Genoviz Software Development Kit: Java tool kit for building genomics visualization applications.
Helt, Gregg A; Nicol, John W; Erwin, Ed; Blossom, Eric; Blanchard, Steven G; Chervitz, Stephen A; Harmon, Cyrus; Loraine, Ann E
2009-08-25
Visualization software can expose previously undiscovered patterns in genomic data and advance biological science. The Genoviz Software Development Kit (SDK) is an open source, Java-based framework designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include automated layout of features along genetic or genomic axes; support for user interactions with graphical elements (Glyphs) in a map; a variety of Glyph sub-classes that promote experimentation with new ways of representing data in graphical formats; and support for adaptive, semantic zooming, whereby objects change their appearance depending on zoom level and zooming rate adapts to the current scale. Freely available demonstration and production quality applications, including the Integrated Genome Browser, illustrate Genoviz SDK capabilities. Separation between graphics components and genomic data models makes it easy for developers to add visualization capability to pre-existing applications or build new applications using third-party data models. Source code, documentation, sample applications, and tutorials are available at http://genoviz.sourceforge.net/.
Lee, Tae-Rim; Ahn, Jin Mo; Kim, Gyuhee; Kim, Sangsoo
2017-12-01
Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.
Interactive Exploration on Large Genomic Datasets.
Tu, Eric
2016-01-01
The prevalence of large genomics datasets has made the the need to explore this data more important. Large sequencing projects like the 1000 Genomes Project [1], which reconstructed the genomes of 2,504 individuals sampled from 26 populations, have produced over 200TB of publically available data. Meanwhile, existing genomic visualization tools have been unable to scale with the growing amount of larger, more complex data. This difficulty is acute when viewing large regions (over 1 megabase, or 1,000,000 bases of DNA), or when concurrently viewing multiple samples of data. While genomic processing pipelines have shifted towards using distributed computing techniques, such as with ADAM [4], genomic visualization tools have not. In this work we present Mango, a scalable genome browser built on top of ADAM that can run both locally and on a cluster. Mango presents a combination of different optimizations that can be combined in a single application to drive novel genomic visualization techniques over terabytes of genomic data. By building visualization on top of a distributed processing pipeline, we can perform visualization queries over large regions that are not possible with current tools, and decrease the time for viewing large data sets. Mango is part of the Big Data Genomics project at University of California-Berkeley [25] and is published under the Apache 2 license. Mango is available at https://github.com/bigdatagenomics/mango.
GPU Accelerated Browser for Neuroimaging Genomics.
Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H; Saykin, Andrew J; Shen, Li
2018-04-25
Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Zachary A.; Drager, Andreas; Ebrahim, Ali
Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics).more » Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools.« less
King, Zachary A.; Dräger, Andreas; Ebrahim, Ali; Sonnenschein, Nikolaus; Lewis, Nathan E.; Palsson, Bernhard O.
2015-01-01
Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics). Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools. PMID:26313928
King, Zachary A.; Drager, Andreas; Ebrahim, Ali; ...
2015-08-27
Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics).more » Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools.« less
Integrated Approach to Reconstruction of Microbial Regulatory Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodionov, Dmitry A; Novichkov, Pavel S
2013-11-04
This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated inmore » RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.« less
Informing the Design of Direct-to-Consumer Interactive Personal Genomics Reports
Shaer, Orit; Okerlund, Johanna; Balestra, Martina; Stowell, Elizabeth; Ascher, Laura; Bi, Joanna; Schlenker, Claire; Ball, Madeleine
2015-01-01
Background In recent years, people who sought direct-to-consumer genetic testing services have been increasingly confronted with an unprecedented amount of personal genomic information, which influences their decisions, emotional state, and well-being. However, these users of direct-to-consumer genetic services, who vary in their education and interests, frequently have little relevant experience or tools for understanding, reasoning about, and interacting with their personal genomic data. Online interactive techniques can play a central role in making personal genomic data useful for these users. Objective We sought to (1) identify the needs of diverse users as they make sense of their personal genomic data, (2) consequently develop effective interactive visualizations of genomic trait data to address these users’ needs, and (3) evaluate the effectiveness of the developed visualizations in facilitating comprehension. Methods The first two user studies, conducted with 63 volunteers in the Personal Genome Project and with 36 personal genomic users who participated in a design workshop, respectively, employed surveys and interviews to identify the needs and expectations of diverse users. Building on the two initial studies, the third study was conducted with 730 Amazon Mechanical Turk users and employed a controlled experimental design to examine the effectiveness of different design interventions on user comprehension. Results The first two studies identified searching, comparing, sharing, and organizing data as fundamental to users’ understanding of personal genomic data. The third study demonstrated that interactive and visual design interventions could improve the understandability of personal genomic reports for consumers. In particular, results showed that a new interactive bubble chart visualization designed for the study resulted in the highest comprehension scores, as well as the highest perceived comprehension scores. These scores were significantly higher than scores received using the industry standard tabular reports currently used for communicating personal genomic information. Conclusions Drawing on multiple research methods and populations, the findings of the studies reported in this paper offer deep understanding of users’ needs and practices, and demonstrate that interactive online design interventions can improve the understandability of personal genomic reports for consumers. We discuss implications for designers and researchers. PMID:26070951
Informing the Design of Direct-to-Consumer Interactive Personal Genomics Reports.
Shaer, Orit; Nov, Oded; Okerlund, Johanna; Balestra, Martina; Stowell, Elizabeth; Ascher, Laura; Bi, Joanna; Schlenker, Claire; Ball, Madeleine
2015-06-12
In recent years, people who sought direct-to-consumer genetic testing services have been increasingly confronted with an unprecedented amount of personal genomic information, which influences their decisions, emotional state, and well-being. However, these users of direct-to-consumer genetic services, who vary in their education and interests, frequently have little relevant experience or tools for understanding, reasoning about, and interacting with their personal genomic data. Online interactive techniques can play a central role in making personal genomic data useful for these users. We sought to (1) identify the needs of diverse users as they make sense of their personal genomic data, (2) consequently develop effective interactive visualizations of genomic trait data to address these users' needs, and (3) evaluate the effectiveness of the developed visualizations in facilitating comprehension. The first two user studies, conducted with 63 volunteers in the Personal Genome Project and with 36 personal genomic users who participated in a design workshop, respectively, employed surveys and interviews to identify the needs and expectations of diverse users. Building on the two initial studies, the third study was conducted with 730 Amazon Mechanical Turk users and employed a controlled experimental design to examine the effectiveness of different design interventions on user comprehension. The first two studies identified searching, comparing, sharing, and organizing data as fundamental to users' understanding of personal genomic data. The third study demonstrated that interactive and visual design interventions could improve the understandability of personal genomic reports for consumers. In particular, results showed that a new interactive bubble chart visualization designed for the study resulted in the highest comprehension scores, as well as the highest perceived comprehension scores. These scores were significantly higher than scores received using the industry standard tabular reports currently used for communicating personal genomic information. Drawing on multiple research methods and populations, the findings of the studies reported in this paper offer deep understanding of users' needs and practices, and demonstrate that interactive online design interventions can improve the understandability of personal genomic reports for consumers. We discuss implications for designers and researchers.
User Guidelines for the Brassica Database: BRAD.
Wang, Xiaobo; Cheng, Feng; Wang, Xiaowu
2016-01-01
The genome sequence of Brassica rapa was first released in 2011. Since then, further Brassica genomes have been sequenced or are undergoing sequencing. It is therefore necessary to develop tools that help users to mine information from genomic data efficiently. This will greatly aid scientific exploration and breeding application, especially for those with low levels of bioinformatic training. Therefore, the Brassica database (BRAD) was built to collect, integrate, illustrate, and visualize Brassica genomic datasets. BRAD provides useful searching and data mining tools, and facilitates the search of gene annotation datasets, syntenic or non-syntenic orthologs, and flanking regions of functional genomic elements. It also includes genome-analysis tools such as BLAST and GBrowse. One of the important aims of BRAD is to build a bridge between Brassica crop genomes with the genome of the model species Arabidopsis thaliana, thus transferring the bulk of A. thaliana gene study information for use with newly sequenced Brassica crops.
LeishCyc: a guide to building a metabolic pathway database and visualization of metabolomic data.
Saunders, Eleanor C; MacRae, James I; Naderer, Thomas; Ng, Milica; McConville, Malcolm J; Likić, Vladimir A
2012-01-01
The complexity of the metabolic networks in even the simplest organisms has raised new challenges in organizing metabolic information. To address this, specialized computer frameworks have been developed to capture, manage, and visualize metabolic knowledge. The leading databases of metabolic information are those organized under the umbrella of the BioCyc project, which consists of the reference database MetaCyc, and a number of pathway/genome databases (PGDBs) each focussed on a specific organism. A number of PGDBs have been developed for bacterial, fungal, and protozoan pathogens, greatly facilitating dissection of the metabolic potential of these organisms and the identification of new drug targets. Leishmania are protozoan parasites belonging to the family Trypanosomatidae that cause a broad spectrum of diseases in humans. In this work we use the LeishCyc database, the BioCyc database for Leishmania major, to describe how to build a BioCyc database from genomic sequences and associated annotations. By using metabolomic data generated in our group, we show how such databases can be utilized to elucidate specific changes in parasite metabolism.
QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.
Thibodeau, Asa; Márquez, Eladio J; Luo, Oscar; Ruan, Yijun; Menghi, Francesca; Shin, Dong-Guk; Stitzel, Michael L; Vera-Licona, Paola; Ucar, Duygu
2016-06-01
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. QuIN's web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/.
QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks
Thibodeau, Asa; Márquez, Eladio J.; Luo, Oscar; Ruan, Yijun; Shin, Dong-Guk; Stitzel, Michael L.; Ucar, Duygu
2016-01-01
Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. AVAILABILITY: QuIN’s web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/. PMID:27336171
Cheng, Gong; Lu, Quan; Ma, Ling; Zhang, Guocai; Xu, Liang; Zhou, Zongshan
2017-01-01
Recently, Docker technology has received increasing attention throughout the bioinformatics community. However, its implementation has not yet been mastered by most biologists; accordingly, its application in biological research has been limited. In order to popularize this technology in the field of bioinformatics and to promote the use of publicly available bioinformatics tools, such as Dockerfiles and Images from communities, government sources, and private owners in the Docker Hub Registry and other Docker-based resources, we introduce here a complete and accurate bioinformatics workflow based on Docker. The present workflow enables analysis and visualization of pan-genomes and biosynthetic gene clusters of bacteria. This provides a new solution for bioinformatics mining of big data from various publicly available biological databases. The present step-by-step guide creates an integrative workflow through a Dockerfile to allow researchers to build their own Image and run Container easily.
Cheng, Gong; Zhang, Guocai; Xu, Liang
2017-01-01
Recently, Docker technology has received increasing attention throughout the bioinformatics community. However, its implementation has not yet been mastered by most biologists; accordingly, its application in biological research has been limited. In order to popularize this technology in the field of bioinformatics and to promote the use of publicly available bioinformatics tools, such as Dockerfiles and Images from communities, government sources, and private owners in the Docker Hub Registry and other Docker-based resources, we introduce here a complete and accurate bioinformatics workflow based on Docker. The present workflow enables analysis and visualization of pan-genomes and biosynthetic gene clusters of bacteria. This provides a new solution for bioinformatics mining of big data from various publicly available biological databases. The present step-by-step guide creates an integrative workflow through a Dockerfile to allow researchers to build their own Image and run Container easily. PMID:29204317
GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications.
Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L
2015-10-15
A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3Plot allows researchers to interact with data, dynamically alter the view, or even resize or reposition the visualization in their browser window. In addition GenomeD3Plot has built in functionality to export any resulting genome visualization in PNG or SVG format for easy inclusion in manuscripts or presentations. GenomeD3Plot is being utilized in the recently released Islandviewer 3 (www.pathogenomics.sfu.ca/islandviewer/) to visualize predicted genomic islands with other genome annotation data. However, its features enable it to be more widely applicable for dynamic visualization of genomic data in general. GenomeD3Plot is licensed under the GNU-GPL v3 at https://github.com/brinkmanlab/GenomeD3Plot/. brinkman@sfu.ca. © The Author 2015. Published by Oxford University Press.
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Karp, Peter D; Paley, Suzanne; Romero, Pedro
2002-01-01
Bioinformatics requires reusable software tools for creating model-organism databases (MODs). The Pathway Tools is a reusable, production-quality software environment for creating a type of MOD called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc (see http://ecocyc.org) integrates our evolving understanding of the genes, proteins, metabolic network, and genetic network of an organism. This paper provides an overview of the four main components of the Pathway Tools: The PathoLogic component supports creation of new PGDBs from the annotated genome of an organism. The Pathway/Genome Navigator provides query, visualization, and Web-publishing services for PGDBs. The Pathway/Genome Editors support interactive updating of PGDBs. The Pathway Tools ontology defines the schema of PGDBs. The Pathway Tools makes use of the Ocelot object database system for data management services for PGDBs. The Pathway Tools has been used to build PGDBs for 13 organisms within SRI and by external users.
Genome build information is an essential part of genomic track files.
Kanduri, Chakravarthi; Domanska, Diana; Hovig, Eivind; Sandve, Geir Kjetil
2017-09-14
Genomic locations are represented as coordinates on a specific genome build version, but the build information is frequently missing when coordinates are provided. We show that this information is essential to correctly interpret and analyse the genomic intervals contained in genomic track files. Although not a substitute for best practices, we also provide a tool to predict the genome build version of genomic track files.
Exploring the possibilities and limitations of a nanomaterials genome.
Qian, Chenxi; Siler, Todd; Ozin, Geoffrey A
2015-01-07
What are we going to do with the cornucopia of nanomaterials appearing in the open and patent literature, every day? Imagine the benefits of an intelligent and convenient means of categorizing, organizing, sifting, sorting, connecting, and utilizing this information in scientifically and technologically innovative ways by building a Nanomaterials Genome founded upon an all-purpose Periodic Table of Nanomaterials. In this Concept article, inspired by work on the Human Genome project, which began in 1989 together with motivation from the recent emergence of the Materials Genome project initiated in 2011 and the Nanoinformatics Roadmap 2020 instigated in 2010, we envision the development of a Nanomaterials Genome (NMG) database with the most advanced data-mining tools that leverage inference engines to help connect and interpret patterns of nanomaterials information. It will be equipped with state-of-the-art visualization techniques that rapidly organize and picture, categorize and interrelate the inherited behavior of complex nanomatter from the information programmed in its constituent nanomaterials building blocks. A Nanomaterials Genome Initiative (NMGI) of the type imagined herein has the potential to serve the global nanoscience community with an opportunity to speed up the development continuum of nanomaterials through the innovation process steps of discovery, structure determination and property optimization, functionality elucidation, system design and integration, certification and manufacturing to deployment in technologies that apply these versatile nanomaterials in environmentally responsible ways. The possibilities and limitations of this concept are critically evaluated in this article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparative analysis and visualization of multiple collinear genomes
2012-01-01
Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897
GenomeGraphs: integrated genomic data visualization with R.
Durinck, Steffen; Bullard, James; Spellman, Paul T; Dudoit, Sandrine
2009-01-06
Biological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses. We developed GenomeGraphs, as an add-on software package for the statistical programming environment R, to facilitate integrated visualization of genomic datasets. GenomeGraphs uses the biomaRt package to perform on-line annotation queries to Ensembl and translates these to gene/transcript structures in viewports of the grid graphics package. This allows genomic annotation to be plotted together with experimental data. GenomeGraphs can also be used to plot custom annotation tracks in combination with different experimental data types together in one plot using the same genomic coordinate system. GenomeGraphs is a flexible and extensible software package which can be used to visualize a multitude of genomic datasets within the statistical programming environment R.
LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.
Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel
2009-06-01
LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.
Family genome browser: visualizing genomes with pedigree information.
Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong
2015-07-15
Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
BactoGeNIE: A large-scale comparative genome visualization for big displays
Aurisano, Jillian; Reda, Khairi; Johnson, Andrew; ...
2015-08-13
The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less
BactoGeNIE: a large-scale comparative genome visualization for big displays
2015-01-01
Background The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. Results In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE through a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. Conclusions BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics. PMID:26329021
BactoGeNIE: A large-scale comparative genome visualization for big displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurisano, Jillian; Reda, Khairi; Johnson, Andrew
The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less
Telles, Guilherme P; Araújo, Graziela S; Walter, Maria E M T; Brigido, Marcelo M; Almeida, Nalvo F
2018-05-16
In phylogenetic reconstruction the result is a tree where all taxa are leaves and internal nodes are hypothetical ancestors. In a live phylogeny, both ancestral and living taxa may coexist, leading to a tree where internal nodes may be living taxa. The well-known Neighbor-Joining heuristic is largely used for phylogenetic reconstruction. We present Live Neighbor-Joining, a heuristic for building a live phylogeny. We have investigated Live Neighbor-Joining on datasets of viral genomes, a plausible scenario for its application, which allowed the construction of alternative hypothesis for the relationships among virus that embrace both ancestral and descending taxa. We also applied Live Neighbor-Joining on a set of bacterial genomes and to sets of images and texts. Non-biological data may be better explored visually when their relationship in terms of content similarity is represented by means of a phylogeny. Our experiments have shown interesting alternative phylogenetic hypothesis for RNA virus genomes, bacterial genomes and alternative relationships among images and texts, illustrating a wide range of scenarios where Live Neighbor-Joining may be used.
Gutman, David A; Cobb, Jake; Somanna, Dhananjaya; Park, Yuna; Wang, Fusheng; Kurc, Tahsin; Saltz, Joel H; Brat, Daniel J; Cooper, Lee A D
2013-01-01
Background The integration and visualization of multimodal datasets is a common challenge in biomedical informatics. Several recent studies of The Cancer Genome Atlas (TCGA) data have illustrated important relationships between morphology observed in whole-slide images, outcome, and genetic events. The pairing of genomics and rich clinical descriptions with whole-slide imaging provided by TCGA presents a unique opportunity to perform these correlative studies. However, better tools are needed to integrate the vast and disparate data types. Objective To build an integrated web-based platform supporting whole-slide pathology image visualization and data integration. Materials and methods All images and genomic data were directly obtained from the TCGA and National Cancer Institute (NCI) websites. Results The Cancer Digital Slide Archive (CDSA) produced is accessible to the public (http://cancer.digitalslidearchive.net) and currently hosts more than 20 000 whole-slide images from 22 cancer types. Discussion The capabilities of CDSA are demonstrated using TCGA datasets to integrate pathology imaging with associated clinical, genomic and MRI measurements in glioblastomas and can be extended to other tumor types. CDSA also allows URL-based sharing of whole-slide images, and has preliminary support for directly sharing regions of interest and other annotations. Images can also be selected on the basis of other metadata, such as mutational profile, patient age, and other relevant characteristics. Conclusions With the increasing availability of whole-slide scanners, analysis of digitized pathology images will become increasingly important in linking morphologic observations with genomic and clinical endpoints. PMID:23893318
Savant Genome Browser 2: visualization and analysis for population-scale genomics.
Fiume, Marc; Smith, Eric J M; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M; Robinson, Mark D; Wodak, Shoshana J; Brudno, Michael
2012-07-01
High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com.
Savant Genome Browser 2: visualization and analysis for population-scale genomics
Smith, Eric J. M.; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M.; Robinson, Mark D.; Wodak, Shoshana J.; Brudno, Michael
2012-01-01
High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com. PMID:22638571
Lee, Kang-Hoon; Shin, Kyung-Seop; Lim, Debora; Kim, Woo-Chan; Chung, Byung Chang; Han, Gyu-Bum; Roh, Jeongkyu; Cho, Dong-Ho; Cho, Kiho
2015-07-01
The genomes of living organisms are populated with pleomorphic repetitive elements (REs) of varying densities. Our hypothesis that genomic RE landscapes are species/strain/individual-specific was implemented into the Genome Signature Imaging system to visualize and compute the RE-based signatures of any genome. Following the occurrence profiling of 5-nucleotide REs/words, the information from top-50 frequency words was transformed into a genome-specific signature and visualized as Genome Signature Images (GSIs), using a CMYK scheme. An algorithm for computing distances among GSIs was formulated using the GSIs' variables (word identity, frequency, and frequency order). The utility of the GSI-distance computation system was demonstrated with control genomes. GSI-based computation of genome-relatedness among 1766 microbes (117 archaea and 1649 bacteria) identified their clustering patterns; although the majority paralleled the established classification, some did not. The Genome Signature Imaging system, with its visualization and distance computation functions, enables genome-scale evolutionary studies involving numerous genomes with varying sizes. Copyright © 2015 Elsevier Inc. All rights reserved.
