Sample records for building envelope heating

  1. Behavior of sandwich panels in a fire

    NASA Astrophysics Data System (ADS)

    Chelekova, Eugenia

    2018-03-01

    For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.

  2. Performative building envelope design correlated to solar radiation and cooling energy consumption

    NASA Astrophysics Data System (ADS)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  3. Optimization for energy efficiency of underground building envelope thermal performance in different climate zones of China

    NASA Astrophysics Data System (ADS)

    Shi, Luyang; Liu, Jing; Zhang, Huibo

    2017-11-01

    The object of this article is to investigate the influence of thermal performance of envelopes in shallow-buried buildings on energy consumption for different climate zones of China. For the purpose of this study, an effective building energy simulation tool (DeST) developed by Tsinghua University was chosen to model the heat transfer in underground buildings. Based on the simulative results, energy consumption for heating and cooling for the whole year was obtained. The results showed that the relationship between energy consumption and U-value of envelopes for underground buildings is different compared with above-ground buildings: improving thermal performance of exterior walls cannot reduce energy consumption, on the contrary, may result in more energy cost. Besides, it is can be derived that optimized U-values of underground building envelopes vary with climate zones of China in this study. For severe cold climate zone, the optimized U-value of underground building envelopes is 0.8W/(m2·K); for cold climate zone, the optimized U-value is 1.5W/(m2·K); for warm climate zone, the U-value is 2.0W/(m2·K).

  4. Study of potential nonconformities of a new recreation center building's envelope

    NASA Astrophysics Data System (ADS)

    Stanescu, M.; Kajl, S.; Lamarche, L.

    2016-09-01

    This article presents a building envelope's analysis in order to verify the compliance with mandatory provisions of the Model National Energy Code for Buildings in Canada (MNECB 1997). Because some of the requirements are «not met», investigations were carried out to provide justifications in order to prove that the building can be considered as an exception to the mandatory provisions of MNECB. Therefore, we evaluate the impact of three (3) potential nonconformities of the building's walls on the building energy performance. In regards to article 3.1.1.1.4 of MNECB, there is an exception if it can be proved that permanent process (like heat recovery of refrigeration compressors) can produce at all times enough heat that no other heating source is required. First of all, by using simulation, we were able to indicate that almost all building's heating will be provided by energy recovery from ice rinks refrigeration systems (99.2%). Secondly, by using an energy analysis carried out with HEAT2 software, we can show that the increase of heating energy demand caused by the 3 studied walls is very low. This represents an increase of the heating energy demand of only 0.2%, and this, regardless of the heat recovery process. Because the nonconforming wall sections are small (0.97% of the envelope area), this mainly explains the minor impact in terms of building performance. In conclusion, according to the results obtained, we were able to recommend the building for consideration as an exception to the mandatory provisions of MNECB.

  5. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    PubMed Central

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  6. Thermal insulating concrete wall panel design for sustainable built environment.

    PubMed

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  7. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    NASA Astrophysics Data System (ADS)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  8. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library

    DOE PAGES

    Zuo, Wangda; Wetter, Michael; Tian, Wei; ...

    2015-07-13

    Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less

  9. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; Wetter, Michael; Tian, Wei

    Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less

  10. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaaf, Rebecca E.; Evans, Meredydd

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  11. Is Passive or Active House Needed In Face of Global Warming?

    NASA Astrophysics Data System (ADS)

    Tamosaitis, Romualdas

    2017-10-01

    The article aims to determine how effective the stricter current requirements for the building envelope insolation are from the economic energy savings perspective. The article deals with a mathematical method for economic assessment of optimal building thermal insulation. The mathematical methods used in this article are based on evaluating the break-even point between the construction expenditures and the economic profit. Recent research shows that energy savings achieved solely through stricter standards applied to the building envelopes are limited in their ability to achieve maximum results. As the ratio of building volume to building envelope increases, further energy saving measures applied to the building envelope produce lower energy saving effects. Energy savings achieved using renewable energy resources, recuperation systems are much more effective. Research shows that much greater effect can be achieved by combining optimal building envelope energy efficiency measures with new requirements related to renewable energy sources and recuperating systems, such as solar batteries, wind turbines or heat pumps.

  12. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    DOE PAGES

    Biswas, Kaushik; Abhari, Ramin

    2014-10-03

    A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test buildingmore » in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. Furthermore, this article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.« less

  13. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation, fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.

  14. Analysis for Building Envelopes and Mechanical Systems Using 2012 CBECS Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, David W.; Halverson, Mark A.; Butzbaugh, Joshua B.

    This report describes the aggregation and mapping of certain building characteristics data available in the most recent Commercial Building Energy Consumption Survey (CBECS) (DOE EIA 2012) to describe most typical building construction practices. This report provides summary data for potential use in the support of modifications to the Pacific Northwest National Laboratory’s commercial building prototypes used for building energy code analysis. Specifically, this report outlines findings and most typical design choices for certain building envelope and heating, ventilating, and air-conditioning (HVAC) system choices.

  15. Effect of Moisture Content on Thermal Properties of Porous Building Materials

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2017-02-01

    The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.

  16. Passivhaus: indoor comfort and energy dynamic analysis.

    NASA Astrophysics Data System (ADS)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca

    2013-04-01

    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous-state analysis" (that provides the only energy performance of the structure) and considering the "building-equipments" as a system (which provides the overall performance of the "building system"). The first analysis shows as the absence of thermal mass and the envelope super-heating prevent to incoming heat to exit, overheating the indoor environment. The analysis of the overall performance of the "building system" highlights, instead, as the thermal load is much greater during the summer than in winter; this means that, using a low inertia envelopes, the energy saved in the winter can be used to satisfy the thermal performance in the summer. This is further demonstrated by comparing the performance of indoor temperatures and the relative energy consumption of a similar building with greater thermal inertia. Further analysis involved a critical comparison between the "semisteady-state analysis" ("CasaClima" methodology) and the analysis in dynamic conditions (using "Energy Plus" software).

  17. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Treesearch

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  18. Study of an experimental methodology for thermal properties diagnostic of building envelop

    NASA Astrophysics Data System (ADS)

    Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe

    2017-04-01

    The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The measured data from different sensors were analysed and compared. The emissivity of wall surface and treated sensor surfaces were evaluated by using an IR camera with an adapted post-processing. Then, convective and radiative heat fluxes, at wall level, were estimated. Finally, the wall thermal properties can be calculated by using the measured temperatures and estimated heat fluxes using a dedicated thermal quadrupoles heat transfer model and an inverse method. This study aims at providing some guidelines for the choice of sensors, measurements protocol and adapted inverse model to be tested in real conditions on pilot situ scale. Aknowledgments : The Authors are very grateful to H2020 Built2Spec project for supporting this work.

  19. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    NASA Astrophysics Data System (ADS)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  20. Influence of PCMs in thermal insulation on thermal behaviour of building envelopes

    NASA Astrophysics Data System (ADS)

    Dydek, K.; Furmański, P.; Łapka, P.

    2016-09-01

    A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.

  1. Preserving Envelope Efficiency in Performance Based Code Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringentmore » than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.« less

  2. Operating and Maintaining Energy Smart Schools Action Plan Template - All Action Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2009-07-01

    EnergySmart Schools action plan templates for benchmarking, lighting, HVAC, water heating, building envelope, transformer, plug loads, kitchen equipment, swimming pool, building automation system, other.

  3. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  4. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  5. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  6. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  7. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  8. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  9. Effect of heat and moisture transport and storage properties of building stones on the hygrothermal performance of historical building envelopes

    NASA Astrophysics Data System (ADS)

    KoÅáková, Dana; Kočí, Václav; Žumár, Jaromír; Keppert, Martin; Holčapek, Ondřej; Vejmelková, Eva; Černý, Robert

    2016-12-01

    The heat and moisture transport and storage parameters of three different natural stones used on the Czech territory since medieval times are determined experimentally, together with the basic physical properties and mechanical parameters. The measured data are applied as input parameters in the computational modeling of hygrothermal performance of building envelopes made of the analyzed stones. Test reference year climatic data of three different locations within the Czech Republic are used as boundary conditions on the exterior side. Using the simulated hygric and thermal performance of particular stone walls, their applicability is assessed in a relation to the geographical and climatic conditions. The obtained results indicate that all three investigated stones are highly resistant to weather conditions, freeze/thaw cycles in particular.

  10. Isolating The Building Thermal Envelope

    NASA Astrophysics Data System (ADS)

    Harrje, D. T.; Dutt, G. S.; Gadsby, K. J.

    1981-01-01

    The evaluation of the thermal integrity of building envelopes by infrared scanning tech-niques is often hampered in mild weather because temperature differentials across the envelope are small. Combining the infrared scanning with positive or negative building pressures, induced by a "blower door" or the building ventilation system, considerably extends the periods during which meaningful diagnostics can be conducted. Although missing or poorly installed insulation may lead to a substantial energy penalty, it is the search for air leakage sites that often has the largest potential for energy savings. Infrared inspection of the attic floor with air forced from the occupied space through ceiling by-passes, and inspecting the interior of the building when outside air is being sucked through the envelope reveals unexpected leakage sites. Portability of the diagnostic equipment is essential in these surveys which may include access into some tight spaces. A catalog of bypass heat losses that have been detected in residential housing using the combined infrared pressure differential technique is included to point out the wide variety of leakage sites which may compromise the benefits of thermal insulation and allow excessive air infiltration. Detection and suppression of such leaks should be key items in any building energy audit program. Where a calibrated blower door is used to pressurize or evacuate the house, the leakage rate can be quantified and an excessively tight house recognized. Houses that are too tight may be improved with a minimal energy penalty by forced ventilation,preferably with a heat recuperator and/or by providing combustion air directly to the furnace.

  11. Energy Conscious Design: Educational Facilities. [Brief No.] 1.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    An energy task group of the American Institute of Architects discusses design features and options that educational facility designers can use to create an energy efficient school building. Design elements cover the building envelope, energy storage system, hydronic heating/cooling systems, solar energy collection, building orientation and shape,…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyson, Anna

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat andmore » power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for active and passive benefits, along with the potential savings of avoiding transmission losses through direct current (DC) transfer to all buildings systems directly from the site of solar conversion, gives the system a compounded economic viability within the commercial and institutional building markets.« less

  13. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  14. Energy efficiency façade design in high-rise apartment buildings using the calculation of solar heat transfer through windows with shading devices

    NASA Astrophysics Data System (ADS)

    Ha, P. T. H.

    2018-04-01

    The architectural design orientation at the first design stage plays a key role and has a great impact on the energy consumption of a building throughout its life-cycle. To provide designers with a simple and useful tool in quantitatively determining and simply optimizing the energy efficiency of a building at the very first stage of conceptual design, a factor namely building envelope energy efficiency (Khqnl ) should be investigated and proposed. Heat transfer through windows and other glazed areas of mezzanine floors accounts for 86% of overall thermal transfer through building envelope, so the factor Khqnl of high-rise buildings largely depends on shading solutions. The author has established tables and charts to make reference to the values of Khqnl factor in certain high-rise apartment buildings in Hanoi calculated with a software program subject to various inputs including: types and sizes of shading devices, building orientations and at different points of time to be respectively analyzed. It is possible and easier for architects to refer to these tables and charts in façade design for a higher level of energy efficiency.

  15. Low-Cost Phase Change Material for Building Envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhari, Ramin

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCMmore » thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.« less

  16. Thermal-envelope field measurements in an energy-efficient office/dormitory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.E.

    1982-01-01

    A 345 m/sup 2/ earth-covered structure located at the Oak Ridge National Laboratory is the focus of a DOE sponsored building-envelope research project. To heat the office/dormitory building over the 1981-1982 heating season would cost $1.70/m/sup 2/ ($0.16/ft/sup 2/), assuming $0.07/kWh. The thermal-integrity factor is 0.016 kWh/m/sup 2/ /sup 0/C (2.8 Btu/ft/sup 2/ /sup 0/F). A preliminary DOE-II model estimates the monthly electric energy needs for heating within 5% of field data derived estimates. DOE-II building simulations suggest that this earth-covered/passively heated office dormitory saves 30% for space heating and 26% for cooling compared to an energy efficient above grademore » structure. A preliminary winter energy balance has been generated from data collected in February and March providing a fractional breakdown of thermal losses and gains. A number of the energy-conserving component performances have been isolated; earth-covered roof, bermed wall, and nonvented trombe wall. The earth-covered roof system showed an overall thermal transmittance of 0.18 W/m/sup 2///sup 0/C (R=31 hr ft/sup 2/ /sup 0/F/Btu). The thermocouple wells located in the earth surrounding the building indicate the additional energy savings of burying over berming. For one week in February the trombe wall produced a 50% greater net thermal gain to the building then south facing windows per equivalent unit area.« less

  17. Russian Apartment Building Thermal Response Models for Retrofit Selection and Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter R.; Dirks, James A.; Reilly, Raymond W.

    2000-08-21

    The Enterprise Housing Divestiture Project (EHDP) aims to identify cost-effective energy efficiency and conservation measures for Russian apartment buildings and to implement these measures in the entire stock of buildings undergoing divestiture in six cities. Short-term measurements of infiltration and exterior wall heat-loss coefficient were made in the cities of Cheropovets, Orenburg, Petrozavodsk, Ryazan, and Vladimir. Long-term monitoring equipment was installed in six or more buildings in the aforementioned and in the city of Volxhov. The results of these measurements will be used to calibrate models used to select optimal retrofit packages and to verify energy savings. The retrofit categoriesmore » representing the largest technical potential in these buildings are envelope, heat recovery, and heating/hot water system improvements. This paper describes efforts to establish a useful thermal model calibration process. The model structures and analytical methods for obtaining building parameters from time series weather, energy use, and thermal response data are developed. Our experience applying these methods to two, nominally identical 5-story apartment buildings in the city of Ryazan is presented. Building envelope UA?s inferred from measured whole-building thermal response data are compared with UA?s based on window and wall U-values (the latter obtained by ASTM in-situ measurements of 20 wall sections in various Ryazan panel buildings) as well. The UA's obtained by these completely independent measurements differ by less than 10%.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush

    Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.

  19. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; LuPh.D., Jue; Soroushian, Parviz

    2014-01-01

    In the United States, forty-eight (48) percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced building envelopes can facilitate maximizing the energy efficiency of buildings. Combined experimental testing and numerical modeling of PCM-enhanced envelope components are two important aspects of the evaluation of their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conductive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweightmore » building components. A wall with cellulose cavity insulation and prototype PCM-enhanced interior wallboards was built and tested in a natural exposure test (NET) facility in a hot-humid climate location. The test wall contained PCM wallboards and regular gypsum wallboard, for a side-by-side annual comparison study. Further, numerical modeling of the walls containing the nano-PCM wallboard was performed to determine its actual impact on wall-generated heating and cooling loads. The model was first validated using experimental data, and then used for annual simulations using Typical Meteorological Year (TMY3) weather data. This article presents the measured performance and numerical analysis evaluating the energy-saving potential of the nano-PCM-enhanced wallboard.« less

  20. Multispectral radiation envelope characteristics of aerial infrared targets

    NASA Astrophysics Data System (ADS)

    Kou, Tian; Zhou, Zhongliang; Liu, Hongqiang; Yang, Yuanzhi; Lu, Chunguang

    2018-07-01

    Multispectral detection signals are relatively stable and complementary to single spectral detection signals with deficiencies of severe scintillation and poor anti-interference. To take advantage of multispectral radiation characteristics in the application of infrared target detection, the concept of a multispectral radiation envelope is proposed. To build the multispectral radiation envelope model, the temperature distribution of an aerial infrared target is calculated first. By considering the coupling heat transfer process, the heat balance equation is built by using the node network, and the convective heat transfer laws as a function of target speed are uncovered. Then, the tail flame temperature distribution model is built and the temperature distributions at different horizontal distances are calculated. Second, to obtain the optimal detection angles, envelope models of reflected background multispectral radiation and target multispectral radiation are built. Finally, the envelope characteristics of the aerial target multispectral radiation are analyzed in different wavebands in detail. The results we obtained reflect Wien's displacement law and prove the effectiveness and reasonableness of the envelope model, and also indicate that the major difference between multispectral wavebands is greatly influenced by the target speed. Moreover, optimal detection angles are obtained by numerical simulation, and these are very important for accurate and fast target detection, attack decision-making and developing multispectral detection platforms.

  1. Thermal envelope field measurements in an energy-efficient office and dormitory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.E.

    1983-04-01

    A 345-m/sup 2/ earth-covered structure located at Oak Ridge National Laboratory is the focus of a DOE-sponsored building envelope research project. Based on field-measured data, heating the office and dormitory building over the 1981-1982 heating season cost $1.70/m/sup 2/ ($0.16/ft/sup 2/), assuming the cost of electricity to be $0.057/kWh. The building's thermal integrity factor is 0.016 kWh/m/sup 2/ /sup 0/C (2.8 Btu/ft/sup 2/ /sup 0/F). A preliminary DOE-2 model estimates the monthly electric energy needs for heating to be within 5% of our field data-derived estimates. DOE-2 building simulations suggest that this earth-covered, passively solar heated office dormitory saves 30%more » of the space heating and 26% of the cooling costs of an energy-efficient above grade structure. A preliminary winter energy balance has been generated from data collected in February and March and provides a fractional breakdown of thermal losses and gains. Performances have been isolated for several of the energy-conserving components: the earth-covered roof, the bermed wall, and the nonvented Trombe wall. The earth-covered roof system showed an overall thermal transmittance of 0.18 W/m/sup 2/ /sup 0/C (R = 31 h ft/sup 2/ /sup 0/F Btu/sup -1/). The thermocouple wells in the earth surrounding the building indicate that burying a wall is more energy efficient than berming. During one week in February, the Trombe wall produced a 50% greater net thermal gain to the building than an equivalent area of south-facing windows.« less

  2. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide

    NASA Astrophysics Data System (ADS)

    Saffari, M.; de Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L. F.

    2017-10-01

    To maintain comfort conditions in residential buildings along a full year period, the use of active systems is generally required to either supply heating or cooling. The heating and cooling demands strongly depend on the climatic conditions, type of building and occupants’ behaviour. The overall annual energy consumption of the building can be reduced by the use of renewable energy sources and/or passive systems. The use of phase change materials (PCM) as passive systems in buildings enhances the thermal mass of the envelope, and reduces the indoor temperature fluctuations. As a consequence, the overall energy consumption of the building is generally lower as compared to the case when no PCM systems are used. The selection of the PCM melting temperature is a key issue to reduce the energy consumption of the buildings. The main focus of this study is to determine the optimum PCM melting temperature for passive heating and cooling according to different weather conditions. To achieve that, numerical simulations were carried out using EnergyPlus v8.4 coupled with GenOpt® v3.1.1 (a generic optimization software). A multi-family residential apartment was selected from ASHRAE Standard 90.1- 2013 prototype building model, and different climate conditions were considered to determine the optimum melting temperature (in the range from 20ºC to 26ºC) of the PCM contained in gypsum panels. The results confirm that the optimum melting temperature of the PCM strongly depends on the climatic conditions. In general, in cooling dominant climates the optimum PCM temperature is around 26ºC, while in heating dominant climates it is around 20ºC. Furthermore, the results show that an adequate selection of the PCM as passive system in building envelope can provide important energy savings for both heating dominant and cooling dominant regions.

  3. Powder bed charging during electron-beam additive manufacturing

    DOE PAGES

    Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; ...

    2016-11-18

    Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.

  4. Anthony D. Fontanini | NREL

    Science.gov Websites

    simulation component models within EnergyPlus and OpenStudio. Prior to working at NREL, Anthony was a member building envelope and developed attic and roof simulation tools. His background is in modeling heat

  5. Evaluation of a High-Performance Solar Home in Loveland, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    2006-01-01

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  6. Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  7. Modeling of Heat Transfer in Rooms in the Modelica "Buildings" Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry Stephane

    This paper describes the implementation of the room heat transfer model in the free open-source Modelica \\Buildings" library. The model can be used as a single room or to compose a multizone building model. We discuss how the model is decomposed into submodels for the individual heat transfer phenomena. We also discuss the main physical assumptions. The room model can be parameterized to use different modeling assumptions, leading to linear or non-linear differential algebraic systems of equations. We present numerical experiments that show how these assumptions affect computing time and accuracy for selected cases of the ANSI/ASHRAE Standard 140- 2007more » envelop validation tests.« less

  8. Development of Design Guidance for K-12 Schools from 30% to 50% Energy Savings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Torcellini, P.; Long, N.

    2008-07-01

    This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating.

  9. New Whole-House Solutions Case Study: Testing Ductless Heat Pumps in High-Performance Affordable Housing, the Woods at Golden Given - Tacoma, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-06-01

    The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and othermore » sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.« less

  10. Simulated Aging and Characterization of Phase Change Materials for Thermal Management of Building Envelopes

    DTIC Science & Technology

    2015-09-01

    materials of a PCM wall or ceiling panel. BioPCMat™ absorbs heat in the daytime and releases that heat during the night. The dimension of the typical...micrographs of Energain PCM samples showed evidence of melting and re- ERDC/CERL TR-15-23 32 crystallization ; however, there was no significant

  11. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Abhari, Mr. Ramin; Shukla, Dr. Nitin

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installedmore » in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.« less

  12. Intelligent Facades for High Performance Green Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyson, Anna

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, wemore » have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for active and passive benefits, along with the potential savings of avoiding transmission losses through direct current (DC) transfer to all buildings systems directly from the site of solar conversion, gives the system a compounded economic viability within the commercial and institutional building markets. With a team that spans multiple stakeholders across disparate industries, from CPV to A&E partners that are responsible for the design and development of District and Regional Scale Urban Development, this project demonstrates that integrating utility-scale high efficiency CPV installations with urban and suburban environments is both viable and desirable within the marketplace. The historical schism between utility scale CPV and BIPV has been one of differing scale and cultures. There is no technical reason why utility-scale CPV cannot be located within urban embedded district scale sites of energy harvesting. New models for leasing large areas of district scale roofs and facades are emerging, such that the model for utility scale energy harvesting can be reconciled to commercial and public scale building sites and campuses. This consortium is designed to unite utility scale solar harvesting into building applications for smart grid development.« less

  13. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.

  15. Computational modeling of latent-heat-storage in PCM modified interior plaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fořt, Jan; Maděra, Jiří; Trník, Anton

    2016-06-08

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On themore » basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.« less

  16. Country Report on Building Energy Codes in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildingsmore » in Canada.« less

  17. Assessment of energy and economic performance of office building models: a case study

    NASA Astrophysics Data System (ADS)

    Song, X. Y.; Ye, C. T.; Li, H. S.; Wang, X. L.; Ma, W. B.

    2016-08-01

    Energy consumption of building accounts for more than 37.3% of total energy consumption while the proportion of energy-saving buildings is just 5% in China. In this paper, in order to save potential energy, an office building in Southern China was selected as a test example for energy consumption characteristics. The base building model was developed by TRNSYS software and validated against the recorded data from the field work in six days out of August-September in 2013. Sensitivity analysis was conducted for energy performance of building envelope retrofitting; five envelope parameters were analyzed for assessing the thermal responses. Results indicated that the key sensitivity factors were obtained for the heat-transfer coefficient of exterior walls (U-wall), infiltration rate and shading coefficient (SC), of which the sum sensitivity factor was about 89.32%. In addition, the results were evaluated in terms of energy and economic analysis. The analysis of sensitivity validated against some important results of previous studies. On the other hand, the cost-effective method improved the efficiency of investment management in building energy.

  18. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STARmore » requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.« less

  19. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  20. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    NASA Astrophysics Data System (ADS)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  1. Highlighting High Performance: Michael E. Capuano Early Childhood Center; Somerville, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2006-03-01

    This brochure describes the key high-performance building features of the Michael E. Capuano Early Childhood Center. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  2. Laboratory testing of a building envelope segment based on cellular concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  3. The New Generation of Thermal Mapping

    ERIC Educational Resources Information Center

    Patterson, Valerie B.

    2012-01-01

    Thermal imaging was used 60+ years ago to enable the targeting of heat-seeking missiles and seeing opposing forces at night. Today thermograpy is employed for myriad uses, from turning on faucets, to tracking and attacking enemies from aerial spy drones, to identifying the scope of moisture infiltration in building envelopes. Thermography for…

  4. Waste Not

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    When schools and universities look at saving energy in their facilities, they are likely to review the efficiency of their heating and cooling systems, or the quality of their building envelopes. When facility managers focus attention on school bathrooms, they are more likely to consider issues such as cleanliness and safety as more critical than…

  5. Peak Performance for Healthy Schools

    ERIC Educational Resources Information Center

    McKale, Chuck; Townsend, Scott

    2012-01-01

    Far from the limelight of LEED, Energy Star or Green Globes certifications are the energy codes developed and updated by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and the International Code Council (ICC) through the support of the Department of Energy (DOE) as minimum guidelines for building envelope,…

  6. Lieko Earle | NREL

    Science.gov Websites

    evaluations of innovative building envelopes, water heating, and HVAC systems. She also conducts laboratory barriers for emerging and advanced retrofit systems to be implemented on a broad basis, as well as field Monitoring (NILM) techniques, and control strategies to develop cost-effective systems that integrate

  7. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings

    NASA Astrophysics Data System (ADS)

    Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.

    2016-05-01

    The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.

  8. Exceptional cost effectiveness of the Solarcrete construction system with hybrid solar for McCormick's piano showroom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, M.T.

    1980-01-01

    A new building was designed to house Northeast Indiana's largest keyboard instrument showroom, offices, and warehouse. The 7653 SF building faces 8/sup 0/ east of south in a climate of 41/sup 0/ NL, 6717 DD, and 49% of possible sunshine during the heating season. The energy system may be described as hybrid using an integration of passive direct gain, water thermal storage with earth contact, evaporative cooling, and water source heat pump. The thermal envelope of the building employs the Solarcrete method devised to render improved thermal performance and reduce labor time, skill, and effort resulting in both initial andmore » life-cycle savings. The initial cost savings on the building including the tax credit of $11,076 was 33% or $79,076 LESS than a conventional building. The owners have realized 84% energy savings on the annual usage for the first year of operation.« less

  9. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  10. Technical - Economic Research for Passive Buildings

    NASA Astrophysics Data System (ADS)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  11. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of themore » heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.« less

  12. Office worker response to an automated venetian blind and electric lighting system: A pilot study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.; Lee, E.; Clear, R.

    1998-03-01

    A prototype integrated, dynamic building envelope and lighting system designed to optimize daylight admission and solar heat gain rejection on a real-time basis in a commercial office building is evaluated. Office worker response to the system and occupant-based modifications to the control system are investigated to determine if the design and operation of the prototype system can be improved. Key findings from the study are: (1) the prototype integrated envelope and lighting system is ready for field testing, (2) most office workers (N=14) were satisfied with the system, and (3) there were few complaints. Additional studies are needed to explainmore » how illuminance distribution, lighting quality, and room design can affect workplans illuminance preferences.« less

  13. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of themore » heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.« less

  14. Technology Solutions Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles,more » including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68°F) than day (73° F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.« less

  15. Passive solar/Earth sheltered office/dormitory cooling season thermal performance

    NASA Astrophysics Data System (ADS)

    Christian, J.

    1984-06-01

    Continuous detailed hourly thermal performance measurements were taken since February 1982 in and around an occupied, underground, 4000 ft(2) office/dormitory building at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. This building has a number of energy saving features which were analyzed relative to their performance in a southeastern US climate and with respect to overall commercial building performance. Cooling season performance is documented, as well as effects of earth constact, interior thermal mass, an economizer cycle and interface of an efficient building envelope with a central three-ton heat pump. The Joint Institute Dormitory obtains a cooling energy savings of about 30% compared with an energy-efficient, above-grade structure and has the potential to save as much as 50%. The proper instllation of the overhand, interior thermal mass, massive supply duct system, and earth contact team up to prevent summertime overheating. From May through September, this building cost a total of $300 (at 5.7) cents/kWh) to cool and ventilate 24 hours per day. Besides thermal performance of the building envelope, extensive comfort data was taken illustrating that at least 90% of the occupants are comfortable all of the time according to the PMV measurements.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andrena

    The Ida H. Goode Gymnasium was constructed in 1964 to serve as a focal point for academics, student recreation, and health and wellness activities. This 38,000 SF building contains a gymnasium with a stage, swimming pool, eight classrooms, a weight room, six offices and auxiliary spaces for the athletic programs. The gym is located on a 4-acre greenfield, which is slated for improvement and enhancement to future athletics program at Bennett College. The available funding for this project was used to weatherize the envelope of the gymnasium, installation of a new energy-efficient mechanical system, and a retrofit of the existingmore » lighting systems in the building’s interior. The envelope weatherization was completed without disturbing the building’s historic preservation eligibility. The existing heating system was replaced with a new high efficiency condensing system. The new heating system also includes a new Building Automation System which provides additional monitoring. Proper usage of this system will provide additional energy savings. Most of the existing interior lighting fixtures and bulbs were replaced with new LED and high efficiency T-8 bulbs and fixtures. Occupancy sensors were installed in applicable areas. The Ida Goode Gymnasium should experience high electricity and natural gas savings as well as operational/maintenance efficiency increases. The aesthetics of the building was maintained and the overall safety was improved.« less

  17. State-of-the-Art for Hygrothermal Simulation Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Philip R.; New, Joshua Ryan; Shrestha, Som S.

    2017-02-01

    The hygrothermal (heat and moisture) performance of buildings can be assessed by utilizing simulation tools. There are currently a number of available hygrothermal calculation tools available which vary in their degree of sophistication and runtime requirements. This report investigates three of the most commonly used models (WUFI, HAMT, and EMPD) to assess their limitations and potential to generate physically realistic results to prioritize improvements for EnergyPlus (which uses HAMT and EMPD). The outcome of the study shows that, out of these three tools, WUFI has the greatest hygrothermal capabilities. Limitations of these tools were also assessed including: WUFI’s inability tomore » properly account for air leakage and transfer at surface boundaries; HAMT’s inability to handle air leakage, precipitationrelated moisture problems, or condensation problems from high relative humidity; and multiple limitations for EMPD as a simplified method to estimate indoor temperature and humidity levels and generally not used to estimate the hygrothermal performance of the building envelope materials. In conclusion, out of the three investigated simulation tools, HAMT has the greatest modeling potential, is open source, and we have prioritized specific features that can enable EnergyPlus to model all relevant heat and moisture transfer mechanisms that impact the performance of building envelope components.« less

  18. CASI Work Plan: Calendar Year 2013

    DTIC Science & Technology

    2013-02-15

    reducing energy consumption in existing Army barracks using innovative heating, ventilating , and air-conditioning (HVAC) and building envelope...to enhance the effective “R-value” of insulation, thus reducing energy transfer through walls while maintaining comfortable temperatures for... consumption below ASHRAE’s goal for new facilities. This project will determine how effective the daylighting strategies are in providing adequate

  19. Buoyancy-induced flow studies in thermally stratified loop of a double-envelope building

    NASA Astrophysics Data System (ADS)

    Ghaffari, H. T.; Jones, R. F.

    There is a wide interest in the flow studies of thermally stratified loops of double-envelope houses. These loops primarily serve to hold a moderate air temperature around the inner buildings, and to reduce thermal losses and air movements into the house by diminishing infiltration. Further, if the thermal mechanism of the buildng is well designed, it may be possible to cause a solar-assisted, buoyancy-induced cycling of the flow during the day and a probable reverse cycling during the night. The benefits of this flow pattern are a possible storage of heat in the ground level of the crawl space during the day, its retrieval at night, and a better mixing of warmed air in various zones of the loop. The double-envelope section of the buildng was monitored from October 1981 to October 1982. Data collected were debugged and the monitoring system was adjusted and calibrated. Results from this experiment concerning significant local flows are analyzed. Hence, a validation of the conceptual thermal mechanism is obtained, and empirical and analytical assessments are compared.

  20. Indoor environmental quality (IEQ) of school classrooms: Case study in Malaysia

    NASA Astrophysics Data System (ADS)

    Samad, Muna Hanim Abdul; Aziz, Zalena Abdul; Isa, Mohd Hafizal Mohd

    2017-10-01

    Thermal Comfort is one of the key criteria for occupants' comfort and productivity in a building. In schools, it is vital for a conduciveness for teaching and learning environment. Thermal comfort is dependent on air temperature, humidity, radiation, internal lighting, air movement, activities, clothing and climatic change and is part of the Indoor Environmental Quality (IEQ) components which have has significant effects on occupants. The main concern over energy and running cost has meant that most public schools in Malaysia are designed for natural ventilation and not air-conditioning. The building envelope plays a significant role in reducing the radiant heat and keeps the interior cooler than the outdoor temperature for acceptable thermal comfort level. The requirement of Industrial Building System (IBS) as the envelope system for school building in Malaysia could affect the role of envelope as a climate moderator. This paper is based on a research conducted on two schools in Malaysia of varied construction materials as the building envelopes to ascertain the thermal comfort level of the classrooms. Elements of IEQ such as air temperature, air movement, daylighting and noise level were taken of various classrooms to fulfill the required objectives of determining the level of quality. The data collected and analysed from the study shows that in terms of air temperature which range from 28°C to 34.5°C, the schools do not achieve the recommended comfort level for tropical climate. As for daylighting element, results also show that some classrooms suffered with too much glare whilst others had insufficient daylighting. The findings also show the unsatisfactory level of air movement in the classrooms as well as an unacceptable noise level exceeding the allowable threshold. This research also concluded that the use of materials and orientation in the school design are the major determinant factors towards good IEQ levels in school buildings.

