BacNet and Analog/Digital Interfaces of the Building Controls Virtual Testbed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouidui, Thierry Stephane; Wetter, Michael; Li, Zhengwei
2011-11-01
This paper gives an overview of recent developments in the Building Controls Virtual Test Bed (BCVTB), a framework for co-simulation and hardware-in-the-loop. First, a general overview of the BCVTB is presented. Second, we describe the BACnet interface, a link which has been implemented to couple BACnet devices to the BCVTB. We present a case study where the interface was used to couple a whole building simulation program to a building control system to assess in real-time the performance of a real building. Third, we present the ADInterfaceMCC, an analog/digital interface that allows a USB-based analog/digital converter to be linked tomore » the BCVTB. In a case study, we show how the link was used to couple the analog/digital converter to a building simulation model for local loop control.« less
White Paper for Virtual Control Room
NASA Technical Reports Server (NTRS)
Little, William; Tully-Hanson, Benjamin
2015-01-01
The Virtual Control Room (VCR) Proof of Concept (PoC) project is the result of an award given by the Fourth Annual NASA T&I Labs Challenge Project Call. This paper will outline the work done over the award period to build and enhance the capabilities of the Augmented/Virtual Reality (AVR) Lab at NASA's Kennedy Space Center (KSC) to create the VCR.
Distribution Locational Real-Time Pricing Based Smart Building Control and Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen
This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reductionmore » and energy saving, as well as working productivity improvements, can be achieved.« less
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
Korocsec, D; Holobar, A; Divjak, M; Zazula, D
2005-12-01
Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.
ERIC Educational Resources Information Center
Zhong, Ying
2013-01-01
Virtual worlds are well-suited for building virtual laboratories for educational purposes to complement hands-on physical laboratories. However, educators may face technical challenges because developing virtual worlds requires skills in programming and 3D design. Current virtual world building tools are developed for users who have programming…
3D Virtual Environment Used to Support Lighting System Management in a Building
NASA Astrophysics Data System (ADS)
Sampaio, A. Z.; Ferreira, M. M.; Rosário, D. P.
The main aim of the research project, which is in progress at the UTL, is to develop a virtual interactive model as a tool to support decision-making in the planning of construction maintenance and facilities management. The virtual model gives the capacity to allow the user to transmit, visually and interactively, information related to the components of a building, defined as a function of the time variable. In addition, the analysis of solutions for repair work/substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The first component of the virtual prototype concerns the management of lamps in a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in 3D and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.
Development of a virtual speaking simulator using Image Based Rendering.
Lee, J M; Kim, H; Oh, M J; Ku, J H; Jang, D P; Kim, I Y; Kim, S I
2002-01-01
The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology has enabled the use of virtual reality (VR) for the treatment of the fear of public speaking. There are two techniques for building virtual environments for the treatment of this fear: a model-based and a movie-based method. Both methods have the weakness that they are unrealistic and not controllable individually. To understand these disadvantages, this paper presents a virtual environment produced with Image Based Rendering (IBR) and a chroma-key simultaneously. IBR enables the creation of realistic virtual environments where the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma-keys puts virtual audience members under individual control in the environment. In addition, real time capture technique is used in constructing the virtual environments enabling spoken interaction between the subject and a therapist or another subject.
Transactive Control of Commercial Buildings for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Corbin, Charles D.; Kalsi, Karanjit
Transactive control is a type of distributed control strategy that uses market mechanism to engage self-interested responsive loads to achieve power balance in the electrical power grid. In this paper, we propose a transactive control approach of commercial building Heating, Ventilation, and Air- Conditioning (HVAC) systems for demand response. We first describe the system models, and identify their model parameters using data collected from Systems Engineering Building (SEB) located on our Pacific Northwest National Laboratory (PNNL) campus. We next present a transactive control market structure for commercial building HVAC system, and describe its agent bidding and market clearing strategies. Severalmore » case studies are performed in a simulation environment using Building Control Virtual Test Bed (BCVTB) and calibrated SEB EnergyPlus model. We show that the proposed transactive control approach is very effective at peak clipping, load shifting, and strategic conservation for commercial building HVAC systems.« less
Virtual building environments (VBE) - Applying information modeling to buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazjanac, Vladimir
2004-06-21
A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative andmore » the benefits from a couple of early VBE projects.« less
NASA Astrophysics Data System (ADS)
Murphy, M.; Chenaux, A.; Keenaghan, G.; GIbson, V..; Butler, J.; Pybusr, C.
2017-08-01
In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts.
Developing Flexible Networked Lighting Control Systems
, Bluetooth, ZigBee and others are increasingly used for building control purposes. Low-cost computation : Bundling digital intelligence at the sensors and lights adds virtually no incremental cost. Coupled with cost. Research Goals and Objectives This project "Developing Flexible, Networked Lighting Control
NASA Technical Reports Server (NTRS)
2002-01-01
Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.
Building Virtuality into University-Based Human Resources Policy in China's Universities
ERIC Educational Resources Information Center
Guoliang, Zhang
2005-01-01
On the basis of discussing the notion of virtual human resources and its structure, this paper analyzes the necessity of building up virtual university teaching staff and proposes a model for the structural makeup of virtual university teaching staff.
Using a Virtual Store As a Research Tool to Investigate Consumer In-store Behavior.
Ploydanai, Kunalai; van den Puttelaar, Jos; van Herpen, Erica; van Trijp, Hans
2017-07-24
People's responses to products and/or choice environments are crucial to understanding in-store consumer behaviors. Currently, there are various approaches (e.g., surveys or laboratory settings) to study in-store behaviors, but the external validity of these is limited by their poor capability to resemble realistic choice environments. In addition, building a real store to meet experimental conditions while controlling for undesirable effects is costly and highly difficult. A virtual store developed by virtual reality techniques potentially transcends these limitations by offering the simulation of a 3D virtual store environment in a realistic, flexible, and cost-efficient way. In particular, a virtual store interactively allows consumers (participants) to experience and interact with objects in a tightly controlled yet realistic setting. This paper presents the key elements of using a desktop virtual store to study in-store consumer behavior. Descriptions of the protocol steps to: 1) build the experimental store, 2) prepare the data management program, 3) run the virtual store experiment, and 4) organize and export data from the data management program are presented. The virtual store enables participants to navigate through the store, choose a product from alternatives, and select or return products. Moreover, consumer-related shopping behaviors (e.g., shopping time, walking speed, and number and type of products examined and bought) can also be collected. The protocol is illustrated with an example of a store layout experiment showing that shelf length and shelf orientation influence shopping- and movement-related behaviors. This demonstrates that the use of a virtual store facilitates the study of consumer responses. The virtual store can be especially helpful when examining factors that are costly or difficult to change in real life (e.g., overall store layout), products that are not presently available in the market, and routinized behaviors in familiar environments.
Virtual environments simulation in research reactor
NASA Astrophysics Data System (ADS)
Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin
2017-01-01
Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.
BIM based virtual environment for fire emergency evacuation.
Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N
2014-01-01
Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.
Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study
NASA Astrophysics Data System (ADS)
Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.
2016-06-01
Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.
Intelligent Controls for Net-Zero Energy Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haorong; Cho, Yong; Peng, Dongming
2011-10-30
The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less
Local area networking in a radio quiet environment
NASA Astrophysics Data System (ADS)
Childers, Edwin L.; Hunt, Gareth; Brandt, Joseph J.
2002-11-01
The Green Bank facility of the National Radio Astronomy Observatory is spread out over 2,700 acres in the Allegheny Mountains of West Virginia. Good communication has always been needed between the radio telescopes and the control buildings. The National Radio Quiet Zone helps protect the Green Bank site from radio transmissions that interfere with the astronomical signals. Due to stringent Radio Frequency Interference (RFI) requirements, a fiber optic communication system was used for Ethernet transmissions on the site and coaxial cable within the buildings. With the need for higher speed communications, the entire network has been upgraded to use optical fiber with modern Ethernet switches. As with most modern equipment, the implementation of the control of the newly deployed Green Bank Telescope (GBT) depends heavily on TCP/IP. In order to protect the GBT from the commodity Internet, the GBT uses a non-routable network. Communication between the control building Local Area Network (LAN) and the GBT is implemented using a Virtual LAN (VLAN). This configuration will be extended to achieve isolation between trusted local user systems, the GBT, and other Internet users. Legitimate access to the site, for example by remote observers, is likely to be implemented using a virtual private network (VPN).
BIM Based Virtual Environment for Fire Emergency Evacuation
Rezgui, Yacine; Ong, Hoang N.
2014-01-01
Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704
STS-103 crew perform virtual reality training in building 9N
1999-05-24
S99-05678 (24 May 1999)--- Astronaut Jean-Francois Clervoy (right), STS-103 mission specialist representing the European Space Agency (ESA), "controls" the shuttle's remote manipulator system (RMS) during a simulation using virtual reality type hardware at the Johnson Space Center (JSC). Looking on is astronaut John M. Grunsfeld, mission specialist. Both astronauts are assigned to separate duties supporting NASA's third Hubble Space Telescope (HST) servicing mission. Clervoy will be controlling Discovery's RMS and Grunsfeld is one of four astronauts that will be paired off for a total of three spacewalks on the mission.
An Integrated FDD System for HVAC&R Based on Virtual Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun
According to the U.S Department of Energy, space heating, ventilation and air conditioning system account for 40% of residential primary energy use and for 30% of primary energy use in commercial buildings. A study released by the Energy Information Administration indicated that packaged air conditioners are widely used in 46% of all commercial buildings in the U.S. This study indicates that the annual cooling energy consumption related to the packaged air conditioner is about 160 trillion Btus. Therefore, an automated FDD system that can automatically detect and diagnose faults and evaluate fault impacts has the potential for improving energy efficiencymore » along with reducing service costs and comfort complaints. The primary bottlenecks to diagnostic implementation in the field are the high initial costs of additional sensors. To prevent those limitations, virtual sensors with low cost measurements and simple models are developed to estimate quantities that would be expensive and or difficult to measure directly. The use of virtual sensors can reduce costs compared to the use of real sensors and provide additional information for economic assessment. The virtual sensor can be embedded in a permanently installed control or monitoring system and continuous monitoring potentially leads to early detection of faults. The virtual sensors of individual equipment components can be integrated to estimate overall diagnostic information using the output of each virtual sensor.« less
Collaboration and Dialogue in Virtual Reality
ERIC Educational Resources Information Center
Jensen, Camilla Gyldendahl
2017-01-01
"Virtual reality" adds a new dimension to problem-based learning (PBL) environments in the architecture and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with "Building Information…
Biomechanical Analysis of Locust Jumping in a Physically Realistic Virtual Environment
NASA Astrophysics Data System (ADS)
Cofer, David; Cymbalyuk, Gennady; Heitler, William; Edwards, Donald
2008-03-01
The biomechanical and neural components that underlie locust jumping have been extensively studied. Previous research suggested that jump energy is stored primarily in the extensor apodeme, and in a band of cuticle called the semi-lunar process (SLP). As it has thus far proven impossible to experimentally alter the SLP without rendering a locust unable to jump, it has not been possible to test whether the energy stored in the SLP has a significant impact on the jump. To address problems such as this we have developed a software toolkit, AnimatLab, which allows researchers to build and test virtual organisms. We used this software to build a virtual locust, and then asked how the SLP is utilized during jumping. The results show that without the SLP the jump distance was reduced by almost half. Further, the simulations were also able to show that loss of the SLP had a significant impact on the final phase of the jump. We are currently working on postural control mechanisms for targeted jumping in locust.
Structure and controls of the global virtual water trade network
NASA Astrophysics Data System (ADS)
Suweis, S.; Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I.
2011-05-01
Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e., the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened.
Training software using virtual-reality technology and pre-calculated effective dose data.
Ding, Aiping; Zhang, Di; Xu, X George
2009-05-01
This paper describes the development of a software package, called VR Dose Simulator, which aims to provide interactive radiation safety and ALARA training to radiation workers using virtual-reality (VR) simulations. Combined with a pre-calculated effective dose equivalent (EDE) database, a virtual radiation environment was constructed in VR authoring software, EON Studio, using 3-D models of a real nuclear power plant building. Models of avatars representing two workers were adopted with arms and legs of the avatar being controlled in the software to simulate walking and other postures. Collision detection algorithms were developed for various parts of the 3-D power plant building and avatars to confine the avatars to certain regions of the virtual environment. Ten different camera viewpoints were assigned to conveniently cover the entire virtual scenery in different viewing angles. A user can control the avatar to carry out radiological engineering tasks using two modes of avatar navigation. A user can also specify two types of radiation source: Cs and Co. The location of the avatar inside the virtual environment during the course of the avatar's movement is linked to the EDE database. The accumulative dose is calculated and displayed on the screen in real-time. Based on the final accumulated dose and the completion status of all virtual tasks, a score is given to evaluate the performance of the user. The paper concludes that VR-based simulation technologies are interactive and engaging, thus potentially useful in improving the quality of radiation safety training. The paper also summarizes several challenges: more streamlined data conversion, realistic avatar movement and posture, more intuitive implementation of the data communication between EON Studio and VB.NET, and more versatile utilization of EDE data such as a source near the body, etc., all of which needs to be addressed in future efforts to develop this type of software.
Towards a Methodology for Managing Competencies in Virtual Teams - A Systemic Approach
NASA Astrophysics Data System (ADS)
Schumacher, Marinita; Stal-Le Cardinal, Julie; Bocquet, Jean-Claude
Virtual instruments and tools are future trends in Engineering which are a response to the growing complexity of engineering tasks, the facility of communication and strong collaborations on the international market. Outsourcing, off-shoring, and the globalization of organisations’ activities have resulted in the formation of virtual product development teams. Individuals who are working in virtual teams must be equipped with diversified competencies that provide a basis for virtual team building. Thanks to the systemic approach of the functional analysis our paper responds to the need of a methodology of competence management to build virtual teams that are active in virtual design projects in the area of New Product Development (NPD).
Learning in the Wild of a Virtual World
ERIC Educational Resources Information Center
Aurilio, Suzanne
2009-01-01
This study took place in the online 3D virtual world Second Life[R], a recreational environment designed for world-building and socializing, and intended for individuals 18 years old and older. It described learning from the perspective of Second Life[R] Residents and focused on their world-building activities. As a virtual ethnographer, my avatar…
Case Western Reserve U. Builds Virtual Campus to Woo Prospective Students
ERIC Educational Resources Information Center
Young, Jeffrey R.
2007-01-01
This article describes a virtual world program that Case Western University administrators built using Second Life. It is designed for use by prospective students, who can tour the campus online. The program shows campus buildings, athletic facilities, a diner, and a virtual dormitory with window views of the athletics fields, a feature of the…
Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.
Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W
2015-01-01
Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics.
The HARNESS Workbench: Unified and Adaptive Access to Diverse HPC Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunderam, Vaidy S.
2012-03-20
The primary goal of the Harness WorkBench (HWB) project is to investigate innovative software environments that will help enhance the overall productivity of applications science on diverse HPC platforms. Two complementary frameworks were designed: one, a virtualized command toolkit for application building, deployment, and execution, that provides a common view across diverse HPC systems, in particular the DOE leadership computing platforms (Cray, IBM, SGI, and clusters); and two, a unified runtime environment that consolidates access to runtime services via an adaptive framework for execution-time and post processing activities. A prototype of the first was developed based on the concept ofmore » a 'system-call virtual machine' (SCVM), to enhance portability of the HPC application deployment process across heterogeneous high-end machines. The SCVM approach to portable builds is based on the insertion of toolkit-interpretable directives into original application build scripts. Modifications resulting from these directives preserve the semantics of the original build instruction flow. The execution of the build script is controlled by our toolkit that intercepts build script commands in a manner transparent to the end-user. We have applied this approach to a scientific production code (Gamess-US) on the Cray-XT5 machine. The second facet, termed Unibus, aims to facilitate provisioning and aggregation of multifaceted resources from resource providers and end-users perspectives. To achieve that, Unibus proposes a Capability Model and mediators (resource drivers) to virtualize access to diverse resources, and soft and successive conditioning to enable automatic and user-transparent resource provisioning. A proof of concept implementation has demonstrated the viability of this approach on high end machines, grid systems and computing clouds.« less
Trust Building in Virtual Communities
NASA Astrophysics Data System (ADS)
Mezgár, István
By using different types of communication networks various groups of people can come together according to their private or business interest forming a Virtual Community. In these communities cooperation and collaboration plays an important role. As trust is the base of all human interactions this fact is even more valid in case of virtual communities. According to different experiments the level of trust in virtual communities is highly influenced by the way/mode of communication and by the duration of contact. The paper discusses the ways of trust building focusing on communication technologies and security aspects in virtual communities.
Newborn chickens generate invariant object representations at the onset of visual object experience
Wood, Justin N.
2013-01-01
To recognize objects quickly and accurately, mature visual systems build invariant object representations that generalize across a range of novel viewing conditions (e.g., changes in viewpoint). To date, however, the origins of this core cognitive ability have not yet been established. To examine how invariant object recognition develops in a newborn visual system, I raised chickens from birth for 2 weeks within controlled-rearing chambers. These chambers provided complete control over all visual object experiences. In the first week of life, subjects’ visual object experience was limited to a single virtual object rotating through a 60° viewpoint range. In the second week of life, I examined whether subjects could recognize that virtual object from novel viewpoints. Newborn chickens were able to generate viewpoint-invariant representations that supported object recognition across large, novel, and complex changes in the object’s appearance. Thus, newborn visual systems can begin building invariant object representations at the onset of visual object experience. These abstract representations can be generated from sparse data, in this case from a visual world containing a single virtual object seen from a limited range of viewpoints. This study shows that powerful, robust, and invariant object recognition machinery is an inherent feature of the newborn brain. PMID:23918372
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1993-01-01
In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.
Using a virtual world for robot planning
NASA Astrophysics Data System (ADS)
Benjamin, D. Paul; Monaco, John V.; Lin, Yixia; Funk, Christopher; Lyons, Damian
2012-06-01
We are building a robot cognitive architecture that constructs a real-time virtual copy of itself and its environment, including people, and uses the model to process perceptual information and to plan its movements. This paper describes the structure of this architecture. The software components of this architecture include PhysX for the virtual world, OpenCV and the Point Cloud Library for visual processing, and the Soar cognitive architecture that controls the perceptual processing and task planning. The RS (Robot Schemas) language is implemented in Soar, providing the ability to reason about concurrency and time. This Soar/RS component controls visual processing, deciding which objects and dynamics to render into PhysX, and the degree of detail required for the task. As the robot runs, its virtual model diverges from physical reality, and errors grow. The Match-Mediated Difference component monitors these errors by comparing the visual data with corresponding data from virtual cameras, and notifies Soar/RS of significant differences, e.g. a new object that appears, or an object that changes direction unexpectedly. Soar/RS can then run PhysX much faster than real-time and search among possible future world paths to plan the robot's actions. We report experimental results in indoor environments.
Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm
Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A.; Przekwas, Andrzej; Francis, Joseph T.; Lytton, William W.
2015-01-01
Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics. PMID:26635598
2014-01-01
Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900
The role of perceived interactivity in virtual communities: building trust and increasing stickiness
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Meng, Yuan; Wang, Wei
2013-03-01
Although previous research has explored factors affecting trust building in websites, little research has been analysed from the perceived interactivity perspective in virtual communities (VCs). A research model for verifying interactivity antecedents to trust and its impact on member stickiness behaviour is presented. Two social interactivity components and two system interactivity components are, respectively, theorised as process-based antecedents and institution-based antecedents to trust in the model. Data were collected from 310 members of VCs to test the model. The results show that connectedness and reciprocity are important antecedents to trust in members, while responsiveness and active control are important antecedents to trust in systems. The results also indicate that trust has significant influence on the members' duration and retention, which are two dimensions of member stickiness measured in this research. These findings have theoretical implications for online interaction-related literature and critical business implications for practitioners of VCs.
Randomized trial of a peer resistance skill-building game for Hispanic early adolescent girls.
Norris, Anne E; Hughes, Charles; Hecht, Michael; Peragallo, Nilda; Nickerson, David
2013-01-01
Adolescents can use peer resistance skills to avoid being pressured into risky behavior, such as early sexual behavior. Avatar-based virtual reality technology offers a novel way to help build these skills. The aims of this study were to evaluate the feasibility of an avatar-based virtual reality peer resistance skill building game (DRAMA-RAMA), to explore the impact of game play on peer resistance self-efficacy, and to assess how positively the game was perceived. Forty-four low-income early adolescent Hispanic girls were assigned randomly to either the intervention (DRAMA-RAMA) or attention control game (Wii Dancing With the Stars) condition. All participants were offered a five-session curriculum that included peer resistance skill content before playing their respective game for 15 minutes, once a week, for 2 weeks. Participants completed electronic surveys at baseline, after game play, and at 2 months to assess demographics, peer resistance self-efficacy, and sexual behavior. They also completed a paper-pencil game experience questionnaire immediately after game play. Data were analyzed using descriptive statistics, t test, chi-square, and analyses of covariance. Separate analyses of covariance showed a significant game effect at posttest for the peer resistance self-efficacy measure (F = 4.21, p < .05), but not at follow-up (F = 0.01, p = .92). DRAMA-RAMA was rated as positively as the Wii Dancing With the Stars (p > .26). This randomized control trial provides preliminary support for the hypothesis that playing an avatar-based virtual reality technology game can strengthen peer resistance skills, and early adolescent Hispanic girls will have a positive response to this game.
Structure and Controls of the Global Virtual Water Trade Network
NASA Astrophysics Data System (ADS)
Suweis, S. S.
2011-12-01
Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e. the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model, the fitness model, that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened. Our results show the importance of incorporating a network framework in the study of virtual water trades and provide a model to study the structure and resilience of the GVWTN under future scenarios for social, economic and climate change.
Developing a Novel Measure of Body Satisfaction Using Virtual Reality
Purvis, Clare K.; Jones, Megan; Bailey, Jakki O.; Bailenson, Jeremy; Taylor, C. Barr
2015-01-01
Body image disturbance (BID), considered a key feature in eating disorders, is a pervasive issue among young women. Accurate assessment of BID is critical, but the field is currently limited to self-report assessment methods. In the present study, we build upon existing research, and explore the utility of virtual reality (VR) to elicit and detect changes in BID across various immersive virtual environments. College-aged women with elevated weight and shape concerns (n = 38) and a non-weight and shape concerned control group (n = 40) were randomly exposed to four distinct virtual environments with high or low levels of body salience and social presence (i.e., presence of virtual others). Participants interacted with avatars of thin, normal weight, and overweight body size (BMI of approximately 18, 22, and 27 respectively) in virtual social settings (i.e., beach, party). We measured state-level body satisfaction (state BD) immediately after exposure to each environment. In addition, we measured participants’ minimum interpersonal distance, visual attention, and approach preference toward avatars of each size. Women with higher baseline BID reported significantly higher state BD in all settings compared to controls. Both groups reported significantly higher state BD in a beach with avatars as compared to other environments. In addition, women with elevated BID approached closer to normal weight avatars and looked longer at thin avatars compared to women in the control group. Our findings indicate that VR may serve as a novel tool for measuring state-level BID, with applications for measuring treatment outcomes. Implications for future research and clinical interventions are discussed. PMID:26469860
Layer 1 VPN services in distributed next-generation SONET/SDH networks with inverse multiplexing
NASA Astrophysics Data System (ADS)
Ghani, N.; Muthalaly, M. V.; Benhaddou, D.; Alanqar, W.
2006-05-01
Advances in next-generation SONET/SDH along with GMPLS control architectures have enabled many new service provisioning capabilities. In particular, a key services paradigm is the emergent Layer 1 virtual private network (L1 VPN) framework, which allows multiple clients to utilize a common physical infrastructure and provision their own 'virtualized' circuit-switched networks. This precludes expensive infrastructure builds and increases resource utilization for carriers. Along these lines, a novel L1 VPN services resource management scheme for next-generation SONET/SDH networks is proposed that fully leverages advanced virtual concatenation and inverse multiplexing features. Additionally, both centralized and distributed GMPLS-based implementations are also tabled to support the proposed L1 VPN services model. Detailed performance analysis results are presented along with avenues for future research.
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Anthonius; Muchtar, M. A.; Hizriadi, A.; Syahputra, M. F.
2018-03-01
Universitas Sumatera Utara is one of the public universities that have over 100 buildings with total area of more than 133.141 square meters. Information delivery on the location of the institutional buildings becomes challenging since the university land reaches 93.4 Ha. The information usually delivers orally, in video presentation and in the form of two-dimensional such as maps, posters, and brochures. These three techniques of information delivery have their advantages and disadvantages. Thus, we know that virtual reality has come to existence, touching every domain of knowledge. In this paper we study and implement virtual reality as a new approach to distribute the information to cover all of the deficiencies. The utilization of virtual reality technology combined with 3D modeling is aims to introduce and inform the location of USU institutional buildings in interactive and innovative ways. With the application existence, the campus introduction is expected to be more convenient so that all the USU students will be able to find the exact location of the building they are headed for.
ERIC Educational Resources Information Center
O'Connor, Eileen A.; Domingo, Jelia
2017-01-01
With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…
NASA Astrophysics Data System (ADS)
Murphy, M.; Corns, A.; Cahill, J.; Eliashvili, K.; Chenau, A.; Pybus, C.; Shaw, R.; Devlin, G.; Deevy, A.; Truong-Hong, L.
2017-08-01
Cultural heritage researchers have recently begun applying Building Information Modelling (BIM) to historic buildings. The model is comprised of intelligent objects with semantic attributes which represent the elements of a building structure and are organised within a 3D virtual environment. Case studies in Ireland are used to test and develop the suitable systems for (a) data capture/digital surveying/processing (b) developing library of architectural components and (c) mapping these architectural components onto the laser scan or digital survey to relate the intelligent virtual representation of a historic structure (HBIM). While BIM platforms have the potential to create a virtual and intelligent representation of a building, its full exploitation and use is restricted to narrow set of expert users with access to costly hardware, software and skills. The testing of open BIM approaches in particular IFCs and the use of game engine platforms is a fundamental component for developing much wider dissemination. The semantically enriched model can be transferred into a WEB based game engine platform.
Horizontal Curve Virtual Peer Exchange : an RSPCB Peer Exchange
DOT National Transportation Integrated Search
2014-06-01
This report summarizes the Horizontal Curve Virtual Peer Exchange sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professional Capacity Building Program on June 17, 2014. This virtual peer exchange was the f...
Rouleau, Geneviève; Richard, Lauralie; Côté, José
2016-01-01
The use of information and communication technologies for designing web-based nursing interventions is growing exponentially. Despite the interest devoted to such approaches, little is known about their foundational principles and the way they translate into virtual nursing practice to generate meaningful engagement with patients. VIH-TAVIETM is a virtual nursing intervention aiming to empower people living with HIV to help them in managing their antiretroviral therapy. Here we present VIH-TAVIETM relational model of engagement - its core components informed by interview data with patients and a virtual nurse: building a virtual presence founded on caring relational principles and values; creating a caring environment where patients feel safe, supported and respected; stimulating patients' engagement by offering supportive and tailored messages; transposing nursing communication skills into a virtual practice to build trust and reciprocal relationships. This study suggests that empowering connections can develop between a nurse and a patient within a caring virtual environment.
Simulation-based Testing of Control Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Nutaro, James J.; Sanyal, Jibonananda
It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulatormore » can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.« less
ERIC Educational Resources Information Center
Gan, Yongcheng; Zhu, Zhiting
2007-01-01
This study represents an effort to construct a learning framework for knowledge building and collective wisdom advancement in a virtual learning community (VLC) from the perspectives of system wholeness, intelligence wholeness and dynamics, learning models, and knowledge management. It also tries to construct the zone of proximal development (ZPD)…
Understanding the Adaptive Use of Virtual World Technology Capabilities and Trust in Virtual Teams
ERIC Educational Resources Information Center
Owens, Dawn
2012-01-01
In an environment of global competition and constant technological change, the use of virtual teams has become commonplace for many organizations. Virtual team members are geographically and temporally dispersed, experience cultural diversity, and lack shared social context and face-to-face encounters considered as irreplaceable for building and…
Risks and Uncertainties in Virtual Worlds: An Educators' Perspective
ERIC Educational Resources Information Center
Farahmand, Fariborz; Yadav, Aman; Spafford, Eugene H.
2013-01-01
Virtual worlds present tremendous advantages to cyberlearning. For example, in virtual worlds users can socialize with others, build objects and share them, customize parts of the world and hold lectures, do experiments, or share data. However, virtual worlds pose a wide range of security, privacy, and safety concerns. This may lead educators to…
Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B
2014-01-01
For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES) that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the highly interactive and immersive exploration of the virtual environment greatly engages a blind user to develop skills akin to positive near transfer of learning. Learning through a game play strategy appears to confer certain behavioral advantages with respect to how spatial information is acquired and ultimately manipulated for navigation.
Connors, Erin C.; Chrastil, Elizabeth R.; Sánchez, Jaime; Merabet, Lotfi B.
2014-01-01
For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES) that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the highly interactive and immersive exploration of the virtual environment greatly engages a blind user to develop skills akin to positive near transfer of learning. Learning through a game play strategy appears to confer certain behavioral advantages with respect to how spatial information is acquired and ultimately manipulated for navigation. PMID:24822044
NASA Astrophysics Data System (ADS)
Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, D.; Gill, R.; Sinno, S. S.; Shen, Y.; Carriere, L. E.; Brieger, L.; Moore, R.; Rajasekar, A.; Schroeder, W.; Wan, M.
2011-12-01
Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service. A virtual climate data server is an OAIS-compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have developed prototype vCDSs to manage NetCDF, HDF, and GeoTIF data products. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA's Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into these virtualized resources, multiple vCDSs can use iRODS's federation and realized object capabilities to create an integrated ecosystem of data servers that can scale and adapt to changing requirements. This approach enables platform- or software-as-a-service deployment of the vCDSs and allows the NCCS to offer virtualization-as-a-service, a capacity to respond in an agile way to new customer requests for data services, and a path for migrating existing services into the cloud. We have registered MODIS Atmosphere data products in a vCDS that contains 54 million registered files, 630TB of data, and over 300 million metadata values. We are now assembling IPCC AR5 data into a production vCDS that will provide the platform upon which NCCS's Earth System Grid (ESG) node publishes to the extended science community. In this talk, we describe our approach, experiences, lessons learned, and plans for the future.
Connors, Erin C; Yazzolino, Lindsay A; Sánchez, Jaime; Merabet, Lotfi B
2013-03-27
Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind. Using only audio based cues and set within the context of a video game metaphor, users gather relevant spatial information regarding a building's layout. This allows the user to develop an accurate spatial cognitive map of a large-scale three-dimensional space that can be manipulated for the purposes of a real indoor navigation task. After game play, participants are then assessed on their ability to navigate within the target physical building represented in the game. Preliminary results suggest that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building as indexed by their performance on a series of navigation tasks. These tasks included path finding through the virtual and physical building, as well as a series of drop off tasks. We find that the immersive and highly interactive nature of the AbES software appears to greatly engage the blind user to actively explore the virtual environment. Applications of this approach may extend to larger populations of visually impaired individuals.
Communication skills to develop trusting relationships on global virtual engineering capstone teams
NASA Astrophysics Data System (ADS)
Zaugg, Holt; Davies, Randall S.
2013-05-01
As universities seek to provide cost-effective, cross-cultural experiences using global virtual (GV) teams, the 'soft' communication skills typical of all teams, increases in importance for GV teams. Students need to be taught how to navigate through cultural issues and virtual tool issues to build strong trusting relationships with distant team members. Weekly team meetings provide an excellent opportunity to observe key team interactions that facilitate relationship and trust-building among team members. This study observed the weekly team meetings of engineering students attending two US universities and one Asian university as they collaborated as a single GV capstone GV team. In addition local team members were interviewed individually and collectively throughout the project to determine strategies that facilitated team relations and trust. Findings indicate the importance of student choice of virtual communication tools, the refining of communication practices, and specific actions to build trusting relationships. As student developed these attributes, collaboration and success was experienced on this GV team.
2007-06-01
4.2 Creating the Skybox and Terrain Model .........................................................................7 4.3 Creating New Textures... Skybox and Terrain Model The next step was to build a sky box. Since it already resided in Raven Shield, the creation of the sky box was limited to
ERIC Educational Resources Information Center
O'Connor, Eileen A.
2015-01-01
Opening with the history, recent advances, and emerging ways to use avatar-based virtual reality, an instructor who has used virtual environments since 2007 shares how these environments bring more options to community building, teaching, and education. With the open-source movement, where the source code for virtual environments was made…
A Virtual Campus Based on Human Factor Engineering
ERIC Educational Resources Information Center
Yang, Yuting; Kang, Houliang
2014-01-01
Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…
Has your greenhouse gone virtual?
USDA-ARS?s Scientific Manuscript database
Virtual Grower is a free decision-support software program available from USDA-ARS that allows growers to build a virtual greenhouse. It was initially designed to help greenhouse growers estimate heating costs and conduct simple simulations to figure out where heat savings could be achieved. Featu...
Virtual Events: A Cyberspace Resource for Educators.
ERIC Educational Resources Information Center
McLellan, Hilary
1998-01-01
Discusses how virtual events can be used to enhance education. Topics include balancing virtual and real encounters; finding the best mix of communication options; and finding patterns of interaction that support reflective cognition, knowledge amplification, community-building, learning, and global understanding. GLOBENET 1997, an international…
ERIC Educational Resources Information Center
Sarirete, Akila; Chikh, Azeddine; Noble, Elizabeth
2011-01-01
Purpose: The purpose of this paper is to define a community memory for a virtual communities of practice (CoP) based on organizational learning (OL) concept and ontologies. Design/methodology/approach: The paper focuses on applying the OL concept to virtual CoP and proposes a framework for building the CoP memory by identifying several layers of…
Virtual Reality, Combat, and Communication.
ERIC Educational Resources Information Center
Thrush, Emily Austin; Bodary, Michael
2000-01-01
Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…
Virtual Learning Environments.
ERIC Educational Resources Information Center
Follows, Scott B.
1999-01-01
Illustrates the possibilities and educational benefits of virtual learning environments (VLEs), based on experiences with "Thirst for Knowledge," a VLE that simulates the workplace of a major company. While working in this virtual office world, students walk through the building, attend meetings, read reports, receive e-mail, answer the telephone,…
Virtual Team Effectiveness: An Empirical Study Using SEM
ERIC Educational Resources Information Center
Bhat, Swati Kaul; Pande, Neerja; Ahuja, Vandana
2016-01-01
Advances in communication and information technology create new opportunities for organizations to build and manage virtual teams. Virtual teams have become a norm for organizations whose members work across disparate geographical locations, relying primarily or exclusively, on the usage of Information and Communications Technology (ICT) for the…
Cracking the egg: virtual embryogenesis of real robots.
Cussat-Blanc, Sylvain; Pollack, Jordan
2014-01-01
All multicellular living beings are created from a single cell. A developmental process, called embryogenesis, takes this first fertilized cell down a complex path of reproduction, migration, and specialization into a complex organism adapted to its environment. In most cases, the first steps of the embryogenesis take place in a protected environment such as in an egg or in utero. Starting from this observation, we propose a new approach to the generation of real robots, strongly inspired by living systems. Our robots are composed of tens of specialized cells, grown from a single cell using a bio-inspired virtual developmental process. Virtual cells, controlled by gene regulatory networks, divide, migrate, and specialize to produce the robot's body plan (morphology), and then the robot is manually built from this plan. Because the robot is as easy to assemble as Lego, the building process could be easily automated.