Genome U-Plot: a whole genome visualization.
Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George
2018-05-15
The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.
Integrated genome browser: visual analytics platform for genomics.
Freese, Nowlan H; Norris, David C; Loraine, Ann E
2016-07-15
Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.
Cytoscape: the network visualization tool for GenomeSpace workflows.
Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P
2014-01-01
Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.
Cytoscape: the network visualization tool for GenomeSpace workflows
Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P.
2014-01-01
Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013. PMID:25165537
A New Approach to Dissect Nuclear Organization: TALE-Mediated Genome Visualization (TGV).
Miyanari, Yusuke
2016-01-01
Spatiotemporal organization of chromatin within the nucleus has so far remained elusive. Live visualization of nuclear remodeling could be a promising approach to understand its functional relevance in genome functions and mechanisms regulating genome architecture. Recent technological advances in live imaging of chromosomes begun to explore the biological roles of the movement of the chromatin within the nucleus. Here I describe a new technique, called TALE-mediated genome visualization (TGV), which allows us to visualize endogenous repetitive sequence including centromeric, pericentromeric, and telomeric repeats in living cells.
Visualization for genomics: the Microbial Genome Viewer.
Kerkhoven, Robert; van Enckevort, Frank H J; Boekhorst, Jos; Molenaar, Douwe; Siezen, Roland J
2004-07-22
A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a MySQL database. The generated images are in scalable vector graphics (SVG) format, which is suitable for creating high-quality scalable images and dynamic Web representations. Gene-related data such as transcriptome and time-course microarray experiments can be superimposed on the maps for visual inspection. The Microbial Genome Viewer 1.0 is freely available at http://www.cmbi.kun.nl/MGV
Integration and visualization of systems biology data in context of the genome
2010-01-01
Background High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment. PMID:20642854
MIPS PlantsDB: a database framework for comparative plant genome research.
Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel
2013-01-01
The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.
MIPS PlantsDB: a database framework for comparative plant genome research
Nussbaumer, Thomas; Martis, Mihaela M.; Roessner, Stephan K.; Pfeifer, Matthias; Bader, Kai C.; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel
2013-01-01
The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB–plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834–D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB. PMID:23203886
Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context
Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi
2007-01-01
Background Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. Results lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. Conclusion lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired. PMID:17877794
Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context.
Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi
2007-09-18
Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired.
eXframe: reusable framework for storage, analysis and visualization of genomics experiments
2011-01-01
Background Genome-wide experiments are routinely conducted to measure gene expression, DNA-protein interactions and epigenetic status. Structured metadata for these experiments is imperative for a complete understanding of experimental conditions, to enable consistent data processing and to allow retrieval, comparison, and integration of experimental results. Even though several repositories have been developed for genomics data, only a few provide annotation of samples and assays using controlled vocabularies. Moreover, many of them are tailored for a single type of technology or measurement and do not support the integration of multiple data types. Results We have developed eXframe - a reusable web-based framework for genomics experiments that provides 1) the ability to publish structured data compliant with accepted standards 2) support for multiple data types including microarrays and next generation sequencing 3) query, analysis and visualization integration tools (enabled by consistent processing of the raw data and annotation of samples) and is available as open-source software. We present two case studies where this software is currently being used to build repositories of genomics experiments - one contains data from hematopoietic stem cells and another from Parkinson's disease patients. Conclusion The web-based framework eXframe offers structured annotation of experiments as well as uniform processing and storage of molecular data from microarray and next generation sequencing platforms. The framework allows users to query and integrate information across species, technologies, measurement types and experimental conditions. Our framework is reusable and freely modifiable - other groups or institutions can deploy their own custom web-based repositories based on this software. It is interoperable with the most important data formats in this domain. We hope that other groups will not only use eXframe, but also contribute their own useful modifications. PMID:22103807
Theories of Visual Rhetoric: Looking at the Human Genome.
ERIC Educational Resources Information Center
Rosner, Mary
2001-01-01
Considers how visuals are constructions that are products of a writer's interpretation with its own "power-laden agenda." Reviews the current approach taken by composition scholars, surveys richer interdisciplinary work on visuals, and (by using visuals connected with the Human Genome Project) models an analysis of visuals as rhetoric.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.
2012-04-25
Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.
Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M
2012-04-05
The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.
2012-01-01
Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
Thorvaldsdóttir, Helga; Mesirov, Jill P.
2013-01-01
Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today’s sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license. PMID:22517427
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.
Thorvaldsdóttir, Helga; Robinson, James T; Mesirov, Jill P
2013-03-01
Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today's sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license.
Delta: a new web-based 3D genome visualization and analysis platform.
Tang, Bixia; Li, Feifei; Li, Jing; Zhao, Wenming; Zhang, Zhihua
2018-04-15
Delta is an integrative visualization and analysis platform to facilitate visually annotating and exploring the 3D physical architecture of genomes. Delta takes Hi-C or ChIA-PET contact matrix as input and predicts the topologically associating domains and chromatin loops in the genome. It then generates a physical 3D model which represents the plausible consensus 3D structure of the genome. Delta features a highly interactive visualization tool which enhances the integration of genome topology/physical structure with extensive genome annotation by juxtaposing the 3D model with diverse genomic assay outputs. Finally, by visually comparing the 3D model of the β-globin gene locus and its annotation, we speculated a plausible transitory interaction pattern in the locus. Experimental evidence was found to support this speculation by literature survey. This served as an example of intuitive hypothesis testing with the help of Delta. Delta is freely accessible from http://delta.big.ac.cn, and the source code is available at https://github.com/zhangzhwlab/delta. zhangzhihua@big.ac.cn. Supplementary data are available at Bioinformatics online.
Monfort, Matthias; Furlong, Eileen E M; Girardot, Charles
2017-07-15
Visualization of genomic data is fundamental for gaining insights into genome function. Yet, co-visualization of a large number of datasets remains a challenge in all popular genome browsers and the development of new visualization methods is needed to improve the usability and user experience of genome browsers. We present Dynamix, a JBrowse plugin that enables the parallel inspection of hundreds of genomic datasets. Dynamix takes advantage of a priori knowledge to automatically display data tracks with signal within a genomic region of interest. As the user navigates through the genome, Dynamix automatically updates data tracks and limits all manual operations otherwise needed to adjust the data visible on screen. Dynamix also introduces a new carousel view that optimizes screen utilization by enabling users to independently scroll through groups of tracks. Dynamix is hosted at http://furlonglab.embl.de/Dynamix . charles.girardot@embl.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Icarus: visualizer for de novo assembly evaluation.
Mikheenko, Alla; Valin, Gleb; Prjibelski, Andrey; Saveliev, Vladislav; Gurevich, Alexey
2016-11-01
: Data visualization plays an increasingly important role in NGS data analysis. With advances in both sequencing and computational technologies, it has become a new bottleneck in genomics studies. Indeed, evaluation of de novo genome assemblies is one of the areas that can benefit from the visualization. However, even though multiple quality assessment methods are now available, existing visualization tools are hardly suitable for this purpose. Here, we present Icarus-a novel genome visualizer for accurate assessment and analysis of genomic draft assemblies, which is based on the tool QUAST. Icarus can be used in studies where a related reference genome is available, as well as for non-model organisms. The tool is available online and as a standalone application. http://cab.spbu.ru/software/icarus CONTACT: aleksey.gurevich@spbu.ruSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research.
Mader, Malte; Simon, Ronald; Kurtz, Stefan
2014-03-31
A comprehensive view on all relevant genomic data is instrumental for understanding the complex patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events. We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream processed genomics data typically available in cancer research. A powerful search interface and a fast visualization engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to easily communicate their results. A comprehensive data administration allows to keep track of the available data sets. We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may be inactivated in two different ways, a fact that has not been published before. The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of downstream processed data support life scientists in generating hypotheses. The export of high quality images supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2 demo server and the software is available at http://www.zbh.uni-hamburg.de/fishoracle.
CircosVCF: circos visualization of whole-genome sequence variations stored in VCF files.
Drori, E; Levy, D; Smirin-Yosef, P; Rahimi, O; Salmon-Divon, M
2017-05-01
Visualization of whole-genomic variations in a meaningful manner assists researchers in gaining new insights into the underlying data, especially when it comes in the context of whole genome comparisons. CircosVCF is a web based visualization tool for genome-wide variant data described in VCF files, using circos plots. The user friendly interface of CircosVCF supports an interactive design of the circles in the plot, and the integration of additional information such as experimental data or annotations. The provided visualization capabilities give a broad overview of the genomic relationships between genomes, and allow identification of specific meaningful SNPs regions. CircosVCF was implemented in JavaScript and is available at http://www.ariel.ac.il/research/fbl/software. malisa@ariel.ac.il. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Visualizing conserved gene location across microbe genomes
NASA Astrophysics Data System (ADS)
Shaw, Chris D.
2009-01-01
This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.
Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme
2015-09-18
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme
2015-01-01
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. PMID:25990738
Treangen, Todd J; Ondov, Brian D; Koren, Sergey; Phillippy, Adam M
2014-01-01
Whole-genome sequences are now available for many microbial species and clades, however existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The Harvest suite is open-source and freely available from: http://github.com/marbl/harvest.
FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research
2014-01-01
Background A comprehensive view on all relevant genomic data is instrumental for understanding the complex patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events. Results We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream processed genomics data typically available in cancer research. A powerful search interface and a fast visualization engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to easily communicate their results. A comprehensive data administration allows to keep track of the available data sets. We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may be inactivated in two different ways, a fact that has not been published before. Conclusions The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of downstream processed data support life scientists in generating hypotheses. The export of high quality images supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2 demo server and the software is available at http://www.zbh.uni-hamburg.de/fishoracle. PMID:24684958
CAMBerVis: visualization software to support comparative analysis of multiple bacterial strains.
Woźniak, Michał; Wong, Limsoon; Tiuryn, Jerzy
2011-12-01
A number of inconsistencies in genome annotations are documented among bacterial strains. Visualization of the differences may help biologists to make correct decisions in spurious cases. We have developed a visualization tool, CAMBerVis, to support comparative analysis of multiple bacterial strains. The software manages simultaneous visualization of multiple bacterial genomes, enabling visual analysis focused on genome structure annotations. The CAMBerVis software is freely available at the project website: http://bioputer.mimuw.edu.pl/camber. Input datasets for Mycobacterium tuberculosis and Staphylocacus aureus are integrated with the software as examples. m.wozniak@mimuw.edu.pl Supplementary data are available at Bioinformatics online.
COGNAT: a web server for comparative analysis of genomic neighborhoods.
Klimchuk, Olesya I; Konovalov, Kirill A; Perekhvatov, Vadim V; Skulachev, Konstantin V; Dibrova, Daria V; Mulkidjanian, Armen Y
2017-11-22
In prokaryotic genomes, functionally coupled genes can be organized in conserved gene clusters enabling their coordinated regulation. Such clusters could contain one or several operons, which are groups of co-transcribed genes. Those genes that evolved from a common ancestral gene by speciation (i.e. orthologs) are expected to have similar genomic neighborhoods in different organisms, whereas those copies of the gene that are responsible for dissimilar functions (i.e. paralogs) could be found in dissimilar genomic contexts. Comparative analysis of genomic neighborhoods facilitates the prediction of co-regulated genes and helps to discern different functions in large protein families. We intended, building on the attribution of gene sequences to the clusters of orthologous groups of proteins (COGs), to provide a method for visualization and comparative analysis of genomic neighborhoods of evolutionary related genes, as well as a respective web server. Here we introduce the COmparative Gene Neighborhoods Analysis Tool (COGNAT), a web server for comparative analysis of genomic neighborhoods. The tool is based on the COG database, as well as the Pfam protein families database. As an example, we show the utility of COGNAT in identifying a new type of membrane protein complex that is formed by paralog(s) of one of the membrane subunits of the NADH:quinone oxidoreductase of type 1 (COG1009) and a cytoplasmic protein of unknown function (COG3002). This article was reviewed by Drs. Igor Zhulin, Uri Gophna and Igor Rogozin.
Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study
Kim, Sungeun; Shen, Li; Saykin, Andrew J.; West, John D.
2010-01-01
Neuroimaging genomics is a new transdisciplinary research field, which aims to examine genetic effects on brain via integrated analyses of high throughput neuroimaging and genomic data. We report our recent work on (1) developing an imaging genomic browsing system that allows for whole genome and entire brain analyses based on visual exploration and (2) applying the system to the imaging genomic analysis of an existing MCI/AD cohort. Voxel-based morphometry is used to define imaging phenotypes. ANCOVA is employed to evaluate the effect of the interaction of genotypes and diagnosis in relation to imaging phenotypes while controlling for relevant covariates. Encouraging experimental results suggest that the proposed system has substantial potential for enabling discovery of imaging genomic associations through visual evaluation and for localizing candidate imaging regions and genomic regions for refined statistical modeling. PMID:19963597
The Cancer Analysis Virtual Machine (CAVM) project will leverage cloud technology, the UCSC Cancer Genomics Browser, and the Galaxy analysis workflow system to provide investigators with a flexible, scalable platform for hosting, visualizing and analyzing their own genomic data.
CGDV: a webtool for circular visualization of genomics and transcriptomics data.
Jha, Vineet; Singh, Gulzar; Kumar, Shiva; Sonawane, Amol; Jere, Abhay; Anamika, Krishanpal
2017-10-24
Interpretation of large-scale data is very challenging and currently there is scarcity of web tools which support automated visualization of a variety of high throughput genomics and transcriptomics data and for a wide variety of model organisms along with user defined karyotypes. Circular plot provides holistic visualization of high throughput large scale data but it is very complex and challenging to generate as most of the available tools need informatics expertise to install and run them. We have developed CGDV (Circos for Genomics and Transcriptomics Data Visualization), a webtool based on Circos, for seamless and automated visualization of a variety of large scale genomics and transcriptomics data. CGDV takes output of analyzed genomics or transcriptomics data of different formats, such as vcf, bed, xls, tab limited matrix text file, CNVnator raw output and Gene fusion raw output, to plot circular view of the sample data. CGDV take cares of generating intermediate files required for circos. CGDV is freely available at https://cgdv-upload.persistent.co.in/cgdv/ . The circular plot for each data type is tailored to gain best biological insights into the data. The inter-relationship between data points, homologous sequences, genes involved in fusion events, differential expression pattern, sequencing depth, types and size of variations and enrichment of DNA binding proteins can be seen using CGDV. CGDV thus helps biologists and bioinformaticians to visualize a variety of genomics and transcriptomics data seamlessly.
PanACEA: a bioinformatics tool for the exploration and visualization of bacterial pan-chromosomes.
Clarke, Thomas H; Brinkac, Lauren M; Inman, Jason M; Sutton, Granger; Fouts, Derrick E
2018-06-27
Bacterial pan-genomes, comprised of conserved and variable genes across multiple sequenced bacterial genomes, allow for identification of genomic regions that are phylogenetically discriminating or functionally important. Pan-genomes consist of large amounts of data, which can restrict researchers ability to locate and analyze these regions. Multiple software packages are available to visualize pan-genomes, but currently their ability to address these concerns are limited by using only pre-computed data sets, prioritizing core over variable gene clusters, or by not accounting for pan-chromosome positioning in the viewer. We introduce PanACEA (Pan-genome Atlas with Chromosome Explorer and Analyzer), which utilizes locally-computed interactive web-pages to view ordered pan-genome data. It consists of multi-tiered, hierarchical display pages that extend from pan-chromosomes to both core and variable regions to single genes. Regions and genes are functionally annotated to allow for rapid searching and visual identification of regions of interest with the option that user-supplied genomic phylogenies and metadata can be incorporated. PanACEA's memory and time requirements are within the capacities of standard laptops. The capability of PanACEA as a research tool is demonstrated by highlighting a variable region important in differentiating strains of Enterobacter hormaechei. PanACEA can rapidly translate the results of pan-chromosome programs into an intuitive and interactive visual representation. It will empower researchers to visually explore and identify regions of the pan-chromosome that are most biologically interesting, and to obtain publication quality images of these regions.
Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies
Schatz, Michael C.; Phillippy, Adam M.; Sommer, Daniel D.; Delcher, Arthur L.; Puiu, Daniela; Narzisi, Giuseppe; Salzberg, Steven L.; Pop, Mihai
2013-01-01
Since its launch in 2004, the open-source AMOS project has released several innovative DNA sequence analysis applications including: Hawkeye, a visual analytics tool for inspecting the structure of genome assemblies; the Assembly Forensics and FRCurve pipelines for systematically evaluating the quality of a genome assembly; and AMOScmp, the first comparative genome assembler. These applications have been used to assemble and analyze dozens of genomes ranging in complexity from simple microbial species through mammalian genomes. Recent efforts have been focused on enhancing support for new data characteristics brought on by second- and now third-generation sequencing. This review describes the major components of AMOS in light of these challenges, with an emphasis on methods for assessing assembly quality and the visual analytics capabilities of Hawkeye. These interactive graphical aspects are essential for navigating and understanding the complexities of a genome assembly, from the overall genome structure down to individual bases. Hawkeye and AMOS are available open source at http://amos.sourceforge.net. PMID:22199379
FluReF, an automated flu virus reassortment finder based on phylogenetic trees.
Yurovsky, Alisa; Moret, Bernard M E
2011-01-01
Reassortments are events in the evolution of the genome of influenza (flu), whereby segments of the genome are exchanged between different strains. As reassortments have been implicated in major human pandemics of the last century, their identification has become a health priority. While such identification can be done "by hand" on a small dataset, researchers and health authorities are building up enormous databases of genomic sequences for every flu strain, so that it is imperative to develop automated identification methods. However, current methods are limited to pairwise segment comparisons. We present FluReF, a fully automated flu virus reassortment finder. FluReF is inspired by the visual approach to reassortment identification and uses the reconstructed phylogenetic trees of the individual segments and of the full genome. We also present a simple flu evolution simulator, based on the current, source-sink, hypothesis for flu cycles. On synthetic datasets produced by our simulator, FluReF, tuned for a 0% false positive rate, yielded false negative rates of less than 10%. FluReF corroborated two new reassortments identified by visual analysis of 75 Human H3N2 New York flu strains from 2005-2008 and gave partial verification of reassortments found using another bioinformatics method. FluReF finds reassortments by a bottom-up search of the full-genome and segment-based phylogenetic trees for candidate clades--groups of one or more sampled viruses that are separated from the other variants from the same season. Candidate clades in each tree are tested to guarantee confidence values, using the lengths of key edges as well as other tree parameters; clades with reassortments must have validated incongruencies among segment trees. FluReF demonstrates robustness of prediction for geographically and temporally expanded datasets, and is not limited to finding reassortments with previously collected sequences. The complete source code is available from http://lcbb.epfl.ch/software.html.
