-CyD inclusion complex in solution and the solid state.
Exclusive nuclear location of estrogen receptors in Squalus testis.
Callard, G V; Mak, P
1985-01-01
An estrogen (E)-binding molecule having both occupied and unoccupied sites is restricted to nuclear subfractions in the testis of the spiny dogfish (Squalus acanthias). We investigated the hypothesis that a species characterized by high body-fluid osmolarity (1010 mosM) has an estrogen receptor (ER) that binds to chromatin with high affinity and consequently resists redistribution during tissue processing. Although the steroid binding and sedimentation properties of the Squalus nuclear ER conformed to those of classical ER, its elution maximum from DNA-cellulose was unusually high (0.55 M NaCl). A tendency to adhere tightly to cell nuclei was reflected in the high salt concentration (0.43 M KCl) required to extract 50% of the receptors from the nuclear compartment during homogenization and in the stability of the nuclear ER population in the presence of high concentrations of a nonionic solute (urea) or increased buffer volume. Mixing and redistribution experiments showed that nuclear ER could be quantitatively and qualitatively measured in cytosolic extracts, ruling out the possibility that soluble receptors were being masked. Although Squalus oviduct ER was similar to that of testis, ER in the testis and liver of a related elasmobranch (Potamotrygon) that maintains osmotic equilibrium at 300 mosM more closely resembled mammalian ER in its elution maximum from DNA-cellulose (0.22 M NaCl) and cytosolic/nuclear ratios in low-salt buffers. We conclude that Squalus testis has a single ER pool located exclusively in the nuclear compartment. These observations support a revised concept of steroid action and further indicate that the chromatin affinity of the hormone-ER complex is an important factor in determining subfractional distribution during tissue processing. PMID:3856265
Mason, James L.; Kipp, Kenneth L.
1998-01-01
This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.
Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.
Pineros, I; Ballesteros, P; Lastres, J L
2002-02-01
A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.
NASA Astrophysics Data System (ADS)
Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.
2018-01-01
Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.
Hackemann, Eva; Hasse, Hans
2017-10-27
Using salt mixtures instead of single salts can be beneficial for hydrophobic interaction chromatography (HIC). The effect of electrolytes on the adsorption of proteins, however, depends on the pH. Little is known on that dependence for mixed electrolytes. Therefore, the effect of the pH on protein adsorption from aqueous solutions containing mixed salts is systematically studied in the present work for a model system: the adsorption of bovine serum albumin (BSA) on the mildly hydrophobic resin Toyopearl PPG-600M. The pH is adjusted to 4.0, 4.7 or 7.0 using 25mM sodium phosphate or sodium citrate buffer. Binary and ternary salt mixtures of sodium chloride, ammonium chloride, sodium sulfate and ammonium sulfate as well as the pure salts are used at overall ionic strengths between 1500 and 4200mM. The temperature is always 25°C. The influence of the mixed electrolytes on the adsorption behavior of BSA changes completely with varying pH. Positive as well as negative cooperative effects of the mixed electrolytes are observed. The results are analyzed using a mathematical model which was recently introduced by our group. In that model the influence of the electrolytes is described by a Taylor series expansion in the individual ion molarities. After suitable parametrization using a subset of the data determined in the present work, the model successfully predicts the influence of mixed electrolytes on the protein adsorption. Furthermore, results for BSA from the present study are compared to literature data for lysozyme, which are available for the same adsorbent, temperature and salts. By calculating the ratio of the loading of the adsorbent for both proteins particularly favorable separation conditions can be selected. Hence, a model-based optimization of solvents for protein separation is possible. Copyright © 2017 Elsevier B.V. All rights reserved.
Tanti, N.C.; Jones, L.; Sheardown, H.
2010-01-01
Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012
Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H
2010-02-19
Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.
Combined Microfluidic-Eectric Diffused Mixing of Living Cells in Continuous Flow
NASA Astrophysics Data System (ADS)
Ming-Wen Wang,
2010-02-01
The mixing process is a crucially important stage in the operation of biological and chemical microfluidic devices. If the mixing is inadequate, reactants do not fully interact with each other, and the device may not operate properly. This paper describes a simplified microfluidic mixer (different from a chaotic mixer) which can uniformly mix a buffer solution with living cells by applying an AC electric charge. Diffusion of the living cells into the buffer solution occurs rapidly following the interface of the flow stream with the electric charge; no further agitating step is needed. To accomplish this, an asymmetric pair of electrodes was integrated at the inlets of the buffer solution and the cells fluid. When the buffer solution and the cells fluid were introduced into one flow path, they remained limited to that flow stream. When the electrodes were charged, however, the cells in a short distance were efficiently moved into the solution flow, and the original fluids were mixed. The mixing efficiency depends on the polarizability of the cells, and this in turn is governed by the dielectric properties of the cells, the medium, and the solvent. This micro device, capable of efficiently mixing living cells with a buffer solution, may potentially allow biological mixing to be done outside of hospitals, in facilities without biological analyzing instruments.
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.
2013-08-01
The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.
Diffusiophoresis of charged colloidal particles in the limit of very high salinity.
Prieve, Dennis C; Malone, Stephanie M; Khair, Aditya S; Stout, Robert F; Kanj, Mazen Y
2018-06-13
Diffusiophoresis is the migration of a colloidal particle through a viscous fluid, caused by a gradient in concentration of some molecular solute; a long-range physical interaction between the particle and solute molecules is required. In the case of a charged particle and an ionic solute (e.g., table salt, NaCl), previous studies have predicted and experimentally verified the speed for very low salt concentrations at which the salt solution behaves ideally. The current study presents a study of diffusiophoresis at much higher salt concentrations (approaching the solubility limit). At such large salt concentrations, electrostatic interactions are almost completely screened, thus eliminating the long-range interaction required for diffusiophoresis; moreover, the high volume fraction occupied by ions makes the solution highly nonideal. Diffusiophoretic speeds were found to be measurable, albeit much smaller than for the same gradient at low salt concentrations.
Sheen, Hyukho
2016-04-01
Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng
2017-10-01
Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.
Effects of Water on the Single-Chain Elasticity of Poly(U) RNA.
Luo, Zhonglong; Cheng, Bo; Cui, Shuxun
2015-06-09
Water, the dominant component under the physiological condition, is a complicated solvent which greatly affects the properties of solute molecules. Here, we utilize atomic force microscope-based single-molecule force spectroscopy to study the influence of water on the single-molecule elasticity of an unstructured single-stranded RNA (poly(U)). In nonpolar solvents, RNA presents its inherent elasticity, which is consistent with the theoretical single-chain elasticity calculated by quantum mechanics calculations. In aqueous buffers, however, an additional energy of 1.88 kJ/mol·base is needed for the stretching of the ssRNA chain. This energy is consumed by the bound water rearrangement (Ew) during chain elongation. Further experimental results indicate that the Ew value is uncorrelated to the salt concentrations and stretching velocity. The results obtained in an 8 M guanidine·HCl solution provide more evidence that the bound water molecules around RNA give rise to the observed deviation between aqueous and nonaqueous environments. Compared to synthetic water-soluble polymers, the value of Ew of RNA is much lower. The weak interference of water is supposed to be the precondition for the RNA secondary structure to exist in aqueous solution.
Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.
Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G
2012-07-15
The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)
2002-01-01
Protein crystals are grown in microgravity experiments inside the Space Shuttle during orbit. Such crystals are basically grown in a five-component system containing a salt, buffer, polymer, organic and water. During these experiments, a number of different polymeric containment materials must be compatible with up to hundreds of different PCG solutions in various concentrations for durations up to 180 days. When such compatibility experiments are performed at NASA/MSFC (Marshall Space Flight Center) simultaneously on containment material samples immersed in various solutions in vials, the samples are rather small out of necessity. DMA4 modulus was often used as the primary screening parameter for such small samples as a pass/fail criterion for incompatibility issues. In particular, the TA Instruments DMA 2980 film tension clamp was used to test rubber O-rings as small in I.D. as 0.091 in. by cutting through the cross-section at one place, then clamping the stretched linear cord stock at each end. The film tension clamp was also used to successfully test short length samples of medical/surgical grade tubing with an O.D. of 0.125 in.
The Determination of the pH of Standard Buffer Solution: A Laboratory Experiment.
ERIC Educational Resources Information Center
Harris, K. R.
1985-01-01
Describes an experiment which shows: (1) how measurements of the reaction electromotive force for the cell (Pt/glass/NaCl(aq,m),buffer/AgCl/Ag/Pt) can be utilized in determining the absolute pH of the buffer; and (2) the demonstration of the use of the Debye-Huckel model of an electrolyte solution in solving an important electrochemical problem.…
Salt controls feeding decisions in a blood-sucking insect.
Pontes, Gina; Pereira, Marcos H; Barrozo, Romina B
2017-04-01
Salts are necessary for maintaining homeostatic conditions within the body of all living organisms. Like with all essential nutrients, deficient or excessive ingestion of salts can result in adverse health effects. The taste system is a primary sensory modality that helps animals to make adequate feeding decisions in terms of salt consumption. In this work we show that sodium and potassium chloride salts modulate the feeding behavior of Rhodnius prolixus in a concentration-dependent manner. Feeding is only triggered by an optimal concentration of any of these salts (0.1-0.15M) and in presence of the phagostimulant ATP. Conversely, feeding solutions that do not contain salts or have a high-salt concentration (>0.3M) are not ingested by insects. Notably, we show that feeding decisions of insects cannot be explained as an osmotic effect, because they still feed over hyperosmotic solutions bearing the optimal salt concentration. Insects perceive optimal-salt, no-salt and high-salt solutions as different gustatory information, as revealed the electromyogram recordings of the cibarial pump. Moreover, because insects do a continuous gustatory monitoring of the incoming food during feeding, sudden changes beyond the optimal sodium concentration decrease and even inhibit feeding. The administration of amiloride, a sodium channel blocker, noticeably reduces the ingestion of the optimal sodium solution but not of the optimal potassium solution. Salt detection seems to occur at least through two salt receptors, one amiloride-sensitive and another amiloride-insensitive. Our results confirm the importance of the gustatory system in R. prolixus, showing the relevant role that salts play on their feeding decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Foster, William J; Meen, James K; Fox, Donald A
2013-03-01
Perovskite compounds, including lead-lanthanum-zirconium titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, has been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. By comparing the unit cell of PLZT with that of CaTiO(3), which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO(3). It is thus reasonable that PLZT will react with aqueous solutions. The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications.
Foster, William J.; Meen, James K.; Fox, Donald A.
2016-01-01
Context Perovskite compounds, including Lead-Lanthanum-Zirconium Titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, have been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. Objective We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Materials and Methods Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. Results We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. Discussion By comparing the unit cell of PLZT with that of CaTiO3, which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO3. It is thus reasonable that PLZT will react with aqueous solutions. Conclusion The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications. PMID:22697294
Nune, Satish K; Chanda, Nripen; Shukla, Ravi; Katti, Kavita; Kulkarni, Rajesh R; Thilakavathi, Subramanian; Mekapothula, Swapna; Kannan, Raghuraman; Katti, Kattesh V
2009-06-01
Phytochemicals occluded in tea have been extensively used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Results on the reduction capabilities of phytochemicals present in tea to reduce gold salts to the corresponding gold nanoparticles are presented in this paper. The phytochemicals present in tea serve the dual roles as effective reducing agents to reduce gold and also as stabilizers to provide robust coating on the gold nanoparticles in a single step. The Tea-generated gold nanoparticles (T-AuNPs), have demonstrated remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. T-AuNPs with phytochemical coatings have shown significant affinity toward prostate (PC-3) and breast (MCF-7) cancer cells. Results on the cellular internalization of T-AuNPs through endocytosis into the PC-3 and MCF-7 cells are presented. The generation of T-AuNPs follows all principles of green chemistry and have been found to be non toxic as assessed through MTT assays. No 'man made' chemicals, other than gold salts, are used in this true biogenic green nanotechnological process thus paving excellent opportunities for their applications in molecular imaging and therapy.
Monitoring the degrafting of polyelectrolyte brushes by using surface gradients
NASA Astrophysics Data System (ADS)
Ko, Yeongun; Genzer, Jan
Polymer brushes comprise densely grafted polymer chains on surfaces, which possess high stability and high concentration of reactive centers per unit area compared to physisorbed polymer film. Polymer brushes are employed in many applications, including anti-fouling surfaces, cell adhesive surfaces, responsive surfaces, low-friction surfaces, etc. Recently, researchers reported that charged (or chargeable) polymer brushes can be degrafted from substrate while incubated in buffer solutions. Based on previous experiments conducted in our group and by others, we assume that chain degrafting results from the hydrolysis of Si-O groups in head-group of the initiator and/or the ester groups in main body of the initiator. The kinetic of hydrolysis is affected by mechanical forces acting on the initiator. Those forces depend on the molecular weight and the grafting density of the brush, and the concentration and distribution of charges along the macromolecule (tuned by pH - for weak electrolytes - and concentration of external salt). In this work, we study the stability of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) brushes in two solvents (ethanol and water) at various pH values in water and under different levels of external salt concentration. National Science Foundation.
Dierks, E A; Burstyn, J N
1996-06-28
In the present study, we determined that of the redox forms of nitrogen monoxide, NO-, NO and NO+, only NO significantly activates soluble guanylyl cyclase (GTP pyrophosphate-lyase cyclizing, EC 4.6.1.2). Neither of the NO-donors tested, Angeli's salt (Na2N2O3) or Piloty's acid (C6H5SO2NHOH), caused a change in the guanylyl cyclase activity relative to the basal activity level. Interference by other reaction products was eliminated as a possible explanation for the lack of activation. To the extent that NO+ could be stabilized in aqueous solution, by dissolution of the nitrosonium salt NOPF6 in dry organic solvent prior to addition to the enzyme in buffer, NO+ had no effect on the activity of soluble guanylyl cyclase. The counter-ion, PF6-, had a minimal effect on the enzyme activity and, therefore was, not responsible for the lack of activation by NO+. These observations suggest that NO- is the natural activator of soluble guanylyl cyclase and is reasonably identical with endothelium-derived relaxing factor, the physiological regulator of soluble guanylyl cyclase activity.
How to Preserve Coastal Wetlands, Threatened by Climate Change-Driven Rises in Sea Level
NASA Astrophysics Data System (ADS)
Ivajnšič, Danijel; Kaligarič, Mitja
2014-10-01
A habitat transition model, based on the correlation between individual habitats and micro-elevation intervals, showed substantial changes in the future spatial distributions of coastal habitats. The research was performed within two protected areas in Slovenia: Sečovlje Salina Nature Park and Škocjan Inlet Nature Reserve. Shifts between habitats will occur, but a general decline of 42 % for all Natura 2000 habitats is projected by 2060, according to local or global (IPCC AR4) sea level rise predictions. Three different countermeasures for the long-term conservation of targeted habitat types were proposed. The most "natural" is displacement of coastal habitats using buffer zones (1) were available. Another solution is construction of artificial islets, made of locally dredged material (2); a feasible solution in both protected areas. Twenty-two islets and a dried salt pan zone at the desired elevations suitable for those habitats that have been projected to decease in area would offer an additional 10 ha in the Sečovlje Salina. Twenty-one islets and two peninsulas at two different micro-altitudes would ensure the survival of 13 ha of three different habitats. In the area of Sečovlje Salina, abandoned salt pans could be terrestrialized by using permanent, artificial sea barriers, in a manner close to poldering (3). By using this countermeasure, another 32 ha of targeted habitat could be preserved. It can be concluded that, for each coastal area, where wetland habitats will shrink, strategic plans involving any of the three solutions should be prepared well in advance. The specific examples provided might facilitate adaptive management of coastal wetlands in general.
How to preserve coastal wetlands, threatened by climate change-driven rises in sea level.
Ivajnšič, Danijel; Kaligarič, Mitja
2014-10-01
A habitat transition model, based on the correlation between individual habitats and micro-elevation intervals, showed substantial changes in the future spatial distributions of coastal habitats. The research was performed within two protected areas in Slovenia: Sečovlje Salina Nature Park and Škocjan Inlet Nature Reserve. Shifts between habitats will occur, but a general decline of 42 % for all Natura 2000 habitats is projected by 2060, according to local or global (IPCC AR4) sea level rise predictions. Three different countermeasures for the long-term conservation of targeted habitat types were proposed. The most "natural" is displacement of coastal habitats using buffer zones (1) were available. Another solution is construction of artificial islets, made of locally dredged material (2); a feasible solution in both protected areas. Twenty-two islets and a dried salt pan zone at the desired elevations suitable for those habitats that have been projected to decease in area would offer an additional 10 ha in the Sečovlje Salina. Twenty-one islets and two peninsulas at two different micro-altitudes would ensure the survival of 13 ha of three different habitats. In the area of Sečovlje Salina, abandoned salt pans could be terrestrialized by using permanent, artificial sea barriers, in a manner close to poldering (3). By using this countermeasure, another 32 ha of targeted habitat could be preserved. It can be concluded that, for each coastal area, where wetland habitats will shrink, strategic plans involving any of the three solutions should be prepared well in advance. The specific examples provided might facilitate adaptive management of coastal wetlands in general.
Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions
NASA Astrophysics Data System (ADS)
Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.
2018-05-01
The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEDENGREN, D.C.
Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia inmore » water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.« less
Li, Weifeng; Zhou, Ruhong; Mu, Yuguang
2012-02-02
The mechanism of urea-induced protein denaturation is explored through studying the salting effect of urea on 14 amino acid side chain analogues, and N-methylacetamide (NMA) which mimics the protein backbone. The solvation free energies of the 15 molecules were calculated in pure water, aqueous urea, and NaCl solutions. Our results show that NaCl displays strong capability to salt out all 15 molecules, while urea facilitates the solvation (salting-in) of all the 15 molecules on the other hand. The salting effect is found to be largely enthalpy-driven for both NaCl and urea. Our observations can explain the higher stability of protein's secondary and tertiary structures in typical salt solutions than that in pure water. Meanwhile, urea's capability to better solvate protein backbone and side-chain components can be extrapolated to explain protein's denaturation in aqueous urea solution. Urea salts in molecules through direct binding to solute surface, and the strength is linearly dependent on the number of heavy atoms of solute molecules. The van der Waals interactions are found to be the dominant force, which challenges a hydrogen-bonding-driven mechanism proposed previously.
Record, M. Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael
2013-01-01
Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute “m-values” (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = Δ(dμ2/dm3) = Δμ23 which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the SPM, we dissect μ23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called α-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these α-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of interface formation and large-scale conformational changes in the steps of a biopolymer mechanism. PMID:23795491
Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J
2015-01-23
The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg(102). In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg(102)-Glu(1032) salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg(102)-Glu(1032) salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg(102)-Glu(1032) salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg(102)) and disease-linked C3F (Gly(102)) allotypes of C3b were experimentally explained for the first time. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A Revised Mechanism for the Activation of Complement C3 to C3b
Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J.
2015-01-01
The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg102. In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg102–Glu1032 salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg102–Glu1032 salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg102-Glu1032 salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg102) and disease-linked C3F (Gly102) allotypes of C3b were experimentally explained for the first time. PMID:25488663
Water structure and its influence on the flotation of carbonate and bicarbonate salts.
Ozdemir, O; Celik, M S; Nickolov, Z S; Miller, J D
2007-10-15
Interfacial water structure is a most important parameter that influences the collector adsorption by salt minerals such as borax, potash and trona. According to previous studies, salts can be classified as water structure makers and water structure breakers. Water structure making and breaking properties of salt minerals in their saturated brine solutions are essential to explain their flotation behavior. In this work, water structure making-breaking studies in solutions of carbonate and bicarbonate salts (Na(2)CO(3), K(2)CO(3), NaHCO(3) and NH(4)HCO(3)) in 4 wt% D(2)O in H(2)O mixtures have been performed by FTIR analysis of the OD stretching band. This method reveals a microscopic picture of the water structure making/breaking character of the salts in terms of the hydrogen bonding between the water molecules in solution. The results from the vibrational spectroscopic studies demonstrate that carbonate salts (Na(2)CO(3) and K(2)CO(3)) act as strong structure makers, whereas bicarbonate salts (NaHCO(3) and NH(4)HCO(3)) act as weak structure makers. In addition, the changes in the OD band parameters of carbonate and bicarbonate salt solutions are in agreement with the viscosity characteristics of their solutions.