Modelling Complex Fenestration Systems using physical and virtual models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanachareonkit, Anothai; Scartezzini, Jean-Louis
2010-04-15
Physical or virtual models are commonly used to visualize the conceptual ideas of architects, lighting designers and researchers; they are also employed to assess the daylighting performance of buildings, particularly in cases where Complex Fenestration Systems (CFS) are considered. Recent studies have however revealed a general tendency of physical models to over-estimate this performance, compared to those of real buildings; these discrepancies can be attributed to several reasons. In order to identify the main error sources, a series of comparisons in-between a real building (a single office room within a test module) and the corresponding physical and virtual models wasmore » undertaken. The physical model was placed in outdoor conditions, which were strictly identical to those of the real building, as well as underneath a scanning sky simulator. The virtual model simulations were carried out by way of the Radiance program using the GenSky function; an alternative evaluation method, named Partial Daylight Factor method (PDF method), was also employed with the physical model together with sky luminance distributions acquired by a digital sky scanner during the monitoring of the real building. The overall daylighting performance of physical and virtual models were assessed and compared. The causes of discrepancies between the daylighting performance of the real building and the models were analysed. The main identified sources of errors are the reproduction of building details, the CFS modelling and the mocking-up of the geometrical and photometrical properties. To study the impact of these errors on daylighting performance assessment, computer simulation models created using the Radiance program were also used to carry out a sensitivity analysis of modelling errors. The study of the models showed that large discrepancies can occur in daylighting performance assessment. In case of improper mocking-up of the glazing for instance, relative divergences of 25-40% can be found in different room locations, suggesting that more light is entering than actually monitored in the real building. All these discrepancies can however be reduced by making an effort to carefully mock up the geometry and photometry of the real building. A synthesis is presented in this article which can be used as guidelines for daylighting designers to avoid or estimate errors during CFS daylighting performance assessment. (author)« less
Research and Development of Web-Based Virtual Online Classroom
ERIC Educational Resources Information Center
Yang, Zongkai; Liu, Qingtang
2007-01-01
To build a web-based virtual learning environment depends on information technologies, concerns technology supporting learning methods and theories. A web-based virtual online classroom is designed and developed based on learning theories and streaming media technologies. And it is composed of two parts: instructional communicating environment…
Building a Virtual Learning Network for Teachers in a Suburban School District
ERIC Educational Resources Information Center
Kurtzworth-Keen, Kristin A.
2011-01-01
Emerging research indicates that learning management systems such as Moodle can function as virtual, collaborative environments, where collegial interactions promote professional learning opportunities. This study deployed a mixed methods design in order to describe and analyze teacher participation in a virtual learning network (VLN) that was…
The Virtual Intercultural Team Tool
ERIC Educational Resources Information Center
Rus, Calin
2010-01-01
This article describes the Virtual Intercultural Team Tool (VITT) and discusses its processes and benefits. VIIT is a virtual platform designed with the aim of assisting European project teams to improve intercultural communication and build on their cultural diversity for effective implementation of their projects. It is a process-focused tool,…
Learning through Place-Making: Virtual Environments and Future Literacies
ERIC Educational Resources Information Center
Berry, Maryanne Susan
2010-01-01
This study examines a project through which elementary school and high school students collaborated with university Architecture/New Media students in building models of virtual, immersive libraries. It presents the project in the context of multiple and cross-disciplinary fields currently investigating the use of virtual and immersive…
ERIC Educational Resources Information Center
Frontera, Eloi Biosca
2009-01-01
This article is a summary and conclusions of a field study carried out in a secondary education classroom with the aim of experimenting and observing how 13-year-old students learn the history of architecture by using complex virtual reality software. Within the framework of autonomous and active learning, students act as builders of some of the…
Grids, virtualization, and clouds at Fermilab
Timm, S.; Chadwick, K.; Garzoglio, G.; ...
2014-06-11
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less
Grids, virtualization, and clouds at Fermilab
NASA Astrophysics Data System (ADS)
Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.
2014-06-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.
Communication Skills to Develop Trusting Relationships on Global Virtual Engineering Capstone Teams
ERIC Educational Resources Information Center
Zaugg, Holt; Davies, Randall S.
2013-01-01
As universities seek to provide cost-effective, cross-cultural experiences using global virtual (GV) teams, the "soft" communication skills typical of all teams, increases in importance for GV teams. Students need to be taught how to navigate through cultural issues and virtual tool issues to build strong trusting relationships with…
Conversations with Freudbot in Second Life: Mining the Virtuality of Relationship
ERIC Educational Resources Information Center
Heller, Bob
2017-01-01
The unstructured conversations of students who chatted with Freudbot in his Second Life virtual office over a 32-month period were examined in order to better understand the nature of the virtual relationship between students and conversational agents (CA) as historical figures. This research builds on past work that examined these conversations…
Student Responses to Their Immersion in a Virtual Environment.
ERIC Educational Resources Information Center
Taylor, Wayne
Undertaken in conjunction with a larger study that investigated the educational efficacy of students building their own virtual worlds, this study measures the reactions of students in grades 4-12 to the experience of being immersed in virtual reality (VR). The study investigated the sense of "presence" experienced by the students, the…
Virtual Environments Supporting Learning and Communication in Special Needs Education
ERIC Educational Resources Information Center
Cobb, Sue V. G.
2007-01-01
Virtual reality (VR) describes a set of technologies that allow users to explore and experience 3-dimensional computer-generated "worlds" or "environments." These virtual environments can contain representations of real or imaginary objects on a small or large scale (from modeling of molecular structures to buildings, streets, and scenery of a…
Research on 3D virtual campus scene modeling based on 3ds Max and VRML
NASA Astrophysics Data System (ADS)
Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue
2015-12-01
With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.
Closed-loop dialog model of face-to-face communication with a photo-real virtual human
NASA Astrophysics Data System (ADS)
Kiss, Bernadette; Benedek, Balázs; Szijárto, Gábor; Takács, Barnabás
2004-01-01
We describe an advanced Human Computer Interaction (HCI) model that employs photo-realistic virtual humans to provide digital media users with information, learning services and entertainment in a highly personalized and adaptive manner. The system can be used as a computer interface or as a tool to deliver content to end-users. We model the interaction process between the user and the system as part of a closed loop dialog taking place between the participants. This dialog, exploits the most important characteristics of a face-to-face communication process, including the use of non-verbal gestures and meta communication signals to control the flow of information. Our solution is based on a Virtual Human Interface (VHI) technology that was specifically designed to be able to create emotional engagement between the virtual agent and the user, thus increasing the efficiency of learning and/or absorbing any information broadcasted through this device. The paper reviews the basic building blocks and technologies needed to create such a system and discusses its advantages over other existing methods.
Expedition 11 Training with Krikalev/Henderson
2004-08-12
Expedition 11 Training with Krikalev/Henderson as their continued their training in the Virtual Reality Laboratory in building 9. View includes: Sergei Krikalev and Henderson using the virtual optics to view the International Space Station.
Archive interoperability in the Virtual Observatory
NASA Astrophysics Data System (ADS)
Genova, Françoise
2003-02-01
Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.
Utilization of building information modeling in infrastructure’s design and construction
NASA Astrophysics Data System (ADS)
Zak, Josef; Macadam, Helen
2017-09-01
Building Information Modeling (BIM) is a concept that has gained its place in the design, construction and maintenance of buildings in Czech Republic during recent years. This paper deals with description of usage, applications and potential benefits and disadvantages connected with implementation of BIM principles in the preparation and construction of infrastructure projects. Part of the paper describes the status of BIM implementation in Czech Republic, and there is a review of several virtual design and construction practices in Czech Republic. Examples of best practice are presented from current infrastructure projects. The paper further summarizes experiences with new technologies gained from the application of BIM related workflows. The focus is on the BIM model utilization for the machine control systems on site, quality assurance, quality management and construction management.
A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science
ERIC Educational Resources Information Center
Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris
2010-01-01
This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…
Virtual Lab to Develop Achievement in Electronic Circuits for Hearing-Impaired Students
ERIC Educational Resources Information Center
Baladoh, S. M.; Elgamal, A. F.; Abas, H. A.
2017-01-01
This paper aims to report and discuss the use of a virtual lab for developing achievement in electronic circuits for hearing-impaired students. Results from a number of studies have proved that the virtual lab allowed students to build and test a wide variety of electronic circuits. The present study was implemented to investigate the…
Representative Model of the Learning Process in Virtual Spaces Supported by ICT
ERIC Educational Resources Information Center
Capacho, José
2014-01-01
This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…
ERIC Educational Resources Information Center
O'Dell, Jenna R.; Barrett, Jeffrey E.; Cullen, Craig J.; Rupnow, Theodore J.; Clements, Douglas H.; Sarama, Julie; Rutherford, George; Beck, Pamela S.
2017-01-01
In this study, we investigated how Grade 3 and 4 students' organizational structure for volume units develops through repeated experiences with a virtual manipulative for building prisms. Our data consist of taped clinical interviews within a micro-genetic experiment. We report on student strategy development using a virtual manipulative for…
The Development of a Virtual Dinosaur Museum
ERIC Educational Resources Information Center
Tarng, Wernhuar; Liou, Hsin-Hun
2007-01-01
The objective of this article is to study the network and virtual reality technologies for developing a virtual dinosaur museum, which provides a Web-learning environment for students of all ages and the general public to know more about dinosaurs. We first investigate the method for building the 3D dynamic models of dinosaurs, and then describe…
Virtual Reality as a Tool in the Education
ERIC Educational Resources Information Center
Piovesan, Sandra Dutra; Passerino, Liliana Maria; Pereira, Adriana Soares
2012-01-01
The virtual reality is being more and more used in the education, enabling the student to find out, to explore and to build his own knowledge. This paper presents an Educational Software for presence or distance education, for subjects of Formal Language, where the student can manipulate virtually the target that must be explored, analyzed and…
ERIC Educational Resources Information Center
Yilmaz, Turkan Karakus; Cagiltay, Kursat
2016-01-01
Many virtual worlds have been adopted for implementation within educational settings because they are potentially useful for building effective learning environments. Since the flexibility of virtual worlds challenges to obtain effective and efficient educational outcomes, the design of such platforms need more attention. In the present study, the…
Knowledge Navigation for Virtual Vehicles
NASA Technical Reports Server (NTRS)
Gomez, Julian E.
2004-01-01
A virtual vehicle is a digital model of the knowledge surrounding a potentially real vehicle. Knowledge consists not only of the tangible information, such as CAD, but also what is known about the knowledge - its metadata. This paper is an overview of technologies relevant to building a virtual vehicle, and an assessment of how to bring those technologies together.
The Use of Virtual Reality Tools in the Reading-Language Arts Classroom
ERIC Educational Resources Information Center
Pilgrim, J. Michael; Pilgrim, Jodi
2016-01-01
This article presents virtual reality as a tool for classroom literacy instruction. Building on the traditional use of images as a way to scaffold prior knowledge, we extend this idea to share ways virtual reality enables experiential learning through field trip-like experiences. The use of technology tools such Google Street view, Google…
Building a sense of virtual community: the role of the features of social networking sites.
Chen, Chi-Wen; Lin, Chiun-Sin
2014-07-01
In recent years, social networking sites have received increased attention because of the potential of this medium to transform business by building virtual communities. However, theoretical and empirical studies investigating how specific features of social networking sites contribute to building a sense of virtual community (SOVC)-an important dimension of a successful virtual community-are rare. Furthermore, SOVC scales have been developed, and research on this issue has been called for, but few studies have heeded this call. On the basis of prior literature, this study proposes that perceptions of the three most salient features of social networking sites-system quality (SQ), information quality (IQ), and social information exchange (SIE)-play a key role in fostering SOVC. In particular, SQ is proposed to increase IQ and SIE, and SIE is proposed to enhance IQ, both of which thereafter build SOVC. The research model was examined in the context of Facebook, one of the most popular social networking sites in the world. We adopted Blanchard's scales to measure SOVC. Data gathered using a Web-based questionnaire, and analyzed with partial least squares, were utilized to test the model. The results demonstrate that SIE, SQ, and IQ are the factors that form SOVC. The findings also suggest that SQ plays a fundamental role in supporting SIE and IQ in social networking sites. Implications for theory, practice, and future research directions are discussed.
Simplified Virtualization in a HEP/NP Environment with Condor
NASA Astrophysics Data System (ADS)
Strecker-Kellogg, W.; Caramarcu, C.; Hollowell, C.; Wong, T.
2012-12-01
In this work we will address the development of a simple prototype virtualized worker node cluster, using Scientific Linux 6.x as a base OS, KVM and the libvirt API for virtualization, and the Condor batch software to manage virtual machines. The discussion in this paper provides details on our experience with building, configuring, and deploying the various components from bare metal, including the base OS, creation and distribution of the virtualized OS images and the integration of batch services with the virtual machines. Our focus was on simplicity and interoperability with our existing architecture.
NASA Astrophysics Data System (ADS)
Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen
2012-04-01
This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.
Integrated Survey Procedures for the Virtual Reading and Fruition of Historical Buildings
NASA Astrophysics Data System (ADS)
Scandurra, S.; Pulcrano, M.; Cirillo, V.; Campi, M.; di Luggo, A.; Zerlenga, O.
2018-05-01
This paper presents the developments of research related to the integration of digital survey methodologies with reference to image-based and range-based technologies. Starting from the processing of point clouds, the data were processed for both the geometric interpretation of the space as well as production of three-dimensional models that describe the constitutive and morphological relationships. The subject of the study was the church of San Carlo all'Arena in Naples (Italy), with a HBIM model being produced that is semantically consistent with the real building. Starting from the data acquired, a visualization system was created for the virtual exploration of the building.
LHCb Dockerized Build Environment
NASA Astrophysics Data System (ADS)
Clemencic, M.; Belin, M.; Closier, J.; Couturier, B.
2017-10-01
Used as lightweight virtual machines or as enhanced chroot environments, Linux containers, and in particular the Docker abstraction over them, are more and more popular in the virtualization communities. The LHCb Core Software team decided to investigate how to use Docker containers to provide stable and reliable build environments for the different supported platforms, including the obsolete ones which cannot be installed on modern hardware, to be used in integration builds, releases and by any developer. We present here the techniques and procedures set up to define and maintain the Docker images and how these images can be used to develop on modern Linux distributions for platforms otherwise not accessible.
Simulating Humans as Integral Parts of Spacecraft Missions
NASA Technical Reports Server (NTRS)
Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine
2006-01-01
The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.
Virtual VMASC: A 3D Game Environment
NASA Technical Reports Server (NTRS)
Manepalli, Suchitra; Shen, Yuzhong; Garcia, Hector M.; Lawsure, Kaleen
2010-01-01
The advantages of creating interactive 3D simulations that allow viewing, exploring, and interacting with land improvements, such as buildings, in digital form are manifold and range from allowing individuals from anywhere in the world to explore those virtual land improvements online, to training military personnel in dealing with war-time environments, and to making those land improvements available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such simulations, we have identified a requirement within our organization to use simulations like those to replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage the experience we gained in future projects of this kind. This paper describes the goals we set for our implementation, the software approach taken, the modeling contribution made, and the technologies used such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability of our implementation on a variety of architectures including Xbox 360 and PC. This paper also summarizes the result of our evaluation and the lessons learned from our effort.
Network testbed creation and validation
Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John
2017-03-21
Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.
Network testbed creation and validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.
Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less
Software for Building Models of 3D Objects via the Internet
NASA Technical Reports Server (NTRS)
Schramer, Tim; Jensen, Jeff
2003-01-01
The Virtual EDF Builder (where EDF signifies Electronic Development Fixture) is a computer program that facilitates the use of the Internet for building and displaying digital models of three-dimensional (3D) objects that ordinarily comprise assemblies of solid models created previously by use of computer-aided-design (CAD) programs. The Virtual EDF Builder resides on a Unix-based server computer. It is used in conjunction with a commercially available Web-based plug-in viewer program that runs on a client computer. The Virtual EDF Builder acts as a translator between the viewer program and a database stored on the server. The translation function includes the provision of uniform resource locator (URL) links to other Web-based computer systems and databases. The Virtual EDF builder can be used in two ways: (1) If the client computer is Unix-based, then it can assemble a model locally; the computational load is transferred from the server to the client computer. (2) Alternatively, the server can be made to build the model, in which case the server bears the computational load and the results are downloaded to the client computer or workstation upon completion.
Flying Cassini with Virtual Operations Teams
NASA Technical Reports Server (NTRS)
Dodd, Suzanne; Gustavson, Robert
1998-01-01
The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.
NASA Astrophysics Data System (ADS)
Howe, Russel; Duttweiler, Mark; Khanlian, Luke; Setrakian, Mark
2005-05-01
We propose the use of virtual wheels as the starting point of a new vehicle design. Each virtual wheel incorporates a pair of simple legs that, by simulating the rotary motion and ground contact of a traditional wheel, combine many of the benefits of legged and wheeled motion. We describe the use of virtual wheels in the design of a robotic mule, presenting an analysis of the mule's mobility the results of our efforts to model and build such a device.
Virtual Trust in US-India Global Outsource Teams: A Qualitative Exploratory Case Study
ERIC Educational Resources Information Center
Gugliotti, Domenic
2017-01-01
The purpose of this qualitative exploratory case study was to identify and analyze, trust behaviors used by members of an outsourced virtual team in an on and offshore engagement. The inability to build trust in outsourced engagements can cause serious damage to the collaboration within the virtual team causing it to fail. This study provides…
Santa Fé: building a virtual city to develop a family health game.
Tubelo, Rodrigo; Dahmer, Alessandra; Pinheiro, Luciana; Pinto, Maria E
2013-01-01
The current tendency of education in health is the use of new technologies like Virtual Reality. The course of UNASUS-UFCSPA specialization in family health was developed for health professionals that work in primary health care (PHC); in order to reach all Brazilian territory. Moodle is a platform where virtual activities are posted and evaluated. Santa Fé is a virtual city created in the Sketch up Pro, which aims to fit in specific clinical cases that involve matters of medicine, nursing and dentistry. The Software eAdventure was the tool used for the development of a game, offering interaction to the student with the Virtual City and the clinical cases, in the perspective of learning utilizing an entertainment method and evaluating individual performance of the students. The building of the city in the Sketch up Pro was successful and at low cost. The eAdventure was an efficient and intuitive tool, therefore, there was not necessarily a huge specific knowledge of technology or hardware with high speed processing and also speedy broad band internet for its use.
Skill training in multimodal virtual environments.
Gopher, Daniel
2012-01-01
Multimodal, immersive, virtual reality (VR) techniques open new perspectives for perceptual-motor skill trainers. They also introduce new risks and dangers. This paper describes the benefits and pitfalls of multimodal training and the cognitive building blocks of a multimodal, VR training simulators.
Harrison, C S; Grant, P M; Conway, B A
2010-01-01
The increasing importance of inclusive design and in particular accessibility guidelines established in the U.K. 1996 Disability Discrimination Act (DDA) has been a prime motivation for the work on wheelchair access, a subset of the DDA guidelines, described in this article. The development of these guidelines mirrors the long-standing provisions developed in the U.S. In order to raise awareness of these guidelines and in particular to give architects, building designers, and users a physical sensation of how a planned development could be experienced, a wheelchair virtual reality system was developed. This compares with conventional methods of measuring against drawings and comparing dimensions against building regulations, established in the U.K. under British standards. Features of this approach include the marriage of an electromechanical force-feedback system with high-quality immersive graphics as well as the potential ability to generate a physiological rating of buildings that do not yet exist. The provision of this sense of "feel" augments immersion within the virtual reality environment and also provides the basis from which both qualitative and quantitative measures of a building's access performance can be gained.
Modelling Technology for Building Fire Scene with Virtual Geographic Environment
NASA Astrophysics Data System (ADS)
Song, Y.; Zhao, L.; Wei, M.; Zhang, H.; Liu, W.
2017-09-01
Building fire is a risky activity that can lead to disaster and massive destruction. The management and disposal of building fire has always attracted much interest from researchers. Integrated Virtual Geographic Environment (VGE) is a good choice for building fire safety management and emergency decisions, in which a more real and rich fire process can be computed and obtained dynamically, and the results of fire simulations and analyses can be much more accurate as well. To modelling building fire scene with VGE, the application requirements and modelling objective of building fire scene were analysed in this paper. Then, the four core elements of modelling building fire scene (the building space environment, the fire event, the indoor Fire Extinguishing System (FES) and the indoor crowd) were implemented, and the relationship between the elements was discussed also. Finally, with the theory and framework of VGE, the technology of building fire scene system with VGE was designed within the data environment, the model environment, the expression environment, and the collaborative environment as well. The functions and key techniques in each environment are also analysed, which may provide a reference for further development and other research on VGE.
Online Professional and Academic Learning Communities: Faculty Perspectives
ERIC Educational Resources Information Center
Glazer, Hilda R.; Breslin, Mary; Wanstreet, Constance E.
2013-01-01
This study examines faculty perceptions of creating learning communities at a virtual university. Through online focus groups with 18 participants, 3 themes emerged: institutional-level community building as creating a learning culture; instructor-level community building as creating respectful interaction; and learner-level community building as…
NASA Astrophysics Data System (ADS)
Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry
2006-12-01
We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.
NASA Astrophysics Data System (ADS)
Breen, M.; O'Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.
2016-03-01
The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.
Building Modelling Methodologies for Virtual District Heating and Cooling Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saurav, Kumar; Choudhury, Anamitra R.; Chandan, Vikas
District heating and cooling systems (DHC) are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., inmore » order to increase the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components interacting with each other. In this paper we present two building methodologies to model the consumer buildings. These models will be further integrated with network model and the control system layer to create a virtual test bed for the entire DHC system. The model is validated using data collected from a real life DHC system located at Lulea, a city on the coast of northern Sweden. The test bed will be then used for simulating various test cases such as peak energy reduction, overall demand reduction etc.« less
Measuring Effectiveness in a Virtual Library
ERIC Educational Resources Information Center
Finch, Jannette L.
2010-01-01
Measuring quality of service in academic libraries traditionally includes quantifiable data such as collection size, staff counts, circulation numbers, reference service statistics, qualitative analyses of customer satisfaction, shelving accuracy, and building comfort. In the libraries of the third millennium, virtual worlds, Web content and…
ERIC Educational Resources Information Center
Jarrell, Andrea
1999-01-01
College campus "tours" offered online have evolved to include 360-degree views, live video, animation, talking tour guides, interactive maps with photographic links, and detailed information about buildings, departments, and programs. Proponents feel they should enhance, not replace, real tours. The synergy between the virtual tour and…
Virtual Oscillator Controls | Grid Modernization | NREL
Virtual Oscillator Controls Virtual Oscillator Controls NREL is developing virtual oscillator Santa-Barbara, and SunPower. Publications Synthesizing Virtual Oscillators To Control Islanded Inverters Synchronization of Parallel Single-Phase Inverters Using Virtual Oscillator Control, IEEE Transactions on Power
Building energy simulation in real time through an open standard interface
Pang, Xiufeng; Nouidui, Thierry S.; Wetter, Michael; ...
2015-10-20
Building energy models (BEMs) are typically used for design and code compliance for new buildings and in the renovation of existing buildings to predict energy use. We present the increasing adoption of BEM as standard practice in the building industry presents an opportunity to extend the use of BEMs into construction, commissioning and operation. In 2009, the authors developed a real-time simulation framework to execute an EnergyPlus model in real time to improve building operation. This paper reports an enhancement of that real-time energy simulation framework. The previous version only works with software tools that implement the custom co-simulation interfacemore » of the Building Controls Virtual Test Bed (BCVTB), such as EnergyPlus, Dymola and TRNSYS. The new version uses an open standard interface, the Functional Mockup Interface (FMI), to provide a generic interface to any application that supports the FMI protocol. In addition, the new version utilizes the Simple Measurement and Actuation Profile (sMAP) tool as the data acquisition system to acquire, store and present data. Lastly, this paper introduces the updated architecture of the real-time simulation framework using FMI and presents proof-of-concept demonstration results which validate the new framework.« less
Virtual reality in surgical training.
Lange, T; Indelicato, D J; Rosen, J M
2000-01-01
Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.
Yin, Jie; Guo, Jiannan; Kong, Bingxin; Yin, Heqing; Zhu, Zuqing
2017-06-26
Software-defined elastic optical networks (SD-EONs) provide operators more flexibility to customize their optical infrastructures dynamically. By leveraging infrastructure-as-a-service (IaaS), virtual SD-EONs (vSD-EONs) can be realized to further enhance the adaptivity of SD-EONs and shorten the time-to-market of new services. In this paper, we design and demonstrate the building and operating of quality-of-service (QoS) aware survivable vSD-EONs that are equipped with transparent data plane (DP) resiliency. Specifically, when slicing a vSD-EON, our network hypervisor (NHV) chooses to use "1:1" virtual link (VL) protection or on-demand VL remapping as the DP restoration scheme, according to the service-level agreement (SLA) between the vSD-EON's operator and the infrastructure provider (InP). Then, during an actual substrate link (SL) failure, the NHV realizes automatic DP restoration that is transparent to the controllers of vSD-EONs. We build a network testbed to demonstrate the creation of QoS-aware survivable vSD-EONs, the activation of lightpaths in the vSD-EONs to support upper-layer applications, and the automatic and simultaneous QoS-aware DP restorations during an SL failure. The experimental results indicate that our vSD-EON slicing system can build QoS-aware survivable vSD-EONs on-demand, operate them to set up lightpaths for carrying real application traffic, and facilitate differentiated DP restorations during SL failures to recover the vSD-EONs' services according to their SLAs.
Virtual tours as a new teaching tool in geoscience: an example from the Western Alps
NASA Astrophysics Data System (ADS)
Berger, Antoine; Champagnac, Jean-Daniel; Nomade, Jérome
2013-04-01
Since almost two decades, numerical tools allowed to spread the science to the people at large, worldwide. Within a few minutes, it is now easy to find a detailed course on one technical or scientific topic. A teacher can lead students to online contents (created by his/her own or by others) to complement his/her own course, with videos, maps or any other content that would remain accessible for the students a long time after the course itself. In geosciences, many national and international institutions provide real time monitoring of the Earth (e.g. seismicity, climate, volcanisms...) and / or scientific content based on active research or more mature results. There is little doubt that this new scientific content is a great step forward for the students and the researchers alike. Geosciences (and especially geology), however, usually require field observations and in situ measurements, and a good student curriculum cannot be achieved without a significant amount of walking, observations, and questions answered on the field. We, as geologists, all experienced days and days of sun, dust and pouring rain... Most of the universities provide the students with field courses that allow them to (try to) apply what they have learnt in the universities' buildings. However, these few days (often reduced to cut the costs and fit teachers' schedules) may not be sufficient given the complexity of the area visited and the possible lack of some parts of the teacher's explanations for various reasons. It is therefore important to build a virtual suite to the field itself to provide a cost-free support available year round, to eventually achieve or complete the field course. The new images technologies now offer amazing visualization capabilities to "show" the field in an interactive fashion. For instance, a few tens of pictures taken with a good SRL camera equipped with an ultra wide angle lens permit to build a 360° panorama with no deformation of a point of interest. Moreover, these panorama can be linked together to travel from place to place. Last, but not least, the display of any type of information (video of the last year teachers' explanation, close up of a structure, graphic plot, text content, interpreted geological sections etc.) can be integrated in the virtual tour. From this, it is easy to build a full educational virtual tour that can include the information provided in the field book, and even become the field book itself. These virtual tours can be used with any device (laptop, tablet, smartphone...), hence have the potential become key players in field teaching. Finally, these virtual tours can help physically impaired students to complete their geological curriculum with the indispensable field experience they would not have had otherwise. Here we present an example of such a virtual tour build in 2012 across the European Alps during the 1st International Field Course organized by Grenoble University, ETH Zürich and Milano University. This virtual tour covers the Grimsel Pass Aar Massif Hercynian Basement (granite, shear zone and the underground NAGRA test site), the Zermatt area (two continents and two oceans packed together), the Aiguille du Midi incredible overview on most of the W-Alps, and the back limb of the Nappe de Morcles and its relation with the surrounding blocks. Link to the virtual tour: http://www.alpesphoto.com/temp/visites/Suisse/build/virtualtour.swf
Design and evaluation of a simulation for pediatric dentistry in virtual worlds.
Papadopoulos, Lazaros; Pentzou, Afroditi-Evaggelia; Louloudiadis, Konstantinos; Tsiatsos, Thrasyvoulos-Konstantinos
2013-10-29
Three-dimensional virtual worlds are becoming very popular among educators in the medical field. Virtual clinics and patients are already used for case study and role play in both undergraduate and continuing education levels. Dental education can also take advantage of the virtual world's pedagogical features in order to give students the opportunity to interact with virtual patients (VPs) and practice in treatment planning. The objective of this study was to design and evaluate a virtual patient as a supplemental teaching tool for pediatric dentistry. A child VP, called Erietta, was created by utilizing the programming and building tools that online virtual worlds offer. The case is about an eight-year old girl visiting the dentist with her mother for the first time. Communication techniques such as Tell-Show-Do and parents' interference management were the basic elements of the educational scenario on which the VP was based. An evaluation of the simulation was made by 103 dental students in their fourth year of study. Two groups were formed: an experimental group which was exposed to the simulation (n=52) and a control group which did not receive the simulation (n=51). At the end, both groups were asked to complete a knowledge questionnaire and the results were compared. A statistically significant difference between the two groups was found by applying a t test for independent samples (P<.001), showing a positive learning effect from the VP. The majority of the participants evaluated the aspects of the simulation very positively while 69% (36/52) of the simulation group expressed their preference for using this module as an additional teaching tool. This study demonstrated that a pediatric dentistry VP built in a virtual world offers significant learning potential when used as a supplement to the traditional teaching techniques.
Sik Lányi, Cecília; Laky, Viktória; Tilinger, Adám; Pataky, Ilona; Simon, Lajos; Kiss, Bernadett; Simon, Viktória; Szabó, Júlianna; Páll, Attila
2004-01-01
The multimedia and virtual reality projects performed at our laboratory during the last ten years can be grouped into the following groups: 1) tutorial and entertainment programs for handicapped children, 2) rehabilitation programs for stroke patients and patients with phobias. We have developed multimedia software for handicapped children with various impairments: partial vision, hearing difficulties, locomotive difficulties, mental retardation, dyslexia etc. In the present paper we show the advantages of using multimedia software to develop mental skills in handicapped people and deal with the special needs of handicapped children. For the rehabilitation of stroke patients we have developed a computer-controlled method, which enables - contrary to methods used internationally - not only the establishment of a diagnosis, but also measurement of therapy effectiveness: 1) it enables us to produce a database of patients, which contains not only their personal data but also test results, their drawings and audio recordings, 2) it is in itself an intensive therapeutic test and contains tutorial programs. We are currently collecting test results. We have also developed some virtual worlds for treating phobias: a virtual balcony and a ten-story building with an external glass elevator as well as an internal glass elevator in the virtual Atrium Hyatt hotel. We have developed a virtual environment for treating claustrophobia too: a closed lift and a room where the walls can move. For specific phobias (fear of travelling) we have modelled the underground railway system in Budapest. For autistic children, we have developed virtual shopping software too. In this paper we present the advantages of virtual reality in the investigation, evaluation and treatment of perception, behaviour and neuropsychological disorders.
Building Airport Surface HITL Simulation Capability
NASA Technical Reports Server (NTRS)
Chinn, Fay Cherie
2016-01-01
FutureFlight Central is a high fidelity, real-time simulator designed to study surface operations and automation. As an air traffic control tower simulator, FFC allows stakeholders such as the FAA, controllers, pilots, airports, and airlines to develop and test advanced surface and terminal area concepts and automation including NextGen and beyond automation concepts and tools. These technologies will improve the safety, capacity and environmental issues facing the National Airspace system. FFC also has extensive video streaming capabilities, which combined with the 3-D database capability makes the facility ideal for any research needing an immersive virtual and or video environment. FutureFlight Central allows human in the loop testing which accommodates human interactions and errors giving a more complete picture than fast time simulations. This presentation describes FFCs capabilities and the components necessary to build an airport surface human in the loop simulation capability.
An applications-oriented approach to the development of virtual environments
NASA Technical Reports Server (NTRS)
Crowe, Michael X.
1994-01-01
The field of Virtual Reality (VR) is diverse, ranging in scope from research into fundamental enabling technologies to the building of full-scale entertainment facilities. However, the concept of virtual reality means many things to many people. Ideally, a definition of VR should derive from how it can provide solutions to existing challenges in building advanced human computer interfaces. The measure of success for VR lies in its ability to enhance the assimilation of complex information, whether to aid in difficult decision making processes, or to recreate real experiences in a compelling way. This philosophy is described using an example from a VR-based advertising project. The common and unique elements of this example are explained, though the fundamental development process is the same for all virtual environments that support information transfer. In short, this development approach is an applications oriented approach that begins by establishing and prioritizing user requirements and seeks to add value to the information transfer process through the appropriate use of VR technology.
Design for learning: deconstructing virtual patient activities.
Ellaway, Rachel H; Davies, David
2011-01-01
Digital technologies are used in almost every aspect of contemporary health professional education (HPE) but our understanding of their true potential as instructional tools rather than administrative tools has not significantly advanced in the last decade. One notable exception to this has been the rise of the 'virtual patient' as an educational intervention in HPE. This article attempts to deconstruct the virtual patient concept by developing a model of virtual patients as artifacts with intrinsic encoded properties and emergent constructed properties that build on the core concept of 'activity'.
Sutton, Jennifer E; Buset, Melanie; Keller, Mikayla
2014-01-01
A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context.
Sutton, Jennifer E.; Buset, Melanie; Keller, Mikayla
2014-01-01
A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context. PMID:24603608
SAFARI: An Environment for Creating Tutoring Systems in Industrial Training.
ERIC Educational Resources Information Center
Gecsei, J.; Frasson, C.
Safari is a cooperative project involving four Quebec universities, two industrial partners (Virtual Prototypes, Inc., providing the VAPS software package, and Novasys, Inc., a consulting firm specializing in artificial intelligence and training), and government. VAPS (Virtual Applications Prototyping System) is a commercial interface-building and…
TSI-Enhanced Pedagogical Agents to Engage Learners in Virtual Worlds
ERIC Educational Resources Information Center
Leung, Steve; Virwaney, Sandeep; Lin, Fuhua; Armstrong, AJ; Dubbelboer, Adien
2013-01-01
Building pedagogical applications in virtual worlds is a multi-disciplinary endeavor that involves learning theories, application development framework, and mediated communication theories. This paper presents a project that integrates game-based learning, multi-agent system architecture (MAS), and the theory of Transformed Social Interaction…
Cloud-Based Virtual Laboratory for Network Security Education
ERIC Educational Resources Information Center
Xu, Le; Huang, Dijiang; Tsai, Wei-Tek
2014-01-01
Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…
Comparing Human-Human to Human-Computer Tutorial Dialogue
2010-01-01
acknowledged what their tutor said and participated in rapport building with chit-chat. This seems to be driven by a need to be polite and courteous to the...An experiment on public speaking anxiety in response to three different types of virtual audiences. Presence: Teleoperators and Virtual
Communal Resources in Open Source Software Development
ERIC Educational Resources Information Center
Spaeth, Sebastian; Haefliger, Stefan; von Krogh, Georg; Renzl, Birgit
2008-01-01
Introduction: Virtual communities play an important role in innovation. The paper focuses on the particular form of collective action in virtual communities underlying as Open Source software development projects. Method: Building on resource mobilization theory and private-collective innovation, we propose a theory of collective action in…
PC-Based Virtual Reality for CAD Model Viewing
ERIC Educational Resources Information Center
Seth, Abhishek; Smith, Shana S.-F.