Waese, Jamie; Fan, Jim; Yu, Hans; Fucile, Geoffrey; Shi, Ruian; Cumming, Matthew; Town, Chris; Stuerzlinger, Wolfgang
2017-01-01
A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an “app” on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research. PMID:28808136
NASA Astrophysics Data System (ADS)
Cedilnik, Andrej; Baumes, Jeffrey; Ibanez, Luis; Megason, Sean; Wylie, Brian
2008-01-01
Dramatic technological advances in the field of genomics have made it possible to sequence the complete genomes of many different organisms. With this overwhelming amount of data at hand, biologists are now confronted with the challenge of understanding the function of the many different elements of the genome. One of the best places to start gaining insight on the mechanisms by which the genome controls an organism is the study of embryogenesis. There are multiple and inter-related layers of information that must be established in order to understand how the genome controls the formation of an organism. One is cell lineage which describes how patterns of cell division give rise to different parts of an organism. Another is gene expression which describes when and where different genes are turned on. Both of these data types can now be acquired using fluorescent laser-scanning (confocal or 2-photon) microscopy of embryos tagged with fluorescent proteins to generate 3D movies of developing embryos. However, analyzing the wealth of resulting images requires tools capable of interactively visualizing several different types of information as well as being scalable to terabytes of data. This paper describes how the combination of existing large data volume visualization and the new Titan information visualization framework of the Visualization Toolkit (VTK) can be applied to the problem of studying the cell lineage of an organism. In particular, by linking the visualization of spatial and temporal gene expression data with novel ways of visualizing cell lineage data, users can study how the genome regulates different aspects of embryonic development.
de Brevern, Alexandre G; Meyniel, Jean-Philippe; Fairhead, Cécile; Neuvéglise, Cécile; Malpertuy, Alain
2015-01-01
Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries.
de Brevern, Alexandre G.; Meyniel, Jean-Philippe; Fairhead, Cécile; Neuvéglise, Cécile; Malpertuy, Alain
2015-01-01
Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries. PMID:26125026
Wen, Can-Hong; Ou, Shao-Min; Guo, Xiao-Bo; Liu, Chen-Feng; Shen, Yan-Bo; You, Na; Cai, Wei-Hong; Shen, Wen-Jun; Wang, Xue-Qin; Tan, Hai-Zhu
2017-12-12
Breast cancer is a high-risk heterogeneous disease with myriad subtypes and complicated biological features. The Cancer Genome Atlas (TCGA) breast cancer database provides researchers with the large-scale genome and clinical data via web portals and FTP services. Researchers are able to gain new insights into their related fields, and evaluate experimental discoveries with TCGA. However, it is difficult for researchers who have little experience with database and bioinformatics to access and operate on because of TCGA's complex data format and diverse files. For ease of use, we build the breast cancer (B-CAN) platform, which enables data customization, data visualization, and private data center. The B-CAN platform runs on Apache server and interacts with the backstage of MySQL database by PHP. Users can customize data based on their needs by combining tables from original TCGA database and selecting variables from each table. The private data center is applicable for private data and two types of customized data. A key feature of the B-CAN is that it provides single table display and multiple table display. Customized data with one barcode corresponding to many records and processed customized data are allowed in Multiple Tables Display. The B-CAN is an intuitive and high-efficient data-sharing platform.
Genome Writing: Current Progress and Related Applications.
Wang, Yueqiang; Shen, Yue; Gu, Ying; Zhu, Shida; Yin, Ye
2018-02-01
The ultimate goal of synthetic biology is to build customized cells or organisms to meet specific industrial or medical needs. The most important part of the customized cell is a synthetic genome. Advanced genomic writing technologies are required to build such an artificial genome. Recently, the partially-completed synthetic yeast genome project represents a milestone in this field. In this mini review, we briefly introduce the techniques for de novo genome synthesis and genome editing. Furthermore, we summarize recent research progresses and highlight several applications in the synthetic genome field. Finally, we discuss current challenges and future prospects. Copyright © 2018. Production and hosting by Elsevier B.V.
Genomes as geography: using GIS technology to build interactive genome feature maps
Dolan, Mary E; Holden, Constance C; Beard, M Kate; Bult, Carol J
2006-01-01
Background Many commonly used genome browsers display sequence annotations and related attributes as horizontal data tracks that can be toggled on and off according to user preferences. Most genome browsers use only simple keyword searches and limit the display of detailed annotations to one chromosomal region of the genome at a time. We have employed concepts, methodologies, and tools that were developed for the display of geographic data to develop a Genome Spatial Information System (GenoSIS) for displaying genomes spatially, and interacting with genome annotations and related attribute data. In contrast to the paradigm of horizontally stacked data tracks used by most genome browsers, GenoSIS uses the concept of registered spatial layers composed of spatial objects for integrated display of diverse data. In addition to basic keyword searches, GenoSIS supports complex queries, including spatial queries, and dynamically generates genome maps. Our adaptation of the geographic information system (GIS) model in a genome context supports spatial representation of genome features at multiple scales with a versatile and expressive query capability beyond that supported by existing genome browsers. Results We implemented an interactive genome sequence feature map for the mouse genome in GenoSIS, an application that uses ArcGIS, a commercially available GIS software system. The genome features and their attributes are represented as spatial objects and data layers that can be toggled on and off according to user preferences or displayed selectively in response to user queries. GenoSIS supports the generation of custom genome maps in response to complex queries about genome features based on both their attributes and locations. Our example application of GenoSIS to the mouse genome demonstrates the powerful visualization and query capability of mature GIS technology applied in a novel domain. Conclusion Mapping tools developed specifically for geographic data can be exploited to display, explore and interact with genome data. The approach we describe here is organism independent and is equally useful for linear and circular chromosomes. One of the unique capabilities of GenoSIS compared to existing genome browsers is the capacity to generate genome feature maps dynamically in response to complex attribute and spatial queries. PMID:16984652
USDA-ARS?s Scientific Manuscript database
The 5,000 arthropod genomes initiative (i5k) has tasked itself with coordinating the sequencing of 5,000 insect or related arthropod genomes. The resulting influx of data, mostly from small research groups or communities with little bioinformatics experience, will require visualization, disseminatio...
Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz
2016-12-01
ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures. © 2016 Szałaj et al.; Published by Cold Spring Harbor Laboratory Press.
Simulation and visualization of energy-related occupant behavior in office buildings
Chen, Yixing; Liang, Xin; Hong, Tianzhen; ...
2017-03-15
In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less
Simulation and visualization of energy-related occupant behavior in office buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Liang, Xin; Hong, Tianzhen
In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less
Sulovari, Arvis; Li, Dawei
2014-07-19
Genome-wide association studies (GWAS) have successfully identified genes associated with complex human diseases. Although much of the heritability remains unexplained, combining single nucleotide polymorphism (SNP) genotypes from multiple studies for meta-analysis will increase the statistical power to identify new disease-associated variants. Meta-analysis requires same allele definition (nomenclature) and genome build among individual studies. Similarly, imputation, commonly-used prior to meta-analysis, requires the same consistency. However, the genotypes from various GWAS are generated using different genotyping platforms, arrays or SNP-calling approaches, resulting in use of different genome builds and allele definitions. Incorrect assumptions of identical allele definition among combined GWAS lead to a large portion of discarded genotypes or incorrect association findings. There is no published tool that predicts and converts among all major allele definitions. In this study, we have developed a tool, GACT, which stands for Genome build and Allele definition Conversion Tool, that predicts and inter-converts between any of the common SNP allele definitions and between the major genome builds. In addition, we assessed several factors that may affect imputation quality, and our results indicated that inclusion of singletons in the reference had detrimental effects while ambiguous SNPs had no measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 0.001 (40% of study SNPs) showed no significant decrease of imputation quality (even significantly higher when compared to the imputation with singletons in the reference), especially for rare SNPs. GACT is a new, powerful, and user-friendly tool with both command-line and interactive online versions that can accurately predict, and convert between any of the common allele definitions and between genome builds for genome-wide meta-analysis and imputation of genotypes from SNP-arrays or deep-sequencing, particularly for data from the dbGaP and other public databases. http://www.uvm.edu/genomics/software/gact.
Do you really know where this SNP goes?
USDA-ARS?s Scientific Manuscript database
The release of build 10.2 of the swine genome was a marked improvement over previous builds and has proven extremely useful. However, as most know, there are regions of the genome that this particular build does not accurately represent. For instance, nearly 25% of the 62,162 SNP on the Illumina Por...
Neugebauer, Tomasz; Bordeleau, Eric; Burrus, Vincent; Brzezinski, Ryszard
2015-01-01
Data visualization methods are necessary during the exploration and analysis activities of an increasingly data-intensive scientific process. There are few existing visualization methods for raw nucleotide sequences of a whole genome or chromosome. Software for data visualization should allow the researchers to create accessible data visualization interfaces that can be exported and shared with others on the web. Herein, novel software developed for generating DNA data visualization interfaces is described. The software converts DNA data sets into images that are further processed as multi-scale images to be accessed through a web-based interface that supports zooming, panning and sequence fragment selection. Nucleotide composition frequencies and GC skew of a selected sequence segment can be obtained through the interface. The software was used to generate DNA data visualization of human and bacterial chromosomes. Examples of visually detectable features such as short and long direct repeats, long terminal repeats, mobile genetic elements, heterochromatic segments in microbial and human chromosomes, are presented. The software and its source code are available for download and further development. The visualization interfaces generated with the software allow for the immediate identification and observation of several types of sequence patterns in genomes of various sizes and origins. The visualization interfaces generated with the software are readily accessible through a web browser. This software is a useful research and teaching tool for genetics and structural genomics.
Sockeye: A 3D Environment for Comparative Genomics
Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.
2004-01-01
Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592
FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context.
Mader, Malte; Simon, Ronald; Steinbiss, Sascha; Kurtz, Stefan
2011-07-28
The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle.
FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context
2011-01-01
Background The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. Results We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. Conclusions FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle. PMID:21884636
Style grammars for interactive visualization of architecture.
Aliaga, Daniel G; Rosen, Paul A; Bekins, Daniel R
2007-01-01
Interactive visualization of architecture provides a way to quickly visualize existing or novel buildings and structures. Such applications require both fast rendering and an effortless input regimen for creating and changing architecture using high-level editing operations that automatically fill in the necessary details. Procedural modeling and synthesis is a powerful paradigm that yields high data amplification and can be coupled with fast-rendering techniques to quickly generate plausible details of a scene without much or any user interaction. Previously, forward generating procedural methods have been proposed where a procedure is explicitly created to generate particular content. In this paper, we present our work in inverse procedural modeling of buildings and describe how to use an extracted repertoire of building grammars to facilitate the visualization and quick modification of architectural structures and buildings. We demonstrate an interactive application where the user draws simple building blocks and, using our system, can automatically complete the building "in the style of" other buildings using view-dependent texture mapping or nonphotorealistic rendering techniques. Our system supports an arbitrary number of building grammars created from user subdivided building models and captured photographs. Using only edit, copy, and paste metaphors, the entire building styles can be altered and transferred from one building to another in a few operations, enhancing the ability to modify an existing architectural structure or to visualize a novel building in the style of the others.
Bakken, Trygve E; Roddey, J Cooper; Djurovic, Srdjan; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Jernigan, Terry L; Kaufmann, Walter E; Kenet, Tal; Kennedy, David N; Kuperman, Joshua M; Murray, Sarah S; Sowell, Elizabeth R; Rimol, Lars M; Mattingsdal, Morten; Melle, Ingrid; Agartz, Ingrid; Andreassen, Ole A; Schork, Nicholas J; Dale, Anders M; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R; Jagust, William; Trojanowki, John Q; Toga, Arthur W; Beckett, Laurel; Green, Robert C; Saykin, Andrew J; Morris, John; Liu, Enchi; Montine, Tom; Gamst, Anthony; Thomas, Ronald G; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Harvey, Danielle; Kornak, John; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Bandy, Dan; Koeppe, Robert A; Foster, Norm; Reiman, Eric M; Chen, Kewei; Mathis, Chet; Cairns, Nigel J; Taylor-Reinwald, Lisa; Trojanowki, J Q; Shaw, Les; Lee, Virginia M Y; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Foroud, Tatiana M; Potkin, Steven; Shen, Li; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S; Pawluczyk, Sonia; Spann, Bryan M; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L; Lord, Joanne L; Johnson, Kris; Doody, Rachelle S; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S; Bell, Karen L; Morris, John C; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P Murali; Petrella, Jeffrey R; Coleman, R Edward; Arnold, Steven E; Karlawish, Jason H; Wolk, David; Smith, Charles D; Jicha, Greg; Hardy, Peter; Lopez, Oscar L; Oakley, MaryAnn; Simpson, Donna M; Porsteinsson, Anton P; Goldstein, Bonnie S; Martin, Kim; Makino, Kelly M; Ismail, M Saleem; Brand, Connie; Mulnard, Ruth A; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I; Lah, James J; Cellar, Janet S; Burns, Jeffrey M; Anderson, Heather S; Swerdlow, Russell H; Apostolova, Liana; Lu, Po H; Bartzokis, George; Silverman, Daniel H S; Graff-Radford, Neill R; Parfitt, Francine; Johnson, Heather; Farlow, Martin R; Hake, Ann Marie; Matthews, Brandy R; Herring, Scott; van Dyck, Christopher H; Carson, Richard E; MacAvoy, Martha G; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Ging-Yuek; Hsiung, Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O; Wolday, Saba; Bwayo, Salome K; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M; Potkin, Steven G; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W; Kataki, Maria; Zimmerman, Earl A; Celmins, Dzintra; Brown, Alice D; Pearlson, Godfrey D; Blank, Karen; Anderson, Karen; Santulli, Robert B; Schwartz, Eben S; Sink, Kaycee M; Williamson, Jeff D; Garg, Pradeep; Watkins, Franklin; Ott, Brian R; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J; Miller, Bruce L; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabether; Rachinsky, Irina; Drost, Dick; Jernigan, Terry; McCabe, Connor; Grant, Ellen; Ernst, Thomas; Kuperman, Josh; Chung, Yoon; Murray, Sarah; Bloss, Cinnamon; Darst, Burcu; Pritchett, Lexi; Saito, Ashley; Amaral, David; DiNino, Mishaela; Eyngorina, Bella; Sowell, Elizabeth; Houston, Suzanne; Soderberg, Lindsay; Kaufmann, Walter; van Zijl, Peter; Rizzo-Busack, Hilda; Javid, Mohsin; Mehta, Natasha; Ruberry, Erika; Powers, Alisa; Rosen, Bruce; Gebhard, Nitzah; Manigan, Holly; Frazier, Jean; Kennedy, David; Yakutis, Lauren; Hill, Michael; Gruen, Jeffrey; Bosson-Heenan, Joan; Carlson, Heatherly
2012-03-06
Visual cortical surface area varies two- to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (P(combined) = 3.2 × 10(-8)). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10(-9)) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5' UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 basemore » pairs per year, while still retaining its efficiency.« less
Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem
2008-11-27
The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.
PGSB PlantsDB: updates to the database framework for comparative plant genome research.
Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai C; Martis, Mihaela M; Seidel, Michael; Kugler, Karl G; Gundlach, Heidrun; Mayer, Klaus F X
2016-01-04
PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/). © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
DNAism: exploring genomic datasets on the web with Horizon Charts.
Rio Deiros, David; Gibbs, Richard A; Rogers, Jeffrey
2016-01-27
Computational biologists daily face the need to explore massive amounts of genomic data. New visualization techniques can help researchers navigate and understand these big data. Horizon Charts are a relatively new visualization method that, under the right circumstances, maximizes data density without losing graphical perception. Horizon Charts have been successfully applied to understand multi-metric time series data. We have adapted an existing JavaScript library (Cubism) that implements Horizon Charts for the time series domain so that it works effectively with genomic datasets. We call this new library DNAism. Horizon Charts can be an effective visual tool to explore complex and large genomic datasets. Researchers can use our library to leverage these techniques to extract additional insights from their own datasets.
ERIC Educational Resources Information Center
Butler, Charles; Bello, Julia; York, Alan; Orvis, Kathryn; Pittendrigh, Barry R.
2008-01-01
Much of the general population is aware of terms such as biotechnology, genetic engineering, and genomics. However, there is a lack of understanding concerning these fields among many secondary school students. Few teaching models exist to explain concepts behind genomics and even less are available for teaching the visually impaired and blind.…
Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal
Gao, Jianjiong; Aksoy, Bülent Arman; Dogrusoz, Ugur; Dresdner, Gideon; Gross, Benjamin; Sumer, S. Onur; Sun, Yichao; Jacobsen, Anders; Sinha, Rileen; Larsson, Erik; Cerami, Ethan; Sander, Chris; Schultz, Nikolaus
2014-01-01
The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics. PMID:23550210
Waese, Jamie; Fan, Jim; Pasha, Asher; Yu, Hans; Fucile, Geoffrey; Shi, Ruian; Cumming, Matthew; Kelley, Lawrence A; Sternberg, Michael J; Krishnakumar, Vivek; Ferlanti, Erik; Miller, Jason; Town, Chris; Stuerzlinger, Wolfgang; Provart, Nicholas J
2017-08-01
A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an "app" on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research. © 2017 American Society of Plant Biologists. All rights reserved.
Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas
2006-02-14
The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.
Wen, Can-Hong; Ou, Shao-Min; Guo, Xiao-Bo; Liu, Chen-Feng; Shen, Yan-Bo; You, Na; Cai, Wei-Hong; Shen, Wen-Jun; Wang, Xue-Qin; Tan, Hai-Zhu
2017-01-01
Breast cancer is a high-risk heterogeneous disease with myriad subtypes and complicated biological features. The Cancer Genome Atlas (TCGA) breast cancer database provides researchers with the large-scale genome and clinical data via web portals and FTP services. Researchers are able to gain new insights into their related fields, and evaluate experimental discoveries with TCGA. However, it is difficult for researchers who have little experience with database and bioinformatics to access and operate on because of TCGA’s complex data format and diverse files. For ease of use, we build the breast cancer (B-CAN) platform, which enables data customization, data visualization, and private data center. The B-CAN platform runs on Apache server and interacts with the backstage of MySQL database by PHP. Users can customize data based on their needs by combining tables from original TCGA database and selecting variables from each table. The private data center is applicable for private data and two types of customized data. A key feature of the B-CAN is that it provides single table display and multiple table display. Customized data with one barcode corresponding to many records and processed customized data are allowed in Multiple Tables Display. The B-CAN is an intuitive and high-efficient data-sharing platform. PMID:29312567
ABrowse--a customizable next-generation genome browser framework.
Kong, Lei; Wang, Jun; Zhao, Shuqi; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge
2012-01-05
With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for Arabidopsis thaliana genome has been built at http://arabidopsis.cbi.edu.cn/.
GenomeDiagram: a python package for the visualization of large-scale genomic data.
Pritchard, Leighton; White, Jennifer A; Birch, Paul R J; Toth, Ian K
2006-03-01
We present GenomeDiagram, a flexible, open-source Python module for the visualization of large-scale genomic, comparative genomic and other data with reference to a single chromosome or other biological sequence. GenomeDiagram may be used to generate publication-quality vector graphics, rastered images and in-line streamed graphics for webpages. The package integrates with datatypes from the BioPython project, and is available for Windows, Linux and Mac OS X systems. GenomeDiagram is freely available as source code (under GNU Public License) at http://bioinf.scri.ac.uk/lp/programs.html, and requires Python 2.3 or higher, and recent versions of the ReportLab and BioPython packages. A user manual, example code and images are available at http://bioinf.scri.ac.uk/lp/programs.html.
Nussbaumer, Thomas; Kugler, Karl G; Schweiger, Wolfgang; Bader, Kai C; Gundlach, Heidrun; Spannagl, Manuel; Poursarebani, Naser; Pfeifer, Matthias; Mayer, Klaus F X
2014-12-10
Over the last years reference genome sequences of several economically and scientifically important cereals and model plants became available. Despite the agricultural significance of these crops only a small number of tools exist that allow users to inspect and visualize the genomic position of genes of interest in an interactive manner. We present chromoWIZ, a web tool that allows visualizing the genomic positions of relevant genes and comparing these data between different plant genomes. Genes can be queried using gene identifiers, functional annotations, or sequence homology in four grass species (Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Oryza sativa). The distribution of the anchored genes is visualized along the chromosomes by using heat maps. Custom gene expression measurements, differential expression information, and gene-to-group mappings can be uploaded and can be used for further filtering. This tool is mainly designed for breeders and plant researchers, who are interested in the location and the distribution of candidate genes as well as in the syntenic relationships between different grass species. chromoWIZ is freely available and online accessible at http://mips.helmholtz-muenchen.de/plant/chromoWIZ/index.jsp.
Visualization of RNA structure models within the Integrative Genomics Viewer.