  1. Building integration of photovoltaic systems in cold climates

    NASA Astrophysics Data System (ADS)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, T.; Curtis, O.; Stephenson, R.

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA, in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STARmore » requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, T.; Curtis, O.; Stephenson, R.

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach topotential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements,more » and a high performance heating and cooling system. Construction quality and execution was a high priority for TaCStudios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this homewas evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored todetermine their impact on overall energy consumption.« less

  4. Curie-Montgolfiere Planetary Explorers

    NASA Astrophysics Data System (ADS)

    Taylor, Chris Y.; Hansen, Jeremiah

    2007-01-01

    Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.

  5. Passive solar/earth sheltered office/dormitory cooling season thermal performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.

    1984-01-01

    Continuous detailed hourly thermal performance measurements have been taken since February 1982 in and around an occupied, underground, 4000 ft/sup 2/ office/dormitory building at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. This building has a number of energy saving features which have been analyzed relative to their performance in a southeastern US climate and with respect to overall commercial building performance. This analysis documents cooling season performance, as well as effects of earth contact, interior thermal mass, an economizer cycle and interface of an efficient building envelope with a central three-ton heat pump. The Joint Institute Dormitory obtainsmore » a cooling energy savings of about 30% compared with an energy-efficient, above-grade structure and has the potential to save as much as 50%. The proper installation of the overhand, interior thermal mass, massive supply duct system, and earth contact team up to prevent summertime overheating. From May through September, this building cost a total of $300 (at 5.7 cents/kWh) to cool and ventilate 24 hours per day. Besides thermal performance of the building envelope, extensive comfort data was taken illustrating that at least 90% of the occupants are comfortable all of the time according to the PMV measurements.« less

  6. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  7. Optics and materials research for controlled radiant energy transfer in buildings

    NASA Astrophysics Data System (ADS)

    Goldner, R. B.

    1983-11-01

    The overall objective of the Tufts research program was to identify and attempt to solve some of the key materials problems associated with practical approaches for achieving controlled radiant energy transfer (CRET) through building windows and envelopes, so as to decrease heating and cooling loads in buildings. Major accomplishments included: the identification of electrochromic (EC)-based structures as the preferred structures for achieving CRET; the identification of modulated reflectivity as the preferred mode of operation for EC-based structures; demonstration of the feasibility of operating EC-materials in a modulated R(lambda) mode; and demonstration of the applicability of free electron model to colored polycrystalline WO3 films.

  8. SIMULATION-BASED WEATHER NORMALIZATION APPROACH TO STUDY THE IMPACT OF WEATHER ON ENERGY USE OF BUILDINGS IN THE U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Wang, Na

    Weather normalization is a crucial task in several applications related to building energy conservation such as retrofit measurements and energy rating. This paper documents preliminary results found from an effort to determine a set of weather adjustment coefficients that can be used to smooth out impacts of weather on energy use of buildings in 1020 weather location sites available in the U.S. The U.S. Department of Energy (DOE) commercial reference building models are adopted as hypothetical models with standard operations to deliver consistency in modeling. The correlation between building envelop design, HVAC system design and properties for different building typesmore » and the change in heating and cooling energy consumption caused by variations in weather is examined.« less

  9. Evaluation of solar gain through skylights for inclusion in the SP53 residential building loads data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanford, J.W.; Huang, Y.J.

    The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and coolingmore » loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.« less

  10. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    NASA Astrophysics Data System (ADS)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  11. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity andmore » solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.« less

  12. Energy saving potential of a two-pipe system for simultaneous heating and cooling of office buildings

    DOE PAGES

    Maccarini, Alessandro; Wetter, Michael; Afshari, Alireza; ...

    2016-10-31

    This paper analyzes the performance of a novel two-pipe system that operates one water loop to simultaneously provide space heating and cooling with a water supply temperature of around 22 °C. To analyze the energy performance of the system, a simulation-based research was conducted. The two-pipe system was modelled using the equation-based Modelica modeling language in Dymola. A typical office building model was considered as the case study. Simulations were run for two construction sets of the building envelope and two conditions related to inter-zone air flows. To calculate energy savings, a conventional four-pipe system was modelled and used formore » comparison. The conventional system presented two separated water loops for heating and cooling with supply temperatures of 45 °C and 14 °C, respectively. Simulation results showed that the two-pipe system was able to use less energy than the four-pipe system thanks to three effects: useful heat transfer from warm to cold zones, higher free cooling potential and higher efficiency of the heat pump. In particular, the two-pipe system used approximately between 12% and 18% less total annual primary energy than the four-pipe system, depending on the simulation case considered.« less

  13. Energy saving potential of a two-pipe system for simultaneous heating and cooling of office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccarini, Alessandro; Wetter, Michael; Afshari, Alireza

    This paper analyzes the performance of a novel two-pipe system that operates one water loop to simultaneously provide space heating and cooling with a water supply temperature of around 22 °C. To analyze the energy performance of the system, a simulation-based research was conducted. The two-pipe system was modelled using the equation-based Modelica modeling language in Dymola. A typical office building model was considered as the case study. Simulations were run for two construction sets of the building envelope and two conditions related to inter-zone air flows. To calculate energy savings, a conventional four-pipe system was modelled and used formore » comparison. The conventional system presented two separated water loops for heating and cooling with supply temperatures of 45 °C and 14 °C, respectively. Simulation results showed that the two-pipe system was able to use less energy than the four-pipe system thanks to three effects: useful heat transfer from warm to cold zones, higher free cooling potential and higher efficiency of the heat pump. In particular, the two-pipe system used approximately between 12% and 18% less total annual primary energy than the four-pipe system, depending on the simulation case considered.« less

  14. Night ventilation at courtyard housing estate in warm humid tropic for sustainable environment

    NASA Astrophysics Data System (ADS)

    Defiana, Ima; Teddy Badai Samodra, FX; Setyawan, Wahyu

    2018-03-01

    The problem in the night-time for warm humid tropic housing estate is thermal discomfort. Heat gains accumulation from building envelope, internal heat gains and activities of occupants influence indoor thermal comfort. Ventilation is needed for transfer or removes heat gains accumulation to outdoor. This study describes the role of an inner courtyard to promote pressure difference. Pressure difference as a wind driven force to promote wind velocity thereby could transfer indoor heat gains accumulation to outdoor of building. A simulation used as the research method for prediction wind velocity. Purposive sampling used as the method to choose building sample with similar inner courtyards. The field survey was conducted to obtain data of inner courtyard typologies and two housing were used as model simulation. Furthermore, the simulation is running in steady state mode, at 05.00 pm when the occupants usually close window. But the window should be opened in the night-time to transfer indoor heat gain to outdoor. The result shows that the factor influencing physiological cooling as consequences of inner courtyard are height to width ratio, the distance between inner courtyard to windward, window configuration and the inner courtyard design-the proportion between the length, the width, and the height.

  15. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Azad, E.

    2011-12-01

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold.

  16. Online Airtightness Calculator for the US, Canada and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    The contribution of air leakage to heating and cooling loads has been increasing as the thermal resistance of building envelopes continues to improve. Easy-to-access data are needed to convince building owners and contractors that enhancing the airtightness of buildings is the next logical step to achieve a high-performance building envelope. To this end, Oak Ridge National Laboratory, the National Institute of Standards and Technology, the Air Barrier Association of America, and the US-China Clean Energy Research Center for Building Energy Efficiency Consortium partnered to develop an online calculator that estimates the potential energy savings in major US, Canadian, and Chinesemore » cities due to improvements in airtightness. This tool will have user-friendly graphical interface that uses a database of CONTAM-EnergyPlus pre-run simulation results, and will be available to the public at no cost. Baseline leakage rates are either user-specified or the user selects them from the supplied typical leakage rates. Users will enter the expected airtightness after the proper installation of an air barrier system. Energy costs are estimated based on the building location and inputs from users. This paper provides an overview of the methodology that is followed in this calculator, as well as results from an example. The successful deployment of this calculator could influence construction practices so that greenhouse gas emissions from the US, Canada, and China are significantly curtailed.« less

  17. Optics and materials research for controlled radiant energy transfer in buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldner, R.B.

    1983-11-01

    The overall objective of the Tufts research program was to identify and attempt to solve some of the key materials problems associated with practical approaches for achieving controlled radiant energy transfer (CRET) through building windows and envelopes, so as to decrease heating and cooling loads in buildings. Major accomplishments included: the identification of electrochromic (EC)-based structures as the preferred structures for achieving CRET the identification of modulated reflectivity as the preferred mode of operation for EC-based structures demonstration of the feasibility of operating EC-materials in a modulated R(lambda) mode and demonstration of the applicability of free electron model to coloredmore » polycrystalline WO3 films.« less

  18. Infiltration modeling guidelines for commercial building energy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistentmore » with building location and weather data.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southface Energy Institute (Southface) partnered with owners and/or builders with various market constraints and ultimate goals for three projects in different climate zones: Savannah, GA (CZ 2), Clemson, SC (CZ 3), and LaFayette, GA (CZ 4). This report documents the design process, computational energy modeling, construction, envelope performance metrics, long-term monitoring results, and successes and failures of the design and execution of these high performance homes. The three bedroom/two bathroom test home in Savannah Gardens on an elevated slab foundation has a semi-conditioned, encapsulated attic. A neighboring home built to EarthCraft specifications was also monitored as a control for exteriormore » foam insulation and a heat pump water heater (HPWH). For the JMC Patrick Square, a single-story project in Clemson, the small-scale production builder wanted to increase their level of energy efficiency beyond their current green building practices, including bringing ducts into conditioned space. Through a combination of upgrade measures the team met this goal and achieved many Zero Energy Ready Home requirements. LaFayette Housing Authority undertook a development of 30 affordable rental housing units in 15 duplexes in LaFayette, GA. Because they would be long-term owners, their priorities were low utility bills for the residents and durable, maintainable buildings. The team employed BEopt to optimize building envelope and systems choices, including 2x6 advanced framed walls, insulated slab, and heat pump water heater in a utility closet which was ducted to/from an encapsulated attic.« less

  20. Commercial Building Energy Asset Score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This software (Asset Scoring Tool) is designed to help building owners and managers to gain insight into the as-built efficiency of their buildings. It is a web tool where users can enter their building information and obtain an asset score report. The asset score report consists of modeled building energy use (by end use and by fuel type), building systems (envelope, lighting, heating, cooling, service hot water) evaluations, and recommended energy efficiency measures. The intended users are building owners and operators who have limited knowledge of building energy efficiency. The scoring tool collects minimum building data (~20 data entries) frommore » users and build a full-scale energy model using the inference functionalities from Facility Energy Decision System (FEDS). The scoring tool runs real-time building energy simulation using EnergyPlus and performs life-cycle cost analysis using FEDS. An API is also under development to allow the third-party applications to exchange data with the web service of the scoring tool.« less

  1. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, Michael; Field-Macumber, Kristin

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); andmore » service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.« less

  2. Energy performance of building fabric - Comparing two types of vernacular residential houses

    NASA Astrophysics Data System (ADS)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  3. Thermophysical properties of hydrophobised lime plasters - The influence of ageing

    NASA Astrophysics Data System (ADS)

    Pavlíková, Milena; Zemanová, Lucie; Pavlík, Zbyšek

    2017-07-01

    The building envelope is a principal responsible for buildings energy loses. Lime plasters as the most popular finishing materials of historical buildings and culture monuments influence the thermal behaviour as well as construction material of masonry. On this account, the effect of ageing on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime plaster is tested. The ageing is accelerated with controlled carbonation process to simulate the final plasters properties. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity are experimentally assessed using a transient impulse method. The obtained data revealed the significant changes of the both studied thermal parameters in the dependence on plasters composition and age. The assessed material parameters will be stored in a material database, where will find use as an input data for computational modelling of heat transport in this type of porous building materials and evaluation of energy-savings and sustainability issues.

  4. Nano-based PCMs for building energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which themore » PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.« less

  5. Retrofitted green roofs and walls and improvements in thermal comfort

    NASA Astrophysics Data System (ADS)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  6. Optimizing lighting, thermal performance, and energy production of building facades by using automated blinds and PV cells

    NASA Astrophysics Data System (ADS)

    Alzoubi, Hussain Hendi

    Energy consumption in buildings has recently become a major concern for environmental designers. Within this field, daylighting and solar energy design are attractive strategies for saving energy. This study seeks the integrity and the optimality of building envelopes' performance. It focuses on the transparent parts of building facades, specifically, the windows and their shading devices. It suggests a new automated method of utilizing solar energy while keeping optimal solutions for indoor daylighting. The method utilizes a statistical approach to produce mathematical equations based on physical experimentation. A full-scale mock-up representing an actual office was built. Heat gain and lighting levels were measured empirically and correlated with blind angles. Computational methods were used to estimate the power production from photovoltaic cells. Mathematical formulas were derived from the results of the experiments; these formulas were utilized to construct curves as well as mathematical equations for the purpose of optimization. The mathematical equations resulting from the optimization process were coded using Java programming language to enable future users to deal with generic locations of buildings with a broader context of various climatic conditions. For the purpose of optimization by automation under different climatic conditions, a blind control system was developed based on the findings of this study. This system calibrates the blind angles instantaneously based upon the sun position, the indoor daylight, and the power production from the photovoltaic cells. The functions of this system guarantee full control of the projected solar energy on buildings' facades for indoor lighting and heat gain. In winter, the system automatically blows heat into the space, whereas it expels heat from the space during the summer season. The study showed that the optimality of building facades' performance is achievable for integrated thermal, energy, and lighting models in buildings. There are blind angles that produce maximum energy from the photovoltaic cells while keeping indoor light within the acceptable limits that prevent undesired heat gain in summer.

  7. Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Shrestha, Som S.; Bhandari, Mahabir S.

    In the United States, commercial buildings accounted for about 19 percent of the total primary energy consumption in 2012. Further, 29 percent of the site energy in commercial buildings was consumed for space heating and cooling. Applying insulation materials to building envelopes is an effective way of reducing energy consumption for heating and cooling, and limiting the negative environmental impacts from the buildings sector. While insulation materials have a net positive impact on the environment due to reduced energy consumption, they also have some negative impacts associated with their 'embodied energy'. The total lifetime environmental impacts of insulation materials aremore » a summation of: (1) direct impacts due to their embodied energy, and (2) indirect or impacts avoided due to the reduced building energy consumption. Here, assessments of the lifetime environmental impacts of selected insulation materials are presented. Direct and indirect environmental impact factors were estimated for the cradle-to-grave insulation life cycle stages. Impact factors were calculated for two categories: primary energy consumption and global warming potential. The direct impact factors were calculated using data from existing literature and a life cycle assessment software. The indirect impact factors were calculated through simulations of a set of standard whole-building models.« less

  8. Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts

    DOE PAGES

    Biswas, Kaushik; Shrestha, Som S.; Bhandari, Mahabir S.; ...

    2015-12-12

    In the United States, commercial buildings accounted for about 19 percent of the total primary energy consumption in 2012. Further, 29 percent of the site energy in commercial buildings was consumed for space heating and cooling. Applying insulation materials to building envelopes is an effective way of reducing energy consumption for heating and cooling, and limiting the negative environmental impacts from the buildings sector. While insulation materials have a net positive impact on the environment due to reduced energy consumption, they also have some negative impacts associated with their 'embodied energy'. The total lifetime environmental impacts of insulation materials aremore » a summation of: (1) direct impacts due to their embodied energy, and (2) indirect or impacts avoided due to the reduced building energy consumption. Here, assessments of the lifetime environmental impacts of selected insulation materials are presented. Direct and indirect environmental impact factors were estimated for the cradle-to-grave insulation life cycle stages. Impact factors were calculated for two categories: primary energy consumption and global warming potential. The direct impact factors were calculated using data from existing literature and a life cycle assessment software. The indirect impact factors were calculated through simulations of a set of standard whole-building models.« less

  9. Research & Development Roadmap for Next-Generation Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Sutherland, Timothy; Foley, Kevin

    2012-03-01

    Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on themore » proposed initiatives.« less

  10. Life Cycle Assessment of Wall Systems

    NASA Astrophysics Data System (ADS)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned envelope types. Energy consumption data, along with various other details, such as building floor area, areas of walls, columns, beams etc. and their material types were imported into Life-Cycle Assessment software called ATHENA impact estimator for buildings. Using this four-stepped LCA methodology, the results showed that the Steel Stud envelope performed the best and less environmental impact compared to other envelope types. This research methodology can be applied to other building typologies.

  11. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.

  12. Thermal insulation materials for inside applications: Hygric and thermal properties

    NASA Astrophysics Data System (ADS)

    Jerman, Miloš; Černý, Robert

    2017-11-01

    Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.

  13. Improving energy sustainability for public buildings in Italian mountain communities.

    PubMed

    Mutani, Guglielmina; Cornaglia, Mauro; Berto, Massimo

    2018-05-01

    The objective of this work is to analyze and then optimize thermal energy consumptions of public buildings located within the mountain community of Lanzo, Ceronda and Casternone Valleys. Some measures have been proposed to reduce energy consumption and consequently the economic cost for energy production, as well as the harmful GHG emissions in the atmosphere. Initially, a study of the mountain territory has been carried out, because of its vast extension and climatic differences. Defined the communities and the buildings under investigation, energy dependant data were collected for the analysis of energy consumption monitoring: consumption data of three heating seasons, geometric buildings characteristics, type of opaque and transparent envelope, heating systems information with boiler performance and climatic data. Afterward, five buildings with critical energy performances were selected; for each of these buildings, different retrofit interventions have been hypothesized to reduce the energy consumption, with thermal insulation of vertical or horizontal structures, new windows or boiler substitution. The cost-optimal technique was used to choose the interventions that offered higher energy performance at lower costs; then a retrofit scenario has been planned with a specific financial investment. Finally, results showed possible future developments and scenarios related to buildings energy efficiency with regard to the topic of biomass exploitation and its local availability in this area. In this context, the biomass energy resource could to create a virtuous environmental, economic and social process, favouring also local development.

  14. Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, Robb

    2016-02-17

    Solar water heating systems are not new, but they have not become prevalent in most of the U.S. Most of the country is cold enough that indirect solar thermal systems are required for freeze protection, and average installed cost of these systems is $9,000 to $10,000 for typical systems on single-family homes. These costs can vary significantly in different markets and with different contractors, and federal and regional incentives can reduce these up-front costs by 50% or more. In western Massachusetts, an affordable housing developer built a community of 20 homes with a goal of approaching zero net energy consumption.more » In addition to excellent thermal envelopes and PV systems, the developer installed a solar domestic water heating system (SDHW) on each home. The Consortium for Advanced Residential Buildings (CARB), a research consortium funded by the U.S. Department of Energy Building America program, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.« less

  15. Smart Building: Decision Making Architecture for Thermal Energy Management.

    PubMed

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  16. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    PubMed

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  17. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study

    PubMed Central

    Long, Linshuang; Ye, Hong

    2016-01-01

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials. PMID:27052186

  18. A model for the sustainable selection of building envelope assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huedo, Patricia, E-mail: huedo@uji.es; Mulet, Elena, E-mail: emulet@uji.es; López-Mesa, Belinda, E-mail: belinda@unizar.es

    2016-02-15

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate themore » impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.« less

  19. Field Trial of an Aerosol-Based Enclosure Sealing Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, Curtis; Springer, David

    2015-09-01

    This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automaticallymore » verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology. However, this technology is capable of bringing the air leakage of a building that was built with standard construction techniques and HERS-verified sealing down to levels that would meet DOE Zero Energy Ready Homes program requirements. When a developer is striving to meet a tighter envelope leakage specification, this technology could greatly reduce the cost to achieve that goal by providing a simple and relatively low cost method for reducing the air leakage of a building envelope with little to no change in their common building practices.« less

  20. Building America Case Study: Field Trial of an Aerosol-Based Enclosure Sealing Technology, Clovis, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automaticallymore » verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology. However, this technology is capable of bringing the air leakage of a building that was built with standard construction techniques and HERS-verified sealing down to levels that would meet DOE Zero Energy Ready Homes program requirements. When a developer is striving to meet a tighter envelope leakage specification, this technology could greatly reduce the cost to achieve that goal by providing a simple and relatively low cost method for reducing the air leakage of a building envelope with little to no change in their common building practices.« less

  1. Comparative study of air-conditioning energy use of four office buildings in China and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Yan, Da; An, Jingjing

    Energy use in buildings has great variability. In order to design and operate low energy buildings as well as to establish building energy codes and standards and effective energy policy, it is crucial to understand and quantify key factors influencing building energy performance. Here, this study investigates air-conditioning (AC) energy use of four office buildings in four locations: Beijing, Taiwan, Hong Kong, and Berkeley. Building simulation was employed to quantify the influences of key factors, including climate, building envelope and occupant behavior. Through simulation of various combinations of the three influencing elements, it is found that climate can lead tomore » AC cooling consumption differences by almost two times, while occupant behavior resulted in the greatest differences (of up to three times) in AC cooling consumption. The influence of occupant behavior on AC energy consumption is not homogeneous. Under similar climates, when the occupant behavior in the building differed, the optimized building envelope design also differed. In conclusion, the optimal building envelope should be determined according to the climate as well as the occupants who use the building.« less

  2. Comparative study of air-conditioning energy use of four office buildings in China and USA

    DOE PAGES

    Zhou, Xin; Yan, Da; An, Jingjing; ...

    2018-04-05

    Energy use in buildings has great variability. In order to design and operate low energy buildings as well as to establish building energy codes and standards and effective energy policy, it is crucial to understand and quantify key factors influencing building energy performance. Here, this study investigates air-conditioning (AC) energy use of four office buildings in four locations: Beijing, Taiwan, Hong Kong, and Berkeley. Building simulation was employed to quantify the influences of key factors, including climate, building envelope and occupant behavior. Through simulation of various combinations of the three influencing elements, it is found that climate can lead tomore » AC cooling consumption differences by almost two times, while occupant behavior resulted in the greatest differences (of up to three times) in AC cooling consumption. The influence of occupant behavior on AC energy consumption is not homogeneous. Under similar climates, when the occupant behavior in the building differed, the optimized building envelope design also differed. In conclusion, the optimal building envelope should be determined according to the climate as well as the occupants who use the building.« less

  3. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft 2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronicmore » heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.« less

  4. Evaluating wood-based composites for incipient fungal decay with the immunodiagnostic wood decay test.

    Treesearch

    C.A. Clausen; L. Haughton; C. Murphy

    2003-01-01

    Early and accurate detection of the extent of fungal deterioration during forensic inspection of the building envelope would eliminate excessive or unnecessary replacement of wood-based building materials. Areas of water infiltration in wood-framed building envelopes in the Pacific Northwest were evaluated visually and sampled for moisture content. Wood samples were...

  5. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosny, Jan; Miller, William A; Childs, Phillip W

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heatmore » sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solar water heating systems are not new, but they have not become prevalent in most of the U.S. Most of the country is cold enough that indirect solar thermal systems are required for freeze protection, and average installed cost of these systems is $9,000 to $10,000 for typical systems on single-family homes. These costs can vary significantly in different markets and with different contractors, and federal and regional incentives can reduce these up-front costs by 50% or more. In western Massachusetts, an affordable housing developer built a community of 20 homes with a goal of approaching zero net energy consumption.more » In addition to excellent thermal envelopes and PV systems, the developer installed a solar domestic water heating system (SDHW) on each home. The Consortium for Advanced Residential Buildings (CARB), a research consortium funded by the U.S. Department of Energy Building America program, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.« less

  7. Hygrothermal Analysis of Indoor Environment of Residential Prefabricated Buildings

    NASA Astrophysics Data System (ADS)

    Kraus, Michal

    2017-10-01

    Recent studies show that the relative humidity and the indoor air temperature constitute an important determinant of the quality of indoor air. Hygrothermal microclimate has a significant impact on occupant’s health and their comfort. The study presents the results of experimental measurement of indoor air temperature and relative humidity in selected apartment in prefabricated panel house situated in Ostrava, Czechia. The contribution describes and analysis the relation between indoor air temperature [°C] and relative humidity [%] in this apartment. The experimental object is selected with respect to the housing stock in the Czech Republic. A third of the housing stock in the Czech Republic is composed of prefabricated panel houses. Regeneration and revitalization of these buildings were in the focus of interest during recent years. Building modifications, such as thermal insulation of building envelope or window replacement, lead to a significantly higher level of airtightness of these objects. Humidity and indoor air temperature are measured in 10-minute cycles for two periods. The values of temperature and humidity are measured for the non-heating and the heating season. The length of each experimental period is 30 days. The mean value of indoor air temperature is 22.21 °C and average relative humidity is 45.87% in the non-heating period. The values of 22.62 °C and 35.20% represent average values for the heating period. A slight increase of the average temperature of the indoor environment (+1.85%) is observed. The decrease of the relative humidity is evident at first glance. The relative humidity of the internal environment is approximately 10% lower in the heating period. Long-term decline of relative humidity below 30% brings many problems. It is necessary to take measures to increase of relative humidity in residential prefabricated building. The aquarium appears to be ineffective. The solution may be forced artificial ventilation or humidifiers.

  8. Improving Energy Efficiency of Buildings in the Urals

    NASA Astrophysics Data System (ADS)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the results of studies of energy efficiency improvements of the buildings which are constructed under the climatic conditions of the Ural Federal District of the Russian Federation. The relevance of the stated problem is corroborated. The requirements of the existing regulatory legal acts of the Russian Federation on energy conservation and energy efficiency in construction are given. The article specifies that energy efficiency in construction refers to a set of measures aimed at the reduction of energy resources which are consumed by buildings and are necessary to maintain the required microclimate parameters indoors. The main modern measures for improving the energy efficiency of buildings are presented, and their application under the climatic conditions of the Urals are analyzed and calculated. Each of the proposed methods is evaluated. Basing on the research results, it is concluded that most of the currently known measures for improving the energy efficiency of buildings are significantly limited in the Ural Federal District due to the small economic effect connected with the complexity and high cost of their implementation and operation, the peculiarities of climatic conditions and the conditions of the population density of the territories or significant ineffectiveness of the measures themselves; the most promising measures for improving the energy efficiency of buildings under the climatic and economic conditions of the Urals are the measures for reducing heat loss through the building envelopes (for improving the heat-insulation characteristics of the applied materials and structures).

  9. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less

  10. An Attempt to Design a Naturally Ventilated Tower in Subtropical Climate of the Developing Country; Pakistan

    NASA Astrophysics Data System (ADS)

    Sohail, Maha

    2017-12-01

    A large proportion of the world's population resides in developing countries where there is a lack of rigorous studies in designing energy efficient buildings. This study is a step in designing a naturally ventilated high rise residential building in a tropical climatic context of the developing country, Pakistan. Karachi, the largest city of Pakistan, lies in the subtropical hot desert region with constant high temperature of average 32 °C throughout the summer and no particular winter season. The Design Builder software package is used to design a 25 storey high rise residential building relying primarily on natural ventilation. A final conceptual design is proposed after optimization of massing, geometry, orientation, and improved building envelope design including extensive shading devices in the form of trees. It has been observed that a reduction of 8 °C in indoor ambient temperature is possible to achieve with passive measures and use of night time ventilation. A fully naturally ventilated building can reduce the energy consumption for cooling and heating by 96 % compared to a building using air conditioning systems.

  11. Influence of Shading on Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof

    2017-10-01

    The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.

  12. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Richard W; Rice, C Keith; Baxter, Van D

    2007-09-01

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 dependingmore » on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).« less

  13. Preparation and Thermal Properties of Molecular-Bridged Expanded Graphite/Polyethylene Glycol Composite Phase Change Materials for Building Energy Conservation.

    PubMed

    Zhang, Dong; Chen, Meizhu; Liu, Quantao; Wan, Jiuming; Hu, Jinxuan

    2018-05-16

    Using phase change materials (PCMs) in building envelopes became a reliable method to improve indoor comfort and reduce buildings' energy consumption. This research developed molecular-bridged expanded graphite (EG)/polyethylene glycol (PEG) composite PCMs (m-EPs) to conserve energy in buildings. The m-EPs were prepared through a vacuum absorption technique, and a titanate coupling agent was used to build a molecular bridge between EG and PEG. SEM, mercury intrusion porosimetry (MIP), the leakage test, microcalorimetry, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) were conducted to characterize the morphology, pore structure, absorbability, and modifying effects of the m-EPs. The phase change temperature, latent heat, thermal stability, and thermal conductivity of the m-EPs were determined by a differential scanning calorimeter (DSC), TGA, and a thermal constants analyzer. Results showed that the maximum mass ratio of PEG to EG without leakage was 1:7, and a stable connection was established in the m-EPs after modification. Compared with the unmodified EPs, the supercooling degree of the m-EPs reduced by about 3 °C, but the latent heats and initial decomposition temperatures increased by approximately 10% and 20 °C, respectively, which indicated an improvement in the thermal energy storage efficiency. The thermal conductivities of the m-EPs were 10 times higher than those of the pristine PEGs, which ensured a rapid responding to building temperature fluctuations.

  14. Smart Building: Decision Making Architecture for Thermal Energy Management

    PubMed Central

    Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  15. High performance solutions and data for nZEBs offices located in warm climates.

    PubMed

    Congedo, Paolo Maria; Baglivo, Cristina; Zacà, Ilaria; D Agostino, Delia

    2015-12-01

    This data article contains eleven tables supporting the research article entitled: Cost-Optimal Design For Nearly Zero Energy Office Buildings Located In Warm Climates [1]. The data explain the procedure of minimum energy performance requirements presented by the European Directive (EPBD) [2] to establish several variants of energy efficiency measures with the integration of renewable energy sources in order to reach nZEBs (nearly zero energy buildings) by 2020. This files include the application of comparative methodological framework and give the cost-optimal solutions for non-residential building located in Southern Italy. The data describe office sector in which direct the current European policies and investments [3], [4]. In particular, the localization of the building, geometrical features, thermal properties of the envelope and technical systems for HVAC are reported in the first sections. Energy efficiency measures related to orientation, walls, windows, heating, cooling, dhw and RES are given in the second part of the group; this data article provides 256 combinations for a financial and macroeconomic analysis.

  16. Weather Correlations to Calculate Infiltration Rates for U. S. Commercial Building Energy Models.

    PubMed

    Ng, Lisa C; Quiles, Nelson Ojeda; Dols, W Stuart; Emmerich, Steven J

    2018-01-01

    As building envelope performance improves, a greater percentage of building energy loss will occur through envelope leakage. Although the energy impacts of infiltration on building energy use can be significant, current energy simulation software have limited ability to accurately account for envelope infiltration and the impacts of improved airtightness. This paper extends previous work by the National Institute of Standards and Technology that developed a set of EnergyPlus inputs for modeling infiltration in several commercial reference buildings using Chicago weather. The current work includes cities in seven additional climate zones and uses the updated versions of the prototype commercial building types developed by the Pacific Northwest National Laboratory for the U. S. Department of Energy. Comparisons were made between the predicted infiltration rates using three representations of the commercial building types: PNNL EnergyPlus models, CONTAM models, and EnergyPlus models using the infiltration inputs developed in this paper. The newly developed infiltration inputs in EnergyPlus yielded average annual increases of 3 % and 8 % in the HVAC electrical and gas use, respectively, over the original infiltration inputs in the PNNL EnergyPlus models. When analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the newly developed infiltration inputs in EnergyPlus compared with using the original infiltration inputs. These results indicate that the effects of infiltration on HVAC energy use can be significant and that infiltration can and should be better accounted for in whole-building energy models.

  17. Two-phase working fluids for the temperature range 100-350 C. [in heat pipes for solar applications

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Tower, L.

    1977-01-01

    The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular, bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 to 350 C have been identified, and reflux heat pipe tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.

  18. Use of cost-effectiveness and comfort bases for selecting from among alternative envelope design strategies for a high-rise office building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, A.F.; Heerwagen, D.R.; Johnson, B.R.