The effects of biological buffers TRIS, TAPS, TES on the stability of lysozyme.
Pannuru, Pavani; Rani, Anjeeta; Venkatesu, Pannuru; Lee, Ming-Jer
2018-06-01
To explore the mechanism of lysozyme stabilization in buffer system, we have investigated the interactions between lysozyme and the biological buffers (TRIS, TAPS, and TES) using spectroscopic techniques, including ultraviolet-visible (UV-Vis), fluorescence, thermal fluorescence, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy. From the series of spectroscopic studies, it is found that the native structure of the protein remains intact in the different concentrations (0.05, 0.1, 0.25, 0.5, and 1.0M) of the biological buffer aqueous solutions at pH7.0. Moreover, all these three investigated buffers are able to protect lysozyme against thermal denaturation, particularly in high concentration (1.0M) of the buffer aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrophoretic mobilities of erythrocytes in various buffers
NASA Technical Reports Server (NTRS)
Plank, L. D.; Kunze, M. E.; Todd, P. W.
1985-01-01
The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.
A study of different buffers to maximize viability of an oral Shigella vaccine.
Chandrasekaran, Lakshmi; Lal, Manjari; Van De Verg, Lillian L; Venkatesan, Malabi M
2015-11-17
Live, whole cell killed and subunit vaccines are being developed for diarrheal diseases caused by V. cholerae, Shigella species, ETEC, and Campylobacter. Some of these vaccines can be administered orally since this route best mimics natural infection. Live vaccines administered orally have to be protected from the harsh acidic gastric environment. Milk and bicarbonate solutions have been administered to neutralize the stomach acid. For many Shigella vaccine trials, 100-120 ml of a bicarbonate solution is ingested followed by the live vaccine candidate, which is delivered in 30 ml of bicarbonate, water or saline. It is not clear if maximum bacterial viability is achieved under these conditions. Also, volumes of neutralizing buffer that are optimal for adults may be unsuitable for children and infants. To address these questions, we performed studies to determine the viability and stability of a Shigella sonnei vaccine candidate, WRSS1, in a mixture of different volumes of five different buffer solutions added to hydrochloric acid to simulate gastric acidity. Among the buffers tested, bicarbonate solution, rotavirus buffer and CeraVacx were better at neutralizing acid and maintaining the viability of WRSS1. Also, a much smaller volume of the neutralizing buffer was sufficient to counteract stomach acid while maintaining bacterial viability. Published by Elsevier Ltd.
Thermal stability of tagatose in solution.
Luecke, Katherine J; Bell, Leonard N
2010-05-01
Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.
Armour, Margaret-Ann; Linetsky, Asya; Ashick, Donna
2008-10-01
Water-soluble heavy metal salts injure health when they leach into water supplies. It is important that students who may later be employed in industries generating aqueous solutions of such salts are aware of the methods that can be used to recover the metal salt or transform it to non-health threatening products. The research was in the management of small quantities of hazardous wastes, such as are generated in school, college, and university teaching laboratories; in research laboratories; in industrial quality control and testing laboratories; and in small industries. Methods for the recovery of silver, nickel, and cobalt salts from relatively small volumes of aqueous solutions of their soluble salts were developed and tested. Where it was not practical to recover the metal salt, the practice has been to convert it to a water-insoluble salt, often the sulfide. This requires the use of highly toxic reagents. It was found that a number of heavy metal salts can be precipitated as the silicates, returning them to the form in which they are found in the natural ore. These salts show similar solubility properties to the sulfides in neutral, acidic, and basic aqueous solutions. The work has determined the conditions, quantities, and solution acidity that result in the most effective precipitation of the heavy metal salt. The concentration of the metal ions remaining in solution was measured by AA and ICP spectrometry. Specific methods have been developed for the conversion of salts of mercury and chromium to nonsoluble products.
Spinozzi, Francesco; Mariani, Paolo; Mičetić, Ivan; Ferrero, Claudio; Pontoni, Diego; Beltramini, Mariano
2012-01-01
Octopus vulgaris hemocyanin shows a particular self-assembling pattern, characterized by a hierarchical organization of monomers. The highest molecular weight aggregate is a decamer, the stability of which in solution depends on several parameters. Different pH values, buffer compositions, H2O/D2O ratios and Hofmeister’s salts result in modifications of the aggregation state of Octopus vulgaris hemocyanin. The new QUAFIT method, recently applied to derive the structure of the decameric and the monomeric assembly from small-angle scattering data, is used here to model the polydisperse system that results from changing the solution conditions. A dataset of small-angle X-rays and neutron scattering curves is analysed by QUAFIT to derive structure, composition and concentration of different assemblies present in solution. According to the hierarchy of the association/dissociation processes and the possible number of different aggregation products in solution, each sample has been considered as a heterogeneous mixture composed of the entire decamer, the dissociated “loose” monomer and all the intermediate dissociation products. Scattering curves corresponding to given experimental conditions are well fitted by using a linear combination of single particle form factors. QUAFIT has proved to be a method of general validity to describe solutions of proteins that, even after purification processes, result to be intrinsically heterogeneous. PMID:23166737
Wang, P; Wang, J; Cong, R; Dong, B
1997-05-01
A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.
Influence of organic buffers on bacteriocin production by Streptococcus thermophilus ST110.
Somkuti, George A; Gilbreth, Stefanie E
2007-08-01
The effect of the organic buffer salts MES, MOPS, and PIPES on the growth of S. thermophilus ST110, medium pH, and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In nonbuffered medium, thermophilin 110 production at 37 degrees C paralleled the growth of S. thermophilus ST110 and reached a maximum after 8-10 h. Addition of organic buffer salts decreased the drop in medium pH and resulted in increased biomass (dry cells; microg/mL) and higher yields of thermophilin 110 (units/microg cells). The best results were obtained by the addition of 1% (w/v) MES to the medium, which reduced the pH drop to 1.8 units after 10 h of growth (compared to 2.3 pH units in the control) and resulted in a 1.5-fold increase in cell mass (495 microg/mL) and a 7-fold increase in thermophilin 110 yield (77 units/microg dry cells) over the control. The results showed that whey permeate-based media may be suitable for producing large amounts of thermophilin 110 needed for controlling spoilage pediococci in industrial wine and beer fermentations.
Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi
2005-07-26
A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.
Actinide removal from spent salts
Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.
2002-01-01
A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.
Metals removal from spent salts
Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.
2002-01-01
A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.
O’Connor, Paul M.; Cowley, Allen W.
2013-01-01
We have previously demonstrated that paracrine signaling occurs between medullary thick ascending limb (mTAL) and the contractile pericytes of outer-medullary vasa recta (VR) termed ‘tubular-vascular cross talk’. The aim of the current study was to determine whether tubular-vascular cross talk has a functional effect on vasoconstrictor responses to angiotensin II, and to determine whether this is altered in the Dahl salt-sensitive (SS) rat. Studies were performed on salt-resistant consomic SS.13BN and SS rats using a novel outer medullary tissue strip preparation in which freshly isolated VR within VR bundles were perfused either alone or in combination with nearby mTAL. In VR from SS.13BN rats, angiotensin II (1μM) increased VR bundle intracellular Ca2+ concentration ([Ca2+]VR) 19±9nM (n=8) and reduced focal diameter in perfused VR by (−20±7%;n=5). In the presence of nearby mTAL however, [Ca2+]VR (−9±8nM; n=8) and VR diameter (−1±4%, n=7) in SS.13BN rats was unchanged by angiotensin II. In contrast, in Dahl SS rats, angiotensin II resulted in rapid and sustained increase in [Ca2+]VR (89±48 n=7;50±24% n=8) and a reduction in VR diameter of (−17±7;n=7 and −11±4%;n=5) in both isolated VR and VR with nearby mTAL, respectively. In VR with mTAL from SS13BN rats, inhibiton of purinergic receptors resulted in an increase in [Ca2+]VR, indicating purinergic signaling buffers vasoconstriction. Importantly, our in vitro data were able to predict medullary blood flow responses to angiotensin II in SS and SS.13BN rats in vivo. We conclude that paracrine signaling from mTAL buffers angiotensin II vasoconstriction in Dahl salt-resistant SS.13BN rats but not SS rats. PMID:22926950
Nightingale, J M; Lennard-Jones, J E; Walker, E R; Farthing, M J
1992-06-01
Six patients with jejunostomies and residual jejunal lengths of 105 to 250 cm took the same food and water each day for eight study days. In random order, three methods of salt replacement were tested, each over 48 hours, against a period without added salt. During the three test periods the patients took 120 mmol of sodium chloride daily, as salt in gelatine capsules, as an isotonic glucose electrolyte (280 mOsmol/kg; 30 kcal) solution, and as a glucose polymer (Maxijul) solution (280 mOsmol/kg; 200 kcal). The daily stomal output remained constant for each patient during the four test periods but varied between patients from 0.60 to 2.84 kg (daily intestinal fluid balance 0.74-2.61 kg). Without a salt supplement, three patients lost more sodium from the stoma than they took in by mouth (-25, -94, and -101 mmol/day) and the mean sodium balance for all six subjects was -16 mmol (range -101 to 79) daily. Extra salt was absorbed with each form of supplement (p less than 0.05); no patient with the glucose electrolyte solution (mean 96, range 0 to 226 mmol), but one patient with the glucose-polymer solution (mean 96, range -25 to 164 mmol) and two with the salt capsules (mean 66, range -8 to 145 mmol) were in negative balance. Two patients vomited with the salt capsules. There was only a small increase in energy absorption (mean 115 kcal) with the glucose polymer solution compared with the glucose electrolyte solution. A sipped glucose electrolyte solution seems to be the optimal mode of sodium replacement in patients with a high output jejunostomy.
Nightingale, J M; Lennard-Jones, J E; Walker, E R; Farthing, M J
1992-01-01
Six patients with jejunostomies and residual jejunal lengths of 105 to 250 cm took the same food and water each day for eight study days. In random order, three methods of salt replacement were tested, each over 48 hours, against a period without added salt. During the three test periods the patients took 120 mmol of sodium chloride daily, as salt in gelatine capsules, as an isotonic glucose electrolyte (280 mOsmol/kg; 30 kcal) solution, and as a glucose polymer (Maxijul) solution (280 mOsmol/kg; 200 kcal). The daily stomal output remained constant for each patient during the four test periods but varied between patients from 0.60 to 2.84 kg (daily intestinal fluid balance 0.74-2.61 kg). Without a salt supplement, three patients lost more sodium from the stoma than they took in by mouth (-25, -94, and -101 mmol/day) and the mean sodium balance for all six subjects was -16 mmol (range -101 to 79) daily. Extra salt was absorbed with each form of supplement (p less than 0.05); no patient with the glucose electrolyte solution (mean 96, range 0 to 226 mmol), but one patient with the glucose-polymer solution (mean 96, range -25 to 164 mmol) and two with the salt capsules (mean 66, range -8 to 145 mmol) were in negative balance. Two patients vomited with the salt capsules. There was only a small increase in energy absorption (mean 115 kcal) with the glucose polymer solution compared with the glucose electrolyte solution. A sipped glucose electrolyte solution seems to be the optimal mode of sodium replacement in patients with a high output jejunostomy. PMID:1624155
A Core Facility for the Study of Neurotoxins of Biological Origin
1990-06-15
toxicity of 5 x 10-8 MLD/mg protein. Sodium 125 Iodine and the Bolton-Hunter Reagent - 1251odine were purchased from Amersham. Chloramine- T , glycine...tyrosine and all salts and buffers were from Sigma Chemical Co. and Fisher. Iodination procedures. The chloramine- T method was used essentially as...previously described. Tetanus toxin (100 ig) in sodium phosphate buffer (100 mM, pH 7.4) was mixed with chloramine- T (0.5 mM) and Na 1251 (1 mCi) for 30
Fu, Qing; Wang, Jun; Liang, Tu; Xu, Xiaoyong; Jin, Yu
2013-11-01
A systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography (HILIC) was performed. The influences of mobile phase, stationary phase and buffer salt on the retention of carbohydrates were investigated. According to the results, the retention time of carbohydrates decreased as the proportion of acetonitrile in mobile phase decreased. Increased time of carbohydrates was observed as the concentration of buffer salt in mobile phase increased. The retention behavior of carbohydrates was also affected by organic solvent and HILIC stationary phase. Furthermore, an appropriate retention equation was used in HILIC mode. The retention equation lnk = a + blnC(B) + cC(B) could quantitatively describe the retention factors of carbohydrates of plant origin with good accuracy: the relative error of the predicted time to actual time was less than 0.3%. The evaluation results could provide guidance for carbohydrates to optimize the experimental conditions in HILIC method development especially for carbohydrate separation
Determination of the solubility of inorganic salts by headspace gas chromatography.
Chai, X S; Zhu, J Y
2003-05-09
This work reports a novel method for determination of salt solubility using headspace gas chromatography. A very small amount of volatile compound (such as methanol) is added in the studied solution. Due to the molecular interaction in the solution, the vapor-liquid equilibrium (VLE) partitioning coefficient of the volatile species will change with different salt contents in the solution. Therefore, the concentration of volatile species in the vapor phase is proportional to the salt concentration in the liquid phase, which can be easily determined by headspace gas chromatography. Until the salt concentration in the solution is saturated, the concentration of volatile compound in the vapor phase will continue to increase further and a breakpoint will appear on the VLE curve. The solubility of the salts can be determined by the identification of the breakpoint. It was found that the measured solubility of sodium carbonate and sodium sulfate in aqueous solutions is slightly higher (about 6-7%) than those reported in the literature method. The present method can be easily applied to industrial solution systems.
Architecture for coated conductors
Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana
2010-06-01
Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.
Iggy, Litaor M.; Thurman, E.M.
1988-01-01
Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.
Dielectric dispersion of short single-stranded DNA in aqueous solutions with and without added salt.
Katsumoto, Yoichi; Omori, Shinji; Yamamoto, Daisuke; Yasuda, Akio; Asami, Koji
2007-01-01
Dielectric spectroscopy measurements were performed for aqueous solutions of short single-stranded DNA with 30 to 120 bases of thymine over a frequency range of 10;{5} to 10;{8}Hz . Dielectric dispersion was found to include two relaxation processes in the ranges from 10;{5} to 10;{6} and from 10;{6} to 10;{8}Hz , respectively, with the latter mainly discussed in this study. The dielectric increment and the relaxation time of the high-frequency relaxation of DNA in solutions without added salt exhibited concentration and polymer-length dependences eventually identical to those for dilute polyion solutions described in previous studies. For solutions with added salt, on the other hand, those dielectric parameters were independent of salt concentration up to a certain critical value and started to decrease with further increasing salt concentration. This critical behavior is well explained by our newly extended cell model that takes into account the spatial distribution of loosely bound counterions around DNA molecules as a function of salt concentration.
Levitsky VYu; Panova, A A; Mozhaev, V V
1994-01-15
A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.
SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS
Katzin, L.I.; Sullivan, J.C.
1958-06-24
A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.
Verser, Dan W.; Eggeman, Timothy J.
2009-10-13
A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.
Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO
2011-11-01
A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.
Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel
Abdallah, Bahige G.; Kupitz, Christopher; Fromme, Petra; Ros, Alexandra
2014-01-01
Traditional macroscale protein crystallization is accomplished non-trivially by exploring a range of protein concentrations and buffers in solution until a suitable combination is attained. This methodology is time consuming and resource intensive, hindering protein structure determination. Even more difficulties arise when crystallizing large membrane protein complexes such as photosystem I (PSI) due to their large unit cells dominated by solvent and complex characteristics that call for even stricter buffer requirements. Structure determination techniques tailored for these ‘difficult to crystallize’ proteins such as femtosecond nanocrystallography are being developed, yet still need specific crystal characteristics. Here, we demonstrate a simple and robust method to screen protein crystallization conditions at low ionic strength in a microfluidic device. This is realized in one microfluidic experiment using low sample amounts, unlike traditional methods where each solution condition is set up separately. Second harmonic generation microscopy via Second Order Nonlinear Imaging of Chiral Crystals (SONICC) was applied for the detection of nanometer and micrometer sized PSI crystals within microchannels. To develop a crystallization phase diagram, crystals imaged with SONICC at specific channel locations were correlated to protein and salt concentrations determined by numerical simulations of the time-dependent diffusion process along the channel. Our method demonstrated that a portion of the PSI crystallization phase diagram could be reconstructed in excellent agreement with crystallization conditions determined by traditional methods. We postulate that this approach could be utilized to efficiently study and optimize crystallization conditions for a wide range of proteins that are poorly understood to date. PMID:24191698
Preparation and characterization of electrodeposited cobalt nanowires
NASA Astrophysics Data System (ADS)
Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.
2014-10-01
Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl2˙6H 2 O salt solution was used, which was buffered with H3BO3 and acidified by dilute H2SO4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.
Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.
Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N
2011-08-04
The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.
Hindered Diffusion in Polymeric Solutions Studied by Fluorescence Correlation Spectroscopy
Zustiak, Silviya P.; Nossal, Ralph; Sackett, Dan L.
2011-01-01
Diffusion of molecules in the crowded and charged interior of the cell has long been of interest for understanding cellular processes. Here, we introduce a model system of hindered diffusion that includes both crowding and binding. In particular, we obtained the diffusivity of the positively charged protein, ribonuclease A (RNase), in solutions of dextrans of various charges (binding) and concentrations (crowding), as well as combinations of both, in a buffer of physiological ionic strength. Using fluorescence correlation spectroscopy, we observed that the diffusivity of RNase was unaffected by the presence of positively charged or neutral dextrans in the dilute regime but was affected by crowding at higher polymer concentrations. Conversely, protein diffusivity was significantly reduced by negatively charged dextrans, even at 0.4 μM (0.02% w/v) dextran. The diffusivity of RNase decreased with increasing concentrations of negative dextran, and the amount of bound RNase increased until it reached a plateau of ∼80% bound RNase. High salt concentrations were used to establish the electrostatic nature of the binding. Binding of RNase to the negatively charged dextrans was further confirmed by ultrafiltration. PMID:21723836
Johnson, Ian; Liu, Huinan
2013-01-01
Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key factors to consider in order to satisfy the degradation requirements for next-generation biodegradable implants and devices. PMID:23799028
Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean
Wang, Zhaohui Aleck; Kroeger, Kevin D.; Ganju, Neil K.; Gonneea, Meagan; Chu, Sophie N.
2016-01-01
Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.
Phenomenological Partial Specific Volumes for G-Quadruplex DNAs
Hellman, Lance M.; Rodgers, David W.; Fried, Michael G.
2009-01-01
Accurate partial specific volume (ν̄) values are required for sedimentation velocity and sedimentation equilibrium analyses. For nucleic acids, the estimation of these values is complicated by the fact that ν̄ depends on base composition, secondary structure, solvation and the concentrations and identities of ions in the surrounding buffer. Here we describe sedimentation equilibrium measurements of the apparent isopotential partial specific volume φ′ for two G-quadruplex DNAs and a single-stranded DNA of similar molecular weight and base composition. The G-quadruplex DNAs are a 22 nucleotide fragment of the human telomere consensus sequence and a 27 nucleotide fragment from the human c-myc promoter. The single-stranded DNA is 26 nucleotides long and is designed to have low propensity to form secondary structures. Parallel measurements were made in buffers containing NaCl and in buffers containing KCl, spanning the range 0.09M ≤ [salt] ≤ 2.3M. Limiting values of φ′, extrapolated to [salt] = 0M, were: 22-mer (NaCl-form), 0.525 ± 0.004 mL/g; 22-mer (KCl-form), 0.531 ± 0.006 mL/g; 27-mer (NaCl-form), 0.548 ± 0.005 mL/g; 27-mer (KCl-form), 0.557 ± 0.006 mL/g; 26-mer (NaCl-form), 0.555 ± 0.004 mL/g; 26-mer (KCl-form), 0.564 ± 0.006 mL/g. Small changes in φ′ with [salt] suggest that large changes in counterion association or hydration are unlikely to take place over these concentration ranges. PMID:19238377
Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2
Ho, Tuan Anh; Ilgen, Anastasia
2017-10-26
Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less
Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Ilgen, Anastasia
Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less
Photo-degradation behaviour of roseoflavin in some aqueous solutions
NASA Astrophysics Data System (ADS)
Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2010-03-01
An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.
Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.
Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi
2014-04-14
The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.
ERIC Educational Resources Information Center
McIntosh, Elizabeth; Moss, Robert
1995-01-01
Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)
Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha
2018-07-01
Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol
2012-01-01
Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction
Luchterhand, B; Fischöder, T; Grimm, A R; Wewetzer, S; Wunderlich, M; Schlepütz, T; Büchs, J
2015-04-01
In Gluconobacter oxydans cultivations on glucose, CaCO3 is typically used as pH-buffer. This buffer, however, has disadvantages: suspended CaCO3 particles make the medium turbid, thereby, obstructing analysis of microbial growth via optical density and scattered light. Upon searching for alternative soluble pH-buffers, bacterial growth and productivity was inhibited most probably due to osmotic stress. Thus, this study investigates in detail the osmotic sensitivity of G. oxydans ATCC 621H and DSM 3504 using the Respiratory Activity MOnitoring System. The tested soluble pH-buffers and other salts attained osmolalities of 0.32-1.19 osmol kg(-1). This study shows that G. oxydans ATCC 621H and DSM 3504 respond quite sensitively to increased osmolality in comparison to other microbial strains of industrial interest. Osmolality values of >0.5 osmol kg(-1) should not be exceeded to avoid inhibition of growth and product formation. This osmolality threshold needs to be considered when working with soluble pH-buffers.
Aqueous solution dispersement of carbon nanotubes
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)
2011-01-01
Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.
Song, Yong-Ak; Chan, Michael; Celio, Chris; Tannenbaum, Steven R.; Wishnok, John S.; Han, Jongyoon
2010-01-01
In this paper, we are evaluating the strategy of sorting peptides / proteins based on the charge to mass without resorting to ampholytes and / or isoelectric focusing, using a single- and two-step free-flow zone electrophoresis. We developed a simple fabrication method to create a salt bridge for free-flow zone electrophoresis in PDMS chips by surface printing a hydrophobic layer on a glass substrate. Since the surface-printed hydrophobic layer prevents plasma bonding between the PDMS chip and the substrate, an electrical junction gap can be created for free-flow zone electrophoresis. With this device, we demonstrated a separation of positive and negative peptides and proteins at a given pH in standard buffer systems, and validated the sorting result with LC/MS. Furthermore, we coupled two sorting steps via off-chip titration, and isolated peptides within specific pI ranges from sample mixtures, where the pI range was simply set by the pH values of the buffer solutions. This free-flow zone electrophoresis sorting device, with its simplicity of fabrication, and a sorting resolution of 0.5 pH unit, can potentially be a high-throughput sample fractionation tool for targeted proteomics using LC/MS. PMID:20163146
Chorny, Michael; Levy, Daniel; Schumacher, Ilana; Lichaa, Chaim; Gruzman, Boris; Livshits, Oleg; Lomnicky, Yossi
2003-04-24
Benoxinate is a local anaesthetic used for ophthalmic applications. The aim of this study was to develop a rapid and simple stability-indicating method for the determination of benoxinate formulated for ophthalmic use, evaluate its long-term stability and identify its major degradation product. Benoxinate was eluted on a 10 microm Spherisorb phenyl column, 250 x 3.2 mm, with a mobile phase consisting of acetonitrile-buffer (pH 3.5) (35:65, v/v), pumped at 0.8 ml min(-1) flow rate. The buffer was composed of sodium dihydrogen phosphate (50 mM), sodium hydrogen sulfate (2.5 mM) and 1-heptanesulfonic acid sodium salt (5 mM). The analyte was quantified spectrophotometrically at 308 nm. The chromatograms of benoxinate formulations obtained by this method showed benoxinate (t = 4.5 min) well resolved from its degradation product (t = 2.3 min), which was separately identified by means of HPLC-MS as 4-amino-3-butoxybenzoic acid. The assay was demonstrated to have high accuracy, precision and linearity. The method was implemented in investigating the long-term stability of benoxinate 0.4% ophthalmic solutions. The method was found to be simple, quick and selective in determining benoxinate concentrations in fresh and aged preparations.
Electrochromic Salts, Solutions, and Devices
Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark
2008-11-11
Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.
Electrochromic salts, solutions, and devices
Burrell, Anthony K [Los Alamos, NM; Warner, Benjamin P [Los Alamos, NM; McClesky,7,064,212 T. Mark
2006-06-20
Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.
Electrochromic Salts, Solutions, and Devices
Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark
2008-10-14
Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.
Near Wall Velocity and Vorticity Measurements, In A Very High R(theta) Turbulent Boundary Layer
2006-06-15
Fluctuation in temperature 7 Angle of the oncoming flow with respect to the axis of the probe body Superscripts + Variables scaled on inner parameters Denotes...at high Reynolds numbers (Re = 5* 106). They examined flow in the viscous sublayer and buffer layer to explore the influence of very high Reynolds...Great Salt Lake and surrounding "salt flats" sit in the drying basin of what is believed to have once been a much larger body of water covering the
Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen
1996-01-01
A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.
Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; ...
2014-11-05
A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric → line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded → condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds somemore » light on the complicated interactions between DNA molecules at high densities.« less
Correlation of second virial coefficient with solubility for proteins in salt solutions.
Mehta, Chirag M; White, Edward T; Litster, James D
2012-01-01
In this work, osmotic second virial coefficients (B(22)) were determined and correlated with the measured solubilities for the proteins, α-amylase, ovalbumin, and lysozyme. The B(22) values and solubilities were determined in similar solution conditions using two salts, sodium chloride and ammonium sulfate in an acidic pH range. An overall decrease in the solubility of the proteins (salting out) was observed at high concentrations of ammonium sulfate and sodium chloride solutions. However, for α-amylase, salting-in behavior was also observed in low concentration sodium chloride solutions. In ammonium sulfate solutions, the B(22) are small and close to zero below 2.4 M. As the ammonium sulfate concentrations were further increased, B(22) values decreased for all systems studied. The effect of sodium chloride on B(22) varies with concentration, solution pH, and the type of protein studied. Theoretical models show a reasonable fit to the experimental derived data of B(22) and solubility. B(22) is also directly proportional to the logarithm of the solubility values for individual proteins in salt solutions, so the log-linear empirical models developed in this work can also be used to rapidly predict solubility and B(22) values for given protein-salt systems. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Investigation of passive films formed on the surface of alloy 690 in borate buffer solution
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Wenli, Guo
2015-10-01
The passive film formed on the surface of the alloy 690 in borate buffer solution was studied by potentiodynamic curves and electrochemical impedance spectroscopy. With the increasing of the passivation potential, the corrosion resistance of the alloy 690 reduced. Moreover, the corrosion resistance of the passive film was the lowest in the vicinity of 0.6 VSCE. These results were supported by XPS and Mott-Schottky analyses. The corrosion resistance of the alloy 690 increased with the increasing of passivated potential in borate buffer solution with chloride ion. The chloride ion decreased corrosion resistance of the alloy 690 according to point defect model.
76 FR 57951 - Glycine From the People's Republic of China: Continuation of Antidumping Duty Order
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... the order is glycine, which is a free- flowing crystalline material, like salt or sugar. Glycine is produced at varying levels of purity and is used as a sweetener/taste enhancer, a buffering agent...
The SALT NORM : a quantitative chemical-mineralogical characterization of natural waters
Bodine, Marc W.; Jones, Blair F.
1986-01-01
The new computer program SNORM calculates the salt norm from the chemical composition of a natural water. The salt norm is the quantitative ideal equilibrium assemblage that would crystallize if the water evaporated to dryness at 25 C and 1 bar pressure under atmospheric partial pressure of CO2. SNORM proportions solute concentrations to achieve charge balance. It quantitatively distributes the 18 acceptable solutes into normative salts that are assigned from 63 possible normative salts to allow only stable associations based on the Gibbs Phase Rule, available free energy values, and observed low-temperature mineral associations. Although most natural water compositions represent multiple solute origins, results from SNORM identify three major categories: meteoric or weathering waters that are characterized by normative alkali-bearing sulfate and carbonate salts: connate marine-like waters that are chloride-rich with a halite-bischofite-carnallite-kieserite-anhydrite association; and diagenetic waters that are frequently of marine origin but yield normative salts, such as Ca-bearing chlorides (antarcticite and tachyhydrite) and sylvite, which suggest solute alteration by secondary mineral reactions. The solute source or reaction process within each of the above categories is commonly indicated by the presence or absence of diagnostic normative salts and their relative abundance in the normative salt assemblage. For example, salt norms: (1) may identify lithologic source; (2) may identify the relative roles of carbonic and sulfuric acid hydrolysis in the evolution of weathering waters; (3) may identify the origin of connate water from normal marine, hypersaline, or evaporite salt resolution processes; and (4) may distinguish between dolomitization and silicate hydrolysis or exchange for the origin of diagenetic waters. (Author 's abstract)
Buffer layers on metal alloy substrates for superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.
2004-06-29
An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.
Buffer layers on metal alloy substrates for superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.
2004-10-05
An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.
Presented here are the numerical relationships between incident power densities that produce the same average electric field intensity within a chick brain half immersed in buffered saline solution and exposed to a uniform electromagnetic field at carrier frequencies of 50, 147, ...
Patel, Mehulkumar; Munjal, Bhushan; Bansal, Arvind K
2014-08-25
The purpose of this study was to evaluate the differential effect of buffering agents on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Four buffering agents, viz. citric acid (CA), malic acid (MA), succinic acid (SA) and tartaric acid (TA) were selected and their effect on GHCl crystallization was monitored using standard DSC and low temperature XRD. Onset of GHCl crystallization during heating run in DSC was measured to compare the differential effect of buffering agents. Glass transition temperature (Tg'), unfrozen water content in the freeze concentrate and crystallization propensity of the buffering agents was also determined for mechanistic understanding of the underlying effects. CA and MA inhibited while SA facilitated crystallization of GHCl even at 25 mM concentration. Increasing the concentration enhanced their effect. However, TA inhibited GHCl crystallization at concentrations <100mM and facilitated it at concentrations ≥100 mM. Lyophilization of GHCl with either SA or TA yielded elegant cakes, while CA and MA caused collapse. Tg' failed to explain the inhibitory effects of CA, MA and TA as all buffering agents lowered the Tg' of the system. Differential effect of buffering agents on GHCl crystallization could be explained by consideration of two opposing factors: (i) their own crystallization tendency and (ii) unfrozen water content in the freeze concentrate. In conclusion, it was established that API crystallization in frozen solution is affected by the type and concentration of the buffering agents. Copyright © 2014 Elsevier B.V. All rights reserved.
Presynaptic elements involved in the maintenance of the neuromuscular junction
NASA Technical Reports Server (NTRS)
Burrows, G. H.
1984-01-01
Alterations in the neuromuscular junction were observed in rats preceding loss of muscle mass. In view of the possibility that these alterations involve changes in the secretion of myotrophic agents by presynaptic motor neurons, an investigation was undertaken to characterize a neuronall factor which is thought to be involved in the initiation and maintenance of cholinergic synapses. This factor, which is secreted into the incubation medium by NG108-15 neuroblastoma x glioma hybrid cells, induces the aggregation of nicotinic acetylcholine receptors on primary cultures of rat hindlimb myotubes. Previous attempts to purify this factor failed. Extensive washing of the NG108-15 cells with hepes-buffered salt solution followed by short (4 hour) collection times resulted in the collection of incubation medium containing maximal aggregation activity with as little as 5 ug secreted protein per ml of fresh medium. A three-fold increase in specific activity was obtained after anion exchange chromatography.
Kreiner-Møller, A; Stracke, F; Zimmermann, H
2013-01-01
Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.
Dynamic interactions between coastal storms and salt marshes: A review
NASA Astrophysics Data System (ADS)
Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn
2018-01-01
This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.
Dynamic interactions between coastal storms and salt marshes: A review
Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn
2018-01-01
This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.
Huffman, G.P.; Zhao, J.; Feng, Z.
1996-12-03
A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.
Direct-to-PCR tissue preservation for DNA profiling.
Sorensen, Amy; Berry, Clare; Bruce, David; Gahan, Michelle Elizabeth; Hughes-Stamm, Sheree; McNevin, Dennis
2016-05-01
Disaster victim identification (DVI) often occurs in remote locations with extremes of temperatures and humidities. Access to mortuary facilities and refrigeration are not always available. An effective and robust DNA sampling and preservation procedure would increase the probability of successful DNA profiling and allow faster repatriation of bodies and body parts. If the act of tissue preservation also released DNA into solution, ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. In this study, we explored the possibility of obtaining DNA profiles without DNA extraction, by adding aliquots of preservative solutions surrounding fresh human muscle and decomposing human muscle and skin tissue samples directly to PCR. The preservatives consisted of two custom preparations and two proprietary solutions. The custom preparations were a salt-saturated solution of dimethyl sulfoxide (DMSO) with ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The proprietary preservatives were DNAgard (Biomatrica(®)) and Tissue Stabilising Kit (DNA Genotek). We obtained full PowerPlex(®) 21 (Promega) and GlobalFiler(®) (Life Technologies) DNA profiles from fresh and decomposed tissue preserved at 35 °C for up to 28 days for all four preservatives. The preservative aliquots removed from the fresh muscle tissue samples had been stored at -80 °C for 4 years, indicating that long-term archival does not diminish the probability of successful DNA typing. Rather, storage at -80 °C seems to reduce PCR inhibition.
Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.
Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D
2017-02-01
This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.
Fan, Yong; Lu, Yan-Min; Yu, Bin; Tan, Cong-Ping; Cui, Bo
2017-09-15
Capsaicin was extracted from capsicum oleoresin using an aqueous two-phase system (ATPS) composed of an ethylene oxide-propylene oxide (EOPO) copolymer, salt and ethanol. Capsaicin was concentrated in the top polymer-rich phase. To determine the optimal conditions, the partitioning of capsaicin in the ATPS was investigated, considering a single-factor experiment including the salt concentration, polymer concentration, buffer pH, ethanol concentration, sample loading and extraction duration. Response surface methodology was applied to investigate the effects of the polymer concentration, buffer pH and sample loading on capsaicin partitioning. A capsaicin yield of 95.5% was obtained using the optimal extraction system, which consisted of 16.3% UCON 50-HB-5100/10% K 2 HPO 4 /1% ethanol, a buffer pH of 4.35 and 0.24g of capsicum oleoresin. Capsaicin was purified from the capsaicinoid extract using a two-step macroporous adsorption resin (MAR) method. After purification using non-polar MAR ADS-17, the recovery and purity of capsaicin were 83.7% and 50.3%, respectively. After purification using weakly polar MAR AB-8, the recovery and purity of capsaicin were 88.0% and 85.1%, respectively. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Toner, J. D.; Catling, D. C.; Light, B.
2014-05-01
Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also potentially important for astrobiology because of their ability to preserve pristine cellular structures intact compared to solutions that crystallize.
Salt marsh persistence is threatened by predicted sea-level rise
NASA Astrophysics Data System (ADS)
Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.
2016-11-01
Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.
Organic Electrochemistry in Aluminum Chloride Melts.
1976-08-15
establishing a new, room temperature molten salt system. The low temperature fused salt was prepared by combining aluminum...narrow (600 mY) potential range. Organic electrosynthesis was conducted in a 50-50 by volume molten salt - benzene solution. This mixed solvent...room temperature molten salt system, namely a 67:33 mole percent aluminum chloride: ethylpyridinium bromide melt and in a 50-50 by volume solution of the
Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution.
Lin, Shu-Chiao; Huang, Chih-Fen; Shen, Li-Jiuan; Wang, Hsueh-Ju; Lin, Chia-Yu; Wu, Fe-Lin Lin
2015-12-01
Acanthamoeba keratitis is difficult to treat because Acanthamoeba cysts are resistant to the majority of antimicrobial agents. Despite the efficacy of 0.02% chlorhexidine in treating Acanthamoeba keratitis, a lack of data in the literature regarding the formulation's stability limits its clinical use. The objective of this study was to develop an optimal extemporaneous 0.02% chlorhexidine digluconate ophthalmic formulation for patients in need. With available active pharmaceutical ingredients, 0.02% chlorhexidine digluconate sample solutions were prepared by diluting with BSS Plus Solution or acetate buffer. Influences of the buffer, type of container, and temperature under daily-open condition were assessed based on the changes of pH values and chlorhexidine concentrations of the test samples weekly. To determine the beyond-use date, the optimal samples were stored at 2-8°C or room temperature, and analyzed at time 0 and at Week 1, Week 2, Week 3, Week 4, Week 5, Week 8, Week 12, and Week 24. Despite chlorhexidine exhibiting better stability in acetate buffer than in BSS solution, its shelf-life was < 14 days when stored in a light-resistant low-density polyethylene container. The acetate-buffered 0.02% chlorhexidine digluconate solution stored in light-resistant high-density polyethylene eyedroppers did not exhibit significant changes in pH or strength at any time interval. The acetate-buffered 0.02% chlorhexidine digluconate ophthalmic solution stored in light-resistant high-density polyethylene eyedroppers demonstrated excellent stability at 2-25°C for 6 months after being sealed and for 1 month after opening. This finding will enable us to prepare 0.02% chlorhexidine digluconate ophthalmic solutions based on a doctor's prescription. Copyright © 2014. Published by Elsevier B.V.
Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon
2012-09-01
In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.
Selvarajah, Viknesh; Mäki-Petäjä, Kaisa M; Pedro, Liliana; Bruggraber, Sylvaine F A; Burling, Keith; Goodhart, Anna K; Brown, Morris J; McEniery, Carmel M; Wilkinson, Ian B
2017-11-01
High dietary sodium intake triggers increased blood pressure (BP). Animal studies show that dietary salt loading results in dermal Na + accumulation and lymphangiogenesis mediated by VEGF-C (vascular endothelial growth factor C), both attenuating the rise in BP. Our objective was to determine whether these mechanisms function in humans. We assessed skin electrolytes, BP, and plasma VEGF-C in 48 healthy participants randomized to placebo (70 mmol sodium/d) and slow sodium (200 mmol/d) for 7 days. Skin Na + and K + concentrations were measured in mg/g of wet tissue and expressed as the ratio Na + :K + to correct for variability in sample hydration. Skin Na + :K + increased between placebo and slow sodium phases (2.91±0.08 versus 3.12±0.09; P =0.01). In post hoc analysis, there was a suggestion of a sex-specific effect, with a significant increase in skin Na + :K + in men (2.59±0.09 versus 2.88±0.12; P =0.008) but not women (3.23±0.10 versus 3.36±0.12; P =0.31). Women showed a significant increase in 24-hour mean BP with salt loading (93±1 versus 91±1 mm Hg; P <0.001) while men did not (96±2 versus 96±2 mm Hg; P =0.91). Skin Na + :K + correlated with BP, stroke volume, and peripheral vascular resistance in men but not in women. No change was noted in plasma VEGF-C. These findings suggest that the skin may buffer dietary Na + , reducing the hemodynamic consequences of increased salt, and this may be influenced by sex. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata
2018-04-01
Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.