Busan, Steven; Weeks, Kevin M
2017-07-01
Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Wilcox, Rebecca L; Adem, Patricia V; Afshinnekoo, Ebrahim; Atkinson, James B; Burke, Leah W; Cheung, Hoiwan; Dasgupta, Shoumita; DeLaGarza, Julia; Joseph, Loren; LeGallo, Robin; Lew, Madelyn; Lockwood, Christina M; Meiss, Alice; Norman, Jennifer; Markwood, Priscilla; Rizvi, Hasan; Shane-Carson, Kate P; Sobel, Mark E; Suarez, Eric; Tafe, Laura J; Wang, Jason; Haspel, Richard L
2018-05-01
Genomic medicine is transforming patient care. However, the speed of development has left a knowledge gap between discovery and effective implementation into clinical practice. Since 2010, the Training Residents in Genomics (TRIG) Working Group has found success in building a rigorous genomics curriculum with implementation tools aimed at pathology residents in postgraduate training years 1-4. Based on the TRIG model, the interprofessional Undergraduate Training in Genomics (UTRIG) Working Group was formed. Under the aegis of the Undergraduate Medical Educators Section of the Association of Pathology Chairs and representation from nine additional professional societies, UTRIG's collaborative goal is building medical student genomic literacy through development of a ready-to-use genomics curriculum. Key elements to the UTRIG curriculum are expert consensus-driven objectives, active learning methods, rigorous assessment and integration.
ExpressionDB: An open source platform for distributing genome-scale datasets.
Hughes, Laura D; Lewis, Scott A; Hughes, Michael E
2017-01-01
RNA-sequencing (RNA-seq) and microarrays are methods for measuring gene expression across the entire transcriptome. Recent advances have made these techniques practical and affordable for essentially any laboratory with experience in molecular biology. A variety of computational methods have been developed to decrease the amount of bioinformatics expertise necessary to analyze these data. Nevertheless, many barriers persist which discourage new labs from using functional genomics approaches. Since high-quality gene expression studies have enduring value as resources to the entire research community, it is of particular importance that small labs have the capacity to share their analyzed datasets with the research community. Here we introduce ExpressionDB, an open source platform for visualizing RNA-seq and microarray data accommodating virtually any number of different samples. ExpressionDB is based on Shiny, a customizable web application which allows data sharing locally and online with customizable code written in R. ExpressionDB allows intuitive searches based on gene symbols, descriptions, or gene ontology terms, and it includes tools for dynamically filtering results based on expression level, fold change, and false-discovery rates. Built-in visualization tools include heatmaps, volcano plots, and principal component analysis, ensuring streamlined and consistent visualization to all users. All of the scripts for building an ExpressionDB with user-supplied data are freely available on GitHub, and the Creative Commons license allows fully open customization by end-users. We estimate that a demo database can be created in under one hour with minimal programming experience, and that a new database with user-supplied expression data can be completed and online in less than one day.
Kumar, Rajendra; Sobhy, Haitham
2017-01-01
Abstract Hi-C experiments generate data in form of large genome contact maps (Hi-C maps). These show that chromosomes are arranged in a hierarchy of three-dimensional compartments. But to understand how these compartments form and by how much they affect genetic processes such as gene regulation, biologists and bioinformaticians need efficient tools to visualize and analyze Hi-C data. However, this is technically challenging because these maps are big. In this paper, we remedied this problem, partly by implementing an efficient file format and developed the genome contact map explorer platform. Apart from tools to process Hi-C data, such as normalization methods and a programmable interface, we made a graphical interface that let users browse, scroll and zoom Hi-C maps to visually search for patterns in the Hi-C data. In the software, it is also possible to browse several maps simultaneously and plot related genomic data. The software is openly accessible to the scientific community. PMID:28973466
VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA
Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.
2010-01-01
Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449
JBrowse: a dynamic web platform for genome visualization and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buels, Robert; Yao, Eric; Diesh, Colin M.
JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a maturemore » web application suitable for genome visualization and analysis.« less
D-peaks: a visual tool to display ChIP-seq peaks along the genome.
Brohée, Sylvain; Bontempi, Gianluca
2012-01-01
ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.
JBrowse: a dynamic web platform for genome visualization and analysis.
Buels, Robert; Yao, Eric; Diesh, Colin M; Hayes, Richard D; Munoz-Torres, Monica; Helt, Gregg; Goodstein, David M; Elsik, Christine G; Lewis, Suzanna E; Stein, Lincoln; Holmes, Ian H
2016-04-12
JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a mature web application suitable for genome visualization and analysis.
Integrative Genomics Viewer (IGV) | Informatics Technology for Cancer Research (ITCR)
The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.
Brettin, Thomas; Davis, James J.; Disz, Terry; ...
2015-02-10
The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offersmore » a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.« less
Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas
2006-01-01
Background The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. Description CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. Conclusion CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation. PMID:16478536
Fu, Liezhen; Wen, Luan; Luu, Nga; Shi, Yun-Bo
2016-01-01
Genome editing with designer nucleases such as TALEN and CRISPR/Cas enzymes has broad applications. Delivery of these designer nucleases into organisms induces various genetic mutations including deletions, insertions and nucleotide substitutions. Characterizing those mutations is critical for evaluating the efficacy and specificity of targeted genome editing. While a number of methods have been developed to identify the mutations, none other than sequencing allows the identification of the most desired mutations, i.e., out-of-frame insertions/deletions that disrupt genes. Here we report a simple and efficient method to visualize and quantify the efficiency of genomic mutations induced by genome-editing. Our approach is based on the expression of a two-color fusion protein in a vector that allows the insertion of the edited region in the genome in between the two color moieties. We show that our approach not only easily identifies developing animals with desired mutations but also efficiently quantifies the mutation rate in vivo. Furthermore, by using LacZα and GFP as the color moieties, our approach can even eliminate the need for a fluorescent microscope, allowing the analysis with simple bright field visualization. Such an approach will greatly simplify the screen for effective genome-editing enzymes and identify the desired mutant cells/animals. PMID:27748423
fluff: exploratory analysis and visualization of high-throughput sequencing data
Georgiou, Georgios
2016-01-01
Summary. In this article we describe fluff, a software package that allows for simple exploration, clustering and visualization of high-throughput sequencing data mapped to a reference genome. The package contains three command-line tools to generate publication-quality figures in an uncomplicated manner using sensible defaults. Genome-wide data can be aggregated, clustered and visualized in a heatmap, according to different clustering methods. This includes a predefined setting to identify dynamic clusters between different conditions or developmental stages. Alternatively, clustered data can be visualized in a bandplot. Finally, fluff includes a tool to generate genomic profiles. As command-line tools, the fluff programs can easily be integrated into standard analysis pipelines. The installation is straightforward and documentation is available at http://fluff.readthedocs.org. Availability. fluff is implemented in Python and runs on Linux. The source code is freely available for download at https://github.com/simonvh/fluff. PMID:27547532
GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes.
Hallin, Peter F; Stærfeldt, Hans-Henrik; Rotenberg, Eva; Binnewies, Tim T; Benham, Craig J; Ussery, David W
2009-09-25
We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.
A high-resolution radiation hybrid map of the bovine genome
USDA-ARS?s Scientific Manuscript database
We are building high-resolution radiation hybrid maps of all 29 bovine autosomes and chromosome X, using a 58,000-marker genotyping assay, and a 12,000-rad whole-genome radiation hybrid (RH) panel. To accommodate the large number of markers, and to automate the map building procedure, a software pip...
JBrowse: A dynamic web platform for genome visualization and analysis
Buels, Robert; Yao, Eric; Diesh, Colin M.; ...
2016-04-12
Background: JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Results: Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. Conclusions: JBrowsemore » is a mature web application suitable for genome visualization and analysis.« less
Abe, Takashi; Hamano, Yuta; Ikemura, Toshimichi
2014-01-01
A strategy of evolutionary studies that can compare vast numbers of genome sequences is becoming increasingly important with the remarkable progress of high-throughput DNA sequencing methods. We previously established a sequence alignment-free clustering method "BLSOM" for di-, tri-, and tetranucleotide compositions in genome sequences, which can characterize sequence characteristics (genome signatures) of a wide range of species. In the present study, we generated BLSOMs for tetra- and pentanucleotide compositions in approximately one million sequence fragments derived from 101 eukaryotes, for which almost complete genome sequences were available. BLSOM recognized phylotype-specific characteristics (e.g., key combinations of oligonucleotide frequencies) in the genome sequences, permitting phylotype-specific clustering of the sequences without any information regarding the species. In our detailed examination of 12 Drosophila species, the correlation between their phylogenetic classification and the classification on the BLSOMs was observed to visualize oligonucleotides diagnostic for species-specific clustering.
Caryoscope: An Open Source Java application for viewing microarray data in a genomic context
Awad, Ihab AB; Rees, Christian A; Hernandez-Boussard, Tina; Ball, Catherine A; Sherlock, Gavin
2004-01-01
Background Microarray-based comparative genome hybridization experiments generate data that can be mapped onto the genome. These data are interpreted more easily when represented graphically in a genomic context. Results We have developed Caryoscope, which is an open source Java application for visualizing microarray data from array comparative genome hybridization experiments in a genomic context. Caryoscope can read General Feature Format files (GFF files), as well as comma- and tab-delimited files, that define the genomic positions of the microarray reporters for which data are obtained. The microarray data can be browsed using an interactive, zoomable interface, which helps users identify regions of chromosomal deletion or amplification. The graphical representation of the data can be exported in a number of graphic formats, including publication-quality formats such as PostScript. Conclusion Caryoscope is a useful tool that can aid in the visualization, exploration and interpretation of microarray data in a genomic context. PMID:15488149
[Ethical considerations in genomic cohort study].
Choi, Eun Kyung; Kim, Ock-Joo
2007-03-01
During the last decade, genomic cohort study has been developed in many countries by linking health data and genetic data in stored samples. Genomic cohort study is expected to find key genetic components that contribute to common diseases, thereby promising great advance in genome medicine. While many countries endeavor to build biobank systems, biobank-based genome research has raised important ethical concerns including genetic privacy, confidentiality, discrimination, and informed consent. Informed consent for biobank poses an important question: whether true informed consent is possible in population-based genomic cohort research where the nature of future studies is unforeseeable when consent is obtained. Due to the sensitive character of genetic information, protecting privacy and keeping confidentiality become important topics. To minimize ethical problems and achieve scientific goals to its maximum degree, each country strives to build population-based genomic cohort research project, by organizing public consultation, trying public and expert consensus in research, and providing safeguards to protect privacy and confidentiality.
Microreact: visualizing and sharing data for genomic epidemiology and phylogeography
Argimón, Silvia; Abudahab, Khalil; Goater, Richard J. E.; Fedosejev, Artemij; Bhai, Jyothish; Glasner, Corinna; Feil, Edward J.; Holden, Matthew T. G.; Yeats, Corin A.; Grundmann, Hajo; Spratt, Brian G.
2016-01-01
Visualization is frequently used to aid our interpretation of complex datasets. Within microbial genomics, visualizing the relationships between multiple genomes as a tree provides a framework onto which associated data (geographical, temporal, phenotypic and epidemiological) are added to generate hypotheses and to explore the dynamics of the system under investigation. Selected static images are then used within publications to highlight the key findings to a wider audience. However, these images are a very inadequate way of exploring and interpreting the richness of the data. There is, therefore, a need for flexible, interactive software that presents the population genomic outputs and associated data in a user-friendly manner for a wide range of end users, from trained bioinformaticians to front-line epidemiologists and health workers. Here, we present Microreact, a web application for the easy visualization of datasets consisting of any combination of trees, geographical, temporal and associated metadata. Data files can be uploaded to Microreact directly via the web browser or by linking to their location (e.g. from Google Drive/Dropbox or via API), and an integrated visualization via trees, maps, timelines and tables provides interactive querying of the data. The visualization can be shared as a permanent web link among collaborators, or embedded within publications to enable readers to explore and download the data. Microreact can act as an end point for any tool or bioinformatic pipeline that ultimately generates a tree, and provides a simple, yet powerful, visualization method that will aid research and discovery and the open sharing of datasets. PMID:28348833
A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components
Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.
2008-01-01
The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269
Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard
2017-01-06
The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of GenomeCAT can be easily extended by further R packages or customized plug-ins to meet future requirements.
NASA Astrophysics Data System (ADS)
Akristiniy, Vera A.; Dikova, Elena A.
2018-03-01
The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account the influence of high-rise buildings on objects of cultural heritage and valuable historical buildings of the city. Practical application of the visual-landscape analysis provides an opportunity to assess the influence of hypothetical location of high-rise buildings on the perception of a historically developed environment and optimal building parameters. The contents of the main stages in the conduct of the visual - landscape analysis and their key aspects, concerning the construction of predicted zones of visibility of the significant historically valuable urban development objects and hypothetically planned of the high-rise buildings are revealed. The obtained data are oriented to the successive development of the planning and typological structure of the city territory and preservation of the compositional influence of valuable fragments of the historical environment in the structure of the urban landscape. On their basis, an information database is formed to determine the permissible urban development parameters of the high-rise buildings for the preservation of the compositional integrity of the urban area.
Building conservation base on assessment of facade quality on Basuki Rachmat Street, Malang
NASA Astrophysics Data System (ADS)
Kurniawan, E. B.; Putri, R. Y. A.; Wardhani, D. K.
2017-06-01
Visual quality covers aspects of imageability which is associated with visual system and the element of distinction. Within a visual system of specific area, the physical quality may lead to a strong image. Here, the physical quality is one of important that make urban aesthetic. Build a discussion toward visual system of urban area, this paper aim is to identify the influencing factors in defining the façade’s visual quality of heritage buildings at Jend. Basuki Rahmat Street, Malang City, East Java-Indonesia. This Street is a main road of Malang city center that was built by Dutch colonial government. It was designed by IR. Thomas Kartsten. It was known as one of Malang area that have good visual quality. In order to idenfity the influencing factors, this paper conducts Multiple linear regression as a tools of analysis. The examined potential factors are resulted from of architecture and urban design expert’s assessment to each building’s segment at Jend. Basuki Rahmat. Finally, this paper reveals that the influencing factors are color, rhythm, and proportion. This is demonstrated by the results model: Visual quality (Y) = 0.304 + 0.21 Colors(X5) + 0.221 rhythm (X6) + 0.304 proportion (X7). Furthermore, the recommendation of the building facade will be made based on this model and study of historical and typology building in Basuki Rachmat Street.
Genovar: a detection and visualization tool for genomic variants.
Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung
2012-05-08
Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.
USDA-ARS?s Scientific Manuscript database
Tomato Functional Genomics Database (TFGD; http://ted.bti.cornell.edu) provides a comprehensive systems biology resource to store, mine, analyze, visualize and integrate large-scale tomato functional genomics datasets. The database is expanded from the previously described Tomato Expression Database...
GenomicusPlants: a web resource to study genome evolution in flowering plants.
Louis, Alexandra; Murat, Florent; Salse, Jérôme; Crollius, Hugues Roest
2015-01-01
Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ('views') are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes 'painted' with colours of another genome of interest. All four views are interconnected and benefit from many customizable features. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Epiviz: a view inside the design of an integrated visual analysis software for genomics
2015-01-01
Background Computational and visual data analysis for genomics has traditionally involved a combination of tools and resources, of which the most ubiquitous consist of genome browsers, focused mainly on integrative visualization of large numbers of big datasets, and computational environments, focused on data modeling of a small number of moderately sized datasets. Workflows that involve the integration and exploration of multiple heterogeneous data sources, small and large, public and user specific have been poorly addressed by these tools. In our previous work, we introduced Epiviz, which bridges the gap between the two types of tools, simplifying these workflows. Results In this paper we expand on the design decisions behind Epiviz, and introduce a series of new advanced features that further support the type of interactive exploratory workflow we have targeted. We discuss three ways in which Epiviz advances the field of genomic data analysis: 1) it brings code to interactive visualizations at various different levels; 2) takes the first steps in the direction of collaborative data analysis by incorporating user plugins from source control providers, as well as by allowing analysis states to be shared among the scientific community; 3) combines established analysis features that have never before been available simultaneously in a genome browser. In our discussion section, we present security implications of the current design, as well as a series of limitations and future research steps. Conclusions Since many of the design choices of Epiviz are novel in genomics data analysis, this paper serves both as a document of our own approaches with lessons learned, as well as a start point for future efforts in the same direction for the genomics community. PMID:26328750
The Genome Portal of the Department of Energy Joint Genome Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordberg, Henrik; Cantor, Michael; Dushekyo, Serge
2014-03-14
The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. Genome Portal in the past 2 years was significantly updated, with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI. A critical aspect of handling big data in genomics is the development of visualization and analysis tools that allow scientists to derive meaning from what are otherwise terrabases ofmore » inert sequence. An interactive visualization tool developed in the group allows us to explore contigs resulting from a single metagenome assembly. Implemented with modern web technologies that take advantage of the power of the computer's graphical processing unit (gpu), the tool allows the user to easily navigate over a 100,000 data points in multiple dimensions, among many biologically meaningful parameters of a dataset such as relative abundance, contig length, and G+C content.« less
Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing
Nguyen, Nga Thi Thuy; Vincens, Pierre
2018-01-01
Abstract Since 2010, the Genomicus web server is available online at http://genomicus.biologie.ens.fr/genomicus. This graphical browser provides access to comparative genomic analyses in four different phyla (Vertebrate, Plants, Fungi, and non vertebrate Metazoans). Users can analyse genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants, in an integrated evolutionary context. New analyses and visualization tools have recently been implemented in Genomicus Vertebrate. Karyotype structures from several genomes can now be compared along an evolutionary pathway (Multi-KaryotypeView), and synteny blocks can be computed and visualized between any two genomes (PhylDiagView). PMID:29087490
Functional Interaction Network Construction and Analysis for Disease Discovery.
Wu, Guanming; Haw, Robin
2017-01-01
Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.
2018-02-12
usability preference. Results under the second focus showed that the frequency with which participants expected status updates differed depending upon the...assistance requests for both navigational route and building selection depending on the type of exogenous visual cues displayed? 3) Is there a difference...in response time to visual reports for both navigational route and building selection depending on the type of exogenous visual cues displayed? 4
Revealing the missing expressed genes beyond the human reference genome by RNA-Seq.
Chen, Geng; Li, Ruiyuan; Shi, Leming; Qi, Junyi; Hu, Pengzhan; Luo, Jian; Liu, Mingyao; Shi, Tieliu
2011-12-02
The complete and accurate human reference genome is important for functional genomics researches. Therefore, the incomplete reference genome and individual specific sequences have significant effects on various studies. we used two RNA-Seq datasets from human brain tissues and 10 mixed cell lines to investigate the completeness of human reference genome. First, we demonstrated that in previously identified ~5 Mb Asian and ~5 Mb African novel sequences that are absent from the human reference genome of NCBI build 36, ~211 kb and ~201 kb of them could be transcribed, respectively. Our results suggest that many of those transcribed regions are not specific to Asian and African, but also present in Caucasian. Then, we found that the expressions of 104 RefSeq genes that are unalignable to NCBI build 37 in brain and cell lines are higher than 0.1 RPKM. 55 of them are conserved across human, chimpanzee and macaque, suggesting that there are still a significant number of functional human genes absent from the human reference genome. Moreover, we identified hundreds of novel transcript contigs that cannot be aligned to NCBI build 37, RefSeq genes and EST sequences. Some of those novel transcript contigs are also conserved among human, chimpanzee and macaque. By positioning those contigs onto the human genome, we identified several large deletions in the reference genome. Several conserved novel transcript contigs were further validated by RT-PCR. Our findings demonstrate that a significant number of genes are still absent from the incomplete human reference genome, highlighting the importance of further refining the human reference genome and curating those missing genes. Our study also shows the importance of de novo transcriptome assembly. The comparative approach between reference genome and other related human genomes based on the transcriptome provides an alternative way to refine the human reference genome.
The UCSC genome browser and associated tools
Haussler, David; Kent, W. James
2013-01-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting. PMID:22908213
The UCSC genome browser and associated tools.
Kuhn, Robert M; Haussler, David; Kent, W James
2013-03-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.