2004-01-01
Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…
The Virtual Environment for Rapid Prototyping of the Intelligent Environment
Bouzouane, Abdenour; Gaboury, Sébastien
2017-01-01
Advances in domains such as sensor networks and electronic and ambient intelligence have allowed us to create intelligent environments (IEs). However, research in IE is being held back by the fact that researchers face major difficulties, such as a lack of resources for their experiments. Indeed, they cannot easily build IEs to evaluate their approaches. This is mainly because of economic and logistical issues. In this paper, we propose a simulator to build virtual IEs. Simulators are a good alternative to physical IEs because they are inexpensive, and experiments can be conducted easily. Our simulator is open source and it provides users with a set of virtual sensors that simulates the behavior of real sensors. This simulator gives the user the capacity to build their own environment, providing a model to edit inhabitants’ behavior and an interactive mode. In this mode, the user can directly act upon IE objects. This simulator gathers data generated by the interactions in order to produce datasets. These datasets can be used by scientists to evaluate several approaches in IEs. PMID:29112175
The Virtual Environment for Rapid Prototyping of the Intelligent Environment.
Francillette, Yannick; Boucher, Eric; Bouzouane, Abdenour; Gaboury, Sébastien
2017-11-07
Advances in domains such as sensor networks and electronic and ambient intelligence have allowed us to create intelligent environments (IEs). However, research in IE is being held back by the fact that researchers face major difficulties, such as a lack of resources for their experiments. Indeed, they cannot easily build IEs to evaluate their approaches. This is mainly because of economic and logistical issues. In this paper, we propose a simulator to build virtual IEs. Simulators are a good alternative to physical IEs because they are inexpensive, and experiments can be conducted easily. Our simulator is open source and it provides users with a set of virtual sensors that simulates the behavior of real sensors. This simulator gives the user the capacity to build their own environment, providing a model to edit inhabitants' behavior and an interactive mode. In this mode, the user can directly act upon IE objects. This simulator gathers data generated by the interactions in order to produce datasets. These datasets can be used by scientists to evaluate several approaches in IEs.
Building Virtual Teams: Experiential Learning Using Emerging Technologies
ERIC Educational Resources Information Center
Hu, Haihong
2015-01-01
Currently, virtual teams are being used exponentially in higher education and business because of the development of technologies and globalization. These teams have become an essential approach for collaborative learning as well as task completion. Team learning, especially in an online format, can be challenging due to lack of effective…
Bringing the Real World in: Reflection on Building a Virtual Learning Environment
ERIC Educational Resources Information Center
Mundkur, Anuradha; Ellickson, Cara
2012-01-01
We reflect on translating participatory and experiential learning methodologies into an online teaching environment through a Virtual Learning Environment (VLE) that simulates the "real-world" contexts of international development in order to develop an applied critical understanding of gender analysis and gender mainstreaming. Rather than being…
ERIC Educational Resources Information Center
Fialho, Francisco Antonio Pereira; Catapan, Araci Hack
1999-01-01
Argues that the creation of distributed environments for constructivist learning is a challenge which requires a multidisciplinary development and support team. Outlines recommended strategies for the collective creation of virtual worlds which can improve learning. Contains 11 references. (Author/WRM)
An Online Virtual Laboratory of Electricity
ERIC Educational Resources Information Center
Gómez Tejedor, J. A.; Moltó Martínez, G.; Barros Vidaurre, C.
2008-01-01
In this article, we describe a Java-based virtual laboratory, accessible via the Internet by means of a Web browser. This remote laboratory enables the students to build both direct and alternating current circuits. The program includes a graphical user interface which resembles the connection board, and also the electrical components and tools…
Building Online Communities. Take Your Site beyond Content: Construct a Society on the Web.
ERIC Educational Resources Information Center
Glaser, Mark
1997-01-01
Discusses the establishment of online, or virtual, communities on the World Wide Web. Topics include corporate sites; community planning; virtual reality; games; America Online projects; MUDs (multiuser dungeons) and MOOs (multiuser object oriented); and a list of contacts for online community resources. (LRW)
The VLAB OER Experience: Modeling Potential-Adopter Student Acceptance
ERIC Educational Resources Information Center
Raman, Raghu; Achuthan, Krishnashree; Nedungadi, Prema; Diwakar, Shyam; Bose, Ranjan
2014-01-01
Virtual Labs (VLAB) is a multi-institutional Open Educational Resources (OER) initiative, exclusively focused on lab experiments for engineering education. This project envisages building a large OER repository, containing over 1650 virtual experiments mapped to the engineering curriculum. The introduction of VLAB is a paradigm shift in an…
Building a Collaborative Online Literary Experience
ERIC Educational Resources Information Center
Essid, Joe; Wilde, Fran
2011-01-01
Effective virtual simulations can embed participants in imaginary worlds. Researchers working in virtual worlds and gaming often refer to "immersion," a state in which a participant or player loses track of time and becomes one with the simulation. Immersive settings have been shown to deepen learning. Ken Hudson's work with students…
Providing Assistive Technology Applications as a Service Through Cloud Computing.
Mulfari, Davide; Celesti, Antonio; Villari, Massimo; Puliafito, Antonio
2015-01-01
Users with disabilities interact with Personal Computers (PCs) using Assistive Technology (AT) software solutions. Such applications run on a PC that a person with a disability commonly uses. However the configuration of AT applications is not trivial at all, especially whenever the user needs to work on a PC that does not allow him/her to rely on his / her AT tools (e.g., at work, at university, in an Internet point). In this paper, we discuss how cloud computing provides a valid technological solution to enhance such a scenario.With the emergence of cloud computing, many applications are executed on top of virtual machines (VMs). Virtualization allows us to achieve a software implementation of a real computer able to execute a standard operating system and any kind of application. In this paper we propose to build personalized VMs running AT programs and settings. By using the remote desktop technology, our solution enables users to control their customized virtual desktop environment by means of an HTML5-based web interface running on any computer equipped with a browser, whenever they are.
Pan, Xueni; Hamilton, Antonia F de C
2018-03-05
As virtual reality (VR) technology and systems become more commercially available and accessible, more and more psychologists are starting to integrate VR as part of their methods. This approach offers major advantages in experimental control, reproducibility, and ecological validity, but also has limitations and hidden pitfalls which may distract the novice user. This study aimed to guide the psychologist into the novel world of VR, reviewing available instrumentation and mapping the landscape of possible systems. We use examples of state-of-the-art research to describe challenges which research is now solving, including embodiment, uncanny valley, simulation sickness, presence, ethics, and experimental design. Finally, we propose that the biggest challenge for the field would be to build a fully interactive virtual human who can pass a VR Turing test - and that this could only be achieved if psychologists, VR technologists, and AI researchers work together. © 2018 The Authors British Journal of Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Gamification in the context of smart cities
NASA Astrophysics Data System (ADS)
Zica, M. R.; Ionica, A. C.; Leba, M.
2018-01-01
The recent emergence of smart cities is highly supported by the development of IT and IoT technologies. Nevertheless, a smart city needs to be built to meet the needs and requirements of its citizens. In order to build a smart city it is necessary to understand the benefits of such a city. A smart city is, beyond technology, populated by people. A smart city can be raised by its citizens’ contribution, and gamification is the means to motivate them. In this paper we included gamification techniques in the stage of capturing the citizens’ requirements for building a smart city. The system proposed in the paper is to create an application that allows the building of a virtual smart city customized by each user. From this virtual city, the most relevant features are extracted.
Building Virtual Spaces for Children in the Digital Branch
ERIC Educational Resources Information Center
DuBroy, Michelle
2010-01-01
Purpose: A digital branch is just like a physical branch except that content is delivered digitally via the web. A digital branch has staff, a collection, a community, and a building. The purpose of this paper is to explore the concept of building individual spaces for different user groups, specifically children, within a digital branch.…
ERIC Educational Resources Information Center
College Planning & Management, 1997
1997-01-01
Ten possible trends on college campuses are examined. They include distance learning; rehabilitation of existing buildings; use of construction management firms; salaries for facilities directors; virtual universities; off-site garages; outside residence hall contractors; classrooms in residential buildings; and smart cards for entry and…
Stanton, D; Foreman, N; Wilson, P N
1998-01-01
In this chapter we review some of the ways in which the skills learned in virtual environments (VEs) transfer to real situations, and in particular how information about the spatial layouts of virtual buildings acquired from the exploration of three-dimensional computer-simulations transfers to their real equivalents. Four experiments are briefly described which examined VR use by disabled children. We conclude that spatial information of the kind required for navigation transfers effectively from virtual to real situations. Spatial skills in disabled children showed progressive improvement with repeated exploration of virtual environments. The results are discussed in relation to the potential future benefits of VR in special needs education and training.
VERSE - Virtual Equivalent Real-time Simulation
NASA Technical Reports Server (NTRS)
Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel
2005-01-01
Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.
Improving Dental Experiences by Using Virtual Reality Distraction: A Simulation Study
Tanja-Dijkstra, Karin; Pahl, Sabine; P. White, Mathew; Andrade, Jackie; Qian, Cheng; Bruce, Malcolm; May, Jon; Moles, David R.
2014-01-01
Dental anxiety creates significant problems for both patients and the dental profession. Some distraction interventions are already used by healthcare professionals to help patients cope with unpleasant procedures. The present study is novel because it a) builds on evidence that natural scenery is beneficial for patients, and b) uses a Virtual Reality (VR) representation of nature to distract participants. Extending previous work that has investigated pain and anxiety during treatment, c) we also consider the longer term effects in terms of more positive memories of the treatment, building on a cognitive theory of memory (Elaborated Intrusions). Participants (n = 69) took part in a simulated dental experience and were randomly assigned to one of three VR conditions (active vs. passive vs. control). In addition, participants were distinguished into high and low dentally anxious according to a median split resulting in a 3×2 between-subjects design. VR distraction in a simulated dental context affected memories a week later. The VR distraction had effects not only on concurrent experiences, such as perceived control, but longitudinally upon the vividness of memories after the dental experience had ended. Participants with higher dental anxiety (for whom the dental procedures were presumably more aversive) showed a greater reduction in memory vividness than lower dental-anxiety participants. This study thus suggests that VR distractions can be considered as a relevant intervention for cycles of care in which people’s previous experiences affect their behaviour for future events. PMID:24621518
Improving dental experiences by using virtual reality distraction: a simulation study.
Tanja-Dijkstra, Karin; Pahl, Sabine; White, Mathew P; Andrade, Jackie; Qian, Cheng; Bruce, Malcolm; May, Jon; Moles, David R
2014-01-01
Dental anxiety creates significant problems for both patients and the dental profession. Some distraction interventions are already used by healthcare professionals to help patients cope with unpleasant procedures. The present study is novel because it a) builds on evidence that natural scenery is beneficial for patients, and b) uses a Virtual Reality (VR) representation of nature to distract participants. Extending previous work that has investigated pain and anxiety during treatment, c) we also consider the longer term effects in terms of more positive memories of the treatment, building on a cognitive theory of memory (Elaborated Intrusions). Participants (n = 69) took part in a simulated dental experience and were randomly assigned to one of three VR conditions (active vs. passive vs. control). In addition, participants were distinguished into high and low dentally anxious according to a median split resulting in a 3×2 between-subjects design. VR distraction in a simulated dental context affected memories a week later. The VR distraction had effects not only on concurrent experiences, such as perceived control, but longitudinally upon the vividness of memories after the dental experience had ended. Participants with higher dental anxiety (for whom the dental procedures were presumably more aversive) showed a greater reduction in memory vividness than lower dental-anxiety participants. This study thus suggests that VR distractions can be considered as a relevant intervention for cycles of care in which people's previous experiences affect their behaviour for future events.
Investigating the Development of Work-Oriented Groups in an e-Learning Environment
ERIC Educational Resources Information Center
Yu, Chia-Ping; Kuo, Feng-Yang
2012-01-01
In this study, we have investigated developmental patterns of virtual groups in the e-learning environment. Our findings suggest that for virtual groups formed for the purpose of e-learning, dependency and inclusion characterize the initial stage of group development, as such characteristics reinforce cooperative relationships and help to build a…
Virtual Action Learning: A Pilot in Building Leadership Capacity
ERIC Educational Resources Information Center
Radcliff, Phil
2017-01-01
This account of practice encompasses a pilot virtual action learning programme with a small group of learners. This was an 18-month extension to the one-week Leadership Open Programme that the participants had previously completed at the Business School. It includes insights from an evaluation study completed in early 2016. It considers in…
ERIC Educational Resources Information Center
Atkinson, Tom
2008-01-01
Second Life[TM], or simply SL, was developed at Linden Lab, a San Francisco-based corporation defined by its creators as "an online society within a 3-D virtual world entirely built and owned by its residents, where they can explore, build, socialize and participate in their own economy." With over 14 million residents in the SL virtual community,…
Designing Virtual Worlds for Use in Mathematics Education.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
Virtual Reality (VR) is a computer generated, multi-dimensional, inclusive environment that can build axioms of algebra into the behavior of the world. This paper discusses the use of VR to represent part of the algebra curriculum in order to improve students' classroom experiences in learning algebra. Students learn to construct their knowledge…
Access to Equal Opportunities: Building of a Virtual Classroom within Two 'Conventional' Schools.
ERIC Educational Resources Information Center
Husu, Jukka
2000-01-01
This Finnish study linked two secondary school classrooms to one virtual classroom to enhance the quality of education in small schools. Discusses advantages, including the rapid development of pragmatism and intellectual and social partnership; and disadvantages, including a lack of intimacy and students' difficulties with self discipline and…
The Participatory Design of a (Today and) Future Digital Entomology Lab
ERIC Educational Resources Information Center
Hai-Jew, Shalin
2011-01-01
This article showcases a virtual interactive participatory design activity for building a digital entomology lab. Conceptualized as a virtual complement to a general entomology course at Kansas State University, the lab would allow learners to explore morphological aspects of insects--their various forms and functions--in order to understand…
ERIC Educational Resources Information Center
Hajisoteriou, Christina; Karousiou, Christiana; Angelides, Panayiotis
2018-01-01
This project focuses on the design and implementation of an online professional development platform tailored to teachers' needs to improve and promote their intercultural knowledge. Drawing upon the framework of virtual communities of practice, the project escapes from traditional professional development programmes. Although a total of 103…
The Virtual Factory Teaching System (VFTS): Project Review and Results.
ERIC Educational Resources Information Center
Kazlauskas, E. J.; Boyd, E. F., III; Dessouky, M. M.
This paper presents a review of the Virtual Factory Teaching (VFTS) project, a Web-based, multimedia collaborative learning network. The system allows students, working alone or in teams, to build factories, forecast demand for products, plan production, establish release rules for new work into the factory, and set scheduling rules for…
ERIC Educational Resources Information Center
O'Connor, Eileen A.
2018-01-01
Within an online science teacher education course, an important although secondary goal was to prepare students for a high-stakes licensure portfolio at some time after course completion. Thus, various communication technologies including synchronous virtual reality meetings and asynchronous student self-created video commentaries were interwoven…
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Hu, Shih-Shin
2013-01-01
Learning geometry emphasizes the importance of exploring different representations such as virtual manipulatives, written math formulas, and verbal explanations, which help students build math concepts and develop critical thinking. Besides helping individuals construct math knowledge, peer interaction also plays a crucial role in promoting an…
Virtual Processes and Quantum Tunnelling as Fictions
ERIC Educational Resources Information Center
Arthur, Richard T. W.
2012-01-01
In this paper it is argued that virtual processes are dispensable fictions. The argument proceeds by a comparison with the phenomenon of quantum tunnelling. Building on an analysis of Levy-Leblond and Balibar, it is argued that, although the phenomenon known as quantum tunnelling certainly occurs and is at the basis of many paradigmatic quantum…
ERIC Educational Resources Information Center
Pai, Pei-Yu; Tsai, Hsien-Tung
2011-01-01
Extant studies generally recognise that virtual community building is an effective marketing programme for forging deep and enduring affective bonds with consumers. This study extends previous research by proposing and testing a model that investigates key mediating processes (via trust, satisfaction and identification) that underlie the…
Using Twitter to Increase Political Interest in Undergraduate Students
ERIC Educational Resources Information Center
Caliendo, Stephen M.; Chod, Suzanne; Muck, William
2016-01-01
This study examines the impact of using Twitter in the classroom on student political efficacy, interest, and engagement. Millennials use the virtual world to build social relationships and to obtain information. By envisioning the virtual world as a means to increase civic engagement, political science instructors can use technology to draw upon…
Physics Education in Virtual Reality: An Example
ERIC Educational Resources Information Center
Kaufmann, Hannes; Meyer, Bernd
2009-01-01
We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…
McBride, C M; Persky, S; Wagner, L K; Faith, M S; Ward, D S
2013-10-01
Providing personalized genetic-risk feedback of a child's susceptibility to adult-onset health conditions is a topic of considerable debate. Family health history (FHH), specifically parental overweight/obesity status, is a useful assessment for evaluating a child's genetic and environmental risk of becoming obese. It is unclear whether such risk information may influence parents' efforts to reduce their child's risk of obesity. To evaluate whether telling mothers the magnitude of their child's risk of becoming obese based on personal FHH influenced food choices for their young child from a virtual reality-based buffet restaurant. Overweight/obese mothers of a child aged 4-5 years who met eligibility criteria (N=221) were randomly assigned to one of three experimental arms, which emphasized different health information: arm 1, food safety control (Control); arm 2, behavioral-risk information (BRI) alone or arm 3, behavioral-risk information plus personal FHH-based risk assessment (BRI+FHH). Mothers donned a head-mounted display to be immersed in a virtual restaurant buffet, where they selected virtual food and beverages as a lunch for their child. Mothers who were randomized to BRI+FHH filled the index child's plate with an average of 45 fewer calories than those in the Control arm (P<0.05); those in the BRI arm filled the plate with 35 fewer calories than the Control arm, a non-significant difference. Calorie restriction was greatest among mothers in the BRI+FHH arm who received the weaker-risk message (that is, only one overweight parent). The influence of communicating a child's inherited risk of obesity on mothers' feeding practices may vary by the risk level conveyed. High-risk messages may best be coupled with strategies to increase mother's perceptions that efforts can be undertaken to reduce risk and build requisite behavioral skills to reduce risk.
Building a Winning Recruiting Team.
ERIC Educational Resources Information Center
Taguchi, Sherrie Gong
2002-01-01
Building a winning recruiting team is essential to the well being of virtually every organization. Putting together a great mix of people to represent an organization and bring in new talent can serve an organization well when competition is fierce or demand is down. (GCP)
Anthropomorphic teleoperation: Controlling remote manipulators with the DataGlove
NASA Technical Reports Server (NTRS)
Hale, J. P., II
1992-01-01
A two phase effort was conducted to assess the capabilities and limitations of the DataGlove, a lightweight glove input device that can output signals in real-time based on hand shape, orientation, and movement. The first phase was a period for system integration, checkout, and familiarization in a virtual environment. The second phase was a formal experiment using the DataGlove as input device to control the protoflight manipulator arm (PFMA) - a large telerobotic arm with an 8-ft reach. The first phase was used to explore and understand how the DataGlove functions in a virtual environment, build a virtual PFMA, and consider and select a reasonable teleoperation control methodology. Twelve volunteers (six males and six females) participated in a 2 x 3 (x 2) full-factorial formal experiment using the DataGlove to control the PFMA in a simple retraction, slewing, and insertion task. Two within-subjects variables, time delay (0, 1, and 2 seconds) and PFMA wrist flexibility (rigid/flexible), were manipulated. Gender served as a blocking variable. A main effect of time delay was found for slewing and total task times. Correlations among questionnaire responses, and between questionnaire responses and session mean scores and gender were computed. The experimental data were also compared with data collected in another study that used a six degree-of-freedom handcontroller to control the PFMA in the same task. It was concluded that the DataGlove is a legitimate teleoperations input device that provides a natural, intuitive user interface. From an operational point of view, it compares favorably with other 'standard' telerobotic input devices and should be considered in future trades in teleoperation systems' designs.
A cognitive approach to vision for a mobile robot
NASA Astrophysics Data System (ADS)
Benjamin, D. Paul; Funk, Christopher; Lyons, Damian
2013-05-01
We describe a cognitive vision system for a mobile robot. This system works in a manner similar to the human vision system, using saccadic, vergence and pursuit movements to extract information from visual input. At each fixation, the system builds a 3D model of a small region, combining information about distance, shape, texture and motion. These 3D models are embedded within an overall 3D model of the robot's environment. This approach turns the computer vision problem into a search problem, with the goal of constructing a physically realistic model of the entire environment. At each step, the vision system selects a point in the visual input to focus on. The distance, shape, texture and motion information are computed in a small region and used to build a mesh in a 3D virtual world. Background knowledge is used to extend this structure as appropriate, e.g. if a patch of wall is seen, it is hypothesized to be part of a large wall and the entire wall is created in the virtual world, or if part of an object is recognized, the whole object's mesh is retrieved from the library of objects and placed into the virtual world. The difference between the input from the real camera and from the virtual camera is compared using local Gaussians, creating an error mask that indicates the main differences between them. This is then used to select the next points to focus on. This approach permits us to use very expensive algorithms on small localities, thus generating very accurate models. It also is task-oriented, permitting the robot to use its knowledge about its task and goals to decide which parts of the environment need to be examined. The software components of this architecture include PhysX for the 3D virtual world, OpenCV and the Point Cloud Library for visual processing, and the Soar cognitive architecture, which controls the perceptual processing and robot planning. The hardware is a custom-built pan-tilt stereo color camera. We describe experiments using both static and moving objects.
An Algorithm for Creating Virtual Controls Using Integrated and Harmonized Longitudinal Data.
Hansen, William B; Chen, Shyh-Huei; Saldana, Santiago; Ip, Edward H
2018-06-01
We introduce a strategy for creating virtual control groups-cases generated through computer algorithms that, when aggregated, may serve as experimental comparators where live controls are difficult to recruit, such as when programs are widely disseminated and randomization is not feasible. We integrated and harmonized data from eight archived longitudinal adolescent-focused data sets spanning the decades from 1980 to 2010. Collectively, these studies examined numerous psychosocial variables and assessed past 30-day alcohol, cigarette, and marijuana use. Additional treatment and control group data from two archived randomized control trials were used to test the virtual control algorithm. Both randomized controlled trials (RCTs) assessed intentions, normative beliefs, and values as well as past 30-day alcohol, cigarette, and marijuana use. We developed an algorithm that used percentile scores from the integrated data set to create age- and gender-specific latent psychosocial scores. The algorithm matched treatment case observed psychosocial scores at pretest to create a virtual control case that figuratively "matured" based on age-related changes, holding the virtual case's percentile constant. Virtual controls matched treatment case occurrence, eliminating differential attrition as a threat to validity. Virtual case substance use was estimated from the virtual case's latent psychosocial score using logistic regression coefficients derived from analyzing the treatment group. Averaging across virtual cases created group estimates of prevalence. Two criteria were established to evaluate the adequacy of virtual control cases: (1) virtual control group pretest drug prevalence rates should match those of the treatment group and (2) virtual control group patterns of drug prevalence over time should match live controls. The algorithm successfully matched pretest prevalence for both RCTs. Increases in prevalence were observed, although there were discrepancies between live and virtual control outcomes. This study provides an initial framework for creating virtual controls using a step-by-step procedure that can now be revised and validated using other prevention trial data.
Virtually-synchronous communication based on a weak failure suspector
NASA Technical Reports Server (NTRS)
Schiper, Andre; Ricciardi, Aleta
1993-01-01
Failure detectors (or, more accurately Failure Suspectors (FS)) appear to be a fundamental service upon which to build fault-tolerant, distributed applications. This paper shows that a FS with very weak semantics (i.e., that delivers failure and recovery information in no specific order) suffices to implement virtually-synchronous communication (VSC) in an asynchronous system subject to process crash failures and network partitions. The VSC paradigm is particularly useful in asynchronous systems and greatly simplifies building fault-tolerant applications that mask failures by replicating processes. We suggest a three-component architecture to implement virtually-synchronous communication: (1) at the lowest level, the FS component; (2) on top of it, a component (2a) that defines new views; and (3) a component (2b) that reliably multicasts messages within a view. The issues covered in this paper also lead to a better understanding of the various membership service semantics proposed in recent literature.
'To Boldly Go...' Building a Virtual Classroom
NASA Technical Reports Server (NTRS)
vandeVen, Ryan W.; Meurders, Mary F. E.
2008-01-01
The concept of a Exploration-Based Learning Environment has recently been introduced into the argument that technology can put students back into the field of real learning. IPN has set foot there, where no school has gone before, by actually building a Virtual Classroom.This paper is about our first step towards the Virtual Classroom: Experience-Based Learning by simulations. A field study on the processes involved when going from a regular educational setting to using simulations as part of the educational was done. We discuss eventual pitfalls and the role changes in education for both teacher and pupil, the importance of understanding the psychological process that the pupil goes through and the consequences this has for the guiding staff. Changes are not only necessary to keep up with the change but also to break through the vicious circle of what we call the trend of "Spectacle and Boredom" in education.
The Effectiveness of Taiwan Building Energy Regulation under the influence of Future Climate
NASA Astrophysics Data System (ADS)
Weng, Yu-Teng; Huang, Kuo-Tsang
2017-04-01
Building energy consumption comprises circa 40% of the national annual energy usage in Taiwan, and the majority proportion is attributed to the cooling apparatus usage. As cooling energy is closely related to the outdoor climate, it is expected that the future global climate change would amplify its demand. Considering the building energy regulation criteria are the minimum requirements that the building has to be complied with, this study tried to investigate whether the current building energy regulation in Taiwan, initiated in 2013, would still be capable of maintaining the energy use in the future as today's level. The research adopted EnergyPlus to simulate the annual cooling energy use of several virtual office building cases with the constructed hourly future weather data under future climate change scenarios of RCP45 and RCP85 defined by IPCC. The virtual building cases are generated by a structured orthogonal array with each case is constituted by 10 building design parameters. The results revealed that the building energy consumption based on the current regulation criteria failed to maintain at the same level in the future as oppose to nowadays. By comparing to the current cooling energy usage, it would rise by 13% and 22% in RCP45 and RCP85, respectively, at the end of this century. This research further parametrically studied the potential cooling energy mitigation strategies and proposed effective building envelope design schemes in order to neutralize the future building energy increase.
Get immersed in the Soil Sciences: the first community of avatars in the EGU Assembly 2015!
NASA Astrophysics Data System (ADS)
Castillo, Sebastian; Alarcón, Purificación; Beato, Mamen; Emilio Guerrero, José; José Martínez, Juan; Pérez, Cristina; Ortiz, Leovigilda; Taguas, Encarnación V.
2015-04-01
Virtual reality and immersive worlds refer to artificial computer-generated environments, with which users act and interact as in a known environment by the use of figurative virtual individuals (avatars). Virtual environments will be the technology of the early twenty-first century that will most dramatically change the way we live, particularly in the areas of training and education, product development and entertainment (Schmorrow, 2009). The usefulness of immersive worlds has been proved in different fields. They reduce geographic and social barriers between different stakeholders and create virtual social spaces which can positively impact learning and discussion outcomes (Lorenzo et al. 2012). In this work we present a series of interactive meetings in a virtual building to celebrate the International Year of Soil to promote the importance of soil functions and its conservation. In a virtual room, the avatars of different senior researchers will meet young scientist avatars to talk about: 1) what remains to be done in Soil Sciences; 2) which are their main current limitations and difficulties and 3) which are the future hot research lines. The interactive participation does not require physically attend to the EGU Assembly 2015. In addition, this virtual building inspired in Soil Sciences can be completed with different teaching resources from different locations around the world and it will be used to improve the learning of Soil Sciences in a multicultural context. REFERENCES: Lorenzo C.M., Sicilia, M.A., Sánchez S. 2012. Studying the effectiveness of multi-user immersive environments for collaborative evaluation tasks. Computers & Education 59 (2012) 1361-1376 Schmorrow D.D. 2009. "Why virtual?" Theoretical Issues in Ergonomics Science 10(3): 279-282.
7. Elevation view of east side of building where the ...
7. Elevation view of east side of building where the 1896 south section (left) joins the 1904 middle section. When joined with photo WA-116-A-6, these photos give a virtually complete elevation view of the east side of the 1896 south section of Building 59. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA
The Design and Implementation of Virtual Roaming in Yunnan Diqing Tibetan traditional Villages
NASA Astrophysics Data System (ADS)
Cao, Lucheng; Xu, Wu; Li, Ke; Jin, Chunjie; Su, Ying; He, Jin
2018-06-01
Traditional residence is the continuation of intangible cultural heritage and the primitive soil for development. At present, the protection and inheritance of traditional villages have been impacted by the process of modernization, and the phenomenon of assimilation is very serious. This article takes the above questions as the breakthrough point, and then analyzes why and how to use virtual reality technology to better solve the above problems, and take the Yunnan Diqing Tibetan traditional dwellings as the specific example to explore. First, using VR technology, with real images and sound, the paper simulate a near real virtual world. Secondly, we collect a large amount of real image information, and make the visualization model of building by using 3DMAX software platform, UV Mapping and Rendering optimization. Finally, the Vizard virtual reality development platform was used to establish the roaming system and realize the virtual interaction. The roaming system was posted online so that overcome the disadvantages of not intuitive and low capability of interaction, and these new ideas can give a whole new meaning in the protection projects of the cultural relic buildings. At the same time, visitors could enjoy the "Dian-style" architectural style and cultural connotation of dwelling house in Diqing Yunnan.
Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process
Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei; Wang, Weiping
2016-01-01
Indoor localization using Received Signal Strength Indication (RSSI) fingerprinting has been extensively studied for decades. The positioning accuracy is highly dependent on the density of the signal database. In areas without calibration data, however, this algorithm breaks down. Building and updating a dense signal database is labor intensive, expensive, and even impossible in some areas. Researchers are continually searching for better algorithms to create and update dense databases more efficiently. In this paper, we propose a scalable indoor positioning algorithm that works both in surveyed and unsurveyed areas. We first propose Minimum Inverse Distance (MID) algorithm to build a virtual database with uniformly distributed virtual Reference Points (RP). The area covered by the virtual RPs can be larger than the surveyed area. A Local Gaussian Process (LGP) is then applied to estimate the virtual RPs’ RSSI values based on the crowdsourced training data. Finally, we improve the Bayesian algorithm to estimate the user’s location using the virtual database. All the parameters are optimized by simulations, and the new algorithm is tested on real-case scenarios. The results show that the new algorithm improves the accuracy by 25.5% in the surveyed area, with an average positioning error below 2.2 m for 80% of the cases. Moreover, the proposed algorithm can localize the users in the neighboring unsurveyed area. PMID:26999139
Leading virtual teams: hierarchical leadership, structural supports, and shared team leadership.
Hoch, Julia E; Kozlowski, Steve W J
2014-05-01
Using a field sample of 101 virtual teams, this research empirically evaluates the impact of traditional hierarchical leadership, structural supports, and shared team leadership on team performance. Building on Bell and Kozlowski's (2002) work, we expected structural supports and shared team leadership to be more, and hierarchical leadership to be less, strongly related to team performance when teams were more virtual in nature. As predicted, results from moderation analyses indicated that the extent to which teams were more virtual attenuated relations between hierarchical leadership and team performance but strengthened relations for structural supports and team performance. However, shared team leadership was significantly related to team performance regardless of the degree of virtuality. Results are discussed in terms of needed research extensions for understanding leadership processes in virtual teams and practical implications for leading virtual teams. (c) 2014 APA, all rights reserved.
Virtual auditorium concepts for exhibition halls
NASA Astrophysics Data System (ADS)
Evans, Jack; Himmel, Chad; Knight, Sarah
2002-11-01
Many communities lack good performance facilities for symphonic music, opera, dramatic and musical arts, but have basic convention, exhibition or assembly spaces. It should be possible to develop performance space environments within large multipurpose facilities that will accommodate production and presentation of dramatic arts. Concepts for moderate-cost, temporary enhancements that transform boxy spaces into more intimate, acoustically articulated venues will be presented. Acoustical criteria and design parameters will be discussed in the context of creating a virtual auditorium within the building envelope. Physical, economic, and logistical limitations affect implementation. Sound reinforcement system augmentation can supplement the room conversion. Acceptable control of reflection patterns, reverberation, and to some extent, ambient noise, may be achieved with an array of nonpermanent reflector and absorber elements. These elements can sculpture an enclosure to approach the shape and acoustic characteristics of an auditorium. Plan and section illustrations will be included.
A New Virtual and Remote Experimental Environment for Teaching and Learning Science
NASA Astrophysics Data System (ADS)
Lustigova, Zdena; Lustig, Frantisek
This paper describes how a scientifically exact and problem-solving-oriented remote and virtual science experimental environment might help to build a new strategy for science education. The main features are: the remote observations and control of real world phenomena, their processing and evaluation, verification of hypotheses combined with the development of critical thinking, supported by sophisticated relevant information search, classification and storing tools and collaborative environment, supporting argumentative writing and teamwork, public presentations and defense of achieved results, all either in real presence, in telepresence or in combination of both. Only then real understanding of generalized science laws and their consequences can be developed. This science learning and teaching environment (called ROL - Remote and Open Laboratory), has been developed and used by Charles University in Prague since 1996, offered to science students in both formal and informal learning, and also to science teachers within their professional development studies, since 2003.
SciEthics Interactive: Science and Ethics Learning in a Virtual Environment
ERIC Educational Resources Information Center
Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth
2013-01-01
Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…
ERIC Educational Resources Information Center
Liao, Yuan
2011-01-01
The virtualization of computing resources, as represented by the sustained growth of cloud computing, continues to thrive. Information Technology departments are building their private clouds due to the perception of significant cost savings by managing all physical computing resources from a single point and assigning them to applications or…
Virtual Reality for Life Skills Education: Program Evaluation
ERIC Educational Resources Information Center
Vogel, Jennifer; Bowers, Clint; Meehan, Cricket; Hoeft, Raegan; Bradley, Kristy
2004-01-01
A program evaluation was completed for a Virtual Reality (VR) pilot project intended to aid deaf children in learning various life skills which they may be at risk of not adequately learning. Such skills include crossing the street safely, exiting a building during a fire drill, and avoiding situations in which strangers may harm them. The VR was…
ERIC Educational Resources Information Center
Ingerham, Laura
2012-01-01
Recent studies of online learning environments reveal the importance of interaction within the virtual environment. Abrami, Bernard, Bures, Borokhovski, and Tamim (2011) identify and study 3 types of student interactions: student-content, student-teacher, and student-student. This article builds on this classification of interactions as it…
ERIC Educational Resources Information Center
Hunt, Annita W.; Nipper, Kelli L.; Nash, Linda E.
2011-01-01
Are virtual manipulatives as effective as concrete (hands-on) manipulatives in building conceptual understanding of number concepts and relationships in pre-service middle grades teachers? In the past, the use of concrete manipulatives in mathematics courses for Clayton State University's pre-service middle grades teachers has been effective in…
Mentoring in the Virtual Organization: Keys to Building Successful Schools and Businesses
ERIC Educational Resources Information Center
Colky, Deborah Lavin; Young, William H.