Lehmann, David M; Cavet, Megan E; Richardson, Mary E
2010-12-01
Multipurpose solutions (MPS) often contain low concentrations of boric acid as a buffering agent. Limited published literature has suggested that boric acid and borate-buffered MPS may alter the corneal epithelium; an effect attributed to cytotoxicity induced by boric acid. However, this claim has not been substantiated. We investigated the effect of treating cells with relevant concentrations of boric acid using two cytotoxicity assays, and also assessed the impact of boric acid on corneal epithelial barrier function by measuring TEER and immunostaining for tight junction protein ZO-1 in human corneal epithelial cells. Boric acid was also assessed in an in vivo ocular model when administered for 28 days. Additionally, we evaluated Biotrue multi-purpose solution, a novel borate-buffered MPS, alone and with contact lenses for ocular compatibility in vitro and in vivo. Boric acid passed both cytotoxicity assays and did not alter ZO-1 distribution or corneal TEER. Furthermore, boric acid was well-tolerated on-eye following repeated administration in a rabbit model. Finally, Biotrue multi-purpose solution demonstrated good ocular biocompatibility both in vitro and in vivo. This MPS was not cytotoxic and was compatible with the eye when administered alone and when evaluated with contact lenses. We demonstrate that boric acid and a borate-buffered MPS is compatible with the ocular environment. Our findings provide evidence that ocular effects reported for some borate-buffered MPS may be incorrectly attributed to boric acid and are more likely a function of the unique combination of ingredients in the MPS formulation tested. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Upreti, P; Bühlmann, P; Metzger, L E
2006-03-01
The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows that the buffering properties of the precipitate can be explained, assuming that it consists of hydroxyapatite [Ca5(OH)(PO4)3] or Ca3(PO4)2. The pH buffering in the region from pH 3.5 to 4.5 is due to protonation of side-chain carboxylates of protein-bound glutamate, aspartate, and lactate, in order of decreasing significance. In addition, pH buffering between pH 5 to 8 in the backtitration results from the reprecipitation of calcium and phosphate either as CaHPO4 or Ca4H(PO4)3.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accuracy that is traceable to National Institute of Standards and Technology (NIST) standards. (ii) The... section. (i) Perform a single-point calibration using an NIST-certified buffer solution that is accurate... include a redundant pH sensor, perform a single point calibration using an NIST-certified buffer solution...
Code of Federal Regulations, 2013 CFR
2013-07-01
... accuracy that is traceable to National Institute of Standards and Technology (NIST) standards. (ii) The... section. (i) Perform a single-point calibration using an NIST-certified buffer solution that is accurate... include a redundant pH sensor, perform a single point calibration using an NIST-certified buffer solution...
ERIC Educational Resources Information Center
Dunnivant, Frank M.; Reynolds, Mark-Cody
2007-01-01
The laboratory experiment, which acts as a capstone, integrated lecture-laboratory exercise involving solution preparation, pH buffers, [E[subscript]H] (reduction potential) buffers, organic reaction mechanisms, reaction kinetics, and instrumental analysis is presented. The students completing the lecture and laboratory exercises could gain a…
Coefficient of Friction of Human Corneal Tissue.
Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine
2015-09-01
A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.
Spatial variability in denitrification rates in an Oregon tidal salt marsh
Modeling denitrification (DeN) is particularly challenging in tidal systems, which play a vital role in buffering adjacent coastal waters from nitrogen inputs. These systems are hydrologically and biogeochemically complex, varying on fine temporal and spatial scales. As part of a...
Hydrology in a peaty high marsh: hysteretic flow and biogeochemical implications
Terrestrial nutrient input to coastal waters is a critical water quality problem worldwide, and salt marshes may provide a valuable nutrient buffer (either by removal or by smoothing out pulse inputs) between terrestrial sources and sensitive estuarine habitats. One of the major...
NASA Astrophysics Data System (ADS)
Reshetova, E. N.
2017-01-01
The effect the ionic strength of an aqueous ethanol mobile phase containing buffer salt has the on retention and thermodynamics of adsorption of optical isomers of some α-phenylcarboxylic acids on chiral adsorbent Nautilus-E with grafted antibiotic eremomycin is investigated. It is shown that ion exchange processes participate in the adsorption of enantiomers of α-phenylcarboxylic acids. It is established that electrostatic interactions contribute to the retention of enantiomers of α-phenylcarboxylic acids and affect selectivity only slightly. The dependences of retention characteristics, selectivity, and thermodynamic parameters on the concentration of the buffer salt in the eluent are determined. A statistical analysis of enthalpy-entropy compensation is performed, and the compensation effect is shown to be true. It is found that the points corresponding to the investigated adsorbates are distributed over the compensation dependence according to the spatial structural characteristics of molecules.
One-step large-scale deposition of salt-free DNA origami nanostructures
Linko, Veikko; Shen, Boxuan; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.; Tuukkanen, Sampo
2015-01-01
DNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be controllably deposited on silicon and glass substrates by the proposed method. The results are verified using either atomic force microscopy or fluorescence microscopy depending on the shape of the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface coverage of about 4 objects/mm2. Further, the DNA nanostructures maintain their shape even if the salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We believe that the presented one-step spray-coating method will find use in various fields of material sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and plasmonic devices through DNA metallisation. PMID:26492833
NASA Astrophysics Data System (ADS)
Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam
2011-12-01
Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.
Method for producing nuclear fuel
Haas, Paul A.
1983-01-01
Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan
1985-01-01
Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.
The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.
Metrick, Michael A; Temple, Joshua E; MacDonald, Gina
2013-12-31
The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.
Yamada, Kyohei; Iwao, Yasunori; Bani-Jaber, Ahmad; Noguchi, Shuji; Itai, Shigeru
2015-01-01
Although chitosan (CS) has been recognized as a good material for colon-specific drug delivery systems, an overcoating with an enteric coating polymer on the surface of CS is absolutely necessary because CS is soluble in acidic conditions before reaching the colon. In the present study, to improve its stability in the presence of acid, a newly developed CS-laurate (CS-LA) material was evaluated as a coating dispersion for the development of colon-specific drug delivery systems. Two types of CS with different molecular weights, CS250 and CS600, were used to prepare CS-LA films by the casting method. The CS250-LA films had smooth surfaces, whereas the surfaces of the CS600-LA films were rough, indicating that the CS250-LA dispersion could form a denser film than CS600-LA. Both of these CS-LA films maintained a constant shape over 22 h in a pH 1.2 HCl/NaCl buffer, where the corresponding CS films rapidly disintegrated. In addition, the CS250-LA film showed specific colon degradability in a pH 6.0 phosphate buffered solution containing 1.0% (w/v) β-glucosidase. As a result of tensile strength and elongation at the break, both CS-LA films were found to have flexible film properties. Finally, the release of acetaminophen from disks coated with CS250-LA dispersions was significantly suppressed in fluids at pH 1.2 and 6.8, whereas disks coated with CS solution rapidly released the drug in pH 1.2 fluids. Taken together, this study shows that LA modification could be a useful approach in preparing CS films with acid stability and colonic degradability properties without requiring overcoating.
NASA Technical Reports Server (NTRS)
Muschol, Martin; Rosenberger, Franz
1995-01-01
We have performed multiangle static and dynamic light scattering studies of lysozyme solutions at pH=4.7. The Rayleigh ratio R(sub g) and the collective diffusion coefficient D(sub c) were determined as function of both protein concentration c(sub p) and salt concentration c(sub s) with two different salts. At low salt concentrations, the scattering ratio K(sub c)(sub p)/R(sub theta) and diffusivity increased with protein concentration above the values for a monomeric, ideal solution. With increasing salt concentration this trend was eventually reversed. The hydrodynamic interactions of lysozyme in solution, extracted from the combination of static and dynamic scattering data, decreased significantly with increasing salt concentration. These observations reflect changes in protein interactions, in response to increased salt screening, from net repulsion to net attraction. Both salts had the same qualitative effect, but the quantitative behavior did not scale with the ionic strength of the solution. This indicates the presence of salt specific effects. At low protein concentrations, the slopes of K(sub c)(sub p)/R(sub theta) and D(sub c) vs c(sub p) were obtained. The dependence of the slopes on ionic strength was modeled using a DLVO potential for colloidal interactions of two spheres, with the net protein charge Z(sub e) and Hamaker constant A(sub H) as fitting parameters. The model reproduces the observed variations with ionic strength quite well. Independent fits to the static and dynamic data, however, led to different values of the fitting parameters. These and other shortcomings suggest that colloidal interaction models alone are insufficient to explain protein interactions in solutions.
Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael
2009-11-15
Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. 2009 Wiley-Liss, Inc.
The effect of sodium chloride on the dissolution of calcium silicate hydrate gels.
Hill, J; Harris, A W; Manning, M; Chambers, A; Swanton, S W
2006-01-01
The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 degrees C compared to those prepared at 25 degrees C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium.
NASA Astrophysics Data System (ADS)
Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Ikehara, Yuzuru; Hori, Masaru
2017-10-01
Oxalate was synthesized in the glucose solution by irradiation with non-equilibrium atmospheric pressure plasma (NEAPP), in which the NEAPP plume contacted the solution surface, via the generation of several intermediate organic products such as gluconic acid. A thermodynamically unstable phase of calcium oxalate dihydrate crystallized rapidly during incubation of a NEAPP-irradiated glucose solution that contained calcium ions and was buffered at neutral pH. Longer irradiation times increased the growth rate and the number of seed crystals.
Fathallah, Anas M; Turner, Michael R; Mager, Donald E; Balu-Iyer, Sathy V
2015-03-01
The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability. Copyright © 2014 John Wiley & Sons, Ltd.
Fathallah, Anas M.; Turner, Michael R.; Balu-Iyer, Sathy V.
2015-01-01
Subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after sc administration remains a major challenge. In this work we investigated the effects of excipient dependent hyper-osmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as our animal model, we compared the effects of NaCl, mannitol and, O-Phospho-L-Serine (OPLS) on plasma concentration of rituximab over 5 days after sc administration. We observed an increase in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, as compared to isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph node in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatic, as estimated by the model, increased from 0.05 % in isotonic buffer to 13% in hyper-tonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. Our data suggests that hypertonic solutions may be a viable option to improve sc bioavailability. PMID:25377184
1981-06-03
Salts of Bicobaltocenet-The hexafluorophosphate salt of bicobaltocene(III,III) was prepared by the method of Davison and Smart 4 and the orange product...tetrahydrofuran. The lithium salt of TCNO was prepared by adding a boiling solution of lithium iodide in acetonitrile to a boiling solution of TCNQ in...compound 1,1’-bicobaltocene[Co(III)Co(III)[TCNQJ 3 resulted from the reaction of the mixed valence hexafluorophosphate salt with a mixture of [Et3NH
Analytical Results from Salt Solution Feed Tank (SSFT) Samples HTF-16-6 and HTF-16-40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.
Two samples from the Salt Solution Feed Tank (SSFT) were analyzed by SRNL, HTF-16-6 and HTF-16-40. Multiple analyses of these samples indicate a general composition almost identical to that of the Salt Batch 8-B feed and the Tank 21H sample results.
EFFECTS OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND SALT MARSH
Coastal marshes represent an important transitional zone between uplands and estuaries. One important function of marshes is to assimilate nutrient inputs from uplands, thus providing a buffer for anthropogenic nutrient loads. We examined the effects of nitrogen (N) and phosphoru...
Song, Young-Hyun; Hidayat, Syarif; Kim, Han-Ki; Park, Joo-Yang
2016-06-01
The aim of this work was to use substrate without buffer solution in a microbial reverse-electrodialysis electrolysis cell (MREC) for hydrogen production under continuous flow condition (10 cell pairs of RED stacks, HRT=5, 7.5, and 15h). Decreasing in the HRT (increasing in the organic matter) made cell current stable and increased. Hydrogen gas was produced at a rate of 0.61m(3)-H2/m(3)-Van/d in H-MREC, with a COD removal efficiency of 81% (1.55g/L/d) and a Coulombic efficiency of 41%. This MREC system without buffer solution could successfully produce hydrogen gas at a consistent rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamics of diamond nanoparticles in solution and cells.
Neugart, Felix; Zappe, Andrea; Jelezko, Fedor; Tietz, C; Boudou, Jean Paul; Krueger, Anke; Wrachtrup, Jörg
2007-12-01
The fluorescence and motional dynamics of single diamond nanocrystals in buffer solution and in living cells is investigated. Stable hydrosols of nanodiamonds in buffer solutions are investigated by fluorescence correlation spectroscopy. Measurement of the effective hydrodynamic radius yields particles of 48 nm diameter, which is in excellent agreement with atomic force microscopy measurements made on the same particles. Fluorescence correlation spectroscopy measurements indicate that nanocrystals easily form aggregates when the buffer pH is changed. This tendency is reduced when the surface of the diamonds is covered with surfactants. Upon incubation, cells spontaneously take up nanocrystals that uniformly distribute in cells. Most of the particles get immobilized within a few minutes. The binding of streptavidin to biotinylated aggregates of 4 nm diameter nanodiamonds is demonstrated.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
Method for detecting coliform organisms
NASA Technical Reports Server (NTRS)
Nishioka, K.; Nibley, D. A.; Jeffers, E. L.; Brooks, R. L. (Inventor)
1983-01-01
A method and apparatus are disclosed for determining the concentration of coliform bacteria in a sample. The sample containing the coliform bacteria is cultured in a liquid growth medium. The cultured bacteria produce hydrogen and the hydrogen is vented to a second cell containing a buffer solution in which the hydrogen dissolves. By measuring the potential change in the buffer solution caused by the hydrogen, as a function of time, the initial concentration of bacteria in the sample is determined. Alternatively, the potential change in the buffer solution can be compared with the potential change in the liquid growth medium to verify that the potential change in the liquid growth medium is produced primarily by the hydrogen gas produced by the coliform bacteria.
Murphy, George W.
1983-01-01
A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment.
Fournier, Robert O.; Williams, Marshall L.
1983-01-01
The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model
Purification of peroxidase from Horseradish (Armoracia rusticana) roots.
Lavery, Christopher B; Macinnis, Morgan C; Macdonald, M Jason; Williams, Joanna Bassey; Spencer, Colin A; Burke, Alicia A; Irwin, David J G; D'Cunha, Godwin B
2010-08-11
Peroxidase (EC 1.11.1.7) from horseradish ( Armoracia rusticana ) roots was purified using a simple, rapid, three-step procedure: ultrasonication, ammonium sulfate salt precipitation, and hydrophobic interaction chromatography on phenyl Sepharose CL-4B. The preparation gave an overall yield of 71%, 291-fold purification, and a high specific activity of 772 U mg(-1) protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme was homogeneous and had a molecular weight of approximately 40 kDa. The isolated enzyme had an isoelectric point of 8.8 and a Reinheitszahl value of 3.39 and was stable when stored in the presence of glycerol at -20 degrees C, with >95% retention of original enzyme activity for at least 6 months. Maximal activity of purified horseradish peroxidase (HRP) was obtained under different optimized conditions: substrate (guaiacol and H(2)O(2)) concentrations (0.5 and 0.3 mM, respectively), type of buffer (50 mM phosphate buffer), pH (7.0), time (1.0 min), and temperature of incubation (30 degrees C). In addition, the effect of HRP and H(2)O(2) in a neutral-buffered aqueous solution for the oxidation of phenol and 2-chlorophenol substrates was also studied. Different conditions including concentrations of phenol/2-chlorophenol, H(2)O(2), and enzyme, time, pH, and temperature were standardized for the maximal activity of HRP with these substrates; under these optimal conditions 89.6 and 91.4% oxidations of phenol and 2-chlorophenol were obtained, respectively. The data generated from this work could have direct implications in studies on the commercial production of this biotechnologically important enzyme and its stability in different media.
Separation of proteins by hydrophobic interaction chromatography at low salt concentration.
Kato, Yoshio; Nakamura, Koji; Kitamura, Takashi; Moriyama, Hiroyuki; Hasegawa, Masazumi; Sasaki, Hiroo
2002-09-20
We investigated protein separation by hydrophobic interaction chromatography (HIC) at low salt concentration on the supports of various hydrophobicities. Hydrophobic proteins could be successfully separated with more than 90% recovery by gradient elution of ammonium sulfate from 0.3-0.5 M to 0 in 50 mM phosphate buffer (pH 6.8) by using supports whose hydrophobicities were properly adjusted individually for each protein. Satisfactory results were also obtained by isocratic elution without ammonium sulfate and gradient elution of ethanol from 0 to 10%. HIC at low salt concentration was compatible with other modes of liquid chromatography like ion-exchange chromatography. On the other hand, it was not successful to separate hydrophilic proteins at low salt concentration. Recoveries of hydrophilic proteins decreased before they were retained enough as support hydrophobicity increased. Therefore, it is inevitable to use a higher concentration of salt, e.g., 1-2 M ammonium sulfate, on hydrophilic or moderately hydrophobic support in order to retain hydrophilic proteins without decrease in recovery.
Mohtashamian, Shahab; Boddohi, Soheil; Hosseinkhani, Saman
2018-02-01
Self-assembled nanogel was prepared by electrostatic complexation of two oppositely charged biological macromolecules, which were cationic nisin and anionic chondroitin sulfate (ChS). The critical factors affected the physical properties of ChS-nisin nanogel was screened and optimized by Plackett-Burman design (PB) and central composite design (CCD). The independent factors selected were: concentration ratio of nisin to ChS, injection rate of nisin solution, buffer solvent type, magnetic stirring rate, pH of initial buffer solution, centrifuge-cooling temperature, and centrifuge rotation speed. Among these factors, concentration ratio changed the entrapment efficiency and loading capacity significantly. In addition, the hydrodynamic diameter and loading capacity were significantly influenced by injection rate and pH of initial buffer solution. The optimized nanogel structure was obtained by concentration ratio of 6.4mg/mL nisin to 1mg/mL ChS, pH of buffer solution at 4.6, and nisin solution injection rate of 0.2mL/min. The observed values of dependent responses were close to predicted values confirmed by model from response surface methodology. The results obviously showed that quality by design concept (QbD) could be effectively applied to optimize the developed ChS-nisin nanogel. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Manard, Benjamin T.; Marcus, R. Kenneth
2012-08-01
Capillary-channeled polymer (C-CP) fibers are employed in a micropipette tip format to affect a stationary phase for the solid phase extraction (SPE) of proteins from buffer solutions prior to MALDI-MS analysis. Proteins readily adsorb to the polypropylene (PP) C-CP fibers while buffer species are easily washed off the tips using DI-H2O. Elution of the solutes is achieved with an aliquot of 50:50 ACN:H2O, which is compatible with the subsequent spotting on the MALDI target with the matrix solution. Lysozyme and cytochrome c are used as test species, with a primary buffer composition of 100 mM Tris-HCl. In this case, direct MALDI-MS produces no discernible protein signals. SPE on the C-CP fibers yields high fidelity mass spectra for 1 μL sample volumes. Limits of detection for cytochrome c in 100 mM Tris-HCl are on the order of 40 nM. Extraction of cytochrome c from buffer concentrations of up to 1 M Tris-HCl, provides signal recoveries that are suppressed by only ~50 % versus neat protein solutions. Finally, extraction of 3.1 μM cytochrome c from a synthetic urine matrix exhibits excellent recovery.
Stabilization of photosystem II reaction centers: influence of bile salt detergents and low pH.
Gall, B; Scheer, H
1998-07-17
Rapid deterioration of samples is a major obstacle in research on the isolated reaction center of photosystem II. Its stability was tested systematically using a wide range of detergents, varying pH and temperature. Stability and activity did not depend on ionic properties of detergents or on critical micellar concentration. However, both were significantly increased by bile salt detergents in the dark as well as in the light. Low pH (5.5) and low temperature further improved stability. The results suggest that in particular the zwitterionic bile salt detergent, CHAPS, in pH 5.5 buffers is a very useful detergent and even superior to dodecylmaltoside for work with photosystem II reaction centers.