    1981-01-01

    A continuing study of the thermal performance of a prototypical urban high-rise office building is reported. A series of alternative envelope compositions is evaluated in terms of occupant thermal comfort and benefit-cost issues. The thermal behavior of a perimeter single-person office with these envelopes is simulated using the computer program UWENSOL. Envelope variables included in the study are: percentage of glazing, types of glazing and glazing assemblies, and the mass and resistance of the opaque envelope. Annual energy consumptions are derived and, using a savings-to-investment ratio, the economic desirabilities of the various compositions are determined. Also, by employing the computermore » routine COMFORT which is based on the Fanger Comfort Equation, the extents of likely occupant comfort for the several envelopes are predicted.« less

  19. Interior thermal insulation systems for historical building envelopes

    NASA Astrophysics Data System (ADS)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  20. 10 CFR 434.516 - Building exterior envelope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Proposed Design, the envelope characteristics of the Proposed Design shall be used. 516.2 Infiltration. For Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1 When the HVAC system is switched “on,” no infiltration...

  1. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  2. The impact of heat blanketing envelopes on neutron stars cooling

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Yakovlev, D. G.; Fortin, M.; Haensel, P.; Zdunik, J. L.

    2017-11-01

    The goal of this work is to investigate the effects of chemical composition of heat blanketing envelopes of neutron stars on their thermal states and thermal evolution. To this purpose, we employ newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard “onion-like” envelope. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study cooling of neutron stars. We show that uncertainties in the chemical composition of the envelopes can lead up to ~ 2.5 times uncertainty of the internal temperature of the star which significantly complicates theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  3. Applying energy-conservation retrofits to standard Army buildings: Data analysis and recommendations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westervelt, E.T.; Northup, G.R.; Lawrie, L.K.

    1990-09-01

    This report describes the data analysis and recommendations of a project demonstrating the energy performance of theoretically based retrofit packages on existing standard Army building at Fort Carson, CO. Four standard designs were investigated: a motor vehicle repair shop, the Type 64 (L-shaped) barracks, an enlisted personnel mess hall, and a two-company, rolling-pin-shaped barracks for enlisted personnel. The tested conservation measures included envelope and system modifications. Energy data were gathered and analyzed from 14 buildings. Based on measured savings and current costs of fuel and construction, none of the four original packages are life-cycle cost-effective at present, but two maymore » become effective in the near future. Of higher priority for energy and cost savings is the improvement of building operations, in particular heat production and distribution systems, which lack efficiency and control. Followup work at the L-shaped barracks yielded substantial savings, with a saving-to-investment ration of 5 to 1. Cost scenarios, energy models, and building were developed for the original retrofits to assess applicability elsewhere and in the future.« less

  4. Ultrathin Fluidic Laminates for Large‐Area Façade Integration and Smart Windows

    PubMed Central

    Heiz, Benjamin P. V.; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias

    2016-01-01

    Buildings represent more than 40% of Europe's energy demands and about one third of its CO2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass–glass fluidic devices are presented for large‐area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat‐panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state‐of‐the‐art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid. PMID:28331790

  5. Green buildings: Implications for acousticians

    NASA Astrophysics Data System (ADS)

    Noble, Michael R.

    2005-04-01

    This presentation will deal with the practical implications of green design protocols of the US Green Building Council on interior acoustics of buildings. Three areas of particular consequence to acousticians will be discussed. Ventilation Systems: reduced energy consumption goals dictate reliance on natural cooling and ventilation using ambient air when possible. The consequent large openings in the building envelope to bring fresh air into rooms, and similar sized openings to transfer the mixed air out, can severely compromise the noise isolation of the rooms concerned. Radiant Cooling: the heavy concrete floors of buildings can be used as a thermal flywheel to lessen the cooling load, which forces the concrete ceilings to be exposed to the occupied rooms for heat transfer, and strictly limits the application of acoustical absorption on the ceilings. This challenges the room acoustics design. Green Materials: the LEED protocols require the elimination of potentially harmful finishes, including fibrous materials which may impact air quality or contribute to health problems. Since the backbone of sound absorption is glass and mineral fibres, this further challenges provision of superior room acoustics. Examples and commentary will be provided based on current and recent projects.

  6. Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows.

    PubMed

    Heiz, Benjamin P V; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias; Wondraczek, Lothar

    2017-03-01

    Buildings represent more than 40% of Europe's energy demands and about one third of its CO 2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass-glass fluidic devices are presented for large-area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat-panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state-of-the-art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid.

  7. Design tools

    Treesearch

    Anton TenWolde; Mark T. Bomberg

    2009-01-01

    Overall, despite the lack of exact input data, the use of design tools, including models, is much superior to the simple following of rules of thumbs, and a moisture analysis should be standard procedure for any building envelope design. Exceptions can only be made for buildings in the same climate, similar occupancy, and similar envelope construction. This chapter...

  8. Preparation and Thermal Properties of Molecular-Bridged Expanded Graphite/Polyethylene Glycol Composite Phase Change Materials for Building Energy Conservation

    PubMed Central

    Zhang, Dong; Chen, Meizhu; Liu, Quantao; Hu, Jinxuan

    2018-01-01

    Using phase change materials (PCMs) in building envelopes became a reliable method to improve indoor comfort and reduce buildings’ energy consumption. This research developed molecular-bridged expanded graphite (EG)/polyethylene glycol (PEG) composite PCMs (m-EPs) to conserve energy in buildings. The m-EPs were prepared through a vacuum absorption technique, and a titanate coupling agent was used to build a molecular bridge between EG and PEG. SEM, mercury intrusion porosimetry (MIP), the leakage test, microcalorimetry, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) were conducted to characterize the morphology, pore structure, absorbability, and modifying effects of the m-EPs. The phase change temperature, latent heat, thermal stability, and thermal conductivity of the m-EPs were determined by a differential scanning calorimeter (DSC), TGA, and a thermal constants analyzer. Results showed that the maximum mass ratio of PEG to EG without leakage was 1:7, and a stable connection was established in the m-EPs after modification. Compared with the unmodified EPs, the supercooling degree of the m-EPs reduced by about 3 °C, but the latent heats and initial decomposition temperatures increased by approximately 10% and 20 °C, respectively, which indicated an improvement in the thermal energy storage efficiency. The thermal conductivities of the m-EPs were 10 times higher than those of the pristine PEGs, which ensured a rapid responding to building temperature fluctuations. PMID:29772728

  9. Two-Phase Working Fluids for the Temperature Range 50 to 350 C

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Owzarski, P. C.

    1977-01-01

    The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.

  10. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    NASA Astrophysics Data System (ADS)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and localization issues of 2D thermal image-based inspection, a new computer vision-based method is presented for automated 3D spatio-thermal modeling of building environments from images and localizing the thermal images into the 3D reconstructed scenes, which helps better characterize the as-is condition of existing buildings in 3D. By using these models, auditors can conduct virtual walk-through in buildings and explore the as-is condition of building geometry and the associated thermal conditions in 3D. Second, to address the challenges in qualitative and subjective interpretation of visual data, a new model-based method is presented to convert the 3D thermal profiles of building environments into their associated energy performance metrics. More specifically, the Energy Performance Augmented Reality (EPAR) models are formed which integrate the actual 3D spatio-thermal models ('as-is') with energy performance benchmarks ('as-designed') in 3D. In the EPAR models, the presence and location of potential energy problems in building environments are inferred based on performance deviations. The as-is thermal resistances of the building assemblies are also calculated at the level of mesh vertex in 3D. Then, based on the historical weather data reflecting energy load for space conditioning, the amount of heat transfer that can be saved by improving the as-is thermal resistances of the defective areas to the recommended level is calculated, and the equivalent energy cost for this saving is estimated. The outcome provides building practitioners with unique information that can facilitate energy efficient retrofit decision-makings. This is a major departure from offhand calculations that are based on historical cost data of industry best practices. Finally, to improve the reliability of BIM-based energy performance modeling and analysis for existing buildings, a new model-based automated method is presented to map actual thermal resistance measurements at the level of 3D vertexes to the associated BIM elements and update their corresponding thermal properties in the gbXML schema. By reflecting the as-is building condition in the BIM-based energy modeling process, this method bridges over the gap between the architectural information in the as-designed BIM and the as-is building condition for accurate energy performance analysis. The performance of each method was validated on ten case studies from interiors and exteriors of existing residential and instructional buildings in IL and VA. The extensive experimental results show the promise of the proposed methods in addressing the fundamental challenges of (1) visual sensing : scaling 2D visual assessments to real-world building environments and localizing energy problems; (2) analytics: subjective and qualitative assessments; and (3) BIM-based building energy analysis : a lack of procedures for reflecting the as-is building condition in the energy modeling process. Beyond the technical contributions, the domain expert surveys conducted in this dissertation show that the proposed methods have potential to improve the quality of thermographic inspection processes and complement the current building energy analysis tools.

  11. Field Trial of an Aerosol-Based Enclosure Sealing Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, Curtis; Springer, David

    2015-09-01

    This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automaticallymore » verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology.« less

  12. Climate-Specific Passive Building Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Graham S.; Klingenberg, Katrin

    2015-07-01

    Passive design principles (super insulation, airtight envelopes, elimination of thermal bridges, etc.) - pioneered in North America in the 70s and 80s and refined in Europe in the 90s have proven to be universally effective to significantly reduce heating and cooling loads. However, a single, rigid performance metric developed in Germany has led to limited uptake of passive building principles in many regions of the United States. It has also, in many cases, promoted some design decisions that had negative effects on economic feasibility and thermal comfort. This study's main objective is to validate (in a theoretical sense) verifiable, climate-specificmore » passive standards and space conditioning criteria that retain ambitious, environmentally-necessary energy reduction targets and are economically feasible, such standards provide designers an ambitious but achievable performance target on the path to zero.« less

  13. Intermediate Temperature Fluids Life Tests - Experiments

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Bonner, Richard W.; Dussinger, Peter M.; Hartenstine, John R.; Sarraf, David B.; Locci, Ivan E.

    2007-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 725 K (170 to 450 C), including space nuclear power system radiators, fuel cells, and high temperature electronics cooling. Historically, water has been used in heat pipes at temperatures up to about 425 K (150 C). Recent life tests, updated below, demonstrate that titanium/water and Monel/water heat pipes can be used at temperatures up to 550 K (277 C), due to water's favorable transport properties. At temperatures above roughly 570 K (300 C), water is no longer a suitable fluid, due to high vapor pressure and low surface tension as the critical point is approached. At higher temperatures, another working fluid/envelope combination is required, either an organic or halide working fluid. An electromotive force method was used to predict the compatibility of halide working fluids with envelope materials. This procedure was used to reject aluminum and aluminum alloys as envelope materials, due to their high decomposition potential. Titanium and three corrosion resistant superalloys were chosen as envelope materials. Life tests were conducted with these envelopes and six different working fluids: AlBr3, GaCl3, SnCl4, TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3 was incompatible. As the temperature approaches 725 K (450 C), cesium is a potential heat pipe working fluid. Life tests results are also presented for cesium/Monel 400 and cesium/70-30 copper/nickel heat pipes operating near 750 K (477 C). These materials are not suitable for long term operation, due to copper transport from the condenser to the evaporator.

  14. Analyzing the effect of the longwave emissivity and solar reflectance of building envelopes on energy-saving in buildings in various climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhiyang; Zhang, Xiong

    A dynamic computer simulation is carried out in the climates of 35 cities distributed around the world. The variation of the annual air-conditioning energy loads due to changes in the longwave emissivity and the solar reflectance of the building envelopes is studied to find the most appropriate exterior building finishes in various climates (including a tropical climate, a subtropical climate, a mountain plateau climate, a frigid-temperate climate and a temperate climate). Both the longwave emissivity and the solar reflectance are set from 0.1 to 0.9 with an interval of 0.1 in the simulation. The annual air-conditioning energy loads trends ofmore » each city are listed in a chart. The results show that both the longwave emissivity and the solar reflectance of building envelopes play significant roles in energy-saving for buildings. In tropical climates, the optical parameters of the building exterior surface affect the building energy-saving most significantly. In the mountain plateau climates and the subarctic climates, the impacts on energy-saving in buildings due to changes in the longwave emissivity and the solar reflectance are still considerable, but in the temperate continental climates and the temperate maritime climates, only limited effects are seen. (author)« less

  15. An Analytical Investigation of the Heat Losses from a U.S. Navy K-Type Airship

    NASA Technical Reports Server (NTRS)

    Hillendahl, Wesley H.; George, Ralph E.

    1946-01-01

    The heat losses from the envelope surface of a U.S. Navy K-type airship are evaluated to determine if the use of heat is a feasible means of preventing ice and snow accumulations on lighter-than-air craft during flight and when moored uncovered. Consideration is given to heat losses in clear air (no liquid water present in the atmosphere) and in probable conditions of icing and snow. The results of the analysis indicate that the amount of heat required in flight to raise the surface temperature of the entire envelope to the extent considered adequate for ice protection, based on experience with tests of heavier-than-air craft, is very large. Existing types of heating equipment which could be used to supply this quantity of heat would probably be too bulky and heavy to provide a practical flight installation. The heat requirements to provide protection for the nose and stern regions in assumed mild to moderate icing conditions appear to be within the range of the capacity of current types of heating equipment suitable for flight use. The amount of heat necessary to prevent snow accumulations on the upper surface of the airship envelope when moored uncovered under all conditions appear to be excessive for the heating equipment presently available for flight use, but could possibly be achieved with auxiliary ground heating equipment.

  16. Application of large-area chromogenics to architectural glazings

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen E.

    1990-03-01

    Glass plays a significant role in the design of building envelopes today. Since its emergence during the last century as a major building material, glass has evolved into an ubiquitous and versatile building design element, performing functions today that would have been unimaginable a few years ago. The optical clarity and transparency of glass that we take for granted is one of its most unique features. Glass windows keep out the cold wind and rain without blocking the view, but also perform many more complex functions which require variable properties and tradeoffs between conflicting conditions. The glazing that provides view must also provide visual privacy at other times and must sometimes become totally opaque (for audiovisual shows, for example). Transparent glass admits daylight, providing good color rendition and offsetting electric lighting energy needs, but it can also create discomfort and disability glare conditions. The sun provides desirable warmth in winter but its heat is unwelcome in summer when it contributes to thermal discomfort and cooling energy requirements. And glass is an important element in the appearance and aesthetics of a building, both interior and exterior.

  17. A heat transfer model for a hot helium airship

    NASA Astrophysics Data System (ADS)

    Rapert, R. M.

    1987-06-01

    Basic heat transfer empirical and analytic equations are applied to a double envelope airship concept which uses heated Helium in the inner envelope to augment and control gross lift. The convective and conductive terms lead to a linear system of five equations for the concept airship, with the nonlinear radiation terms included by an iterative solution process. The graphed results from FORTRAN program solutions are presented for the variables of interest. These indicate that a simple use of airship engine exhaust heat gives more than a 30 percent increase in gross airship lift. Possibly more than 100 percent increase can be achieved if a 'stream injection' heating system, with associated design problems, is used.

  18. Thermal performance of phase change wallboard for residential cooling application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.; Stetiu, C.

    1997-04-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two importantmore » advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.« less

  19. A rule-based expert system applied to moisture durability of building envelopes

    DOE PAGES

    Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.; ...

    2018-01-09

    The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less

  20. A rule-based expert system applied to moisture durability of building envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.

    The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less

  1. Free-cooling: A total HVAC design concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janeke, C.E.

    1982-01-01

    This paper discusses a total ''free cooling'' HVAC design concept in which mechanical refrigeration is practically obviated via the refined application of existing technological strategies and a new diffuser terminal. The principles being applied are as follows; Thermal Swing: This is the active contribution of programmed heat storage to overall HVAC system performance. Reverse Diffuser: This is a new air terminal design that facilitates manifesting the thermal storage gains. Developing the thermal storage equation system into a generalized simulation model, optimizing the thermal storage and operating strategies with a computer program and developing related algorithms are subsequently illustrated. Luminair Aspiration:more » This feature provides for exhausting all luminair heat totally out of the building envelope, via an exhaust duct system and insulated boots. Two/Three-Stage Evaporative Cooling: This concept comprises a system of air conditioning that entails a combination of closed and open loop evaporative cooling with standby refrigeration only.« less

  2. Treatment envelope evaluation in transcranial magnetic resonance-guided focused ultrasound utilizing 3D MR thermometry

    PubMed Central

    2014-01-01

    Background Current clinical targets for transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) are all located close to the geometric center of the skull convexity, which minimizes challenges related to focusing the ultrasound through the skull bone. Non-central targets will have to be reached to treat a wider variety of neurological disorders and solid tumors. Treatment envelope studies utilizing two-dimensional (2D) magnetic resonance (MR) thermometry have previously been performed to determine the regions in which therapeutic levels of FUS can currently be delivered. Since 2D MR thermometry was used, very limited information about unintended heating in near-field tissue/bone interfaces could be deduced. Methods In this paper, we present a proof-of-concept treatment envelope study with three-dimensional (3D) MR thermometry monitoring of FUS heatings performed in a phantom and a lamb model. While the moderate-sized transducer used was not designed for transcranial geometries, the 3D temperature maps enable monitoring of the entire sonication field of view, including both the focal spot and near-field tissue/bone interfaces, for full characterization of all heating that may occur. 3D MR thermometry is achieved by a combination of k-space subsampling and a previously described temporally constrained reconstruction method. Results We present two different types of treatment envelopes. The first is based only on the focal spot heating—the type that can be derived from 2D MR thermometry. The second type is based on the relative near-field heating and is calculated as the ratio between the focal spot heating and the near-field heating. This utilizes the full 3D MR thermometry data achieved in this study. Conclusions It is shown that 3D MR thermometry can be used to improve the safety assessment in treatment envelope evaluations. Using a non-optimal transducer, it is shown that some regions where therapeutic levels of FUS can be delivered, as suggested by the first type of envelope, are not necessarily safely treated due to the amount of unintended near-field heating occurring. The results presented in this study highlight the need for 3D MR thermometry in tcMRgFUS. PMID:25343028

  3. Preparation of fine powdered composite for latent heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particlemore » size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.« less

  4. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong Kong. A sample database of 20 existing commercial buildings was established for further analysis of building energy use. Heat gains through building envelopes were reviewed with reference to fundamental theory behind as well as the heat transfer equations presented in the literature. The prevailing methodologies of cooling load estimation and energy calculation were studied. Building energy auditing methods were discussed with reference to the local practice as well as international standards and guides. The common procedures of building energy auditing with three stages were outlined: historical data collection/analysis, preliminary site survey, and detailed energy consumption investigation. A typical commercial building was selected for detailed study of energy use by MVAC systems. (Abstract shortened by UMI.)

  5. On the application of a new thermal diagnostic model: the passive elements equivalent in term of ventilation inside a room

    NASA Astrophysics Data System (ADS)

    El Khattabi, El Mehdi; Mharzi, Mohamed; Raefat, Saad; Meghari, Zouhair

    2018-05-01

    In this paper, the thermal equivalence of the passive elements of a room in a building located in Fez-Morocco has been studied. The possibility of replacing them with a semi-passive element such as ventilation has been appraised. For this aim a Software in Fortran taking into account the meteorological external conditions along with different parameters of the building envelope has been performed. A new computational approach is adapted to determinate the temperature distribution throughout the building multilayer walls. A novel equation gathering the internal temperature with the external conditions, and the building envelope has been deduced in transient state.

  6. Thermodynamic modeling of the solar wind plasma in the presence of envelope-modulated low-frequency Alfvén waves

    NASA Astrophysics Data System (ADS)

    Nariyuki, Y.

    2018-06-01

    Alfvénic fluctuation is a typical state of the solar wind turbulence. Due to its finite amplitude and envelope modulation, the Alfvénic fluctuation becomes compressible. In the present study, an analytical model of the specific heat ratio in the presence of envelope-modulated Alfvén waves is derived. Ion kinetic effects are modeled by using a semi-ideal (perfect) gas model, in which the specific heat ratio depends on temperature. It is shown that the fourth order polynomial approximation is in good agreement with the kinetic theory. The resultant model is also applied to the fast solar wind plasma.

  7. The efficiency of convective energy transport in the sun

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.

  8. Thermal Simulation of a Zero Energy Glazed Pavilion in Sofia, Bulgaria. New Strategies for Energy Management by Means of Water Flow Glazing

    NASA Astrophysics Data System (ADS)

    del Ama Gonzalo, Fernando; Hernandez Ramos, Juan A.; Moreno, Belen

    2017-10-01

    The building sector is primarily responsible for a major part of total energy consumption. The European Energy Performance of Buildings Directives (EPBD) emphasized the need to reduce the energy consumption in buildings, and put forward the rationale for developing Near to Zero Energy Buildings (NZEB). Passive and active strategies help architects to minimize the use of active HVAC systems, taking advantage of the available natural resources such as solar radiation, thermal variability and daylight. The building envelope plays a decisive role in passive and active design strategies. The ideal transparent façade would be one with optical properties, such as Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT), that could readily adapt in response to changing climatic conditions or occupant preferences. The aim of this article consists of describing the system to maintain a small glazed pavilion located in Sofia (Bulgaria) at the desired interior temperature over a whole year. The system comprises i) the use of Water Flow Glazing facades (WFG) and Radiant Interior Walls (RIW), ii) the use of free cooling devices along with traditional heat pump connected to photo-voltaic panels and iii) the use of a new Energy Management System that collects data and acts accordingly by controlling all components. The effect of these strategies and the use of active systems, like Water Flow Glazing, are analysed by means of simulating the prototype over one year. Summer and Winter energy management strategies are discussed in order to change the SHGC value of the Water Flow Glazing and thus, reduce the required energy to maintain comfort conditions.

  9. Building thermography as a tool in energy audits and building commissioning procedure

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo

    2007-04-01

    A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

  10. BUILDING ENVELOPE OPTIMIZATION USING EMERGY ANALYSIS

    EPA Science Inventory

    Energy analysis is an integral component of sustainable building practices. Energy analysis coupled with optimization techniques may offer solutions for greater energy efficiency over the lifetime of the building. However, all such computationsemploy the energy used for operation...

  11. Predictive model for CO2 generation and decay in building envelopes

    NASA Astrophysics Data System (ADS)

    Aglan, Heshmat A.

    2003-01-01

    Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.

  12. Lamp bulb with integral reflector

    DOEpatents

    Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.

    2001-01-01

    An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.

  13. Overheating risk assessment of naturally ventilated classroom under the influence of climate change in hot and humid region

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Tsang

    2013-04-01

    Natural ventilation (NV) is considered one of the passive building strategies used for reducing cooling energy demand. The utilization of nature wind for cooling down indoor thermal environment to reach thermal comfort requires knowledge of adequately positioning the building fenestrations, designing inlet-outlet related opening ratios, planning unobstructed cross ventilation paths, and, the most important, assessing the utilization feasibility base on local climatic variables. Furthermore, factors that influence the indoor thermal condition include building envelope heat gain, indoor air velocity, indoor heat gain (e.g. heat discharges from occupant's body, lighting fixture, electrical appliances), and outdoor climate. Among the above, the indoor thermal performance of NV building is significantly dependent to outdoor climate conditions. In hot and humid Taiwan, under college school classrooms are usually operated in natural ventilation mode and are more vulnerable to climate change in regard to maintain indoor thermal comfort. As climate changes in progress, NV classrooms would expect to encounter more events of overheating in the near future, which result in more severe heat stress, and would risk the utilization of natural ventilation. To evaluate the overheating risk under the influence of recent climate change, an actual top floor elementary school classroom with 30 students located at north Taiwan was modeled. Long-term local hourly meteorological data were gathered and further constructed into EnergyPlus Weather Files (EPWs) format for building thermal dynamic simulation to discuss the indoor thermal environmental variation during the period of 1998 to 2012 by retrospective simulation. As indoor thermal environment is an overall condition resulting from a series combination of various factors, sub-hourly building simulation tool, EnergyPlus, coupled with the above fifteen years' EPWs was adopted to predict hourly indoor parameters of mean radiant temperature, air velocity, dry-bulb temperature and relative humidity. These physical quantities are crucial for calculating the thermal indices such as Physiological Equivalent Temperature (PET), New Standard Effective Temperature (SET*), and operative temperature (OT), which were subsequently being used for assessing thermal discomfort. Occurrences and the severity of overheating were assessed by observing the number of hours that surmount the upper limit of the adaptive thermal model proposed by ASHRAE Standard 55 (American Society of Heating, Refrigerating and Air-conditioning Engineers Standard) base on ISO 7730 method to characterize long term indoor thermal discomfort. Preliminary result show that although the degree of increase in overheating risk of NV classrooms was mild, there is a trend revealing that both the occurrences and the severity of thermal discomfort were gradually rising. The study also proposed several building renovation strategies for adapting the climate change to alleviate overheating situation. Efficiencies of these recommended strategies were also analyzed by simulating with the hottest year in comparison with the coldest year.

  14. Operative air temperature data for different measures applied on a building envelope in warm climate.

    PubMed

    Baglivo, Cristina; Congedo, Paolo Maria

    2018-04-01

    Several technical combinations have been evaluated in order to design high energy performance buildings for the warm climate. The analysis has been developed in several steps, avoiding the use of HVAC systems. The methodological approach of this study is based on a sequential search technique and it is shown on the paper entitled "Envelope Design Optimization by Thermal Modeling of a Building in a Warm Climate" [1]. The Operative Air Temperature trends (TOP), for each combination, have been plotted through a dynamic simulation performed using the software TRNSYS 17 (a transient system simulation program, University of Wisconsin, Solar Energy Laboratory, USA, 2010). Starting from the simplest building configuration consisting of 9 rooms (equal-sized modules of 5 × 5 m 2 ), the different building components are sequentially evaluated until the envelope design is optimized. The aim of this study is to perform a step-by-step simulation, simplifying as much as possible the model without making additional variables that can modify their performances. Walls, slab-on-ground floor, roof, shading and windows are among the simulated building components. The results are shown for each combination and evaluated for Brindisi, a city in southern Italy having 1083 degrees day, belonging to the national climatic zone C. The data show the trends of the TOP for each measure applied in the case study for a total of 17 combinations divided into eight steps.

  15. Builders Challenge High Performance Builder Spotlight: Yavapai College, Chino Valley, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-12-22

    Building America Builders Challenge fact sheet on Yavapai College of Chino Valley, Arizona. These college students built a Building America Builders Challenge house that achieved the remarkably low HERS score of -3 and achieved a tight building envelope.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the buildingmore » envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, the Consortium for Advanced Residential Buildings team monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.« less

  17. Final Technical Report. Training in Building Audit Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosemer, Kathleen

    In 2011, the Tribe proposed and was awarded the Training in Building Audit Technologies grant from the DOE in the amount of $55,748 to contract for training programs for infrared cameras, blower door technology applications and building systems. The coursework consisted of; Infrared Camera Training: Level I - Thermal Imaging for Energy Audits; Blower Door Analysis and Building-As-A-System Training, Building Performance Institute (BPI) Building Analyst; Building Envelope Training, Building Performance Institute (BPI) Envelope Professional; and Audit/JobFLEX Tablet Software. Competitive procurement of the training contractor resulted in lower costs, allowing the Tribe to request and receive DOE approval to additionally purchasemore » energy audit equipment and contract for residential energy audits of 25 low-income Tribal Housing units. Sault Tribe personnel received field training to supplement the classroom instruction on proper use of the energy audit equipment. Field experience was provided through the second DOE energy audits grant, allowing Sault Tribe personnel to join the contractor, Building Science Academy, in conducting 25 residential energy audits of low-income Tribal Housing units.« less

  18. Cooling season performance of an earth-sheltered office/dormitory building in Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.E.

    1984-07-01

    Detailed hourly measurements taken in and around an underground office-dormitory building for two summers document energy savings; whole building-component interface problems; and specific cooling contributions from earth contact, interior thermal mass, and an economizer. The Joint Institute Dormitory (JID) saves about 30% compared with well-built above-grade buildings in a climate typical of Oak Ridge, Tennessee, and has the potential to save as much as 50%. The detailed measurements, which include extensive thermal comfort data, indicate that at least 90% of the occupants are comfortable all of the time. The thermal performance measurements and analysis determine that the peak cooling requirementmore » of this building is 50% less than that of well-built above-grade structures, permitting a cost savings on installed cooling capacity. The dominant building components contributing to the good thermal performance are the structural thermal mass, the earth-covered roof, and the earth contact provided by the bermed walls and slab floor. The 372-m/sup 2/ (4000 gross ft/sup 2/) building used about $300 (at 5.7 cents/kWh) to cool and ventilate from May through September. Eliminating a number of building design and construction anomalies could improve the whole-building performance and reduce the seasonal cooling cost another $85. Close examination of the thermal performance of this building revealed that a very efficient heat pump and thermally sound envelope do not necessarily produce otpimum performance without careful attention given to component interface details. 8 references, 24 figures, 12 tables.« less

  19. Energy conservation for housing: A workbook

    NASA Astrophysics Data System (ADS)

    1982-05-01

    Multifamily housing project managers can reduce their energy costs from 30 to 60 percent by capitalizing on a variety of energy conservation opportunities (ECO's) identified in HUD research on the physical condition of public housing stock. This workbook prepares managers for this planning and for making individualized energy audits. It provides all the materials they need to proceed, including analysis sheets for calculating costs - benefit and payback periods for each of the 50 ECO's described. The ECO's listed all into four general categories: architectural improvements to the energy design of the building envelope; heating system ECO's to increase energy efficiency; secondary ECO's related to the domestic water supply, air conditioning systems, and central laundry equipment; and electric system ECO's reducing utility surcharges and increasing light bulb efficiency.

  20. NASA Glenn Steady-State Heat Pipe Code Users Manual, DOS Input. Version 2

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.

    2000-01-01

    The heat pipe code LERCHP has been revised, corrected, and extended. New features include provisions for pipes with curvature and bends in "G" fields. Heat pipe limits are examined in detail and limit envelopes are shown for some sodium and lithium-filled heat pipes. Refluxing heat pipes and gas-loaded or variable conductance heat pipes were not considered.

  1. Health outcomes and green renovation of affordable housing.

    PubMed

    Breysse, Jill; Jacobs, David E; Weber, William; Dixon, Sherry; Kawecki, Carol; Aceti, Susan; Lopez, Jorge

    2011-01-01

    This study sought to determine whether renovating low-income housing using "green" and healthy principles improved resident health and building performance. We investigated resident health and building performance outcomes at baseline and one year after the rehabilitation of low-income housing using Enterprise Green Communities green specifications, which improve ventilation; reduce moisture, mold, pests, and radon; and use sustainable building products and other healthy housing features. We assessed participant health via questionnaire, provided Healthy Homes training to all participants, and measured ventilation, carbon dioxide, and radon. Adults reported statistically significant improvements in overall health, asthma, and non-asthma respiratory problems. Adults also reported that their children's overall health improved, with significant improvements in non-asthma respiratory problems. Post-renovation building performance testing indicated that the building envelope was tightened and local exhaust fans performed well. New mechanical ventilation was installed (compared with no ventilation previously), with fresh air being supplied at 70% of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers standard. Radon was < 2 picocuries per liter of air following mitigation, and the annual average indoor carbon dioxide level was 982 parts per million. Energy use was reduced by 45% over the one-year post-renovation period. We found significant health improvements following low-income housing renovation that complied with green standards. All green building standards should include health requirements. Collaboration of housing, public health, and environmental health professionals through integrated design holds promise for improved health, quality of life, building operation, and energy conservation.

  2. Health Outcomes and Green Renovation of Affordable Housing

    PubMed Central

    Breysse, Jill; Jacobs, David E.; Weber, William; Dixon, Sherry; Kawecki, Carol; Aceti, Susan; Lopez, Jorge

    2011-01-01

    Objective This study sought to determine whether renovating low-income housing using “green” and healthy principles improved resident health and building performance. Methods We investigated resident health and building performance outcomes at baseline and one year after the rehabilitation of low-income housing using Enterprise Green Communities green specifications, which improve ventilation; reduce moisture, mold, pests, and radon; and use sustainable building products and other healthy housing features. We assessed participant health via questionnaire, provided Healthy Homes training to all participants, and measured ventilation, carbon dioxide, and radon. Results Adults reported statistically significant improvements in overall health, asthma, and non-asthma respiratory problems. Adults also reported that their children's overall health improved, with significant improvements in non-asthma respiratory problems. Post-renovation building performance testing indicated that the building envelope was tightened and local exhaust fans performed well. New mechanical ventilation was installed (compared with no ventilation previously), with fresh air being supplied at 70% of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers standard. Radon was <2 picocuries per liter of air following mitigation, and the annual average indoor carbon dioxide level was 982 parts per million. Energy use was reduced by 45% over the one-year post-renovation period. Conclusions We found significant health improvements following low-income housing renovation that complied with green standards. All green building standards should include health requirements. Collaboration of housing, public health, and environmental health professionals through integrated design holds promise for improved health, quality of life, building operation, and energy conservation. PMID:21563714

  3. Trends in shuttle entry heating from the correction of flight test maneuvers

    NASA Technical Reports Server (NTRS)

    Hodge, J. K.