2006-01-01
Mentoring can take on a whole new perspective when people have a common goal but are in different physical locations. The benefits of virtual mentoring, in other words, mentoring when the mentor and mentee are not geographically co-located, and which occurs mainly by electronic communication, can be substantial. They include lowered costs,…
ERIC Educational Resources Information Center
Fainholc, Beatriz
2015-01-01
The pressures of the information and digital culture exhibit innovation, but also a hegemonic power, and act in reciprocity with the global economy. Theoretical concepts and practical actions need to be revisited, to build equity in virtual communication. A sociological-cultural focus of communication mediated by technology, cannot occur without…
Learning by Teaching with Virtual Peers and the Effects of Technological Design Choices on Learning
ERIC Educational Resources Information Center
Okita, Sandra Y.; Turkay, Selen; Kim, Mihwa; Murai, Yumiko
2013-01-01
Advancements in technology have brought about new forms of learning and online instruction that allow communication through virtual representations without physically meeting in person. This study builds on previous work involving recursive feedback that tests the hypothesis that an important facet of learning-by-teaching is the opportunity to…
ERIC Educational Resources Information Center
Schneider, Jeffrey; von der Emde, Silke
2000-01-01
Describes an online approach through using a MOO, a computer program that allows students to share text-based virtual reality. The goal of the program was to build an environment that both enabled practice in the target language and sustained reflection on the processes of cultural production and reception. (Author/VWL)
ERIC Educational Resources Information Center
Keating, Thomas; Barnett, Michael; Barab, Sasha A.; Hay, Kenneth E.
2002-01-01
Describes the Virtual Solar System (VSS) course which is one of the first attempts to integrate three-dimensional (3-D) computer modeling as a central component of introductory undergraduate education. Assesses changes in student understanding of astronomy concepts as a result of participating in an experimental introductory astronomy course in…
Virtual Learning. A Revolutionary Approach to Building a Highly Skilled Workforce.
ERIC Educational Resources Information Center
Schank, Roger
This book offers trainers and human resource managers an alternative approach to train people more effectively and capitalize on multimedia-based tools. The approach is based on computer-based training and virtual learning theory. Chapter 1 discusses how to remedy problems caused by bad training. Chapter 2 focuses on simulating work and creating…
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Innovative application of virtual display technique in virtual museum
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-09-01
Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.
The Role of a Multidimensional Concept of Trust in the Performance of Global Virtual Teams
NASA Technical Reports Server (NTRS)
Bodensteiner, Nan Muir; Stecklein, Jonette M.
2002-01-01
This paper focuses on the concept of trust as an important ingredient of effective global virtual team performance. Definitions of trust and virtual teams are presented. The concept of trust is developed from its unilateral application (trust, absence of trust) to a multidimensional concept including cognitive and affective components. The special challenges of a virtual team are then discussed with particular emphasis on how a multidimensional concept of trust impacts these challenges. Propositions suggesting the multidimensional concept of trust moderates the negative impacts of distance, cross cultural and organizational differences, the effects of electronically mediated communication, reluctance to share information and a lack of hi story/future on the performance of virtual teams are stated. The paper concludes with recommendations and a set of techniques to build both cognitive and affective trust in virtual teams.
NASA Astrophysics Data System (ADS)
Adlisia Puspa Harani, Sandhika
2018-05-01
The study is conducted by gathering data from interviews an in-home experiment, to examine the impacts of both virtual and physical SED toward user engagement. Business opportunity and benefits of virtual SED for stake holders are also discussed in this study. The research was conducted by interviewing method to respondens in Nottingham, UK. By comparing consumers’ energy saving behaviour from physical and virtual SED users, virtual SED shows similar level of effectiveness as physical SED, but there is no evidence that the virtual versions are better than the physical ones in terms of reducing energy consumption. Nevertheless, virtual SED can be more beneficial for consumers who can get easier access. They also help educating users to be more concern about energy issue. Energy suppliers get benefits by having virtual versions of SED, in which they can reduce production and distribution costs, as well as diminishing waste from physical SED.
Trust and Relationship Building in Electronic Commerce.
ERIC Educational Resources Information Center
Papadopoulou, Panagiota; Andreou, Andreas; Kanellis, Panagiotis; Martakos, Drakoulis
2001-01-01
Discussion of the need for trust in electronic commerce to build customer relationships focuses on a model drawn from established theoretical work on trust and relationship marketing that highlights differences between traditional and electronic commerce. Considers how trust can be built into virtual environments. (Contains 50 references.)…
Anderson, Kim A.; Seck, Dogo; Hobbie, Kevin A.; Traore, Anna Ndiaye; McCartney, Melissa A.; Ndaye, Adama; Forsberg, Norman D.; Haigh, Theodore A.; Sower, Gregory J.
2014-01-01
It is difficult to assess pollution in remote areas of less-developed regions owing to the limited availability of energy, equipment, technology, trained personnel and other key resources. Passive sampling devices (PSDs) are technologically simple analytical tools that sequester and concentrate bioavailable organic contaminants from the environment. Scientists from Oregon State University and the Centre Régional de Recherches en Ecotoxicologie et de Sécurité Environnementale (CERES) in Senegal developed a partnership to build capacity at CERES and to develop a pesticide-monitoring project using PSDs. This engagement resulted in the development of a dynamic training process applicable to capacity-building programmes. The project culminated in a field and laboratory study where paired PSD samples were simultaneously analysed in African and US laboratories with quality control evaluation and traceability. The joint study included sampling from 63 sites across six western African countries, generating a 9000 data point pesticide database with virtual access to all study participants. PMID:24535398
Anderson, Kim A; Seck, Dogo; Hobbie, Kevin A; Traore, Anna Ndiaye; McCartney, Melissa A; Ndaye, Adama; Forsberg, Norman D; Haigh, Theodore A; Sower, Gregory J
2014-04-05
It is difficult to assess pollution in remote areas of less-developed regions owing to the limited availability of energy, equipment, technology, trained personnel and other key resources. Passive sampling devices (PSDs) are technologically simple analytical tools that sequester and concentrate bioavailable organic contaminants from the environment. Scientists from Oregon State University and the Centre Régional de Recherches en Ecotoxicologie et de Sécurité Environnementale (CERES) in Senegal developed a partnership to build capacity at CERES and to develop a pesticide-monitoring project using PSDs. This engagement resulted in the development of a dynamic training process applicable to capacity-building programmes. The project culminated in a field and laboratory study where paired PSD samples were simultaneously analysed in African and US laboratories with quality control evaluation and traceability. The joint study included sampling from 63 sites across six western African countries, generating a 9000 data point pesticide database with virtual access to all study participants.
Critical Community Building: Beyond Belonging
ERIC Educational Resources Information Center
Bettez, Silvia Cristina
2011-01-01
In this paper, the author talks about community building and the power of active listening. Active listening is a particular kind of listening that requires conscious effort; it is a type of listening that some rarely practice and sometimes is virtually absent from classroom interactions. Thus active listening itself may be deceptively simple…
Virtual Solar System Project: Building Understanding through Model Building.
ERIC Educational Resources Information Center
Barab, Sasha A.; Hay, Kenneth E.; Barnett, Michael; Keating, Thomas
2000-01-01
Describes an introductory astronomy course for undergraduate students in which students use three-dimensional (3-D) modeling tools to model the solar system and develop rich understandings of astronomical phenomena. Indicates that 3-D modeling can be used effectively in regular undergraduate university courses as a tool to develop understandings…
Three Community Building Strategies and Their Impacts in an On-Line Course.
ERIC Educational Resources Information Center
Egbert, Joy; Chao, Chin-Chi; Ngeow, Karen
This paper describes three instructional strategies designed to support community building in an online graduate teacher education course: (1) MOO (Multi-User Dimensions Object Oriented) field trips, in which participants are introduced to text-based virtual environments on the Internet through metaphoric online "field trips"; (2)…
Virtual reality in the operating room of the future.
Müller, W; Grosskopf, S; Hildebrand, A; Malkewitz, R; Ziegler, R
1997-01-01
In cooperation with the Max-Delbrück-Centrum/Robert-Rössle-Klinik (MDC/RRK) in Berlin, the Fraunhofer Institute for Computer Graphics is currently designing and developing a scenario for the operating room of the future. The goal of this project is to integrate new analysis, visualization and interaction tools in order to optimize and refine tumor diagnostics and therapy in combination with laser technology and remote stereoscopic video transfer. Hence, a human 3-D reference model is reconstructed using CT, MR, and anatomical cryosection images from the National Library of Medicine's Visible Human Project. Applying segmentation algorithms and surface-polygonization methods a 3-D representation is obtained. In addition, a "fly-through" the virtual patient is realized using 3-D input devices (data glove, tracking system, 6-DOF mouse). In this way, the surgeon can experience really new perspectives of the human anatomy. Moreover, using a virtual cutting plane any cut of the CT volume can be interactively placed and visualized in realtime. In conclusion, this project delivers visions for the application of effective visualization and VR systems. Commonly known as Virtual Prototyping and applied by the automotive industry long ago, this project shows, that the use of VR techniques can also prototype an operating room. After evaluating design and functionality of the virtual operating room, MDC plans to build real ORs in the near future. The use of VR techniques provides a more natural interface for the surgeon in the OR (e.g., controlling interactions by voice input). Besides preoperative planning future work will focus on supporting the surgeon in performing surgical interventions. An optimal synthesis of real and synthetic data, and the inclusion of visual, aural, and tactile senses in virtual environments can meet these requirements. This Augmented Reality could represent the environment for the surgeons of tomorrow.
Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations
NASA Astrophysics Data System (ADS)
McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.
2012-09-01
Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.
Spaceport Command and Control System Support Software Development
NASA Technical Reports Server (NTRS)
Brunotte, Leonard
2016-01-01
The Spaceport Command and Control System (SCCS) is a project developed and used by NASA at Kennedy Space Center in order to control and monitor the Space Launch System (SLS) at the time of its launch. One integral subteam under SCCS is the one assigned to the development of a data set building application to be used both on the launch pad and in the Launch Control Center (LCC) at the time of launch. This web application was developed in Ruby on Rails, a web framework using the Ruby object-oriented programming language, by a 15 - employee team (approx.). Because this application is such a huge undertaking with many facets and iterations, there were a few areas in which work could be more easily organized and expedited. As an intern working with this team, I was charged with the task of writing web applications that fulfilled this need, creating a virtual and highly customizable whiteboard in order to allow engineers to keep track of build iterations and their status. Additionally, I developed a knowledge capture web application wherein any engineer or contractor within SCCS could ask a question, answer an existing question, or leave a comment on any question or answer, similar to Stack Overflow.
Schweppe, M; Geigel, J
2011-01-01
Industry has increasingly emphasized the need for "soft" or interpersonal skills development and team-building experience in the college curriculum. Here, we discuss our experiences with providing such opportunities via a collaborative project called the Virtual Theater. In this joint project between the Rochester Institute of Technology's School of Design and Department of Computer Science, the goal is to enable live performance in a virtual space with participants in different physical locales. Students work in teams, collaborating with other students in and out of their disciplines.
Current Status of VO Compliant Data Service in Japanese Virtual Observatory
NASA Astrophysics Data System (ADS)
Shirasaki, Y.; Komiya, Y.; Ohishi, M.; Mizumoto, Y.; Ishihara, Y.; Tsutsumi, J.; Hiyama, T.; Nakamoto, H.; Sakamoto, M.
2012-09-01
In these years, standards to build a Virtual Observatory (VO) data service have been established with the efforts in the International Virtual Observatory Alliance (IVOA). We applied these newly established standards (SSAP, TAP) to our VO service toolkit which was developed to implement earlier VO standards SIAP and (deprecated) SkyNode. The toolkit can be easily installed and provides a GUI interface to construct and manage VO service. In this paper, we describes the architecture of our toolkit and how it is used to start hosting VO service.
Problem-Based Learning Spanning Real and Virtual Words: A Case Study in Second Life
ERIC Educational Resources Information Center
Good, Judith; Howland, Katherine; Thackray, Liz
2008-01-01
There is a growing use of immersive virtual environments for educational purposes. However, much of this activity is not yet documented in the public domain, or is descriptive rather than analytical. This paper presents a case study in which university students were tasked with building an interactive learning experience using Second Life as a…
Building a Virtual Branch at Vancouver Public Library Using Web 2.0 Tools
ERIC Educational Resources Information Center
Cahill, Kay
2009-01-01
Purpose: The purpose of this paper is to demonstrate the work undertaken by Vancouver Public Library (VPL) in an effort to convert its website into a true virtual branch, both through the functionality of the website itself and by extending its web presence on to external social networking sites. Design/methodology/approach: VPL worked with its…
ERIC Educational Resources Information Center
Tarng, Wernhuar; Ou, Kuo-Liang; Tsai, Wen-Shin; Lin, Yu-Si; Hsu, Chen-Kai
2010-01-01
Ecological ponds can be a good teaching tool for science teachers, but they must be built and maintained properly to provide students with a safe and suitable learning environment. However, many schools do not have the ability to build and maintain an ecological pond. This study used virtual reality technology to develop a web-based virtual…
ERIC Educational Resources Information Center
Pellas, Nikolaos; Kazanidis, Ioannis; Konstantinou, Nikolaos; Georgiou, Georgia
2017-01-01
The present literature review builds on the results of 50 research articles published from 2000 until 2016. All these studies have successfully accomplished various learning tasks in the domain of Science, Technology, Engineering, and Mathematics (STEM) education using three-dimensional (3-D) multi-user virtual worlds for Primary, Secondary and…
ERIC Educational Resources Information Center
Redel-Macías, María Dolores; Castillo, Carlos; Aguilar Porro, Cristina; Polo, María; Taguas, Encarnación V.
2014-01-01
This paper presents a virtual lab for the contents of an Engineering project, for designing an agro-industrial building, which is also useful for a range of different transversal courses in Engineering sciences. The aims of this tool are to analyse the most important contents of a project-document (calculation, regulations, drawings and budgets),…
ERIC Educational Resources Information Center
Rukobo, Emily Zyko; Penfold, Angela; Adler, C. Ralph; Larson, Heidi; Peterson, Kirsten
2012-01-01
This Facilitator's Guide is based on What Education Leaders Should Know about Virtual Education, an online course designed by the Center on Instruction and the New England Comprehensive Center. The Facilitator's Guide demonstrates step-by-step how to build the course on a learning management system (LMS) and provides instructions on all phases of…
Virtual Reality and Learning: Where Is the Pedagogy?
ERIC Educational Resources Information Center
Fowler, Chris
2015-01-01
The aim of this paper was to build upon Dalgarno and Lee's model or framework of learning in three-dimensional (3-D) virtual learning environments (VLEs) and to extend their road map for further research in this area. The enhanced model shares the common goal with Dalgarno and Lee of identifying the learning benefits from using 3-D VLEs. The…
Supporting virtual enterprise design by a web-based information model
NASA Astrophysics Data System (ADS)
Li, Dong; Barn, Balbir; McKay, Alison; de Pennington, Alan
2001-10-01
Development of IT and its applications have led to significant changes in business processes. To pursue agility, flexibility and best service to customers, enterprises focus on their core competence and dynamically build relationships with partners to form virtual enterprises as customer driven temporary demand chains/networks. Building the networked enterprise needs responsively interactive decisions instead of a single-direction partner selection process. Benefits and risks in the combination should be systematically analysed, and aggregated information about value-adding abilities and risks of networks needs to be derived from interactions of all partners. In this research, a hierarchical information model to assess partnerships for designing virtual enterprises was developed. Internet technique has been applied to the evaluation process so that interactive decisions can be visualised and made responsively during the design process. The assessment is based on the process which allows each partner responds to requirements of the virtual enterprise by planning its operational process as a bidder. The assessment is then produced by making an aggregated value to represent prospect of the combination of partners given current bidding. Final design is a combination of partners with the greatest total value-adding capability and lowest risk.
Establishing a virtual learning environment: a nursing experience.
Wood, Anya; McPhee, Carolyn
2011-11-01
The use of virtual worlds has exploded in popularity, but getting started may not be easy. In this article, the authors, members of the corporate nursing education team at University Health Network, outline their experience with incorporating virtual technology into their learning environment. Over a period of several months, a virtual hospital, including two nursing units, was created in Second Life®, allowing more than 500 nurses to role-play in a safe environment without the fear of making a mistake. This experience has provided valuable insight into the best ways to develop and learn in a virtual environment. The authors discuss the challenges of installing and building the Second Life® platform and provide guidelines for preparing users and suggestions for crafting educational activities. This article provides a starting point for organizations planning to incorporate virtual worlds into their learning environment. Copyright 2011, SLACK Incorporated.
Cooperation, Coordination, and Trust in Virtual Teams: Insights from Virtual Games
NASA Astrophysics Data System (ADS)
Korsgaard, M. Audrey; Picot, Arnold; Wigand, Rolf T.; Welpe, Isabelle M.; Assmann, Jakob J.
This chapter considers fundamental concepts of effective virtual teams, illustrated by research on Travian, a massively multiplayer online strategy game wherein players seek to build empires. Team inputs are the resources that enable individuals to work interdependently toward a common goal, including individual and collective capabilities, shared knowledge structures, and leadership style. Team processes, notably coordination and cooperation, transform team inputs to desired collective outcomes. Because the members of virtual teams are geographically dispersed, relying on information and communication technology, three theories are especially relevant for understanding how they can function effectively: social presence theory, media richness theory, and media synchronicity theory. Research in settings like Travian can inform our understanding of structures, processes, and performance of virtual teams. Such research could provide valuable insight into the emergence and persistence of trust and cooperation, as well as the impact of different communication media for coordination and information management in virtual organizations.
Delay-based virtual congestion control in multi-tenant datacenters
NASA Astrophysics Data System (ADS)
Liu, Yuxin; Zhu, Danhong; Zhang, Dong
2018-03-01
With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.
Integration of the virtual 3D model of a control system with the virtual controller
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2015-11-01
Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the operation of the adopted research object. The carried out work allowed foot the integration of the virtual model of the control system of the tunneling machine with the virtual controller, enabling the verification of its operation.
Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Tschirschwitz, F.; Deggim, S.
2017-02-01
In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.
Research and Construction Lunar Stereoscopic Visualization System Based on Chang'E Data
NASA Astrophysics Data System (ADS)
Gao, Xingye; Zeng, Xingguo; Zhang, Guihua; Zuo, Wei; Li, ChunLai
2017-04-01
With lunar exploration activities carried by Chang'E-1, Chang'E-2 and Chang'E-3 lunar probe, a large amount of lunar data has been obtained, including topographical and image data covering the whole moon, as well as the panoramic image data of the spot close to the landing point of Chang'E-3. In this paper, we constructed immersive virtual moon system based on acquired lunar exploration data by using advanced stereoscopic visualization technology, which will help scholars to carry out research on lunar topography, assist the further exploration of lunar science, and implement the facilitation of lunar science outreach to the public. In this paper, we focus on the building of lunar stereoscopic visualization system with the combination of software and hardware by using binocular stereoscopic display technology, real-time rendering algorithm for massive terrain data, and building virtual scene technology based on panorama, to achieve an immersive virtual tour of the whole moon and local moonscape of Chang'E-3 landing point.
NASA Astrophysics Data System (ADS)
Navvab, Mojtaba; Bisegna, Fabio; Gugliermetti, Franco
2013-05-01
Saint Rocco Museum, a historical building in Venice, Italy is used as a case study to explore the performance of its' lighting system and visible light impact on viewing the large size art works. The transition from threedimensional architectural rendering to the three-dimensional virtual luminance mapping and visualization within a virtual environment is described as an integrated optical method for its application toward preservation of the cultural heritage of the space. Lighting simulation programs represent color as RGB triplets in a devicedependent color space such as ITU-R BT709. Prerequisite for this is a 3D-model which can be created within this computer aided virtual environment. The onsite measured surface luminance, chromaticity and spectral data were used as input to an established real-time indirect illumination and a physically based algorithms to produce the best approximation for RGB to be used as an input to generate the image of the objects. Conversion of RGB to and from spectra has been a major undertaking in order to match the infinite number of spectra to create the same colors that were defined by RGB in the program. The ability to simulate light intensity, candle power and spectral power distributions provide opportunity to examine the impact of color inter-reflections on historical paintings. VR offers an effective technique to quantify the visible light impact on human visual performance under precisely controlled representation of light spectrum that could be experienced in 3D format in a virtual environment as well as historical visual archives. The system can easily be expanded to include other measurements and stimuli.
NASA Astrophysics Data System (ADS)
Latinovic, T. S.; Deaconu, S. I.; Latinović, M. T.; Malešević, N.; Barz, C.
2015-06-01
This paper work with a new system that provides distance learning and online training engineers. The purpose of this paper is to develop and provide web-based system for the handling and control of remote devices via the Internet. Remote devices are currently the industry or mobile robots [13]. For future product development machine in the factory will be included in the system. This article also discusses the current use of virtual reality tools in the fields of science and engineering education. One programming tool in particular, virtual reality modeling language (VRML) is presented in the light of its applications and capabilities in the development of computer visualization tool for education. One contribution of this paper is to present the software tools and examples that can encourage educators to develop a virtual reality model to improve teaching in their discipline. [12] This paper aims to introduce a software platform, called VALIP where users can build, share, and manipulate 3D content in cooperation with the interaction processes in a 3D context, while participating hardware and software devices can be physical and / or logical distributed and connected together via the Internet. VALIP the integration of virtual laboratories to appropriate partners; therefore, allowing access to all laboratories in any of the partners in the project. VALIP provides advanced laboratory for training and research within robotics and production engineering, and thus, provides a great laboratory facilities with only having to invest a limited amount of resources at the local level to the partner site.
Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility
NASA Technical Reports Server (NTRS)
Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer
2009-01-01
Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).
Building to Scale: An Analysis of Web-Based Services in CIC (Big Ten) Libraries.
ERIC Educational Resources Information Center
Dewey, Barbara I.
Advancing library services in large universities requires creative approaches for "building to scale." This is the case for CIC, Committee on Institutional Cooperation (Big Ten), libraries whose home institutions serve thousands of students, faculty, staff, and others. Developing virtual Web-based services is an increasingly viable…
Council on Tall Buildings and Urban Habitat
Publications CTBUH Journal Awards Books Technical Guides Research Reports Other Books IJHRB Research Journal TBUH Chinese Journal Virtual Research Journal Conference Publications Posters Awards Global Awards Council on Tall Buildings and Urban Habitat About CTBUH Organization & People Membership
Knowledge Building: Reinventing Education for the Knowledge Age
ERIC Educational Resources Information Center
Philip, Donald N.
2011-01-01
This paper examines the Knowledge Age and how economic factors are causing educators to rethink and reinvent education. Two key factors in education in the Knowledge Age will be education for an economy of innovation, and the increasing virtualization of education. We present knowledge building pedagogy as a model for education in the Knowledge…
Designing communication and remote controlling of virtual instrument network system
NASA Astrophysics Data System (ADS)
Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian
2005-01-01
In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.
NASA Astrophysics Data System (ADS)
Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.
2016-07-01
This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.
Cabo Verde telemedicine program: initial results of nationwide implementation.
Latifi, Rifat; Dasho, Erion; Merrell, Ronald C; Lopes, Miguel; Azevedo, Vanda; Bekteshi, Flamur; Osmani, Kalterina L; Qesteri, Orland; Kucani, Julian; Lecaj, Ismet
2014-11-01
Telemedicine and e-health have been suggested as one solution for closing the health disparity gap between the developed world and the developing world. Yet evidence is lacking from current successful programs in the developing world and, in particular, from sub-Saharan Africa. The primary objective of our study was to present the preliminary results of our efforts in building the Integrated Telemedicine and e-Health Program for Cabo Verde (ITeHP-CV), with an emphasis on initial utilization and results. This is a prospective study of data collected while we worked to establish a fully functional, integrated national telemedicine network and virtual education network in Cabo Verde. We used the International Virtual e-Hospital Foundation strategic approach known as "initiate-build-operate-transfer" over a 26-month period (November 2011-December 2013). We describe herein the five main pillars of this process that have been implemented: (1) capacity building; (2) network development and deployment of equipment; (3) implementation of clinical telemedicine; (4) implementation of activities related to continuing medical education, delivered from within the country and from abroad; and (5) establishment and use of the electronic virtual library. Based on comprehensive technical and medical assessment of the country's needs, 10 fully functional telemedicine centers in all nine inhabited islands of the Republic of Cabo Verde have been established. RESULTS are presented under the five main pillars of capacity building, network deployment, implementation of clinical telemedicine, implementation of continuing medical education activities, and establishment of the electronic virtual library. The ITeHP-CV has been successfully launched, and the initial results are encouraging. The continuity of the program and sustainability are primary goals once the program is transferred fully to the Ministry of Health of Cabo Verde. A long-term follow-up study is required in order to ensure sustainability and continuity goals are met.
ERIC Educational Resources Information Center
Enz, Sibylle; Zoll, Carsten; Vannini, Natalie; Schneider, Wolfgang; Hall, Lynne; Paiva, Ana; Aylett, Ruth
2008-01-01
Addressing the problems of bullying in schools, this paper presents a novel and highly innovative pedagogical approach, building on the immersive power of virtual role-play. Educational role-play is widely accepted as a powerful instrument to change attitudes and behaviour, but faces some difficulties and disadvantages when applied to sensitive…
Going Social at Vancouver Public Library: What the Virtual Branch Did Next
ERIC Educational Resources Information Center
Cahill, Kay
2011-01-01
Purpose: The purpose of this paper is to follow up on the 2009 publication "Building a virtual branch at Vancouver Public Library (VPL) using Web 2.0 tools" and to explore the work that VPL has been doing in the social media space over the past two years. Design/methodology/approach: Following the launch of its new web site in 2008,…
ERIC Educational Resources Information Center
Sylvia, Margaret
1993-01-01
Describes one college library's experience with a gateway for dial-in access to its CD-ROM network to increase access to automated index searching for students off-campus. Hardware and software choices are discussed in terms of access, reliability, affordability, and ease of use. Installation problems are discussed, and an appendix lists product…
ERIC Educational Resources Information Center
da Silva Marques Ribeiro, Andrea; Rodrigues Oliveira, Esequiel; Fortes Mello, Rodrigo
2017-01-01
Blended learning, the combination of face-to-face teaching with a virtual learning environment (VLE), is the theme of this study that aims at describing and analyzing the implementation of a VLE in the Institute of Application Fernando Rodrigues da Silveira, an academic unit of the State University of Rio de Janeiro. This study's main contribution…
Krebs, Paul; Burkhalter, Jack; Lewis, Shireen; Hendrickson, Tinesha; Chiu, Ophelia; Fearn, Paul; Perchick, Wendy; Ostroff, Jamie
2009-08-01
Many hospitalized smokers return to smoking after hospital discharge even though continued smoking can compromise treatment effectiveness, reduce survival, increase risk of disease recurrence, and impair quality of life. After leaving a smoke-free hospital, patients encounter smoking cues at home, such as family members who smoke or emotional triggers such as stress, which can elicit powerful urges to smoke and lead to smoking relapse. Enabling smokers to experience such urges in a controlled setting while providing the ability to practice coping skills may be a useful strategy for building quitting self-efficacy. We are developing a virtual reality coping skills (VRCS) game to help hospitalized smokers practice coping strategies to manage these triggers in preparation for returning home after hospitalization. Our multidisciplinary team developed a prototype VRCS game using Second Life, a platform that allowed rapid construction of a virtual reality environment. The prototype contains virtual home spaces (e.g., living room, kitchen) populated with common triggers to smoke and a "toolkit" with scripted actions that enable the avatar to rehearse various coping strategies. Since eliciting and managing urges to smoke is essential to the game's utility as an intervention, we assessed the ability of the prototype virtual environment to engage former smokers in these scenarios. We recruited eight former smokers with a recent history of hospitalization and guided each through a VRCS scenario during which we asked the patient to evaluate the strength of smoking urges and usefulness of coping strategies. Initial data indicate that patients report high urges to smoke (mean = 8.8 on a 10 point scale) when their avatar confronted virtual triggers such as drinking coffee. Patients rated virtual practice of coping strategies, such as drinking water or watching TV, as very helpful (mean = 8.4 on a 10 point scale) in reducing these urges. With further development, this VRCS game may have potential to provide low-cost, effective behavioral rehearsal to prevent relapse to smoking in hospitalized patients.
NREL, EPRI Validate Advanced Microgrid Controller with ESIF's Virtual
Microgrid Controller with ESIF's Virtual Microgrid Model NREL, EPRI Validate Advanced Microgrid Controller with ESIF's Virtual Microgrid Model NREL is working with the Electric Power Research Institute (EPRI Energy Systems Integration Facility, by connecting it to a virtual model of a microgrid. NREL researchers
Developing 3D morphologies for simulating building energy demand in urban microclimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Omitaomu, Olufemi A.; Allen, Melissa R.
In order to simulate the effect of interactions between urban morphology and microclimate on demand for heating and cooling in buildings, we utilize source elevation data to create 3D building geometries at the neighborhood and city scale. Additionally, we use urban morphology concepts to design virtual morphologies for simulation scenarios in an undeveloped land parcel. Using these morphologies, we compute building-energy parameters such as the density for each surface and the frontal area index for each of the buildings to be able to effectively model the microclimate for the urban area.
Webizing mobile augmented reality content
NASA Astrophysics Data System (ADS)
Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun
2014-01-01
This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.
ERIC Educational Resources Information Center
Arms, William Y.; Hillmann, Diane; Lagoze, Carl; Krafft, Dean; Marisa, Richard; Saylor, John; Terizzi, Carol; Van de Sompel, Herbert; Gill, Tony; Miller, Paul; Kenney, Anne R.; McGovern, Nancy Y.; Botticelli, Peter; Entlich, Richard; Payette, Sandra; Berthon, Hilary; Thomas, Susan; Webb, Colin; Nelson, Michael L.; Allen, B. Danette; Bennett, Nuala A.; Sandore, Beth; Pianfetti, Evangeline S.
2002-01-01
Discusses digital libraries, including interoperability, metadata, and international standards; Web resource preservation efforts at Cornell University; digital preservation at the National Library of Australia; object persistence and availability; collaboration among libraries, museums and elementary schools; Asian digital libraries; and a Web…
NASA Technical Reports Server (NTRS)
Gibbs, K. E.; Schmidt, G. K.
2017-01-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.
Desktop supercomputer: what can it do?
NASA Astrophysics Data System (ADS)
Bogdanov, A.; Degtyarev, A.; Korkhov, V.
2017-12-01
The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.
Biomechanics-based in silico medicine: the manifesto of a new science.
Viceconti, Marco
2015-01-21
In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.
Interactive modeling and simulation of peripheral nerve cords in virtual environments
NASA Astrophysics Data System (ADS)
Ullrich, Sebastian; Frommen, Thorsten; Eckert, Jan; Schütz, Astrid; Liao, Wei; Deserno, Thomas M.; Ntouba, Alexandre; Rossaint, Rolf; Prescher, Andreas; Kuhlen, Torsten
2008-03-01
This paper contributes to modeling, simulation and visualization of peripheral nerve cords. Until now, only sparse datasets of nerve cords can be found. In addition, this data has not yet been used in simulators, because it is only static. To build up a more flexible anatomical structure of peripheral nerve cords, we propose a hierarchical tree data structure where each node represents a nerve branch. The shape of the nerve segments itself is approximated by spline curves. Interactive modeling allows for the creation and editing of control points which are used for branching nerve sections, calculating spline curves and editing spline representations via cross sections. Furthermore, the control points can be attached to different anatomic structures. Through this approach, nerve cords deform in accordance to the movement of the connected structures, e.g., muscles or bones. As a result, we have developed an intuitive modeling system that runs on desktop computers and in immersive environments. It allows anatomical experts to create movable peripheral nerve cords for articulated virtual humanoids. Direct feedback of changes induced by movement or deformation is achieved by visualization in real-time. The techniques and the resulting data are already used for medical simulators.
ERIC Educational Resources Information Center
International Association of Technological Univ. Libraries, Gothenburg (Sweden).
This proceedings of the International Association of Technological University Libraries (IATUL) contains the opening address by IATUL president Nancy Fjallbrant and the full text of the following papers: "Building Info-Skills by Degrees: Embedding Information Literacy in University Study" (Wendy Abbott and Deborah Peach); "UQ…
Voluminator 2.0 - Speeding up the Approximation of the Volume of Defective 3d Building Models
NASA Astrophysics Data System (ADS)
Sindram, M.; Machl, T.; Steuer, H.; Pültz, M.; Kolbe, T. H.
2016-06-01
Semantic 3D city models are increasingly used as a data source in planning and analyzing processes of cities. They represent a virtual copy of the reality and are a common information base and source of information for examining urban questions. A significant advantage of virtual city models is that important indicators such as the volume of buildings, topological relationships between objects and other geometric as well as thematic information can be derived. Knowledge about the exact building volume is an essential base for estimating the building energy demand. In order to determine the volume of buildings with conventional algorithms and tools, the buildings may not contain any topological and geometrical errors. The reality, however, shows that city models very often contain errors such as missing surfaces, duplicated faces and misclosures. To overcome these errors (Steuer et al., 2015) have presented a robust method for approximating the volume of building models. For this purpose, a bounding box of the building is divided into a regular grid of voxels and it is determined which voxels are inside the building. The regular arrangement of the voxels leads to a high number of topological tests and prevents the application of this method using very high resolutions. In this paper we present an extension of the algorithm using an octree approach limiting the subdivision of space to regions around surfaces of the building models and to regions where, in the case of defective models, the topological tests are inconclusive. We show that the computation time can be significantly reduced, while preserving the robustness against geometrical and topological errors.
Building a virtual network in a community health research training program.
Lau, F; Hayward, R
2000-01-01
To describe the experiences, lessons, and implications of building a virtual network as part of a two-year community health research training program in a Canadian province. An action research field study in which 25 health professionals from 17 health regions participated in a seven-week training course on health policy, management, economics, research methods, data analysis, and computer technology. The participants then returned to their regions to apply the knowledge in different community health research projects. Ongoing faculty consultations and support were provided as needed. Each participant was given a notebook computer with the necessary software, Internet access, and technical support for two years, to access information resources, engage in group problem solving, share ideas and knowledge, and collaborate on projects. Data collected over two years consisted of program documents, records of interviews with participants and staff, meeting notes, computer usage statistics, automated online surveys, computer conference postings, program Web site, and course feedback. The analysis consisted of detailed review and comparison of the data from different sources. NUD*IST was then used to validate earlier study findings. The ten key lessons are that role clarity, technology vision, implementation staging, protected time, just-in-time training, ongoing facilitation, work integration, participatory design, relationship building, and the demonstration of results are essential ingredients for building a successful network. This study provides a descriptive model of the processes involved in developing, in the community health setting, virtual networks that can be used as the basis for future research and as a practical guide for managers.
The art and science of data curation: Lessons learned from constructing a virtual collection
NASA Astrophysics Data System (ADS)
Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick
2018-03-01
A digital, or virtual, collection is a value added service developed by libraries that curates information and resources around a topic, theme or organization. Adoption of the virtual collection concept as an Earth science data service improves the discoverability, accessibility and usability of data both within individual data centers but also across data centers and disciplines. In this paper, we introduce a methodology for systematically and rigorously curating Earth science data and information into a cohesive virtual collection. This methodology builds on the geocuration model of searching, selecting and synthesizing Earth science data, metadata and other information into a single and useful collection. We present our experiences curating a virtual collection for one of NASA's twelve Distributed Active Archive Centers (DAACs), the Global Hydrology Resource Center (GHRC), and describe lessons learned as a result of this curation effort. We also provide recommendations and best practices for data centers and data providers who wish to curate virtual collections for the Earth sciences.
Building a virtual ligand screening pipeline using free software: a survey.
Glaab, Enrico
2016-03-01
Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. © The Author 2015. Published by Oxford University Press.
Building a virtual ligand screening pipeline using free software: a survey
2016-01-01
Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. PMID:26094053
NASA Astrophysics Data System (ADS)
Thubaasini, P.; Rusnida, R.; Rohani, S. M.