Halophilic Nuclease from a Moderately Halophilic Micrococcus varians
Kamekura, Masahiro; Onishi, Hiroshi
1974-01-01
The moderately halophilic bacterium Micrococcus varians, isolated from soy sauce mash, produced extracellular nuclease when cultivated aerobically in media containing 1 to 4 M NaCl or KCl. The enzyme, purified to an electrophoretically homogeneous state, had both ribonuclease and deoxyribonuclease activities. The nuclease had maximal activity in the presence of 2.9 M NaCl or 2.1 M KCl at 40 C. The enzymatic activity was lost by dialysis against low-salt buffer, whereas when the inactivated enzyme was dialyzed against 3.4 M NaCl buffer as much as 77% of the initial activity could be restored. Images PMID:4852218
Leenheer, J.A.; Brown, P.A.; Stiles, E.A.
1987-01-01
Nonvolatile, organic solutes that comprise the dissolved organic carbon (DOC) in saline waters were isolated by removal of the water by distillation from a N,N-dimethylformamideformic acid-acetonitrile mixture. Salts isolated with the DOC were removed by crystallization of sodium chloride and sodium sulfate from the solvent mixture, removal of silicic acid by acidification and precipitation, removal of boric acid by methylation and volatilization, and removal of phosphate by zinc acetate precipitation. Chemical alteration of the organic solutes was minimized during evaporative concentration steps by careful control of acid concentrations in the solvent mixture and was minimized during drying by conversion of the samples to pyridinium and sodium salts. Recoveries of various hydrophilic organic standards from aqueous salt solutions and recoveries of natural organic solutes from various water samples varied from 60 to 100%. Losses of organic solutes during the isolation procedure were nonselective and related to the number of salt- and precipitate-washing cycles in the procedure.
Geftic, S G; Heymann, H; Adair, F W
1979-01-01
A strain of Pseudomonas cepacia that survived for 14 years (1963 to 1977) as a contaminant in an inorganic salt solution which contained commercial 0.05% benzalkonium chloride (CBC) as an antimicrobial preservative, was compared to a recent clinical isolate of P. cepacia. Ammonium acetate was present in the concentrated stock CBC solution, and served as a carbon and nitrogen source for growth when carried over into the salts solution with the CBC. The isolate's resistance to pure benzalkonium chloride was increased step-wise to a concentration of 16%. Plate counts showed 4 x 10(3) colony-forming units per ml in the salts solution. Comparison of growth rates, mouse virulence, antibiotics resistance spectra, and substrate requirements disclosed no differences between the contaminant and a recently isolated clinical strain of P. cepacia. The results indicate that it is critical that pharmaceutical solutions containing benzalkonium chloride as an antimicrobial preservative be formulated without extraneous carbon and nitrogen sources or be preserved with additional antimicrobial agents. PMID:453827
NASA Astrophysics Data System (ADS)
Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun
2013-10-01
Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.
NASA Astrophysics Data System (ADS)
Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica
2013-04-01
weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.
Zhang, Le; Zhang, Jifeng
2012-09-04
The perturbation of salt ions on the solubility of a monoclonal antibody was systematically studied at various pHs in Na(2)SO(4), NaNO(3), NaCl, NaF, MgSO(4), Mg(NO(3))(2) and MgCl(2) solutions below 350 mM. At pH 7.1, close to the pI, all of the salts increased the solubility of the antibody, following the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for anions and Mg(2+) > Na(+) for cations. At pH 5.3 where the antibody had a net positive charge, the anions initially followed the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for effectiveness in reducing the solubility and then switched to increasing the solubility retaining the same order. Furthermore, the antibody was more soluble in the Mg(2+) salt solutions than in the corresponding Na(+) salt solutions with the same anion. At pH 9.0 where the antibody had a net negative charge, an initial decrease in the protein solubility was observed in the solutions of the Mg(2+) salts and NaF, but not in the rest of the Na(+) salt solutions. Then, the solubility of the antibody was increased by the anions in the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-). The above complex behavior is explained based on the ability of both cation and anion from a salt to modulate protein-protein interactions through their specific binding to the protein surface.
Murphy, G.W.
1983-09-13
A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment. 3 figs.
Methods of producing adsorption media including a metal oxide
Mann, Nicholas R; Tranter, Troy J
2014-03-04
Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.
The use of physiological solutions or media in calcium phosphate synthesis and processing.
Tas, A Cuneyt
2014-05-01
This review examined the literature to spot uses, if any, of physiological solutions/media for the in situ synthesis of calcium phosphates (CaP) under processing conditions (i.e. temperature, pH, concentration of inorganic ions present in media) mimicking those prevalent in the human hard tissue environments. There happens to be a variety of aqueous solutions or media developed for different purposes; sometimes they have been named as physiological saline, isotonic solution, cell culture solution, metastable CaP solution, supersaturated calcification solution, simulated body fluid or even dialysate solution (for dialysis patients). Most of the time such solutions were not used as the aqueous medium to perform the biomimetic synthesis of calcium phosphates, and their use was usually limited to the in vitro testing of synthetic biomaterials. This review illustrates that only a limited number of research studies used physiological solutions or media such as Earle's balanced salt solution, Bachra et al. solutions or Tris-buffered simulated body fluid solution containing 27mM HCO3(-) for synthesizing CaP, and these studies have consistently reported the formation of X-ray-amorphous CaP nanopowders instead of Ap-CaP or stoichiometric hydroxyapatite (HA, Ca10(PO4)6(OH)2) at 37°C and pH 7.4. By relying on the published articles, this review highlights the significance of the use of aqueous solutions containing 0.8-1.5 mMMg(2+), 22-27mM HCO3(-), 142-145mM Na(+), 5-5.8mM K(+), 103-133mM Cl(-), 1.8-3.75mM Ca(2+), and 0.8-1.67mM HPO4(2-), which essentially mimic the composition and the overall ionic strength of the human extracellular fluid (ECF), in forming the nanospheres of X-ray-amorphous CaP. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.
Kulkarni, Girish S; Zhong, Zhaohui
2012-02-08
Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired. © 2012 American Chemical Society
Bobbin, R P; Fallon, M; Puel, J L; Bryant, G; Bledsoe, S C; Zajic, G; Schacht, J
1990-08-01
The mechanical and electrical properties of cochlear outer hair cells (OHCs) are suggested to modulate transduction by inner hair cells. These properties of OHCs are presumably regulated by efferent neurons which use several transmitters including acetylcholine (Ach) and gamma aminobutyric acid (GABA). Since it had been suggested that Ach causes isolated OHCs to shorten visibly, this study was designed to investigate whether GABA also alters the length of OHCs. OHCs were isolated from the guinea pig cochlea by mechanical dispersion after collagenase treatment. Cells were initially selected by strict morphological criteria. In addition they were only included in further studies if they attained a constant length during 10 min of superfusion with buffer solution. Neither GABA (20 microM: 100 microM), Ach (5 mM; 10 microM with 10 microM eserine) or carbachol (10 microM; 100 microM) altered OHC length when applied in iso-osmotic Hank's balanced salt solution (total number of cells tested, 72). If a change in length occurred it must have been smaller than 0.3 microns, our detection ability. In contrast, high potassium and variations in osmolarity changed hair cell length by 3-10% in agreement with other reports.
On the delay analysis of a TDMA channel with finite buffer capacity
NASA Technical Reports Server (NTRS)
Yan, T.-Y.
1982-01-01
The throughput performance of a TDMA channel with finite buffer capacity for transmitting data messages is considered. Each station has limited message buffer capacity and has Poisson message arrivals. Message arrivals will be blocked if the buffers are congested. Using the embedded Markov chain model, the solution procedure for the limiting system-size probabilities is presented in a recursive fashion. Numerical examples are given to demonstrate the tradeoffs between the blocking probabilities and the buffer sizing strategy.
Process for Making Single-Domain Magnetite Crystals
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.
2004-01-01
A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water.
Chronopotentiometry of refractory metals, actinides and oxyanions in molten salts: A review
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1992-01-01
The applications of chronopotentiometry to the study of electrochemical behavior of three technologically important areas of refractory metals, actinides, and oxyanions in molten salts are critically reviewed. Chronopotentiometry is a very versatile diagnostic tool to understand the reaction mechanism of the electrode processes for the electrochemical reduction/oxidation of these electroactive species in molten salt solutions. Well adherent, compact, and uniformly thick coatings of refractory metals may be electrodeposited from their solutions in molten salts.
NASA Astrophysics Data System (ADS)
Trifonov, Sergey V.; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia
2016-07-01
The use of processed human wastes as a source of minerals for plants in closed biotechnical life support systems (BTLSS) leads to high salt levels in the irrigation solution, as urine contains high concentrations of NaCl. It is important to develop a process that would effectively decrease NaCl concentration in the irrigation solution and return this salt to the crew's diet. The salt-tolerant plants (Salicornia europea) used to reduce NaCl concentration in the irrigation solution require higher salt concentrations than those of the solution, and this problem cannot be resolved by concentrating the solution. At the same time, NaCl extracted from mineralized wastes by physicochemical methods is not pure enough to be included in the crew's diet. This study describes an original physicochemical method of NaCl extraction from the solution, which is intended to be used in combination with the biological method of NaCl extraction by using saltwort plants. The physicochemical method produces solutions with high NaCl concentrations, and saltwort plants serve as a biological filter in the final phase, to produce table salt. The study reports the order in which physicochemical and biological methods of NaCl extraction from the irrigation solution should be used to enable rapid and effective inclusion of NaCl into the cycling of the BTLSS with humans. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).
EFFECTS OF NITROGEN SOURCE ON CRUDE OIL BIODEGRADATION
The effects of NH4Cl and KNO3 on biodegradation of light Arabian crude oil by an oil-degrading enrichment culture were studied in respirometers. In poorly buffered sea salts medium, the pH decreased dramatically in cultures that contained NH4Cl, b...
USDA-ARS?s Scientific Manuscript database
Reformulation of calcium chloride cover brine for cucumber fermentation was explored as a mean to minimize the incidence of bloater defect. This study particularly focused on cover brine supplementation with calcium hydroxide, sodium chloride (NaCl), and acids to enhance buffer capacity, inhibit the...
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles.... 14433-76-2) Emulsifier, solvent, cosolvent Diammonium phosphate (CAS Reg. No. 7783-28-0) Buffer...
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles... phosphate (CAS Reg. No. 7783-28-0) Buffer, surfactant dibenzylidene sorbitol (32647-67-9) Thinning agent...
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles... phosphate (CAS Reg. No. 7783-28-0) Buffer, surfactant dibenzylidene sorbitol (32647-67-9) Thinning agent...
Sampling and RNA quality for successful diagnostics using quantitative PCR
USDA-ARS?s Scientific Manuscript database
Diagnostic analyses of RNA targets are widely used in honey bee pathology. These diagnostics can be compromised by the actions of endogenous RNA-degrading enzymes activated upon bee death. RNA degradation can be minimized by storage at ultra-cold temperatures or by immersion in high-salt buffers. H...
Sung, Nackmoon; Collins, Michael T.
2000-01-01
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20°C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log10 concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 103 cells of M. avium subsp. paratuberculosis per ml. PMID:10742208
Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.
Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro
2015-02-01
Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Salinity and hydrology of closed lakes
Langbein, Walter Basil
1961-01-01
Lakes without outlets, called closed lakes, are exclusively features of the arid and semiarid zones where annual evaporation exceeds rainfall. The number of closed lakes increases with aridity, so there are relatively few perennial closed lakes, but "dry" lakes that rarely contain water are numerous.Closed lakes fluctuate in level to a much greater degree than the open lakes of the humid zone, because variations in inflow can be compensated only by changes in surface area. Since the variability of inflow increases with aridity, it is possible to derive an approximate relationship for the coefficient of variation of lake area in terms of data on rates of evaporation, lake area, lake depth, and drainage area.The salinity of closed lakes is highly variable, ranging from less than 1 percent to over 25 percent by weight of salts. Some evidence suggests that the tonnage of salts in a lake solution is substantially less than the total input of salts into the lake over the period of existence of the closed lake. This evidence suggests further that the salts in a lake solution represent a kind of long-term balance between factors of gain and loss of salts from the solution.Possible mechanisms for the loss of salts dissolved in the lake include deposition in marginal bays, entrapment in sediments, and removal by wind. Transport of salt from the lake surface in wind spray is also a contributing, but seemingly not major, factor.The hypothesis of a long-term balance between input to and losses from the lake solution is checked by deriving a formula for the equilibrium concentration and comparing the results with the salinity data. The results indicate that the reported salinities seemingly can be explained in terms of their geometric properties and hydrologic environment.The time for accumulation of salts in the lake solution the ratio between mass of salts in the solution and the annual input may also be estimated from the geometric and hydrologic factors, in the absence of data on the salt content of the lake or of the inflow.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...
NASA Astrophysics Data System (ADS)
Guo, Shaoqiang; Shay, Nikolas; Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo
2017-12-01
The fluoride molten salt such as FLiNaK and FLiBe is one of the coolant candidates for the next generation nuclear reactor concepts, for example, the fluoride salt cooled high temperature reactor (FHR). For mitigating corrosion of structural materials in molten fluoride salt, the redox condition of the salts needs to be monitored and controlled. This study investigates the feasibility of applying the Eu3+/Eu2+ couple for redox control. Cyclic voltammetry measurements of the Eu3+/Eu2+ couple were able to obtain the concentrations ratio of Eu3+/Eu2+ in the melt. Additionally, the formal standard potential of Eu3+/Eu2+ was characterized over the FHR's operating temperatures allowing for the application of the Nernst equation to establish a Eu3+/Eu2+ concentration ratio below 0.05 to prevent corrosion of candidate structural materials. A platinum quasi-reference electrode with potential calibrated by potassium reduction potential is shown as reliable for the redox potential measurement. These results show that the Eu3+/Eu2+ couple is a feasible redox buffering agent to control the redox condition in molten fluoride salts.
CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, Mariappan Parans
We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan
The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequencymore » in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this computational approach will be of critical use in interpreting linear and nonlinear vibrational spectroscopies of HDO molecule that is considered as an excellent local probe for monitoring local electrostatic and hydrogen-bonding environment in not just salt but also other confined and crowded solutions.« less
In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris
NASA Astrophysics Data System (ADS)
Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun
2018-05-01
Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.
In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris
NASA Astrophysics Data System (ADS)
Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun
2018-06-01
Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.
Al-Gousous, J; Penning, M; Langguth, P
2015-04-30
The purpose of this investigation was to study the effect of using different salts of shellac on the disintegration properties of shellac-based enteric coatings. In the last two decades, shellac has been increasingly used as an aqueous solution for enteric coating purposes, with the ammonium salt being the form typically used. Little investigation has been performed on using other salts, and therefore, this was the focus of our work. Enteric coatings, based on different shellac salts (ammonium, sodium, potassium and composite ammonium-sodium), were applied onto soft gelatin capsules. Disintegration testing of the coated soft gelatin capsules showed that alkali metal salts promote faster disintegration than ammonium salts. In order to determine the causes behind these differences, the solubility, thermal and spectroscopic properties of films cast from the different salts were investigated. The results show that films cast from ammonium-based salts of shellac are, unlike those cast from alkali metal-based salts, water-insoluble. Spectroscopic evidence suggests that this might be due to partial salt dissociation resulting in loss of ammonium as ammonia and reduced degree of shellac ionization during drying. In addition, oxidation of shellac aldehyde groups of the ammonium-based shellac salts could also play a role. And possible higher extent of shellac hydrolysis during the preparation of alkali metal salts might also be a factor. Therefore, the nature of the shellac salt used in the preparation of shellac-based aqueous coating solutions is a significant formulation factor affecting product performance. Copyright © 2014 Elsevier B.V. All rights reserved.
de Almeida, Josiane; Hoogenkamp, Michel; Felippe, Wilson T; Crielaard, Wim; van der Waal, Suzette V
2016-02-01
Disruption of the matrix of endodontic biofilms will aid in their removal from a root canal. Therefore, the aim of this study was to investigate the efficacy of EDTA and a modified salt solution (MSS) to detach bacteria from biofilms. Forty-eight-hour-old Enterococcus faecalis biofilms were grown on glass coverslips and then treated for 1 hour by immersion in 17% EDTA or MSS. Phosphate-buffered saline served as a negative control. Then, residual biofilm cells on the substrate and the detached cells in the supernatant were collected. Viability was verified by the colony-forming unit (CFU) counting method. Propidium monoazide (PMA) treatment in conjunction with quantitative polymerase chain reaction (qPCR) was also performed to detect the presence of E. faecalis 16S ribonucleic RNA genes. Data were analyzed using 1-way analysis of variance and Tukey or Kruskal-Wallis and Dunn tests. The Pearson R test evaluated the correlation between results from CFU and PMA (α = 5%). qPCR showed that EDTA detached 99% of biofilm cells, and MSS detached 94% of biofilm cells (both P < .001). In contrast to EDTA, MSS was highly antimicrobial. The treatment promoted an ample log 7 reduction of the attached cells (P < .001), and almost no live cells were detected in the supernatant (P < .001). Positive correlations between CFU and qPCR with PMA were observed (r = 0.959 and r = 0.729). EDTA detached cells in biofilms with a minor antimicrobial effect. Besides a great antimicrobial effect, MSS also detached biofilm cells. These dispersals of biofilms give insights into new endodontic biofilm removal strategies. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Rittmaster, R.L.; Shanley, J.B.
1995-01-01
The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.
Skrdla, Peter J; Zhang, Dan
2014-03-01
The crystalline citrate salt (CS) of a developmental pharmaceutical compound, MK-Q, was investigated in this work from two different, but related, perspectives. In the first part of the paper, the apparent disproportionation kinetics were surveyed using two different slurry systems, one containing water and the other a pH 6.9 phosphate buffer, using time-dependent measurements of the solution pH or by acquiring online Raman spectra of the solids. While the CS is generally stable when stored as a solid under ambient conditions of temperature and humidity, its low pHmax (<3) facilitates rapid disproportionation in aqueous solution, particularly at higher pH values. The rate of disappearance of the CS was found to obey first-order (Noyes-Whitney/dissolution rate-limited) kinetics, however, the formation of the crystalline product form in the slurry system was observed to exhibit kinetics consistent with a heterogeneous nucleation-and-growth mechanism. In the second part of this paper, more sensitive offline measurements made using XRPD, DSC and FT-Raman spectroscopy were applied to the characterization of binary physical mixtures of the CS and free base (FB) crystalline forms of MK-Q to obtain a calibration curve for each technique. It was found that all calibration plots exhibited good linearity of response, with the limit of detection (LOD) for each technique estimated to be ≤7 wt% FB. While additional calibration curves would need to be constructed to allow for accurate quantitation in various slurry systems, the general feasibility of these techniques is demonstrated for detecting low levels of CS disproportionation. Copyright © 2013 Elsevier B.V. All rights reserved.