Genetic and Functional Heterogeneity of Tumors in Neurofibromatosis 2
2016-07-01
mapped to the human genome build 37 (hg19) through BWA v. 0.5.9 [1] with parameters -q 5 -l 32 -k 2 –o 1. The resulting alignments were further sorted...see Table 2). Table 2 – Isogenic human arachnoidal cell (AC) clones with NF2 (exon 8) inactivating mutations generated by CRISPR/Cas genome editing...libraries were aligned to the human genome (GrCH37, Ensembl build 71) using Gsnap [19] version 2014_12_19. Expression levels of genes in the units of count
ERIC Educational Resources Information Center
Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.
2016-01-01
Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…
H3Africa and the African life sciences ecosystem: building sustainable innovation.
Dandara, Collet; Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen
2014-12-01
Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science scholarship that questions the unchecked assumptions of the innovation performers be they funders, scientists, and social scientists, would enable collective innovation that is truly sustainable, ethical, and robust.
GenPlay Multi-Genome, a tool to compare and analyze multiple human genomes in a graphical interface.
Lajugie, Julien; Fourel, Nicolas; Bouhassira, Eric E
2015-01-01
Parallel visualization of multiple individual human genomes is a complex endeavor that is rapidly gaining importance with the increasing number of personal, phased and cancer genomes that are being generated. It requires the display of variants such as SNPs, indels and structural variants that are unique to specific genomes and the introduction of multiple overlapping gaps in the reference sequence. Here, we describe GenPlay Multi-Genome, an application specifically written to visualize and analyze multiple human genomes in parallel. GenPlay Multi-Genome is ideally suited for the comparison of allele-specific expression and functional genomic data obtained from multiple phased genomes in a graphical interface with access to multiple-track operation. It also allows the analysis of data that have been aligned to custom genomes rather than to a standard reference and can be used as a variant calling format file browser and as a tool to compare different genome assembly, such as hg19 and hg38. GenPlay is available under the GNU public license (GPL-3) from http://genplay.einstein.yu.edu. The source code is available at https://github.com/JulienLajugie/GenPlay. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
PathFinder: reconstruction and dynamic visualization of metabolic pathways.
Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert
2002-01-01
Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.
NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data.
Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug
2016-01-01
The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data.
SPOCS: software for predicting and visualizing orthology/paralogy relationships among genomes.
Curtis, Darren S; Phillips, Aaron R; Callister, Stephen J; Conlan, Sean; McCue, Lee Ann
2013-10-15
At the rate that prokaryotic genomes can now be generated, comparative genomics studies require a flexible method for quickly and accurately predicting orthologs among the rapidly changing set of genomes available. SPOCS implements a graph-based ortholog prediction method to generate a simple tab-delimited table of orthologs and in addition, html files that provide a visualization of the predicted ortholog/paralog relationships to which gene/protein expression metadata may be overlaid. A SPOCS web application is freely available at http://cbb.pnnl.gov/portal/tools/spocs.html. Source code for Linux systems is also freely available under an open source license at http://cbb.pnnl.gov/portal/software/spocs.html; the Boost C++ libraries and BLAST are required.
Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing.
Nguyen, Nga Thi Thuy; Vincens, Pierre; Roest Crollius, Hugues; Louis, Alexandra
2018-01-04
Since 2010, the Genomicus web server is available online at http://genomicus.biologie.ens.fr/genomicus. This graphical browser provides access to comparative genomic analyses in four different phyla (Vertebrate, Plants, Fungi, and non vertebrate Metazoans). Users can analyse genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants, in an integrated evolutionary context. New analyses and visualization tools have recently been implemented in Genomicus Vertebrate. Karyotype structures from several genomes can now be compared along an evolutionary pathway (Multi-KaryotypeView), and synteny blocks can be computed and visualized between any two genomes (PhylDiagView). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.
Deng, Feilong; Chen, Shi-Yi; Wu, Zhou-Lin; Hu, Yongsong; Jia, Xianbo; Lai, Song-Jia
2017-10-01
Owing to wide application of RNA sequencing (RNA-seq) technology, more and more eukaryotic genomes have been extensively annotated, such as the gene structure, alternative splicing, and noncoding loci. Annotation information of genome is prevalently stored as plain text in General Feature Format (GFF), which could be hundreds or thousands Mb in size. Therefore, it is a challenge for manipulating GFF file for biologists who have no bioinformatic skill. In this study, we provide a web server (GFFview) for parsing the annotation information of eukaryotic genome and then generating statistical description of six indices for visualization. GFFview is very useful for investigating quality and difference of the de novo assembled transcriptome in RNA-seq studies.
Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi
2014-01-01
With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).
Oncogenomic portals for the visualization and analysis of genome-wide cancer data
Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr
2016-01-01
Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice. PMID:26484415
Oncogenomic portals for the visualization and analysis of genome-wide cancer data.
Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr
2016-01-05
Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice.
Genome Variation Map: a data repository of genome variations in BIG Data Center
Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang
2018-01-01
Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473
Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.
2009-01-01
Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (< 50 years) normally sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732
[Symptoms and lesion localization in visual agnosia].
Suzuki, Kyoko
2004-11-01
There are two cortical visual processing streams, the ventral and dorsal stream. The ventral visual stream plays the major role in constructing our perceptual representation of the visual world and the objects within it. Disturbance of visual processing at any stage of the ventral stream could result in impairment of visual recognition. Thus we need systematic investigations to diagnose visual agnosia and its type. Two types of category-selective visual agnosia, prosopagnosia and landmark agnosia, are different from others in that patients could recognize a face as a face and buildings as buildings, but could not identify an individual person or building. Neuronal bases of prosopagnosia and landmark agnosia are distinct. Importance of the right fusiform gyrus for face recognition was confirmed by both clinical and neuroimaging studies. Landmark agnosia is related to lesions in the right parahippocampal gyrus. Enlarged lesions including both the right fusiform and parahippocampal gyri can result in prosopagnosia and landmark agnosia at the same time. Category non-selective visual agnosia is related to bilateral occipito-temporal lesions, which is in agreement with the results of neuroimaging studies that revealed activation of the bilateral occipito-temporal during object recognition tasks.
Seuylemezian, Arman; Cooper, Kerry; Schubert, Wayne
2018-01-01
ABSTRACT Spore-forming microorganisms are of concern for forward contamination because they can survive harsh interplanetary travel. Here, we report the draft genome sequences of 12 spore-forming strains isolated from the Manned Spacecraft Operations Building (MSOB) and the Vehicle Assembly Building (VAB) in Cape Canaveral, FL, where the Viking spacecraft were assembled. PMID:29567731
RPAN: rice pan-genome browser for ∼3000 rice genomes.
Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun
2017-01-25
A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data
Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug
2016-01-01
The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data. PMID:26848255
Phytozome Comparative Plant Genomics Portal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodstein, David; Batra, Sajeev; Carlson, Joseph
2014-09-09
The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes
Genome scale engineering techniques for metabolic engineering.
Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T
2015-11-01
Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L
2016-01-04
The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Research on conflict detection algorithm in 3D visualization environment of urban rail transit line
NASA Astrophysics Data System (ADS)
Wang, Li; Xiong, Jing; You, Kuokuo
2017-03-01
In this paper, a method of collision detection is introduced, and the theory of three-dimensional modeling of underground buildings and urban rail lines is realized by rapidly extracting the buildings that are in conflict with the track area in the 3D visualization environment. According to the characteristics of the buildings, CSG and B-rep are used to model the buildings based on CSG and B-rep. On the basis of studying the modeling characteristics, this paper proposes to use the AABB level bounding volume method to detect the first conflict and improve the detection efficiency, and then use the triangular rapid intersection detection algorithm to detect the conflict, and finally determine whether the building collides with the track area. Through the algorithm of this paper, we can quickly extract buildings colliding with the influence area of the track line, so as to help the line design, choose the best route and calculate the cost of land acquisition in the three-dimensional visualization environment.
Seuylemezian, Arman; Cooper, Kerry; Schubert, Wayne; Vaishampayan, Parag
2018-03-22
Spore-forming microorganisms are of concern for forward contamination because they can survive harsh interplanetary travel. Here, we report the draft genome sequences of 12 spore-forming strains isolated from the Manned Spacecraft Operations Building (MSOB) and the Vehicle Assembly Building (VAB) in Cape Canaveral, FL, where the Viking spacecraft were assembled. Copyright © 2018 Seuylemezian et al.
Visualization of IAV Genomes at the Single-Cell Level.
Wang, Dan; Ma, Wenjun
2017-10-01
Different influenza A viruses (IAVs) infect the same cell in a host, and can subsequently produce new viruses through genome reassortment. By combining padlock probe RNA labeling with a single-cell analysis, a new approach effectively captures IAV genome trafficking and defines a time window for genome reassortment from same-cell coinfections. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirel, Barbara; Kumar, Anuj; Nong, Paige; Su, Gang; Meng, Fan
2016-02-01
Life scientists increasingly use visual analytics to explore large data sets and generate hypotheses. Undergraduate biology majors should be learning these same methods. Yet visual analytics is one of the most underdeveloped areas of undergraduate biology education. This study sought to determine the feasibility of undergraduate biology majors conducting exploratory analysis using the same interactive data visualizations as practicing scientists. We examined 22 upper level undergraduates in a genomics course as they engaged in a case-based inquiry with an interactive heat map. We qualitatively and quantitatively analyzed students' visual analytic behaviors, reasoning and outcomes to identify student performance patterns, commonly shared efficiencies and task completion. We analyzed students' successes and difficulties in applying knowledge and skills relevant to the visual analytics case and related gaps in knowledge and skill to associated tool designs. Findings show that undergraduate engagement in visual analytics is feasible and could be further strengthened through tool usability improvements. We identify these improvements. We speculate, as well, on instructional considerations that our findings suggested may also enhance visual analytics in case-based modules.
Kumar, Anuj; Nong, Paige; Su, Gang; Meng, Fan
2016-01-01
Life scientists increasingly use visual analytics to explore large data sets and generate hypotheses. Undergraduate biology majors should be learning these same methods. Yet visual analytics is one of the most underdeveloped areas of undergraduate biology education. This study sought to determine the feasibility of undergraduate biology majors conducting exploratory analysis using the same interactive data visualizations as practicing scientists. We examined 22 upper level undergraduates in a genomics course as they engaged in a case-based inquiry with an interactive heat map. We qualitatively and quantitatively analyzed students’ visual analytic behaviors, reasoning and outcomes to identify student performance patterns, commonly shared efficiencies and task completion. We analyzed students’ successes and difficulties in applying knowledge and skills relevant to the visual analytics case and related gaps in knowledge and skill to associated tool designs. Findings show that undergraduate engagement in visual analytics is feasible and could be further strengthened through tool usability improvements. We identify these improvements. We speculate, as well, on instructional considerations that our findings suggested may also enhance visual analytics in case-based modules. PMID:26877625
The i5k Workspace@NAL—enabling genomic data access, visualization and curation of arthropod genomes
Poelchau, Monica; Childers, Christopher; Moore, Gary; Tsavatapalli, Vijaya; Evans, Jay; Lee, Chien-Yueh; Lin, Han; Lin, Jun-Wei; Hackett, Kevin
2015-01-01
The 5000 arthropod genomes initiative (i5k) has tasked itself with coordinating the sequencing of 5000 insect or related arthropod genomes. The resulting influx of data, mostly from small research groups or communities with little bioinformatics experience, will require visualization, dissemination and curation, preferably from a centralized platform. The National Agricultural Library (NAL) has implemented the i5k Workspace@NAL (http://i5k.nal.usda.gov/) to help meet the i5k initiative's genome hosting needs. Any i5k member is encouraged to contact the i5k Workspace with their genome project details. Once submitted, new content will be accessible via organism pages, genome browsers and BLAST search engines, which are implemented via the open-source Tripal framework, a web interface for the underlying Chado database schema. We also implement the Web Apollo software for groups that choose to curate gene models. New content will add to the existing body of 35 arthropod species, which include species relevant for many aspects of arthropod genomic research, including agriculture, invasion biology, systematics, ecology and evolution, and developmental research. PMID:25332403
GenomeGems: evaluation of genetic variability from deep sequencing data
2012-01-01
Background Detection of disease-causing mutations using Deep Sequencing technologies possesses great challenges. In particular, organizing the great amount of sequences generated so that mutations, which might possibly be biologically relevant, are easily identified is a difficult task. Yet, for this assignment only limited automatic accessible tools exist. Findings We developed GenomeGems to gap this need by enabling the user to view and compare Single Nucleotide Polymorphisms (SNPs) from multiple datasets and to load the data onto the UCSC Genome Browser for an expanded and familiar visualization. As such, via automatic, clear and accessible presentation of processed Deep Sequencing data, our tool aims to facilitate ranking of genomic SNP calling. GenomeGems runs on a local Personal Computer (PC) and is freely available at http://www.tau.ac.il/~nshomron/GenomeGems. Conclusions GenomeGems enables researchers to identify potential disease-causing SNPs in an efficient manner. This enables rapid turnover of information and leads to further experimental SNP validation. The tool allows the user to compare and visualize SNPs from multiple experiments and to easily load SNP data onto the UCSC Genome browser for further detailed information. PMID:22748151
Gramene 2013: Comparative plant genomics resources
USDA-ARS?s Scientific Manuscript database
Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework fo...
Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu
2003-11-07
To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s).
Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu
2003-01-01
Background To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. Results We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. Conclusion PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s). PMID:14604444
Xu, Huilei; Baroukh, Caroline; Dannenfelser, Ruth; Chen, Edward Y; Tan, Christopher M; Kou, Yan; Kim, Yujin E; Lemischka, Ihor R; Ma'ayan, Avi
2013-01-01
High content studies that profile mouse and human embryonic stem cells (m/hESCs) using various genome-wide technologies such as transcriptomics and proteomics are constantly being published. However, efforts to integrate such data to obtain a global view of the molecular circuitry in m/hESCs are lagging behind. Here, we present an m/hESC-centered database called Embryonic Stem Cell Atlas from Pluripotency Evidence integrating data from many recent diverse high-throughput studies including chromatin immunoprecipitation followed by deep sequencing, genome-wide inhibitory RNA screens, gene expression microarrays or RNA-seq after knockdown (KD) or overexpression of critical factors, immunoprecipitation followed by mass spectrometry proteomics and phosphoproteomics. The database provides web-based interactive search and visualization tools that can be used to build subnetworks and to identify known and novel regulatory interactions across various regulatory layers. The web-interface also includes tools to predict the effects of combinatorial KDs by additive effects controlled by sliders, or through simulation software implemented in MATLAB. Overall, the Embryonic Stem Cell Atlas from Pluripotency Evidence database is a comprehensive resource for the stem cell systems biology community. Database URL: http://www.maayanlab.net/ESCAPE
Real-Time Observation of Human LINE-1 Retrotransposon Activity in Bacteria
NASA Astrophysics Data System (ADS)
Kaur, Davneet; Kuhlman, Thomas; Kuhlman Team; Nigel Goldenfeld Collaboration
Transposable elements (TEs) are fundamental building blocks of all genomes. Retrotransposable elements (RTEs) are one of the two primary classes of TEs that are ubiquitous in eukaryotes. They propagate through a copy-and-paste mechanism utilizing reverse-transcribed mRNA intermediates. This leads to disruption and dispersal of coding and control elements throughout the genome, and consequently TEs are thought to be a major driving force behind diversification. However, RTEs are absent in most prokaryotes including E. coli. and the reason for this remains an open question. Despite their prevalence, there still remain many unanswered questions about how `hot' or active L1 RTEs (L1Hs) function. In particular, their rates of activity and their effects upon their host are currently poorly understood and only roughly estimated within the limitations of available technology. To address these unanswered questions, we have constructed and released an L1H element in E. coli to quantify its rates of activity and physiological effects on its host. To overcome the technical limitations, we've designed fluorescent visualization and quantification techniques that make real time high resolution observations of retrotransposition events as they occur in living cells.
mySyntenyPortal: an application package to construct websites for synteny block analysis.
Lee, Jongin; Lee, Daehwan; Sim, Mikang; Kwon, Daehong; Kim, Juyeon; Ko, Younhee; Kim, Jaebum
2018-06-05
Advances in sequencing technologies have facilitated large-scale comparative genomics based on whole genome sequencing. Constructing and investigating conserved genomic regions among multiple species (called synteny blocks) are essential in the comparative genomics. However, they require significant amounts of computational resources and time in addition to bioinformatics skills. Many web interfaces have been developed to make such tasks easier. However, these web interfaces cannot be customized for users who want to use their own set of genome sequences or definition of synteny blocks. To resolve this limitation, we present mySyntenyPortal, a stand-alone application package to construct websites for synteny block analyses by using users' own genome data. mySyntenyPortal provides both command line and web-based interfaces to build and manage websites for large-scale comparative genomic analyses. The websites can be also easily published and accessed by other users. To demonstrate the usability of mySyntenyPortal, we present an example study for building websites to compare genomes of three mammalian species (human, mouse, and cow) and show how they can be easily utilized to identify potential genes affected by genome rearrangements. mySyntenyPortal will contribute for extended comparative genomic analyses based on large-scale whole genome sequences by providing unique functionality to support the easy creation of interactive websites for synteny block analyses from user's own genome data.
Wang, Z N; Hang, A; Hansen, J; Burton, C; Mallory-Smith, C A; Zemetra, R S
2000-12-01
Wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica) can cross with each other, and their self-fertile backcross progenies frequently have extra chromosomes and chromosome segments, presumably retained from wheat, raising the possibility that a herbicide resistance gene might transfer from wheat to jointed goatgrass. Genomic in situ hybridization (GISH) was used to clarify the origin of these extra chromosomes. By using T. durum DNA (AABB genome) as a probe and jointed goatgrass DNA (CCDD genome) as blocking DNA, one, two, and three A- or B-genome chromosomes were identified in three BC2S2 individuals where 2n = 29, 30, and 31 chromosomes, respectively. A translocation between wheat and jointed goatgrass chromosomes was also detected in an individual with 30 chromosomes. In pollen mother cells with meiotic configuration of 14 II + 2 I, the two univalents were identified as being retained from the A or B genome of wheat. By using Ae. markgrafii DNA (CC genome) as a probe and wheat DNA (AABBDD genome) as blocking DNA. 14 C-genome chromosomes were visualized in all BC2S2 individuals. The GISH procedure provides a powerful tool to detect the A or B-genome chromatin in a jointed goatgrass background, making it possible to assess the risk of transfer of herbicide resistance genes located on the A or B genome of wheat to jointed goatgrass.
Brizuela, Leonardo; Richardson, Aaron; Marsischky, Gerald; Labaer, Joshua
2002-01-01
Thanks to the results of the multiple completed and ongoing genome sequencing projects and to the newly available recombination-based cloning techniques, it is now possible to build gene repositories with no precedent in their composition, formatting, and potential. This new type of gene repository is necessary to address the challenges imposed by the post-genomic era, i.e., experimentation on a genome-wide scale. We are building the FLEXGene (Full Length EXpression-ready) repository. This unique resource will contain clones representing the complete ORFeome of different organisms, including Homo sapiens as well as several pathogens and model organisms. It will consist of a comprehensive, characterized (sequence-verified), and arrayed gene repository. This resource will allow full exploitation of the genomic information by enabling genome-wide scale experimentation at the level of functional/phenotypic assays as well as at the level of protein expression, purification, and analysis. Here we describe the rationale and construction of this resource and focus on the data obtained from the Saccharomyces cerevisiae project.
Genome instability in Novel Lolium multiflorum x L. arundinaceum hybrids
USDA-ARS?s Scientific Manuscript database
We have identified a method whereby Lolium multiflorum (Lm) or L. arundinaceum (Fa) genomes are preferentially eliminated through a mitotic loss behavior in interspecific Lm x Fa F1 hybrids,generating either dihaploid Lm lines or Fa lines. The genome instability has been visualized phenotypically an...