    1983-01-01

    A new technique was developed to systematically expand the aerothermodynamic envelope of the Space Shuttle Protection System (TPS). The technique required transient flight test maneuvers which were performed on the second, fourth, and fifth Shuttle reentries. Kalman filtering and parameter estimation were used for the reduction of embedded thermocouple data to obtain best estimates of aerothermal parameters. Difficulties in reducing the data were overcome or minimized. Thermal parameters were estimated to minimize uncertainties, and heating rate parameters were estimated to correlate with angle of attack, sideslip, deflection angle, and Reynolds number changes. Heating trends from the maneuvers allow for rapid and safe envelope expansion needed for future missions, except for some local areas.

  4. Demand controlled ventilating systems: Sensor market survey. Energy conservation in buildings and community systems programme, annex 18, December 1991

    NASA Astrophysics Data System (ADS)

    Raatschen, W.; Sjoegren, M.

    The subject of indoor and outdoor air quality has generated a great deal of attention in many countries. Areas of concern include outgassing of building materials as well as occupant-generated pollutants such as carbon dioxide, moisture, and odors. Progress has also been made towards addressing issues relating to the air tightness of the building envelope. Indoor air quality studies indicate that better control of supply flow rates as well as the air distribution pattern within buildings are necessary. One method of maintaining good indoor air quality without extensive energy consumption is to control the ventilation rate according to the needs and demands of the occupants, or to preserve the building envelope. This is accomplished through the use of demand controlled ventilating (DCV) systems. The specific objective of Annex 18 is to develop guidelines for demand controlled ventilating systems based on state of the art analyses, case studies on ventilation effectiveness, and proposed ventilation rates for different users in domestic, office, and school buildings.

  5. Lea's Pies

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center worked with a pie company owner to develop an inexpensive container that would protect pies and keep them in a near frozen condition for shipping in 48 hours. A NASA engineer made a thermal barrier envelope from a metalized mylar called 'space blanket material,' developed during the Apollo era. The envelope protects the pies from heat transfer. Pictured, a NASA engineer removes the temperature logger from a pecan pie shipped to him in a prototype envelope.

  6. Intermediate Temperature Fluids Life Tests - Theory

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.

    2008-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.

  7. Laboratory Evaluation of Energy Recovery Ventilators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosar, D.

    Over the years, building scientists have characterized the relationship between building airtightness, exhaust-only appliances airflows, and building depressurization. Now, as the use of deep retrofit measures and new construction practices is growing to realize lower infiltration levels in increasingly tighter envelopes, performance issues can arise with the operation of exhaust-only appliances in a depressurized home. As the depressurization levels climb in tighter homes, many of these exhaust-only appliances see their rated airflows reduced and other related performance issues arise as a result. If sufficiently depressurized, atmospherically vented combustion appliances that may be present in the home can backdraft as well.more » Furthermore, when exhaust-only appliances operate and the tight home becomes depressurized, water vapor intrusion from outdoors can raise additional issues of mold in the building envelope in more humid climates.« less

  8. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics.

    PubMed

    Collignan, Bernard; Le Ponner, Eline; Mandin, Corinne

    2016-12-01

    A monitoring campaign was conducted on a sample of more than 3400 dwellings in Brittany, France from 2011 to 2014. The measurements were collected using one passive dosimeter per dwelling over two months during the heating season, according to the NF ISO 11665-8 (2013) standard. Moreover, building characteristics such as the period of construction, construction material, type of foundation, and thermal retrofit were determined using a questionnaire. The final data set consisted of 3233 houses with the measurement results and the questionnaire answers. Multivariate linear regression models were applied to explore the relationships between the indoor radon concentrations and building characteristics, particularly the thermal retrofit. The geometric mean of the indoor radon concentration was 155 Bq m -3 (with a geometric standard deviation of 3). The houses that had undergone a thermal retrofit had a higher average radon concentration than those that had not, which may have been due to a decrease in air permeability of the building envelope following rehabilitation work that did not systematically include proper management of the ventilation. Other building characteristics, primarily the building material and the foundation type, were associated with the indoor radon concentration. The indoor radon concentrations were higher in older houses built with granite or other stone, with a slab-on-grade foundation and without any ventilation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. DEEP: Database of Energy Efficiency Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit.« less

  10. Study of heat sink thermal protection systems for hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Vahl, W. A.; Edwards, C. L. W.

    1978-01-01

    The feasibility of using a single metallic heat sink thermal protection system (TPS) over a projected flight test program for a hypersonic research vehicle was studied using transient thermal analyses and mission performance calculations. Four materials, aluminum, titanium, Lockalloy, and beryllium, as well as several combinations, were evaluated. Influence of trajectory parameters were considered on TPS and mission performance for both the clean vehicle configuration as well as with an experimental scramjet mounted. From this study it was concluded that a metallic heat sink TPS can be effectively employed for a hypersonic research airplane flight envelope which includes dash missions in excess of Mach 8 and 60 seconds of cruise at Mach numbers greater than 6. For best heat sink TPS match over the flight envelope, Lockalloy and titanium appear to be the most promising candidates

  11. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Patrick; Im, Piljae

    2012-04-01

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first costmore » of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three parallel circuits - out and back), and the multiple instances of FHX and/or HGHX are all connected in series. The working fluid is 20% by weight propylene glycol in water. Model and design tool development was undertaken in parallel with constructing the houses, installing instrumentation, and monitoring performance for a year. Several detailed numerical models for FHX were developed as part of the project. Essentially the project team was searching for an energy performance model accurate enough to achieve project objectives while also having sufficient computational efficiency for practical use in EnergyPlus. A 3-dimensional, dual-coordinate-system, finite-volume model satisfied these criteria and was included in the October 2011 EnergyPlus Version 7 public release after being validated against measured data.« less

  12. Analysis of the Intra-City Variation of Urban Heat Island and its Relation to Land Surface/cover Parameters

    NASA Astrophysics Data System (ADS)

    Gerçek, D.; Güven, İ. T.; Oktay, İ. Ç.

    2016-06-01

    Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope, distance to sea, and traffic space density. These parameters that cause variation in intra-city temperatures were evaluated for their relationship with different grades of UHIs. Zonal statistics of UHI classes and variations in average value of parameters were interpreted. The outcomes that highlight local temperature peaks are proposed to the attention of the decision makers for mitigation of Urban Heat Island effect in the city at local and neighbourhood scale.

  13. Study of Material Densification of In718 in the Higher Throughput Parameter Regime

    NASA Technical Reports Server (NTRS)

    Cordner, Samuel

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this project is to characterize how heat treatment affects density and porosity from a microscopic point of view. This is performs using higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. Density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, and hatch spacing) and material consolidation (assessed in terms of density and porosity). The study also considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the higher energy parameter regime. Metallurgical evaluation of specimens will also be presented. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  14. Past, present and future of passive homes in solar village 3, Athens

    NASA Astrophysics Data System (ADS)

    Kalogridis, Achilles

    Solar village 3 in Pefki, Athens, was part of an ambitious program for the promotion of solar technology, applied to a large scale social housing scheme, designed in mid 80's and firstly inhabited in the early 1990's. Among the aims of the project was the demonstration of the latest of technology in active solar systems and passive techniques, incorporated in a new settlement's layout and houses' building envelop, in order to create an energy saving, comfortable environment. More than fifteen years later, the housing complex remains the largest residential development of bioclimatic "solar" architecture in Athens, with the active and passive solar systems providing space and water heating for about 1750 inhabitants. The study focuses in the passive solar systems that have been applied to a number of the buildings of the settlement. The systems provide space heating with no need of any active mechanism, however with demand of the participation of the end users for their proper operation. The essay reviews various previous studies, monitoring reports and criticisms that have appeared throughout the past years, and identifies how the houses perform today, through a recent survey, sample monitoring and thermal comfort simulation. The report records things that have changed, features which worked well or others that did not and comments on the residents' behaviour. Interesting findings come into question, regarding the passive solar systems, their integration into the building's design, their current condition and their contribution to energy savings and thermal comfort conditions. Finally, current plans concerning the future of the settlement are highlighted, and considerations about the houses sustainability are suggested.

  15. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.

    PubMed

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  16. Analysis of Building Envelope Insulation Performance Utilizing Integrated Temperature and Humidity Sensors

    PubMed Central

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529

  17. Optimal nonimaging integrated evacuated solar collector

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  18. RECS Data Show Decreased Energy Consumption per Household

    EIA Publications

    2012-01-01

    Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

  19. Nonthermal turbulent heating in the solar envelope.

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1973-01-01

    It is shown that MHD pulses, in the form of fast magnetosonic waves or solitons, can produce a strong electron-ion coupling capable of maintaining electron-proton temperature equilibrium in the solar envelope. The mechanism producing the nonthermal heating is the fluid-like modified two-stream instability, which, since it is essentially independent of the electron-proton temperature ratio and the value of beta, becomes a prime candidate for the anomalous collisions required by the fluid models inside a distance less than 30 solar radii, in order to explain the dominant features of the solar-wind flow.

  20. A Home Ignition Assessment Model Applied to Structures in the Wildland-Urban Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Werth, David; Gupta, Narendra

    2013-01-01

    The issue of exterior fire threat to buildings, from either wildfires in the wildland-urban interface or neighboring structure fires, is critically important. To address this, theWildfire Ignition Resistant Home Design (WIRHD) program was initiated. The WIRHD program developed a tool, theWildFIREWizard, that will allow homeowners to estimate the external fire threat to their homes based on specific features and characteristics of the homes and yards. The software then makes recommendations to reduce the threat. The inputs include the structural and material features of the home and information about any ignition sources or flammable objects in its immediate vicinity, known asmore » the home ignition zone. The tool comprises an ignition assessment model that performs explicit calculations of the radiant and convective heating of the building envelope from the potential ignition sources. This article describes a series of material ignition and flammability tests that were performed to calibrate and/or validate the ignition assessment model. The tests involved exposing test walls with different external siding types to radiant heating and/or direct flame contact.The responses of the test walls were used to determine the conditions leading to melting, ignition, or any other mode of failure of the walls. Temperature data were used to verify the model predictions of temperature rises and ignition times of the test walls.« less

  1. The Problem and Needs of Existing Urban Multifamily Building Estates in Poland

    NASA Astrophysics Data System (ADS)

    Rybka, Adam; Rybka, Sławomir

    2012-06-01

    The present paper explains in a descriptive way the findings and derivations, concerning the various needs, solutions and priorities which are identified in existing urban building envelopes of Poland, especially in Rzeszow housing estates.

  2. Analysis of Numerical Models for Dispersion of Chemical/Biological Agents in Complex Building Environments

    DTIC Science & Technology

    2004-11-01

    variation in ventilation rates over time and the distribution of ventilation air within a building, and to estimate the impact of envelope air ... tightening efforts on infiltration rates. • It may be used to determine the indoor air quality performance of a building before construction, and to

  3. 10 CFR 434.516 - Building exterior envelope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1When the HVAC system is switched “on,” no infiltration shall be assumed. When the HVAC system is switched “off,” the infiltration rate for buildings with or...

  4. 10 CFR 434.516 - Building exterior envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1When the HVAC system is switched “on,” no infiltration shall be assumed. When the HVAC system is switched “off,” the infiltration rate for buildings with or...

  5. 10 CFR 434.516 - Building exterior envelope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1When the HVAC system is switched “on,” no infiltration shall be assumed. When the HVAC system is switched “off,” the infiltration rate for buildings with or...

  6. 10 CFR 434.516 - Building exterior envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Prototype and Reference Buildings, the infiltration assumptions in subsection 516.2.1 shall be prescribed.... Infiltration shall impact perimeter zones only. 516.2.1When the HVAC system is switched “on,” no infiltration shall be assumed. When the HVAC system is switched “off,” the infiltration rate for buildings with or...

  7. Innovative Session 7. [Concurrent Innovative Session at AHRD Annual Conference, 2000.

    ERIC Educational Resources Information Center

    2000

    This document consists of two papers on theory building from a conference on human resource development (HRD). Both "Theory Building Research in HRD--Pushing the Envelope!" (Richard A. Swanson, Susan A. Lynham, Wendy E. A. Ruona, Richard J. Torraco) and "The Role of Theory Building in Maturing the Human Resource Development…

  8. Sustainable earth-based vs. conventional construction systems in the Mediterranean climate: Experimental analysis of thermal performance

    NASA Astrophysics Data System (ADS)

    Serrano, S.; de Gracia, A.; Pérez, G.; Cabeza, L. F.

    2017-10-01

    The building envelope has high potential to reduce the energy consumption of buildings according to the International Energy Agency (IEA) because it is involved along all the building process: design, construction, use, and end-of-life. The present study compares the thermal behavior of seven different building prototypes tested under Mediterranean climate: two of them were built with sustainable earth-based construction systems and the other five, with conventional brick construction systems. The tested earth-based construction systems consist of rammed earth walls and wooden green roofs, which have been adapted to contemporary requirements by reducing their thickness. In order to balance the thermal response, wooden insulation panels were placed in one of the earth prototypes. All building prototypes have the same inner dimensions and orientation, and they are fully monitored to register inner temperature and humidity, surface walls temperatures and temperatures inside walls. Furthermore, all building prototypes are equipped with a heat pump and an electricity meter to measure the electrical energy consumed to maintain a certain level of comfort. The experimentation was performed along a whole year by carrying out several experiments in free floating and controlled temperature conditions. This study aims at demonstrating that sustainable construction systems can behave similarly or even better than conventional ones under summer and winter conditions. Results show that thermal behavior is strongly penalized when rammed earth wall thickness is reduced. However, the addition of 6 cm of wooden insulation panels in the outer surface of the building prototype successfully improves the thermal response.

  9. Built-up outer wall and roofing sections for double walled envelope homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodhead, B.

    1980-01-01

    A site built system that uses the inner envelope wall is described. Blocking and vertical nailers are attached to this wall and sheathed with foil faced drywall to create the envelope cavity. An outer layer of 3 1/2 in. of Expended Poly Styrene provides continuous solid insulation. The trusses are also sheathed in foil faced drywall and insulated with 5 1/2 in. of E.P.S. This effectively surrounds the building with a continuous vapor and infiltration barrier. Construction details as well as cost breakdowns are presented.

  10. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costeux, Stephane; Bunker, Shanon

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand andmore » stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS), and efforts to drive cost down will help acceptance in residential and commercial retrofit and new construction.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Mullens, M.; Rath, P.

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysismore » of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less

  12. Spreadsheet Assessment Tool v. 2.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, David J.; Martinez, Ruben

    2016-03-03

    The Spreadsheet Assessment Tool (SAT) is an easy to use, blast assessment tool that is intended to estimate the potential risk due to an explosive attack on a blood irradiator. The estimation of risk is based on the methodology, assumptions, and results of a detailed blast effects assessment study that is summarized in Sandia National Laboratories Technical Report SAND2015-6166. Risk as defined in the report and as used in the SAT is: "The potential risk of creating an air blast-induced vent opening at a buildings envelope surface". Vent openings can be created at a buildings envelope through the failure ofmore » an exterior building component—like a wall, window, or door—due to an explosive sabotage of an irradiator within the building. To estimate risk, the tool requires that users obtain and input information pertaining to the building's characteristics and the irradiator location. The tool also suggests several prescriptive mitigation strategies that can be considered to reduce risk. Given the variability in civilian building construction practices, the input parameters used by this tool may not apply to all buildings being assessed. The tool should not be used as a substitute for engineering judgment. The tool is intended for assessment purposes only.« less

  13. A Fast Evaluation Method for Energy Building Consumption Based on the Design of Experiments

    NASA Astrophysics Data System (ADS)

    Belahya, Hocine; Boubekri, Abdelghani; Kriker, Abdelouahed

    2017-08-01

    Building sector is one of the effective consumer energy by 42% in Algeria. The need for energy has continued to grow, in inordinate way, due to lack of legislation on energy performance in this large consumer sector. Another reason is the simultaneous change of users’ requirements to maintain their comfort, especially summer in dry lands and parts of southern Algeria, where the town of Ouargla presents a typical example which leads to a large amount of electricity consumption through the use of air conditioning. In order to achieve a high performance envelope of the building, an optimization of major parameters building envelope is required, using design of experiments (DOE), can determine the most effective parameters and eliminate the less importance. The study building is often complex and time consuming due to the large number of parameters to consider. This study focuses on reducing the computing time and determines the major parameters of building energy consumption, such as area of building, factor shape, orientation, ration walls to windows …etc to make some proposal models in order to minimize the seasonal energy consumption due to air conditioning needs.

  14. Dealing with the increased radon concentration in thermally retrofitted buildings.

    PubMed

    Jiránek, M; Kačmaříková, V

    2014-07-01

    The influence of energy-saving measures on indoor radon concentration has been studied on the basis of a family house made of clinker concrete wall panels containing from 1000 up to 4000 Bq kg(-1) of 226Ra. Thermal retrofitting based on installing external thermal insulation composite system on the building envelope and replacing existing windows by new ones decreased the annual energy need for heating 2.8 times, but also reduced the ventilation rate to values<0.1 h(-1). As a consequence, the 1-y average indoor radon concentration values increased 3.4 times from 337 to 1117 Bq m(-3). The additional risk of lung cancer in the thermally retrofitted house increased to a value that is 125 % higher than before conversion. Methods for dealing with this enhanced risk by increasing the ventilation rate are discussed. Recovery of investments and the energy consequences of increased ventilation are studied in a long-term perspective. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Measuring Thermal Performance of Building Envelopes: Nine Case Studies,

    DTIC Science & Technology

    1985-03-01

    inch P/B = 11.36, present worth factor for an es- of expanded polystyrene insulation) to the build- calating series for a 15-year period ing exterior...inch of The one MCA building roof we measured was a expanded polystyrene at R-3.6 per inch. Where the cathedral system with a sloped built-up roofing

  16. Post Occupancy energy evaluation of Ronald Tutor Hall using eQUEST; Computer based simulation of existing building and comparison of data

    NASA Astrophysics Data System (ADS)

    Dulom, Duyum

    Buildings account for about 40 percent of total U.S. energy consumption. It is therefore important to shift our focus on important measures that can be taken to make buildings more energy efficient. With the rise in number of buildings day by day and the dwindling resources, retrofitting buildings is the key to an energy efficiency future. Post occupancy evaluation (POE) is an important tool and is ideal for the retrofitting process. POE would help to identify the problem areas in the building and enable researchers and designers to come up with solutions addressing the inefficient energy usage as well as the overall wellbeing of the users of the building. The post occupancy energy evaluation of Ronald Tutor Hall (RTH) located at the University of Southern California is one small step in that direction. RTH was chosen to study because; (a) relatively easy access to the building data (b) it was built in compliance with Title 24 2001 and (c) it was old enough to have post occupancy data. The energy modeling tool eQuest was used to simulate the RTH building using the background information of the building such as internal thermal comfort profile, occupancy profile, building envelope profile, internal heat gain profile, etc. The simulation results from eQuest were then compared with the actual building recorded data to verify that our simulated model was behaving similar to the actual building. Once we were able to make the simulated model behave like the actual building, changes were made to the model such as installation of occupancy sensor in the classroom & laboratories, changing the thermostat set points and introducing solar shade on northwest and southwest facade. The combined savings of the proposed interventions resulted in a 6% savings in the overall usage of energy.

  17. Low heat-leak cryogenic envelope

    DOEpatents

    DeHaan, James R.

    1976-10-19

    A plurality of cryogenic envelope sections are joined together to form a power transmission line. Each of the sections is comprised of inner and outer tubes having multilayer metalized plastic spirally wrapped within a vacuum chamber formed between the inner and outer tubes. A refrigeration tube traverses the vacuum chamber, but exits one section and enters another through thermal standoffs for reducing heat-leak from the outer tube to the refrigeration tube. The refrigeration tube passes through a spirally wrapped shield within each section's vacuum chamber in a manner so that the refrigeration tube is in close thermal contact with the shield, but is nevertheless slideable with respect thereto.

  18. Energy Use Consequences of Ventilating a Net-Zero Energy House

    PubMed Central

    Ng, Lisa C.; Payne, W. Vance

    2016-01-01

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery. PMID:26903776

  19. Energy Use Consequences of Ventilating a Net-Zero Energy House.

    PubMed

    Ng, Lisa C; Payne, W Vance

    2016-03-05

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery.

  20. 37 CFR 360.4 - Compliance with statutory dates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to the Copyright Office Public Information Office, in the James Madison Memorial Building, Room LM... Congress, James Madison Memorial Building, 101 Independence Avenue, SE., Washington, DC 20559-6000. Claims... envelope must be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial...

  1. 37 CFR 360.13 - Compliance with statutory dates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... delivered to the Copyright Office Public Information Office, in the James Madison Memorial Building, Room LM... Congress, James Madison Memorial Building, 101 Independence Avenue, SE., Washington, DC 20559-6000. Claims... envelope must be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial...

  2. 37 CFR 360.13 - Compliance with statutory dates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... delivered to the Copyright Office Public Information Office, in the James Madison Memorial Building, Room LM... Congress, James Madison Memorial Building, 101 Independence Avenue, SE., Washington, DC 20559-6000. Claims... envelope must be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial...

  3. 37 CFR 360.13 - Compliance with statutory dates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... delivered to the Copyright Office Public Information Office, in the James Madison Memorial Building, Room LM... Congress, James Madison Memorial Building, 101 Independence Avenue, SE., Washington, DC 20559-6000. Claims... envelope must be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial...

  4. 37 CFR 360.4 - Compliance with statutory dates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the Copyright Office Public Information Office, in the James Madison Memorial Building, Room LM... Congress, James Madison Memorial Building, 101 Independence Avenue, SE., Washington, DC 20559-6000. Claims... envelope must be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial...

  5. 37 CFR 360.4 - Compliance with statutory dates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the Copyright Office Public Information Office, in the James Madison Memorial Building, Room LM... Congress, James Madison Memorial Building, 101 Independence Avenue, SE., Washington, DC 20559-6000. Claims... envelope must be addressed as follows: Copyright Royalty Board, Library of Congress, James Madison Memorial...

  6. Development of low thermal conductivity brick using rice husk, corn cob and waste tea in clay brick manufacturing

    NASA Astrophysics Data System (ADS)

    Saman, Nor Sarwani Mat; Deraman, Rafikullah; Hamzah, Mohamad Hazmi

    2017-12-01

    The consumption of energy for cooling the indoor environment of buildings in Malaysia is high and mostly related to poor thermal performance of the building envelope. It is evident that reducing energy consumption of buildings has become vital, taking into considerations the limitation of conventional energy resources and the adverse effects associated with the use of such type of energy on the environment. Therefore, selecting the proper thermal properties of a building envelope play a major role in determining the energy consumption patterns and comfort conditions in enclosed spaces. The objective of this study is to investigate the potential application of rice husk (RH), corn cob (CC) and waste tea (WT) as an additive agent in a fired clay brick manufacturing to produce an improved thermal conductivity of final brick product. In the execution of this study, these agricultural wastes were mixed together with clay soil in different percentages, ranging from 0 %, 2.5 %, 5 %, 7.5 % and 10 % by weight. Physical and mechanical properties including soil physical properties, density, shrinkage, water absorption, compressive strength as well as thermal conductivity were measured, reported and discussed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985, MS 76: 1972: Part 2 and ASTM C 518. The results show that RH at 7.5 % is the most effective combination to achieve low thermal conductivity of fired clay brick. This finding suggests that RH waste is a potentially good additive material to be used for thermal properties enhancement of the building envelope.

  7. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions andmore » 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit. DEEP will be migrated into the DEnCity - DOE’s Energy City, which integrates large-scale energy data for multi-purpose, open, and dynamic database leveraging diverse source of existing simulation data.« less

  8. Country Report on Building Energy Codes in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  9. Heat-Transfer in Reflector-type Self-Ballasted Compact Fluorescent Lamps

    NASA Astrophysics Data System (ADS)

    Yasuda, Takeo; Toda, Masahiro; Matsumoto, Shinichiro; Takahara, Yuichiro

    Self-ballasted compact fluorescent lamps (SBCFL) are widely used to replace incandescent lamps (IL) to save energy. We studied the heat-transfer phenomena of SBCFLs with outer envelopes by measuring the temperatures of the lamp parts, the power consumption, and the luminous output, and by calculating the energy balance. The methods applied were heat-transfer network analysis and computational fluid dynamics (CFD) using FLUENT® software. The heat loss increased in reflector-type SBCFLs as compared to SBCFLs with non-reflective outer envelopes, and was estimated at about 3 W when the total lamp power was 22 W. This results in a temperature rise of 20 K in the plastic holder, and a maximum rise of 10 K at the electronic components on the circuit board. Accordingly, we have developed a 12 W reflector-type SBCFL, which replaces a 60 W incandescent, not a 22 W SBCFL replacing a 100 W incandescent R-lamp, due to the importance of thermal reliability.

  10. Smart Energy Choices Free Up Dollars for Capital Improvements.

    ERIC Educational Resources Information Center

    Ritchey, David

    2003-01-01

    Describes several ways to design or renovate school building to save thousand of dollars of energy costs. Considers site design, energy-efficient building envelope, renewable energy systems, lighting and electrical systems, mechanical and ventilation systems, water conservation, and transportation. Describes how to obtain information about the…

  11. KSC-2010-1114

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. - The 525-foot-tall Vehicle Assembly Building, in the background, is witness to the formation of the Propellants North Administrative and Maintenance Facility, a new "green" building under construction in Launch Complex 39 at NASA's Kennedy Space Center in Florida. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  12. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  14. Surface reflectance degradation by microbial communities

    DOE PAGES

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; ...

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  15. Kinetic Super-Resolution Long-Wave Infrared (KSR LWIR) Thermography Diagnostic for Building Envelopes: Camp Lejeune, NC

    DTIC Science & Technology

    2015-08-18

    of Defense (DoD) to achieve cost-effective energy efficiency at much greater scale than other commercially available techniques of measuring energy...recommends specific energy conservation measures (ECMs), and quantifies significant potential return on investment. ERDC/CERL TR-15-18 iii...effective energy efficiency at much greater scale than other commercially available techniques of measuring energy loss due to envelope inefficien- cies

  16. 36 CFR § 702.9 - Inspection of property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....9 Section § 702.9 Parks, Forests, and Public Property LIBRARY OF CONGRESS CONDUCT ON LIBRARY PREMISES § 702.9 Inspection of property. (a) Individuals entering Library buildings do so with the... envelopes, packages, and office equipment may be inspected. (b) Upon entering the Library buildings...

  17. Monitoring Sealant Durability during Instrumented Outdoor Exposure with Variation in Prestrain

    Treesearch

    Gregory T. Schueneman; Steven Lacher; Christopher G. Hunt

    2015-01-01

    Sealants are a vital part of a building’s environmental barrier envelope. Their ability to bond to numerous dissimilar substrates and form cure-in-place seals results in their widespread use throughout single story and high rise buildings. A typical 40 story concrete and glass facade building can have 70 miles of sealant bonds. Failure of sealants can lead to energy...

  18. Methodology for determination and use of the no-escape envelope of an air-to-air-missile

    NASA Technical Reports Server (NTRS)

    Neuman, Frank

    1988-01-01

    A large gap exists between optimal control and differential-game theory and their applications. The purpose of this paper is to show how this gap may be bridged. Missile-avoidance of realistically simulated infrared heat-seeking, fire-and-forget missile is studied. In detailed simulations, sweeping out the discretized initial condition space, avoidance methods based on pilot experience are combined with those based on simplified optimal control analysis to derive an approximation to the no-escape missile envelopes. The detailed missile equations and no-escape envelopes were then incorporated into an existing piloted simulation of air-to-air combat to generate missile firing decisions as well as missile avoidance commands. The use of these envelopes was found to be effective in both functions.

  19. A note on drillhole depths required for reliable heat flow determinations

    USGS Publications Warehouse

    Chapman, D.S.; Howell, J.; Sass, J.H.

    1984-01-01

    In general, there is a limiting depth in a drillhole above which the reliability of a single determination of heat flow decreases rapidly with decreasing depth and below which the statistical uncertainty of a heat flow determination does not change perceptibly with increasing depth. This feature has been established empirically for a test case comprising a group of twelve heat flow sites in the Republic of Zambia. The technique consists of constructing heat flow versus depth curves for individual sites by progressively discarding data from the lower part of the hole and recomputing heat flow from the remaining data. For the Zambian test case, the curves converge towards a uniform value of 67 ?? 3 mW m-2 when all available data are used, but values of heat flow calculated for shallow(< 100 m) parts of the same holes range from 45 to 95 mW m-2. The heat flow versus depth curves are enclosed by a perturbation envelope which has an amplitude of 40 mW m-2 at the surface and decreases linearly to the noise level at 190 m. For the test region of Zambia a depth of 170 m is needed to guarantee a heat flow measurement within ?? 10% of the background regional value. It is reasonable to expect that this depth will be shallower in some regions and deeper in others. Features of heat flow perturbation envelopes can be used as quantitative reliability indices for heat flow studies. ?? 1984.

  20. a Risk Based Methodology to Assess the Energy Efficiency Improvements in Traditionally Constructed Buildings

    NASA Astrophysics Data System (ADS)

    Herrera, D.; Bennadji, A.

    2013-07-01

    In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010), and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.

  1. Novel dynamic thermal characterization of multifunctional concretes with microencapsulated phase change materials

    NASA Astrophysics Data System (ADS)

    Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Cabeza, Luisa F.; Ubertini, Filippo; Cotana, Franco

    2017-04-01

    Concrete is widely applied in the construction sector for its reliable mechanical performance, its easiness of use and low costs. It also appears promising for enhancing the thermal-energy behavior of buildings thanks to its capability to be doped with multifunctional fillers. In fact, key studies acknowledged the benefits of thermally insulated concretes for applications in ceilings and walls. At the same time, thermal capacity also represents a key property to be optimized, especially for lightweight constructions. In this view, Thermal-Energy Storage (TES) systems have been recently integrated into building envelopes for increasing thermal inertia. More in detail, numerical experimental investigations showed how Phase Change materials (PCMs), as an acknowledged passive TES strategy, can be effectively included in building envelope, with promising results in terms of thermal buffer potentiality. In particular, this work builds upon previous papers aimed at developing the new PCM-filled concretes for structural applications and optimized thermalenergy efficiency, and it is focused on the development of a new experimental method for testing such composite materials in thermal-energy dynamic conditions simulated in laboratory by exposing samples to environmentally controlled microclimate while measuring thermal conductivity and diffusivity by means of transient plane source techniques. The key findings show how the new composites are able to increasingly delay the thermal wave with increasing the PCM concentration and how the thermal conductivity varies during the course of the phase change, in both melting and solidification processes. The new analysis produces useful findings in proposing an effective method for testing composite materials with adaptive thermal performance, much needed by the scientific community willing to study building envelopes dynamics.

  2. High Performance Residential Housing Units at U.S. Coast Guard Base Kodiak: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, R.; Hickey, J.