This paper describes Linux, an open source platform used to develop and run a virtual architectural walkthrough application. It proposes some qualitative reflections and observations on the nature of Linux in the concept of Virtual Reality (VR) and on the most popular and important claims associated with the open source approach. The ultimate goal of this paper is to measure and evaluate the performance of Linux used to build the virtual architectural walkthrough and develop a proof of concept based on the result obtain through this project. Besides that, this study reveals the benefits of using Linux in the field of virtual reality and reflects a basic comparison and evaluation between Windows and Linux base operating system. Windows platform is use as a baseline to evaluate the performance of Linux. The performance of Linux is measured based on three main criteria which is frame rate, image quality and also mouse motion.
NASA Astrophysics Data System (ADS)
Pérez Ramos, A.; Robleda Prieto, G.
2016-06-01
Indoor Gothic apse provides a complex environment for virtualization using imaging techniques due to its light conditions and architecture. Light entering throw large windows in combination with the apse shape makes difficult to find proper conditions to photo capture for reconstruction purposes. Thus, documentation techniques based on images are usually replaced by scanning techniques inside churches. Nevertheless, the need to use Terrestrial Laser Scanning (TLS) for indoor virtualization means a significant increase in the final surveying cost. So, in most cases, scanning techniques are used to generate dense point clouds. However, many Terrestrial Laser Scanner (TLS) internal cameras are not able to provide colour images or cannot reach the image quality that can be obtained using an external camera. Therefore, external quality images are often used to build high resolution textures of these models. This paper aims to solve the problem posted by virtualizing indoor Gothic churches, making that task more affordable using exclusively techniques base on images. It reviews a previous proposed methodology using a DSRL camera with 18-135 lens commonly used for close range photogrammetry and add another one using a HDR 360° camera with four lenses that makes the task easier and faster in comparison with the previous one. Fieldwork and office-work are simplified. The proposed methodology provides photographs in such a good conditions for building point clouds and textured meshes. Furthermore, the same imaging resources can be used to generate more deliverables without extra time consuming in the field, for instance, immersive virtual tours. In order to verify the usefulness of the method, it has been decided to apply it to the apse since it is considered one of the most complex elements of Gothic churches and it could be extended to the whole building.
Leveraging Existing Heritage Documentation for Animations: Senate Virtual Tour
NASA Astrophysics Data System (ADS)
Dhanda, A.; Fai, S.; Graham, K.; Walczak, G.
2017-08-01
The use of digital documentation techniques has led to an increase in opportunities for using documentation data for valorization purposes, in addition to technical purposes. Likewise, building information models (BIMs) made from these data sets hold valuable information that can be as effective for public education as it is for rehabilitation. A BIM can reveal the elements of a building, as well as the different stages of a building over time. Valorizing this information increases the possibility for public engagement and interest in a heritage place. Digital data sets were leveraged by the Carleton Immersive Media Studio (CIMS) for parts of a virtual tour of the Senate of Canada. For the tour, workflows involving four different programs were explored to determine an efficient and effective way to leverage the existing documentation data to create informative and visually enticing animations for public dissemination: Autodesk Revit, Enscape, Autodesk 3ds Max, and Bentley Pointools. The explored workflows involve animations of point clouds, BIMs, and a combination of the two.
Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.
2016-06-20
In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following,more » primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.« less
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-03-01
The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America
Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning
2010-02-01
With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability ofmore » power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.« less
Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors
NASA Technical Reports Server (NTRS)
Bean, Jacob; Fuller, Chris; Schiller, Noah
2016-01-01
Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.
ERIC Educational Resources Information Center
Kist, William; Morgan, Kate
2017-01-01
This article examines what that immersion in virtual worlds has looked like for Jason (a pseudonym), a 21-year-old person diagnosed on the autism spectrum who has participated in virtual games since he was 12. Over the four years we have followed Jason, what has been noticeable is not only the increasing communication skills he has demonstrated,…
The ASSERT Virtual Machine Kernel: Support for Preservation of Temporal Properties
NASA Astrophysics Data System (ADS)
Zamorano, J.; de la Puente, J. A.; Pulido, J. A.; Urueña
2008-08-01
A new approach to building embedded real-time software has been developed in the ASSERT project. One of its key elements is the concept of a virtual machine preserving the non-functional properties of the system, and especially real-time properties, all the way down from high- level design models down to executable code. The paper describes one instance of the virtual machine concept that provides support for the preservation of temporal properties both at the source code level —by accept- ing only "legal" entities, i.e. software components with statically analysable real-tim behaviour— and at run-time —by monitoring the temporal behaviour of the system. The virtual machine has been validated on several pilot projects carried out by aerospace companies in the framework of the ASSERT project.
ERIC Educational Resources Information Center
Fowler, Zoe; Stanley, Grant; Murray, Jean; Jones, Marion; McNamara, Olwen
2013-01-01
This article focuses on a virtual research environment (VRE) and how it facilitated the networking of teacher educators participating in an Economic and Social Research Council-funded research capacity-building project. Using the theoretical lenses of situated learning and socio-cultural approaches to literacy, participants' ways of engaging with…
ERIC Educational Resources Information Center
Roy, Jan; Sykes, Diane
2017-01-01
The primary purpose of the article was to build a framework for an innovative approach to online internships after examining best practices in hospitality internships. Learning the ins and outs of an industry virtually, using contemporary internship methods strengthens the student's expertise and better prepares them for future workplace…
ERIC Educational Resources Information Center
Chen, Yixing
2013-01-01
The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…
ERIC Educational Resources Information Center
Benson, Robert G.
2010-01-01
Geospatial skills are critical to effective geologic mapping, and many geoscience students experience challenges in developing good geologic interpretation and projection skills. A physical (non-virtual) underground mine mapping simulation in a building on the Adams State College campus in Alamosa, Colorado, provides an excellent cost-effective…
NASA Astrophysics Data System (ADS)
Campi, M.; di Luggo, A.; Scandurra, S.
2017-02-01
The object of this paper is one of the most ancient palaces of Naples, Palazzo Penne, a fourteenth-century residential building located on a small high ground which originally was in the outer fringe of the built up area in a privileged position enabling to enjoy the landscape and gulf beauty. This building, which today is in the heart of the historical center, was the subject of an extensive analysis and documentary research, as well as of metric laser scanner survey carried out by the group researchers working at the Interdepartmental Centre of Research Urban Eco of the University of Naples Federico II. Starting from scan to bim systems the creation of a parametric model of the current state of the building is completed, by bringing the point cloud elements back to objects to which historical and construction data can be associated. Moreover starting from acquired data, the 3D model shows the reconstructive hypothesis of the original structure and the virtual reconstruction of the building based on traces found on-site and on the comparison with coeval creations allowing to properly hypothesize the design of point features.
My Ideal City (mic): Virtual Environments to Design the Future Town
NASA Astrophysics Data System (ADS)
Borgherini, M.; Garbin, E.
2011-09-01
MIC is an EU funded project to explore the use of shared virtual environments as part of a public discussion on the issues of building the city of the future. An interactive exploration of four european cities - in the digital city models were translated urban places, family problems and citizens wishes - is a chance to see them in different ways and from different points of view, to imagine new scenarios to overcome barriers and stereotypes no longer effective. This paper describes the process from data to visualization of virtual cities and, in detail, the project of two interactive digital model (Trento and Lisbon).
UkrVO astronomical WEB services
NASA Astrophysics Data System (ADS)
Mazhaev, A.
2017-02-01
Ukraine Virtual Observatory (UkrVO) has been a member of the International Virtual Observatory Alliance (IVOA) since 2011. The virtual observatory (VO) is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS) of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.
Natural Ventilation of Buildings through Light Shafts. Design-Based Solution Proposals
NASA Astrophysics Data System (ADS)
Ángel Padilla-Marcos, Miguel; Meiss, Alberto; Feijó-Muñoz, Jesús
2017-10-01
This work analyses how the built environment affects the quality of the air to be introduced into buildings from light shafts. Several factors such as urban environment and building design intervene in the ability of the light shaft to produce its air change process. Urban areas continuously pollute the air in cities which affects the human health and the environment sustainability. Poor air quality outside buildings supposes a big energy waste to promote an acceptable air quality inside buildings. That requires a large flow rate to maintain the indoor air quality which is translated to an energy efficiency term. The main objective focuses on the impact of standardized architecture design in the quality of the indoor air dependent on the air change in the light shaft. The air change capacity of the outdoor space is numbered analysed using the concept of air change efficiency (ACE). ACE is determined by the built environment, the wind conditions and the design of the building containing light shafts. This concept is comparatively evaluated inside a control domain virtually defined to obtain the mean age of the air for a known air volume. The longer the light shaft in the wind direction is, the better the ACE is compared with other options. Light shafts up to 12 metres high are the most suitable in order to obtain acceptable efficiency results. Other studied cases verify that assumption. Different simplified tools for the technicians to evaluate the design of buildings containing light shafts are proposed. Some strategies of architectural design of buildings with light shafts to be used for ventilation are presented.
Distributed attitude synchronization of formation flying via consensus-based virtual structure
NASA Astrophysics Data System (ADS)
Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen
2011-06-01
This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.
Robust controller designs for second-order dynamic system: A virtual passive approach
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1990-01-01
A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.
Design of virtual display and testing system for moving mass electromechanical actuator
NASA Astrophysics Data System (ADS)
Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng
2015-12-01
Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.
Secure Video Surveillance System Acquisition Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
2009-12-04
The SVSS Acquisition Software collects and displays video images from two cameras through a VPN, and store the images onto a collection controller. The software is configured to allow a user to enter a time window to display up to 2 1/2, hours of video review. The software collects images from the cameras at a rate of 1 image per second and automatically deletes images older than 3 hours. The software code operates in a linux environment and can be run in a virtual machine on Windows XP. The Sandia software integrates the different COTS software together to build themore » video review system.« less
NASA Astrophysics Data System (ADS)
Hullo, J.-F.; Thibault, G.; Boucheny, C.
2015-02-01
In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".
STS-109 Crew Training in VR Lab, Building 9
2001-08-08
JSC2001-E-24452 (8 August 2001) --- Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at the Johnson Space Center (JSC) to train for some of their duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties during the fourth Hubble Space Telescope (HST) servicing mission.
STS-103 crew perform virtual reality training in building 9N
1999-05-24
S99-05679 (24 May 1999) --- Astronauts Claude Nicollier (seated), representing the European Space Agency (ESA), and John M. Grunsfeld use virtual reality hardware to rehearse some of their duties for the upcoming STS-103 mission, NASA's third servicing visit to the Earth-orbiting Hubble Space Telescope (HST). The two mission specialists will be joined by five other astronauts, including a second ESA representative, for the STS-103 mission, scheduled for autumn of this year.
Building intuitive 3D interfaces for virtual reality systems
NASA Astrophysics Data System (ADS)
Vaidya, Vivek; Suryanarayanan, Srikanth; Seitel, Mathias; Mullick, Rakesh
2007-03-01
An exploration of techniques for developing intuitive, and efficient user interfaces for virtual reality systems. Work seeks to understand which paradigms from the better-understood world of 2D user interfaces remain viable within 3D environments. In order to establish this a new user interface was created that applied various understood principles of interface design. A user study was then performed where it was compared with an earlier interface for a series of medical visualization tasks.
Zhang, Hui-Rong; Yin, Le-Feng; Liu, Yan-Li; Yan, Li-Yi; Wang, Ning; Liu, Gang; An, Xiao-Li; Liu, Bin
2018-04-01
The aim of this study is to build a digital dental model with cone beam computed tomography (CBCT), to fabricate a virtual model via 3D printing, and to determine the accuracy of 3D printing dental model by comparing the result with a traditional dental cast. CBCT of orthodontic patients was obtained to build a digital dental model by using Mimics 10.01 and Geomagic studio software. The 3D virtual models were fabricated via fused deposition modeling technique (FDM). The 3D virtual models were compared with the traditional cast models by using a Vernier caliper. The measurements used for comparison included the width of each tooth, the length and width of the maxillary and mandibular arches, and the length of the posterior dental crest. 3D printing models had higher accuracy compared with the traditional cast models. The results of the paired t-test of all data showed that no statistically significant difference was observed between the two groups (P>0.05). Dental digital models built with CBCT realize the digital storage of patients' dental condition. The virtual dental model fabricated via 3D printing avoids traditional impression and simplifies the clinical examination process. The 3D printing dental models produced via FDM show a high degree of accuracy. Thus, these models are appropriate for clinical practice.
A virtual robot to model the use of regenerated legs in a web-building spider.
Krink; Vollrath
1999-01-01
The garden cross orb-spider, Araneus diadematus, shows behavioural responses to leg loss and regeneration that are reflected in the geometry of the web's capture spiral. We created a virtual spider robot that mimicked the web construction behaviour of thus handicapped real spiders. We used this approach to test the correctness and consistency of hypotheses about orb web construction. The behaviour of our virtual robot was implemented in a rule-based system supervising behaviour patterns that communicated with the robot's sensors and motors. By building the typical web of a nonhandicapped spider our first model failed and led to new observations on real spiders. We realized that in addition to leg position, leg posture could also be of importance. The implementation of this new hypothesis greatly improved the results of our simulation of a handicapped spider. Now simulated webs, like the real webs of handicapped spiders, had significantly more gaps in successive spiral turns compared with webs of nonhandicapped spiders. Moreover, webs built by the improved virtual spiders intercepted prey as well as the digitized real webs. However, the main factors that affected web interception frequency were prey size, size of capture area and individual variance; having a regenerated leg, surprisingly, was relatively unimportant for this trait. Copyright 1999 The Association for the Study of Animal Behaviour.
2016-12-01
SMD-VAC- GP, Virtual Industries) with plastic tip. Then the chip was covered with silicone open-cell foam (0.062” thick, HT -870, Stockwell...the build. 26 We discussed with a sub- contractor in Livermore who might be able to perform the packaging assembly work. Dr. Kotovsky...worked with the sub- contractor on practice assemblies anticipating the new upcoming build. Working through an outside contractor represents an enormous
Virtual Labs and Virtual Worlds
NASA Astrophysics Data System (ADS)
Boehler, Ted
2006-12-01
Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner
NASA Astrophysics Data System (ADS)
Guarnieri, A.; Masiero, A.; Piragnolo, M.; Pirotti, F.; Vettore, A.
2016-06-01
In this paper we present the results of the development of a Web-based archiving and documenting system aimed to the management of multisource and multitemporal data related to cultural heritage. As case study we selected the building complex of Villa Revedin Bolasco in Castefranco Veneto (Treviso, Italy) and its park. Buildings and park were built in XIX century after several restorations of the original XIV century area. The data management system relies on a geodatabase framework, in which different kinds of datasets were stored. More specifically, the geodatabase elements consist of historical information, documents, descriptions of artistic characteristics of the building and the park, in the form of text and images. In addition, we used also floorplans, sections and views of the outer facades of the building extracted by a TLS-based 3D model of the whole Villa. In order to manage and explore these rich dataset, we developed a geodatabase using PostgreSQL and PostGIS as spatial plugin. The Web-GIS platform, based on HTML5 and PHP programming languages, implements the NASA Web World Wind virtual globe, a 3D virtual globe we used to enable the navigation and interactive exploration of the park. Furthermore, through a specific timeline function, the user can explore the historical evolution of the building complex.
Demonstration of three gorges archaeological relics based on 3D-visualization technology
NASA Astrophysics Data System (ADS)
Xu, Wenli
2015-12-01
This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.
NASA Astrophysics Data System (ADS)
Shipman, J. S.; Anderson, J. W.
2017-12-01
An ideal tool for ecologists and land managers to investigate the impacts of both projected environmental changes and policy alternatives is the creation of immersive, interactive, virtual landscapes. As a new frontier in visualizing and understanding geospatial data, virtual landscapes require a new toolbox for data visualization that includes traditional GIS tools and uncommon tools such as the Unity3d game engine. Game engines provide capabilities to not only explore data but to build and interact with dynamic models collaboratively. These virtual worlds can be used to display and illustrate data that is often more understandable and plausible to both stakeholders and policy makers than is achieved using traditional maps.Within this context we will present funded research that has been developed utilizing virtual landscapes for geographic visualization and decision support among varied stakeholders. We will highlight the challenges and lessons learned when developing interactive virtual environments that require large multidisciplinary team efforts with varied competences. The results will emphasize the importance of visualization and interactive virtual environments and the link with emerging research disciplines within Visual Analytics.
NASA Technical Reports Server (NTRS)
Schnase, John L.; Tamkin, Glenn S.; Ripley, W. David III; Stong, Savannah; Gill, Roger; Duffy, Daniel Q.
2012-01-01
Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services.
Virtual 3d City Modeling: Techniques and Applications
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2013-08-01
3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3-D City model is a very useful for various kinds of applications such as for planning in Navigation, Tourism, Disasters Management, Transportations, Municipality, Urban Environmental Managements and Real-estate industry. So the Construction of Virtual 3-D city models is a most interesting research topic in recent years.
A multitracer system for multizone ventilation measurement
NASA Astrophysics Data System (ADS)
Sherman, Max
1990-09-01
Mass transfer due to pressure-driven air flow is one of the most important processes for determining both environmental quality and energy requirements in buildings. Heat, moisture, and contaminants are all transported by air movement between indoors and outdoors as well as between different zones within a building. Measurement of these air flows is critical to understanding the performance of buildings. Virtually all measurements of ventilation are made using the dilution of a tracer gas. The vast majority of such measurements have been made in a single zone, using a single tracer gas. For the past several years LBL has been developing the MultiTracer Measurement System (MTMS) to provide full multizone air flow information in an accurate, real-time manner. MTMS is based on a quadrupole mass spectrometer to provide high-speed concentration analysis of multiple tracer gases in the (low) ppm level that are injected into multiple zones using mass-flow controllers. The measurement and injection system is controlled by a PC and can measure all concentrations in all zones (and adjust the injected tracer flows) within 2 min and can operate unattended for weeks. The resulting injection rate and concentration data can be analyzed to infer the bulk air movement between zones. The system also measures related quantities such as weather and zonal temperature to assist in the data interpretation. Using MTMS, field measurements have been made for the past two years.
First responder tracking and visualization for command and control toolkit
NASA Astrophysics Data System (ADS)
Woodley, Robert; Petrov, Plamen; Meisinger, Roger
2010-04-01
In order for First Responder Command and Control personnel to visualize incidents at urban building locations, DHS sponsored a small business research program to develop a tool to visualize 3D building interiors and movement of First Responders on site. 21st Century Systems, Inc. (21CSI), has developed a toolkit called Hierarchical Grid Referenced Normalized Display (HiGRND). HiGRND utilizes three components to provide a full spectrum of visualization tools to the First Responder. First, HiGRND visualizes the structure in 3D. Utilities in the 3D environment allow the user to switch between views (2D floor plans, 3D spatial, evacuation routes, etc.) and manually edit fast changing environments. HiGRND accepts CAD drawings and 3D digital objects and renders these in the 3D space. Second, HiGRND has a First Responder tracker that uses the transponder signals from First Responders to locate them in the virtual space. We use the movements of the First Responder to map the interior of structures. Finally, HiGRND can turn 2D blueprints into 3D objects. The 3D extruder extracts walls, symbols, and text from scanned blueprints to create the 3D mesh of the building. HiGRND increases the situational awareness of First Responders and allows them to make better, faster decisions in critical urban situations.
Review of Enabling Technologies to Facilitate Secure Compute Customization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine
High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data for a variety of users, often requiring strong separation between job allocations. There are many challenges to establishing these secure enclaves within the shared infrastructure of high-performance computing (HPC) environments. The isolation mechanisms in the system software are the basic building blocks for enabling secure compute enclaves. There are a variety of approaches and the focus of this report is to review the different virtualization technologies thatmore » facilitate the creation of secure compute enclaves. The report reviews current operating system (OS) protection mechanisms and modern virtualization technologies to better understand the performance/isolation properties. We also examine the feasibility of running ``virtualized'' computing resources as non-privileged users, and providing controlled administrative permissions for standard users running within a virtualized context. Our examination includes technologies such as Linux containers (LXC [32], Docker [15]) and full virtualization (KVM [26], Xen [5]). We categorize these different approaches to virtualization into two broad groups: OS-level virtualization and system-level virtualization. The OS-level virtualization uses containers to allow a single OS kernel to be partitioned to create Virtual Environments (VE), e.g., LXC. The resources within the host's kernel are only virtualized in the sense of separate namespaces. In contrast, system-level virtualization uses hypervisors to manage multiple OS kernels and virtualize the physical resources (hardware) to create Virtual Machines (VM), e.g., Xen, KVM. This terminology of VE and VM, detailed in Section 2, is used throughout the report to distinguish between the two different approaches to providing virtualized execution environments. As part of our technology review we analyzed several current virtualization solutions to assess their vulnerabilities. This included a review of common vulnerabilities and exposures (CVEs) for Xen, KVM, LXC and Docker to gauge their susceptibility to different attacks. The complete details are provided in Section 5 on page 33. Based on this review we concluded that system-level virtualization solutions have many more vulnerabilities than OS level virtualization solutions. As such, security mechanisms like sVirt (Section 3.3) should be considered when using system-level virtualization solutions in order to protect the host against exploits. The majority of vulnerabilities related to KVM, LXC, and Docker are in specific regions of the system. Therefore, future "zero day attacks" are likely to be in the same regions, which suggests that protecting these areas can simplify the protection of the host and maintain the isolation between users. The evaluations of virtualization technologies done thus far are discussed in Section 4. This includes experiments with 'user' namespaces in VEs, which provides the ability to isolate user privileges and allow a user to run with different UIDs within the container while mapping them to non-privileged UIDs in the host. We have identified Linux namespaces as a promising mechanism to isolate shared resources, while maintaining good performance. In Section 4.1 we describe our tests with LXC as a non-root user and leveraging namespaces to control UID/GID mappings and support controlled sharing of parallel file-systems. We highlight several of these namespace capabilities in Section 6.2.3. The other evaluations that were performed during this initial phase of work provide baseline performance data for comparing VEs and VMs to purely native execution. In Section 4.2 we performed tests using the High-Performance Computing Conjugate Gradient (HPCCG) benchmark to establish baseline performance for a scientific application when run on the Native (host) machine in contrast with execution under Docker and KVM. Our tests verified prior studies showing roughly 2-4% overheads in application execution time & MFlops when running in hypervisor-base environments (VMs) as compared to near native performance with VEs. For more details, see Figures 4.5 (page 28), 4.6 (page 28), and 4.7 (page 29). Additionally, in Section 4.3 we include network measurements for TCP bandwidth performance over the 10GigE interface in our testbed. The Native and Docker based tests achieved >= ~9Gbits/sec, while the KVM configuration only achieved 2.5Gbits/sec (Table 4.6 on page 32). This may be a configuration issue with our KVM installation, and is a point for further testing as we refine the network settings in the testbed. The initial network tests were done using a bridged networking configuration. The report outline is as follows: - Section 1 introduces the report and clarifies the scope of the proj...« less
NASA Technical Reports Server (NTRS)
1994-01-01
This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation.
77 FR 38845 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... Health, Two Democracy Plaza, 6707 Democracy Boulevard, Bethesda, MD 20892, (Virtual Meeting). Contact Person: Ruixia Zhou, Ph.D., Scientific Review Officer, 6707 Democracy Boulevard, Democracy Two Building...
Lessons Learned to Date in Developing the Virtual Space Physics Observatory
NASA Astrophysics Data System (ADS)
Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.
2005-12-01
We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.
Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array
NASA Astrophysics Data System (ADS)
Tan, Zhongwei; Cao, Dandan; Ding, Zhichao
2018-03-01
An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.
Quinones, Cristina; Kakabadse, Nada Korak
2015-12-01
Compulsive Internet Use (CIU) describes a maladaptive relationship with the Internet characterised by loss of control and conflict. Although also affecting adults, most studies use teenage samples, and theoretical development on risk factors is scarce. According to Davis (2001), the social connectivity function of the Internet is key in identifying traits associated with CIU. Since Self-Concept Clarity (SCC) is strongly related to social anxiety, and virtual interactions allow "self-edition", we hypothesized that individuals low in SCC could choose virtual interactions as safer alternative to satisfy their social needs. This could in turn increase the risk of CIU. Building on a previous study, we also expected CIU to be more harmful in the unemployed. We collected samples from the U.K. (N = 532) and U.S. (N = 502) with equal distribution of employed and unemployed individuals. We ran Measurement Invariance tests to confirm that the constructs were equivalent across countries. Subsequently, we conducted mediation and moderation analysis to test our hypothesis with Multigroup Confirmatory Factor Analysis. Measurement Invariance was confirmed. The relationship between SCC and CIU was partially mediated by preference of virtual interactions in both countries. This preference was significantly related to lower social support. Short term unemployment seemed to accentuate the negative impact of CIU on life satisfaction in both countries, although only marginally significantly in the U.S. The unemployed reported significantly lower levels of life satisfaction. We demonstrated that SCC is a key vulnerability factor to CIU in adults, and confirmed the additional risks for the unemployed.
Knowledge-based model building of proteins: concepts and examples.
Bajorath, J.; Stenkamp, R.; Aruffo, A.
1993-01-01
We describe how to build protein models from structural templates. Methods to identify structural similarities between proteins in cases of significant, moderate to low, or virtually absent sequence similarity are discussed. The detection and evaluation of structural relationships is emphasized as a central aspect of protein modeling, distinct from the more technical aspects of model building. Computational techniques to generate and complement comparative protein models are also reviewed. Two examples, P-selectin and gp39, are presented to illustrate the derivation of protein model structures and their use in experimental studies. PMID:7505680
Lamberti, Fabrizio; Paravati, Gianluca; Gatteschi, Valentina; Cannavo, Alberto; Montuschi, Paolo
2018-05-01
Software for computer animation is generally characterized by a steep learning curve, due to the entanglement of both sophisticated techniques and interaction methods required to control 3D geometries. This paper proposes a tool designed to support computer animation production processes by leveraging the affordances offered by articulated tangible user interfaces and motion capture retargeting solutions. To this aim, orientations of an instrumented prop are recorded together with animator's motion in the 3D space and used to quickly pose characters in the virtual environment. High-level functionalities of the animation software are made accessible via a speech interface, thus letting the user control the animation pipeline via voice commands while focusing on his or her hands and body motion. The proposed solution exploits both off-the-shelf hardware components (like the Lego Mindstorms EV3 bricks and the Microsoft Kinect, used for building the tangible device and tracking animator's skeleton) and free open-source software (like the Blender animation tool), thus representing an interesting solution also for beginners approaching the world of digital animation for the first time. Experimental results in different usage scenarios show the benefits offered by the designed interaction strategy with respect to a mouse & keyboard-based interface both for expert and non-expert users.
Wearable computer for mobile augmented-reality-based controlling of an intelligent robot
NASA Astrophysics Data System (ADS)
Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino
2000-10-01
An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.
User interface using a 3D model for video surveillance
NASA Astrophysics Data System (ADS)
Hata, Toshihiko; Boh, Satoru; Tsukada, Akihiro; Ozaki, Minoru
1998-02-01
These days fewer people, who must carry out their tasks quickly and precisely, are required in industrial surveillance and monitoring applications such as plant control or building security. Utilizing multimedia technology is a good approach to meet this need, and we previously developed Media Controller, which is designed for the applications and provides realtime recording and retrieval of digital video data in a distributed environment. In this paper, we propose a user interface for such a distributed video surveillance system in which 3D models of buildings and facilities are connected to the surveillance video. A novel method of synchronizing camera field data with each frame of a video stream is considered. This method records and reads the camera field data similarity to the video data and transmits it synchronously with the video stream. This enables the user interface to have such useful functions as comprehending the camera field immediately and providing clues when visibility is poor, for not only live video but also playback video. We have also implemented and evaluated the display function which makes surveillance video and 3D model work together using Media Controller with Java and Virtual Reality Modeling Language employed for multi-purpose and intranet use of 3D model.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
Rutkowski, Tomasz M
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms
Rutkowski, Tomasz M.
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538
Study on virtual instrument developing system based on intelligent virtual control
NASA Astrophysics Data System (ADS)
Tang, Baoping; Cheng, Fabin; Qin, Shuren
2005-01-01
The paper introduces a non-programming developing system of a virtual instument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.
Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method
Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu
2016-01-01
A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis. PMID:28029121
Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method.
Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu
2016-12-24
A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S
2011-02-01
Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.
The building blocks of the full body ownership illusion
Maselli, Antonella; Slater, Mel
2013-01-01
Previous work has reported that it is not difficult to give people the illusion of ownership over an artificial body, providing a powerful tool for the investigation of the neural and cognitive mechanisms underlying body perception and self consciousness. We present an experimental study that uses immersive virtual reality (IVR) focused on identifying the perceptual building blocks of this illusion. We systematically manipulated visuotactile and visual sensorimotor contingencies, visual perspective, and the appearance of the virtual body in order to assess their relative role and mutual interaction. Consistent results from subjective reports and physiological measures showed that a first person perspective over a fake humanoid body is essential for eliciting a body ownership illusion. We found that the illusion of ownership can be generated when the virtual body has a realistic skin tone and spatially substitutes the real body seen from a first person perspective. In this case there is no need for an additional contribution of congruent visuotactile or sensorimotor cues. Additionally, we found that the processing of incongruent perceptual cues can be modulated by the level of the illusion: when the illusion is strong, incongruent cues are not experienced as incorrect. Participants exposed to asynchronous visuotactile stimulation can experience the ownership illusion and perceive touch as originating from an object seen to contact the virtual body. Analogously, when the level of realism of the virtual body is not high enough and/or when there is no spatial overlap between the two bodies, then the contribution of congruent multisensory and/or sensorimotor cues is required for evoking the illusion. On the basis of these results and inspired by findings from neurophysiological recordings in the monkey, we propose a model that accounts for many of the results reported in the literature. PMID:23519597
Taglieri, Catherine A; Crosby, Steven J; Zimmerman, Kristin; Schneider, Tulip; Patel, Dhiren K
2017-06-01
Objective. To assess the effect of incorporating virtual patient activities in a pharmacy skills lab on student competence and confidence when conducting real-time comprehensive clinic visits with mock patients. Methods. Students were randomly assigned to a control or intervention group. The control group completed the clinic visit prior to completing virtual patient activities. The intervention group completed the virtual patient activities prior to the clinic visit. Student proficiency was evaluated in the mock lab. All students completed additional exercises with the virtual patient and were subsequently assessed. Student impressions were assessed via a pre- and post-experience survey. Results. Student performance conducting clinic visits was higher in the intervention group compared to the control group. Overall student performance continued to improve in the subsequent module. There was no change in student confidence from pre- to post-experience. Student rating of the ease of use and realistic simulation of the virtual patient increased; however, student rating of the helpfulness of the virtual patient decreased. Despite student rating of the helpfulness of the virtual patient program, student performance improved. Conclusion. Virtual patient activities enhanced student performance during mock clinic visits. Students felt the virtual patient realistically simulated a real patient. Virtual patients may provide additional learning opportunities for students.
Difede, JoAnn; Cukor, Judith; Jayasinghe, Nimali; Patt, Ivy; Jedel, Sharon; Spielman, Lisa; Giosan, Cezar; Hoffman, Hunter G
2007-11-01
This preliminary study endeavored to evaluate the use of virtual reality (VR) enhanced exposure therapy for the treatment of posttraumatic stress disorder (PTSD) consequent to the World Trade Center attacks of September 11, 2001. Participants were assigned to a VR treatment (N = 13) or a waitlist control (N = 8) group and were mostly middle-aged, male disaster workers. All participants were diagnosed with PTSD according to DSM-IV-TR criteria using the Clinician-Administered PTSD Scale (CAPS). The study was conducted between February 2002 and August 2005 in offices located in outpatient buildings of a hospital campus. Analysis of variance showed a significant interaction of time by group (p < .01) on CAPS scores, with a between-groups posttreatment effect size of 1.54. The VR group showed a significant decline in CAPS scores compared with the waitlist group (p < .01). Our preliminary data suggest that VR is an effective treatment tool for enhancing exposure therapy for both civilians and disaster workers with PTSD and may be especially useful for those patients who cannot engage in imaginal exposure therapy.
A spatially augmented reality sketching interface for architectural daylighting design.
Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara
2011-01-01
We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr
Mobile Ad hoc NETworks (MANETs) are distributed self-organizing networks that can change locations and configure themselves on the fly. This paper focuses on an algorithmic approach for the deployment of a MANET within an enclosed area, such as a building in a disaster scenario, which can provide a robust communication infrastructure for search and rescue operations. While a virtual spring mesh (VSM) algorithm provides scalable, self-organizing, and fault-tolerant capabilities required by aMANET, the VSM lacks the MANET's capabilities of deployment mechanisms for blanket coverage of an area and does not provide an obstacle avoidance mechanism. This paper presents a newmore » technique, an extended VSM (EVSM) algorithm that provides the following novelties: (1) new control laws for exploration and expansion to provide blanket coverage, (2) virtual adaptive springs enabling the mesh to expand as necessary, (3) adapts to communications disturbances by varying the density and movement of mobile nodes, and (4) new metrics to assess the performance of the EVSM algorithm. Simulation results show that EVSM provides up to 16% more coverage and is 3.5 times faster than VSM in environments with eight obstacles.« less
Virtual reality simulation for the optimization of endovascular procedures: current perspectives.
Rudarakanchana, Nung; Van Herzeele, Isabelle; Desender, Liesbeth; Cheshire, Nicholas J W
2015-01-01
Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.
Industrial Photogrammetry - Accepted Metrology Tool or Exotic Niche
NASA Astrophysics Data System (ADS)
Bösemann, Werner
2016-06-01
New production technologies like 3D printing and other adaptive manufacturing technologies have changed the industrial manufacturing process, often referred to as next industrial revolution or short industry 4.0. Such Cyber Physical Production Systems combine virtual and real world through digitization, model building process simulation and optimization. It is commonly understood that measurement technologies are the key to combine the real and virtual worlds (eg. [Schmitt 2014]). This change from measurement as a quality control tool to a fully integrated step in the production process has also changed the requirements for 3D metrology solutions. Key words like MAA (Measurement Assisted Assembly) illustrate that new position of metrology in the industrial production process. At the same time it is obvious that these processes not only require more measurements but also systems to deliver the required information in high density in a short time. Here optical solutions including photogrammetry for 3D measurements have big advantages over traditional mechanical CMM's. The paper describes the relevance of different photogrammetric solutions including state of the art, industry requirements and application examples.
Gregg, Robert D; Lenzi, Tommaso; Hargrove, Levi J; Sensinger, Jonathon W
2014-12-01
Recent powered (or robotic) prosthetic legs independently control different joints and time periods of the gait cycle, resulting in control parameters and switching rules that can be difficult to tune by clinicians. This challenge might be addressed by a unifying control model used by recent bipedal robots, in which virtual constraints define joint patterns as functions of a monotonic variable that continuously represents the gait cycle phase. In the first application of virtual constraints to amputee locomotion, this paper derives exact and approximate control laws for a partial feedback linearization to enforce virtual constraints on a prosthetic leg. We then encode a human-inspired invariance property called effective shape into virtual constraints for the stance period. After simulating the robustness of the partial feedback linearization to clinically meaningful conditions, we experimentally implement this control strategy on a powered transfemoral leg. We report the results of three amputee subjects walking overground and at variable cadences on a treadmill, demonstrating the clinical viability of this novel control approach.
Lenzi, Tommaso; Hargrove, Levi J.; Sensinger, Jonathon W.