Chi, Bryan; DeLeeuw, Ronald J; Coe, Bradley P; MacAulay, Calum; Lam, Wan L
2004-02-09
Array comparative genomic hybridization (CGH) is a technique which detects copy number differences in DNA segments. Complete sequencing of the human genome and the development of an array representing a tiling set of tens of thousands of DNA segments spanning the entire human genome has made high resolution copy number analysis throughout the genome possible. Since array CGH provides signal ratio for each DNA segment, visualization would require the reassembly of individual data points into chromosome profiles. We have developed a visualization tool for displaying whole genome array CGH data in the context of chromosomal location. SeeGH is an application that translates spot signal ratio data from array CGH experiments to displays of high resolution chromosome profiles. Data is imported from a simple tab delimited text file obtained from standard microarray image analysis software. SeeGH processes the signal ratio data and graphically displays it in a conventional CGH karyotype diagram with the added features of magnification and DNA segment annotation. In this process, SeeGH imports the data into a database, calculates the average ratio and standard deviation for each replicate spot, and links them to chromosome regions for graphical display. Once the data is displayed, users have the option of hiding or flagging DNA segments based on user defined criteria, and retrieve annotation information such as clone name, NCBI sequence accession number, ratio, base pair position on the chromosome, and standard deviation. SeeGH represents a novel software tool used to view and analyze array CGH data. The software gives users the ability to view the data in an overall genomic view as well as magnify specific chromosomal regions facilitating the precise localization of genetic alterations. SeeGH is easily installed and runs on Microsoft Windows 2000 or later environments.
Lee, Taein; Cheng, Chun-Huai; Ficklin, Stephen; Yu, Jing; Humann, Jodi; Main, Dorrie
2017-01-01
Abstract Tripal is an open-source database platform primarily used for development of genomic, genetic and breeding databases. We report here on the release of the Chado Loader, Chado Data Display and Chado Search modules to extend the functionality of the core Tripal modules. These new extension modules provide additional tools for (1) data loading, (2) customized visualization and (3) advanced search functions for supported data types such as organism, marker, QTL/Mendelian Trait Loci, germplasm, map, project, phenotype, genotype and their respective metadata. The Chado Loader module provides data collection templates in Excel with defined metadata and data loaders with front end forms. The Chado Data Display module contains tools to visualize each data type and the metadata which can be used as is or customized as desired. The Chado Search module provides search and download functionality for the supported data types. Also included are the tools to visualize map and species summary. The use of materialized views in the Chado Search module enables better performance as well as flexibility of data modeling in Chado, allowing existing Tripal databases with different metadata types to utilize the module. These Tripal Extension modules are implemented in the Genome Database for Rosaceae (rosaceae.org), CottonGen (cottongen.org), Citrus Genome Database (citrusgenomedb.org), Genome Database for Vaccinium (vaccinium.org) and the Cool Season Food Legume Database (coolseasonfoodlegume.org). Database URL: https://www.citrusgenomedb.org/, https://www.coolseasonfoodlegume.org/, https://www.cottongen.org/, https://www.rosaceae.org/, https://www.vaccinium.org/
Genome Variation Map: a data repository of genome variations in BIG Data Center.
Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang
2018-01-04
The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
H3Africa and the African Life Sciences Ecosystem: Building Sustainable Innovation
Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen
2014-01-01
Abstract Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science scholarship that questions the unchecked assumptions of the innovation performers be they funders, scientists, and social scientists, would enable collective innovation that is truly sustainable, ethical, and robust. PMID:25454511
Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web.
Miller, Chase A; Anthony, Jon; Meyer, Michelle M; Marth, Gabor
2013-02-01
High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported.
Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung
2018-03-15
Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.
Comparative visualization of genetic and physical maps with Strudel.
Bayer, Micha; Milne, Iain; Stephen, Gordon; Shaw, Paul; Cardle, Linda; Wright, Frank; Marshall, David
2011-05-01
Data visualization can play a key role in comparative genomics, for example, underpinning the investigation of conserved synteny patterns. Strudel is a desktop application that allows users to easily compare both genetic and physical maps interactively and efficiently. It can handle large datasets from several genomes simultaneously, and allows all-by-all comparisons between these. Installers for Strudel are available for Windows, Linux, Solaris and Mac OS X at http://bioinf.scri.ac.uk/strudel/.
CyanoBase: the cyanobacteria genome database update 2010.
Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu
2010-01-01
CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.
A blueprint for genomic nursing science.
Calzone, Kathleen A; Jenkins, Jean; Bakos, Alexis D; Cashion, Ann K; Donaldson, Nancy; Feero, W Gregory; Feetham, Suzanne; Grady, Patricia A; Hinshaw, Ada Sue; Knebel, Ann R; Robinson, Nellie; Ropka, Mary E; Seibert, Diane; Stevens, Kathleen R; Tully, Lois A; Webb, Jo Ann
2013-03-01
This article reports on recommendations arising from an invitational workshop series held at the National Institutes of Health for the purposes of identifying critical genomics problems important to the health of the public that can be addressed through nursing science. The overall purpose of the Genomic Nursing State of the Science Initiative is to establish a nursing research blueprint based on gaps in the evidence and expert evaluation of the current state of the science and through public comment. A Genomic Nursing State of the Science Advisory Panel was convened in 2012 to develop the nursing research blueprint. The Advisory Panel, which met via two webinars and two in-person meetings, considered existing evidence from evidence reviews, testimony from key stakeholder groups, presentations from experts in research synthesis, and public comment. The genomic nursing science blueprint arising from the Genomic Nursing State of Science Advisory Panel focuses on biologic plausibility studies as well as interventions likely to improve a variety of outcomes (e.g., clinical, economic, environmental). It also includes all care settings and diverse populations. The focus is on (a) the client, defined as person, family, community, or population; (b) the context, targeting informatics support systems, capacity building, education, and environmental influences; and (c) cross-cutting themes. It was agreed that building capacity to measure the impact of nursing actions on costs, quality, and outcomes of patient care is a strategic and scientific priority if findings are to be synthesized and aggregated to inform practice and policy. The genomic nursing science blueprint provides the framework for furthering genomic nursing science to improve health outcomes. This blueprint is an independent recommendation of the Advisory Panel with input from the public and is not a policy statement of the National Institutes of Health or the federal government. This genomic nursing science blueprint targets research to build the evidence base to inform integration of genomics into nursing practice and regulation (such as nursing licensure requirements, institutional accreditation, and academic nursing school accreditation). © 2013 Sigma Theta Tau International.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Like; Kang, Jian, E-mail: j.kang@sheffield.ac.uk; Schroth, Olaf
Large scale transportation projects can adversely affect the visual perception of environmental quality and require adequate visual impact assessment. In this study, we investigated the effects of the characteristics of the road project and the character of the existing landscape on the perceived visual impact of motorways, and developed a GIS-based prediction model based on the findings. An online survey using computer-visualised scenes of different motorway and landscape scenarios was carried out to obtain perception-based judgements on the visual impact. Motorway scenarios simulated included the baseline scenario without road, original motorway, motorways with timber noise barriers, transparent noise barriers andmore » tree screen; different landscape scenarios were created by changing land cover of buildings and trees in three distance zones. The landscape content of each scene was measured in GIS. The result shows that presence of a motorway especially with the timber barrier significantly decreases the visual quality of the view. The resulted visual impact tends to be lower where it is less visually pleasant with more buildings in the view, and can be slightly reduced by the visual absorption effect of the scattered trees between the motorway and the viewpoint. Based on the survey result, eleven predictors were identified for the visual impact prediction model which was applied in GIS to generate maps of visual impact of motorways in different scenarios. The proposed prediction model can be used to achieve efficient and reliable assessment of visual impact of motorways. - Highlights: • Motorways induce significant visual impact especially with timber noise barriers. • Visual impact is negatively correlated with amount of buildings in the view. • Visual impact is positively correlated with percentage of trees in the view. • Perception-based motorway visual impact prediction model using mapped predictors • Predicted visual impacts in different scenarios are mapped in GIS.« less
Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR.
Jakočiūnas, Tadas; Jensen, Emil D; Jensen, Michael K; Keasling, Jay D
2018-01-01
Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.
Figure 4 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics
Gene-list view of genomic data. The gene-list view allows users to compare data across a set of loci. The data in this figure includes copy number, mutation, and clinical data from 202 glioblastoma samples from TCGA. Adapted from Figure 7; Thorvaldsdottir H et al. 2012
PhytoPath: an integrative resource for plant pathogen genomics.
Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian
2016-01-04
PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
TEA: the epigenome platform for Arabidopsis methylome study.
Su, Sheng-Yao; Chen, Shu-Hwa; Lu, I-Hsuan; Chiang, Yih-Shien; Wang, Yu-Bin; Chen, Pao-Yang; Lin, Chung-Yen
2016-12-22
Bisulfite sequencing (BS-seq) has become a standard technology to profile genome-wide DNA methylation at single-base resolution. It allows researchers to conduct genome-wise cytosine methylation analyses on issues about genomic imprinting, transcriptional regulation, cellular development and differentiation. One single data from a BS-Seq experiment is resolved into many features according to the sequence contexts, making methylome data analysis and data visualization a complex task. We developed a streamlined platform, TEA, for analyzing and visualizing data from whole-genome BS-Seq (WGBS) experiments conducted in the model plant Arabidopsis thaliana. To capture the essence of the genome methylation level and to meet the efficiency for running online, we introduce a straightforward method for measuring genome methylation in each sequence context by gene. The method is scripted in Java to process BS-Seq mapping results. Through a simple data uploading process, the TEA server deploys a web-based platform for deep analysis by linking data to an updated Arabidopsis annotation database and toolkits. TEA is an intuitive and efficient online platform for analyzing the Arabidopsis genomic DNA methylation landscape. It provides several ways to help users exploit WGBS data. TEA is freely accessible for academic users at: http://tea.iis.sinica.edu.tw .
Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan
2013-11-02
Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.
The BioCyc collection of microbial genomes and metabolic pathways.
Karp, Peter D; Billington, Richard; Caspi, Ron; Fulcher, Carol A; Latendresse, Mario; Kothari, Anamika; Keseler, Ingrid M; Krummenacker, Markus; Midford, Peter E; Ong, Quang; Ong, Wai Kit; Paley, Suzanne M; Subhraveti, Pallavi
2017-08-17
BioCyc.org is a microbial genome Web portal that combines thousands of genomes with additional information inferred by computer programs, imported from other databases and curated from the biomedical literature by biologist curators. BioCyc also provides an extensive range of query tools, visualization services and analysis software. Recent advances in BioCyc include an expansion in the content of BioCyc in terms of both the number of genomes and the types of information available for each genome; an expansion in the amount of curated content within BioCyc; and new developments in the BioCyc software tools including redesigned gene/protein pages and metabolite pages; new search tools; a new sequence-alignment tool; a new tool for visualizing groups of related metabolic pathways; and a facility called SmartTables, which enables biologists to perform analyses that previously would have required a programmer's assistance. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Visualization of aging-associated chromatin alterations with an engineered TALE system
Ren, Ruotong; Deng, Liping; Xue, Yanhong; Suzuki, Keiichiro; Zhang, Weiqi; Yu, Yang; Wu, Jun; Sun, Liang; Gong, Xiaojun; Luan, Huiqin; Yang, Fan; Ju, Zhenyu; Ren, Xiaoqing; Wang, Si; Tang, Hong; Geng, Lingling; Zhang, Weizhou; Li, Jian; Qiao, Jie; Xu, Tao; Qu, Jing; Liu, Guang-Hui
2017-01-01
Visualization of specific genomic loci in live cells is a prerequisite for the investigation of dynamic changes in chromatin architecture during diverse biological processes, such as cellular aging. However, current precision genomic imaging methods are hampered by the lack of fluorescent probes with high specificity and signal-to-noise contrast. We find that conventional transcription activator-like effectors (TALEs) tend to form protein aggregates, thereby compromising their performance in imaging applications. Through screening, we found that fusing thioredoxin with TALEs prevented aggregate formation, unlocking the full power of TALE-based genomic imaging. Using thioredoxin-fused TALEs (TTALEs), we achieved high-quality imaging at various genomic loci and observed aging-associated (epi) genomic alterations at telomeres and centromeres in human and mouse premature aging models. Importantly, we identified attrition of ribosomal DNA repeats as a molecular marker for human aging. Our study establishes a simple and robust imaging method for precisely monitoring chromatin dynamics in vitro and in vivo. PMID:28139645
UCSC Xena | Informatics Technology for Cancer Research (ITCR)
UCSC Xena securely analyzes and visualizes your private functional genomics data set in the context of public and shared genomic/phenotypic data sets such as TCGA, ICGC, TARGET, GTEx, and GA4GH (TOIL).
Millstone: software for multiplex microbial genome analysis and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Millstone: software for multiplex microbial genome analysis and engineering.
Goodman, Daniel B; Kuznetsov, Gleb; Lajoie, Marc J; Ahern, Brian W; Napolitano, Michael G; Chen, Kevin Y; Chen, Changping; Church, George M
2017-05-25
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Millstone: software for multiplex microbial genome analysis and engineering
Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.; ...
2017-05-25
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Stokowy, Tomasz; Garbulowski, Mateusz; Fiskerstrand, Torunn; Holdhus, Rita; Labun, Kornel; Sztromwasser, Pawel; Gilissen, Christian; Hoischen, Alexander; Houge, Gunnar; Petersen, Kjell; Jonassen, Inge; Steen, Vidar M
2016-10-01
The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html tomasz.stokowy@k2.uib.no Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kim, Changkug; Park, Dongsuk; Seol, Youngjoo; Hahn, Jangho
2011-01-01
The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage.
Addressing the unmet need for visualizing conditional random fields in biological data
2014-01-01
Background The biological world is replete with phenomena that appear to be ideally modeled and analyzed by one archetypal statistical framework - the Graphical Probabilistic Model (GPM). The structure of GPMs is a uniquely good match for biological problems that range from aligning sequences to modeling the genome-to-phenome relationship. The fundamental questions that GPMs address involve making decisions based on a complex web of interacting factors. Unfortunately, while GPMs ideally fit many questions in biology, they are not an easy solution to apply. Building a GPM is not a simple task for an end user. Moreover, applying GPMs is also impeded by the insidious fact that the “complex web of interacting factors” inherent to a problem might be easy to define and also intractable to compute upon. Discussion We propose that the visualization sciences can contribute to many domains of the bio-sciences, by developing tools to address archetypal representation and user interaction issues in GPMs, and in particular a variety of GPM called a Conditional Random Field(CRF). CRFs bring additional power, and additional complexity, because the CRF dependency network can be conditioned on the query data. Conclusions In this manuscript we examine the shared features of several biological problems that are amenable to modeling with CRFs, highlight the challenges that existing visualization and visual analytics paradigms induce for these data, and document an experimental solution called StickWRLD which, while leaving room for improvement, has been successfully applied in several biological research projects. Software and tutorials are available at http://www.stickwrld.org/ PMID:25000815
CyanoBase: the cyanobacteria genome database update 2010
Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu
2010-01-01
CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly. PMID:19880388
Bolbase: a comprehensive genomics database for Brassica oleracea.
Yu, Jingyin; Zhao, Meixia; Wang, Xiaowu; Tong, Chaobo; Huang, Shunmou; Tehrim, Sadia; Liu, Yumei; Hua, Wei; Liu, Shengyi
2013-09-30
Brassica oleracea is a morphologically diverse species in the family Brassicaceae and contains a group of nutrition-rich vegetable crops, including common heading cabbage, cauliflower, broccoli, kohlrabi, kale, Brussels sprouts. This diversity along with its phylogenetic membership in a group of three diploid and three tetraploid species, and the recent availability of genome sequences within Brassica provide an unprecedented opportunity to study intra- and inter-species divergence and evolution in this species and its close relatives. We have developed a comprehensive database, Bolbase, which provides access to the B. oleracea genome data and comparative genomics information. The whole genome of B. oleracea is available, including nine fully assembled chromosomes and 1,848 scaffolds, with 45,758 predicted genes, 13,382 transposable elements, and 3,581 non-coding RNAs. Comparative genomics information is available, including syntenic regions among B. oleracea, Brassica rapa and Arabidopsis thaliana, synonymous (Ks) and non-synonymous (Ka) substitution rates between orthologous gene pairs, gene families or clusters, and differences in quantity, category, and distribution of transposable elements on chromosomes. Bolbase provides useful search and data mining tools, including a keyword search, a local BLAST server, and a customized GBrowse tool, which can be used to extract annotations of genome components, identify similar sequences and visualize syntenic regions among species. Users can download all genomic data and explore comparative genomics in a highly visual setting. Bolbase is the first resource platform for the B. oleracea genome and for genomic comparisons with its relatives, and thus it will help the research community to better study the function and evolution of Brassica genomes as well as enhance molecular breeding research. This database will be updated regularly with new features, improvements to genome annotation, and new genomic sequences as they become available. Bolbase is freely available at http://ocri-genomics.org/bolbase.
Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin
2014-06-20
MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists and breeders, promoting efficient research on Brassica species. BrassicaTED can be accessed at http://im-crop.snu.ac.kr/BrassicaTED/index.php.
Building the tree of life from scratch: an end-to-end work flow for phylogenomic studies
USDA-ARS?s Scientific Manuscript database
Whole genome sequences are rich sources of information about organisms that are superbly useful for addressing a wide variety of evolutionary questions. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understan...
Shannon C.K. Straub; Mark Fishbein; Tatyana Livshult; Zachary Foster; Matthew Parks; Kevin Weitemier; Richard C. Cronn; Aaron Liston
2011-01-01
Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in...
Community standards for genomic resources, genetic conservation, and data integration
Jill Wegrzyn; Meg Staton; Emily Grau; Richard Cronn; C. Dana Nelson
2017-01-01
Genetics and genomics are increasingly important in forestry management and conservation. Next generation sequencing can increase analytical power, but still relies on building on the structure of previously acquired data. Data standards and data sharing allow the community to maximize the analytical power of high throughput genomics data. The landscape of incomplete...
Moving pathogen genomics out of the lab and into the clinic: what will it take?
Luheshi, Leila M; Raza, Sobia; Peacock, Sharon J
2015-12-30
Pathogen genomic analysis is a potentially transformative new approach to the clinical and public-health management of infectious diseases. Health systems investing in this technology will need to build infrastructure and develop policies that ensure genomic information can be generated, shared and acted upon in a timely manner.
Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web
Miller, Chase A.; Anthony, Jon; Meyer, Michelle M.; Marth, Gabor
2013-01-01
Motivation: High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Results: Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Availability and implementation: Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported. Contact: gabor.marth@bc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23172864
Building a genome analysis pipeline to predict disease risk and prevent disease.
Bromberg, Y
2013-11-01
Reduced costs and increased speed and accuracy of sequencing can bring the genome-based evaluation of individual disease risk to the bedside. While past efforts have identified a number of actionable mutations, the bulk of genetic risk remains hidden in sequence data. The biggest challenge facing genomic medicine today is the development of new techniques to predict the specifics of a given human phenome (set of all expressed phenotypes) encoded by each individual variome (full set of genome variants) in the context of the given environment. Numerous tools exist for the computational identification of the functional effects of a single variant. However, the pipelines taking advantage of full genomic, exomic, transcriptomic (and other) sequences have only recently become a reality. This review looks at the building of methodologies for predicting "variome"-defined disease risk. It also discusses some of the challenges for incorporating such a pipeline into everyday medical practice. © 2013. Published by Elsevier Ltd. All rights reserved.