    2013-10-01

    The United States Coast Guard (USCG) constructs residential housing throughout the country using a basic template that must meet the minimum Leadership in Energy and Environmental Design (LEED) Silver criteria or better for the units. In Kodiak, Alaska, USCG is procuring between 24 and 100 residential multi-family housing units. Priorities for the Kodiak project were to reduce overall energyconsumption by at least 20% over existing units, improve envelope construction, and evaluate space heating options. USCG is challenged with maintaining similar existing units that have complicated residential diesel boilers. Additionally, fuel and material costs are high in Kodiak. While USCG hasmore » worked to optimize the performance of the housing units with principles of improved buildingenvelope, the engineers realize there are still opportunities for improvement, especially within the heating, ventilation, and air conditioning (HVAC) system and different envelope measures. USCG staff also desires to balance higher upfront project costs for significantly reduced life-cycle costs of the residential units that have an expected lifetime of 50 or more years. To answer thesequestions, this analysis used the residential modeling tool BEoptE+ to examine potential energy- saving opportunities for the climate. The results suggest criteria for achieving optimized housing performance at the lowest cost. USCG will integrate the criteria into their procurement process. To achieve greater than 50% energy savings, USCG will need to specify full 2x 6 wood stud R-21 insulationwith two 2 inches of exterior foam, R-38 ceiling insulation or even wall insulation in the crawl space, and R-49 fiberglass batts in a the vented attic. The air barrier should be improved to ensure a tight envelope with minimal infiltration to the goal of 2.0 ACH50. With the implementation of an air source heat pump for space heating requirements, the combination of HVAC and envelope savings inthe residential unit can save up to 58% in source energy over existing residential units.« less

  3. KSC-2010-1158

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, construction workers survey the last outside wall of the Propellants North Administrative and Maintenance Facility. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  4. KSC-2009-6796

    NASA Image and Video Library

    2009-12-11

    CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, concrete layers on either side of the high-density foam insulation of the Propellants North Administrative and Maintenance Facility's walls will prevent any transfer of radiant heat between the exterior and interior of the building. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  5. KSC-2009-6802

    NASA Image and Video Library

    2009-12-11

    CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, high-density foam insulation between the concrete layers of the Propellants North Administrative and Maintenance Facility's walls will prevent any transfer of radiant heat between the exterior and interior of the building. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  6. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, J.; Winkler, J.; Christensen, D.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputsmore » for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.« less

  7. Idealised large-eddy-simulation of thermally driven flows over an isolated mountain range with multiple ridges

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Gohm, Alexander; Wagner, Johannes S.; Leukauf, Daniel; Posch, Christian

    2014-05-01

    Two dimensional idealised large-eddy-simulations are performed using the WRF model to investigate thermally driven flows during the daytime over complex terrain. Both the upslope flows and the temporal evolution of the boundary layer structure are studied with a constant surface heat flux forcing of 150 W m-2. In order to distinguish between different heating processes the flow is Reynold decomposed into its mean and turbulent part. The heating processes associated with the mean flow are a cooling through cold-air advection along the slopes and subsidence warming within the valleys. The turbulent component causes bottom-up heating near the ground leading to a convective boundary layer (CBL) inside the valleys. Overshooting potentially colder thermals cool the stably stratified valley atmosphere above the CBL. Compared to recent investigations (Schmidli 2013, J. Atmos. Sci., Vol. 70, No. 12: pp. 4041-4066; Wagner et al. 2014, manuscript submitted to Mon. Wea. Rev.), which used an idealised topography with two parallel mountain crests separated by a straight valley, this project focuses on multiple, periodic ridges and valleys within an isolated mountain range. The impact of different numbers of ridges on the flow structure is compared with the sinusoidal envelope-topography. The present simulations show an interaction between the smaller-scale upslope winds within the different valleys and the large-scale flow of the superimposed mountain-plain wind circulation. Despite a smaller boundary layer air volume in the envelope case compared to the multiple ridges case the volume averaged heating rates are comparable. The reason is a stronger advection-induced cooling along the slopes and a weaker warming through subsidence at the envelope-topography compared to the mountain range with multiple ridges.

  8. Modeling study of seated reach envelopes based on spherical harmonics with consideration of the difficulty ratings.

    PubMed

    Yu, Xiaozhi; Ren, Jindong; Zhang, Qian; Liu, Qun; Liu, Honghao

    2017-04-01

    Reach envelopes are very useful for the design and layout of controls. In building reach envelopes, one of the key problems is to represent the reach limits accurately and conveniently. Spherical harmonics are proved to be accurate and convenient method for fitting of the reach capability envelopes. However, extensive study are required on what components of spherical harmonics are needed in fitting the envelope surfaces. For applications in the vehicle industry, an inevitable issue is to construct reach limit surfaces with consideration of the seating positions of the drivers, and it is desirable to use population envelopes rather than individual envelopes. However, it is relatively inconvenient to acquire reach envelopes via a test considering the seating positions of the drivers. In addition, the acquired envelopes are usually unsuitable for use with other vehicle models because they are dependent on the current cab packaging parameters. Therefore, it is of great significance to construct reach envelopes for real vehicle conditions based on individual capability data considering seating positions. Moreover, traditional reach envelopes provide little information regarding the assessment of reach difficulty. The application of reach envelopes will improve design quality by providing difficulty-rating information about reach operations. In this paper, using the laboratory data of seated reach with consideration of the subjective difficulty ratings, the method of modeling reach envelopes is studied based on spherical harmonics. The surface fitting using spherical harmonics is conducted for circumstances both with and without seat adjustments. For use with adjustable seat, the seating position model is introduced to re-locate the test data. The surface fitting is conducted for both population and individual reach envelopes, as well as for boundary envelopes. Comparison of the envelopes of adjustable seat and the SAE J287 control reach envelope shows that the latter is nearly at the middle difficulty level. It is also found that the abilities of reach envelope models in expressing the shape of the reach limits based on spherical harmonics depends both on the terms in the model expression and on the data used to fit the envelope surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Technology Solutions Case Study: Cold Climate Foundation Wall Hygrothermal Research Facility, Cloquet, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-09-01

    This case study describes the University of Minnesota’s Cloquet Residential Research Facility (CRRF) in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America Partnership team researches ways to improve the energy efficiency of the building envelope, including wall assemblies, basements, roofs, insulation, and air leakage.

  10. Smart Building. Volume 2: System Description

    DTIC Science & Technology

    2006-05-01

    demonstrated.this technology at the 2002 Winter Olympic Games in Salt Lake City, Utah. The system was installed on a building known as Social Hall Plaza...select the detailed engineering contractors. 3.1.3.8 Sealing the Protective Envelope Due to the type of roof construction on the building there was ...in time to support the Olympics . Prototype testing was completed following the Olympics and additional testing may be performed to better

  11. ARCHITECTURE AS PEDAGOGY: INTERDISCIPLINARY DESIGN AND CREATION OF A CARBON NEUTRAL IDAHO ENVIRONMENTAL LEARNING CENTER AT THE UNIVERSITY OF IDAHO MCCALL FIELD CAMPUS

    EPA Science Inventory

    Output 1. (short-term) Design a carbon neutral field campus with the following design components: structural systems, building envelope, environmental systems, site construction, building materials, information technology, spatial systems and integration ...

  12. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Treesearch

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  13. The influence of opening windows and doors on the natural ventilation rate of a residential building

    EPA Science Inventory

    An analysis of air exchange rates due to intentional window and door openings in a research test house located in a residential environment is presented. These data inform the development of ventilation rate control strategies as building envelopes are tightened to improve the e...

  14. Center for the Built Environment: Research on Building Envelope Systems

    Science.gov Websites

    Studies Facade and Perimeter Zone Field Study Facades and Thermal Comfort Facade Symposium Mixed-Mode Research Adaptive Comfort Model Mixed-Mode Case Studies Operable Windows and Thermal Comfort Occupant thermal preferences in naturally ventilated as sealed buildings? Case Study Research of Mixed-Mode Office

  15. Impact of simulated climate and building features on the penetration of toxic gases from the ambient into the indoor environment

    EPA Science Inventory

    This research is a combination of experimental results and analysis of formaldehyde penetration across a residential building envelope with the objective of developing an understanding of the factors that govern indoor air concentrations of air toxics and to provide linkages betw...

  16. Development of Design Guidance for K-12 Schools: From 30% to 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Torcellini, P.; Long, N.

    2008-01-01

    This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 Schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (1999 and 2004 versions). Exhaustive simulations were run to create packages of energy design solutions available over a wide range of K-12 schools and climates. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating. We document and discuss the energy modeling performed to demonstrate that themore » recommendations will result in at least 30% energy savings over ASHRAE 90.1-1999 and ASHRAE 90.1-2004. Recommendations are evaluated based on the availability of daylighting for the school and by the type of HVAC system. Compared to the ASHRAE 90.1-1999 baseline, the recommendations result in more than 30% savings in all climate zones for both daylit and nondaylit elementary, middle, and high schools with a range of HVAC system types. These recommendations have been included in the Advanced Energy Design Guide for K-12 School Buildings. Compared to the more stringent ASHRAE 90.1-2004 baseline, the recommendations result in more than 30% savings in all climate zones, for only the daylit elementary, middle, and high schools, with a range of HVAC system types. To inform the future development of recommendations for higher level of energy savings, we analyzed a subset of recommendations to understand which energy efficiency technologies would be needed to achieve 50% energy savings.« less

  17. Interferometric view of the circumstellar envelopes of northern FU Orionis-type stars

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Kóspál, Á.; Ábrahám, P.; Hogerheijde, M. R.; Brinch, C.

    2017-11-01

    Context. FU Orionis-type objects are pre-main sequence, low-mass stars with large outbursts in visible light that last for several years or decades. They are thought to represent an evolutionary phase during the life of every young star when accretion from the circumstellar disk is enhanced during recurring time periods. These outbursts are able to rapidly build up the star while affecting the physical conditions inside the circumstellar disk and thus the ongoing or future planet formation. In many models, infall from a circumstellar envelope seems to be necessary to trigger the outbursts. Aims: We characterise the morphology and the physical parameters of the circumstellar material around FU Orionis-type stars using the emission of millimetre-wavelength molecular tracers. The high-spatial-resolution study provides insight into the evolutionary state of the objects, the distribution of parameters in the envelopes and the physical processes forming the environment of these stars. Methods: We observed the J = 1-0 rotational transition of 13CO and C18O towards eight northern FU Orionis-type stars (V1057 Cyg, V1515 Cyg, V2492 Cyg, V2493 Cyg, V1735 Cyg, V733 Cep, RNO 1B and RNO 1C) and determine the spatial and velocity structure of the circumstellar gas on a scale of a few thousand AU. We derive temperatures and envelope masses and discuss the kinematics of the circumstellar material. Results: We detected extended CO emission associated with all our targets. Smaller-scale CO clumps were found to be associated with five objects with radii of 2000-5000 AU and masses of 0.02-0.5 M⊙; these are clearly heated by the central stars. Three of these envelopes are also strongly detected in the 2.7 mm continuum. No central CO clumps were detected around V733 Cep and V710 Cas which can be interpreted as envelopes but there are many other clumps in their environments. Traces of outflow activity were observed towards V1735 Cyg, V733 Cep and V710 Cas. Conclusions: The diversity of the observed envelopes enables us to set up an evolutionary sequence between the objects. We find their evolutionary state to range from early, embedded Class I stage to late, Class II-type objects with very-low-mass circumstellar material. We also find evidence of larger-scale circumstellar material influencing the detected spectral features in the environment of our targets. These results reinforce the idea of FU Orionis-type stars as representatives of a transitory stage between embedded Class I young stellar objects and classical T Tauri stars.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Mullens, M.; Rath, P.

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. This work is part of a multiphase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall designmore » with exterior continuous insulation (CI). This report describes Phase 3, which was completed in two stages and continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less

  19. Multigeneration Cross Contamination of Mail with Bacillus Species Spores by Tumbling ▿

    PubMed Central

    Edmonds, Jason; Clark, Paul; Williams, Leslie; Lindquist, H. D. Alan; Martinez, Kenneth; Gardner, Warren; Shadomy, Sean; Hornsby-Myers, Jennifer

    2010-01-01

    In 2001, envelopes loaded with Bacillus anthracis spores were mailed to Senators Daschle and Leahy as well as to the New York Post and NBC News buildings. Additional letters may have been mailed to other news agencies because there was confirmed anthrax infection of employees at these locations. These events heightened the awareness of the lack of understanding of the mechanism(s) by which objects contaminated with a biological agent might spread disease. This understanding is crucial for the estimation of the potential for exposure to ensure the appropriate response in the event of future attacks. In this study, equipment to simulate interactions between envelopes and procedures to analyze the spread of spores from a “payload” envelope (i.e., loaded internally with a powdered spore preparation) onto neighboring envelopes were developed. Another process to determine whether an aerosol could be generated by opening contaminated envelopes was developed. Subsequent generations of contaminated envelopes originating from a single payload envelope showed a consistent two-log decrease in the number of spores transferred from one generation to the next. Opening a tertiary contaminated envelope resulted in an aerosol containing 103 B. anthracis spores. We developed a procedure for sampling contaminated letters by a nondestructive method aimed at providing information useful for consequence management while preserving the integrity of objects contaminated during the incident and preserving evidence for law enforcement agencies. PMID:20511424

  20. Advanced Energy Efficient Roof System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implementmore » more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target markets. Southern markets, from Florida to Texas account for 50 percent of the total new construction angled-roof volume. California contributes an additional 13 percent share of market volume. These states account for 28 to 30 million squares (2.8 to 3 billion square feet) of new construction angled roof opportunity. The major risk to implementation is the uncertainty of incorporating new design and construction elements into the construction process. By coordinating efforts to enhance the drivers for adoption and minimize the barriers, the panelized roof system stands to capitalize on a growing market demand for energy efficient building alternatives and create a compelling case for market adoption.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the buildingmore » envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes, Goncalo; Feng, Wei; Stadler, Michael

    The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercialmore » buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting, distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost« less

  3. Mechanism of Dissolution of Envelopes of the Extreme Halophile Halobacterium cutirubrum1

    PubMed Central

    Onishi, H.; Kushner, D. J.

    1966-01-01

    Onishi, H. (National Research Council, Ottawa, Ontario, Canada), and D. J. Kushner. Mechanism of dissolution of envelopes of the extreme halophile Halobacterium cutirubrum. J. Bacteriol. 91:646–652. 1966.—Envelopes of Halobacterium cutirubrum dissolved rapidly in media of low ionic strength. Heating partially inhibited breakdown, probably because of nonspecific protein coagulation rather than inactivation of a lytic enzyme(s). Dissolution of envelopes in water did not involve splitting of peptide bonds or protein-lipid bonds, or any extensive breakdown of carbohydrate polymers. Dissolution was increased by alcohols and urea, even at high salt concentrations, but was not affected by metabolic inhibitors. Thus, no evidence was found for a dilution-activated lytic enzyme that contributes to envelope breakdown. Cells of H. cutirubrum were stable in 2 m NaCl, but lysis occurred in 2 m KCl or NH4Cl. This lysis did not involve an extensive breakdown of the envelope. No evidence for different sites of Na+, K+, and NH4+ action was obtained from the pattern of release of envelope constituents in different concentrations of these salts. Ultracentrifugation studies showed that adding salts to envelopes that had been dissolved in water led to a nonspecific reaggregation of envelope material. No difference was seen between the effects of KCl and NaCl, except at 3 to 4 m concentrations where KCl caused more aggregation. The preferential effect of Na+ on intact cells is probably due to its ability specifically to prevent leakage rather than to an overall effect on envelope integrity. Images PMID:5883109

  4. 41 CFR 102-85.120 - What is shell Rent?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What is shell Rent? 102... GSA SPACE Rent Charges § 102-85.120 What is shell Rent? Shell Rent is that portion of GSA Rent charged for the building envelope and land. (See § 102-85.35 for the definition of building shell.) ...

  5. Analysis of improved criteria for mold growth in ASHRAE standard 160 by comparison with field observations

    Treesearch

    Samuel V. Glass; Stanley D. Gatland II; Kohta Ueno; Christopher J. Schumacher

    2017-01-01

    ASHRAE Standard 160, Criteria for Moisture-Control Design Analysis in Buildings, was published in 2009. The standard sets criteria for moisture design loads, hygrothermal analysis methods, and satisfactory moisture performance of the building envelope. One of the evaluation criteria specifies conditions necessary to avoid mold growth. The current standard requires that...

  6. The School Librarian as Leader: Out of the Middle, into the Foreground

    ERIC Educational Resources Information Center

    Stephens, Wendy Steadman

    2011-01-01

    The school librarian is often described as "leading from the middle," a type of leadership concerned with building consensus and working toward shared goals. But in this day and age, school librarians are realizing they must push the envelope to remain current and relevant. In most buildings they are the only professionals involved with the…

  7. Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Treesearch

    Samuel Glass; Vladimir Kochkin; S. Drumheller; Lance Barta

    2015-01-01

    Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB)...

  8. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was determined that the addition of a PV array is not feasible from a purely economic viewpoint. Several avenues for expansion of this research are presented in Chapter 5.

  9. Roderick Jackson | NREL

    Science.gov Websites

    Laboratory (ORNL), where he was the group manager for Building Envelope Systems Research. One of Jackson's Manufacturing Integrated Energy (AMIE) demonstration project at ORNL. With Jackson's leadership, AMIE brought

  10. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.

  11. Life Test Results for Water Heat Pipes Operating at 200 °C to 300 °C

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Gernert, Nelson J.

    2008-01-01

    For lunar or planetary bases to be viable, a robust electric generating system will be required for powering the habitat. Water heat pipes offer an attractive solution for lunar base heat rejection, and would serve as a qualification for them on other long duration missions. Successful operation near the upper end of water operating range is a requirement for the application. Results are reported for life tests on water heat pipes that were operated at various temperatures between 200 °C and 300 °C. Tests were conducted on twenty three gravity-assisted water heat pipes. Eleven titanium/water heat pipes and ten Monel/water heat pipes were tested at temperatures above 200 °C. Two cupronickel heat pipes were also assembled and tested. Titanium alloys tested included CP-2 titanium, as well as two beta-titanium alloys, namely 15-3 and Nitinol alloys. Some of the titanium alloy life tests used wicks fabricated from CP-2 titanium screen or porous felt. Monel alloys tested included 400 and K-500 alloys. Some of the Monel heat pipes contained copper/nickel wicks that were fabricated by brazing nickel-plated copper felt metal wicks. Although most of the envelope/material combinations exhibit favorable results at 200 °C, some of the combinations failed at higher temperatures. Causes of failure included stress-creep of envelopes and corrosion at axial or end cap welds. This information represents a significant advance in selection of materials for 200 °C to 300 °C water heat pipes. Life testing work is being continued.

  12. Flood management: prediction of microbial contamination in large-scale floods in urban environments.

    PubMed

    Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip

    2011-07-01

    With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities, insurance companies and residents to better understand, prepare for and manage a large-scale flood in urban environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Thermal Evaluation of Air-Cooled Electronic Equipment

    DTIC Science & Technology

    1952-09-01

    of Unit with Case-Envelope Heat Exchanger 233 VII-7 Storking Plot for Evaluation of Case Heat Transfer of Unit with Integrated or Separate... wing . 1. Case Cooled by Free Convection and Radiation Equipment of this type which depends on the natural heat dissipative capacity of the outer...described application, a tightly-fitting spring- clip is placed around the component, such as a tube, with the two thermocouple lead wires spot-welded

  14. Introduction to Building Systems Performance: Houses That Work II. Revised February 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  15. Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  16. KSC-2010-1159

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, with the placement of the last outside wall of the Propellants North Administrative and Maintenance Facility, the "barn-raising" of the new "green" facility is complete. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  17. KSC-2010-1160

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, this crane raised all of the outside walls of the Propellants North Administrative and Maintenance Facility over a period of two days. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  18. KSC-2010-1157

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, all of the exterior walls of the Propellants North Administrative and Maintenance Facility have been lifted into place. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  19. KSC-2010-1161

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, construction of the Propellants North Administrative and Maintenance Facility is moving ahead with the placement of all of the outside walls complete. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  20. KSC-2010-1156

    NASA Image and Video Library

    2010-01-08

    CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, the last outside wall of the Propellants North Administrative and Maintenance Facility is lifted into place. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann

  1. Development of High Performance Composite Foam Insulation with Vacuum Insulation Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Desjarlais, Andre Omer; SmithPhD, Douglas

    Development of a high performance thermal insulation (thermal resistance or R-value per inch of R-12 hr-ft2- F/Btu-in or greater), with twice the thermal resistance of state-of-the-art commercial insulation materials ( R6/inch for foam insulation), promises a transformational impact in the area of building insulation. In 2010, in the US, the building envelope-related primary energy consumption was 15.6 quads, of which 5.75 quads were due to opaque wall and roof sections; the total US consumption (building, industrial and transportation) was 98 quads. In other words, the wall and roof contribution was almost 6% of the entire US primary energy consumption. Buildingmore » energy modeling analyses have shown that adding insulation to increase the R-value of the external walls of residential buildings by R10-20 (hr-ft2- F/Btu) can yield savings of 38-50% in wall-generated heating and cooling loads. Adding R20 will require substantial thicknesses of current commercial insulation materials, often requiring significant (and sometimes cost-prohibitive) alterations to existing buildings. This article describes the development of a next-generation composite insulation with a target thermal resistance of R25 for a 2 inch thick board (R12/inch or higher). The composite insulation will contain vacuum insulation cores, which are nominally R35-40/inch, encapsulated in polyisocyanurate foam. A recently-developed variant of vacuum insulation, called modified atmosphere insulation (MAI), was used in this research. Some background information on the thermal performance and distinguishing features of MAI has been provided. Technical details of the composite insulation development and manufacturing as well as laboratory evaluation of prototype insulation boards are presented.« less

  2. Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    PubMed Central

    2014-01-01

    Background Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. Results and discussions We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. Conclusion We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future. PMID:24495489

  3. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    NASA Technical Reports Server (NTRS)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  4. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700more » ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.« less

  5. Cell envelope of Bordetella pertussis: immunological and biochemical analyses and characterization of a major outer membrane porin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, S.K.

    1986-01-01

    Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and /sup 125/I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulatedmore » strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25/sup 0/C instead of 100/sup 0/C.« less

  6. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO 2 -based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system.

  7. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO2-based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system. PMID:27099405

  8. The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Baxter, Peter J.; Boyle, Robin; Cole, Paul; Neri, Augusto; Spence, Robin; Zuccaro, Giulio

    2005-04-01

    We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufrière Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1-5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the ground. The gradient correlated with the impacts due to lateral loading and heat transfer, as well as the size of the projectiles, whilst the temperature of the ash in the undiluted PDC was probably uniform across the impact area. The main hazard characteristics of the PDCs were very consistent with those described by other authors in the classic eruptions of Pelée (1902), Lamington (1951) and St Helens (1980), despite differences in the eruptive styles and scales. We devised for the first time a building damage scale for dynamic pressure which can be used in research and in future volcanic emergencies for modelling PDCs and making informed judgements on their potential impacts.

  9. Various methods of heat supply for a building which is operated periodically during the year

    NASA Astrophysics Data System (ADS)

    Małetka, Marek; Laska, Marta

    2017-11-01

    Stand-alone buildings operated periodically require heat supply for hot water and heating purposes to be carefully analyzed in terms of the technical capabilities, the energy and financial outlays. The paper presents the analysis of heat supply for hot water purposes and central heating in the stand-alone cloakroom building located in Poland. The analysis is undertaken for different variants of heat delivery for a building from electric heaters, gas boiler and district heating solutions to renewable sources applications, namely solar panels and heat pumps. For each solution, usage of usable, final and primary energy was calculated. Also the financial analysis for investments and energy costs were carried out. This analysis has been done in according to SPBT and NPV method for different levels of building use.

  10. Relationships between radiation, clouds, and convection during DYNAMO

    NASA Astrophysics Data System (ADS)

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of 0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by 20% with a minimum in this enhancement 10 days prior to peak MJO rainfall and maximum 7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  11. Relationships between radiation, clouds, and convection during DYNAMO.

    PubMed

    Ciesielski, Paul E; Johnson, Richard H; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-16

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate < Q r > progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating < Q r > enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  12. Relationships between radiation, clouds, and convection during DYNAMO

    PubMed Central

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-01-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4–0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward. PMID:29082119

  13. What is Neptune's D/H ratio really telling us about its water abundance?

    NASA Astrophysics Data System (ADS)

    Ali-Dib, Mohamad; Lakhlani, Gunjan

    2018-05-01

    We investigate the deep-water abundance of Neptune using a simple two-component (core + envelope) toy model. The free parameters of the model are the total mass of heavy elements in the planet (Z), the mass fraction of Z in the envelope (fenv), and the D/H ratio of the accreted building blocks (D/Hbuild).We systematically search the allowed parameter space on a grid and constrain it using Neptune's bulk carbon abundance, D/H ratio, and interior structure models. Assuming solar C/O ratio and cometary D/H for the accreted building blocks are forming the planet, we can fit all of the constraints if less than ˜15 per cent of Z is in the envelope (f_{env}^{median} ˜ 7 per cent), and the rest is locked in a solid core. This model predicts a maximum bulk oxygen abundance in Neptune of 65× solar value. If we assume a C/O of 0.17, corresponding to clathrate-hydrates building blocks, we predict a maximum oxygen abundance of 200× solar value with a median value of ˜140. Thus, both cases lead to oxygen abundance significantly lower than the preferred value of Cavalié et al. (˜540× solar), inferred from model-dependent deep CO observations. Such high-water abundances are excluded by our simple but robust model. We attribute this discrepancy to our imperfect understanding of either the interior structure of Neptune or the chemistry of the primordial protosolar nebula.

  14. Final Report. Montpelier District Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jessie; Motyka, Kurt; Aja, Joe

    2015-03-30

    The City of Montpelier, in collaboration with the State of Vermont, developed a central heat plant fueled with locally harvested wood-chips and a thermal energy distribution system. The project provides renewable energy to heat a complex of state buildings and a mix of commercial, private and municipal buildings in downtown Montpelier. The State of Vermont operates the central heat plant and the system to heat the connected state buildings. The City of Montpelier accepts energy from the central heat plant and operates a thermal utility to heat buildings in downtown Montpelier which elected to take heat from the system.

  15. Effect of phase change material on the heat transfer rate of different building materials

    NASA Astrophysics Data System (ADS)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.

    The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The

  17. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  18. Effect of core cooling on the radius of sub-Neptune planets

    NASA Astrophysics Data System (ADS)

    Vazan, A.; Ormel, C. W.; Dominik, C.

    2018-02-01

    Sub-Neptune planets are very common in our Galaxy and show a large diversity in their mass-radius relation. In sub-Neptunes most of the planet mass is in the rocky part (hereafter, core), which is surrounded by a modest hydrogen-helium envelope. As a result, the total initial heat content of such a planet is dominated by that of the core. Nonetheless, most studies contend that the core cooling only has a minor effect on the radius evolution of the gaseous envelope because the cooling of the core is in sync with the envelope; that is most of the initial heat is released early on timescales of 10-100 Myr. In this Letter we examined the importance of the core cooling rate for the thermal evolution of the envelope. Thus, we relaxed the early core cooling assumption and present a model in which the core is characterized by two parameters: the initial temperature and the cooling time. We find that core cooling can significantly enhance the radius of the planet when it operates on a timescale similar to the observed age, i.e. Gyr. Consequently, the interpretation of the mass-radius observations of sub-Neptunes depends on the assumed core thermal properties and the uncertainty therein. The degeneracy of composition and core thermal properties can be reduced by obtaining better estimates of the planet ages (in addition to their radii and masses) as envisioned by future observations.

  19. An Investigation into Energy Requirements and Conservation Techniques for Sustainable Buildings

    NASA Astrophysics Data System (ADS)

    Robitaille, Jad

    Traditionally, societies use to design their built environment in a way that was in line with the climate and the geographical location that they evolved in, thereby supporting sustainable lifestyles (i.e. thick walls with small windows in cold climates). With the industrial revolution and the heavy use and reliance on cheap fossil fuels, it can be argued that the built environment has become more focused on aesthetics and cost savings rather than on true sustainability. This, in turn, has led to energy intensive practices associated with the construction of homes, buildings, cities and megalopolises. Environmental concerns with regards to the future have pushed people, entities and industries to search for ways to decrease human's energy dependency and/or to supply the demand in ways that are deemed sustainable. Efforts to address this concern with respect to the built environment were translated into 'green buildings', sustainable building technologies and high performance buildings that can be rated and/or licensed by selected certifying bodies with varying metrics of building construction and performance. The growing number of such systems has brought real concerns: Do certified sustainable buildings really achieve the level of sustainability (i.e. performance) they were intended to? For the purpose of this study, buildings' energy consumption will be analysed, as it is one of the main drivers when taking into consideration greenhouse gas emissions. Heating and cooling in the residential and commercial/institutional sector, combined account for approximately a fifth of the secondary energy use in Canada. For this reason, this research aims at evaluating the main rating systems in Canada based on the efficacy of their rating systems' certification methodology and the weighting and comparison of energy requirements under each scheme. It has been proven through numerous studies that major energy savings can be achieved by focusing primarily on building designs (such as Thermal Building Envelopes) and Passive Systems and that rating systems may wish to incorporate such criteria more thoroughly and explicitly within their evaluation scheme of metrics. Hence, this paper will also aim at evaluating the inclusion of energy conservation techniques into the different rating schemes.

  20. Effect of alkali on the structure of cell envelopes of Chlamydia psittaci elementary bodies.

    PubMed Central

    Narita, T; Wyrick, P B; Manire, G P

    1976-01-01

    Suspensions of isolated cell envelopes of infectious elementary bodies (EB) of Chlamydia psittaci at alkaline pH showed a rapid, extensive decrease in absorbance, accompanied by the release of a cell envelope component in a sedimentable form. This phenomenon was observed both at 0 C and with envelopes which had been previously heated to 100 C. Monovalent and divalent cations effectively inhibited the turbidity loss, whereas ethylenediaminetetraacetate (EDTA) caused an accelerated decrease in turbidity. The turbidity loss observed after incubation of the envelopes at alkaline pH could be reversed to the level of the initial value by dialysis against distilled water containing Mg2+. Thin-section electron photomicrographs of purified EB exposed to alkaline buffer with EDTA revealed the loss of the internal contents of cells, but these cells still maintained their round shapes. The cell surface of treated EB appeared pitted in negatively stained preparations, whereas intact EB had a smooth surface. Electron microscopic studies on negatively stained preparations of the clear supernatant obtained after the treatment of the envelope with alkaline buffer containing EDTA demonstrated the presence of spherical particles, approximately 6 to 7 nm in diameter, and rodlike particles, which appeared to be made up of two or more spherical particles. Images PMID:1375

  1. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  2. An Overview of Long Duration Sodium Heat Pipe Tests

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon

    2004-02-01

    High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore, Inc. has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 316L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650C to 700C for over 115,000 hours without signs of failure. A second 316L stainless steel heat pipe with a specially-designed Inconel 601 rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600C to 650C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41,000 hours at nearly 700C. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.

  3. An Overview of Long Duration Sodium Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon

    2004-01-01

    High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore International, Inc., has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 3l6L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650 to 700 C for over 115,000 hours without signs of failure. A second 3l6L stainless steel heat pipe with a specially-designed Inconel 60 I rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600 to 650 C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41 ,000 hours at nearly 700 0c. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700 C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability, Detailed design specifications, operating hi story, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.

  4. Probabilistic modeling of the indoor climates of residential buildings using EnergyPlus

    DOE PAGES

    Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.; ...

    2017-04-25

    The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The

  5. Introduction to Building Systems Performance: Houses That Work II; Period of Performance: January 2003--December 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-04-01

    Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  6. Appendices of an appraisal for the use of geothermal energy in state-owned buildings in Colorado. Section D. Durango

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, R.T.; Coe, B.A.; Dick, J.D.

    1981-01-01

    Four state-owned building complexes ahve been evaluated within the city of Durango: The State Fish Hatchery, Fort Lewis College, new State Highway Department Building near the Bodo Industrial Park, and the National Guard Building. Three of the state facilities in Durango are evaluated for geothermal systems on thea ssumption of taking geothermal water from a trunk-line originating at the area northof Durango: State Fish Hatchery, Fort Lewis College and new State Highway Department Building. The National Guard Building is evaluated on the basis of a water-to-air heat pump, with warm water derived from a hypothetical shallow aquifer immediately below themore » building site. Two geothermal options were separately evaluated for Fort Lewis College: a central heat exchanger system for delivery of 145/sup 0/F heating water to the campus buildings and a central heat pump system for boosting the heating water to 200/sup 0/F prior to delivery to the buildings; both systems require the installation of a distribution piping network for the entire campus area. Retrofit engineering for the State Fish Hatchery provides for the installation of a small scale central distribution piping system to the several buildings, a central heat excanger coupled to the geothermal trunk line, and the use of various fan coil and unit heaters for space heating. An option is provided for discharge-mixing the geothermal water into the fish ponds and runs in order to raise the hatchery water temperature a couple degrees for increasing fish production and yield. The heating system for the new State Highway Department Building is redesigned to replace the natural-gas-fired forced-air furnaces with a heat exchanger, hot water fan coils and unit heaters.« less

  7. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  8. 14 CFR 31.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... that derives its lift from a captive lighter-than-air gas; (2) A hot air balloon is a balloon that derives its lift from heated air; (3) The envelope is the enclosure in which the lifting means is...

  9. 14 CFR 31.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that derives its lift from a captive lighter-than-air gas; (2) A hot air balloon is a balloon that derives its lift from heated air; (3) The envelope is the enclosure in which the lifting means is...

  10. A commercial building energy standard for Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.; Warner, J.L.; Wiel, S.