2014-01-01
Recent powered (or robotic) prosthetic legs independently control different joints and time periods of the gait cycle, resulting in control parameters and switching rules that can be difficult to tune by clinicians. This challenge might be addressed by a unifying control model used by recent bipedal robots, in which virtual constraints define joint patterns as functions of a monotonic variable that continuously represents the gait cycle phase. In the first application of virtual constraints to amputee locomotion, this paper derives exact and approximate control laws for a partial feedback linearization to enforce virtual constraints on a prosthetic leg. We then encode a human-inspired invariance property called effective shape into virtual constraints for the stance period. After simulating the robustness of the partial feedback linearization to clinically meaningful conditions, we experimentally implement this control strategy on a powered transfemoral leg. We report the results of three amputee subjects walking overground and at variable cadences on a treadmill, demonstrating the clinical viability of this novel control approach. PMID:25558185
Virtual Australia and New Zealand (VANZ): Creating a piece of Digital Earth
NASA Astrophysics Data System (ADS)
Haines, M.
2014-02-01
VANZ is an Initiative of a wide group of research, government, industry, technology and legal stakeholders in Australia and New Zealand. Its purpose is to broker development of the 'Authorised Virtual World' that brings together 3D Spatial and Building Information Modelling within a proposed new Legal Framework. The aim is to create an 'authoritative' and 'enduring' 3D model of both the 'physical attributes', and 'legal entitlements' relating to every property. This 'authorised virtual world' would be used in all 'property-related' activities - to deliver better, quicker and cheaper outcomes. It would also be used as the context for serious games and to model dynamic processes within the built environment, as well as for emergency response and disaster recovery. Productivity savings across Australia have been estimated at 5 billion pa for the design and construct phases alone. The problem for owners, bankers, insurers, architects, engineers and construction companies, and others, is that they require access to 'authoritative' and detailed 3D data for their own purposes, that must also be securely shared with others up and down the 'property' chain, and over time. All parties also need to know what are the rights, responsibilities and restrictions applying to the data, as well as to the land and buildings that it models. VANZ proposes the creation of a network of Data Banks, to hold the 'authoritative data set', 'in perpetuity', along with the associated software and virtual hardware used to model it. Under the proposal, rights of access to the 'authoritative data' will mirror each person's rights in the property that the data models. As more and more buildings are modelled (inside and out), privacy, security and liability become issues of paramount importance. This paper offers a way for the global community to address these issues. It is targeted at all who have an interest in the practical implementation of Digital Earth for the built environment - including new business opportunities worth billions.
Internet-based distributed collaborative environment for engineering education and design
NASA Astrophysics Data System (ADS)
Sun, Qiuli
2001-07-01
This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the same geometric model simultaneously over the Internet and communicate with each other through a chat room. They can also conduct finite element analysis collaboratively on the same object over the Internet. They can mesh the same object, apply and edit the same boundary conditions and forces, obtain the same analysis results, and then discuss the results through the Internet.
The Virtual Tablet: Virtual Reality as a Control System
NASA Technical Reports Server (NTRS)
Chronister, Andrew
2016-01-01
In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of hardware, write software to incorporate each piece of position or orientation data into a coherent description of the object's location in space, place the virtual analogue accordingly, and project the control interface onto it, resulting in a functioning object which has both a physical and a virtual presence. Additionally, the virtual environment was enhanced with two live video feeds from cameras mounted on the robotic device being used as an example target of the virtual interface. The working VT allows users to naturally interact with a control interface with little to no training and without the issues found in previous efforts.
Subjective visual vertical assessment with mobile virtual reality system.
Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus
2017-01-01
The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both devices was 0.7. The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients. Copyright © 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.
Communicating Earth Science Applications through Virtual Poster Sessions
NASA Astrophysics Data System (ADS)
Favors, J. E.; Childs-Gleason, L. M.; Ross, K. W.; Ruiz, M. L.; Rogers, L.
2013-12-01
The DEVELOP National Program addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. Part of NASA's Applied Sciences' Capacity Building Program, DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both participants and partner organizations to better prepare them to handle the challenges that face our society and future generations. Teams of DEVELOP participants partner with decision makers to conduct rapid feasibility projects that highlight fresh applications of NASA's suite of Earth observing sensors, cultivate advanced skills, and increase understanding of NASA Earth Science data and technology. Part of this process involves the creation of short introductory videos that demonstrate the environmental concerns, project methodologies and results, and an overview of how this work will impact decision makers. These videos are presented to the public three times a year in 'virtual poster sessions' (VPS) that provide an interactive way for individuals from around the globe to access the research, understand the capabilities and applications of NASA's Earth science datasets, and interact with the participants through blogging and dialogue sessions. Virtual poster sessions have allowed DEVELOP to introduce NASA's Earth science assets to thousands of viewers around the world. For instance, one fall VPS had over 5,000 visitors from 89 different countries during the two week session. This presentation will discuss lessons learned and statistics related to the series of nine virtual poster sessions that DEVELOP has conducted 2011-2013.
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Microscale vortex laser with controlled topological charge
NASA Astrophysics Data System (ADS)
Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min
2016-12-01
A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).
Virtual Reality Exploration and Planning for Precision Colorectal Surgery.
Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco
2018-06-01
Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could contribute to improve safety in colorectal surgery.
Enhanced LOD Concepts for Virtual 3d City Models
NASA Astrophysics Data System (ADS)
Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.
2013-09-01
Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.
Skulmowski, Alexander; Bunge, Andreas; Kaspar, Kai; Pipa, Gordon
2014-01-01
Based on the frameworks of dual-process theories, we examined the interplay between intuitive and controlled cognitive processes related to moral and social judgments. In a virtual reality (VR) setting we performed an experiment investigating the progression from fast, automatic decisions towards more controlled decisions over multiple trials in the context of a sacrificing scenario. We repeatedly exposed participants to a modified ten-to-one version and to three one-to-one versions of the trolley dilemma in VR and varied avatar properties, such as their gender and ethnicity, and their orientation in space. We also investigated the influence of arousing music on decisions. Our experiment replicated the behavioral pattern observed in studies using text versions of the trolley dilemma, thereby validating the use of virtual environments in research on moral judgments. Additionally, we found a general tendency towards sacrificing male individuals which correlated with socially desirable responding. As indicated by differences in response times, the ten-to-one version of the trolley dilemma seems to be faster to decide than decisions requiring comparisons based on specific avatar properties as a result of differing moral content. Building upon research on music-based emotion induction, we used music to induce emotional arousal on a physiological level as measured by pupil diameter. We found a specific temporal signature displaying a peak in arousal around the moment of decision. This signature occurs independently of the overall arousal level. Furthermore, we found context-dependent gaze durations during sacrificing decisions, leading participants to look prolonged at their victim if they had to choose between avatars differing in gender. Our study confirmed that moral decisions can be explained within the framework of dual-process theories and shows that pupillometric measurements are a promising tool for investigating affective responses in dilemma situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouhard, Margaret MEG G; Steed, Chad A; Hahn, Steven E
In this paper, we propose strategies and objectives for immersive data visualization with applications in materials science using the Oculus Rift virtual reality headset. We provide background on currently available analysis tools for neutron scattering data and other large-scale materials science projects. In the context of the current challenges facing scientists, we discuss immersive virtual reality visualization as a potentially powerful solution. We introduce a prototype immersive visual- ization system, developed in conjunction with materials scientists at the Spallation Neutron Source, which we have used to explore large crystal structures and neutron scattering data. Finally, we offer our perspective onmore » the greatest challenges that must be addressed to build effective and intuitive virtual reality analysis tools that will be useful for scientists in a wide range of fields.« less
Geospatial analysis based on GIS integrated with LADAR.
Fetterman, Matt R; Freking, Robert; Fernandez-Cull, Christy; Hinkle, Christopher W; Myne, Anu; Relyea, Steven; Winslow, Jim
2013-10-07
In this work, we describe multi-layered analyses of a high-resolution broad-area LADAR data set in support of expeditionary activities. High-level features are extracted from the LADAR data, such as the presence and location of buildings and cars, and then these features are used to populate a GIS (geographic information system) tool. We also apply line-of-sight (LOS) analysis to develop a path-planning module. Finally, visualization is addressed and enhanced with a gesture-based control system that allows the user to navigate through the enhanced data set in a virtual immersive experience. This work has operational applications including military, security, disaster relief, and task-based robotic path planning.
Prosthetic Leg Control in the Nullspace of Human Interaction.
Gregg, Robert D; Martin, Anne E
2016-07-01
Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.
Automatic representation of urban terrain models for simulations on the example of VBS2
NASA Astrophysics Data System (ADS)
Bulatov, Dimitri; Häufel, Gisela; Solbrig, Peter; Wernerus, Peter
2014-10-01
Virtual simulations have been on the rise together with the fast progress of rendering engines and graphics hardware. Especially in military applications, offensive actions in modern peace-keeping missions have to be quick, firm and precise, especially under the conditions of asymmetric warfare, non-cooperative urban terrain and rapidly developing situations. Going through the mission in simulation can prepare the minds of soldiers and leaders, increase selfconfidence and tactical awareness, and finally save lives. This work is dedicated to illustrate the potential and limitations of integration of semantic urban terrain models into a simulation. Our system of choice is Virtual Battle Space 2, a simulation system created by Bohemia Interactive System. The topographic object types that we are able to export into this simulation engine are either results of the sensor data evaluation (building, trees, grass, and ground), which is done fully-automatically, or entities obtained from publicly available sources (streets and water-areas), which can be converted into the system-proper format with a few mouse clicks. The focus of this work lies in integrating of information about building façades into the simulation. We are inspired by state-of the art methods that allow for automatic extraction of doors and windows in laser point clouds captured from building walls and thus increase the level of details of building models. As a consequence, it is important to simulate these animationable entities. Doing so, we are able to make accessible some of the buildings in the simulation.
NASA Astrophysics Data System (ADS)
Han, Young-Min; Choi, Seung-Bok
2008-12-01
This paper presents the control performance of an electrorheological (ER) fluid-based haptic master device connected to a virtual slave environment that can be used for minimally invasive surgery (MIS). An already developed haptic joint featuring controllable ER fluid and a spherical joint mechanism is adopted for the master system. Medical forceps and an angular position measuring device are devised and integrated with the joint to establish the MIS master system. In order to embody a human organ in virtual space, a volumetric deformable object is used. The virtual object is then mathematically formulated by a shape-retaining chain-linked (S-chain) model. After evaluating the reflection force, computation time and compatibility with real-time control, the haptic architecture for MIS is established by incorporating the virtual slave with the master device so that the reflection force for the object of the virtual slave and the desired position for the master operator are transferred to each other. In order to achieve the desired force trajectories, a sliding mode controller is formulated and then experimentally realized. Tracking control performances for various force trajectories are evaluated and presented in the time domain.
Virtual working systems to support R&D groups
NASA Astrophysics Data System (ADS)
Dew, Peter M.; Leigh, Christine; Drew, Richard S.; Morris, David; Curson, Jayne
1995-03-01
The paper reports on the progress at Leeds University to build a Virtual Science Park (VSP) to enhance the University's ability to interact with industry, grow its applied research and workplace learning activities. The VSP exploits the advances in real time collaborative computing and networking to provide an environment that meets the objectives of physically based science parks without the need for the organizations to relocate. It provides an integrated set of services (e.g. virtual consultancy, workbased learning) built around a structured person- centered information model. This model supports the integration of tools for: (a) navigating around the information space; (b) browsing information stored within the VSP database; (c) communicating through a variety of Person-to-Person collaborative tools; and (d) the ability to the information stored in the VSP including the relationships to other information that support the underlying model. The paper gives an overview of a generic virtual working system based on X.500 directory services and the World-Wide Web that can be used to support the Virtual Science Park. Finally the paper discusses some of the research issues that need to be addressed to fully realize a Virtual Science Park.
Manufacturing data analytics using a virtual factory representation.
Jain, Sanjay; Shao, Guodong; Shin, Seung-Jun
2017-01-01
Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.
The communication in industrialised building system (IBS) construction project: Virtual environment
NASA Astrophysics Data System (ADS)
Pozin, Mohd Affendi Ahmad; Nawi, Mohd Nasrun Mohd
2017-10-01
Large portion of numbers team organization in the IBS construction sector is known are being fragmented. That is contributed from a segregation of construction activity thus create team working in virtually. Virtual team are the nature when teams are working in distributed area, across culture and time. Therefore, teams can be respond to the task without relocating to the site project and settle down a problem through information and communication technology (ICT). The emergence of virtual team are carry out by advancements in communication technologies as a medium to improve project team communication in project delivery process on IBS construction. Based on literature review from previous study and data collected from interviewing, this paper aim to identified communication challenges among project team members according to current project development practices in IBS construction project. Hence, in attempt to develop effective communication through the advantages of virtual team approach for IBS construction project. In order to ensure the data is gathered comprehensively and accurately, the data was collected from project managers by using semi structured interview method. It was found that virtual team approach could be enable competitive challenges on complexity in the construction project management process.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Psychological benefits of virtual reality for patients in rehabilitation therapy.
Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow
2009-05-01
Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.
Virtual reality measures in neuropsychological assessment: a meta-analytic review.
Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel
2016-02-01
Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.
Grasping trajectories in a virtual environment adhere to Weber's law.
Ozana, Aviad; Berman, Sigal; Ganel, Tzvi
2018-06-01
Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.
CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Segui, John S.
2011-01-01
To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.
A Trusted Portable Computing Device
NASA Astrophysics Data System (ADS)
Ming-wei, Fang; Jun-jun, Wu; Peng-fei, Yu; Xin-fang, Zhang
A trusted portable computing device and its security mechanism were presented to solve the security issues, such as the attack of virus and Trojan horse, the lost and stolen of storage device, in mobile office. It used smart card to build a trusted portable security base, virtualization to create a secure virtual execution environment, two-factor authentication mechanism to identify legitimate users, and dynamic encryption to protect data privacy. The security environment described in this paper is characteristic of portability, security and reliability. It can meet the security requirement of mobile office.
Automated method for structural segmentation of nasal airways based on cone beam computed tomography
NASA Astrophysics Data System (ADS)
Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur
2017-08-01
The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.
NASA Technical Reports Server (NTRS)
Lehtonen, Ken
1999-01-01
This is a report to the Third Annual International Virtual Company Conference, on The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope (HST) Control Center System. It begins with a HST Science "Commercial": Brief Tour of Our Universe showing various pictures taken from the Hubble Space Telescope. The presentation then reviews the project background and goals. Evolution of the Control Center System ("CCS Inc.") is then reviewed. Topics of Interest to "virtual companies" are reviewed: (1) "How To Choose A Team" (2) "Organizational Model" (3) "The Human Component" (4) "'Virtual Trust' Among Teaming Companies" (5) "Unique Challenges to Working Horizontally" (6) "The Cultural Impact" (7) "Lessons Learned".
Chau, Brian; Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain.
Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. PMID:29616149
Vora, Jeenal; Nair, Santosh; Gramopadhye, Anand K; Duchowski, Andrew T; Melloy, Brian J; Kanki, Barbara
2002-11-01
The aircraft maintenance industry is a complex system consisting of several interrelated human and machine components. Recognizing this, the Federal Aviation Administration (FAA) has pursued human factors related research. In the maintenance arena the research has focused on the aircraft inspection process and the aircraft inspector. Training has been identified as the primary intervention strategy to improve the quality and reliability of aircraft inspection. If training is to be successful, it is critical that we provide aircraft inspectors with appropriate training tools and environment. In response to this need, the paper outlines the development of a virtual reality (VR) system for aircraft inspection training. VR has generated much excitement but little formal proof that it is useful. However, since VR interfaces are difficult and expensive to build, the computer graphics community needs to be able to predict which applications will benefit from VR. To address this important issue, this research measured the degree of immersion and presence felt by subjects in a virtual environment simulator. Specifically, it conducted two controlled studies using the VR system developed for visual inspection task of an aft-cargo bay at the VR Lab of Clemson University. Beyond assembling the visual inspection virtual environment, a significant goal of this project was to explore subjective presence as it affects task performance. The results of this study indicated that the system scored high on the issues related to the degree of presence felt by the subjects. As a next logical step, this study, then, compared VR to an existing PC-based aircraft inspection simulator. The results showed that the VR system was better and preferred over the PC-based training tool.
Quinones, Cristina; Kakabadse, Nada Korak
2015-01-01
Background and Aims Compulsive Internet Use (CIU) describes a maladaptive relationship with the Internet characterised by loss of control and conflict. Although also affecting adults, most studies use teenage samples, and theoretical development on risk factors is scarce. According to Davis (2001), the social connectivity function of the Internet is key in identifying traits associated with CIU. Since Self-Concept Clarity (SCC) is strongly related to social anxiety, and virtual interactions allow “self-edition”, we hypothesized that individuals low in SCC could choose virtual interactions as safer alternative to satisfy their social needs. This could in turn increase the risk of CIU. Building on a previous study, we also expected CIU to be more harmful in the unemployed. Methods We collected samples from the UK (N = 532) and US (N = 502) with equal distribution of employed and unemployed individuals. We ran Measurement Invariance tests to confirm that the constructs were equivalent across countries. Subsequently, we conducted mediation and moderation analysis to test our hypothesis with Multigroup Confirmatory Factor Analysis. Results Measurement Invariance was confirmed. The relationship between SCC and CIU was partially mediated by preference of virtual interactions in both countries. This preference was significantly related to lower social support. Short term unemployment seemed to accentuate the negative impact of CIU on life satisfaction in both countries, although only marginally significantly in the US. The unemployed reported significantly lower levels of life satisfaction. Conclusion We demonstrated that SCC is a key vulnerability factor to CIU in adults, and confirmed the additional risks for the unemployed. PMID:26690624
Sweaty Palms! Virtual Reality Applied to Training.
ERIC Educational Resources Information Center
Treiber, Karin
A qualitative case study approach was used to identify the psychosocial effects of the high-fidelity, virtual reality simulation provided in the college-level air traffic control (ATC) training program offered at the Minnesota Air Traffic Control Training Center and to evaluate the applicability of virtual reality to academic/training situations.…
Automatic Tools for Enhancing the Collaborative Experience in Large Projects
NASA Astrophysics Data System (ADS)
Bourilkov, D.; Rodriquez, J. L.
2014-06-01
With the explosion of big data in many fields, the efficient management of knowledge about all aspects of the data analysis gains in importance. A key feature of collaboration in large scale projects is keeping a log of what is being done and how - for private use, reuse, and for sharing selected parts with collaborators and peers, often distributed geographically on an increasingly global scale. Even better if the log is automatically created on the fly while the scientist or software developer is working in a habitual way, without the need for extra efforts. This saves time and enables a team to do more with the same resources. The CODESH - COllaborative DEvelopment SHell - and CAVES - Collaborative Analysis Versioning Environment System projects address this problem in a novel way. They build on the concepts of virtual states and transitions to enhance the collaborative experience by providing automatic persistent virtual logbooks. CAVES is designed for sessions of distributed data analysis using the popular ROOT framework, while CODESH generalizes the approach for any type of work on the command line in typical UNIX shells like bash or tcsh. Repositories of sessions can be configured dynamically to record and make available the knowledge accumulated in the course of a scientific or software endeavor. Access can be controlled to define logbooks of private sessions or sessions shared within or between collaborating groups. A typical use case is building working scalable systems for analysis of Petascale volumes of data as encountered in the LHC experiments. Our approach is general enough to find applications in many fields.
Pickering, Ethan M; Hossain, Mohammad A; Mousseau, Jack P; Swanson, Rachel A; French, Roger H; Abramson, Alexis R
2017-01-01
Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). The utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged-Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15-minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickering, Ethan M.; Hossain, Mohammad A.; Mousseau, Jack P.
Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). Themore » utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged- Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15- minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.« less
Pickering, Ethan M.; Hossain, Mohammad A.; Mousseau, Jack P.; ...
2017-10-31
Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). Themore » utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged- Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15- minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.« less
A convertor and user interface to import CAD files into worldtoolkit virtual reality systems
NASA Technical Reports Server (NTRS)
Wang, Peter Hor-Ching
1996-01-01
Virtual Reality (VR) is a rapidly developing human-to-computer interface technology. VR can be considered as a three-dimensional computer-generated Virtual World (VW) which can sense particular aspects of a user's behavior, allow the user to manipulate the objects interactively, and render the VW at real-time accordingly. The user is totally immersed in the virtual world and feel the sense of transforming into that VW. NASA/MSFC Computer Application Virtual Environments (CAVE) has been developing the space-related VR applications since 1990. The VR systems in CAVE lab are based on VPL RB2 system which consists of a VPL RB2 control tower, an LX eyephone, an Isotrak polhemus sensor, two Fastrak polhemus sensors, a folk of Bird sensor, and two VPL DG2 DataGloves. A dynamics animator called Body Electric from VPL is used as the control system to interface with all the input/output devices and to provide the network communications as well as VR programming environment. The RB2 Swivel 3D is used as the modelling program to construct the VW's. A severe limitation of the VPL VR system is the use of RB2 Swivel 3D, which restricts the files to a maximum of 1020 objects and doesn't have the advanced graphics texture mapping. The other limitation is that the VPL VR system is a turn-key system which does not provide the flexibility for user to add new sensors and C language interface. Recently, NASA/MSFC CAVE lab provides VR systems built on Sense8 WorldToolKit (WTK) which is a C library for creating VR development environments. WTK provides device drivers for most of the sensors and eyephones available on the VR market. WTK accepts several CAD file formats, such as Sense8 Neutral File Format, AutoCAD DXF and 3D Studio file format, Wave Front OBJ file format, VideoScape GEO file format, Intergraph EMS stereolithographics and CATIA Stereolithographics STL file formats. WTK functions are object-oriented in their naming convention, are grouped into classes, and provide easy C language interface. Using a CAD or modelling program to build a VW for WTK VR applications, we typically construct the stationary universe with all the geometric objects except the dynamic objects, and create each dynamic object in an individual file.
Augmented reality: past, present, future
NASA Astrophysics Data System (ADS)
Inzerillo, Laura
2013-03-01
A great opportunity has permitted to carry out a cultural, historical, architectural and social research with great impact factor on the international cultural interest. We are talking about the realization of a museum whose the main theme is the visit and the discovery of a monument of great prestige: the monumental building the "Steri" in Palermo. The museum is divided into sub themes including the one above all, that has aroused the international interest so much that it has been presented the instance to include the museum in the cultural heritage of UNESCO. It is the realization of a museum path that regards the cells of the Inquisition, which are located just inside of some buildings of the monumental building. The project, as a whole, is faced, in a total view, between the various competences implicated: historic, chemic, architectonic, topographic, drawing, representation, virtual communication, informatics. The birth of the museum will be a sum of the results of all these disciplines involved. Methodology, implementation, fruition, virtual museum, goals, 2D graphic restitution, effects on the cultural heritage and landscape environmental, augmented reality, Surveying 2D and 3D, hi-touch screen, Photogrammetric survey, Photographic survey, representation, drawing 3D and more than this has been dealt with this research.
Rationale and Initial Design for a Virtual Undergraduate Internship in Astronomy
NASA Astrophysics Data System (ADS)
Berryhill, Katie; Slater, T. F.; Slater, S. J.
2012-01-01
In recent decades, research experiences for undergraduates (REUs) programs have provided students with opportunities to spend a summer working on a research project with a faculty mentor. The aim of these programs has generally been to take up the challenge of the Boyer-2 report to introduce research-based learning into the undergraduate experience (Boyer 1998). Recent efforts have been aimed at encouraging women and underrepresented minorities to pursue STEM careers. With the advent of successful models for online degree programs that can add to the STEM workforce pipeline, there is now the possibility of expanding these research experiences to include the new diverse demographic of previously untapped online learners. Many online learners are working adults, and therefore do not have the same flexibility as traditional undergraduates to attend a summer REU at another institution, nor do they have the opportunity for internships at their home institution. This project is intended to leverage significant developments in rapidly emerging social media; investments in Internet-accessible telescopes for professional and amateur use; and contemporary advances in the learning sciences to build pathways through long-term, collaborative, astronomy research projects. The first stage involves developing initial research protocols and online mentoring infrastructures for establishing an ongoing national program for virtual astronomy internships for undergraduate STEM majors. Underlying this project is a plan for students to work collaboratively alongside active professional and amateur astronomers to conduct original research using remotely controlled and robotic telescopes. We anticipate that by the start of this project, more than 100 robotic and remotely controlled telescopes will exist around the world (mo-www.harvard.edu/OWN, aavso.org/aavsonet, and lcogt.net among others) providing continuous world-wide coverage. We plan to test and iteratively build a successful infrastructure for students to take advantage of these and other rapidly emerging resources and support an expansion of the STEM career workforce.
Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C; Poizner, Howard; Liu, Thomas T
2014-01-01
Hyperscanning, an emerging technique in which data from multiple interacting subjects' brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as "theory of mind." However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners' operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording.
Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C.; Poizner, Howard; Liu, Thomas T.
2014-01-01
Hyperscanning, an emerging technique in which data from multiple interacting subjects’ brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as “theory of mind.” However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners’ operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording. PMID:26150964
Building Virtual Communities in School Counseling.
ERIC Educational Resources Information Center
Sabella, Russell A.; Halverson, Bill
Current trends and issues in education, and especially in school counseling, indicate the importance of collaborating for student success. With the proliferation of computer and networking technologies at their fingertips, school counselors can effectively forge greater collaborations among various stakeholders by creating virtual…
Compendium of Arms Control Verification Proposals.
1982-03-01
proposals. This appears to be the case for virtually all kinds of prospective arms control topics from general and complete disarmament to control of specific... virtually anywhere. Unrestricted access would be particularly necessary in the case of states which previously had nuclear weapons. Practically speaking...been transferred out of the area, it would be harder to check on remaining stocks without some intrusive inspection and it would be virtually impossible
Weeks, Keith W; Meriel Hutton, B; Coben, Diana; Clochesy, John M; Pontin, David
2013-03-01
When designing learning and assessment environments it is essential to articulate the underpinning education philosophy, theory, model and learning style support mechanisms that inform their structure and content. We elaborate on original PhD research that articulates the design rationale of authentic medication dosage calculation problem-solving (MDC-PS) learning and diagnostic assessment environments. These environments embody the principles of authenticity, building knowledge and skills and competency assessment and are designed to support development of competence and bridging of the theory-practice gap. Authentic learning and diagnostic assessment environments capture the features and expert practices that are located in real world practice cultures and recreate them in authentic virtual clinical environments. We explore how this provides students with a safe virtual authentic environment to actively experience, practice and undertake MDC-PS learning and assessment activities. We argue that this is integral to the construction and diagnostic assessment of schemata validity (mental constructions and frameworks that are an individual's internal representation of their world), bridging of the theory-practice gap and cognitive and functional competence development. We illustrate these principles through the underpinning pedagogical design of two online virtual authentic learning and diagnostic assessment environments (safeMedicate and eDose™). Copyright © 2012. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Landrieu, J.; Père, C.; Rollier, J.; Castandet, S.; Schotte, G.
2011-09-01
Our multidisciplinary team has virtually reconstructed the greatest church of the Romanesque period in Europe. The third church of the Abbey of Cluny (12th c.) has been destroyed after the French Revolution, leaving only 8% of the building standing. Many documents have been studied, to include the latest archaeological knowledge in the virtual model. Most remains have been scanned for CAD restitution. The mock-up of the church needed 1600 different numerical files, including the scanned pieces and the anastylosis of a Romanesque portal, a Gothic façade and a mosaic pavement. We faced various difficulties to assemble the different elements of the huge building, and to include the digitized parts. Our workflow consisted in generating geometrical shapes of the church, enriched with metadata such as texture, material... The whole mock up was finally exported to dedicated software to run the rendering step. Our work consisted in creating a whole database of 3D models as well as 2D sources (plans, engravings, pictures...) accessible by the scientific community. The scientific perspectives focus on a representation in virtual immersion of the grand church at scale 1 and an access to the digital mock-up through Augmented Reality.
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata
2015-01-01
A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed.
Human responses to augmented virtual scaffolding models.
Hsiao, Hongwei; Simeonov, Peter; Dotson, Brian; Ammons, Douglas; Kau, Tsui-Ying; Chiou, Sharon
2005-08-15
This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job.
Modeling and Deorphanization of Orphan GPCRs.
Diaz, Constantino; Angelloz-Nicoud, Patricia; Pihan, Emilie
2018-01-01
Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.
Exploiting virtual synchrony in distributed systems
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.; Joseph, Thomas A.
1987-01-01
Applications of a virtually synchronous environment are described for distributed programming, which underlies a collection of distributed programming tools in the ISIS2 system. A virtually synchronous environment allows processes to be structured into process groups, and makes events like broadcasts to the group as an entity, group membership changes, and even migration of an activity from one place to another appear to occur instantaneously, in other words, synchronously. A major advantage to this approach is that many aspects of a distributed application can be treated independently without compromising correctness. Moreover, user code that is designed as if the system were synchronous can often be executed concurrently. It is argued that this approach to building distributed and fault tolerant software is more straightforward, more flexible, and more likely to yield correct solutions than alternative approaches.
Ami - The chemist's amanuensis.
Brooks, Brian J; Thorn, Adam L; Smith, Matthew; Matthews, Peter; Chen, Shaoming; O'Steen, Ben; Adams, Sam E; Townsend, Joe A; Murray-Rust, Peter
2011-10-14
The Ami project was a six month Rapid Innovation project sponsored by JISC to explore the Virtual Research Environment space. The project brainstormed with chemists and decided to investigate ways to facilitate monitoring and collection of experimental data.A frequently encountered use-case was identified of how the chemist reaches the end of an experiment, but finds an unexpected result. The ability to replay events can significantly help make sense of how things progressed. The project therefore concentrated on collecting a variety of dimensions of ancillary data - data that would not normally be collected due to practicality constraints. There were three main areas of investigation: 1) Development of a monitoring tool using infrared and ultrasonic sensors; 2) Time-lapse motion video capture (for example, videoing 5 seconds in every 60); and 3) Activity-driven video monitoring of the fume cupboard environs.The Ami client application was developed to control these separate logging functions. The application builds up a timeline of the events in the experiment and around the fume cupboard. The videos and data logs can then be reviewed after the experiment in order to help the chemist determine the exact timings and conditions used.The project experimented with ways in which a Microsoft Kinect could be used in a laboratory setting. Investigations suggest that it would not be an ideal device for controlling a mouse, but it shows promise for usages such as manipulating virtual molecules.
Ami - The chemist's amanuensis
2011-01-01
The Ami project was a six month Rapid Innovation project sponsored by JISC to explore the Virtual Research Environment space. The project brainstormed with chemists and decided to investigate ways to facilitate monitoring and collection of experimental data. A frequently encountered use-case was identified of how the chemist reaches the end of an experiment, but finds an unexpected result. The ability to replay events can significantly help make sense of how things progressed. The project therefore concentrated on collecting a variety of dimensions of ancillary data - data that would not normally be collected due to practicality constraints. There were three main areas of investigation: 1) Development of a monitoring tool using infrared and ultrasonic sensors; 2) Time-lapse motion video capture (for example, videoing 5 seconds in every 60); and 3) Activity-driven video monitoring of the fume cupboard environs. The Ami client application was developed to control these separate logging functions. The application builds up a timeline of the events in the experiment and around the fume cupboard. The videos and data logs can then be reviewed after the experiment in order to help the chemist determine the exact timings and conditions used. The project experimented with ways in which a Microsoft Kinect could be used in a laboratory setting. Investigations suggest that it would not be an ideal device for controlling a mouse, but it shows promise for usages such as manipulating virtual molecules. PMID:21999587
Hossain, Mohammad A.; Mousseau, Jack P.; Swanson, Rachel A.; French, Roger H.; Abramson, Alexis R.
2017-01-01
Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). The utility of a cross-sectional analysis of a sample set of building’s electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged-Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15-minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures. PMID:29088269
DHM simulation in virtual environments: a case-study on control room design.
Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G
2012-01-01
This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.
NASA Astrophysics Data System (ADS)
Deggim, S.; Kersten, T. P.; Tschirschwitz, F.; Hinrichsen, N.
2017-11-01
The 3D reconstruction of historic buildings and cities offers an opportunity to experience the history of relevant objects and their development over the centuries. Digital visualisations of such historic objects allow for a more natural view of history as well as showing information that is not possible in a real world setting. New presentation forms, such as the virtual reality (VR) system HTC Vive, can be used to disseminate information in another dimension and simplify the access by changing the user's viewpoint from a listener and viewer into being an integrated part of an interactive situation. In general, this approach is a combination of education and entertainment, also known as "edutainment" or "gamification", a term used in the education sector as describing where motivation to learn is encouraged through adding a competitive element. It is thus a step away from simple consumption of information towards experiencing information and a more literal interpretation of "living history". In this contribution, we present the development of a 3D reconstruction of the two towns Segeberg and Gieschenhagen (today: Bad Segeberg) in Schleswig-Holstein, Germany in the Early Modern Age around 1600. The historic landscape and its conversion from a reconstructed virtual town model into an interactive VR application is also described. The reconstruction is based on a recent digital terrain model as well as survey data of surviving buildings, historic visual information based on historic drawings and written accounts from that era. All datasets are combined to a single walkable virtual world that spans approximately 3 km2.
Application of virtual reality GIS in urban planning: an example in Huangdao district
NASA Astrophysics Data System (ADS)
Han, Yong; Qiao, Xin; Sun, Weichen; Zhang, Litao
2007-06-01
As an important development direction of GIS, Virtual Reality GIS was founded in 1950s. After 1990s, due to the fast development of its theory and the computer technology, Virtual Reality has been applied to many fields: military, aerospace, design, manufactory, information management, business, construction, city management, medical, education, etc.. The most famous project is the Virtual Los Angeles implemented by the Urban Simulation Team (UST) of UCLA. The main focus of the UST is a long-term effort to build a real-time Virtual Reality model of the entire Los Angeles basin for use by architects, urban planners, emergency response teams, and the government entities. When completed, the entire Virtual L.A. model will cover an area well in excess of 10000 square miles and will elegantly scale from satellite images to street level views accurate enough to allow the signs in the window of the shops and the graffiti on the walls to be legible. Till now, the virtual L.A. has been applied to urban environments and design analysis, transportation studies, historic reconstruction and education, etc. Compared to the early development abroad, the development of Virtual Reality GIS in China is relatively late. It is researched in some universities in early years. But recently, it has been attended by the populace and been used in many social fields: urban planning, environmental protection, historic protection and recovery, real estate, tourism, education etc.. The application of Virtual Reality in urban planning of Huangdao District, Qingdao City is introduced in this paper.
Breuer, Christina; Hüffmeier, Joachim; Hertel, Guido
2016-08-01
Team trust has often been discussed both as requirement and as challenge for team effectiveness, particularly in virtual teams. However, primary studies on the relationship between trust and team effectiveness have provided mixed findings. The current review summarizes existing studies on team trust and team effectiveness based on meta-analytic methodology. In general, we assumed team trust to facilitate coordination and cooperation in teams, and therefore to be positively related with team effectiveness. Moreover, team virtuality and documentation of interactions were considered as moderators of this relationship because they should affect perceived risks during teamwork. While team virtuality should increase, documentation of interaction should decrease the relationship between team trust and team effectiveness. Findings from 52 studies with 54 independent samples (representing 12,615 individuals in 1,850 teams) confirmed our assumptions. In addition to the positive overall relationship between team trust and team effectiveness criteria (ρ = .33), the relationship between team trust and team performance was stronger in virtual teams (ρ = .33) as compared to face-to-face teams (ρ = .22), and weaker when team interactions were documented (ρ = .20) as compared to no such documentation (ρ = .29). Thus, documenting team interactions seems to be a viable complement to trust-building activities, particularly in virtual teams. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu
2017-06-01
With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.
A general approach to DNA-programmable atom equivalents.