ABACAS: algorithm-based automatic contiguation of assembled sequences
Assefa, Samuel; Keane, Thomas M.; Otto, Thomas D.; Newbold, Chris; Berriman, Matthew
2009-01-01
Summary: Due to the availability of new sequencing technologies, we are now increasingly interested in sequencing closely related strains of existing finished genomes. Recently a number of de novo and mapping-based assemblers have been developed to produce high quality draft genomes from new sequencing technology reads. New tools are necessary to take contigs from a draft assembly through to a fully contiguated genome sequence. ABACAS is intended as a tool to rapidly contiguate (align, order, orientate), visualize and design primers to close gaps on shotgun assembled contigs based on a reference sequence. The input to ABACAS is a set of contigs which will be aligned to the reference genome, ordered and orientated, visualized in the ACT comparative browser, and optimal primer sequences are automatically generated. Availability and Implementation: ABACAS is implemented in Perl and is freely available for download from http://abacas.sourceforge.net Contact: sa4@sanger.ac.uk PMID:19497936
UCbase 2.0: ultraconserved sequences database (2014 update)
Lomonaco, Vincenzo; Martoglia, Riccardo; Mandreoli, Federica; Anderlucci, Laura; Emmett, Warren; Bicciato, Silvio; Taccioli, Cristian
2014-01-01
UCbase 2.0 (http://ucbase.unimore.it) is an update, extension and evolution of UCbase, a Web tool dedicated to the analysis of ultraconserved sequences (UCRs). UCRs are 481 sequences >200 bases sharing 100% identity among human, mouse and rat genomes. They are frequently located in genomic regions known to be involved in cancer or differentially expressed in human leukemias and carcinomas. UCbase 2.0 is a platform-independent Web resource that includes the updated version of the human genome annotation (hg19), information linking disorders to chromosomal coordinates based on the Systematized Nomenclature of Medicine classification, a query tool to search for Single Nucleotide Polymorphisms (SNPs) and a new text box to directly interrogate the database using a MySQL interface. To facilitate the interactive visual interpretation of UCR chromosomal positioning, UCbase 2.0 now includes a graph visualization interface directly linked to UCSC genome browser. Database URL: http://ucbase.unimore.it PMID:24951797
BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing
Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph
2011-01-01
Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797
Figure 2 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics
Grouping and sorting genomic data in IGV. The IGV user interface displaying 202 glioblastoma samples from TCGA. Samples are grouped by tumor subtype (second annotation column) and data type (first annotation column) and sorted by copy number of the EGFR locus (middle column). Adapted from Figure 1; Robinson et al. 2011
Figure 5 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics
Split-Screen View. The split-screen view is useful for exploring relationships of genomic features that are independent of chromosomal location. Color is used here to indicate mate pairs that map to different chromosomes, chromosomes 1 and 6, suggesting a translocation event. Adapted from Figure 8; Thorvaldsdottir H et al. 2012
My name is Caitlyn Barrett and I am the Scientific Program Manager for the Human Cancer Model Initiative (HCMI) in the Office of Cancer Genomics (OCG). In my role within the HCMI, I am helping to establish communication pathways and build the foundation for collaboration that will enable the completion of the Initiative’s aim to develop as many as 1000 next-generation cancer models, established from patient tumors and accompanied by clinical and molecular data.
Cohn, Elizabeth Gross; Husamudeen, Maryam; Larson, Elaine L.; Williams, Janet K.
2016-01-01
Achieving equitable minority representation in genomic biobanking is one of the most difficult challenges faced by researchers today. Capacity building—a framework for research that includes collaborations and on-going engagement—can be used to help researchers, clinicians and communities better understand the process, utility, and clinical application of genomic science. The purpose of this exploratory descriptive study was to examine factors that influence the decision to participate in genomic research, and identify essential components of capacity building with a community at risk of being under-represented in biobanks. Results of focus groups conducted in Central Harlem with 46 participants were analyzed by a collaborative team of community and academic investigators using content analysis and AtlisTi. Key themes identified were: (1) the potential contribution of biobanking to individual and community health, for example the effect of the environment on health, (2) the societal context of the science, such as DNA criminal databases and paternity testing, that may affect the decision to participate, and (3) the researchers’ commitment to community health as an outcome of capacity building. These key factors can contribute to achieving equity in biobank participation, and guide genetic specialists in biobank planning and implementation. PMID:25228357
Maser: one-stop platform for NGS big data from analysis to visualization
Kinjo, Sonoko; Monma, Norikazu; Misu, Sadahiko; Kitamura, Norikazu; Imoto, Junichi; Yoshitake, Kazutoshi; Gojobori, Takashi; Ikeo, Kazuho
2018-01-01
Abstract A major challenge in analyzing the data from high-throughput next-generation sequencing (NGS) is how to handle the huge amounts of data and variety of NGS tools and visualize the resultant outputs. To address these issues, we developed a cloud-based data analysis platform, Maser (Management and Analysis System for Enormous Reads), and an original genome browser, Genome Explorer (GE). Maser enables users to manage up to 2 terabytes of data to conduct analyses with easy graphical user interface operations and offers analysis pipelines in which several individual tools are combined as a single pipeline for very common and standard analyses. GE automatically visualizes genome assembly and mapping results output from Maser pipelines, without requiring additional data upload. With this function, the Maser pipelines can graphically display the results output from all the embedded tools and mapping results in a web browser. Therefore Maser realized a more user-friendly analysis platform especially for beginners by improving graphical display and providing the selected standard pipelines that work with built-in genome browser. In addition, all the analyses executed on Maser are recorded in the analysis history, helping users to trace and repeat the analyses. The entire process of analysis and its histories can be shared with collaborators or opened to the public. In conclusion, our system is useful for managing, analyzing, and visualizing NGS data and achieves traceability, reproducibility, and transparency of NGS analysis. Database URL: http://cell-innovation.nig.ac.jp/maser/ PMID:29688385
Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo
2011-01-01
The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015
Kelley, James J; Maor, Shay; Kim, Min Kyung; Lane, Anatoliy; Lun, Desmond S
2017-08-15
Visualization of metabolites, reactions and pathways in genome-scale metabolic networks (GEMs) can assist in understanding cellular metabolism. Three attributes are desirable in software used for visualizing GEMs: (i) automation, since GEMs can be quite large; (ii) production of understandable maps that provide ease in identification of pathways, reactions and metabolites; and (iii) visualization of the entire network to show how pathways are interconnected. No software currently exists for visualizing GEMs that satisfies all three characteristics, but MOST-Visualization, an extension of the software package MOST (Metabolic Optimization and Simulation Tool), satisfies (i), and by using a pre-drawn overview map of metabolism based on the Roche map satisfies (ii) and comes close to satisfying (iii). MOST is distributed for free on the GNU General Public License. The software and full documentation are available at http://most.ccib.rutgers.edu/. dslun@rutgers.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Genome Sequence of Stachybotrys chartarum Strain 51-11
Kim, Jean; Levy, Josh
2015-01-01
The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful. PMID:26430036
ERIC Educational Resources Information Center
Hu, Valerie W.
2013-01-01
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that affect an estimated 1 in 110 individuals. Although there is a strong genetic component associated with these disorders, this review focuses on the multifactorial nature of ASD and how different genome-wide (genomic) approaches contribute to our understanding of autism.…
TLS for generating multi-LOD of 3D building model
NASA Astrophysics Data System (ADS)
Akmalia, R.; Setan, H.; Majid, Z.; Suwardhi, D.; Chong, A.
2014-02-01
The popularity of Terrestrial Laser Scanners (TLS) to capture three dimensional (3D) objects has been used widely for various applications. Development in 3D models has also led people to visualize the environment in 3D. Visualization of objects in a city environment in 3D can be useful for many applications. However, different applications require different kind of 3D models. Since a building is an important object, CityGML has defined a standard for 3D building models at four different levels of detail (LOD). In this research, the advantages of TLS for capturing buildings and the modelling process of the point cloud can be explored. TLS will be used to capture all the building details to generate multi-LOD. This task, in previous works, involves usually the integration of several sensors. However, in this research, point cloud from TLS will be processed to generate the LOD3 model. LOD2 and LOD1 will then be generalized from the resulting LOD3 model. Result from this research is a guiding process to generate the multi-LOD of 3D building starting from LOD3 using TLS. Lastly, the visualization for multi-LOD model will also be shown.
Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H.; Lau, Ching C.; Behl, Sanjiv; Man, Tsz-Kwong
2007-01-01
With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License. PMID:19936083
Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H; Lau, Ching C; Behl, Sanjiv; Man, Tsz-Kwong
2007-10-06
With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.
A brief introduction to web-based genome browsers.
Wang, Jun; Kong, Lei; Gao, Ge; Luo, Jingchu
2013-03-01
Genome browser provides a graphical interface for users to browse, search, retrieve and analyze genomic sequence and annotation data. Web-based genome browsers can be classified into general genome browsers with multiple species and species-specific genome browsers. In this review, we attempt to give an overview for the main functions and features of web-based genome browsers, covering data visualization, retrieval, analysis and customization. To give a brief introduction to the multiple-species genome browser, we describe the user interface and main functions of the Ensembl and UCSC genome browsers using the human alpha-globin gene cluster as an example. We further use the MSU and the Rice-Map genome browsers to show some special features of species-specific genome browser, taking a rice transcription factor gene OsSPL14 as an example.
Comparative visualization of genetic and physical maps with Strudel
Bayer, Micha; Milne, Iain; Stephen, Gordon; Shaw, Paul; Cardle, Linda; Wright, Frank; Marshall, David
2011-01-01
Summary: Data visualization can play a key role in comparative genomics, for example, underpinning the investigation of conserved synteny patterns. Strudel is a desktop application that allows users to easily compare both genetic and physical maps interactively and efficiently. It can handle large datasets from several genomes simultaneously, and allows all-by-all comparisons between these. Availability and implementation: Installers for Strudel are available for Windows, Linux, Solaris and Mac OS X at http://bioinf.scri.ac.uk/strudel/. Contact: strudel@scri.ac.uk; micha.bayer@scri.ac.uk PMID:21372085
Visual Literacy and Visual Culture.
ERIC Educational Resources Information Center
Messaris, Paul
Familiarity with specific images or sets of images plays a role in a culture's visual heritage. Two questions can be asked about this type of visual literacy: Is this a type of knowledge that is worth building into the formal educational curriculum of our schools? What are the educational implications of visual literacy? There is a three-part…
A Blueprint for Genomic Nursing Science
Calzone, Kathleen A.; Jenkins, Jean; Bakos, Alexis D.; Cashion, Ann; Donaldson, Nancy; Feero, Greg; Feetham, Suzanne; Grady, Patricia A.; Hinshaw, Ada Sue; Knebel, Ann R.; Robinson, Nellie; Ropka, Mary E.; Seibert, Diane; Stevens, Kathleen R.; Tully, Lois A.; Webb, Jo Ann
2012-01-01
Purpose This article reports on recommendations arising from an invitational workshop series held at the National Institutes of Health for the purposes of identifying critical genomics problems important to the health of the public that can be addressed through nursing science. The overall purpose of the Genomic Nursing State of the Science Initiative is to establish a nursing research blueprint based on gaps in the evidence and expert evaluation of the current state of the science and through public comment. Organizing Constructs A Genomic Nursing State of the Science Advisory Panel was convened in 2012 to develop the nursing research blueprint. The Advisory Panel, which met via two webinars and two in-person meetings, considered existing evidence from evidence reviews, testimony from key stakeholder groups, presentations from experts in research synthesis, and public comment. Findings The genomic nursing science blueprint arising from the Genomic Nursing State of Science Advisory Panel focuses on biologic plausibility studies as well as interventions likely to improve a variety of outcomes (e.g., clinical, economic, environmental). It also includes all care settings and diverse populations. The focus is on (a) the client, defined as person, family, community, or population; (b) the context, targeting informatics support systems, capacity building, education, and environmental influences; and (c) cross-cutting themes. It was agreed that building capacity to measure the impact of nursing actions on costs, quality, and outcomes of patient care is a strategic and scientific priority if findings are to be synthesized and aggregated to inform practice and policy. Conclusions The genomic nursing science blueprint provides the framework for furthering genomic nursing science to improve health outcomes. This blueprint is an independent recommendation of the Advisory Panel with input from the public and is not a policy statement of the National Institutes of Health or the federal government. Clinical Relevance This genomic nursing science blueprint targets research to build the evidence base to inform integration of genomics into nursing practice and regulation (such as nursing licensure requirements, institutional accreditation, and academic nursing school accreditation). PMID:23368636
Information Commons for Rice (IC4R)
2016-01-01
Rice is the most important staple food for a large part of the world's human population and also a key model organism for plant research. Here, we present Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase featuring adoption of an extensible and sustainable architecture that integrates multiple omics data through community-contributed modules. Each module is developed and maintained by different committed groups, deals with data collection, processing and visualization, and delivers data on-demand via web services. In the current version, IC4R incorporates a variety of rice data through multiple committed modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures and gene annotations contributed by the rice research community. Unlike extant related databases, IC4R is designed for scalability and sustainability and thus also features collaborative integration of rice data and low costs for database update and maintenance. Future directions of IC4R include incorporation of other omics data and association of multiple omics data with agronomically important traits, dedicating to build IC4R into a valuable knowledgebase for both basic and translational researches in rice. PMID:26519466
Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy
Garmann, Rees F.; Gopal, Ajaykumar; Athavale, Shreyas S.; Knobler, Charles M.; Gelbart, William M.; Harvey, Stephen C.
2015-01-01
The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. PMID:25752599
Computing Advances Enable More Efficient Buildings - Continuum Magazine |
-and to visualize and react to the data that's available to them," says Brackney. One example of to tell occupants when to open and close their windows. A screen shot of the Building Agent, showing it has been launched. One of the visualization tools is a floor plan that shows which parts of the
Aligning the unalignable: bacteriophage whole genome alignments.
Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M
2016-01-13
In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).
ERIC Educational Resources Information Center
Mirel, Barbara; Kumar, Anuj; Nong, Paige; Su, Gang; Meng, Fan
2016-01-01
Life scientists increasingly use visual analytics to explore large data sets and generate hypotheses. Undergraduate biology majors should be learning these same methods. Yet visual analytics is one of the most underdeveloped areas of undergraduate biology education. This study sought to determine the feasibility of undergraduate biology majors…
Stelzer, Claus-Peter; Riss, Simone; Stadler, Peter
2011-04-07
Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.
2011-01-01
Background Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. Results We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Conclusions Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex. PMID:21473744
Rice functional genomics research in China.
Han, Bin; Xue, Yongbiao; Li, Jiayang; Deng, Xing-Wang; Zhang, Qifa
2007-06-29
Rice functional genomics is a scientific approach that seeks to identify and define the function of rice genes, and uncover when and how genes work together to produce phenotypic traits. Rapid progress in rice genome sequencing has facilitated research in rice functional genomics in China. The Ministry of Science and Technology of China has funded two major rice functional genomics research programmes for building up the infrastructures of the functional genomics study such as developing rice functional genomics tools and resources. The programmes were also aimed at cloning and functional analyses of a number of genes controlling important agronomic traits from rice. National and international collaborations on rice functional genomics study are accelerating rice gene discovery and application.
SWARM : a scientific workflow for supporting Bayesian approaches to improve metabolic models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X.; Stevens, R.; Mathematics and Computer Science
2008-01-01
With the exponential growth of complete genome sequences, the analysis of these sequences is becoming a powerful approach to build genome-scale metabolic models. These models can be used to study individual molecular components and their relationships, and eventually study cells as systems. However, constructing genome-scale metabolic models manually is time-consuming and labor-intensive. This property of manual model-building process causes the fact that much fewer genome-scale metabolic models are available comparing to hundreds of genome sequences available. To tackle this problem, we design SWARM, a scientific workflow that can be utilized to improve genome-scale metabolic models in high-throughput fashion. SWARM dealsmore » with a range of issues including the integration of data across distributed resources, data format conversions, data update, and data provenance. Putting altogether, SWARM streamlines the whole modeling process that includes extracting data from various resources, deriving training datasets to train a set of predictors and applying Bayesian techniques to assemble the predictors, inferring on the ensemble of predictors to insert missing data, and eventually improving draft metabolic networks automatically. By the enhancement of metabolic model construction, SWARM enables scientists to generate many genome-scale metabolic models within a short period of time and with less effort.« less
Genome Sequence of Stachybotrys chartarum Strain 51-11.
Betancourt, Doris A; Dean, Timothy R; Kim, Jean; Levy, Josh
2015-10-01
The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful. Copyright © 2015 Betancourt et al.
Visualization of Genome Diversity in German Shepherd Dogs.
Mortlock, Sally-Anne; Booth, Rachel; Mazrier, Hamutal; Khatkar, Mehar S; Williamson, Peter
2015-01-01
A loss of genetic diversity may lead to increased disease risks in subpopulations of dogs. The canine breed structure has contributed to relatively small effective population size in many breeds and can limit the options for selective breeding strategies to maintain diversity. With the completion of the canine genome sequencing project, and the subsequent reduction in the cost of genotyping on a genomic scale, evaluating diversity in dogs has become much more accurate and accessible. This provides a potential tool for advising dog breeders and developing breeding programs within a breed. A challenge in doing this is to present complex relationship data in a form that can be readily utilized. Here, we demonstrate the use of a pipeline, known as NetView, to visualize the network of relationships in a subpopulation of German Shepherd Dogs.
Image Analysis of DNA Fiber and Nucleus in Plants.
Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi
2016-01-01
Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.
Genome sequence of Stachybotrys chartarum Strain 51-11
Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina Hiseq 2000 and PacBio long read technology. Since Stachybotrys chartarum has been implicated in health impacts within water-damaged buildings, any information extracted from the geno...
USDA-ARS?s Scientific Manuscript database
Reliable haplotypes are available for 171,420 Brown Swiss, Holstein, and Jersey bulls and cows that received genomic evaluations in April 2012. Differences in least-squares means of direct genomic values (DGV) for paternal and maternal haplotypes of Bos taurus autosome (BTA) 1, 6, 14, and 18 for lif...
Huang, Yi-Wen; Roa, Juan C.; Goodfellow, Paul J.; Kizer, E. Lynette; Huang, Tim H. M.; Chen, Yidong
2013-01-01
Background DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Methodology/Principal Findings Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. Conclusions/Significance CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/. PMID:23630576
Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong
2013-01-01
DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-15
... Collection; Comment Request; Building for Environmental and Economic Sustainability (BEES) Please AGENCY... economic performance of building products. Known as BEES (Building for Environmental and Economic... them in a visually intuitive graphical format. BEES Please is a voluntary program to collect data from...
Bolbase: a comprehensive genomics database for Brassica oleracea
2013-01-01
Background Brassica oleracea is a morphologically diverse species in the family Brassicaceae and contains a group of nutrition-rich vegetable crops, including common heading cabbage, cauliflower, broccoli, kohlrabi, kale, Brussels sprouts. This diversity along with its phylogenetic membership in a group of three diploid and three tetraploid species, and the recent availability of genome sequences within Brassica provide an unprecedented opportunity to study intra- and inter-species divergence and evolution in this species and its close relatives. Description We have developed a comprehensive database, Bolbase, which provides access to the B. oleracea genome data and comparative genomics information. The whole genome of B. oleracea is available, including nine fully assembled chromosomes and 1,848 scaffolds, with 45,758 predicted genes, 13,382 transposable elements, and 3,581 non-coding RNAs. Comparative genomics information is available, including syntenic regions among B. oleracea, Brassica rapa and Arabidopsis thaliana, synonymous (Ks) and non-synonymous (Ka) substitution rates between orthologous gene pairs, gene families or clusters, and differences in quantity, category, and distribution of transposable elements on chromosomes. Bolbase provides useful search and data mining tools, including a keyword search, a local BLAST server, and a customized GBrowse tool, which can be used to extract annotations of genome components, identify similar sequences and visualize syntenic regions among species. Users can download all genomic data and explore comparative genomics in a highly visual setting. Conclusions Bolbase is the first resource platform for the B. oleracea genome and for genomic comparisons with its relatives, and thus it will help the research community to better study the function and evolution of Brassica genomes as well as enhance molecular breeding research. This database will be updated regularly with new features, improvements to genome annotation, and new genomic sequences as they become available. Bolbase is freely available at http://ocri-genomics.org/bolbase. PMID:24079801
The Ecological Approach to Text Visualization.
ERIC Educational Resources Information Center
Wise, James A.
1999-01-01
Presents both theoretical and technical bases on which to build a "science of text visualization." The Spatial Paradigm for Information Retrieval and Exploration (SPIRE) text-visualization system, which images information from free-text documents as natural terrains, serves as an example of the "ecological approach" in its visual metaphor, its…
Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.
D'Agostino, Delia; Parker, Danny
2018-04-01
This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.
NASA Astrophysics Data System (ADS)
Günay, S.