    1998-07-01

    Beginning in 1992, the Comission Nacional de Ahorro de Energia (CONAE), or Mexican National Commission for Energy Conservation, developed a national energy standard for commercial buildings, with assistance from USAID and LBNL. The first complete draft of the standard was released for public review in mid-1995. To promote public acceptance of the standard, CONAE held advisory meetings with architects, engineers, and utility representatives, and organized pubic workshops presented by the authors, with support from USAID. In response to industry comments, the standard was revised in late 1997 and is currently under review by CONAE. It is anticipated that the revisedmore » draft will be released again for final public comments in the summer of 1998. The standard will become law one year after it is finalized by CONAE and published in the federal government record. Since Mexico consists of cooling-dominated climates, the standard emphasizes energy-efficient envelope design to control solar and conductive heat gains. The authors extended DOE-2 simulation results for four climates to all of Mexico through regression analysis. Based on these results, they developed a simplified custom budget calculation approach. To facilitate the method's use, a calculation template was devised in a spreadsheet program and distributed to the public. CONAE anticipates that local engineering associations will use this spreadsheet to administer code compliance.« less

  11. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double wallsmore » and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.« less

  12. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  13. Estimation of thermal transmittance based on temperature measurements with the application of perturbation numbers

    NASA Astrophysics Data System (ADS)

    Nowoświat, Artur; Skrzypczyk, Jerzy; Krause, Paweł; Steidl, Tomasz; Winkler-Skalna, Agnieszka

    2018-05-01

    Fast estimation of thermal transmittance based on temperature measurements is uncertain, and the obtained results can be burdened with a large error. Nevertheless, such attempts should be undertaken merely due to the fact that a precise measurement by means of heat flux measurements is not always possible in field conditions (resentment of the residents during the measurements carried out inside their living quarters), and the calculation methods do not allow for the nonlinearity of thermal insulation, heat bridges or other fragments of building envelope of diversified thermal conductivity. The present paper offers the estimation of thermal transmittance and internal surface resistance with the use of temperature measurements (in particular with the use of thermovision). The proposed method has been verified through tests carried out on a laboratory test stand built in the open space, subjected to the influence of real meteorological conditions. The present elaboration involves the estimation of thermal transmittance by means of temperature measurements. Basing on the mentioned estimation, the authors present correction coefficients which have impact on the estimation accuracy. Furthermore, in the final part of the paper, various types of disturbance were allowed for using perturbation numbers, and the introduced by the authors "credibility area of thermal transmittance estimation" was determined.

  14. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  15. Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds

    NASA Astrophysics Data System (ADS)

    Cheng, Tian

    Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A fast Fourier transform (FFT) method is presented to avoid the root-searching process in the inverse Laplace transform of multilayered walls. Generalized explicit FFT formulae for calculating the discrete Fourier transform (DFT) are developed for the first time. They can largely facilitate the implementation of FFT. The new method also provides a basis for generating the symbolic response factors. Validation simulations show that it can generate the response factors as accurate as the analytical solutions. The second method is for direct estimation of annual or seasonal cooling loads without the need for tedious hourly energy simulations. It is validated by hourly simulation results with DOE2. Then symbolic long-term cooling load can be created by combining the two methods with thermal network analysis. The symbolic long-term cooling load can keep the design parameters of interest as symbols, which is particularly useful for the optimal design and sensitivity analysis. The methodology is applied to an office building in Hong Kong for the optimal design of building envelope. Design variables such as window-to-wall ratio, building orientation, and glazing optical and thermal properties are included in the study. Results show that the selected design values could significantly impact the energy performance of windows, and the optimal design of side-lit buildings could greatly enhance energy savings. The application example also demonstrates that the developed methodology significantly facilitates the optimal building design and sensitivity analysis, and leads to high computational efficiency.

  16. Internal heat gain from different light sources in the building lighting systems

    NASA Astrophysics Data System (ADS)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  17. Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.

    2017-01-01

    With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.

  18. Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

    1974-01-01

    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

  19. 78 FR 77132 - Notification of a Public Meeting of the Government Accountability and Transparency Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... the Recovery Accountability and Transparency Board (RATB) to build on lessons learned and apply the... the envelope. Presentations: The GAT Board will provide the necessary visual equipment to project the...

  20. Possibilities of heat energy recovery from greywater systems

    NASA Astrophysics Data System (ADS)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  1. Indoor air quality investigation and health risk assessment at correctional institutions.

    PubMed

    Ofungwu, Joseph

    2005-04-01

    A comprehensive indoor air-quality (IAQ) investigation was conducted at a state correctional facility in New Jersey, USA with a lengthy history of IAQ problems. The IAQ investigation comprised preliminary indoor air screening using direct readout instrumentation, indoor air/surface wipe sampling and laboratory analysis, as well as a heating, ventilation, and air-conditioning system evaluation, and a building envelope survey. In addition to air sampling, a human health risk assessment was performed to evaluate the potential for exposure to site-related air contaminants with respect to the inmate and worker populations. The risk assessment results for the prison facility indicated the potential for significant health risks for the inmate population, possibly reflecting the effects of their confinement and extended exposure to indoor air contaminants, as compared to the prison guard and worker population. Based on the results of the risk assessment, several mitigation measures are recommended to minimize prison population health risks and improve indoor air quality at prison facilities.

  2. Near-infrared selective dynamic windows controlled by charge transfer impedance at the counter electrode.

    PubMed

    Pattathil, Praveen; Scarfiello, Riccardo; Giannuzzi, Roberto; Veramonti, Giulia; Sibillano, Teresa; Qualtieri, Antonio; Giannini, Cinzia; Cozzoli, P Davide; Manca, Michele

    2016-12-08

    Recent developments in the exploitation of transparent conductive oxide nanocrystals paved the way to the realization of a new class of electrochemical systems capable of selectively shielding the infrared heat loads carried by sunlight and prospected the blooming of a key enabling technology to be implemented in the next generation of "zero-energy" building envelopes. Here we report the fabrication of a set of electrochromic devices embodying an engineered nanostructured electrode made by high aspect-ratio tungsten oxide nanorods, which allow for selectively and dynamically controlling sunlight transmission over the near-infrared to visible range. Varying the intensity of applied voltage makes the spectral response of the device change across three different optical regimes, namely fully transparent, near-infrared only blocking and both visible and near-infrared blocking. It is demonstrated that the degree of reversible modulation of the thermal radiation entering the glazing element can approach a remarkable 85%, accompanied by only a modest reduction in the luminous transmittance.

  3. ETR HEAT EXCHANGER BUILDING, TRA644. METAL FRAME OF BUILDING GOES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. METAL FRAME OF BUILDING GOES UP IN BACKGROUND AS WORKERS PLACE A SECTION OF WATER LINE THAT WILL CARRY SECONDARY COOLANT BETWEEN HEAT EXCHANGER BUILDING AND THE COOLING TOWER. INL NEGATIVE NO. 56-2205. Jack L. Anderson, Photographer, 6/28/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. 36. VIEW EAST OF WASTE HEAT RECOVERY SYSTEM IN BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW EAST OF WASTE HEAT RECOVERY SYSTEM IN BUILDING 43A; THIS WAS PART OF A SYSTEM WHICH PROVIDED HOT WATER FOR OFFICE AND FACTORY BUILDING HEATING IN THE WEST PLANT; NOTE FACTORY WHISTLE TIMER ON TOP OF HEAT EXCHANGER - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  5. Low-cost sustainable wall construction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, A.; Rosenfeld, A.H.

    1998-07-01

    Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit wasmore » $3.76 per square foot ($$40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $$275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.« less

  6. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon,more » humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.« less

  7. Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1 1/2-Story Homes in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojczyk, C.

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 ½-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  8. Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1 1/2-Story Homes in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojczyk, C.

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marc Hoeschele; Eric Lee

    Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edgemore » and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom homes with radiant floor heating), the most practical insulation strategy is to secure rigid foam insulation, such as Dow Styrofoam{trademark}, to the inside of the wooden slab edge forms. An alternative is to clad insulation to the perimeter of the slab after the slab has been poured and cured. In either case, the foam must have a 'termite strip' that prevents termites from creating hidden tunnels through or behind the foam on their way to the wall framing above. Frequently this termite strip is a piece of sheet metal that must be fabricated for each project. The above-grade portion of the insulation also needs to be coated for appearance and to prevent damage from construction and UV degradation. All these steps add time, complexity, and expense to the insulating process.« less

  10. Technology Solutions Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This case study describes the External Thermal and Moisture Management System developed by the NorthernSTAR Building America Partnership. This system is typically used in deep energy retrofits and is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  11. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute tomore » reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.« less

  12. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    ERIC Educational Resources Information Center

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  13. Climate Impacts on Extreme Energy Consumption of Different Types of Buildings

    PubMed Central

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205

  14. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  15. Safety envelope for load tolerance of structural element design based on multi-stage testing

    DOE PAGES

    Park, Chanyoung; Kim, Nam H.

    2016-09-06

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  16. The use of least squares methods in functional optimization of energy use prediction models

    NASA Astrophysics Data System (ADS)

    Bourisli, Raed I.; Al-Shammeri, Basma S.; AlAnzi, Adnan A.

    2012-06-01

    The least squares method (LSM) is used to optimize the coefficients of a closed-form correlation that predicts the annual energy use of buildings based on key envelope design and thermal parameters. Specifically, annual energy use is related to a number parameters like the overall heat transfer coefficients of the wall, roof and glazing, glazing percentage, and building surface area. The building used as a case study is a previously energy-audited mosque in a suburb of Kuwait City, Kuwait. Energy audit results are used to fine-tune the base case mosque model in the VisualDOE{trade mark, serif} software. Subsequently, 1625 different cases of mosques with varying parameters were developed and simulated in order to provide the training data sets for the LSM optimizer. Coefficients of the proposed correlation are then optimized using multivariate least squares analysis. The objective is to minimize the difference between the correlation-predicted results and the VisualDOE-simulation results. It was found that the resulting correlation is able to come up with coefficients for the proposed correlation that reduce the difference between the simulated and predicted results to about 0.81%. In terms of the effects of the various parameters, the newly-defined weighted surface area parameter was found to have the greatest effect on the normalized annual energy use. Insulating the roofs and walls also had a major effect on the building energy use. The proposed correlation and methodology can be used during preliminary design stages to inexpensively assess the impacts of various design variables on the expected energy use. On the other hand, the method can also be used by municipality officials and planners as a tool for recommending energy conservation measures and fine-tuning energy codes.

  17. Computing the Envelope for Stepwise Constant Resource Allocations

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Estimating tight resource level is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with noises equal to the events and edges equal to the necessary predecessor links between events. The incremental solution of a staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. The staged algorithm has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible for use in the inner loop of search-based scheduling algorithms.

  18. Computing the Envelope for Stepwise-Constant Resource Allocations

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Computing tight resource-level bounds is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with nodes equal to the events and edges equal to the necessary predecessor links between events. A staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. Each stage has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible and promising for use in the inner loop of flexible-time scheduling algorithms.

  19. Black Hole Formation and Fallback during the Supernova Explosion of a 40 M ⊙ Star

    NASA Astrophysics Data System (ADS)

    Chan, Conrad; Müller, Bernhard; Heger, Alexander; Pakmor, Rüdiger; Springel, Volker

    2018-01-01

    Fallback in core-collapse supernovae is considered a major ingredient for explaining abundance anomalies in metal-poor stars and the natal kicks and spins of black holes (BHs). We present a first 3D simulation of BH formation and fallback in an “aborted” neutrino-driven explosion of a 40 solar mass zero-metallicity progenitor from collapse to shock breakout. We follow the phase up to BH formation using the relativistic COCONUT-FMT code. For the subsequent evolution to shock breakout we apply the moving-mesh code AREPO to core-collapse supernovae for the first time. Our simulation shows that despite early BH formation, neutrino-heated bubbles can survive for tens of seconds before being accreted, leaving them sufficient time to transfer part of their energy to sustain the shock wave as is propagates through the envelope. Although the initial net energy (∼2 Bethe) of the neutrino-heated ejecta barely equals the binding energy of the envelope, 11 {M}ȯ of hydrogen are still expelled with an energy of 0.23 Bethe. We find no significant mixing and only a modest BH kick and spin, but speculate that stronger effects could occur for slightly more energetic explosions or progenitors with less tightly bound envelopes.

  20. Molecular rotational line profiles from oxygen-rich red giant winds

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Skinner, C. J.; Tielens, A. G. G. M.

    1994-01-01

    We have developed a radiative transfer model of the dust and gas envelopes around late-type stars. The gas kinetic temperature for each star is calculated by solving equations of motion and the energy balance simultaneously. The main processes include viscous heating and adiabatic and radiative cooling. Heating is dominated by viscosity as the grains stream outward through the gas, with some contribution in oxygen-rich stars by near-IR pumping of H2O followed by collisional de-excitation in the inner envelope. For O-rich stars, rotational H2O cooling is a dominant mechanism in the middle part of the envelope, with CO cooling being less significant. We have applied our model to three well-studied oxygen-rich red giant stars. The three stars cover a wide range of mass-loss rates, and hence they have different temperature structures. The derived temperature structures are used in calculating CO line profiles for these objects. Comparison of the dust and gas mass-loss rates suggests that mass-loss rates are not constant during the asymptotic giant branch phase. In particular, the results show that the low CO 1-0 antenna temperatures of OH/IR stars reflect an earlier phase of much lower mass-loss rate.

  1. Materials and structures for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Lisagor, W. Barry; Dixon, Sidney C.

    1988-01-01

    Hypersonic vehicles are envisioned to require, in addition to carbon-carbon and ceramic-matrix composities for leading edges heated to above 2000 F, such 600 to 1800 F operating temperature materials as advanced Ti alloys, nickel aluminides, and metal-matrix composited; These possess the necessary low density and high strength and stiffness. The primary design drivers are maximum vehicle heating rate, total heat load, flight envelope, propulsion system type, mission life requirements and liquid hydrogen containment systems. Attention is presently given to aspects of these materials and structures requiring more intensive development.

  2. Relationships between radiation, clouds, and convection during DYNAMO

    DOE PAGES

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; ...

    2017-02-16

    In this paper, the relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulusmore » during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate Q r progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4–0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating Q r enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. Finally, this suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.« less

  3. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  4. 8. PHOTOCOPY, HEATING DRAWING FOR ADMINISTRATION BUILDING. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. PHOTOCOPY, HEATING DRAWING FOR ADMINISTRATION BUILDING. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  5. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  6. Flight test derived heating math models for critical locations on the orbiter during reentry

    NASA Technical Reports Server (NTRS)

    Hertzler, E. K.; Phillips, P. W.

    1983-01-01

    An analysis technique was developed for expanding the aerothermodynamic envelope of the Space Shuttle without subjecting the vehicle to sustained flight at more stressing heating conditions. A transient analysis program was developed to take advantage of the transient maneuvers that were flown as part of this analysis technique. Heat rates were derived from flight test data for various locations on the orbiter. The flight derived heat rates were used to update heating models based on predicted data. Future missions were then analyzed based on these flight adjusted models. A technique for comparing flight and predicted heating rate data and the extrapolation of the data to predict the aerothermodynamic environment of future missions is presented.

  7. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  8. Technology Assessments of High Performance Envelope with Optimized Lighting, Solar Control, and Daylighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Thanachareonkit, Anothai; Touzani, Samir

    The objective of this monitored field study was to identify near-term innovative façade technologies for solar control and daylighting with a goal of 20-40% energy use savings below Title 24 2013 in the 30-ft deep perimeter zone near vertical windows within cost and comfort constraints. The targeted market was new or existing commercial office buildings or buildings with similar patterns of use.

  9. Kinetic Super-Resolution Long-Wave Infrared (KSR LWIR) Thermography Diagnostic for Building Envelopes: Scott AFB, IL

    DTIC Science & Technology

    2015-08-18

    techniques of measuring energy loss due to enve- lope inefficiencies from the built environment. A multi-sensor hardware device attached to the roof of a...at this installa- tion, recommends specific energy conservation measures (ECMs), and quantifies significant potential return on investment. ERDC/CERL...to several thousand square feet, total building square feet was used as a metric to measure the cost effectiveness of handheld versus mobile

  10. Analysis and Optimization of Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit-oriented building energy simulator, ROBESim, that natively supports building retrofits. ROBESim extends existing building energy simulators by providing a platform for the analysis of novel retrofits, in addition to simulating existing retrofits. Using ROBESim, retrofits can be automatically applied to buildings, obviating the need for users to manually update building characteristics for comparisons between different building retrofits. ROBESim also includes several ease-of-use enhancements to support users of all experience levels.

  11. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  12. IRAS observations of a large circumstellar dust shell around W Hydrae

    NASA Technical Reports Server (NTRS)

    Hawkins, G. W.

    1990-01-01

    IRAS observations at 60 and 100 microns reveal a large 30-40-arcmin (about 1-pc) diameter dust shell centered on the oxygen-rich red giant W Hya. Except for SNRs, this is the largest mass-loss envelope, in apparent diameter, known around any evolved star, including PN. W Hya's radiation field, stronger than the interstellar radiation field in the outer envelope, is sufficient to heat dust grains with IR emissivity proportional to lambda exp -1.2 to temperatures of about 40 K implied by the ratio of intensities at 60 and 100 microns.

  13. Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2014-01-01

    According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  14. Solar-heated and cooled savings and loan building-1-Leavenworth, Kanasas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes heating and cooling system which furnishes 90 percent of annual heating load, 70 percent of cooling load, and all hot water for two-story building. Roof-mounted flat-plate collectors allow three distinct flow rates and are oriented south for optimum energy collection. Building contains fully automated temperature controls is divided into five temperature-load zones, each with independent heat pump.

  15. Development of building energy asset rating using stock modelling in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2016-01-29

    The US Building Energy Asset Score helps building stakeholders quickly gain insight into the efficiency of building systems (envelope, electrical and mechanical systems). A robust, easy-to-understand 10-point scoring system was developed to facilitate an unbiased comparison of similar building types across the country. The Asset Score does not rely on a database or specific building baselines to establish a rating. Rather, distributions of energy use intensity (EUI) for various building use types were constructed using Latin hypercube sampling and converted to a series of stepped linear scales to score buildings. A score is calculated based on the modelled source EUImore » after adjusting for climate. A web-based scoring tool, which incorporates an analytical engine and a simulation engine, was developed to standardize energy modelling and reduce implementation cost. This paper discusses the methodology used to perform several hundred thousand building simulation runs and develop the scoring scales.« less

  16. Causality, apparent ``superluminality,'' and reshaping in barrier penetration

    NASA Astrophysics Data System (ADS)

    Sokolovski, D.

    2010-04-01

    We consider tunneling of a nonrelativistic particle across a potential barrier. It is shown that the barrier acts as an effective beam splitter which builds up the transmitted pulse from the copies of the initial envelope shifted in the coordinate space backward relative to the free propagation. Although along each pathway causality is explicitly obeyed, in special cases reshaping can result an overall reduction of the initial envelope, accompanied by an arbitrary coordinate shift. In the case of a high barrier the delay amplitude distribution (DAD) mimics a Dirac δ function, the transmission amplitude is superoscillatory for finite momenta and tunneling leads to an accurate advancement of the (reduced) initial envelope by the barrier width. In the case of a wide barrier, initial envelope is accurately translated into the complex coordinate plane. The complex shift, given by the first moment of the DAD, accounts for both the displacement of the maximum of the transmitted probability density and the increase in its velocity. It is argued that analyzing apparent “superluminality” in terms of spacial displacements helps avoid contradiction associated with time parameters such as the phase time.

  17. Masonry building envelope analysis

    NASA Astrophysics Data System (ADS)

    McMullan, Phillip C.

    1993-04-01

    Over the past five years, infrared thermography has proven an effective tool to assist in required inspections on new masonry construction. However, with more thermographers providing this inspection service, establishing a standard for conducting these inspections is imperative. To attempt to standardize these inspections, it is important to understand the nature of the inspection as well as the context in which the inspection is typically conducted. The inspection focuses on evaluating masonry construction for compliance with the design specifications with regard to structural components and thermal performance of the building envelope. The thermal performance of the building includes both the thermal resistance of the material as well as infiltration/exfiltration characteristics. Given that the inspections occur in the 'field' rather than the controlled environment of a laboratory, there are numerous variables to be considered when undertaking this type of inspection. Both weather and site conditions at the time of the inspection can vary greatly. In this paper we will look at the variables encountered during recent inspections. Additionally, the author will present the standard which was employed in collecting this field data. This method is being incorporated into a new standard to be included in the revised version of 'Guidelines for Specifying and Performing Infrared Inspections' developed by the Infraspection Institute.

  18. Climate Change Adopted Building Envelope as A Protector of Human Health in the Urban Environment

    NASA Astrophysics Data System (ADS)

    Januszkiewicz, Krystyna

    2017-10-01

    Recently, an expanded understanding of building performance acknowledges that all forces acting on buildings (climate, energies, information, and human agents) are not static and fixed, but rather mutable and transient. With the use of parametric and multi-criteria optimization digital tools, buildings’ envelopes can be designed to respond to various requirements. This paper explores the possibilities of architectural design to benefit human conditions, which encompasses mental well-being, environmental quality of life during the Climate Change era. The first part of the paper defines the main factors (such as: lack of green nature and sunlight, noise and pollution) which are influencing the formation of psychological disorder in big cities. The negative impact of these factors is constantly increasing in the time of Climate Change progressing. The second part presents results of the research program undertaken at West Pomeranian University of Technology in Szczecin by author. The program goes on to attempt to solve the problem through architectural design. This study highlights a social problem, such as mental well-being, resulting from urbanization or effects of the climate change, and serves as a useful background for further research on the possibilities of redefining sustainable and human friendly design.

  19. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in additionmore » to heating water that is consumed by fixtures and appliances.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chanyoung; Kim, Nam H.

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  1. Structure and evolution of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Macfarlane, J. J.

    1980-01-01

    Three-layer interior models of Uranus and Neptune with central rocky cores, mantles of water, methane, and ammonia (the 'ices'), and outer envelopes primarily composed of hydrogen and helium are presented. The models incorporate a new H2O equation of state based on experimental data which is considerably 'softer' than previous H2O equations of state. Corrections for interior temperatures approximately 5000 K are included in the models, and the thermal evolution of both planets is investigated using recent heat flow measurements. It is found that the evolutionary considerations are consistent with gravitational field data in supporting models with approximately solar abundances of 'ice' and 'rock'. Evolutionary considerations indicate that initial temperatures and luminosities for Uranus and Neptune were not substantially higher than the present value. Both planets apparently have relatively small approximately 1-2 earth masses) hydrogen-helium envelopes, with Neptune's envelope smaller than Uranus'. A monotonic trend is evident among the Jovian planets: all have central rock-ice cores of approximately 15 earth masses, but with hydrogen-helium envelopes which decrease in mass from Jupiter to Saturn to Uranus to Neptune.

  2. Comparison of the Calculations Results of Heat Exchange Between a Single-Family Building and the Ground Obtained with the Quasi-Stationary and 3-D Transient Models. Part 2: Intermittent and Reduced Heating Mode

    NASA Astrophysics Data System (ADS)

    Staszczuk, Anna

    2017-03-01

    The paper provides comparative results of calculations of heat exchange between ground and typical residential buildings using simplified (quasi-stationary) and more accurate (transient, three-dimensional) methods. Such characteristics as building's geometry, basement hollow and construction of ground touching assemblies were considered including intermittent and reduced heating mode. The calculations with simplified methods were conducted in accordance with currently valid norm: PN-EN ISO 13370:2008. Thermal performance of buildings. Heat transfer via the ground. Calculation methods. Comparative estimates concerning transient, 3-D, heat flow were performed with computer software WUFI®plus. The differences of heat exchange obtained using more exact and simplified methods have been specified as a result of the analysis.

  3. Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants.

    PubMed

    Zang, Xinshan; Geng, Xiaoli; Liu, Kelu; Wang, Fei; Liu, Zhenshan; Zhang, Liyuan; Zhao, Yue; Tian, Xuejun; Hu, Zhaorong; Yao, Yingyin; Ni, Zhongfu; Xin, Mingming; Sun, Qixin; Peng, Huiru

    2017-05-01

    Abiotic stresses, such as heat and drought, are major environmental factors restricting crop productivity and quality worldwide. A plastid outer envelope protein gene, TaOEP16-2, was identified from our previous transcriptome analysis [1,2]. In this study, the isolation and functional characterization of the TaOEP16-2 gene was reported. Three homoeologous sequences of TaOEP16-2 were isolated from hexaploid wheat, which were localized on the chromosomes 5A, 5B and 5D, respectively. These three homoeologues exhibited different expression patterns under heat stress conditions, TaOEP16-2-5B was the dominant one, and TaOEP16-2-5B was selected for further analysis. Compared with wild type (WT) plants, transgenic Arabidopsis plants overexpressing the TaOEP16-2-5B gene exhibited enhanced tolerance to heat stress, which was supported by improved survival rate, strengthened cell membrane stability and increased sucrose content. It was also found that TaOEP16-2 was induced by drought stress and involved in drought stress tolerance. TaOEP16-2-5B has the same function in ABA-controlled seed germination as AtOEP16-2. Our results suggest that TaOEP16-2-5B plays an important role in heat and drought stress tolerance, and could be utilized in transgenic breeding of wheat and other crop plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Space Heating Load Estimation Procedure for CHP Systems sizing

    NASA Astrophysics Data System (ADS)

    Vocale, P.; Pagliarini, G.; Rainieri, S.

    2015-11-01

    Due to its environmental and energy benefits, the Combined Heat and Power (CHP) represents certainly an important measure to improve energy efficiency of buildings. Since the energy performance of the CHP systems strongly depends on the fraction of the useful cogenerated heat (i.e. the cogenerated heat that is actually used to meet building thermal demand), in building applications of CHP, it is necessary to know the space heating and cooling loads profile to optimise the system efficiency. When the heating load profile is unknown or difficult to calculate with a sufficient accuracy, as may occur for existing buildings, it can be estimated from the cumulated energy uses by adopting the loads estimation procedure (h-LEP). With the aim to evaluate the useful fraction of the cogenerated heat for different operating conditions in terms of buildings characteristics, weather data and system capacity, the h-LEP is here implemented with a single climate variable: the hourly average dry- bulb temperature. The proposed procedure have been validated resorting to the TRNSYS simulation tool. The results, obtained by considering a building for hospital use, reveal that the useful fraction of the cogenerated heat can be estimated with an average accuracy of ± 3%, within the range of operative conditions considered in the present study.

  5. Limited energy study, Buildings 750 and 798, Fort Richardson, Alaska. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for two motor pool facilities, Buildings 750 and 798, to determine their energy savings potential, economic feasibility, and to document results for possible future funding. Buildings 750 and 798 are heated by steam supplied from a central plant. The central plant uses natural gas as a primary fuel source to produce steam for both heating and electrical energy generation. Since power is produced on the base there is not a demand charge for electrical energy. Two ECOs examined the use of natural gas in conjunction withmore » steam as a method of heating the buildings. Annual baseline energy consumption and cost data for each building is presented. The heating system in Building 750 was found to be severely under capacity. This is the result of the disabling of the under-floor heating system and the roof top MAUs. Building 798 also has had the under-floor heating system disabled. However, baseline simulations show that the remaining system is capable of maintaining thermostat setpoints during all but the coldest days of a typical year.« less

  6. The role of moisture in the nest thermoregulation of social wasps.

    PubMed

    Klingner, R; Richter, K; Schmolz, E; Keller, B

    2005-09-01

    Paper nests of social wasps are intriguing constructions for both, biologists and engineers. We demonstrate that moisture and latent heat significantly influence the thermal performance of the nest construction. Two colonies of the hornet Vespa crabro were investigated in order to clarify the relation of the temperature and the moisture regime inside the nest. Next to fairly stable nest temperatures the hornets maintain a high relative humidity inside the nest. We found that in consequence a partial vapor-pressure gradient between nest and ambient drives a constant vapor flux through the envelope. The vapor flux is limited by the diffusion resistance of the envelope. The driving force of vapor flux is heat, which is consumed through evaporation inside the nest. The colony has to compensate this loss with metabolic heat production in order to maintain a stable nest temperature. However, humidity fluctuations inside the nest induce circadian adsorption and desorption cycles, which stabilize the nest temperature and thus contribute significantly to temperature homeostasis. Our study demonstrates that both mechanisms influence nest thermoregulation and need to be considered to understand the thermodynamic behavior of nests of wasps and social insects in general.

  7. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  8. School Tucked in an Envelope.

    ERIC Educational Resources Information Center

    AIA Journal, 1981

    1981-01-01

    At the Telluride (Colorado) school, the classroom wing was outfitted with a thick floor slab and a greenhouse space where heat is stored in waterfilled tubes. The gymnasium's southwestern wall was transformed into a Trombe wall by applying 2,000 square feet of glazing. (Author/MLF)

  9. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person in...

  10. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1 The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person in...

  11. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person in...

  12. Solar-Heated Office Building -- Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar heating system designed to supply 87 percent of space heating and 100 percent of potable hot-water needs of large office building in Dallas, Texas. Unique feature of array serves as roofing over office lobby and gives building attractive triangular appearance. Report includes basic system drawings, test data, operating procedures, and maintenance instructions.

  13. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Self-reported health outcomes associated with green-renovated public housing among primarily elderly residents.

    PubMed

    Breysse, Jill; Dixon, Sherry L; Jacobs, David E; Lopez, Jorge; Weber, William

    2015-01-01

    Assess the benefits of green renovation on self-reported health of primarily elderly residents of a low-income public housing apartment building. Using questions from the Medicare Health Outcomes Survey, we interviewed residents at baseline and 1 year after green renovation of their 101-unit building in Mankato, Minnesota, comparing self-reported mental and physical health outcomes of 2 sets of residents (all-ages: median, 66 years, n = 40; elder: median, 72 years, n = 22) with outcomes for 2 same-aged low-income Minnesota comparison groups taken from Medicare Health Outcomes Survey participants (n = 40 and 572, respectively). Mankato apartment building residents. Green renovation including building envelope restoration; new heating, electrical, and ventilation systems; air sealing; new insulation and exterior cladding; window replacement; Energy-Star fixtures and appliances; asbestos and mold abatement; apartment gut retrofits; low volatile organic chemical and moisture-resistant materials; exercise enhancements; and indoor no-smoking policy. Self-reported health status including Activities of Daily Living and Veteran's Rand 12 (VR-12) survey results; housing condition visual assessment; indoor environmental sampling; and building performance testing. The all-ages study group's mental health improved significantly more than the comparison group's mental health on the basis of mean number of good mental health days in the past month (P = .026) and mean VR-12 mental component score (P = .023). Sixteen percent fewer all-ages study group people versus 8% more comparison group people reported falls (P = .055). The elder study group's 9% improvement in general physical health was not statistically significantly better than the elder comparison group's decline (6%) (P = 0.094). Significantly fewer people in the all-ages group reported smoke in their apartments because of tobacco products (20% vs 0%, P = .005), likely reflecting the new no-smoking policy. Green healthy housing renovation may result in improved mental and general physical health, prevented falls, and reduced exposure to tobacco smoke.

  15. Method of Minimizing Size of Heat Rejection Systems for Thermoelectric Coolers to Cool Detectors in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2014-01-01

    A thermal design concept of attaching the thermoelectric cooler (TEC) hot side directly to the radiator and maximizing the number of TECs to cool multiple detectors in space is presented. It minimizes the temperature drop between the TECs and radiator. An ethane constant conductance heat pipe transfers heat from the detectors to a TEC cold plate which the cold side of the TECs is attached to. This thermal design concept minimizes the size of TEC heat rejection systems. Hence it reduces the problem of accommodating the radiator within a required envelope. It also reduces the mass of the TEC heat rejection system. Thermal testing of a demonstration unit in vacuum verified the thermal performance of the thermal design concept.

  16. Energy Management in Schools.

    ERIC Educational Resources Information Center

    Canadian School Trustees Association, Ottawa (Ontario).

    This booklet provides the basic information for starting an energy conservation program. Guidelines for involving all school personnel and promoting energy conservation throughout the entire Canadian education system are provided. Outlined in the booklet are methods for climate proofing the building envelope and making the system air tight,…

  17. Greenbelt Homes Pilot Program: Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. It presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressingmore » the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements.« less

  18. Heat-pump-centered integrated community energy systems: Systems development, Consolidated Natural Gas Service Company

    NASA Astrophysics Data System (ADS)

    Baker, N. R.; Donakowski, T. D.; Foster, R. B.; Sala, D. L.; Tison, R. R.; Whaley, T. P.; Yudow, B. D.; Swenson, P. F.

    1980-01-01

    The heat actuated heat pump centered integrated community energy system (HAHP-ICES) is described. The system utilizes a gas fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general nonsite specific application assumes a hypothetical community of one 59,000 cu ft office building and five 24 unit, low rise apartment buildings located in a region with a climate similar to Chicago. Various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results provided the selection criteria for the site specific application of the HAHP-ICES concept to a real world community. The site-specific community consists of: 42 town houses; five 120 unit, low rise apartment buildings; five 104 unit high rise apartment buildings; one 124,000 cu ft office building; and a single 135,000 cu ft retail building.