Tian, Jin Hui; Ma, Bin; Yang, KeHu; Liu, Yali; Tan, Jiying; Liu, Tian Xi
2015-03-05
Acute kidney injury (AKI) is a severe loss of kidney function that results in patients' inability to appropriately excrete nitrogenous wastes and creatinine. Continuous haemodiafiltration (HDF) or haemofiltration (HF) are commonly used renal replacement therapies for people with AKI. Buffered dialysates and solutions used in HDF or HF have varying effects on acid-base physiology and several electrolytes. The benefits and harms of bicarbonate- versus lactate-buffered HDF or HF solutions for treating patients with AKI remain unclear. To assess the benefits and harms of bicarbonate- versus lactate-buffered solutions for HDF or HF for treating people with AKI. We searched the Cochrane Renal Group's Specialised Register to 6 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. We also searched the Chinese Biomedical Literature Database. All randomised controlled trials (RCT) and quasi-RCTs that reported comparisons of bicarbonate-buffered solutions with lactate-buffered solutions for AKI were selected for inclusion irrespective of publication status or language. Two authors independently assessed titles and abstracts, and where necessary the full text of studies, to determine which satisfied our inclusion criteria. Data were extracted by two authors who independently assessed studies for eligibility and quality using a standardised data extraction form. Methodological quality was assessed using the Cochrane risk of bias tool. Results were expressed as risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI). We identified four studies (171 patients) that met our inclusion criteria. Overall, study quality was suboptimal. There were significant reporting omissions related to methodological issues and potential harms. Outcome measures were not defined or reported adequately. The studies were small and lacked follow-up phases.Serum lactate levels were significantly lower in patients treated with bicarbonate-buffered solutions (4 studies, 171 participants: MD -1.09 mmol/L, 95% CI -1.30 to -0.87; I(2) = 0%). There were no differences in mortality (3 studies, 163 participants: RR 0.76, 95% CI 0.50 to 1.15; I(2) = 0%); serum bicarbonate levels (3 studies, 163 participants: MD 0.27 mmol/L, 95% CI -1.45 to 1.99; I(2) = 78%), serum creatinine (2 studies, 137 participants: MD -22.81 µmol/L, 95% CI -129.61 to 83.99; I(2) = 73%), serum base excess (3 studies, 145 participants: MD 0.80, 95% CI -0.91 to 2.50; I(2) = 38%), serum pH (4 studies, 171 participants: MD 0.01, 95% CI -0.02 to 0.03; I(2) = 70%) or carbon dioxide partial pressure (3 studies, 151 participants: MD -1.04, 95% CI -3.84 to 1.76; I(2) = 83%). A single study reported fewer cardiovascular events (RR 0.39, 95% CI 0.20 to 0.79), higher mean arterial pressure (10.25 mm Hg, 95% CI 6.68 to 13.82) and less hypotensive events (RR 0.44, 95% CI 0.26 to 0.75) in patients receiving bicarbonate-buffered solutions. One study reported no significant difference in central venous pressure (MD 2.00 cm H2O, 95% CI -0.7 to, 4.77). Total length of hospital and ICU stay and relapse were not reported by any of the included studies. There were no significant different between bicarbonate- and lactate-buffered solutions for mortality, serum bicarbonate levels, serum creatinine, serum base excess, serum pH, carbon dioxide partial pressure, central venous pressure and serum electrolytes. Patients treated with bicarbonate-buffered solutions may experience fewer cardiovascular events, lower serum lactate levels, higher mean arterial pressure and less hypotensive events. With the exception of mortality, we were not able to assess the main primary outcomes of this review - length of time in ICU, total length of hospital stay and relapse.
In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung
2016-09-15
A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
SEPARATION OF METAL SALTS BY ADSORPTION
Gruen, D.M.
1959-01-20
It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.
Method of microbially producing metal gallate spinel nano-objects, and compositions produced thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, Chad E.; Jellison, Jr., Gerald E.; Love, Lonnie J.
A method of forming a metal gallate spinel structure that includes mixing a divalent metal-containing salt and a gallium-containing salt in solution with fermentative or thermophilic bacteria. In the process, the bacteria nucleate metal gallate spinel nano-objects from the divalent metal-containing salt and the gallium-containing salt without requiring reduction of a metal in the solution. The metal gallate spinel structures, as well as light-emitting structures in which they are incorporated, are also described.
Moon, Su-Young; Proussaloglou, Emmanuel; Peterson, Gregory W; DeCoste, Jared B; Hall, Morgan G; Howarth, Ashlee J; Hupp, Joseph T; Farha, Omar K
2016-10-10
Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr 6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non-volatile, water-insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plutonium and americium separation from salts
Hagan, Paul G.; Miner, Frend J.
1976-01-01
Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.
Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y
2016-11-01
Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Jingbo; Kingsbury, Ryan S; Perry, Lamar A; Coronell, Orlando
2017-02-21
The partition coefficient of solutes into the polyamide active layer of reverse osmosis (RO) membranes is one of the three membrane properties (together with solute diffusion coefficient and active layer thickness) that determine solute permeation. However, no well-established method exists to measure solute partition coefficients into polyamide active layers. Further, the few studies that measured partition coefficients for inorganic salts report values significantly higher than one (∼3-8), which is contrary to expectations from Donnan theory and the observed high rejection of salts. As such, we developed a benchtop method to determine solute partition coefficients into the polyamide active layers of RO membranes. The method uses a quartz crystal microbalance (QCM) to measure the change in the mass of the active layer caused by the uptake of the partitioned solutes. The method was evaluated using several inorganic salts (alkali metal salts of chloride) and a weak acid of common concern in water desalination (boric acid). All partition coefficients were found to be lower than 1, in general agreement with expectations from Donnan theory. Results reported in this study advance the fundamental understanding of contaminant transport through RO membranes, and can be used in future studies to decouple the contributions of contaminant partitioning and diffusion to contaminant permeation.
Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems
NASA Astrophysics Data System (ADS)
Narayanan, Ramesh
The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase diagram. The isotherms are flat (i.e. no skewness) when the regular solution parameters are zero. When the regular solution parameters are non-zero, the isotherms are skewed. A regular solution model is not adequate to accurately model the molten salt systems used in recycling like NaCl-KCl-LiF and NaCl-KCl-NaF.
Liquid precursor inks for deposition of In--Se, Ga--Se and In--Ga--Se
Curtis, Calvin J.; Hersh, Peter A.; Miedaner, Alexander; Habas, Susan; van Hest, Maikel; Ginley, David S.
2015-08-11
An ink includes a solution of selenium in ethylene diamine solvent and a solution of at least one metal salt selected from the group consisting of an indium salt or a gallium salt in at least one solvent including an organic amide. The organic amide can include dimethylformamide. The organic amide can include N-methylpyrrolidone.
Yoshinaga, Mariko; Toda, Natsuko; Tamura, Yuki; Terakado, Shouko; Ueno, Mai; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Uehara, Yoshio
2012-09-01
We investigated the effects of long-term miso soup drinking on salt-induced hypertension in Dahl salt-sensitive (Dahl S) rats. Dahl S rats were divided into four groups that consumed 1) water, 2) a 0.9% NaCl solution, 3) a 1.3% sodium NaCl solution, or 4) miso soup containing 1.3% NaCl. They were followed for 8 wk. Systolic blood pressure and hypertensive organ damage were determined. Systolic blood pressure increased in an age- and dose-dependent manner in Dahl S rats drinking salt solutions. The systolic blood pressure increase was significantly less in the Dahl S rats that drank miso soup, although the ultimate cumulative salt loading was greater than that in the Dahl S rats given the 1.3% NaCl solution. This blood pressure decrease was associated with a morphologic attenuation of glomerular sclerosis in the kidney and collagen infiltration in the heart. Urinary protein excretions were less in the miso group than in the rats given the 1.3% NaCl solution. The fractional excretion of sodium was increased and that of potassium was decreased in Dahl S rats given the 1.3% NaCl solution, and these effects were reversed in rats given miso soup toward the values of the control. We found that long-term miso soup drinking attenuates the blood pressure increase in salt-induced hypertension with organ damage. This may be caused by a possible retardation of sodium absorption in the gastrointestinal tract or by the direct effects of nutrients in the miso soup from soybeans. The decrease was associated with decreases in cardiovascular and renal damage. Copyright © 2012 Elsevier Inc. All rights reserved.
Redox condition in molten salts and solute behavior: A first-principles molecular dynamics study
NASA Astrophysics Data System (ADS)
Nam, Hyo On; Morgan, Dane
2015-10-01
Molten salts technology is of significant interest for nuclear, solar, and other energy systems. In this work, first-principles molecular dynamics (FPMD) was used to model the solute behavior in eutectic LiCl-KCl and FLiBe (Li2BeF4) melts at 773 K and 973 K, respectively. The thermo-kinetic properties for solute systems such as the redox potential, solute diffusion coefficients and structural information surrounding the solute were predicted from FPMD modeling and the calculated properties are generally in agreement with the experiments. In particular, we formulate an approach to model redox energetics vs. chlorine (or fluorine) potential from first-principles approaches. This study develops approaches for, and demonstrates the capabilities of, FPMD to model solute properties in molten salts.
Conductive layer for biaxially oriented semiconductor film growth
Findikoglu, Alp T.; Matias, Vladimir
2007-10-30
A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.
Present status and strategy of reel-to-reel TFA-MOD process for coated conductors
NASA Astrophysics Data System (ADS)
Izumi, T.; Yoshizumi, M.; Miura, M.; Nakaoka, K.; Ichikawa, Y.; Sutoh, Y.; Miyata, S.; Fukushima, H.; Yamada, Y.; Shiohara, Y.
2009-10-01
On the research and development of a reel-to-reel TFA-MOD (Metal Organic Deposition using Trifluoro-acetates) process, a present status is reviewed and its future strategy is addressed. As a base of the study, the 90 m long tape with uniform I c distribution of the 300 A/cm-width level was obtained on the CeO 2 buffered IBAD-Gd 2Zr 2O 7/Hastelloy C276 substrate. The tape has the 56 m region with the end-to-end I c value of 250 A, which corresponds to maximum product of I c × L of 14,000 Am. Based on the results, several directions on R&D have been studied such as “higher I c”, “higher I c- B”, “higher production rate both in coating/calcinations and crystallization steps” and lower cost buffer/substrate”. Then, an extremely high I c value of 735 A/cm-width was achieved in a short tape by the compositional control (e.g. Ba-deficient), in the starting solutions. On the efforts for achieving higher I c- B properties, high I c values of 115 and 35 A/cm-width under the magnetic fields of 1 and 3 T were obtained by the RE mixture of Y and Gd in REBCO, addition of Zr and a growth rate control process. On the other hand, the production rate for the coating/calcinations process was improved by development of new starting solutions, which uses F-free Y salt instead of TFA salt of Y. The high J c value of 1.9 MA/cm 2 was confirmed using the precursor films fabricated at a high traveling rate of 10 m/h. Concerning a higher rate in the crystallization step, the multi-turning system with a vertical gas flow system was developed. The validity of the concept was confirmed using 2-turn parts of the furnace. The high I c value of 250 A/cm-width was realized in the 5 m tape crystallized with a traveling rate of 3 m/h, which is equivalent to 15 m/h for usage of entire area of the furnace of 10-turns. Furthermore, in order to achieve the lower cost, the architecture of the coated conductor with a low cost buffer/substrate system has been developed. An IBAD buffered substrate using IBAD-MgO layer (CeO 2/LMO/IBAD-MgO/Hastelloy C276) was developed and a high production rate of 24 m/h was realized for IBAD-MgO layer using a small ion gun system with the area of 6 × 22 cm 2. The grain texturing of the substrate was reached the Δ ϕ value of 4° in the CeO 2 layer. This substrate was applied to the above mentioned multi-turning crystallization furnace for TFA-MOD process. Then, a 5 m long tape with 260 A/cm-width (@77 K. s.f.) was achieved. According to the TFA-MOD process in the above achievements, the prospects of each issue for the future stage were independently confirmed. Consequently, R&D combining the above-mentioned achievements for longer tapes are expected in the next stage.
Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik
2010-12-02
In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.
Salt enrichment of municipal sewage: New prevention approaches in Israel
NASA Astrophysics Data System (ADS)
Weber, Baruch; Avnimelech, Yoram; Juanico, Marcelo
1996-07-01
Wastewater irrigation is an environmentally sound wastewater disposal practice, but sewage is more saline than the supplied fresh water and the salts are recycled together with the water. Salts have negative environmental effects on crops, soils, and groundwater. There are no inexpensive ways to remove the salts once they enter sewage, and the prevention of sewage salt enrichment is the most immediately available solution. The body of initiatives presently structured by the Ministry of the Environment of Israel are herein described, with the aim to contribute to the search for a long-term solution of salinity problems in arid countries. The new initiatives are based on: (1) search for new technologies to reduce salt consumption and discharge into sewage; (2) different technologies to cope with different situations; (3) raising the awareness of the public and industry on the environmental implications of salinity pollution; and (4) an elastic legal approach expressed through new state-of-the-art regulations. The main contributor to the salinity of sewage in Israel is the watersoftening process followed by the meat koshering process. Some of the adopted technical solutions are: the discharge of the brine into the sea, the substitution of sodium by potassium salts in the ion-exchangers, the construction of centralized systems for the supply of soft water in industrial areas, the precipitation of Ca and Mg in the effluents from ion-exchangers and recycling of the NaCI solution, a reduction of the discharge of salts by the meat koshering process, and new membrane technology for salt recovery.
Erosion of water-based cements evaluated by volumetric and gravimetric methods.
Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F
2003-05-01
To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.
Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Ho; Lee, Hansoo; Kim, In Tae
The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorrmore » - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.« less
Bobbitt, James M; Eddy, Nicholas A; Cady, Clyde X; Jin, Jing; Gascon, Jose A; Gelpí-Dominguez, Svetlana; Zakrzewski, Jerzy; Morton, Martha D
2017-09-15
Three new homologous TEMPO oxoammonium salts and three homologous nitroxide radicals have been prepared and characterized. The oxidation properties of the salts have been explored. The direct 13 C NMR and EPR spectra of the nitroxide free radicals and the oxoammonium salts, along with TEMPO and its oxoammonium salt, have been successfully measured with little peak broadening of the NMR signals. In the spectra of all ten compounds (nitroxides and corresponding oxoammonium salts), the carbons in the 2,2,6,6-tetramethylpiperidine core do not appear, implying paramagnetic properties. This unpredicted overall paramagnetism in the oxoammonium salt solutions is explained by a redox equilibrium as shown between oxoammonium salts and trace amounts of corresponding nitroxide. This equilibrium is confirmed by electron interchange reactions between nitroxides with an N-acetyl substituent and oxoammonium salts with longer acyl side chains.
Wellhoefer, Martin; Sprinzl, Wolfgang; Hahn, Rainer; Jungbauer, Alois
2014-04-11
Continuous processing of recombinant proteins was accomplished by combining continuous matrix-assisted refolding and purification by tandem simulated moving bed (SMB) size-exclusion chromatography (SEC). Recombinant proteins, N(pro) fusion proteins from inclusion bodies were dissolved with NaOH and refolded in the SMB system with a closed-loop set-up with refolding buffer as the desorbent buffer and buffer recycling of the refolding buffer of the raffinate by tangential flow filtration. For further purification of the refolded proteins, a second SMB operation also based on SEC was added. The whole system could be operated isocratically with refolding buffer as the desorbent buffer, and buffer recycling could also be applied in the purification step. Thus, a significant reduction in buffer consumption was achieved. The system was evaluated with two proteins, the N(pro) fusion pep6His and N(pro) fusion MCP-1. Refolding solution, which contained residual N(pro) fusion peptide, the cleaved autoprotease N(pro), and the cleaved target peptide was used as feed solution. Full separation of the cleaved target peptide from residual proteins was achieved at a purity and recovery in the raffinate and extract, respectively, of approximately 100%. In addition, more than 99% of the refolding buffer of the raffinate was recycled. A comparison of throughput, productivity, and buffer consumption of the integrated continuous process with two batch processes demonstrated that up to 60-fold higher throughput, up to 180-fold higher productivity, and at least 28-fold lower buffer consumption can be obtained by the integrated continuous process, which compensates for the higher complexity. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun
2018-01-01
The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and mass transport phenomena on the evaporation kinetics aqueous droplets with ionic inclusions.
Kameda, Tsunenori
2015-01-01
We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations. © 2014 Wiley Periodicals, Inc.
Indrasumunar, Arief; Gresshoff, Peter M
2013-11-14
Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.
Bachir, G S; Collis, J L
1976-01-01
Tests of the response to perfusion of the oesophagus were made in 54 patients divided into three groups. Group I consisted of patients with symptomatic hiatal hernia, group II hiatal hernia patients with peptic stricture, and group III normal individuals. Each individual oesophagus was perfused at a rate of 45-65 drops per minute over 25 minutes with six solutions: normal saline, N/10 HCl, taurine conjugates of bile salts in normal saline, taurine conjugates of bile salts in N/10 HCl, glycine conjugates of bile salts in normal saline, and taurine and glycine conjugates in a ratio of 1 to 2 in normal saline. It was found that acidified taurine solutions were more irritating than acid alone. With a 2mM/l solution of taurine in acid, symptoms are produced even in controls. With a 1 mM/l solution of the same conjugates, the majority of normal people feel slight heartburn or nothing, and therefore perfusion into the oesophagus of such a solution could be used as a test for oesophagitis. PMID:941112
Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.
Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L
2010-11-25
A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.
Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan
2012-09-01
Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acid/Salt/pH Gradient Improved Resolution and Sensitivity in Proteomics Study Using 2D SCX-RP LC-MS.
Zhu, Ming-Zhi; Li, Na; Wang, Yi-Tong; Liu, Ning; Guo, Ming-Quan; Sun, Bao-Qing; Zhou, Hua; Liu, Liang; Wu, Jian-Lin
2017-09-01
The usage of strong cation exchange (SCX) chromatography in proteomics is limited by its poor resolution and nonspecific hydrophobic interactions with peptides, which lead to peptide overlap across fractions and change of peptide retention, respectively. The application of high concentration of salt (up to 1000 mM) in SCX also restricted its use in online 2D SCX-RP LC. In the present research, we first exploited the chromatographic ability of online 2D SCX-RP LC by combination of acid, salt, and pH gradient, three relatively independent modes of eluting peptides from SCX column. 50% ACN was added to elution buffer for eliminating hydrophobic interactions between SCX matrix and peptides, and the concentration of volatile salt was reduced to 50 mM. Acid/salt/pH gradient showed superior resolution and sensitivity as well as uniform distribution across fractions, consequently leading to significant improvements in peptide and protein identification. 112 191 unique peptides and 7373 proteins were identified by acid/salt/pH fractionation, while 69 870 unique peptides and 4536 proteins were identified by salt elution, that is, 62.5 and 60.6% more proteins and unique peptides, respectively, identified by the former. Fraction overlap was also significantly minimized by acid/salt/pH approach. Furthermore, acid/salt/pH elution showed more identification for acidic peptides and hydrophilic peptides.
Coping with effects of high dissolved salt samples on the inductively coupled plasma spectrometer
Jane E. Hislop; James W. Hornbeck; James W. Hornbeck
2002-01-01
Research on acidic forest soils typically uses unbuffered salt solutions as extractants for exchangeable cations. Our lab uses 1 M NH4C1 extractant for exchangeable cations (Ca, K, Mg, and Na) and 1 M KC1 for exchangeable aluminum. The resulting high dissolved salt solutions presented chronic analytical problems on flame atomic absorption spectrophotometer (AAS) and...
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold; Solovyov, Vyacheslav
2014-02-18
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2008-04-22
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2012-07-10
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Zhou, Xiaodong; Fan, Xi; Sun, Xianke; Zhang, Yunli; Zhu, Ziqiang
2015-01-01
In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs). Compared with TiOx films and CsOx films, the TiOx/CsOx double-buffer film exhibited a favorable energy-level alignment among TiOx, CsOx, and the electron acceptor of PCBM or ICBA a better surface morphology; and an enhanced wetting and adhesion property with a contact angle of 21.0°, leading to a higher electron mobility of 5.52 × 10(-3) cm(2) V(-1)·s(-1). Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively. Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.
NASA Astrophysics Data System (ADS)
Shao, Qiang; Wang, Jinan; Zhu, Weiliang
2014-09-01
Mixtures of osmolytes and/or inorganic salts are present in the cell. Therefore, the understanding of the interplay of mixed osmolyte molecules and inorganic salts and their combined effects on protein structure is of fundamental importance. A novel test is presented to investigate the combined effects of urea and a chaotropic inorganic salt, potassium iodide (KI), on protein structure by using molecular dynamics simulation. It is found that the coexistence of KI and urea does not affect their respective distribution in solution. The solvation of KI salt in urea solution makes the electrostatic interactions of urea more favorable, promoting the hydrogen bonding between urea (and water) to protein backbone. The interactions from K+ and hydrogen bonding from urea and water to protein backbone work as the driving force for protein denaturation. The collaborative behavior of urea and KI salt thus enhances the denaturing ability of urea and KI mixed solution.
Isolation of isoelectrically pure cholera toxin for crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spangler, B.D.; Westbrook, E.M.