Zhang, Chuan; Macfarlane, Robert J; Young, Kaylie L; Choi, Chung Hang J; Hao, Liangliang; Auyeung, Evelyn; Liu, Guoliang; Zhou, Xiaozhu; Mirkin, Chad A
2013-08-01
Nanoparticles can be combined with nucleic acids to programme the formation of three-dimensional colloidal crystals where the particles' size, shape, composition and position can be independently controlled. However, the diversity of the types of material that can be used is limited by the lack of a general method for preparing the basic DNA-functionalized building blocks needed to bond nanoparticles of different chemical compositions into lattices in a controllable manner. Here we show that by coating nanoparticles protected with aliphatic ligands with an azide-bearing amphiphilic polymer, followed by the coupling of DNA to the polymer using strain-promoted azide-alkyne cycloaddition (also known as copper-free azide-alkyne click chemistry), nanoparticles bearing a high-density shell of nucleic acids can be created regardless of nanoparticle composition. This method provides a route to a virtually endless class of programmable atom equivalents for DNA-based colloidal crystallization.
Virtual agents in a simulated virtual training environment
NASA Technical Reports Server (NTRS)
Achorn, Brett; Badler, Norman L.
1993-01-01
A drawback to live-action training simulations is the need to gather a large group of participants in order to train a few individuals. One solution to this difficulty is the use of computer-controlled agents in a virtual training environment. This allows a human participant to be replaced by a virtual, or simulated, agent when only limited responses are needed. Each agent possesses a specified set of behaviors and is capable of limited autonomous action in response to its environment or the direction of a human trainee. The paper describes these agents in the context of a simulated hostage rescue training session, involving two human rescuers assisted by three virtual (computer-controlled) agents and opposed by three other virtual agents.
Compact programmable photonic variable delay devices
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
1999-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
Photonic variable delay devices based on optical birefringence
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2005-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
NASA Technical Reports Server (NTRS)
Rabelo, Luis C.
2002-01-01
This is a report of my activities as a NASA Fellow during the summer of 2002 at the NASA Kennedy Space Center (KSC). The core of these activities is the assigned project: the Virtual Test Bed (VTB) from the Spaceport Engineering and Technology Directorate. The VTB Project has its foundations in the NASA Ames Research Center (ARC) Intelligent Launch & Range Operations program. The objective of the VTB project is to develop a new and unique collaborative computing environment where simulation models can be hosted and integrated in a seamless fashion. This collaborative computing environment will be used to build a Virtual Range as well as a Virtual Spaceport. This project will work as a technology pipeline to research, develop, test and validate R&D efforts against real time operations without interfering with the actual operations or consuming the operational personnel s time. This report will also focus on the systems issues required to conceptualize and provide form to a systems architecture capable of handling the different demands.
Lee, Jae M; Ku, Jeong H; Jang, Dong P; Kim, Dong H; Choi, Young H; Kim, In Y; Kim, Sun I
2002-06-01
The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology enabled us to use virtual reality (VR) for the treatment of the fear of public speaking. There have been two techniques used to construct a virtual environment for the treatment of the fear of public speaking: model-based and movie-based. Virtual audiences and virtual environments made by model-based technique are unrealistic and unnatural. The movie-based technique has a disadvantage in that each virtual audience cannot be controlled respectively, because all virtual audiences are included in one moving picture file. To address this disadvantage, this paper presents a virtual environment made by using image-based rendering (IBR) and chroma keying simultaneously. IBR enables us to make the virtual environment realistic because the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma keying allows a virtual audience to be controlled individually. In addition, a real-time capture technique was applied in constructing the virtual environment to give the subjects more interaction, in that they can talk with a therapist or another subject.
Liaw, Sok Ying; Chan, Sally Wai-Chi; Chen, Fun-Gee; Hooi, Shing Chuan; Siau, Chiang
2014-09-17
Virtual patient simulation has grown substantially in health care education. A virtual patient simulation was developed as a refresher training course to reinforce nursing clinical performance in assessing and managing deteriorating patients. The objective of this study was to describe the development of the virtual patient simulation and evaluate its efficacy, by comparing with a conventional mannequin-based simulation, for improving the nursing students' performances in assessing and managing patients with clinical deterioration. A randomized controlled study was conducted with 57 third-year nursing students who were recruited through email. After a baseline evaluation of all participants' clinical performance in a simulated environment, the experimental group received a 2-hour fully automated virtual patient simulation while the control group received 2-hour facilitator-led mannequin-based simulation training. All participants were then re-tested one day (first posttest) and 2.5 months (second posttest) after the intervention. The participants from the experimental group completed a survey to evaluate their learning experiences with the newly developed virtual patient simulation. Compared to their baseline scores, both experimental and control groups demonstrated significant improvements (P<.001) in first and second post-test scores. While the experimental group had significantly lower (P<.05) second post-test scores compared with the first post-test scores, no significant difference (P=.94) was found between these two scores for the control group. The scores between groups did not differ significantly over time (P=.17). The virtual patient simulation was rated positively. A virtual patient simulation for a refreshing training course on assessing and managing clinical deterioration was developed. Although the randomized controlled study did not show that the virtual patient simulation was superior to mannequin-based simulation, both simulations have demonstrated to be effective refresher learning strategies for improving nursing students' clinical performance. Given the greater resource requirements of mannequin-based simulation, the virtual patient simulation provides a more promising alternative learning strategy to mitigate the decay of clinical performance over time.
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
Adamovich, Sergei; Fluet, Gerard G.; Merians, Alma S.; Mathai, Abraham; Qiu, Qinyin
2010-01-01
Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic / virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study. PMID:19666345
6. Elevation view of east side of southernmost end of ...
6. Elevation view of east side of southernmost end of building. When joined with photo WA-116-A-7, these photos give a virtually complete elevation view of the east side of the 1896 south section of Building 59. Note that the steep angle of view gives the illusion of a flat roof. For a more accurate depiction of the roof slope, see previous photo's including WA-116-5. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA
ERIC Educational Resources Information Center
Ferrer-Garcia, Marta; Gutierrez-Maldonado, Jose; Caqueo-Urizar, Alejandra; Moreno, Elena
2009-01-01
This article explores the efficacy of virtual environments representing situations that are emotionally significant to patients with eating disorders (ED) to modify depression and anxiety levels both in these patients and in controls. Eighty-five ED patients and 108 students were randomly exposed to five experimental virtual environments (a…
On decentralized adaptive full-order sliding mode control of multiple UAVs.
Xiang, Xianbo; Liu, Chao; Su, Housheng; Zhang, Qin
2017-11-01
In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Berland, Matthew W.
As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?
Ichikawa, Daisuke; Saito, Toki; Ujita, Waka; Oyama, Hiroshi
2016-12-01
Our purpose was to develop a new machine-learning approach (a virtual health check-up) toward identification of those at high risk of hyperuricemia. Applying the system to general health check-ups is expected to reduce medical costs compared with administering an additional test. Data were collected during annual health check-ups performed in Japan between 2011 and 2013 (inclusive). We prepared training and test datasets from the health check-up data to build prediction models; these were composed of 43,524 and 17,789 persons, respectively. Gradient-boosting decision tree (GBDT), random forest (RF), and logistic regression (LR) approaches were trained using the training dataset and were then used to predict hyperuricemia in the test dataset. Undersampling was applied to build the prediction models to deal with the imbalanced class dataset. The results showed that the RF and GBDT approaches afforded the best performances in terms of sensitivity and specificity, respectively. The area under the curve (AUC) values of the models, which reflected the total discriminative ability of the classification, were 0.796 [95% confidence interval (CI): 0.766-0.825] for the GBDT, 0.784 [95% CI: 0.752-0.815] for the RF, and 0.785 [95% CI: 0.752-0.819] for the LR approaches. No significant differences were observed between pairs of each approach. Small changes occurred in the AUCs after applying undersampling to build the models. We developed a virtual health check-up that predicted the development of hyperuricemia using machine-learning methods. The GBDT, RF, and LR methods had similar predictive capability. Undersampling did not remarkably improve predictive power. Copyright © 2016 Elsevier Inc. All rights reserved.
What Will We Actually Do On the Moon?
NASA Astrophysics Data System (ADS)
Sherwood, Brent
2007-01-01
Descriptions are provided for eleven specific, representative lunar activity scenarios selected from among hundreds that arose in 2006 from the NASA-sponsored development of a "global lunar strategy." The scenarios are: pave for dust control; establish a colony of continuously active robots; kitchen science; designer biology; tend the machinery; search for pieces of ancient Earth; build simple observatories that open new wavelength regimes; establish a virtual real-time network to enable public engagement; institute a public-private lunar development corporation; rehearse planetary protection protocols for Mars; and expand life and intelligence beyond Earth through settlement of the Moon. Evocative scenarios such as these are proposed as a communications tool to help win public understanding and support of the Vision for Space Exploration.
Building the Pipeline for Hubble Legacy Archive Grism data
NASA Astrophysics Data System (ADS)
Kümmel, M.; Albrecht, R.; Fosbury, R.; Freudling, W.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Rosa, M.; Stoehr, F.; Walsh, J. R.
2008-10-01
The Pipeline for Hubble Legacy Archive Grism data (PHLAG) is currently being developed as an end-to-end pipeline for the Hubble Legacy Archive (HLA). The inputs to PHLAG are slitless spectroscopic HST data with only the basic calibrations from standard HST pipelines applied; the outputs are fully calibrated, Virtuall Observatory-compatible spectra, which will be made available through a static HLA-archive. We give an overview of the various aspects of PHLAG. The pipeline consists of several subcomponents -- data preparation, data retrieval, image combination, object detection, spectral extraction using the aXe software, quality control -- which is discussed in detail. As a pilot project, PHLAG is currently being applied to NICMOS G141 grism data. Examples of G141 spectra reduced with PHLAG are shown.
Implementation of the Web-based laboratory
NASA Astrophysics Data System (ADS)
Ying, Liu; Li, Xunbo
2005-12-01
With the rapid developments of Internet technologies, remote access and control via Internet is becoming a reality. A realization of the web-based laboratory (the W-LAB) was presented. The main target of the W-LAB was to allow users to easily access and conduct experiments via the Internet. While realizing the remote communication, a system, which adopted the double client-server architecture, was introduced. It ensures the system better security and higher functionality. The experimental environment implemented in the W-Lab was integrated by both virtual lab and remote lab. The embedded technology in the W-LAB system as an economical and efficient way to build the distributed infrastructural network was introduced. Furthermore, by introducing the user authentication mechanism in the system, it effectively secures the remote communication.
Explosive Transient Camera (ETC) Program
NASA Technical Reports Server (NTRS)
Ricker, George
1991-01-01
Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.
Evaluation of calibration efficacy under different levels of uncertainty
Heo, Yeonsook; Graziano, Diane J.; Guzowski, Leah; ...
2014-06-10
This study examines how calibration performs under different levels of uncertainty in model input data. It specifically assesses the efficacy of Bayesian calibration to enhance the reliability of EnergyPlus model predictions. A Bayesian approach can be used to update uncertain values of parameters, given measured energy-use data, and to quantify the associated uncertainty.We assess the efficacy of Bayesian calibration under a controlled virtual-reality setup, which enables rigorous validation of the accuracy of calibration results in terms of both calibrated parameter values and model predictions. Case studies demonstrate the performance of Bayesian calibration of base models developed from audit data withmore » differing levels of detail in building design, usage, and operation.« less
Controlling social stress in virtual reality environments.
Hartanto, Dwi; Kampmann, Isabel L; Morina, Nexhmedin; Emmelkamp, Paul G M; Neerincx, Mark A; Brinkman, Willem-Paul
2014-01-01
Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.
Controlling Social Stress in Virtual Reality Environments
Hartanto, Dwi; Kampmann, Isabel L.; Morina, Nexhmedin; Emmelkamp, Paul G. M.; Neerincx, Mark A.; Brinkman, Willem-Paul
2014-01-01
Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = −0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes. PMID:24671006
Creating Virtual-hand and Virtual-face Illusions to Investigate Self-representation
Ma, Ke; Lippelt, Dominique P.; Hommel, Bernhard
2017-01-01
Studies investigating how people represent themselves and their own body often use variants of "ownership illusions", such as the traditional rubber-hand illusion or the more recently discovered enfacement illusion. However, these examples require rather artificial experimental setups, in which the artificial effector needs to be stroked in synchrony with the participants' real hand or face—a situation in which participants have no control over the stroking or the movements of their real or artificial effector. Here, we describe a technique to establish ownership illusions in a setup that is more realistic, more intuitive, and of presumably higher ecological validity. It allows creating the virtual-hand illusion by having participants control the movements of a virtual hand presented on a screen or in virtual space in front of them. If the virtual hand moves in synchrony with the participants' own real hand, they tend to perceive the virtual hand as part of their own body. The technique also creates the virtual-face illusion by having participants control the movements of a virtual face in front of them, again with the effect that they tend to perceive the face as their own if it moves in synchrony with their real face. Studying the circumstances that illusions of this sort can be created, increased, or reduced provides important information about how people create and maintain representations of themselves. PMID:28287602
Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung
2018-03-05
In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.
Cognitive training on stroke patients via virtual reality-based serious games.
Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa
2017-02-01
Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J
2012-01-01
In prior work (Yoginath and Perumalla, 2011; Yoginath, Perumalla and Henz, 2012), the motivation, challenges and issues were articulated in favor of virtual time ordering of Virtual Machines (VMs) in network simulations hosted on multi-core machines. Two major components in the overall virtualization challenge are (1) virtual timeline establishment and scheduling of VMs, and (2) virtualization of inter-VM communication. Here, we extend prior work by presenting scaling results for the first component, with experiment results on up to 128 VMs scheduled in virtual time order on a single 12-core host. We also explore the solution space of design alternatives formore » the second component, and present performance results from a multi-threaded, multi-queue implementation of inter-VM network control for synchronized execution with VM scheduling, incorporated in our NetWarp simulation system.« less
Analysis of a Moon outpost for Mars enabling technologies through a Virtual Reality environment
NASA Astrophysics Data System (ADS)
Casini, Andrea E. M.; Maggiore, Paolo; Viola, Nicole; Basso, Valter; Ferrino, Marinella; Hoffman, Jeffrey A.; Cowley, Aidan
2018-02-01
The Moon is now being considered as the starting point for human exploration of the Solar System beyond low-Earth orbit. Many national space agencies are actively advocating to build up a lunar surface habitat capability starting from 2030 or earlier: according to ESA Technology Roadmaps for Exploration this should be the result of a broad international cooperation. Taking into account an incremental approach to reduce risks and costs of space missions, a lunar outpost can be considered as a test bed towards Mars, allowing to validate enabling technologies, such as water processing, waste management, power generation and storage, automation, robotics and human factors. Our natural satellite is rich in resources that could be used to pursue such a goal through a necessary assessment of ISRU techniques. The aim of this research is the analysis of a Moon outpost dedicated to the validation of enabling technologies for human space exploration. The main building blocks of the outpost are identified and feasible evolutionary scenarios are depicted, to highlight the incremental steps to build up the outpost. Main aspects that are dealt with include outpost location and architecture, as well as ISRU facilities, which in a far term future can help reduce the mass at launch, by producing hydrogen and oxygen for consumables, ECLSS, and propellant for Earth-Moon sorties and Mars journeys. A test outpost is implemented in a Virtual Reality (VR) environment as a first proof-of-concepts, where the elements are computer-based mock-ups. The VR facility has a first-person interactive perspective, allowing for specific in-depth analyses of ergonomics and operations. The feedbacks of these analyses are crucial to highlight requirements that might otherwise be overlooked, while their general outputs are fundamental to write down procedures. Moreover, the mimic of astronauts' EVAs is useful for pre-flight training, but can also represent an additional tool for failures troubleshooting during the flight controllers' nominal operations. Additionally, illumination maps have been obtained to study the light conditions, which are essential parameters to assess the base elements location. This unique simulation environment may offer the largest suite of benefits during the design and development phase, as it allows to design future systems to optimize operations, thus maximizing the mission's scientific return, and to enhance the astronauts training, by saving time and cost. The paper describes how a virtual environment could help to design a Moon outpost for an incremental architecture strategy towards Mars missions.
A multilayer network dataset of interaction and influence spreading in a virtual world
NASA Astrophysics Data System (ADS)
Jankowski, Jarosław; Michalski, Radosław; Bródka, Piotr
2017-10-01
Presented data contains the record of five spreading campaigns that occurred in a virtual world platform. Users distributed avatars between each other during the campaigns. The processes varied in time and range and were either incentivized or not incentivized. Campaign data is accompanied by events. The data can be used to build a multilayer network to place the campaigns in a wider context. To the best of the authors' knowledge, the study is the first publicly available dataset containing a complete real multilayer social network together, along with five complete spreading processes in it.
Creating technical heritage object replicas in a virtual environment
NASA Astrophysics Data System (ADS)
Egorova, Olga; Shcherbinin, Dmitry
2016-03-01
The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.
The application of virtual prototyping methods to determine the dynamic parameters of mobile robot
NASA Astrophysics Data System (ADS)
Kurc, Krzysztof; Szybicki, Dariusz; Burghardt, Andrzej; Muszyńska, Magdalena
2016-04-01
The paper presents methods used to determine the parameters necessary to build a mathematical model of an underwater robot with a crawler drive. The parameters present in the dynamics equation will be determined by means of advanced mechatronic design tools, including: CAD/CAE software andMES modules. The virtual prototyping process is described as well as the various possible uses (design adaptability) depending on the optional accessories added to the vehicle. A mathematical model is presented to show the kinematics and dynamics of the underwater crawler robot, essential for the design stage.
Homeland security and virtual reality: building a Strategic Adaptive Response System (STARS).
Swift, Christopher; Rosen, Joseph M; Boezer, Gordon; Lanier, Jaron; Henderson, Joseph V; Liu, Alan; Merrell, Ronald C; Nguyen, Sinh; Demas, Alex; Grigg, Elliot B; McKnight, Matthew F; Chang, Janelle; Koop, C Everett
2005-01-01
The advent of the Global War on Terrorism (GWOT) underscored the need to improve the U.S. disaster response paradigm. Existing systems involve numerous agencies spread across disparate functional and geographic jurisdictions. The current architecture remains vulnerable to sophisticated terrorist strikes. To address these vulnerabilities, we must continuously adapt and improve our Homeland Security architecture. Virtual Reality (VR) technologies will help model those changes and integrate technologies. This paper provides a broad overview of the strategic threats, together with a detailed examination of how specific VR technologies could be used to ensure successful disaster responses.
[Applying a social network for the practice and learning of psychiatry].
Mondin, Estefanía; Matusevich, Daniel
2014-01-01
Social networking is a virtual space in which people relate and build their identity, share information, publish content and intervene on the content posted by others. We will describe an experiment carried out in the psychiatry service of Italian Hospital in Buenos Aires, in which we use Whatsapp Social Network applied to the development of clinical work and teaching task. From these new ways of relating between professional, emerge a new way to work, participate in groups or try to evaluate various options for dealing with a patient. We analyze the usefulness of this virtual platform as a working tool.
Teacher Networks Companion Piece
ERIC Educational Resources Information Center
Hopkins, Ami Patel; Rulli, Carolyn; Schiff, Daniel; Fradera, Marina
2015-01-01
Network building vitally impacts career development, but in few professions does it impact daily practice more than in teaching. Teacher networks, known as professional learning communities, communities of practice, peer learning circles, virtual professional communities, as well as other names, play a unique and powerful role in education. In…
ERIC Educational Resources Information Center
MacKenzie, Douglas
1996-01-01
Discusses the use of computer systems for archival applications based on experiences at the Demarco European Arts Foundation (Scotland) and the TAMH Project, an attempt to build a virtual museum of Tay Valley maritime history. Highlights include hardware; development software; data representation, including storage space versus quality;…
In silico Testing of Environmental Impact on Embryonic Vascular Development
Understanding risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. EPA’s Virtual Embryo project is building in silico models of morphogenesis to tes...
The VREST learning environment.
Kunst, E E; Geelkerken, R H; Sanders, A J B
2005-01-01
The VREST learning environment is an integrated architecture to improve the education of health care professionals. It is a combination of a learning, content and assessment management system based on virtual reality. The generic architecture is now being build and tested around the Lichtenstein protocol for hernia inguinalis repair.
75 FR 22818 - National Institute of Environmental Health Sciences; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... Environmental Health Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel; Virtual Consortium for Transdisciplinary/Translational... grant applications. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium...
Designing and Managing Your Digital Library.
ERIC Educational Resources Information Center
Guenther, Kim
2000-01-01
Discusses digital libraries and Web site design issues. Highlights include accessibility issues, including standards, markup languages like HTML and XML, and metadata; building virtual communities; the use of Web portals for customized delivery of information; quality assurance tools, including data mining; and determining user needs, including…
Building the Virtual Scriptorium
ERIC Educational Resources Information Center
Nikolova-Houston, Tatiana; Houston, Ron
2008-01-01
Manuscripts, archives, and early printed books contain a documentary record of the foundations of human knowledge. Many elements restrict access to this corpus, from preservation concerns to censorship. On the assumption that the widespread availability of knowledge benefits the human condition more than the restriction of knowledge, elements…
NASA Astrophysics Data System (ADS)
Gong, Jun; Zhu, Qing
2006-10-01
As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.
D Virtual Reconstruction of the Middle Stoa in the Athens Ancient Agora
NASA Astrophysics Data System (ADS)
Kontogianni, G.; Georgopoulos, A.; Saraga, N.; Alexandraki, E.; Tsogka, K.
2013-02-01
Reconstruction is an action that re-builds a ruin or a non-existing structure trying to reproduce its form and shape at a given moment of its past. Reconstruction of Cultural Heritage monuments used to be common practice during the 19th and 20th centuries. However, contemporary ways of thinking and approaching the issue of reviving the past have introduced a lot of scepticism as far as reconstructions are concerned. An attractive alternative is virtual reconstruction, which does not involve any intervention to the existing relics, while it offers all advantages to the curator. In this paper the virtual reconstruction of a non-existing building of the Athenian Agora is described, presented and visualized. All data collected were evaluated and used appropriately for the final product. It is evident that, on one hand, the data collected do not all belong to the target period and, on the other, not all the data necessary to built up the model are available today. Therefore, one needs to carefully select the data corresponding to the period of study and complete them with suitable hypotheses. It is imperative that both tasks must be done in collaboration of the archaeologists and architects responsible for the monument. In this context a hierarchy of the data was developed, based on their reliability as far as their "correctness" is concerned. The data were categorized for their reliability after careful evaluation. The accuracy of the data depends on the source; hence the data which originate from a drawing or from one study of the 3D reconstructed monument are considered more accurate than data which come from a source referring to architectural elements of other monuments or written reports of travelers. Sometimes the data appear in more than one source, in this case they must be checked for their reliability. In cases of remaining artifacts that could be found in the museum and belonged to the building a different approach was followed. They were used to produce 3D models and these were later attached to the final 3D model. From the final virtual reconstruction a short video has also been produced for the better visualization of the result.
Rapid prototyping 3D virtual world interfaces within a virtual factory environment
NASA Technical Reports Server (NTRS)
Kosta, Charles Paul; Krolak, Patrick D.
1993-01-01
On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker, Norbert; Egelhaaf, Martin
2003-09-22
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Quality of service policy control in virtual private networks
NASA Astrophysics Data System (ADS)
Yu, Yiqing; Wang, Hongbin; Zhou, Zhi; Zhou, Dongru
2004-04-01
This paper studies the QoS of VPN in an environment where the public network prices connection-oriented services based on source, destination and grade of service, and advertises these prices to its VPN customers (users). As different QoS technologies can produce different QoS, there are according different traffic classification rules and priority rules. The internet service provider (ISP) may need to build complex mechanisms separately for each node. In order to reduce the burden of network configuration, we need to design policy control technologies. We considers mainly directory server, policy server, policy manager and policy enforcers. Policy decision point (PDP) decide its control according to policy rules. In network, policy enforce point (PEP) decide its network controlled unit. For InterServ and DiffServ, we will adopt different policy control methods as following: (1) In InterServ, traffic uses resource reservation protocol (RSVP) to guarantee the network resource. (2) In DiffServ, policy server controls the DiffServ code points and per hop behavior (PHB), its PDP distributes information to each network node. Policy server will function as following: information searching; decision mechanism; decision delivering; auto-configuration. In order to prove the effectiveness of QoS policy control, we make the corrective simulation.
Design and Development of a Virtual Facility Tour Using iPIX(TM) Technology
NASA Technical Reports Server (NTRS)
Farley, Douglas L.
2002-01-01
The capabilities of the iPIX virtual tour software, in conjunction with a web-based interface create a unique and valuable system that provides users with an efficient virtual capability to tour facilities while being able to acquire the necessary technical content is demonstrated. A users guide to the Mechanics and Durability Branch's virtual tour is presented. The guide provides the user with instruction on operating both scripted and unscripted tours as well as a discussion of the tours for Buildings 1148, 1205 and 1256 and NASA Langley Research Center. Furthermore, an indepth discussion has been presented on how to develop a virtual tour using the iPIX software interface with conventional html and JavaScript. The main aspects for discussion are on network and computing issues associated with using this capability. A discussion of how to take the iPIX pictures, manipulate them and bond them together to form hemispherical images is also presented. Linking of images with additional multimedia content is discussed. Finally, a method to integrate the iPIX software with conventional HTML and JavaScript to facilitate linking with multi-media is presented.
Ardalan, Ali; Balikuddembe, Joseph Kimuli; Ingrassia, Pier Luigi; Carenzo, Luca; Della Corte, Francesco; Akbarisari, Ali; Djalali, Ahmadreza
2015-07-13
Disaster education needs innovative educational methods to be more effective compared to traditional approaches. This can be done by using virtual simulation method. This article presents an experience about using virtual simulation methods to teach health professional on disaster medicine in Iran. The workshop on the "Application of New Technologies in Disaster Management Simulation" was held in Tehran in January 2015. It was co-organized by the Disaster and Emergency Health Academy of Tehran University of Medical Sciences and Emergency and the Research Center in Disaster Medicine and Computer Science applied to Medicine (CRIMEDIM), Università del Piemonte Orientale. Different simulators were used by the participants, who were from the health system and other relevant fields, both inside and outside Iran. As a result of the workshop, all the concerned stakeholders are called on to support this new initiative of incorporating virtual training and exercise simulation in the field of disaster medicine, so that its professionals are endowed with field-based and practical skills in Iran and elsewhere. Virtual simulation technology is recommended to be used in education of disaster management. This requires capacity building of instructors, and provision of technologies. International collaboration can facilitate this process.
Implementation of a Virtual Microphone Array to Obtain High Resolution Acoustic Images
Izquierdo, Alberto; Suárez, Luis; Suárez, David
2017-01-01
Using arrays with digital MEMS (Micro-Electro-Mechanical System) microphones and FPGA-based (Field Programmable Gate Array) acquisition/processing systems allows building systems with hundreds of sensors at a reduced cost. The problem arises when systems with thousands of sensors are needed. This work analyzes the implementation and performance of a virtual array with 6400 (80 × 80) MEMS microphones. This virtual array is implemented by changing the position of a physical array of 64 (8 × 8) microphones in a grid with 10 × 10 positions, using a 2D positioning system. This virtual array obtains an array spatial aperture of 1 × 1 m2. Based on the SODAR (SOund Detection And Ranging) principle, the measured beampattern and the focusing capacity of the virtual array have been analyzed, since beamforming algorithms assume to be working with spherical waves, due to the large dimensions of the array in comparison with the distance between the target (a mannequin) and the array. Finally, the acoustic images of the mannequin, obtained for different frequency and range values, have been obtained, showing high angular resolutions and the possibility to identify different parts of the body of the mannequin. PMID:29295485
[Porting Radiotherapy Software of Varian to Cloud Platform].
Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin
2017-09-30
To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.
Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.
Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem
2018-01-01
Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.
Human agency beliefs influence behaviour during virtual social interactions.
Caruana, Nathan; Spirou, Dean; Brock, Jon
2017-01-01
In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an "intentional stance" by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants' behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative "joint attention" game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other's eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm ("Computer" condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room ("Human" condition). Those in the "Human" condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the "Computer" condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application's goals.
Three dimensional tracking with misalignment between display and control axes
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence
1992-01-01
Human operators confronted with misaligned display and control frames of reference performed three dimensional, pursuit tracking in virtual environment and virtual space simulations. Analysis of the components of the tracking errors in the perspective displays presenting virtual space showed that components of the error due to visual motor misalignment may be linearly separated from those associated with the mismatch between display and control coordinate systems. Tracking performance improved with several hours practice despite previous reports that such improvement did not take place.
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
Ma, Hui-Ing; Hwang, Wen-Juh; Fang, Jing-Jing; Kuo, Jui-Kun; Wang, Ching-Yi; Leong, Iat-Fai; Wang, Tsui-Ying
2011-10-01
To investigate whether practising reaching for virtual moving targets would improve motor performance in people with Parkinson's disease. Randomized pretest-posttest control group design. A virtual reality laboratory in a university setting. Thirty-three adults with Parkinson's disease. The virtual reality training required 60 trials of reaching for fast-moving virtual balls with the dominant hand. The control group had 60 practice trials turning pegs with their non-dominant hand. Pretest and posttest required reaching with the dominant hand to grasp real stationary balls and balls moving at different speeds down a ramp. Success rates and kinematic data (movement time, peak velocity and percentage of movement time for acceleration phase) from pretest and posttest were recorded to determine the immediate transfer effects. Compared with the control group, the virtual reality training group became faster (F = 9.08, P = 0.005) and more forceful (F = 9.36, P = 0.005) when reaching for real stationary balls. However, there was no significant difference in success rate or movement kinematics between the two groups when reaching for real moving balls. A short virtual reality training programme improved the movement speed of discrete aiming tasks when participants reached for real stationary objects. However, the transfer effect was minimal when reaching for real moving objects.
Shaw, James; Jamieson, Trevor; Agarwal, Payal; Griffin, Bailey; Wong, Ivy; Bhatia, R Sacha
2017-01-01
Background The development of new virtual care technologies (including telehealth and telemedicine) is growing rapidly, leading to a number of challenges related to health policy and planning for health systems around the world. Methods We brought together a diverse group of health system stakeholders, including patient representatives, to engage in policy dialogue to set health system priorities for the application of virtual care in the primary care sector in the Province of Ontario, Canada. We applied a nominal group technique (NGT) process to determine key priorities, and synthesized these priorities with group discussion to develop recommendations for virtual care policy. Methods included a structured priority ranking process, open-ended note-taking, and thematic analysis to identify priorities. Results Recommendations were summarized under the following themes: (a) identify clear health system leadership to embed virtual care strategies into all aspects of primary and community care; (b) make patients the focal point of health system decision-making; (c) leverage incentives to achieve meaningful health system improvements; and (d) building virtual care into streamlined workflows. Two key implications of our policy dialogue are especially relevant for an international audience. First, shifting the dialogue away from technology toward more meaningful patient engagement will enable policy planning for applications of technology that better meet patients' needs. Second, a strong conceptual framework on guiding the meaningful use of technology in health care settings is essential for intelligent planning of virtual care policy. Conclusions Policy planning for virtual care needs to shift toward a stronger focus on patient engagement to understand patients' needs.
Behm-Morawitz, Elizabeth; Lewallen, Jennifer; Choi, Grace
2016-02-01
Health self-efficacy, or the beliefs in one's capabilities to perform health behaviors, is a significant factor in eliciting health behavior change, such as weight loss. Research has demonstrated that virtual embodiment has the potential to alter one's psychology and physicality, particularly in health contexts; however, little is known about the impacts embodiment in a virtual world has on health self-efficacy. The present research is a randomized controlled trial (N = 90) examining the effectiveness of virtual embodiment and play in a social virtual world (Second Life [SL]) for increasing health self-efficacy (exercise and nutrition efficacy) among overweight adults. Participants were randomly assigned to a 3D social virtual world (avatar virtual interaction experimental condition), 2D social networking site (no avatar virtual interaction control condition), or no intervention (no virtual interaction control condition). The findings of this study provide initial evidence for the use of SL to improve exercise efficacy and to support weight loss. Results also suggest that individuals who have higher self-presence with their avatar reap more benefits. Finally, quantitative findings are triangulated with qualitative data to increase confidence in the results and provide richer insight into the perceived effectiveness and limitations of SL for meeting weight loss goals. Themes resulting from the qualitative analysis indicate that participation in SL can improve motivation and efficacy to try new physical activities; however, individuals who have a dislike for video games may not be benefitted by avatar-based virtual interventions. Implications for research on the transformative potential of virtual embodiment and self-presence in general are discussed.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.
Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-02-09
Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation
Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-01-01
Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520
The structure of recreation behavior
Thomas A. More; James R. Averill
2003-01-01
We present a meta-theoretical analysis of recreation concepts as an argument about organizing and explaining recreation behavior. Recreation activities are behavioral constructions that people build from both prototypic subsystems (those present in virtually all instances of the activity) and design subsystems (optional subsystems that adapt the activity to serve...
ERIC Educational Resources Information Center
Bisogno, Janet; JeanPierre, Bobby
2008-01-01
The West Point Bridge Design (WPBD) building project engages students in project-based learning by giving them a real-life problem to solve. By using technology, students are able to become involved in solving problems that they normally would not encounter. Involvement with interactive websites, such as WPBD, assists students in using…
Cooking up an Online Community
ERIC Educational Resources Information Center
Valone, Lauren
2011-01-01
As museum professionals conceptualize community building, they must now consider the virtual realm. Websites in and of themselves will not generate a community, as it takes sustained communication and interaction by staff to encourage growth. Online communities are complex forces that bring about systematic dualities that in turn stimulate…
Real Time Bicycle Simulation Study of Bicyclists’ Behaviors and their Implication on Safety
DOT National Transportation Integrated Search
2017-06-30
The main goal of this study was to build a bicycle simulator and study the interaction between cyclists and other roadway users. The simulator developed was used in conjunction with Oculus Rift goggles to create a virtual cycling environment. The vir...
Levine, David Michael; Dixon, Ronald F; Linder, Jeffrey A
2018-04-23
Optimal management of hypertension requires frequent monitoring and follow-up. Novel, pragmatic interventions have the potential to engage patients, maintain blood pressure control, and enhance access to busy primary care practices. "Virtual visits" are structured asynchronous online interactions between a patient and a clinician to extend medical care beyond the initial office visit. To compare blood pressure control and healthcare utilization between patients who received virtual visits compared to usual hypertension care. Propensity score-matched, retrospective cohort study with adjustment by difference-in-differences. Primary care patients with hypertension. Patient participation in at least one virtual visit for hypertension. Usual care patients did not use a virtual visit but were seen in-person for hypertension. Adjusted difference in mean systolic blood pressure, primary care office visits, specialist office visits, emergency department visits, and inpatient admissions in the 180 days before and 180 days after the in-person visit. Of the 1051 virtual visit patients and 24,848 usual care patients, we propensity score-matched 893 patients from each group. Both groups were approximately 61 years old, 44% female, 85% White, had about five chronic conditions, and about 20% had a mean pre-visit systolic blood pressure of 140-160 mmHg. Compared to usual care, virtual visit patients had an adjusted 0.8 (95% CI, 0.3 to 1.2) fewer primary care office visits. There was no significant adjusted difference in systolic blood pressure control (0.6 mmHg [95% CI, - 2.0 to 3.1]), specialist visits (0.0 more visits [95% CI, - 0.3 to 0.3]), emergency department visits (0.0 more visits [95% CI, 0.0 to 0.01]), or inpatient admissions (0.0 more admissions [95% CI, 0.0 to 0.1]). Among patients with reasonably well-controlled hypertension, virtual visit participation was associated with equivalent blood pressure control and reduced in-office primary care utilization.