  19. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  20. ETR HEAT EXCHANGER BUILDING, TRA644. WORKERS ARE INSTALLING HEAT EXCHANGER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. WORKERS ARE INSTALLING HEAT EXCHANGER PIPING. INL NEGATIVE NO. 56-3122. Jack L. Anderson, Photographer, 9/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Solar Process Heat Basics | NREL

    Science.gov Websites

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same , black metal panel mounted on a south-facing wall to absorb the sun's heat. Air passes through the many nonresidential buildings. A typical system includes solar collectors that work along with a pump, heat exchanger

  2. How The Army Can Be An Environmental Paragon Through Energy

    DTIC Science & Technology

    2005-04-01

    with recycled energy efficient material . Installing solar heating and solar energy devices on all new buildings will allow water to be heated ...ground heat exchanger , heat pump, and ductwork to deliver the air. The heat exchanger consists of pipes (a loop) buried under the ground close to a...building. Water or water plus antifreeze flows through the heat exchanger pipes absorbing heat (in the winter) and giving up heat (in the summer

  3. Window Design Criteria to Avoid Overheating by Excessive Solar Heat Gains.

    ERIC Educational Resources Information Center

    Loudon, A. G.

    Building Research studies show that overheating because of excessive solar heat gains can be troublesome in buildings of lightweight construction with large areas of glazing. The work being done at the Building Research Station provides the data for calculation of peak temperatures resulting from solar heat gain. Attention is given to window size…

  4. Characterization and in vivo regulon determination of an ECF sigma factor and its cognate anti-sigma factor in Nostoc punctiforme.

    PubMed

    Bell, Nicole; Lee, Jamie J; Summers, Michael L

    2017-04-01

    Based on primary sequence comparisons and genomic context, Npun_F4153 (SigG)/Npun_F4154 (SapG) of the cyanobacterium Nostoc punctiforme were hypothesized to encode an ECF sigma factor/anti-sigma factor pair. Transcription of sigG increased in heterocysts and akinetes, and after EDTA treatment. Interaction between SigG and the predicted cytoplasmic domain of SapG was observed in vitro. A SigG-GFP translational fusion protein localized to the periphery of vegetative cells in vivo, but lost this association following heat stress. A sigG mutant was unable to survive envelope damage caused by heat or EDTA, but was able to form functional heterocysts. Akinetes in the mutant strain appeared normal, but these cultures were less resistant to lysozyme and cold treatments than those of the wild-type strain. The SigG in vivo regulon was determined before and during akinete differentiation using DNA microarray analysis, and found to include multiple genes with putative association to the cell envelope. Mapped promoters common to both arrays enabled identification of a SigG promoter-binding motif that was supported in vivo by reporter studies, and in vitro by run-off transcription experiments. These findings support SigG/SapG as a sigma/anti-sigma pair involved in repair of envelope damage resulting from exogenous sources or cellular differentiation. © 2017 John Wiley & Sons Ltd.

  5. Characterization and in vivo regulon determination of an ECF sigma factor and its cognate anti-sigma factor in Nostoc punctiforme

    PubMed Central

    Bell, Nicole; Lee, Jamie J.; Summers, Michael L.

    2017-01-01

    Summary Based on primary sequence comparisons and genomic context, Npun_F4153 (SigG)/Npun_F4154 (SapG) of the cyanobacterium Nostoc punctiforme were hypothesized to encode an ECF sigma factor/anti-sigma factor pair. Transcription of sigG increased in heterocysts and akinetes, and after EDTA treatment. Interaction between SigG and the predicted cytoplasmic domain of SapG was observed in vitro. A SigG-GFP translational fusion protein localized to the periphery of vegetative cells in vivo, but lost this association following heat stress. A sigG mutant was unable to survive envelope damage caused by heat or EDTA, but was able to form functional heterocysts. Akinetes in the mutant strain appeared normal, but these cultures were less resistant to lysozyme and cold treatments than those of the wild-type strain. The SigG in vivo regulon was determined before and during akinete differentiation using DNA microarray analysis, and found to include multiple genes with putative association to the cell envelope. Mapped promoters common to both arrays enabled identification of a SigG promoter-binding motif that was supported in vivo by reporter studies, and in vitro by run-off transcription experiments. These findings support SigG/SapG as a sigma/anti-sigma pair involved in repair of envelope damage resulting from exogenous sources or cellular differentiation. PMID:28105698

  6. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  7. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less

  8. Assessing high shares of renewable energies in district heating systems - a case study for the city of Herten

    NASA Astrophysics Data System (ADS)

    Aydemir, Ali; Popovski, Eftim; Bellstädt, Daniel; Fleiter, Tobias; Büchele, Richard

    2017-11-01

    Many earlier studies have assessed the DH generation mix without taking explicitly into account future changes in the building stock and heat demand. The approach of this study consists of three steps that combine stock modeling, energy demand forecasting, and simulation of different energy technologies. First, a detailed residential building stock model for Herten is constructed by using remote sensing together with a typology for the German building stock. Second, a bottom-up simulation model is used which calculates the thermal energy demand based on energy-related investments in buildings in order to forecast the thermal demand up to 2050. Third, solar thermal fields in combination with large-scale heat pumps are sized as an alternative to the current coal-fired CHPs. We finally assess cost of heat and CO2 reduction for these units for two scenarios which differ with regard to the DH expansion. It can be concluded that up to 2030 and 2050 a substantial reduction in buildings heat demand due to the improved building insulation is expected. The falling heat demand in the DH substantially reduces the economic feasibility of new RES generation capacity. This reduction might be compensated by continuously connecting apartment buildings to the DH network until 2050.

  9. 36 CFR 910.12 - Development density.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Development density. 910.12... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.12 Development density. (a) Land would be developed... density within the building envelope delineated by specific height restrictions, but shall also establish...

  10. 36 CFR 910.12 - Development density.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Development density. 910.12... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.12 Development density. (a) Land would be developed... density within the building envelope delineated by specific height restrictions, but shall also establish...

  11. 36 CFR 910.12 - Development density.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Development density. 910.12... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.12 Development density. (a) Land would be developed... density within the building envelope delineated by specific height restrictions, but shall also establish...

  12. Effects from the Reduction of Air Leakage on Energy and Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hun, Diana E.; Childs, Phillip W.; Atchley, Jerald Allen

    2014-01-01

    Buildings are responsible for approximately 40% of the energy used in the US. Codes have been increasing building envelope requirements, and in particular those related to improving airtightness, in order to reduce energy consumption. The main goal of this research was to evaluate the effects from reductions in air leakage on energy loads and material durability. To this end, we focused on the airtightness and thermal resistance criteria set by the 2012 International Energy Conservation Code (IECC).

  13. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Fisk, William J.

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% asmore » the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.« less

  14. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  15. 1. VIEW LOOKING SOUTHEAST INSIDE OF THE HEAT TREATMENT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHEAST INSIDE OF THE HEAT TREATMENT BUILDING AT BATCH FURNACES, QUENCHING PIT IN FOREGROUND. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. ETR HEAT EXCHANGER BUILDING, TRA644. DETAIL OF SOUTH SIDE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. DETAIL OF SOUTH SIDE BUILDING INSET. DEMINERALIZER WING AT RIGHT. CAMERA FACING NORTH. INL NEGATIVE NO. HD46-36-2. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Energy 101: Geothermal Heat Pumps

    ScienceCinema

    None

    2018-02-13

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  18. Large Prefabricated Concrete Panels Collective Dwellings from the 1970s: Context and Improvements

    NASA Astrophysics Data System (ADS)

    Muntean, Daniel M.; Ungureanu, Viorel; Petran, Ioan; Georgescu, Mircea

    2017-10-01

    The period between 1960s and 1970s had a significant impact in Romania on the urban development of major cities. Because the vast expansion of the industry, the urban population has massively increased, due the large number of workers coming from the rural areas. This intense process has led to a shortage of homes on the housing market. In order to rapidly build new homes, standard residential project types were erected using large prefabricated concrete panels. By using repetitive patterns, such buildings were built in a short amount of time through the entire country. Nowadays, these buildings represent 1.8% of the built environment and accommodate more than half of a city’s population. Even though these units have reached only half their intended life span, they fail to satisfy present living standards and consume huge amounts of energy for heating, cooling, ventilation and lighting. Due to the fact that these building are based on standardised projects and were built in such a large scale, the creation of a system that brings them to current standards will not only benefit the building but also it will significantly improve the quality of life within. With the transition of the existing power grids to a “smart grid” such units can become micro power plants in future electricity networks thus contributing to micro-generation and energy storage. If one is to consider the EU 20-20-20 commitments, to find ideas for alternative and innovative strategies for further improving these building through locally adapted measures can be seen as one of the most addressed issues of today. This research offers a possible retrofitting scenario of these buildings towards a sustainable future. The building envelope is upgraded using a modular insulation system with integrated solar cells. Renewable energy systems for cooling and ventilation are integrated in order to provide flexibility of the indoor climate. Due to their small floor area, the space within the apartments is redesigned for a more efficient use of space and an improved natural lighting. Active core modules are placed on top of the unused attics and a solar panel array is introduced. Furthermore accessibility issues are addressed by facilitating access for disabled people and implementing an elevator system that currently these building do not have.

  19. Enhancing the Envelope

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2005-01-01

    With energy prices escalating, schools and universities have enormous incentive to control heating and cooling costs. And, as concerns about campus security and student safety continue to be paramount, education administrators have a duty to make sure their facilities are protected from intruders, vandals or other criminals. At the same time,…

  20. Coaching Emotional Skills at Camp: You Bet You Can!

    ERIC Educational Resources Information Center

    Coleman, Marla

    1997-01-01

    Stresses the importance of camps fostering the self-esteem and emotional intelligence of campers by creating an envelope of physical safety, building emotional security, creating a sense of identity, developing a sense of belonging, nurturing competence, and achieving a sense of mission. Discusses achieving this goal through cooperation with…

  1. Preservation Concerns in Construction and Remodeling of Libraries: Planning for Preservation.

    ERIC Educational Resources Information Center

    Trinkley, Michael

    To help libraries and other holdings institutions better incorporate preservation concerns in construction, renovation, and routine maintenance, various techniques are presented that allow preservation concerns to be integrated. The following topics are considered: (1) site selection; (2) design of the building envelope; (3) the library interior;…

  2. 36 CFR § 910.12 - Development density.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Development density. § 910.12... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.12 Development density. (a) Land would be developed... density within the building envelope delineated by specific height restrictions, but shall also establish...

  3. Accelerated long-term assessment of thermal and chemical stability of bio-based phase change materials

    USDA-ARS?s Scientific Manuscript database

    Thermal energy storage (TES) systems incorporated with phase change materials (PCMs) have potential applications to control energy use by building envelopes. However, it is essential to evaluate long term performance of the PCMs and cost effectiveness prior to full scale implementation. For this rea...

  4. INFALLING–ROTATING MOTION AND ASSOCIATED CHEMICAL CHANGE IN THE ENVELOPE OF IRAS 16293–2422 SOURCE A STUDIED WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa

    2016-06-20

    We have analyzed rotational spectral line emission of OCS, CH{sub 3}OH, HCOOCH{sub 3}, and H{sub 2}CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH{sub 3}OH and HCOOCH{sub 3} are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of themore » centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M {sub ⊙}, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH{sub 3}OH and HCOOCH{sub 3} may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H{sub 2}CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.« less

  5. Green, Clean, & Mean: Pushing the Energy Envelope in Tech Industry Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Granderson, Jessica; Chan, Rengie

    When it comes to innovation in energy and building performance, one can expect leading-edge activity from the technology sector. As front-line innovators in design, materials science, and information management, developing and operating high-performance buildings is a natural extension of their core business. The energy choices made by technology companies have broad importance given their influence on society at large as well as the extent of their own energy footprint. Microsoft, for example, has approximately 250 facilities around the world (30 million square feet of floor area), with significant aggregate energy use of approximately 4 million kilowatt-hours per day (Figure 1).

  6. Design methodology analysis: design and operational energy studies in a new high-rise office building. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-02-01

    Work on energy consumption in a large office building is reported, including the following tasks: (1) evaluating and testing the effectiveness of the existing ASHRAE 90-75 and 90-80 standards; (2) evaluating the effectiveness of the BEPS; (3) evaluating the effectiveness of some envelope and lighting design variables towards achieving the BEPS budgets; and (4) comparing the computer energy analysis technique, DOE-2.1, with manual calculation procedures. These tasks are the initial activities in the energy analysis of the Park Plaza Building and will serve as the basis for further understanding the results of ongoing data collection and analysis.

  7. Retrofitting solutions for two different occupancy levels of educational buildings in tropics

    NASA Astrophysics Data System (ADS)

    Yang, Junjing; Pantazaras, Alexandros; Lee, Siew Eang; Santamouris, Mattheos

    2018-01-01

    Within the multi-functionality of educational buildings, the energy conservation potential can be very different. In addition, among different retrofitting solutions investigated involving interventions on the building envelope, ventilation strategies, artificial lighting systems as well as equipment upgrading, different saving potential would come from different aspects. The opportunities for energy saving potential from the overall point of view and from the detailed aspect view of different retrofitting solutions would be very useful and important for building renovation decision making. This study presents a detailed retrofitting study of two different educational buildings. One represents a building with average occupancy variation and containing mainly offices and labs. The other one represents a building with high occupancy variation and containing mainly lecture rooms and studios. This comparison of the results gives an idea of the different energy saving potential for different types of educational buildings. Principal component analysis is also adopted to investigate the detailed performance of one of the buildings which is influenced stronger by these retrofitting solutions.

  8. Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Kessler, B.; Mullens, M.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  9. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Kessler, B.; Mullens, M.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  10. CO2 heat pumps for commercial building applications with simultaneous heating and cooling demand

    NASA Astrophysics Data System (ADS)

    Dharkar, Supriya

    Many commercial buildings, including data centers, hotels and hospitals, have a simultaneous heating and cooling demand depending on the season, occupation and auxiliary equipment. A data center on the Purdue University, West Lafayette campus is used as a case study. The electrical equipment in data centers produce heat, which must be removed to prevent the equipment temperature from rising to a certain level. With proper integration, this heat has the potential to be used as a cost-effective energy source for heating the building in which the data center resides or the near-by buildings. The proposed heat pump system utilizes carbon dioxide with global warming potential of 1, as the refrigerant. System simulations are carried out to determine the feasibility of the system for a 12-month period. In addition, energy, environmental and economic analyses are carried out to show the benefits of this alternative technology when compared to the conventional system currently installed in the facility. Primary energy savings of ~28% to ~61%, a payback period of 3 to 4.5 years and a decrease in the environmental impact value by ~36% makes this system an attractive option. The results are then extended to other commercial buildings.

  11. Building a good initial model for full-waveform inversion using frequency shift filter

    NASA Astrophysics Data System (ADS)

    Wang, Guanchao; Wang, Shangxu; Yuan, Sanyi; Lian, Shijie

    2018-05-01

    Accurate initial model or available low-frequency data is an important factor in the success of full waveform inversion (FWI). The low-frequency helps determine the kinematical relevant components, low-wavenumber of the velocity model, which are in turn needed to avoid FWI trap in local minima or cycle-skipping. However, in the field, acquiring data that <5 Hz is a challenging and expensive task. We attempt to find the common point of low- and high-frequency signal, then utilize the high-frequency data to obtain the low-wavenumber velocity model. It is well known that the instantaneous amplitude envelope of a wavelet is invariant under frequency shift. This means that resolution is constant for a given frequency bandwidth, and independent of the actual values of the frequencies. Based on this property, we develop a frequency shift filter (FSF) to build the relationship between low- and high-frequency information with a constant frequency bandwidth. After that, we can use the high-frequency information to get a plausible recovery of the low-wavenumber velocity model. Numerical results using synthetic data from the Marmousi and layer model demonstrate that our proposed envelope misfit function based on the frequency shift filter can build an initial model with more accurate long-wavelength components, when low-frequency signals are absent in recorded data.

  12. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ARBI

    2014-09-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared tomore » the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, W.

    The headquarters building for the Church of Jesus Christ of Latter-Day Saints (LDS) is a 28-story office building in downtown Salt Lake City, Utah. Completed in 1972, the building is heated and cooled by ground-water heat pumps. The heat-pump system allows considerable flexibility in balancing heating and cooling requirements, and allows for the recovery and use of heat which otherwise would be lost. Although there are a few problems associated with the system, officials in the Operations and Maintenance Division express general satisfaction with it and with the equipment. No firm figures are available on the economics of the heat-pumpmore » system, but it appears to be more economic than a comparable conventional system.« less

  14. Italian guidelines for energy performance of cultural heritage and historical buildings: the case study of the Sassi of Matera.

    NASA Astrophysics Data System (ADS)

    Negro, Elisabetta; Cardinale, Tiziana; Cardinale, Nicola

    2016-04-01

    The Sassi of Matera are a unique example in the world of rock settlement, developed from natural caves carved into the rock and then molded into increasingly complex structures inside two large natural amphitheatres: the Sasso Caveoso and the Sasso Barisano. Thanks also to this aspects Matera is an UNESCO world heritage site and was elected European Capital of Culture in 2019. Our research focuses on the compatibility of the energy efficiency measures applied in of Sassi buildings with the recent MiBACT (Italian Ministry of Cultural Heritage) guidelines on "Energy efficiency improvements in the cultural heritage" and AiCARR (Italian Association of Air Conditioning) guidelines on "Energy efficiency of historical building". One of the essential measures highlighted by Mibact guidelines is ensure the Indoor Environmental Quality improvement of the historical architecture in order to preserve their identity and cultural heritage. These paper aims to analyze energy and environmental performance of different buildings typology and monuments present in the Sassi site. The energy performance and microclimate measures conducted on different type of building by non-destructive measurements and laboratory tests in situ are useful to verify and quantify the thermal characteristics of the envelopes of the Mediterranean tradition and also to demonstrate their capacity to ensure internal comfort conditions. The calcarenite walls of vernacular building of Sassi show the excellent energy behavior of these constructions. But these material often present high moisture content which negatively influence the room microclimate in particular in presence of mural frescos and rocky churches. However these structures, once restored and in a condition of normal use, give indoor comfort within the limits of thermo-hygrometrics standards established by indices as the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). Another interesting consideration stated from our researches is that these buildings are able to reduce the temperature oscillations of the external environment as a result of their high thermal mass. These traditional settlements are typical of the Mediterranean area that has summers with high temperature and daily thermal oscillations. So we can conclude that these buildings could be considered as bioclimatic. Regarding the monuments, as the Matera Cathedral, the evaluation of the indoor microclimate during and after the restoration works shows excellent results and ensures the optimal preservation of artistic heritage from the thermo hygrometric point of view. The plant solution adopted (installation of floor heating system) is in line with the Italian guidelines because this type of system at low temperature allows high energy savings as it enables the use of combustion systems with high-efficiency (condensing boilers) and/or renewable energy installations (heat pumps, solar thermal collectors). A complete knowledge of historical heritage and energy performance of Sassi building is a strategy indicated by Italian guidelines in order to preserve the identity of their inhabitants. So it is necessary to conduct a complete mapping of the entire heritage of this city and develop specific guidelines which combine technical and economic feasibility, appropriate landscaping and architectural integration and environmental sustainability within a proper building lifecycle.

  15. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conductionmore » Finite Difference (CondFD) algorithms.« less

  16. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  17. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  18. ETR HEAT EXCHANGER BUILDING, TRA644. FLOOR PLAN AND SECTIONS. PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. FLOOR PLAN AND SECTIONS. PUMP CUBICLES WITH PUMP MOTORS OUTSIDE CUBICLES. HEAT EXCHANGER EQUIPMENT. COOLANT PIPE TUNNEL ENTERS FROM REACTOR BUILDING. KAISER ETR-5582-MTR-644-A-3, 2/1956. INL INDEX NO. 532-0644-00-486-101294, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. An Energy Saver Called NECAP

    NASA Technical Reports Server (NTRS)

    1979-01-01

    One of the most comprehensive and most effective programs is NECAP, an acronym for NASA Energy Cost Analysis Program. Developed by Langley Research Center, NECAP operates according to heating/cooling calculation procedures formulated by the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). The program enables examination of a multitude of influences on heat flow into and out of buildings. For example, NECAP considers traditional weather patterns for a given locale and predicts the effects on a particular building design of sun, rain, wind, even shadows from other buildings. It takes into account the mass of structural materials, insulating values, the type of equipment the building will house, equipment operating schedules, heat by people and machinery, heat loss or gain through windows and other openings and a variety of additional details. NECAP ascertains how much energy the building should require ideally, aids selection of the most economical and most efficient energy systems and suggests design and operational measures for reducing the building's energy needs. Most importantly, NECAP determines cost effectiveness- whether an energy-saving measure will pay back its installation cost through monetary savings in energy bills. thrown off

  20. The circumstellar envelope of the C-rich post-AGB star HD 56126

    NASA Astrophysics Data System (ADS)

    Hony, S.; Tielens, A. G. G. M.; Waters, L. B. F. M.; de Koter, A.

    2003-04-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch ``21 mu m object'' HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model the emission of the dust we use amorphous carbon, hydrogenated amorphous carbon, magnesium sulfide and titanium carbide. We present a detailed parametrisation of the optical properties of hydrogenated amorphous carbon as a function of H/C content. The mid-infrared imaging and spectroscopy is best reproduced by a single dust shell from 1.2 to 2.6'' radius around the central star. This shell originates from a short period during which the mass-loss rate exceeded 10-4 Msun/yr. We find that the strength of the ``21'' mu m feature poses a problem for the TiC identification. The low abundance of Ti requires very high absorption cross-sections in the ultraviolet and visible wavelength range to explain the strength of the feature. Other nano-crystalline metal carbides should be considered as well. We find that hydrogenated amorphous carbon in radiative equilibrium with the local radiation field does not reach a high enough temperature to explain the strength of the 3.3-3.4 and 6-9 mu m hydrocarbon features relative to the 11-17 mu m hydrocarbon features. We propose that the carriers of these hydrocarbon features are not in radiative equilibrium but are transiently heated to high temperature. We find that 2 per cent of the dust mass is required to explain the strength of the ``30'' mu m feature, which fits well within the measured atmospheric abundance of Mg and S. This further strengthens the MgS identification of the ``30'' mu m feature. Based on observations taken at the European Southern Observatory, La Silla, Chile and observation obtained with ISO, an ESA project with instruments funded by ESA Member states (especially the PI countries: France, Germany, The Netherlands and the UK) with the participation of ISAS and NASA.

  1. Design of stationary PEFC system configurations to meet heat and power demands

    NASA Astrophysics Data System (ADS)

    Wallmark, Cecilia; Alvfors, Per

    This paper presents heat and power efficiencies of a modeled PEFC system and the methods used to create the system configuration. The paper also includes an example of a simulated fuel cell system supplying a building in Sweden with heat and power. The main method used to create an applicable fuel cell system configuration is pinch technology. This technology is used to evaluate and design a heat exchanger network for a PEFC system working under stationary conditions, in order to find a solution with high heat utilization. The heat exchanger network in the system connecting the reformer, the burner, gas cleaning, hot-water storage and the PEFC stack will affect the heat transferred to the hot-water storage and thereby the heating of the building. The fuel, natural gas, is reformed to a hydrogen-rich gas within a slightly pressurized system. The fuel processor investigated is steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation. The system is connected to the electrical grid for backup and peak demands and to a hot-water storage to meet the varying heat demand for the building. The procedure for designing the fuel cell system installation as co-generation system is described, and the system is simulated for a specific building in Sweden during 1 year. The results show that the fuel cell system in combination with a burner and hot-water storage could supply the building with the required heat without exceeding any of the given limitations. The designed co-generation system will provide the building with most of its power requirements and would further generate income by sale of electricity to the power grid.

  2. Wisconsin High School Heats Itself through First Winter.

    ERIC Educational Resources Information Center

    Ratai, Walter

    1965-01-01

    Reports on the state of the Kimberly Senior High School "bootstrap" heat pump system. This system draws its heat from the lights and people in the building. Similar heat conservation systems have been operating efficiently for several years in many office and commercial buildings and are now being applied to schools. Several factors are…

  3. A Project to Design and Build Compact Heat Exchangers

    ERIC Educational Resources Information Center

    Davis, Richard A.

    2005-01-01

    Students designed and manufactured compact, shell-and-tube heat exchangers in a project-based learning exercise integrated with our heat transfer course. The heat exchangers were constructed from common building materials available at home improvement centers. The cost of materials for a device was less than $20. The project gave students…

  4. Effect of Ventilation Strategies on Residential Ozone Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain S.; Sherman, Max H.

    Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-­exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less

  5. Investigating the effectiveness of using agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane baggasse (SB) to produce low thermal conductivity clay bricks

    NASA Astrophysics Data System (ADS)

    Hamzah, Mohamad Hazmi; Deraman, Rafikullah; Saman, Nor Sarwani Mat

    2017-12-01

    In Malaysia, 45% of the average household electricity was consumed by air conditioners to create an acceptable indoor environment. This high energy consumption was mostly related to poor thermal performance of the building envelope. Therefore, selecting a low thermal conductivity of brick wall was of considerable importance in creating energy efficient buildings. Previously, numerous researchers reported the potential used of agricultural waste as an additive in building materials to enhance their thermal properties. The aim of this study is to examine how agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane bagasse (SB) can act as additive agents in a fired clay brick manufacturing process to produce a low thermal conductivity clay brick. In this study, these agricultural wastes were individually mixed with clay soil in different proportions ranging from 0%, 2.5%, 5%, 7.5% and 10% by weight. Physical and mechanical properties including soil physical properties, as well as thermal conductivity were performed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985 and ASTM C518. The results reveal that incorporating 5% of EFB as an additive component into the brick making process significantly enhances the production of a low thermal conductivity clay brick as compared to other waste alternatives tested. This finding suggests that EFB waste was a potential additive material to be used for the thermal property enhancement of the building envelope.

  6. Thermal Standard for Small Rural Schools.

    ERIC Educational Resources Information Center

    Strandberg (J.S.) Consulting Engineering, Fairbanks, AK.

    The Standard's purpose is to provide design requirements that will improve energy utilization in new State of Alaska owned rural educational facilities ranging in size from 7,000 to 12,000 square feet. The Standard covers exterior envelopes and selection of heating, ventilating and air conditioning systems, service water systems, energy…

  7. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  8. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    DTIC Science & Technology

    2016-11-21

    This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid

  9. Data of cost-optimal solutions and retrofit design methods for school renovation in a warm climate.

    PubMed

    Zacà, Ilaria; Tornese, Giuliano; Baglivo, Cristina; Congedo, Paolo Maria; D'Agostino, Delia

    2016-12-01

    "Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings" (Paolo Maria Congedo, Delia D'Agostino, Cristina Baglivo, Giuliano Tornese, Ilaria Zacà) [1] is the paper that refers to this article. It reports the data related to the establishment of several variants of energy efficient retrofit measures selected for two existing school buildings located in the Mediterranean area. In compliance with the cost-optimal analysis described in the Energy Performance of Buildings Directive and its guidelines (EU, Directive, EU 244,) [2], [3], these data are useful for the integration of renewable energy sources and high performance technical systems for school renovation. The data of cost-efficient high performance solutions are provided in tables that are explained within the following sections. The data focus on the describe school refurbishment sector to which European policies and investments are directed. A methodological approach already used in previous studies about new buildings is followed (Baglivo Cristina, Congedo Paolo Maria, D׳Agostino Delia, Zacà Ilaria, 2015; IlariaZacà, Delia D'Agostino, Paolo Maria Congedo, Cristina Baglivo; Baglivo Cristina, Congedo Paolo Maria, D'Agostino Delia, Zacà Ilaria, 2015; Ilaria Zacà, Delia D'Agostino, Paolo Maria Congedo, Cristina Baglivo, 2015; Paolo Maria Congedo, Cristina Baglivo, IlariaZacà, Delia D'Agostino,2015) [4], [5], [6], [7], [8]. The files give the cost-optimal solutions for a kindergarten (REF1) and a nursery (REF2) school located in Sanarica and Squinzano (province of Lecce Southern Italy). The two reference buildings differ for construction period, materials and systems. The eleven tables provided contain data about the localization of the buildings, geometrical features and thermal properties of the envelope, as well as the energy efficiency measures related to walls, windows, heating, cooling, dhw and renewables. Output values of energy consumption, gas emission and costs are given for a financial and a macro-economic analysis. This data article provides 288 and 96 combinations for REF1 and REF2, respectively. The output values are obtained using the software ProCasaClima 2015v.2.0.

  10. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    PubMed

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  11. BIPV: a real-time building performance study for a roof-integrated facility

    NASA Astrophysics Data System (ADS)

    Aaditya, Gayathri; Mani, Monto

    2018-03-01

    Building integrated photovoltaic system (BIPV) is a photovoltaic (PV) integration that generates energy and serves as a building envelope. A building element (e.g. roof and wall) is based on its functional performance, which could include structure, durability, maintenance, weathering, thermal insulation, acoustics, and so on. The present paper discusses the suitability of PV as a building element in terms of thermal performance based on a case study of a 5.25 kWp roof-integrated BIPV system in tropical regions. Performance of PV has been compared with conventional construction materials and various scenarios have been simulated to understand the impact on occupant comfort levels. In the current case study, PV as a roofing material has been shown to cause significant thermal discomfort to the occupants. The study has been based on real-time data monitoring supported by computer-based building simulation model.

  12. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  13. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  14. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  15. Energy Efficiency and Sustainability of Different Building Structures in Latvian Climate

    NASA Astrophysics Data System (ADS)

    Jakovičs, A.; Gendelis, S.; Bandeniece, L.

    2015-11-01

    Five experimental test buildings have been built in Riga, Latvia. They are identical except external walls for which different mainly regional building materials are used. Calculated U-values of the other walls, floor and ceiling are the same for each test building. Initial moisture influences the relative humidity of indoor air, which can be higher in the initial time period; as a result, heat transmittances are also very different and cause different heating/cooling energy consumption. Overheating risk in summer exists for test buildings with the smallest thermal inertia. Both summer and heating seasons have been analysed and differences between five test houses have been discussed in details.

  16. Correlation of analytical and experimental hot structure vibration results

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Deaton, Vivian C.

    1993-01-01

    High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.

  17. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, J.; Henderson, H.; Varshney, K.

    2013-10-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

  18. Building and Breaking the Cell Wall in Four Acts: A Kinesthetic and Tactile Role-Playing Exercise for Teaching Beta-Lactam Antibiotic Mechanism of Action and Resistance †

    PubMed Central

    Popovich, John; Stephens, Michelle; Celaya, Holly; Suwarno, Serena; Barclay, Shizuka; Yee, Emily; Dean, David A.; Farris, Megan; Haydel, Shelley E.

    2018-01-01

    “Building and breaking the cell wall” is designed to review the bacterial cell envelope, previously learned in lower-division biology classes, while introducing new topics such as antibiotics and bacterial antibiotic resistance mechanisms. We developed a kinesthetic and tactile modeling activity where students act as cellular components and construct the cell wall. In the first two acts, students model a portion of the gram-positive bacterial cell envelope and then demonstrate in detail how the peptidoglycan is formed. Act III involves student demonstration of the addition of β-lactam antibiotics to the environment and how they inhibit the formation of peptidoglycan, thereby preventing bacterial replication. Using Staphylococcus aureus as a model for gram-positive bacteria, students finish the activity (Act IV) by acting out how S. aureus often becomes resistant to β-lactam antibiotics. A high level of student engagement was observed, and the activity received positive feedback. In an assessment administered prior to and two months after the activity, significant improvements in scores were observed (p < 0.0001), demonstrating increased understanding and retention. This activity allows students to (i) visualize, role play, and kinesthetically “build” the cell envelope and form the peptidoglycan layer, (ii) understand the mechanism of action for β-lactam antibiotics, as well as how gene acquisition and protein changes result in resistance, and (iii) work cooperatively and actively to promote long-term retention of the subject material. PMID:29904519

  19. Solar Heating/Cooling of Buildings: Current Building Community Projects. An Interim Report.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Building Research Advisory Board.

    Projects being carried out by the private sector involving the use of solar energy for heating and cooling buildings are profiled in this report. A substantial portion of the data were collected from a broad cross-section of the building community. Data collection efforts also involved the canvassing of the nearly 200 trade and professional…

  20. Handling Nonlinearities in ELF/VLF Generation Using Modulated Heating at HAARP

    NASA Astrophysics Data System (ADS)

    Jin, G.; Spasojevic, M.; Cohen, M.; Inan, U. S.

    2011-12-01

    George Jin Maria Spasojevic Morris Cohen Umran Inan Stanford University Modulated HF heating of the D-region ionosphere near the auroral electrojet can generate extremely low frequency (ELF) waves in the kilohertz range. This process is nonlinear and generates harmonics at integer multiples of the ELF modulation frequency. The nonlinear distortion has implications for any communications applications since the harmonics contain a substantial fraction of the signal power and use up bandwidth. We examine two techniques for handling the nonlinearity. First we modulate the HF heating with a non-sinusoidal envelope designed to create a sinusoidal change in the Hall conductivity at a particular altitude in the ionosphere to minimize any generated harmonics. The modulation waveform is generated by inverting a numerical HF heating model, starting from the desired conductivity time series, and obtaining the HF power envelope that will result in that conductivity. The second technique attempts to use the energy in the harmonics to improve bit error rates when digital modulation is applied to the ELF carrier. In conventional quadrature phase-shift keying (QPSK), where a ELF carrier is phase-shifted by 0°, 90°, 180°, and 270° in order to transmit a pair of bits, the even harmonics cannot distinguish between the four possible shifts. By using different phase values, all the energy in the harmonics can contribute to determining the phase of the carrier and thus improve the bit error rate.