1989-01-01
We have determined that the failure of cholera toxin to crystallize well results from its isoelectric heterogeneity, which is probably due to a post-translational process such as deamidation of its B subunit. Every sample of cholera toxin we have examined from commercial or academic suppliers has been heterogeneous; heterogeneous cholera toxin does not crystallize satisfactorily. We have overcome this problem by using ion-exchange fast protein liquid chromatography (FPLC) to obtain an isoelectrically homogeneous species of cholera toxin. Homogeneous cholera toxin crystallizes readily, forming single, nonmosaic crystals suitable for x-ray diffraction studies. For this process, protein was applied to a MonoQmore » ion-exchange column, then eluted with an isocratic low salt buffer followed by a linear salt gradient (0-100 mM NaCl). Column fractions were analyzed on isoelectric focusing gels, and those fractions containing the desired homogeneous species were pooled and concentrated. Crystals formed within 24 to 48 hours in a MOPS/PEG buffer, which made use of slow isoelectric precipitation to induce crystallization. 23 refs., 6 figs.« less
Arulselvan, Palanisamy; El Zowalaty, Mohamed Ezzat; Fakurazi, Sharida; Webster, Thomas J.; Geilich, Benjamin; Hussein, Mohd Zobir
2014-01-01
Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies. PMID:25050392
NASA Technical Reports Server (NTRS)
Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2013-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor)
2017-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, water, or a water-based lubricant. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Harry F., Jr. (Inventor)
2016-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
[Determination of Chloride Salt Solution by NIR Spectroscopy].
Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing
2015-07-01
Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.
Reimer, Joachim; Vogel, Frédéric; Steele-MacInnis, Matthew
2016-05-18
Aqueous solutions of salts at elevated pressures and temperatures play a key role in geochemical processes and in applications of supercritical water in waste and biomass treatment, for which salt management is crucial for performance. A major question in predicting salt behavior in such processes is how different salts affect the phase equilibria. Herein, molecular dynamics (MD) simulations are used to investigate molecular-scale structures of solutions of sodium and/or potassium sulfate, which show contrasting macroscopic behavior. Solutions of Na-SO4 exhibit a tendency towards forming large ionic clusters with increasing temperature, whereas solutions of K-SO4 show significantly less clustering under equivalent conditions. In mixed systems (Nax K2-x SO4 ), cluster formation is dramatically reduced with decreasing Na/(K+Na) ratio; this indicates a structure-breaking role of K. MD results allow these phenomena to be related to the characteristics of electrostatic interactions between K(+) and SO4 (2-) , compared with the analogous Na(+) -SO4 (2-) interactions. The results suggest a mechanism underlying the experimentally observed increasing solubility in ternary mixtures of solutions of Na-K-SO4 . Specifically, the propensity of sodium to associate with sulfate, versus that of potassium to break up the sodium-sulfate clusters, may affect the contrasting behavior of these salts. Thus, mutual salting-in in ternary hydrothermal solutions of Na-K-SO4 reflects the opposing, but complementary, natures of Na-SO4 versus K-SO4 interactions. The results also provide clues towards the reported liquid immiscibility in this ternary system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration
Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.
2009-01-01
Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it is important for future work to understand how the LipC's solution aggregation affected its activity. PMID:19759821
Probe diffusion of labeled polymers inside polyacrylic acid solutions: A polyelectrolyte effect
NASA Astrophysics Data System (ADS)
Mishra, Banani; Mithra, K.; Khandai, Santripti; Jena, Sidhartha S.
2018-05-01
Probe diffusion of fluorescently labeled Dextran 40 inside polyelectrolyte solution of polyacrylic acid (PAA) was investigated using Fluorescence Recovery After Photobleaching technique. The crowding and interaction effects on probe diffusion were controlled by tuning background polymer and added external electrolyte concentration. For all the salt concentration, an overall decrease in diffusion coefficient is observed with rise in polymer concentration. The diffusion coefficient decreases with decrease in salt concentration whereas the solution viscosity increases, indicating a competition between viscous drag and electrostatic interaction. A large positive deviation from the ideal Stokes-Einstein relation is observed for high polymer and low salt concentration, which reduces markedly with addition of salt confirming polyelectrolyte effects, plays a major role in deciding the probe diffusion.
Vein Graft Preservation Solutions, Patency, and Outcomes After Coronary Artery Bypass Graft Surgery
Harskamp, Ralf E.; Alexander, John H.; Schulte, Phillip J.; Brophy, Colleen M.; Mack, Michael J.; Peterson, Eric D.; Williams, Judson B.; Gibson, C. Michael; Califf, Robert M.; Kouchoukos, Nicholas T.; Harrington, Robert A.; Ferguson, T. Bruce; Lopes, Renato D.
2015-01-01
IMPORTANCE In vitro and animal model data suggest that intraoperative preservation solutions may influence endothelial function and vein graft failure (VGF) after coronary artery bypass graft (CABG) surgery. Clinical studies to validate these findings are lacking. OBJECTIVE To evaluate the effect of vein graft preservation solutions on VGF and clinical outcomes in patients undergoing CABG surgery. DESIGN, SETTING, AND PARTICIPANTS Data from the Project of Ex-Vivo Vein Graft Engineering via Transfection IV (PREVENT IV) study, a phase 3, multicenter, randomized, double-blind, placebo-controlled trial that enrolled 3014 patients at 107 US sites from August 1, 2002, through October 22, 2003, were used. Eligibility criteria for the trial included CABG surgery for coronary artery disease with at least 2 planned vein grafts. INTERVENTIONS Preservation of vein grafts in saline, blood, or buffered saline solutions. MAIN OUTCOMES AND MEASURES One-year angiographic VGF and 5-year rates of death, myocardial infarction, and subsequent revascularization. RESULTS Most patients had grafts preserved in saline (1339 [44.4%]), followed by blood (971 [32.2%]) and buffered saline (507 [16.8%]). Baseline characteristics were similar among groups. One-year VGF rates were much lower in the buffered saline group than in the saline group (patient-level odds ratio [OR], 0.59 [95% CI, 0.45-0.78; P < .001]; graft-level OR, 0.63 [95% CI, 0.49-0.79; P < .001]) or the blood group (patient-level OR, 0.62 [95% CI, 0.46-0.83; P = .001]; graft-level OR, 0.63 [95% CI, 0.48-0.81; P < .001]). Use of buffered saline solution also tended to be associated with a lower 5-year risk for death, myocardial infarction, or subsequent revascularization compared with saline (hazard ratio, 0.81 [95% CI, 0.64-1.02; P = .08]) and blood (0.81 [0.63-1.03; P = .09]) solutions. CONCLUSIONS AND RELEVANCE Patients undergoing CABG whose vein grafts were preserved in a buffered saline solution had lower VGF rates and trends toward better long-term clinical outcomes compared with patients whose grafts were preserved in saline- or blood-based solutions. PMID:25073921
Ion sensitivity of large-area epitaxial graphene film on SiC substrate
NASA Astrophysics Data System (ADS)
Mitsuno, Takanori; Taniguchi, Yoshiaki; Ohno, Yasuhide; Nagase, Masao
2017-11-01
We investigated the intrinsic ion sensitivity of graphene field-effect transistors (FETs) fabricated by a resist-free stencil mask lithography process from a large-scale graphene film epitaxially grown on a SiC substrate. A pH-adjusted phosphate-buffered solution was used for the measurement to eliminate the interference of other ions on the graphene FET's ion sensitivity. The charge neutrality point shifted negligibly with changing pH for the pH-adjusted phosphate-buffered solution, whereas for the mixed buffer solution, it shifted toward the negative gate voltage owing to the decrease in the concentration of phthalate ions. This phenomenon is contrary to that observed in previous reports. Overall, our results indicate that the graphene film is intrinsically insensitive to ions except for those with functional groups that interact with the graphene surface.
Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells.
Li, Xiaodong; Zhang, Wenjun; Wu, Yulei; Min, Chao; Fang, Junfeng
2013-09-25
We reported a facile solution-processed method to fabricate a MoSx anode buffer layer through thermal decomposition of (NH4)2MoS4. Organic solar cells (OSCs) based on in situ growth MoSx as the anode buffer layer showed impressive improvements, and the power conversion efficiency was higher than that of conventional PEDOT:PSS-based device. The MoSx films obtained at different temperatures and the corresponding device performance were systematically studied. The results indicated that both MoS3 and MoS2 were beneficial to the device performance. MoS3 could result in higher Voc, while MoS2 could lead to higher Jsc. Our results proved that, apart from MoO3, molybdenum sulfides and Mo(4+) were also promising candidates for the anode buffer materials in OSCs.
Calculated and measured [Ca(2+)] in buffers used to calibrate Ca(2+) macroelectrodes.
McGuigan, John A S; Stumpff, Friederike
2013-05-01
The ionized concentration of calcium in physiological buffers ([Ca(2+)]) is normally calculated using either tabulated constants or software programs. To investigate the accuracy of such calculations, the [Ca(2+)] in EGTA [ethylene glycol-bis(β-aminoethylether)-N,N,N|,N|-tetraacetic acid], BAPTA [1,2-bis(o-aminophenoxy) ethane-N,N,N|,N|-tetraacetic acid], HEDTA [N-(2-hydroxyethyl)-ethylenediamine-N,N|,N|-triacetic acid], and NTA [N,N-bis(carboxymethyl)glycine] buffers was estimated using the ligand optimization method, and these measured values were compared with calculated values. All measurements overlapped in the pCa range of 3.51 (NTA) to 8.12 (EGTA). In all four buffer solutions, there was no correlation between measured and calculated values; the calculated values differed among themselves by factors varying from 1.3 (NTA) to 6.9 (EGTA). Independent measurements of EGTA purity and the apparent dissociation constants for HEDTA and NTA were not significantly different from the values estimated by the ligand optimization method, further substantiating the method. Using two calibration solutions of pCa 2.0 and 3.01 and seven buffers in the pCa range of 4.0-7.5, calibration of a Ca(2+) electrode over the pCa range of 2.0-7.5 became a routine procedure. It is proposed that such Ca(2+) calibration/buffer solutions be internationally defined and made commercially available to allow the precise measurement of [Ca(2+)] in biology. Copyright © 2013 Elsevier Inc. All rights reserved.
Study of buffer substrate and Arenga wood fiber size on hydroponic Kailan (Brassica alboglabra)
NASA Astrophysics Data System (ADS)
Harjoko, D.; Anggraheny, M. D.; Arniputri, R. B.
2018-03-01
Kailan is a kind of vegetable that has high economic value, however its prospect is not well developed. One of obstacles in Kailan cultivation is the limitation of fertile soil, that can be solved by using hydroponic substrate. Considering its amount and potential, the fiber waste of Arenga wood was selected as substrate candidate. For that, this research aims to study the growth and yield of Kailan with different soaking treatment using buffer solution and size of Arenga wood fiber in the hydroponic substrate. Research was conducted at Green House Laboratory, Faculty of Agriculture Sebelas Maret University Surakarta from February to May 2017. The treatments were soaking buffer solution with EC 1.2 mScm-1; 1.4 mScm-1; and 1.6 mScm-1 and the size of Arenga fiber <1 cm, 1-2 cm and 2-3 cm. In this experiment, sand media was used as control. Result show that, soaking in 1.6 mScm-1 EC buffer solution with Arenga fiber size lower than 3 cm gives higher root volume compared to other treatments combination.
Evaporation of a sessile water drop and a drop of aqueous salt solution.
Misyura, S Y
2017-11-07
The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.
Buffered hydrochloric acid: a modern method of treating metabolic alkalosis.
Finkle, D; Dean, R E
1981-03-01
Twenty-one patients with metabolic alkalosis were treated successfully with intravenous hydrochloric acid (HCl) buffered in an amino acid solution (TPN). No complications of HCl were seen. TPN was used to meet energy needs and provide a buffering effect through the interaction of HCl and amino acids. Buffered HCl therapy should be considered as the initial treatment in patients with metabolic alkalosis associated with congestive heart failure, renal failure, hepatic failure, cerebral edema, or refractory metabolic alkalosis.
[Study on stability of curcumine, demethoxycurcumin and bisdemethoxycurcumin].
Han, Gang; Cui, Jing-jing; Bi, Rui; Zhao, Lin-lin; Zhang, Wei-guo
2008-11-01
To investigate the stability of curcumin, demethoxycurcumin and bisdemethoxycurcumin in different buffer solution. To determine concentration of curcumin by HPLC when added curcumin, demethoxycurcumin and bisdemethoxycurcumin into the buffer solution the equation of degradation was established. The sequence of stability are bisdemethoxycurcumin > or = demethoxycurcumin > or =curcumin at the same condition. The demethoxycurcumin can stabilize curcumin more strong than the others. The demethoxycurcumin is a nature stabilizing agent for curcumin.
Shiojima, Taro; Inoue, Yuuki; Kyomoto, Masayuki; Ishihara, Kazuhiko
2016-08-01
A highly efficient methodology for preparing a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer on the surface of poly(ether ether ketone) (PEEK) was examined by photoinduced and self-initiated graft polymerization. To enhance the polymerization rate, we demonstrated the effects of inorganic salt additives in the feed monomer solution on thickness of grafted PMPC layer. Photoinduced polymerization occurred and the PMPC graft layer was successfully formed on the PEEK surface, regardless of inorganic salt additives. Moreover, it was clearly observed that the addition of inorganic salt enhanced the grafting thickness of PMPC layer on the surface even when the photoirradiation time was shortened. The addition of inorganic salt additives in the feed monomer solution enhanced the polymerization rate of MPC and resulted in thicker PMPC layers. In particular, we evaluated the effect of NaCl concentration and how this affected the polymerization rate and layer thickness. We considered that this phenomenon was due to the hydration of ions in the feed monomer solution and subsequent apparent increase in the MPC concentration. A PMPC layer with over 100-nm-thick, which was prepared by 5-min photoirradiation in 2.5mol/L inorganic salt aqueous solution, showed good wettability and protein adsorption resistance compared to that of untreated PEEK. Hence, we concluded that the addition of NaCl into the MPC feed solution would be a convenient and efficient method for preparing a graft layer on PEEK. Photoinduced and self-initiated graft polymerization on the PEEK surface is one of the several methodologies available for functionalization. However, in comparison with free-radical polymerization, the efficiency of polymerization at the solid-liquid interface is limited. Enhancement of the polymerization rate for grafting could solve the problem. In this study, we observed the acceleration of the polymerization rate of MPC in an aqueous solution by the addition of inorganic salt. The salt itself did not show any adverse effects on the radical polymerization; however, the apparent concentration of the monomer in feed may be increased due to the hydration of ions attributed to salt additives. We could obtain PMPC-grafted PEEK with sufficient PMPC thickness to obtain good functionality with only 5-min photoirradiation by using 2.5mol/L NaCl in the feed solution. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Method of extracting coal from a coal refuse pile
Yavorsky, Paul M.
1991-01-01
A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.
Extracting renewable energy from a salinity difference using a capacitor.
Brogioli, Doriano
2009-07-31
Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.
PROCESS FOR SEPARATION OF HEAVY METALS
Duffield, R.B.
1958-04-29
A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.
Micellization and Single-Particle Encapsulation with Dimethylammoniopropyl Sulfobetaines
2017-01-01
Sulfobetaines (SBs) are a class of zwitterionic surfactants with a reputation for enhancing colloidal stability at high salt concentrations. Here, we present a systematic study on the self-assembly of SB amphiphiles (sultaines or hydroxysultaines) in aqueous solutions, as a function of chain length and composition, ionic strength, and in the presence of alkanethiol-coated Au nanoparticles (GNPs). The diameters of the micelles assembled from SB and amidosulfobetaine (ASB) generally increase monotonically with chain length, although ASB micelles are smaller relative to alkyl SB micelles with similarly sized tailgroups, and oleyl sulfobetaine (OSB) micelles are slightly larger. SB amphiphiles can stabilize alkanethiol-coated GNPs in physiologically relevant buffers at concentrations well below their CMC, with size increases corresponding to single-particle encapsulation. SB-encapsulated GNPs were prepared by three different methods with SB:GNP weight ratios of 10:1, followed by dispersion in water or 1 M NaCl. The low hydrodynamic size of the SB micelles and SB-coated NPs is within the range needed for efficient renal clearance. PMID:28474008
Micellization and Single-Particle Encapsulation with Dimethylammoniopropyl Sulfobetaines.
Wang, Jianxin; Morales-Collazo, Oscar; Wei, Alexander
2017-04-30
Sulfobetaines (SBs) are a class of zwitterionic surfactants with a reputation for enhancing colloidal stability at high salt concentrations. Here, we present a systematic study on the self-assembly of SB amphiphiles (sultaines or hydroxysultaines) in aqueous solutions, as a function of chain length and composition, ionic strength, and in the presence of alkanethiol-coated Au nanoparticles (GNPs). The diameters of the micelles assembled from SB and amidosulfobetaine (ASB) generally increase monotonically with chain length, although ASB micelles are smaller relative to alkyl SB micelles with similarly sized tailgroups, and oleyl sulfobetaine (OSB) micelles are slightly larger. SB amphiphiles can stabilize alkanethiol-coated GNPs in physiologically relevant buffers at concentrations well below their CMC, with size increases corresponding to single-particle encapsulation. SB-encapsulated GNPs were prepared by three different methods with SB:GNP weight ratios of 10:1, followed by dispersion in water or 1 M NaCl. The low hydrodynamic size of the SB micelles and SB-coated NPs is within the range needed for efficient renal clearance.
Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium.
Pitman, Catherine L; Brereton, Kelsey R; Miller, Alexander J M
2016-02-24
Aqueous hydride transfer is a fundamental step in emerging alternative energy transformations such as H2 evolution and CO2 reduction. "Hydricity," the hydride donor ability of a species, is a key metric for understanding transition metal hydride reactivity, but comprehensive studies of aqueous hydricity are scarce. An extensive and self-consistent aqueous hydricity scale is constructed for a family of Ru and Ir hydrides that are key intermediates in aqueous catalysis. A reference hydricity is determined using redox potentiometry and spectrophotometric titration for a particularly water-soluble species. Then, relative hydricity values for a range of species are measured using hydride transfer equilibria, taking advantage of expedient new synthetic procedures for Ru and Ir hydrides. This large collection of hydricity values provides the most comprehensive picture so far of how ligands impact hydricity in water. Strikingly, we also find that hydricity can be viewed as a continuum in water: the free energy of hydride transfer changes with pH, buffer composition, and salts present in solution.
Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.
Luo, Yangchao; Teng, Zi; Wang, Thomas T Y; Wang, Qin
2013-08-07
Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.
Shadanbaz, Shaylin; Walker, Jemimah; Staiger, Mark P; Dias, George J; Pietak, Alexis
2013-01-01
Magnesium (Mg) has been suggested as a revolutionary biodegradable replacement for current permanent metals used in orthopedic applications. Current investigations concentrate on the control of the corrosion rate to match bone healing. Calcium phosphate coatings have been a recent focus of these investigations through various coating protocols. Within this investigation, an in situ crystallization technique was utilized as an inexpensive and relatively simple method to produce a brushite and monetite coating on pure Mg. Coatings were characterized using energy dispersive spectroscopy, glancing angle X-ray diffraction and field emission scanning electron microscopy. Corrosion protection properties of the coatings were assessed in physiological buffers, Earles balanced salt solution, minimum essential media, and minimum essential media containing serum albumin, over a 4-week period. Using this novel coating protocol, our findings indicate brushite and monetite coated Mg to have significant corrosive protective effects when compared with its uncoated counterpart whilst maintaining high coating substrate adhesion, homogeneity, and reproducibility. Copyright © 2012 Wiley Periodicals, Inc.
Novel Mechanism for Buffering Dietary Salt in Humans
Mäki-Petäjä, Kaisa M.; Pedro, Liliana; Bruggraber, Sylvaine F.A.; Burling, Keith; Goodhart, Anna K.; Brown, Morris J.; McEniery, Carmel M.; Wilkinson, Ian B.