Wang, Yu; Helminen, Emily; Jiang, Jingfeng
2015-09-01
Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for the first time. Representative examples were used to demonstrate capabilities of this virtual simulation platform. In the first set of three ultrasound simulation examples, three heterogeneous volumes of interest were selected from a virtual breast ultrasound phantom to perform sophisticated ultrasound simulations. These resultant B-mode images realistically represented the underlying complex but known media. In the second set of three QUE examples, advanced applications in QUE were simulated. The first QUE example was to show breast tumors with complex shapes and/or compositions. The resultant strain images showed complex patterns that were normally seen in freehand clinical ultrasound data. The second and third QUE examples demonstrated (deformation-dependent) nonlinear strain imaging and time-dependent strain imaging, respectively. The proposed virtual QUE platform was implemented and successfully tested in this study. Through show-case examples, the proposed work has demonstrated its capabilities of creating sophisticated QUE data in a way that cannot be done through the manufacture of physical tissue-mimicking phantoms and other software. This open software architecture will soon be made available in the public domain and can be readily adapted to meet specific needs of different research groups to drive innovations in QUE.
Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds
Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn; ...
2016-02-18
In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less
Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn
In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less
2015-01-01
Benchmarking data sets have become common in recent years for the purpose of virtual screening, though the main focus had been placed on the structure-based virtual screening (SBVS) approaches. Due to the lack of crystal structures, there is great need for unbiased benchmarking sets to evaluate various ligand-based virtual screening (LBVS) methods for important drug targets such as G protein-coupled receptors (GPCRs). To date these ready-to-apply data sets for LBVS are fairly limited, and the direct usage of benchmarking sets designed for SBVS could bring the biases to the evaluation of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives, and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS) and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV) and a metric of average AUC of the ROC curves. Our method has greatly reduced the “artificial enrichment” and “analogue bias” of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD. PMID:24749745
Xia, Jie; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren; Wang, Xiang Simon
2014-05-27
Benchmarking data sets have become common in recent years for the purpose of virtual screening, though the main focus had been placed on the structure-based virtual screening (SBVS) approaches. Due to the lack of crystal structures, there is great need for unbiased benchmarking sets to evaluate various ligand-based virtual screening (LBVS) methods for important drug targets such as G protein-coupled receptors (GPCRs). To date these ready-to-apply data sets for LBVS are fairly limited, and the direct usage of benchmarking sets designed for SBVS could bring the biases to the evaluation of LBVS. Herein, we propose an unbiased method to build benchmarking sets for LBVS and validate it on a multitude of GPCRs targets. To be more specific, our methods can (1) ensure chemical diversity of ligands, (2) maintain the physicochemical similarity between ligands and decoys, (3) make the decoys dissimilar in chemical topology to all ligands to avoid false negatives, and (4) maximize spatial random distribution of ligands and decoys. We evaluated the quality of our Unbiased Ligand Set (ULS) and Unbiased Decoy Set (UDS) using three common LBVS approaches, with Leave-One-Out (LOO) Cross-Validation (CV) and a metric of average AUC of the ROC curves. Our method has greatly reduced the "artificial enrichment" and "analogue bias" of a published GPCRs benchmarking set, i.e., GPCR Ligand Library (GLL)/GPCR Decoy Database (GDD). In addition, we addressed an important issue about the ratio of decoys per ligand and found that for a range of 30 to 100 it does not affect the quality of the benchmarking set, so we kept the original ratio of 39 from the GLL/GDD.
Kibria, Muhammad Golam; Ali, Sajjad; Jarwar, Muhammad Aslam; Kumar, Sunil; Chong, Ilyoung
2017-09-22
Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented.
Chong, Ilyoung
2017-01-01
Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is studied and implemented. PMID:28937590
Large-scale building scenes reconstruction from close-range images based on line and plane feature
NASA Astrophysics Data System (ADS)
Ding, Yi; Zhang, Jianqing
2007-11-01
Automatic generate 3D models of buildings and other man-made structures from images has become a topic of increasing importance, those models may be in applications such as virtual reality, entertainment industry and urban planning. In this paper we address the main problems and available solution for the generation of 3D models from terrestrial images. We first generate a coarse planar model of the principal scene planes and then reconstruct windows to refine the building models. There are several points of novelty: first we reconstruct the coarse wire frame model use the line segments matching with epipolar geometry constraint; Secondly, we detect the position of all windows in the image and reconstruct the windows by established corner points correspondences between images, then add the windows to the coarse model to refine the building models. The strategy is illustrated on image triple of college building.
Karthikeyan, Muthukumarasamy; Pandit, Yogesh; Pandit, Deepak; Vyas, Renu
2015-01-01
Virtual screening is an indispensable tool to cope with the massive amount of data being tossed by the high throughput omics technologies. With the objective of enhancing the automation capability of virtual screening process a robust portal termed MegaMiner has been built using the cloud computing platform wherein the user submits a text query and directly accesses the proposed lead molecules along with their drug-like, lead-like and docking scores. Textual chemical structural data representation is fraught with ambiguity in the absence of a global identifier. We have used a combination of statistical models, chemical dictionary and regular expression for building a disease specific dictionary. To demonstrate the effectiveness of this approach, a case study on malaria has been carried out in the present work. MegaMiner offered superior results compared to other text mining search engines, as established by F score analysis. A single query term 'malaria' in the portlet led to retrieval of related PubMed records, protein classes, drug classes and 8000 scaffolds which were internally processed and filtered to suggest new molecules as potential anti-malarials. The results obtained were validated by docking the virtual molecules into relevant protein targets. It is hoped that MegaMiner will serve as an indispensable tool for not only identifying hidden relationships between various biological and chemical entities but also for building better corpus and ontologies.
An immersive virtual peer for studying social influences on child cyclists' road-crossing behavior.
Babu, Sabarish V; Grechkin, Timofey Y; Chihak, Benjamin; Ziemer, Christine; Kearney, Joseph K; Cremer, James F; Plumert, Jodie M
2011-01-01
The goal of our work is to develop a programmatically controlled peer to bicycle with a human subject for the purpose of studying how social interactions influence road-crossing behavior. The peer is controlled through a combination of reactive controllers that determine the gross motion of the virtual bicycle, action-based controllers that animate the virtual bicyclist and generate verbal behaviors, and a keyboard interface that allows an experimenter to initiate the virtual bicyclist's actions during the course of an experiment. The virtual bicyclist's repertoire of behaviors includes road following, riding alongside the human rider, stopping at intersections, and crossing intersections through specified gaps in traffic. The virtual cyclist engages the human subject through gaze, gesture, and verbal interactions. We describe the structure of the behavior code and report the results of a study examining how 10- and 12-year-old children interact with a peer cyclist that makes either risky or safe choices in selecting gaps in traffic. Results of our study revealed that children who rode with a risky peer were more likely to cross intermediate-sized gaps than children who rode with a safe peer. In addition, children were significantly less likely to stop at the last six intersections after the experience of riding with the risky than the safe peer during the first six intersections. The results of the study and children's reactions to the virtual peer indicate that our virtual peer framework is a promising platform for future behavioral studies of peer influences on children's bicycle riding behavior. © 2011 IEEE Published by the IEEE Computer Society
Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology
NASA Astrophysics Data System (ADS)
Weiler, Markus; McDonnell, Jeff
2004-01-01
We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When combined with previous experimental findings and conceptualizations, virtual experiments can be an effective way to isolate certain controls and examine their influence over a range of rainfall and antecedent wetness conditions.
An Optimized Trajectory Planning for Welding Robot
NASA Astrophysics Data System (ADS)
Chen, Zhilong; Wang, Jun; Li, Shuting; Ren, Jun; Wang, Quan; Cheng, Qunchao; Li, Wentao
2018-03-01
In order to improve the welding efficiency and quality, this paper studies the combined planning between welding parameters and space trajectory for welding robot and proposes a trajectory planning method with high real-time performance, strong controllability and small welding error. By adding the virtual joint at the end-effector, the appropriate virtual joint model is established and the welding process parameters are represented by the virtual joint variables. The trajectory planning is carried out in the robot joint space, which makes the control of the welding process parameters more intuitive and convenient. By using the virtual joint model combined with the B-spline curve affine invariant, the welding process parameters are indirectly controlled by controlling the motion curve of the real joint. To solve the optimal time solution as the goal, the welding process parameters and joint space trajectory joint planning are optimized.
Steering Control in a Low-Cost Driving Simulator: A Case for the Role of Virtual Vehicle Cab.
Mecheri, Sami; Lobjois, Régis
2018-04-01
The aim of this study was to investigate steering control in a low-cost driving simulator with and without a virtual vehicle cab. In low-cost simulators, the lack of a vehicle cab denies driver access to vehicle width, which could affect steering control, insofar as locomotor adjustments are known to be based on action-scaled visual judgments of the environment. Two experiments were conducted in which steering control with and without a virtual vehicle cab was investigated in a within-subject design, using cornering and straight-lane-keeping tasks. Driving around curves without vehicle cab information made drivers deviate more from the lane center toward the inner edge in right (virtual cab = 4 ± 19 cm; no cab = 42 ± 28 cm; at the apex of the curve, p < .001) but not in left curves. More lateral deviation from the lane center toward the edge line was also found in driving without the virtual cab on straight roads (virtual cab = 21 ± 28 cm; no cab = 36 ± 27 cm; p < .001), whereas driving stability and presence ratings were not affected. In both experiments, the greater lateral deviation in the no-cab condition led to significantly more time driving off the lane. The findings strongly suggest that without cab information, participants underestimate the distance to the right edge of the car (in contrast to the left edge) and thus vehicle width. This produces considerable differences in the steering trajectory. Providing a virtual vehicle cab must be encouraged for more effectively capturing drivers' steering control in low-cost simulators.
Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin
2016-01-01
ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679
Dols, W. Stuart; Persily, Andrew K.; Morrow, Jayne B.; Matzke, Brett D.; Sego, Landon H.; Nuffer, Lisa L.; Pulsipher, Brent A.
2010-01-01
In an effort to validate and demonstrate response and recovery sampling approaches and technologies, the U.S. Department of Homeland Security (DHS), along with several other agencies, have simulated a biothreat agent release within a facility at Idaho National Laboratory (INL) on two separate occasions in the fall of 2007 and the fall of 2008. Because these events constitute only two realizations of many possible scenarios, increased understanding of sampling strategies can be obtained by virtually examining a wide variety of release and dispersion scenarios using computer simulations. This research effort demonstrates the use of two software tools, CONTAM, developed by the National Institute of Standards and Technology (NIST), and Visual Sample Plan (VSP), developed by Pacific Northwest National Laboratory (PNNL). The CONTAM modeling software was used to virtually contaminate a model of the INL test building under various release and dissemination scenarios as well as a range of building design and operation parameters. The results of these CONTAM simulations were then used to investigate the relevance and performance of various sampling strategies using VSP. One of the fundamental outcomes of this project was the demonstration of how CONTAM and VSP can be used together to effectively develop sampling plans to support the various stages of response to an airborne chemical, biological, radiological, or nuclear event. Following such an event (or prior to an event), incident details and the conceptual site model could be used to create an ensemble of CONTAM simulations which model contaminant dispersion within a building. These predictions could then be used to identify priority area zones within the building and then sampling designs and strategies could be developed based on those zones. PMID:27134782
Dols, W Stuart; Persily, Andrew K; Morrow, Jayne B; Matzke, Brett D; Sego, Landon H; Nuffer, Lisa L; Pulsipher, Brent A
2010-01-01
In an effort to validate and demonstrate response and recovery sampling approaches and technologies, the U.S. Department of Homeland Security (DHS), along with several other agencies, have simulated a biothreat agent release within a facility at Idaho National Laboratory (INL) on two separate occasions in the fall of 2007 and the fall of 2008. Because these events constitute only two realizations of many possible scenarios, increased understanding of sampling strategies can be obtained by virtually examining a wide variety of release and dispersion scenarios using computer simulations. This research effort demonstrates the use of two software tools, CONTAM, developed by the National Institute of Standards and Technology (NIST), and Visual Sample Plan (VSP), developed by Pacific Northwest National Laboratory (PNNL). The CONTAM modeling software was used to virtually contaminate a model of the INL test building under various release and dissemination scenarios as well as a range of building design and operation parameters. The results of these CONTAM simulations were then used to investigate the relevance and performance of various sampling strategies using VSP. One of the fundamental outcomes of this project was the demonstration of how CONTAM and VSP can be used together to effectively develop sampling plans to support the various stages of response to an airborne chemical, biological, radiological, or nuclear event. Following such an event (or prior to an event), incident details and the conceptual site model could be used to create an ensemble of CONTAM simulations which model contaminant dispersion within a building. These predictions could then be used to identify priority area zones within the building and then sampling designs and strategies could be developed based on those zones.
Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials
Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley
2017-01-01
Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality, VR therapy, treatment, and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78–0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness. PMID:28386517
Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials.
Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley; Danovitch, Itai
2017-01-01
Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality , VR therapy , treatment , and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78-0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness.
Combined virtual and real robotic test-bed for single operator control of multiple robots
NASA Astrophysics Data System (ADS)
Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash
2010-04-01
Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.
Hybrid 3D reconstruction and image-based rendering techniques for reality modeling
NASA Astrophysics Data System (ADS)
Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.
2000-12-01
This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.
The Barriers and Causes of Building Information Modelling Usage for Interior Design Industry
NASA Astrophysics Data System (ADS)
Hamid, A. B. Abd; Taib, M. Z. Mohd; Razak, A. H. N. Abdul; Embi, M. R.
2017-12-01
Building Information Modeling (BIM) has since developed alongside the improvement in the construction industry, purposely to simulate the design, management, construction and documentation. It facilitates and monitors the construction through visualization and emphasizes on various inputs to virtually design and construct a building using specific software. This study aims to identify and elaborate barriers of BIM usage in interior design industry in Malaysia. This study is initiated with a pilot survey utilising sixteen respondents that has been randomly chosen. Respondents are attached with interior design firms that are registered by Lembaga Arkitek Malaysia (LAM). The research findings are expected to provide significant information to encourage BIM adoption among interior design firms.
Computational and mathematical methods in brain atlasing.
Nowinski, Wieslaw L
2017-12-01
Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.
NASA Astrophysics Data System (ADS)
Dong, J. Y.; Cheng, W.; Ma, C. P.; Xin, L. S.; Tan, Y. T.
2017-06-01
In order to study the issue of rural residential energy consumption in cold regions of China, modeled an architecture prototype based on BIM platform according to the affecting factors of rural residential thermal environment, and imported the virtual model which contains building information into energy analysis tools and chose the appropriate building orientation. By analyzing the energy consumption of the residential buildings with different enclosure structure forms, we designed the optimal energy-saving residence form. There is a certain application value of this method for researching the energy consumption and energy-saving design for the rural residence in cold regions of China.
Schmitt, Yuko S; Hoffman, Hunter G; Blough, David K; Patterson, David R; Jensen, Mark P; Soltani, Maryam; Carrougher, Gretchen J; Nakamura, Dana; Sharar, Sam R
2011-02-01
This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6-19 years old) performed range-of-motion exercises under a therapist's direction for 1-5 days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects' perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27-44%) in pain ratings during virtual reality. They also reported improved affect ("fun") during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.
Schmitt, Yuko S.; Hoffman, Hunter G.; Blough, David K.; Patterson, David R.; Jensen, Mark P.; Soltani, Maryam; Carrougher, Gretchen J.; Nakamura, Dana; Sharar, Sam R.
2010-01-01
This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6–19 years old) performed range-of-motion exercises under a therapist’s direction for one to five days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects’ perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27–44%) in pain ratings during virtual reality. They also reported improved affect (“fun”) during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. PMID:20692769
HTC Vive MeVisLab integration via OpenVR for medical applications
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection. PMID:28323840
Development and comparison of projection and image space 3D nodule insertion techniques
NASA Astrophysics Data System (ADS)
Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan
2016-04-01
This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (<3% difference) and in most cases the differences were not statistically significant. Also, R2 values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.
Virtual Laparoscopic Training System Based on VCH Model.
Tang, Jiangzhou; Xu, Lang; He, Longjun; Guan, Songluan; Ming, Xing; Liu, Qian
2017-04-01
Laparoscopy has been widely used to perform abdominal surgeries, as it is advantageous in that the patients experience lower post-surgical trauma, shorter convalescence, and less pain as compared to traditional surgery. Laparoscopic surgeries require precision; therefore, it is imperative to train surgeons to reduce the risk of operation. Laparoscopic simulators offer a highly realistic surgical environment by using virtual reality technology, and it can improve the training efficiency of laparoscopic surgery. This paper presents a virtual Laparoscopic surgery system. The proposed system utilizes the Visible Chinese Human (VCH) to construct the virtual models and simulates real-time deformation with both improved special mass-spring model and morph target animation. Meanwhile, an external device that integrates two five-degrees-of-freedom (5-DOF) manipulators was designed and made to interact with the virtual system. In addition, the proposed system provides a modular tool based on Unity3D to define the functions and features of instruments and organs, which could help users to build surgical training scenarios quickly. The proposed virtual laparoscopic training system offers two kinds of training mode, skills training and surgery training. In the skills training mode, the surgeons are mainly trained for basic operations, such as laparoscopic camera, needle, grasp, electric coagulation, and suturing. In the surgery-training mode, the surgeons can practice cholecystectomy and removal of hepatic cysts by guided or non-guided teaching.
NASA Astrophysics Data System (ADS)
Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.
2010-12-01
Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.
HTC Vive MeVisLab integration via OpenVR for medical applications.
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection.
Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M-Carmen; Perez-Hernandez, Elena
2018-01-01
The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5-12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children's videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables.
Virtual Control Systems Environment (VCSE)
Atkins, Will
2018-02-14
Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.
Brundage, Shelley B; Brinton, James M; Hancock, Adrienne B
2016-12-01
Virtual reality environments (VREs) allow for immersion in speaking environments that mimic real-life interactions while maintaining researcher control. VREs have been used successfully to engender arousal in other disorders. The purpose of this study was to investigate the utility of virtual reality environments to examine physiological reactivity and subjective ratings of distress in persons who stutter (PWS). Subjective and objective measures of arousal were collected from 10PWS during four-minute speeches to a virtual audience and to a virtual empty room. Stuttering frequency and physiological measures (skin conductance level and heart rate) did not differ across speaking conditions, but subjective ratings of distress were significantly higher in the virtual audience condition compared to the virtual empty room. VREs have utility in elevating subjective ratings of distress in PWS. VREs have the potential to be useful tools for practicing treatment targets in a safe, controlled, and systematic manner. Copyright © 2016 Elsevier Inc. All rights reserved.
de Bruin, E D; Schoene, D; Pichierri, G; Smith, S T
2010-08-01
Virtual augmented exercise, an emerging technology that can help to promote physical activity and combine the strengths of indoor and outdoor exercise, has recently been proposed as having the potential to increase exercise behavior in older adults. By creating a strong presence in a virtual, interactive environment, distraction can be taken to greater levels while maintaining the benefits of indoor exercises which may result in a shift from negative to positive thoughts about exercise. Recent findings on young participants show that virtual reality training enhances mood, thus, increasing enjoyment and energy. For older adults virtual, interactive environments can influence postural control and fall events by stimulating the sensory cues that are responsible in maintaining balance and orientation. However, the potential of virtual reality training has yet to be explored for older adults. This manuscript describes the potential of dance pad training protocols in the elderly and reports on the theoretical rationale of combining physical game-like exercises with sensory and cognitive challenges in a virtual environment.
Embodying Computational Thinking: Initial Design of an Emerging Technological Learning Tool
ERIC Educational Resources Information Center
Daily, Shaundra B.; Leonard, Alison E.; Jörg, Sophie; Babu, Sabarish; Gundersen, Kara; Parmar, Dhaval
2015-01-01
This emerging technology report describes virtual environment interactions an approach for blending movement and computer programming as an embodied way to support girls in building computational thinking skills. The authors seek to understand how body syntonicity might enable young learners to bootstrap their intuitive knowledge in order to…
"Immersive Education" Submerges Students in Online Worlds Made for Learning
ERIC Educational Resources Information Center
Foster, Andrea L.
2007-01-01
Immersive Education is a multimillion-dollar project devoted to build virtual-reality software exclusively for education within commercial and nonprofit fantasy spaces like Second Life. The project combines interactive three-dimensional graphics, Web cameras, Internet-based telephony, and other digital media. Some critics have complained that…
Building a Culture of Respect across Genders: Eliminating Sexual Misconduct
ERIC Educational Resources Information Center
Cooper, Stewart E.; Dranger, Paula N.
2018-01-01
Clinical staff members at virtually all college counseling centers provide therapy for victims of sexual misconduct experiences such as sexual assault, sexual harassment, relationship violence, and stalking. A number of college counseling center counselors are also involved in primary, secondary, and tertiary sexual assault prevention efforts.…
Building a Shared Virtual Learning Culture: An International Classroom Partnership
ERIC Educational Resources Information Center
Starke-Meyerring, Doreen; Andrews, Deborah
2006-01-01
Business professionals increasingly use digital tools to collaborate across multiple cultures, locations, and time zones. Success in this complex environment depends on a shared culture that facilitates the making of knowledge and the best contributions of all team members. To prepare managers for such communication, the authors designed and…
News Room | Argonne National Laboratory
-friction dry lubricant that has hundreds of industrial applications and can be used virtually wherever two pieces of metal rub together in dry conditions. Left to right: Mathew Cherukara, Ali Erdemir, Badri dry lubricant Materials Today We need real scientific breakthroughs to build a clean energy economy
RadTown USA Neighborhoods | US EPA
2016-09-08
Learn about radiation sources and uses in the interactive, virtual community of RadTown USA! Explore radiation sources and uses in homes and schools, medical buildings and laboratories and outdoors. You will also find information about coal-fired power plants and nuclear power plants, power lines and learn about responding to radiation emergencies.
Immersive Protein Gaming for Bio Edutainment
ERIC Educational Resources Information Center
Cai, Yiyu; Lu, Baifang; Zheng, Jianmin; Li, Lin
2006-01-01
Games have long been used as a tool for teaching important subject matter, from concept building to problem solving. Through fun learning, students may further develop their curiosities and interest in their study. This article addresses the issue of learning biomolecular structures by virtual reality gaming. A bio edutainment solution featuring…
Virtual Team Communication and Collaboration in Army and Corporate Applications
2009-06-12
Sharmila Pixy Ferri , 49-75. Hershey, PA: Idea Group Inc. Brown, Frederic J. 2006. Building high-performing commander leader teams: Intensive collaboration...Process, Technologies and Practice eds. Susan Hayes Godar and Sharmila Pixy Ferri , 49- 75. Hershey, Pennsylvania: Idea Group Inc. DeMarie, Samuel M. 2000
College Students' Misconceptions about Evolutionary Trees
ERIC Educational Resources Information Center
Meir, Eli; Perry, Judy; Herron, Jon C.; Kingsolver, Joel
2007-01-01
Evolution is at the center of the biological sciences and is therefore a required topic for virtually every college biology student. Over the past year, the authors have been building a new simulation software package called EvoBeaker to teach college-level evolutionary biology through simulated experiments. They have built both micro and…
Learning Fire Investigation the Clean Way: The Virtual Experience
ERIC Educational Resources Information Center
Davies, Amanda; Dalgarno, Barney
2009-01-01
The effective teaching of fire investigation skills presents logistical challenges because of the difficulty of providing students with access to suitable fire damaged buildings so that they can undertake authentic investigation tasks. At Charles Sturt University (CSU), in the subject JST415, "Fire Investigation Cause and Origin…
A Kansas Integrated Commercialization Information Network (KICIN).
ERIC Educational Resources Information Center
Ambler, C.; And Others
A consortium of Kansas economic development service providers is building a web of virtual satellite offices that will demonstrate the delivery of economic development services in all areas of Kansas. These "offices" will use the Internet and a novel information delivery system to reach small and medium-sized businesses and individuals…
Marine beaches are occasionally contaminated by unacceptably high levels of fecal indicator bacteria (FIB) that exceed EPA water quality criteria. Here we describe application of a recent version of the software package Virtual Beach tool (VB 3.0.6) to build and evaluate multiple...
Building High Performance Learning: A Focus on Career Results and the Bottom Line.
ERIC Educational Resources Information Center
Ingram, Hadyn; Sandelands, Eric; Teare, Richard
2001-01-01
Discusses how action learning can be targeted to business objectives and how electronically enabled action learning can increase productivity. Provides examples of personal learning aligned with organizational goals, including a certificate of management studies course, prior learning experiences, and an advanced diploma in virtual learning. (SK)
The Ever-Present Demand for Public Computing Resources. CDS Spotlight
ERIC Educational Resources Information Center
Pirani, Judith A.
2014-01-01
This Core Data Service (CDS) Spotlight focuses on public computing resources, including lab/cluster workstations in buildings, virtual lab/cluster workstations, kiosks, laptop and tablet checkout programs, and workstation access in unscheduled classrooms. The findings are derived from 758 CDS 2012 participating institutions. A dataset of 529…
Mobile Learning: At the Tipping Point
ERIC Educational Resources Information Center
Franklin, Teresa
2011-01-01
Mobile technologies are interfacing with all aspects of our lives including Web 2.0 tools and applications, immersive virtual world environments, and online environments to present educational opportunities for 24/7 learning at the learner's discretion. Mobile devices are allowing educators to build new community learning ecosystems for and by…
ERIC Educational Resources Information Center
Seabrooks, Janice J.; Kenney, Stephanie; LaMontagne, Maggie
2000-01-01
Explored the impact of mentoring via the Internet within two special education teacher preparation programs in which graduate students mentored undergraduate students. Data from pre- and post-intervention surveys, Internet interactions, and video conferencing indicated that participants considered Internet mentoring a positive experience that…
ERIC Educational Resources Information Center
Thornton, Bradley D.; Smalley, Robert A.
2008-01-01
Building information modeling (BIM) uses three-dimensional modeling concepts, information technology and interoperable software to design, construct and operate a facility. However, BIM can be more than a tool for virtual modeling--it can provide schools with a 3-D walkthrough of a project while it still is on the electronic drawing board. BIM can…
Fighting Baddies and Collecting Bananas: Teachers' Perceptions of Games-Based Literacy Learning
ERIC Educational Resources Information Center
Gerber, Hannah R.; Price, Debra P.
2013-01-01
This paper discusses how practicing teachers conceptualize commercial off the shelf (COTS) videogames within classroom-based English language arts instruction. Understanding how today's teachers perceive virtual worlds and videogames as an instructional tool for schema building within literacy development will help researchers better understand…
ERIC Educational Resources Information Center
Schneider, Brett
2017-01-01
Sociological and cultural analysts have noted the reticence of public secondary schooling to recognize and build academic activities around the participatory culture in which adolescents are so readily involved (Jenkins, Purushotma, Weigel, Clinton & Robison, 2009). Despite the Common Core State Standards having required students to…
2014-11-01
understands commands) modes are supported. By default, Julius comes with the Japanese language support. English acoustic and language models are...GUI, natura atar represent gue managem s the activitie ystem to und ry that suppo the Dialogu der to call arning (ML) learning ca r and feedb
Building Virtual Models by Postprocessing Radiology Images: A Guide for Anatomy Faculty
ERIC Educational Resources Information Center
Tam, Matthew D. B. S.
2010-01-01
Radiology and radiologists are recognized as increasingly valuable resources for the teaching and learning of anatomy. State-of-the-art radiology department workstations with industry-standard software applications can provide exquisite demonstrations of anatomy, pathology, and more recently, physiology. Similar advances in personal computers and…
ERIC Educational Resources Information Center
Hendrickson, Ryan C.; Mueller, Melinda A.; Strand, Jonathan R.
2011-01-01
A considerable amount of research exists about political science careers at community colleges and liberal arts institutions, as well as about training and hiring practices across different types of institutions. However, there is virtually no commentary available on political science careers at comprehensive institutions, where a significant…
Virtual gap dielectric wall accelerator
Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A
2013-11-05
A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.
McLay, Robert N; Baird, Alicia; Murphy, Jennifer; Deal, William; Tran, Lily; Anson, Heather; Klam, Warren; Johnston, Scott
2015-01-01
Post Traumatic Stress Disorder (PTSD) can be a debilitating problem in service members who have served in Iraq or Afghanistan. Virtual Reality Exposure Therapy (VRET) is one of the few interventions demonstrated in randomized controlled trials to be effective for PTSD in this population. There are theoretical reasons to expect that Virtual Reality (VR) adds to the effectiveness of exposure therapy, but there is also added expense and difficulty in using VR. Described is a trial comparing outcomes from VRET and a control exposure therapy (CET) protocol in service members with PTSD.
Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars
Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho
2015-01-01
In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629
A three dimensional view of stereopsis in dentistry.
Mon-Williams, M A; Mushtaq, F; Wilkie, R M; Khambay, B; Keeling, A; Manogue, M
2015-11-27
Stereopsis and its role in dental practice has been a topic of debate in recent editions of this Journal. These discussions are particularly timely as they come at a point when virtual reality simulators are becoming increasingly popular in the education of tomorrow's dentists. The aim of this article is to discuss the lack of robust empirical evidence to ascertain the relationship (if any) between stereopsis and dentistry and to build a case for the need for further research to build a strong evidence base on the topic.
Instrumentation to Aid in Steel Bridge Fabrication : Bridge Virtual Assembly System
DOT National Transportation Integrated Search
2018-05-01
This pool funded project developed a BRIDGE VIRTUAL ASSEMBLY SYSTEM (BRIDGE VAS) that improves manufacturing processes and enhances quality control for steel bridge fabrication. The system replaces conventional match-drilling with virtual assembly me...
Sensor supervision and multiagent commanding by means of projective virtual reality
NASA Astrophysics Data System (ADS)
Rossmann, Juergen
1998-10-01
When autonomous systems with multiple agents are considered, conventional control- and supervision technologies are often inadequate because the amount of information available is often presented in a way that the user is effectively overwhelmed by the displayed data. New virtual reality (VR) techniques can help to cope with this problem, because VR offers the chance to convey information in an intuitive manner and can combine supervision capabilities and new, intuitive approaches to the control of autonomous systems. In the approach taken, control and supervision issues were equally stressed and finally led to the new ideas and the general framework for Projective Virtual Reality. The key idea of this new approach for an intuitively operable man machine interface for decentrally controlled multi-agent systems is to let the user act in the virtual world, detect the changes and have an action planning component automatically generate task descriptions for the agents involved to project actions that have been carried out by users in the virtual world into the physical world, e.g. with the help of robots. Thus the Projective Virtual Reality approach is to split the job between the task deduction in the VR and the task `projection' onto the physical automation components by the automatic action planning component. Besides describing the realized projective virtual reality system, the paper will also describe in detail the metaphors and visualization aids used to present different types of (e.g. sensor-) information in an intuitively comprehensible manner.
Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.
2014-01-01
A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.
Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander Wong
2013-01-01
A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.
A standardized set of 3-D objects for virtual reality research and applications.
Peeters, David
2018-06-01
The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.
Annerstedt, Matilda; Jönsson, Peter; Wallergård, Mattias; Johansson, Gerd; Karlson, Björn; Grahn, Patrik; Hansen, Ase Marie; Währborg, Peter
2013-06-13
Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of nature. After inducing stress by means of a virtual stress test, we explored physiological recovery in two different virtual natural environments (with and without exposure to sounds of nature) and in one control condition. Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympathetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting enhanced stress recovery may occur in such surroundings. The group that recovered in virtual nature without sound and the control group displayed no particular autonomic activation or deactivation. The results demonstrate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the potential importance of virtual reality as a tool in this research field. Copyright © 2013 Elsevier Inc. All rights reserved.
Digitization and Visualization of Greenhouse Tomato Plants in Indoor Environments
Li, Dawei; Xu, Lihong; Tan, Chengxiang; Goodman, Erik D.; Fu, Daichang; Xin, Longjiao
2015-01-01
This paper is concerned with the digitization and visualization of potted greenhouse tomato plants in indoor environments. For the digitization, an inexpensive and efficient commercial stereo sensor—a Microsoft Kinect—is used to separate visual information about tomato plants from background. Based on the Kinect, a 4-step approach that can automatically detect and segment stems of tomato plants is proposed, including acquisition and preprocessing of image data, detection of stem segments, removing false detections and automatic segmentation of stem segments. Correctly segmented texture samples including stems and leaves are then stored in a texture database for further usage. Two types of tomato plants—the cherry tomato variety and the ordinary variety are studied in this paper. The stem detection accuracy (under a simulated greenhouse environment) for the cherry tomato variety is 98.4% at a true positive rate of 78.0%, whereas the detection accuracy for the ordinary variety is 94.5% at a true positive of 72.5%. In visualization, we combine L-system theory and digitized tomato organ texture data to build realistic 3D virtual tomato plant models that are capable of exhibiting various structures and poses in real time. In particular, we also simulate the growth process on virtual tomato plants by exerting controls on two L-systems via parameters concerning the age and the form of lateral branches. This research may provide useful visual cues for improving intelligent greenhouse control systems and meanwhile may facilitate research on artificial organisms. PMID:25675284
Digitization and visualization of greenhouse tomato plants in indoor environments.
Li, Dawei; Xu, Lihong; Tan, Chengxiang; Goodman, Erik D; Fu, Daichang; Xin, Longjiao
2015-02-10
This paper is concerned with the digitization and visualization of potted greenhouse tomato plants in indoor environments. For the digitization, an inexpensive and efficient commercial stereo sensor-a Microsoft Kinect-is used to separate visual information about tomato plants from background. Based on the Kinect, a 4-step approach that can automatically detect and segment stems of tomato plants is proposed, including acquisition and preprocessing of image data, detection of stem segments, removing false detections and automatic segmentation of stem segments. Correctly segmented texture samples including stems and leaves are then stored in a texture database for further usage. Two types of tomato plants-the cherry tomato variety and the ordinary variety are studied in this paper. The stem detection accuracy (under a simulated greenhouse environment) for the cherry tomato variety is 98.4% at a true positive rate of 78.0%, whereas the detection accuracy for the ordinary variety is 94.5% at a true positive of 72.5%. In visualization, we combine L-system theory and digitized tomato organ texture data to build realistic 3D virtual tomato plant models that are capable of exhibiting various structures and poses in real time. In particular, we also simulate the growth process on virtual tomato plants by exerting controls on two L-systems via parameters concerning the age and the form of lateral branches. This research may provide useful visual cues for improving intelligent greenhouse control systems and meanwhile may facilitate research on artificial organisms.
Virtual Reality Website of Indonesia National Monument and Its Environment
NASA Astrophysics Data System (ADS)
Wardijono, B. A.; Hendajani, F.; Sudiro, S. A.
2017-02-01
National Monument (Monumen Nasional) is an Indonesia National Monument building where located in Jakarta. This monument is a symbol of Jakarta and it is a pride monument of the people in Jakarta and Indonesia country. This National Monument also has a museum about the history of the Indonesian country. To provide information to the general public, in this research we created and developed models of 3D graphics from the National Monument and the surrounding environment. Virtual Reality technology was used to display the visualization of the National Monument and the surrounding environment in 3D graphics form. Latest programming technology makes it possible to display 3D objects via the internet browser. This research used Unity3D and WebGL to make virtual reality models that can be implemented and showed on a Website. The result from this research is the development of 3-dimensional Website of the National Monument and its objects surrounding the environment that can be displayed through the Web browser. The virtual reality of whole objects was divided into a number of scenes, so that it can be displayed in real time visualization.
NASA Astrophysics Data System (ADS)
Abercrombie, S. P.; Menzies, A.; Goddard, C.
2017-12-01
Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.