  1. Solar-energy landmark Building-Columbia, Missouri

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report includes design, cost, installation, maintenance, and performance details for attractive solar installation which supplies space heating for four-story Visitors Center. 176 hydronic flat-plate collectors, water-to-water heat exchanger, and 5,000-gallon storage tank comprise system which provides 71 percent of building's heat. Natural-gas-fired boiler supplies auxiliary hot water to heating system when necessary.

  2. Relative heating costs for Virginia Department of Highways and Transportation buildings.

    DOT National Transportation Integrated Search

    1982-01-01

    This report presents the results of a survey of the energy used to heat various buildings owned and operated by the Virginia Department of Highways and Transportation. Energy intensity and cost intensity indices (EII and CII) for buildings were calcu...

  3. 38 CFR 59.50 - Priority list.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... priority group does not include applications for the addition or replacement of building utility systems, such as heating and air conditioning systems or building features, such as roof replacements. Projects... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and...

  4. Solar Heating and Cooling of Buildings: Activities of the Private Sector of the Building Community and Its Perceived Needs Relative to Increased Activity.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on Solar Energy in the Heating and Cooling of Buildings.

    This report is essentially a collection of information gathered from a broad cross-section of the building community that provides a description of the state of affairs existing mid-1974 through mid-1975 in the private sector of the building community with regard to solar heating and cooling of buildings. The report additionally contains…

  5. Warming up human body by nanoporous metallized polyethylene textile.

    PubMed

    Cai, Lili; Song, Alex Y; Wu, Peilin; Hsu, Po-Chun; Peng, Yucan; Chen, Jun; Liu, Chong; Catrysse, Peter B; Liu, Yayuan; Yang, Ankun; Zhou, Chenxing; Zhou, Chenyu; Fan, Shanhui; Cui, Yi

    2017-09-19

    Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer with embedded nanopores, the nanoporous metallized polyethylene textile achieves a minimal IR emissivity (10.1%) on the outer surface that effectively suppresses heat radiation loss without sacrificing wearing comfort. This enables 7.1 °C decrease of the set-point compared to normal textile, greatly outperforming other radiative heating textiles by more than 3 °C. This large set-point expansion can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.Energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, the authors show a nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene.

  6. Staged Z-pinch for the production of high-flux neutrons and net energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman

    A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less

  7. Change in the chemical composition of infalling gas forming a disk around a protostar.

    PubMed

    Sakai, Nami; Sakai, Takeshi; Hirota, Tomoya; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Kahane, Claudine; Bottinelli, Sandrine; Caux, Emmanuel; Demyk, Karine; Vastel, Charlotte; Coutens, Audrey; Taquet, Vianney; Ohashi, Nagayoshi; Takakuwa, Shigehisa; Yen, Hsi-Wei; Aikawa, Yuri; Yamamoto, Satoshi

    2014-03-06

    IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 ± 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there.

  8. Description and operation of Haakon School geothermal heating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, F.W.; Kirol, L.D.; Sanders, R.D.

    1997-12-01

    Haakon School is located in the city of Philip, near the Badlands National Park in the southwest quadrant of South Dakota. The town overlies the Madison Formation which is a large-area aquifer. The aquifer has a demonstrated capability to produce geothermal water. A system to tap this potential and heat the Haakon School District buildings in Philip has been in operation since November 1980. Five school buildings having a total area of 44,000 ft{sup 2} (4088 ft{sup 2}) are heated with 157{degrees}F (69{degrees}C) water. A single well provides water at a maximum artesian flow of 340 gpm (21.5 L/s), whichmore » more than meets the heat demand of the school buildings. Eight buildings in the Philip business district utilize geothermal fluid discharged from the school for space heating. During the 1980-81 heating season, these buildings obtained 75% to 90% of their heat from geothermal fluid. Peak heat delivery of the system is 5.5 million Btu/h (1.61. MJ/s), with an annual energy delivery of 9.5 billion Btu (10 TJ). The geothermal system has operated nearly problem free with the exception of the equipment to remove Radium-226 from the spent fluid. Barium chloride is added to the water to precipitate sulfates containing the radium. Accumulation of precipitates in piping has caused some operational problems.« less

  9. Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco

    NASA Astrophysics Data System (ADS)

    Kharbouch, Yassine; Mimet, Abdelaziz; El Ganaoui, Mohammed; Ouhsaine, Lahoucine

    2018-07-01

    This study investigates the thermal energy potentials and economic feasibility of an air-conditioned family household-integrated phase change material (PCM) considering different climate zones in Morocco. A simulation-based optimisation was carried out in order to define the optimal design of a PCM-enhanced household envelope for thermal energy effectiveness and cost-effectiveness of predefined candidate solutions. The optimisation methodology is based on coupling Energyplus® as a dynamic simulation tool and GenOpt® as an optimisation tool. Considering the obtained optimum design strategies, a thermal energy and economic analysis are carried out to investigate PCMs' integration feasibility in the Moroccan constructions. The results show that the PCM-integrated household envelope allows minimising the cooling/heating thermal energy demand vs. a reference household without PCM. While for the cost-effectiveness optimisation, it has been deduced that the economic feasibility is stilling insufficient under the actual PCM market conditions. The optimal design parameters results are also analysed.

  10. Summary of human responses to ventilation.

    PubMed

    Seppänen, O A; Fisk, W J

    2004-01-01

    It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and residential buildings. The review shows that ventilation has various positive impacts on health and productivity of building occupants. Ventilation reduces the prevalence of airborne infectious diseases and thus the number of sick leave days. In office environment a ventilation rate up to 20-25 L/s per person seem to decrease the prevalence of SBS-symptoms. Air conditioning systems may increase the prevalence of SBS-symptoms relative to natural ventilation if not clean. In residential buildings the air change rate in cold climates should not be below app. 0.5 ach. Ventilation systems may cause pressure differences over the building envelope and bring harmful pollutants indoors.

  11. 75 FR 8070 - Closed Auction of Broadcast Construction Permits Scheduled for July 20, 2010; Auction 88...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Construction Permits Scheduled for July 20, 2010; Auction 88 Applicants Must Provide Supplemental Information..., AM, and FM Translator construction permits scheduled to commence on July 20, 2010 (Auction 88). This.... Any envelopes must be disposed of before entering the building. Commercial overnight mail (other than...

  12. Estimating envelope thermal characteristics from single point in time thermal images

    NASA Astrophysics Data System (ADS)

    Alshatshati, Salahaldin Faraj

    Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data-based methodology. This approach integrates the exterior surface temperature measurements, historical utility data, and easily accessible or potentially easily accessible housing data. A Random Forest model is developed from a training subset of residences for which the envelope U-value is known. This model is used to predict the envelope U-value for a validation set of houses with unknown U-value. Demonstrated is an ability to estimate the wall/roof U-value with an R-squared value in the range of 0.97 and 0.96 respectively, using as few as 9 and 24 training houses for respectively wall and ceiling U-value estimation. The implication of this research is significant, offering the possibility of auditing residences remotely at-scale via aerial and drive-by thermal imaging.

  13. Solar heating system installed at Blakedale Professional Center, Greenwood, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information on the solar heating system installed at the Blakedale Professional Center, in Greenwood, South Carolina is presented. The information consists of site and building description, solar system description, performance evaluation, system problems and installation drawings. The solar system was designed to provide approximately 85 percent of the building's heating requirements. The system was installed concurrently with building construction and heats 4,440 square feet of the building. There are 954 square feet of liquid flat plate collectors that are proof-mounted and have a drain-down system to protect the collectors from freezing. A 5,000 gallon steel, polyurethane insulated tank buried underground provides storage. The system was fully instrumented for performance evaluation and integrated into the National Solar Data Network.

  14. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  15. Adaptive building skin structures

    NASA Astrophysics Data System (ADS)

    Del Grosso, A. E.; Basso, P.

    2010-12-01

    The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method.

  16. ETR HEAT EXCHANGER BUILDING, TRA644. EAST SIDE. CAMERA FACING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. EAST SIDE. CAMERA FACING WEST. NOTE COURSE OF PIPE FROM GROUND AND FOLLOWING ROOF OF BUILDING. MTR BUILDING IN BACKGROUND AT RIGHT EDGE OF VIEW. INL NEGATIVE NO. HD46-36-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Energy Savings by Treating Buildings as Systems

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  18. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  19. Data on European non-residential buildings.

    PubMed

    D'Agostino, Delia; Cuniberti, Barbara; Bertoldi, Paolo

    2017-10-01

    This data article relates to the research paper Energy consumption and efficiency technology measures in European non-residential buildings (D'Agostino et al., 2017) [1]. The reported data have been collected in the framework of the Green Building Programme that ran from 2006 to 2014. The project has encouraged the adoption of efficiency measures to boost energy savings in European non-residential buildings. Data focus on the one-thousand buildings that joined the Programme allowing to save around 985 GWh/year. The main requirement to join the Programme was the reduction of at least 25% primary energy consumption in a new or retrofitted building. Energy consumption before and after the renovation are provided for retrofitted buildings while, in new constructions, a building had to be designed using at least 25% less energy than requested by the country's building codes. The following data are linked within this article: energy consumption, absolute and relative savings related to primary energy, saving percentages, implemented efficiency measures and renewables. Further information is given about each building in relation to geometry, envelope, materials, lighting and systems.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aldrich and J. Williamson

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2.) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support form the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, Robb; Williamson, James

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less

  3. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  4. Building a 40% Energy Saving House in the Mixed-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Jeffrey E; Bonar, Jacob

    2011-10-01

    This report describes a home that uses 40% less energy than the energy-efficient Building America standard - a giant step in the pursuit of affordable near-zero-energy housing through the evolution of five near-zero-energy research houses. This four-bedroom, two-bath, 1232-ft2 house has a Home Energy Rating System (HERS) index of 35 (a HERS rating of 0 is a zero-energy house, a conventional new house would have a HERS rating of 100), which qualifies it for federal energy efficiency and solar incentives. The house is leading to the planned construction of a similar home in Greensburg, Kansas, and 21 staff houses inmore » the Walden Reserve, a 7000-unit "deep green" community in Cookville, Tennessee. Discussions are underway for construction of similar houses in Charleston, South Carolina, Seattle, Washington, Knoxville and Oak Ridge, Tennessee, and upstate New York. This house should lead to a 40% and 50% Gate-3, Mixed-Humid-Climate Joule for the DOE Building America Program. The house is constructed with structurally-insulated-panel walls and roof, raised metal-seam roof with infrared reflective coating, airtight envelope (1.65 air changes per hour at 50 Pascal), supply mechanical ventilation, ducts inside the conditioned space, extensive moisture control package, foundation geothermal space heating and cooling system, ZEHcor wall, solar water heater, and a 2.2 kWp grid-connected photovoltaic (PV) system. The detailed specifications for the envelope and the equipment used in ZEH5 compared to all the houses in this series are shown in Tables 1 and 2. Based on a validated computer simulation of ZEH5 with typical occupancy patterns and energy services for four occupants, energy for this all-electric house is predicted to cost only $0.66/day ($0.86/day counting the hookup charges). By contrast, the benchmark house would require $3.56/day, including hookup charges (these costs are based on a 2006 residential rates of $0.07/kWh and solar buyback at $0.15/kWh). The solar fraction for this home located in Lenoir City, Tennessee, is predicted to be as high as 41%(accounting for both solar PV and the solar water heater). This all-electric home is predicted to use 25 kWh/day based on the one year of measured data used to calibrate a whole-building simulation model. Based on two years of measured data, the roof-mounted 2.2 kWp PV system is predicted to generate 7.5 kWh/day. The 2005 cost to commercially construct ZEH5, including builder profit and overhead, is estimated at about $150,000. This cost - for ZEH5's panelized construction, premanufactured utility wall (ZEHcor), foundation geothermal system, and the addition of the walkout lower level, and considering the falling cost for PV - suggests that the construction cost per ft2 for a ZEH5 two-story will be even more cost-competitive. The 2005 construction cost estimate for a finished-out ZEH5 with 2632 ft2 is $222,000 or $85/ft2. The intention of this report is to help builders and homeowners make the decision to build zero-energy-ready homes. Detailed drawings, specifications, and lessons learned in the construction and analysis of data from about 100 sensors monitoring thermal performance for a one-year period are presented. This information should be specifically useful to those considering structural insulated panel walls and roof, foundation geothermal space heating and cooling, solar water heater and roof-mounted, photovoltaic, grid-tied systems.« less

  5. Improving Thermal Performance of a Residential Building, Related to Its Orientations - A Case Study

    NASA Astrophysics Data System (ADS)

    Akshaya, S.; Harish, S.; Arthy, R.; Muthu, D.; Venkatasubramanian, C.

    2017-07-01

    Urban planners and stakeholders require knowledge about the effectiveness of city-scale climate adaptation measures in order to develop climate resilient cities and to push forward the political process for the implementation of climate adaptation strategies. This study examines the impact of modifications in orientation of buildings with respect to heat load. Heat load calculation is a mathematical process to determine the best capacity, application and style of HVAC system. The purpose is to ensure energy efficiency while also maximizing comfort inside the building. This study of load calculation is essential for a building because it helps to pick the best orientation and focuses to find an orientation that will reduce energy due to direct solar radiation. One of the factors affecting this assessment is the latitude of the location. The heat gain is effective through walls and fenestration. Improper management through ineffective orientation of the building’s natural heat gain leads to excessive consumption of energy in the form of CL. The total heat gain for the above factors is calculated with the equations and assumptions as per ASHRAE code. After the calculation of heat load for different orientations, the best suited orientation of the building is found. By altering the building to suitable orientation, the dependence on electrical equipment can be minimized and thereby helps in energy conservation.

  6. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  7. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Service water heating. 434.518 Section 434.518 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The...

  8. 10 CFR 434.518 - Service water heating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Service water heating. 434.518 Section 434.518 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The...

  9. An evaluation of solar energy for heating a highway maintenance headquarters building.

    DOT National Transportation Integrated Search

    1985-01-01

    A highway maintenance area headquarters building having overall dimensions of 64 ft - 8 in by 42 ft - 0 in was equipped with an active solar heating system to assist in heating space and domestic hot water. The solar system was instrumented and its o...

  10. Solar thermal heating and cooling. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  11. Titanium-alloy, metallic-fluid heat pipes for space service

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1979-01-01

    Reactivities of titanium limit its long-term terrestrial use for unprotected heat-pipe envelopes to about 870 K (1100 F). But this external thermochemical limitation disappears when considerations shift to space applications. In such hard-vacuum utilization much higher operating temperatures are possible. Primary restrictions in space environment result from vaporization, thermal creep, and internal compatibilities. Unfortunately, a respected head-pipe reference indicates that titanium is compatible only with cesium from the alkali-metal working-fluid family. This problem and others are subjects of the present paper which advocates titanium-alloy, metallic-fluid heat pipes for long-lived, weight-effective space service between 500 and 1300 K (440 and 1880 F).

  12. Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components

    NASA Astrophysics Data System (ADS)

    Smith, Amanda D.

    Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.

  13. The design of a solar energy collection system to augment heating and cooling for a commercial office building

    NASA Technical Reports Server (NTRS)

    Basford, R. C.

    1977-01-01

    Analytical studies supported by experimental testing indicate that solar energy can be utilized to heat and cool commercial buildings. In a 50,000 square foot one-story office building at the Langley Research Center, 15,000 square feet of solar collectors are designed to provide the energy required to supply 79 percent of the building heating needs and 52 percent of its cooling needs. The experience gained from the space program is providing the technology base for this project. Included are some of the analytical studies made to make the building design changes necessary to utilize solar energy, the basic solar collector design, collector efficiencies, and the integrated system design.

  14. Indoor Modelling from Slam-Based Laser Scanner: Door Detection to Envelope Reconstruction

    NASA Astrophysics Data System (ADS)

    Díaz-Vilariño, L.; Verbree, E.; Zlatanova, S.; Diakité, A.

    2017-09-01

    Updated and detailed indoor models are being increasingly demanded for various applications such as emergency management or navigational assistance. The consolidation of new portable and mobile acquisition systems has led to a higher availability of 3D point cloud data from indoors. In this work, we explore the combined use of point clouds and trajectories from SLAM-based laser scanner to automate the reconstruction of building indoors. The methodology starts by door detection, since doors represent transitions from one indoor space to other, which constitutes an initial approach about the global configuration of the point cloud into building rooms. For this purpose, the trajectory is used to create a vertical point cloud profile in which doors are detected as local minimum of vertical distances. As point cloud and trajectory are related by time stamp, this feature is used to subdivide the point cloud into subspaces according to the location of the doors. The correspondence between subspaces and building rooms is not unambiguous. One subspace always corresponds to one room, but one room is not necessarily depicted by just one subspace, for example, in case of a room containing several doors and in which the acquisition is performed in a discontinue way. The labelling problem is formulated as combinatorial approach solved as a minimum energy optimization. Once the point cloud is subdivided into building rooms, envelop (conformed by walls, ceilings and floors) is reconstructed for each space. The connectivity between spaces is included by adding the previously detected doors to the reconstructed model. The methodology is tested in a real case study.

  15. Estimation of efficiency of the heat supply system based on a boiler house and a wind turbine in the northern environment

    NASA Astrophysics Data System (ADS)

    Bezhan, A. V.; Minin, V. A.

    2017-03-01

    This article describes a methodological approach to defining indoor air temperature in buildings heated by a power supply unit consisting of a boiler house and a wind-driven power plant (WDPP). We discuss a heating option for a residential building in the windy conditions of Murmansk city. We proved that, during the periods of strong wind, a WDPP can partially or fully satisfy the heat demand and sometimes even create a surplus of energy. During low wind weather, almost all loads are handled by the boiler house. We considered a possibility to accumulate the surplus energy obtained from a WDPP during strong wind by increasing the temperature in the whole building up to 25°C and further using the accumulated heat during the lowwind period when indoor air temperature may fall below 20°C. This allows saving organic fuel in the boiler house. We demonstrated how indoor air temperature in the building may change throughout the year when using the surplus energy from the WDPP due to thermal storage capacitance of the building. We also provided the results of study, showing favorable energy-related effects of using a WDPP along with the boiler house. It was determined that engaging a WDPP in fulfilling the diagram of heating loads promotes the decrease in the boiler house's contribution to heat supply by 30 to 50%, and using the surplus energy from the WDPP and thermal storage capacitance of the building allows reducing the contribution of the boiler house by 5-15% more in certain months.

  16. Solar heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  17. Comparisons of four computer models with experimental data from test buildings in northern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.K.; Christian, J.E.

    1985-01-01

    Eight one-room test buildings, 20 ft (6.1 m) square and 7.5 ft (2.3 m) high, were constructed on a high desert site near Tesuque Pueblo, New Mexico, to study the influence of wall dynamic heat transfer characteristics on building heating requirements (the ''thermal mass effect''). The buildings are nominally identical except for the walls (adobe, concrete and masonry unit, wood-frame, and log) and are constructed so as to isolate the effects of the walls. The amount of mass in the walls varies from 240 lb/ft/sup 2/ (1171 kg/m/sup 2/) for the 2 ft (.61 m) thick adobe wall to 4.3more » lb/ft/sup 2/ (21 kg/m/sup 2/) for the insulated wood-frame wall. The roof, floor, and stem walls are all well insulated and the buildings were constructed with infiltration rates less than 0.4 air change per hour. The site is instrumented to record building component temperatures and heat fluxes, outside weather conditions, and heating energy use. Data were collected for two heating seasons from midwinter to late spring with the buildings in two configurations, with and without windows. Four computer codes were used to simulate the performance of the test buildings without windows, using site weather data. The codes used were DOE-2.1A, DOE-2.1C, BLAST, and DEROB. Each code was run by a different analyst. Simulations were done for midwinter, late winter, and spring. Two of the test cell comparisons are discussed; the insulated frame and an 11-in. (.28 m) adobe. This work presents a quantitative and qualitative critical comparison of the modeling and experimental results. Cumulative heating loads, wall heat fluxes, and air surface temperatures are compared, as well as input assumptions to the models. Explanations of differences and difficulties encountered are reported. The principal findings were that cumulative heating loads and the characteristic influences of wall thermal mass on hourly behavior were reproduced by the models.« less

  18. Fastener Corrosion: A Result of Moisture Problems in the Building Envelope

    Treesearch

    Samuel L. Zelinka

    2013-01-01

    This paper reviews recent literature on the corrosion of metals embedded in wood and highlights the link be-tween moisture accumulation in wood and fastener cor-rosion. Mechanisms of fastener corrosion are described including dependence upon wood moisture content. These fundamental concepts are applied to practical examples by explaining how hygrothermal models can be...

  19. Quantifying the Dependencies of Rooftop Temperatures on Albedo

    NASA Technical Reports Server (NTRS)

    Dominquez, Anthony; Kleissl, Jan; Luvall, Jeff

    2009-01-01

    The thermal properties of building materials directly effect the conditions inside of buildings Heat transfer is not a primary design driver in building design. Rooftop modifications lower heat transfer, which lowers energy consumption and costs. The living environmental laboratory attitude at UCSD makes it the perfect place to test the success of these modifications.

  20. Human Health Science Building Geothermal Heat Pump Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leidel, James

    2014-12-22

    The grant objectives of the DOE grant funded project have been successfully completed. The Human Health Building (HHB) was constructed and opened for occupancy for the Fall 2012 semester of Oakland University. As with any large construction project, some issues arose which all were overcome to deliver the project on budget and on time. The facility design is a geothermal / solar-thermal hybrid building utilizing both desiccant dehumidification and variable refrigerant flow heat pumps. It is a cooling dominant building with a 400 ton cooling design day load, and 150 ton heating load on a design day. A 256 verticalmore » borehole (320 ft depth) ground source heat pump array is located south of the building under the existing parking lot. The temperature swing and performance over 2013 through 2015 shows the ground loop is well sized, and may even have excess capacity for a future building to the north (planned lab facility). The HHB achieve a US Green Building Counsel LEED Platinum rating by collecting 52 of the total 69 available LEED points for the New Construction v.2 scoring checklist. Being Oakland's first geothermal project, we were very pleased with the building outcome and performance with the energy consumption approximately 1/2 of the campus average facility, on a square foot basis.« less

  1. Solar Heating System for Recreation Building at Scattergood School.

    ERIC Educational Resources Information Center

    Scattergood School, West Branch, IA.

    This report describes the solar heating of two adjoining buildings, a gymnasium and a locker room, at a coeducational boarding school. Federal assistance was obtained from the Energy Research and Development Administration (ERDA) as part of the Solar Heating and Cooling Demonstration Program. The system uses a 2,500-square-foot array of…

  2. Solar-Heated and Cooled Office Building--Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  3. Solar Heating and Cooling of Buildings: Phase 0. Executive Summary. Final Report.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Baltimore, MD.

    After the Westinghouse Electric Corporation made a comprehensive analysis of the technical, economic, social, environmental, and institutional factors affecting the feasibility of utilizing solar energy for heating and cooling buildings, it determined that solar heating and cooling systems can become competitive in most regions of the country in…

  4. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Henderson, Hugh

    2012-04-01

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit’s housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15% to 25%.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Baxter, Van D.; Rice, C. Keith

    For this study, we authored a new air source integrated heat pump (AS-IHP) model in EnergyPlus, and conducted building energy simulations to demonstrate greater than 50% average energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, based on the EnergyPlus quick-service restaurant template building. We also assessed water heating energy saving potentials using ASIHP versus gas heating, and pointed out climate zones where AS-IHPs are promising.

  6. Aspherical Supernovae and Oblique Shock Breakout

    NASA Astrophysics Data System (ADS)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2017-02-01

    In an aspherical supernova explosion, shock emergence is not simultaneous and non-radial flows develop near the stellar surface. Oblique shock breakouts tend to be easily developed in compact progenitors like stripped-envelop core collapse supernovae. According to Matzner et al. (2013), non-spherical explosions develop non-radial flows that alters the observable emission and radiation of a supernova explosion. These flows can limit ejecta speed, change the distribution of matter and heat of the ejecta, suppress the breakout flash, and most importantly engender collisions outside the star. We construct a global numerical FLASH hydrodynamic simulation in a two dimensional spherical coordinate, focusing on the non-relativistic, adiabatic limit in a polytropic envelope to see how these fundamental differences affect the early light curve of core-collapse SNe.

  7. Entry, Descent, and Landing Mission Design for the Crew Exploration Vehicle Thermal Protection System Qualification Flight Test

    NASA Technical Reports Server (NTRS)

    Ivanov, Mark; Strauss, William; Maddock, Robert

    2007-01-01

    The TORCH team was challenged to generate the lowest cost mission design solution that meets the CEV aerothermal test objectives on a sub-scale flight article. The test objectives resulted from producing representative lunar return missions and observing the aerothermal envelopes of select surface locations on the CEV. From these aerothermal envelopes, two test boxes were established: one for high shear and one for high radiation. The unique and challenging trajectory design objective for the flight test was to fly through these aerothermal boxes in shear, pressure, heat flux, and radiation while also not over testing. These test boxes, and the max aerothermal limits, became the driving requirements for defining the mission design.

  8. Use of Transition Modeling to Enable the Computation of Losses for Variable-Speed Power Turbine

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2012-01-01

    To investigate the penalties associated with using a variable speed power turbine (VSPT) in a rotorcraft capable of vertical takeoff and landing, various analysis tools are required. Such analysis tools must be able to model the flow accurately within the operating envelope of VSPT. For power turbines low Reynolds numbers and a wide range of the incidence angles, positive and negative, due to the variation in the shaft speed at relatively fixed corrected flows, characterize this envelope. The flow in the turbine passage is expected to be transitional and separated at high incidence. The turbulence model of Walters and Leylek was implemented in the NASA Glenn-HT code to enable a more accurate analysis of such flows. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Heat transfer computations were performed because it is a good marker for transition. The final goal is to be able to compute the aerodynamic losses. Armed with the new transition model, total pressure losses for three-dimensional flow of an Energy Efficient Engine (E3) tip section cascade for a range of incidence angles were computed in anticipation of the experimental data. The results obtained form a loss bucket for the chosen blade.

  9. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Sheng; Ji, Jianghui; Mordasini, Christoph

    2014-11-01

    We apply hydrodynamic evaporation models to different synthetic planet populations that were obtained from a planet formation code based on the core-accretion paradigm. We investigated the evolution of the planet populations using several evaporation models, which are distinguished by the driving force of the escape flow (X-ray or EUV), the heating efficiency in energy-limited evaporation regimes, or both. Although the mass distribution of the planet populations is barely affected by evaporation, the radius distribution clearly shows a break at approximately 2 R {sub ⊕}. We find that evaporation can lead to a bimodal distribution of planetary sizes and to anmore » 'evaporation valley' running diagonally downward in the orbital distance—planetary radius plane, separating bare cores from low-mass planets that have kept some primordial H/He. Furthermore, this bimodal distribution is related to the initial characteristics of the planetary populations because low-mass planetary cores can only accrete small primordial H/He envelopes and their envelope masses are proportional to their core masses. We also find that the population-wide effect of evaporation is not sensitive to the heating efficiency of energy-limited description. However, in two extreme cases, namely without evaporation or with a 100% heating efficiency in an evaporation model, the final size distributions show significant differences; these two scenarios can be ruled out from the size distribution of Kepler candidates.« less

  10. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  11. Operation and maintenance of the SOL-DANCE building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-29

    The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in themore » distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)« less

  12. INTERIOR OF BUILDING 2, TYPICAL OFFICE (#212) WINDOW AND HEAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF BUILDING 2, TYPICAL OFFICE (#212) WINDOW AND HEAT REGISTER, SECOND FLOOR. FACING SOUTH - Roosevelt Base, Dispensary, Corner of Colorado Street & Richardson Avenue, Long Beach, Los Angeles County, CA

  13. Design New Buildings To Save Energy -- and Money

    ERIC Educational Resources Information Center

    Rittelmann, Richard

    1974-01-01

    Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)

  14. Analysis of the Dependence between Energy Demand Indicators in Buildings Based on Variants for Improving Energy Efficiency in a School Building

    NASA Astrophysics Data System (ADS)

    Skiba, Marta; Rzeszowska, Natalia

    2017-09-01

    One of the five far-reaching goals of the European Union is climate change and sustainable energy use. The first step in the implementation of this task is to reduce energy demand in buildings to a minimum by 2021, and in the case of public buildings by 2019. This article analyses the possibility of improving energy efficiency in public buildings, the relationship between particular indicators of the demand for usable energy (UE), final energy (FE) and primary energy (PE) in buildings and the impact of these indicators on the assessment of energy efficiency in public buildings, based on 5 variants of extensive thermal renovation of a school building. The analysis of the abovementioned variants confirms that the thermal renovation of merely the outer envelope of the building is insufficient and requires the use of additional energy sources, for example RES. Moreover, each indicator of energy demand in the building plays a key role in assessing the energy efficiency of the building. For this reason it is important to analyze each of them individually, as well as the dependencies between them.

  15. Investigation the effect of outdoor air infiltration on the heat-shielding characteristics the outer walls of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Vytchikov, Yu. S.; Kostuganov, A. B.; Saparev, M. E.; Belyakov, I. G.

    2018-03-01

    The presented article considers the influence of infiltrated outdoor air on the heat-shielding characteristics of the exterior walls of modern residential and public buildings. A review of the sources devoted to this problem confirmed its relevance at the present time, especially for high-rise buildings. The authors of the article analyzed the effect of longitudinal and transverse air infiltration on the heat-shielding characteristics of the outer wall of a 25-story building that was built in Samara. The results showed a significant reduction of the reduced resistance to the heat transfer of the outer wall when air is infiltrated through it. There are the results of full-scale examination of external walls to confirm the calculated data. Based on the results of the study carried out by the authors of the article, general recommendations on the internal finishing of the outer walls of high-rise buildings are given.

  16. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis

    NASA Technical Reports Server (NTRS)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.

    1973-01-01

    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  17. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    NASA Astrophysics Data System (ADS)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  18. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical Californiamore » nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).« less

  19. Climate-Specific Passive Building Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Graham S.; Klingenberg, Katrin

    2015-07-29

    In 2012, the U.S. Department of Energy (DOE) recognized the value of performance-based passive building standards when it joined with Passive House Institute US (PHIUS) to promote DOE’s Challenge Home program in tandem with the PHIUS+ Certification program. Since then, the number of passive building projects that have been certified under the partnership has grown exponentially because of some synergy. Passive building represents a well-developed approach to arrive at the envelope basis for zero energy and energy-positive projects by employing performance-based criteria and maximizing cost-effective savings from conservation before implementing renewable energy technologies. The Challenge Home program evolved into themore » Zero Energy Ready Home (ZERH) program in a move toward 1) attaining zero energy and 2) including active renewable energy generation such as photovoltaics (PV)—toward the zero energy goal.« less

  20. Imprints of the ejecta-companion interaction in Type Ia supernovae: main-sequence, subgiant, and red giant companions

    NASA Astrophysics Data System (ADS)

    Boehner, P.; Plewa, T.; Langer, N.

    2017-02-01

    We study supernova ejecta-companion interactions in a sample of realistic semidetached binary systems representative of Type Ia supernova progenitor binaries in a single-degenerate scenario. We model the interaction process with the help of a high-resolution hydrodynamic code assuming cylindrical symmetry. We find that the ejecta hole has a half-opening angle of 40-50° with the density by a factor of 2-4 lower, in good agreement with the previous studies. Quantitative differences from the past results in the amounts and kinematics of the stripped companion material and levels of contamination of the companion with the ejecta material can be explained by different model assumptions and effects due to numerical diffusion. We analyse and, for the first time, provide simulation-based estimates of the amounts and of the thermal characteristics of the shock-heated material responsible for producing a prompt, soft X-ray emission. Besides the shocked ejecta material, considered in the original model by Kasen, we also account for the stripped, shock-heated envelope material of stellar companions, which we predict partially contributes to the prompt emission. The amount of the energy deposited in the envelope is comparable to the energy stored in the ejecta. The total energy budget available for the prompt emission is by a factor of about 2-4 smaller than originally predicted by Kasen. Although the shocked envelope has a higher characteristic temperature than the shocked ejecta, the temperature estimates of the shocked material are in good agreement with the Kasen's model. The hottest shocked plasma is produced in the subgiant companion case.

Top