2017-01-01
High dietary sodium intake triggers increased blood pressure (BP). Animal studies show that dietary salt loading results in dermal Na+ accumulation and lymphangiogenesis mediated by VEGF-C (vascular endothelial growth factor C), both attenuating the rise in BP. Our objective was to determine whether these mechanisms function in humans. We assessed skin electrolytes, BP, and plasma VEGF-C in 48 healthy participants randomized to placebo (70 mmol sodium/d) and slow sodium (200 mmol/d) for 7 days. Skin Na+ and K+ concentrations were measured in mg/g of wet tissue and expressed as the ratio Na+:K+ to correct for variability in sample hydration. Skin Na+:K+ increased between placebo and slow sodium phases (2.91±0.08 versus 3.12±0.09; P=0.01). In post hoc analysis, there was a suggestion of a sex-specific effect, with a significant increase in skin Na+:K+ in men (2.59±0.09 versus 2.88±0.12; P=0.008) but not women (3.23±0.10 versus 3.36±0.12; P=0.31). Women showed a significant increase in 24-hour mean BP with salt loading (93±1 versus 91±1 mm Hg; P<0.001) while men did not (96±2 versus 96±2 mm Hg; P=0.91). Skin Na+:K+ correlated with BP, stroke volume, and peripheral vascular resistance in men but not in women. No change was noted in plasma VEGF-C. These findings suggest that the skin may buffer dietary Na+, reducing the hemodynamic consequences of increased salt, and this may be influenced by sex. PMID:28974570
Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.
Annunziata, Onofrio; Buzatu, Daniela; Albright, John G
2012-10-25
Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.
Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water
NASA Technical Reports Server (NTRS)
Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.
1994-01-01
Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.
Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.
1957-10-29
A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.
Common stock solutions, buffers, and media.
2001-05-01
This section describes the preparation of buffers and reagents used in this manual for cell culture, manipulation of tissue, and cell biological methods. Also discussed are special considerations for PCR experiments and for working with RNA.
Aqueous origins of bright salt deposits on Ceres
NASA Astrophysics Data System (ADS)
Zolotov, Mikhail Yu.
2017-11-01
Bright materials have been reported in association with impact craters on Ceres. The abundant Na2CO3 and some ammonium salts, NH4HCO3 and/or NH4Cl, were detected in bright deposits within Occator crater with Dawn near infrared spectroscopy. The composition and appearance of the salts suggest their aqueous mobilization and emplacement after formation of the crater. Here we consider origins of the bright deposits through calculation of speciation in the H-C-N-O-Na-Cl water-salt type system constrained by the mass balance of observed salts. Calculations of chemical equilibria show that initial solutions had the pH of ∼10. The temperature and salinity of solutions could have not exceeded ∼273 K and ∼100 g per kg H2O, respectively. Freezing models reveal an early precipitation of Na2CO3·10H2O followed by minor NaHCO3. Ammonium salts precipitate near eutectic from brines enriched in NH4+, Cl- and Na+. A late-stage precipitation of NaCl·2H2O is modeled for solution compositions with added NaCl. Calculated eutectics are above 247 K. The apparently unabundant ammonium and chloride salts in Occator's deposits imply a rapid emplacement without a compositional evolution of solution. Salty ice grains could have deposited from post-impact ballistic plumes formed through low-pressure boiling of subsurface solutions. Hydrated and ammonium salts are unstable at maximum temperatures of Ceres' surface and could decompose through space weathering. Occator's ice-free salt deposits formed through a post-depositional sublimation of ice followed by dehydration of Na2CO3·10H2O and NaHCO3 to Na2CO3. In other regions, excavated and exposed bright materials could be salts initially deposited from plumes and accumulated at depth via post-impact boiling. The lack of detection of sulfates and an elevated carbonate/chloride ratio in Ceres' materials suggest an involvement of compounds abundant in the outer solar system.
Wen, Jia; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K
2016-11-01
The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.
NASA Astrophysics Data System (ADS)
Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.
2018-05-01
The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.
2018-03-01
The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.
Hyman, H.H.; Dreher, J.L.
1959-07-01
The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.
Aqueous photolysis of niclosamide
Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.
2004-01-01
The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.
2011-10-01
blocking buffer, 5% fat -free milk in 0.1% Tris-buffered solution/Tween-20, for 1 hour at room temperature and then probed overnight at 5°C with...and blotting onto Immun-Blot PVDF membrane (Bio-Rad, Hercules, CA). Membranes were blocked with blocking buffer, 5% fat -free milk in 1x PBS buffer...distribution unlimited 13. SUPPLEMENTARY NOTES The aim of this study is to uncover novel transient receptor potential protein vanilloid-1 (TRPV1
Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones
NASA Astrophysics Data System (ADS)
Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.
2011-12-01
Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between aqueous and oil deposition are assumed to occur due to surface interactions, and susceptibility to evaporation of aqueous aerosols. Distal salt accumulation during salt water aerosol tests suggests that solid salt forms as salt water aerosols evaporate. The solid salt aerosols are less likely to deposit, so they travel further than aqueous aerosols. A numerical model was calibrated using results from lab-scale tests. The calibrated model was then used to simulate field-scale aerosol injection. Results from field-scale simulations suggest that effective radii of influence on the scale of 8-10 meters could be achieved in partially saturated sand. The aerosol delivery process appears to be capable distributing oil amendments over considerable volumes of formation at concentrations appropriate for remediation purposes. Thus far, evaporation has limited liquid accumulation observed when distributing aqueous aerosols, however, results from salt water experiments suggest that injection of solid phase aerosols can effectively distribute water soluble amendments (electron donor, pH buffer, oxidants, etc.). Utilization of aerosol delivery could considerably expand treatment options for contaminated vadose zones at a wide variety of sites.
NASA Astrophysics Data System (ADS)
Svoboda, Martin; Lísal, Martin
2018-06-01
To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.
Svoboda, Martin; Lísal, Martin
2018-06-14
To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.
Yuan, Shaotang; Vaughn, John; Pappas, Iraklis; Fitzgerald, Michael; Masters, James G; Pan, Long
2015-01-01
The interactions between commercial antiperspirant (AP) salts [aluminum chlorohydrate (ACH), activated ACH, aluminum sesquichlorohydrate (ASCH), zirconium aluminum glycine (ZAG), activated ZAG), pure aluminum polyoxocations (Al13-mer, Al30-mer), and the zirconium(IV)-glycine complex Zr6 (O)4 (OH)4 (H2O)8 (Gly)8]12+(-) (CP-2 or ZG) with Bovine serum albumin (BSA) were studied using zeta potential and turbidity measurements. The maximal turbidity, which revealed the optimal interactions between protein and metal salts, for all protein-metal salt samples was observed at the isoelectric point (IEP), where the zeta potential of the solution was zero. Efficacy of AP salts was determined via three parameters: the amount of salt required to flocculate BSA to reach IEP, the turbidity of solution at the IEP, and the pH range over which the turbidity of the solution remains sufficiently high. By comparing active salt performance from this work to traditional prescreening methods, this methodology was able to provide a consistent efficacy assessment for metal actives in APs or in water treatment.
Rodríguez, Diana; Barrero, Marinela; Kodaira, Makie
2009-06-01
Salting fish in the south Venezuelan towns are still the main method of preserving fish including cutt, and salting fish process, storage and commercialization. As the result, salted-dried fish is particularly susceptible to spoilage by a number of factors, including lipid oxidation, browning meat. Packing salted fish product is an alternative increasing storage life time reducing lost of quality and enhancing the storage time. The present study evaluated the physic, chemist, and sensory quality of fish fillet from cat fish (Pseudoplatystoma sp.) from Apure state, Venezuela. Fillet fish were placed in brine solution at 36% of sodium chloride 1:2 fillet: brine solution; after, they were packed under followed conditions: vacuum, vacuum and storage under refrigeration condition, and room temperature. The results showed significant differences (p < 0.01) for moisture, salt content, and Aw. The fillets packed at vacuum and storage at 4 degrees C were significant different from the resting treatments; not significant differences were presented at room and refrigeration temperature after three moths. The best conditions treatment was vacuum packing and refrigeration at 4 degrees C.
Recovery and regeneration of spent MHD seed material by the formate process
Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.
1991-10-15
The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.
Recovery and regeneration of spent MHD seed material by the formate process
Sheth, Atul C.; Holt, Jeffrey K.; Rasnake, Darryll G.; Solomon, Robert L.; Wilson, Gregory L.; Herrigel, Howard R.
1991-01-01
The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.
Salt-Finger Convection in a Stratified Fluid Layer Induced by Thermal and Solutal Capillary Motion
NASA Technical Reports Server (NTRS)
Chen, Chuan F.; Chan, Cho Lik
1996-01-01
Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to different diffusion rates. Normally, when the gravitational field is reduced, salt-finger convection together with other convective motions driven by buoyancy forces will be rapidly suppressed. However, because the destabilizing effect of the concentration gradient is amplified by the Lewis number, with values varying from 10(exp 2) for aqueous salt solutions to 10 (exp 4) for liquid metals, salt-finger convection may be generated at much reduced gravity levels. In the microgravity environment, the surface tension gradient assumes a dominant role in causing fluid motion. In this paper, we report on some experimental results showing the generation of salt-finger convection due to capillary motio on the surface of a stratified fluid layer. A numerical simulation is presented to show the cause of salt-finger convection.
Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra
2014-01-23
The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.
Models of globular proteins in aqueous solutions
NASA Astrophysics Data System (ADS)
Wentzel, Nathaniel James
Protein crystallization is a continuing area of research. Currently, there is no universal theory for the conditions required to crystallize proteins. A better understanding of protein crystallization will be helpful in determining protein structure and preventing and treating certain diseases. In this thesis, we will extend the understanding of globular proteins in aqueous solutions by analyzing various models for protein interactions. Experiments have shown that the liquid-liquid phase separation curves for lysozyme in solution with salt depend on salt type and salt concentration. We analyze a simple square well model for this system whose well depth depends on salt type and salt concentration, to determine the phase coexistence surfaces from experimental data. The surfaces, calculated from a single Monte Carlo simulation and a simple scaling argument, are shown as a function of temperature, salt concentration and protein concentration for two typical salts. Urate Oxidase from Asperigillus flavus is a protein used for studying the effects of polymers on the crystallization of large proteins. Experiments have determined some aspects of the phase diagram. We use Monte Carlo techniques and perturbation theory to predict the phase diagram for a model of urate oxidase in solution with PEG. The model used includes an electrostatic interaction, van der Waals attraction, and a polymerinduced depletion interaction. The results agree quantitatively with experiments. Anisotropy plays a role in globular protein interactions, including the formation of hemoglobin fibers in sickle cell disease. Also, the solvent conditions have been shown to play a strong role in the phase behavior of some aqueous protein solutions. Each has previously been treated separately in theoretical studies. Here we propose and analyze a simple, combined model that treats both anisotropy and solvent effects. We find that this model qualitatively explains some phase behavior, including the existence of a lower critical point under certain conditions.
NASA Technical Reports Server (NTRS)
Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc
2000-01-01
We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.
Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K.
2006-01-01
Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation. PMID:16798808
Lew, Susie Q; Kohn, Orly F; Cheng, Yuk-Lun; Kjellstrand, Carl M; Ing, Todd S
2017-06-01
Hemodialysis patients can acquire buffer base (i.e., bicarbonate and buffer base equivalents of certain organic anions) from the acid and base concentrates of a three-stream, dual-concentrate, bicarbonate-based, dialysis solution delivery machine. The differences between dialysis fluid concentrate systems containing acetic acid versus sodium diacetate in the amount of potential buffering power were reviewed. Any organic anion such as acetate, citrate, or lactate (unless when combined with hydrogen) delivered to the body has the potential of being converted to bicarbonate. The prescribing physician aware of the role that organic anions in the concentrates can play in providing buffering power to the final dialysis fluid, will have a better knowledge of the amount of bicarbonate and bicarbonate precursors delivered to the patient. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Kunnath-Velayudhan, Shajo; Porcelli, Steven A
2018-05-01
Intracellular cytokine staining (ICS) is a powerful method for identifying functionally distinct lymphocyte subsets, and for isolating these by fluorescence activated cell sorting (FACS). Although transcriptomic analysis of cells sorted on the basis of ICS has many potential applications, this is rarely performed because of the difficulty in isolating intact RNA from cells processed using standard fixation and permeabilization buffers for ICS. To address this issue, we compared three buffers shown previously to preserve RNA in nonhematopoietic cells subjected to intracellular staining for their effects on RNA isolated from T lymphocytes processed for ICS. Our results showed that buffers containing the recombinant ribonuclease inhibitor RNasin or high molar concentrations of salt yielded intact RNA from fixed and permeabilized T cells. As proof of principle, we successfully used the buffer containing RNasin to isolate intact RNA from CD4 + T cells that were sorted by FACS on the basis of specific cytokine production, thus demonstrating the potential of this approach for coupling ICS with transcriptomic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan
2017-04-01
We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.
Ozdemir, Orhan; Du, Hao; Karakashev, Stoyan I; Nguyen, Anh V; Celik, M S; Miller, Jan D
2011-03-15
There is anecdotal evidence for the significant effects of salt ions on the flotation separation of minerals using process water of high salt content. Examples include flotation of soluble salt minerals such as potash, trona and borax in brine solutions using alkylammonium and alkylsulfate collectors such as dodecylamine hydrochloride and sodium dodecylsulfate. Although some of the effects are expected, some do not seem to be encompassed by classical theories of colloid science. Several experimental and modeling techniques for determining solution viscosity, surface tension, bubble-particle attachment time, contact angle, and molecular dynamics simulation have been used to provide further information on air-solution and solid-solution interfacial phenomena, especially with respect to the interfacial water structure due to the presence of dissolved ions. In addition atomic force microscopy, and sum frequency generation vibrational spectroscopy have been used to provide further information on surface states. These studies indicate that the ion specificity effect is the most significant factor influencing flotation in brine solutions. Copyright © 2011 Elsevier B.V. All rights reserved.
1996-07-01
tetrazolium, inner salt; MTS; Promega], 1.9 mg/ml, and an electron coupling reagent ( phenazine methosulfate; PMS; Sigma), 0.044 mg/ml, in Dulbecco’s...acids PBS, phosphate buffered saline PCR, polymerase chain reaction PMS, phenazine methosulfate poly A, polyadenylation s.e., standard error TAE, tris
Excited Atomic Bromine Energy Transfer and Quenching Mechanisms
1993-08-01
slope, m, and intercept, b, given as MBr 2 ] + k (3.16) b= 1 By collecting the Br* emission intensity as a function of added buffer gas concentration... submerged in an H20 ice and NaCl salt slurrie. The temperature is monitored with a temperature probe to insure that it is below 00 C. Then with LN 2
Laus, Sabrina; Sitharaman, Balaji; Tóth, Éva; Bolskar, Robert D.; Helm, Lothar; Asokan, Subashini; Wong, Michael S.; Wilson, Lon J.
2008-01-01
A combined proton relaxivity and dynamic light scattering study has shown that aggregates formed in aqueous solution of water-soluble gadofullerenes can be disrupted by addition of salts. The salt content of fullerene-based materials will strongly influence properties related to aggregation phenomena, therefore their behavior in biological or medical applications. In particular, the relaxivity of gadofullerenes decreases dramatically with phosphate addition. Moreover, real biological fluids present a rather high salt concentration which will have consequences on fullerene aggregation and influence fullerene-based drug delivery. PMID:15984854
Brine rejection from freezing salt solutions: a molecular dynamics study.
Vrbka, Lubos; Jungwirth, Pavel
2005-09-30
The atmospherically and technologically very important process of brine rejection from freezing salt solutions is investigated with atomic resolution using molecular dynamics simulations. The present calculations allow us to follow the motion of each water molecule and salt ion and to propose a microscopic mechanism of brine rejection, in which a fluctuation (reduction) of the ion density in the vicinity of the ice front is followed by the growth of a new ice layer. The presence of salt slows down the freezing process, which leads to the formation of an almost neat ice next to a disordered brine layer.
Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe
2005-12-08
This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).
Films, Preimpregnated Tapes and Composites Made from Polyimide "Salt-Like" Solutions
NASA Technical Reports Server (NTRS)
Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)
2001-01-01
High quality films, preimpregnated tape (prepegs), and composites have been fabricated from polyimide precursor 'saltlike' solutions. These salt-like solutions have a low viscosity (5,000 to 10,000 cp) and a high solids content (50-65% by weight) and can be coated onto reinforcing fiber to produce prepegs with excellent tack and drape at 12-15% residual solvent (approximately 4-6% water from thermal imidization reaction). The processing of these types of prepegs significantly overcomes solvent removal problems and allows excellent fiber wet out. In addition, the physical characteristics of the polyimide precursor salt-like solutions permits processing into high-performance materials through the use of standard prepregging and composite fabrication equipment. The resultant composites are of high quality.
TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.
Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš
2011-06-01
The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A
2014-02-01
This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.
NASA Astrophysics Data System (ADS)
Eissa, Shimaa; Zourob, Mohammed
2012-11-01
A novel graphene-based voltammetric immunosensor for sensitive detection of okadaic acid (OA) was developed. A simple and efficient electrografting method was utilized to functionalize graphene-modified screen-printed carbon electrodes (GSPE) by the electrochemical reduction of in situ generated 4-carboxyphenyl diazonium salt in acidic aqueous solution. Next, the okadaic acid antibody was covalently immobilized on the carboxyphenyl modified graphene electrodes via carbodiimide chemistry. Square wave voltammetry (SWV) was used to investigate the stepwise assembly of the immunosensor. A competitive assay between OA and a fixed concentration of okadaic acid-ovalbumin conjugate (OA-OVA) for the immobilized antibodies was employed for the detection of okadaic acid. The decrease of the [Fe(CN)6]3-/4- reduction peak current in the square wave voltammetry for various concentrations of okadaic acid was used for establishing the calibration curve. A linear relationship between the SWV peak current difference and OA concentration was obtained up to ~5000 ng L-1. The developed immunosensor allowed a detection limit of 19 ng L-1 of OA in PBS buffer. The matrix effect studied with spiked shellfish tissue extracts showed a good percentage of recovery and the method was also validated with certified reference mussel samples.A novel graphene-based voltammetric immunosensor for sensitive detection of okadaic acid (OA) was developed. A simple and efficient electrografting method was utilized to functionalize graphene-modified screen-printed carbon electrodes (GSPE) by the electrochemical reduction of in situ generated 4-carboxyphenyl diazonium salt in acidic aqueous solution. Next, the okadaic acid antibody was covalently immobilized on the carboxyphenyl modified graphene electrodes via carbodiimide chemistry. Square wave voltammetry (SWV) was used to investigate the stepwise assembly of the immunosensor. A competitive assay between OA and a fixed concentration of okadaic acid-ovalbumin conjugate (OA-OVA) for the immobilized antibodies was employed for the detection of okadaic acid. The decrease of the [Fe(CN)6]3-/4- reduction peak current in the square wave voltammetry for various concentrations of okadaic acid was used for establishing the calibration curve. A linear relationship between the SWV peak current difference and OA concentration was obtained up to ~5000 ng L-1. The developed immunosensor allowed a detection limit of 19 ng L-1 of OA in PBS buffer. The matrix effect studied with spiked shellfish tissue extracts showed a good percentage of recovery and the method was also validated with certified reference mussel samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32146g
Method of repressing the precipitation of calcium fluozirconate
Newby, B.J.; Rhodes, D.W.
1973-12-25
Boric acid or a borate salt is added to aqueous solutions of fluoride containing radioactive wastes generated during the reprocessing of zirconium alloy nuclear fuels which are to be converted to solid form by calcining in a fluidized bed. The addition of calcium nitrate to the aqueous waste solutions to prevent fluoride volatility during calcination, causes the precipitation of calcium fluozirconate, which tends to form a gel at fluoride concentrations of 3.0 M or greater. The boron containing species introduced into the solution by the addition of the boric acid or borate salt retard the formation of the calcium fluozirconate precipitate and prevent formation of the gel. These boron containing species can be introduced into the solution by the addition of a borate salt but preferably are introduced by the addition of an aqueous solution of boric acid. (Official Gazette)
Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander
2015-06-07
Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.