2017-08-01
Throughout their lifetime, historic buildings might be altered for different kind of usage for different purposes. If this new function or new usage requires utilization of the building in separate units, this separation might affect the historic building's functionality and structure and as a result its overall condition. Yorguc Pasa Mansion conservation project was prepared as a part of the Middle East Technical University (METU) Master's Program in Documentation and Conservation of Historic Monuments and Sites for the historic Yorguc Pasa Mansion. The mansion is a 19th century Ottoman Period timber frame building in Amasya, a Black Sea Region city in Turkey that has traces from different civilizations such as Hittites, Greeks, Romans and Ottomans. This paper aims to discuss the affects of the partite usage on structural conditions of timber frame buildings with the case study of Amasya Yorguc Pasa Mansion through the 3D visualized structural systems.
A web server for mining Comparative Genomic Hybridization (CGH) data
NASA Astrophysics Data System (ADS)
Liu, Jun; Ranka, Sanjay; Kahveci, Tamer
2007-11-01
Advances in cytogenetics and molecular biology has established that chromosomal alterations are critical in the pathogenesis of human cancer. Recurrent chromosomal alterations provide cytological and molecular markers for the diagnosis and prognosis of disease. They also facilitate the identification of genes that are important in carcinogenesis, which in the future may help in the development of targeted therapy. A large amount of publicly available cancer genetic data is now available and it is growing. There is a need for public domain tools that allow users to analyze their data and visualize the results. This chapter describes a web based software tool that will allow researchers to analyze and visualize Comparative Genomic Hybridization (CGH) datasets. It employs novel data mining methodologies for clustering and classification of CGH datasets as well as algorithms for identifying important markers (small set of genomic intervals with aberrations) that are potentially cancer signatures. The developed software will help in understanding the relationships between genomic aberrations and cancer types.
UCbase 2.0: ultraconserved sequences database (2014 update).
Lomonaco, Vincenzo; Martoglia, Riccardo; Mandreoli, Federica; Anderlucci, Laura; Emmett, Warren; Bicciato, Silvio; Taccioli, Cristian
2014-01-01
UCbase 2.0 (http://ucbase.unimore.it) is an update, extension and evolution of UCbase, a Web tool dedicated to the analysis of ultraconserved sequences (UCRs). UCRs are 481 sequences >200 bases sharing 100% identity among human, mouse and rat genomes. They are frequently located in genomic regions known to be involved in cancer or differentially expressed in human leukemias and carcinomas. UCbase 2.0 is a platform-independent Web resource that includes the updated version of the human genome annotation (hg19), information linking disorders to chromosomal coordinates based on the Systematized Nomenclature of Medicine classification, a query tool to search for Single Nucleotide Polymorphisms (SNPs) and a new text box to directly interrogate the database using a MySQL interface. To facilitate the interactive visual interpretation of UCR chromosomal positioning, UCbase 2.0 now includes a graph visualization interface directly linked to UCSC genome browser. Database URL: http://ucbase.unimore.it. © The Author(s) 2014. Published by Oxford University Press.
2012-01-01
Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920
BiologicalNetworks 2.0 - an integrative view of genome biology data
2010-01-01
Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other) and their relations (interactions, co-expression, co-citations, and other). The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org. PMID:21190573
The pig genome project has plenty to squeal about.
Fan, B; Gorbach, D M; Rothschild, M F
2011-01-01
Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed. Copyright © 2011 S. Karger AG, Basel.
CRISPR/Cas9 for Human Genome Engineering and Disease Research.
Xiong, Xin; Chen, Meng; Lim, Wendell A; Zhao, Dehua; Qi, Lei S
2016-08-31
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.
CuGene as a tool to view and explore genomic data
NASA Astrophysics Data System (ADS)
Haponiuk, Michał; Pawełkowicz, Magdalena; Przybecki, Zbigniew; Nowak, Robert M.
2017-08-01
Integrated CuGene is an easy-to-use, open-source, on-line tool that can be used to browse, analyze, and query genomic data and annotations. It places annotation tracks beneath genome coordinate positions, allowing rapid visual correlation of different types of information. It also allows users to upload and display their own experimental results or annotation sets. An important functionality of the application is a possibility to find similarity between sequences by applying four different algorithms of different accuracy. The presented tool was tested on real genomic data and is extensively used by Polish Consortium of Cucumber Genome Sequencing.
Grohar: Automated Visualization of Genome-Scale Metabolic Models and Their Pathways.
Moškon, Miha; Zimic, Nikolaj; Mraz, Miha
2018-05-01
Genome-scale metabolic models (GEMs) have become a powerful tool for the investigation of the entire metabolism of the organism in silico. These models are, however, often extremely hard to reconstruct and also difficult to apply to the selected problem. Visualization of the GEM allows us to easier comprehend the model, to perform its graphical analysis, to find and correct the faulty relations, to identify the parts of the system with a designated function, etc. Even though several approaches for the automatic visualization of GEMs have been proposed, metabolic maps are still manually drawn or at least require large amount of manual curation. We present Grohar, a computational tool for automatic identification and visualization of GEM (sub)networks and their metabolic fluxes. These (sub)networks can be specified directly by listing the metabolites of interest or indirectly by providing reference metabolic pathways from different sources, such as KEGG, SBML, or Matlab file. These pathways are identified within the GEM using three different pathway alignment algorithms. Grohar also supports the visualization of the model adjustments (e.g., activation or inhibition of metabolic reactions) after perturbations are induced.
Next generation tools for genomic data generation, distribution, and visualization
2010-01-01
Background With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Results Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx); an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub); and a standalone Java Swing application (GWrap) that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. Conclusions These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq. PMID:20828407
Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L.; Costanzo, Michael; Andrews, Brenda; Boone, Charles
2017-01-01
Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. PMID:28325812
Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles
2017-05-05
Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.
ERIC Educational Resources Information Center
Bello, Julia; Butler, Charles; Radavich, Rosanne; York, Alan; Oseto, Christian; Orvis, Kathryn; Pittendrigh, Barry R.
2007-01-01
Although members of the general public have often heard of the terms "genetic engineering" and, more recently, genomics, they typically have little to no knowledge about these topics, and in some cases are confused about basic concepts in these areas. There is currently a need for teaching models to explain concepts behind genomics.…
Genome image programs: visualization and interpretation of Escherichia coli microarray experiments.
Zimmer, Daniel P; Paliy, Oleg; Thomas, Brian; Gyaneshwar, Prasad; Kustu, Sydney
2004-08-01
We have developed programs to facilitate analysis of microarray data in Escherichia coli. They fall into two categories: manipulation of microarray images and identification of known biological relationships among lists of genes. A program in the first category arranges spots from glass-slide DNA microarrays according to their position in the E. coli genome and displays them compactly in genome order. The resulting genome image is presented in a web browser with an image map that allows the user to identify genes in the reordered image. Another program in the first category aligns genome images from two or more experiments. These images assist in visualizing regions of the genome with common transcriptional control. Such regions include multigene operons and clusters of operons, which are easily identified as strings of adjacent, similarly colored spots. The images are also useful for assessing the overall quality of experiments. The second category of programs includes a database and a number of tools for displaying biological information about many E. coli genes simultaneously rather than one gene at a time, which facilitates identifying relationships among them. These programs have accelerated and enhanced our interpretation of results from E. coli DNA microarray experiments. Examples are given. Copyright 2004 Genetics Society of America
BiGG Models: A platform for integrating, standardizing and sharing genome-scale models
King, Zachary A.; Lu, Justin; Drager, Andreas; ...
2015-10-17
In this study, genome-scale metabolic models are mathematically structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scalemore » metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.« less
BiGG Models: A platform for integrating, standardizing and sharing genome-scale models
King, Zachary A.; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.
2016-01-01
Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data. PMID:26476456
Efficient visualization of urban spaces
NASA Astrophysics Data System (ADS)
Stamps, A. E.
2012-10-01
This chapter presents a new method for calculating efficiency and applies that method to the issues of selecting simulation media and evaluating the contextual fit of new buildings in urban spaces. The new method is called "meta-analysis". A meta-analytic review of 967 environments indicated that static color simulations are the most efficient media for visualizing urban spaces. For contextual fit, four original experiments are reported on how strongly five factors influence visual appeal of a street: architectural style, trees, height of a new building relative to the heights of existing buildings, setting back a third story, and distance. A meta-analysis of these four experiments and previous findings, covering 461 environments, indicated that architectural style, trees, and height had effects strong enough to warrant implementation, but the effects of setting back third stories and distance were too small to warrant implementation.
Gerlt, John A
2017-08-22
The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of "genomic enzymology" web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence-function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems.
2017-01-01
The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of “genomic enzymology” web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence–function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems. PMID:28826221
Sivadas, A; Salleh, M Z; Teh, L K; Scaria, V
2017-10-01
Expanding the scope of pharmacogenomic research by including multiple global populations is integral to building robust evidence for its clinical translation. Deep whole-genome sequencing of diverse ethnic populations provides a unique opportunity to study rare and common pharmacogenomic markers that often vary in frequency across populations. In this study, we aim to build a diverse map of pharmacogenetic variants in South East Asian (SEA) Malay population using deep whole-genome sequences of 100 healthy SEA Malay individuals. We investigated the allelic diversity of potentially deleterious pharmacogenomic variants in SEA Malay population. Our analysis revealed 227 common and 466 rare potentially functional single nucleotide variants (SNVs) in 437 pharmacogenomic genes involved in drug metabolism, transport and target genes, including 74 novel variants. This study has created one of the most comprehensive maps of pharmacogenetic markers in any population from whole genomes and will hugely benefit pharmacogenomic investigations and drug dosage recommendations in SEA Malays.
Variant Review with the Integrative Genomics Viewer.
Robinson, James T; Thorvaldsdóttir, Helga; Wenger, Aaron M; Zehir, Ahmet; Mesirov, Jill P
2017-11-01
Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV's variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR . ©2017 American Association for Cancer Research.
Schofield, E C; Carver, T; Achuthan, P; Freire-Pritchett, P; Spivakov, M; Todd, J A; Burren, O S
2016-08-15
Promoter capture Hi-C (PCHi-C) allows the genome-wide interrogation of physical interactions between distal DNA regulatory elements and gene promoters in multiple tissue contexts. Visual integration of the resultant chromosome interaction maps with other sources of genomic annotations can provide insight into underlying regulatory mechanisms. We have developed Capture HiC Plotter (CHiCP), a web-based tool that allows interactive exploration of PCHi-C interaction maps and integration with both public and user-defined genomic datasets. CHiCP is freely accessible from www.chicp.org and supports most major HTML5 compliant web browsers. Full source code and installation instructions are available from http://github.com/D-I-L/django-chicp ob219@cam.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved.
NASA Astrophysics Data System (ADS)
Tohar, Ibrahim; Hardiman, Gagoek; Ratih Sari, Suzanna
2017-12-01
Keraton Yogyakarta as a summit of Javanese culture has been renowned as a heritage building. As object of study, Keraton Yogyakarta is ornamented with a collection of architectural artifacts. The acculturation and merging of these different styles create a unique impression within the palace complex. This study aims to identify the pattern of acculturation of these two styles and to interpret their meaning and expression. A descriptive-qualitative method is employed in this research, which contains visual observation, documentation collection, interviews with informants, and relevant literature review. As results of study, the expression of Tratag Pagelaran, Tratag Sitihinggil, Bangsal Ponconiti, and Gedong Jene tends to widen, while the expression of Gedong Purwaretna tends to uprise. Every building has its own point of interest and ornamentation which its place and content are different.. In visual observations, there are two categories of buildings in Keraton Yogyakarta,which accommodate two styles, namely Javanese Traditional style and Dutch Colonial style. Buildings of Javanese traditional style, which hold a special concept of shading, were built without buttresses and embody a ‘light’ expression, while buildings of Dutch Colonial style, which hold a concept of protection, were built with massive enclosure and produce a “heavy” expression. Although visually split into two distinct styles, the acculturation process in Keraton Yogyakarta produced a unity in its overall expression. The expression pattern of Keraton Yogyakarta can be used as conservation guidance of Javanese-cultured city.
Live-cell CRISPR imaging in plants reveals dynamic telomere movements.
Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas
2017-08-01
Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects
Papanicolaou, Alexie
2016-01-01
Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757
The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.
Papanicolaou, Alexie
2016-01-01
Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.
Birney, E; Andrews, D; Bevan, P; Caccamo, M; Cameron, G; Chen, Y; Clarke, L; Coates, G; Cox, T; Cuff, J; Curwen, V; Cutts, T; Down, T; Durbin, R; Eyras, E; Fernandez-Suarez, X M; Gane, P; Gibbins, B; Gilbert, J; Hammond, M; Hotz, H; Iyer, V; Kahari, A; Jekosch, K; Kasprzyk, A; Keefe, D; Keenan, S; Lehvaslaiho, H; McVicker, G; Melsopp, C; Meidl, P; Mongin, E; Pettett, R; Potter, S; Proctor, G; Rae, M; Searle, S; Slater, G; Smedley, D; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Storey, R; Ureta-Vidal, A; Woodwark, C; Clamp, M; Hubbard, T
2004-01-01
The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organize biology around the sequences of large genomes. It is a comprehensive and integrated source of annotation of large genome sequences, available via interactive website, web services or flat files. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. The facilities of the system range from sequence analysis to data storage and visualization and installations exist around the world both in companies and at academic sites. With a total of nine genome sequences available from Ensembl and more genomes to follow, recent developments have focused mainly on closer integration between genomes and external data.
GenomePeek—an online tool for prokaryotic genome and metagenome analysis
McNair, Katelyn; Edwards, Robert A.
2015-06-16
As increases in prokaryotic sequencing take place, a method to quickly and accurately analyze this data is needed. Previous tools are mainly designed for metagenomic analysis and have limitations; such as long runtimes and significant false positive error rates. The online tool GenomePeek (edwards.sdsu.edu/GenomePeek) was developed to analyze both single genome and metagenome sequencing files, quickly and with low error rates. GenomePeek uses a sequence assembly approach where reads to a set of conserved genes are extracted, assembled and then aligned against the highly specific reference database. GenomePeek was found to be faster than traditional approaches while still keeping errormore » rates low, as well as offering unique data visualization options.« less
Kweon, Ohgew; Kim, Seong-Jae; Blom, Jochen; Kim, Sung-Kwan; Kim, Bong-Soo; Baek, Dong-Heon; Park, Su Inn; Sutherland, John B; Cerniglia, Carl E
2015-02-14
The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium.
Genome engineering for microbial natural product discovery.
Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo
2018-03-03
The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Guide to the PLAZA 3.0 Plant Comparative Genomic Database.
Vandepoele, Klaas
2017-01-01
PLAZA 3.0 is an online resource for comparative genomics and offers a versatile platform to study gene functions and gene families or to analyze genome organization and evolution in the green plant lineage. Starting from genome sequence information for over 35 plant species, precomputed comparative genomic data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, and genomic colinearity information within and between species. Complementary functional data sets, a Workbench, and interactive visualization tools are available through a user-friendly web interface, making PLAZA an excellent starting point to translate sequence or omics data sets into biological knowledge. PLAZA is available at http://bioinformatics.psb.ugent.be/plaza/ .
Law, MeiYee; Childs, Kevin L.; Campbell, Michael S.; Stein, Joshua C.; Olson, Andrew J.; Holt, Carson; Panchy, Nicholas; Lei, Jikai; Jiao, Dian; Andorf, Carson M.; Lawrence, Carolyn J.; Ware, Doreen; Shiu, Shin-Han; Sun, Yanni; Jiang, Ning; Yandell, Mark
2015-01-01
The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-P to update and revise the maize (Zea mays) B73 RefGen_v3 annotation build (5b+) in less than 3 h using the iPlant Cyberinfrastructure. MAKER-P identified and annotated 4,466 additional, well-supported protein-coding genes not present in the 5b+ annotation build, added additional untranslated regions to 1,393 5b+ gene models, identified 2,647 5b+ gene models that lack any supporting evidence (despite the use of large and diverse evidence data sets), identified 104,215 pseudogene fragments, and created an additional 2,522 noncoding gene annotations. We also describe a method for de novo training of MAKER-P for the annotation of newly sequenced grass genomes. Collectively, these results lead to the 6a maize genome annotation and demonstrate the utility of MAKER-P for rapid annotation, management, and quality control of grasses and other difficult-to-annotate plant genomes. PMID:25384563
Wright, C Y; Wilkes, M; du Plessis, J L; Reeder, A I; Albers, P N
2016-08-01
Finding inexpensive and reliable techniques for assessing skin colour is important, given that it is related to several adverse human health outcomes. Visual observation is considered a subjective approach assessment and, even when made by trained assessor, concern has been raised about the need for controlled lighting in the study venue. The aim of this study is to determine whether visual skin colour assessments correlate with objective skin colour measurements in study venues with different lighting types and configurations. Two trained investigators, with confirmed visual acuity, visually classified the inner, upper arm skin colour of 556 adults using Munsell(®) colour classifications converted to Individual Typology Angle (°ITA) values based on published data. Skin colour at the same anatomic site was also measured using a colorimeter. Each participant was assessed in one of 10 different buildings, each with a different study day. Munsell(®) -derived °ITA values were compared to colorimeter °ITA values for the full sample and by building/day. We found a strong positive, monotonic correlation between Munsell(®) derived °ITA values and colorimeter °ITA values for all participants (Spearman ρ = 0.8585, P < 0.001). Similar relationships were found when Munsell(®) and colorimeter °ITA values were compared for participants assessed in the same building for all 10 buildings (Spearman ρ values ranged from 0.797 to 0.934, all correlations were statistically significant at P < 0.001). It is possible to visually assess individual skin colour in multiple situational lighting settings and retrieve results that are comparable with objective measurements of skin colour. This was true for individuals of varying population groups and skin pigmentation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gnome View: A tool for visual representation of human genome data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelkey, J.E.; Thomas, G.S.; Thurman, D.A.
1993-02-01
GnomeView is a tool for exploring data generated by the Human Gemone Project. GnomeView provides both graphical and textural styles of data presentation: employs an intuitive window-based graphical query interface: and integrates its underlying genome databases in such a way that the user can navigate smoothly across databases and between different levels of data. This paper describes GnomeView and discusses how it addresses various genome informatics issues.
Sharma, Deepak K; Solbrig, Harold R; Tao, Cui; Weng, Chunhua; Chute, Christopher G; Jiang, Guoqian
2017-06-05
Detailed Clinical Models (DCMs) have been regarded as the basis for retaining computable meaning when data are exchanged between heterogeneous computer systems. To better support clinical cancer data capturing and reporting, there is an emerging need to develop informatics solutions for standards-based clinical models in cancer study domains. The objective of the study is to develop and evaluate a cancer genome study metadata management system that serves as a key infrastructure in supporting clinical information modeling in cancer genome study domains. We leveraged a Semantic Web-based metadata repository enhanced with both ISO11179 metadata standard and Clinical Information Modeling Initiative (CIMI) Reference Model. We used the common data elements (CDEs) defined in The Cancer Genome Atlas (TCGA) data dictionary, and extracted the metadata of the CDEs using the NCI Cancer Data Standards Repository (caDSR) CDE dataset rendered in the Resource Description Framework (RDF). The ITEM/ITEM_GROUP pattern defined in the latest CIMI Reference Model is used to represent reusable model elements (mini-Archetypes). We produced a metadata repository with 38 clinical cancer genome study domains, comprising a rich collection of mini-Archetype pattern instances. We performed a case study of the domain "clinical pharmaceutical" in the TCGA data dictionary and demonstrated enriched data elements in the metadata repository are very useful in support of building detailed clinical models. Our informatics approach leveraging Semantic Web technologies provides an effective way to build a CIMI-compliant metadata repository that would facilitate the detailed clinical modeling to support use cases beyond TCGA in clinical cancer study domains.
Dymond, Jessica S.; Scheifele, Lisa Z.; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S.; Boeke, Jef D.
2009-01-01
A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into ∼750-bp fragments. Once trained in assembly of such DNA “building blocks” by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular “lab meeting” sessions help prepare them for future roles in laboratory science. PMID:19015540
Dymond, Jessica S; Scheifele, Lisa Z; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S; Boeke, Jef D
2009-01-01
A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into approximately 750-bp fragments. Once trained in assembly of such DNA "building blocks" by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular "lab meeting" sessions help prepare them for future roles in laboratory science.
MIPSPlantsDB—plant database resource for integrative and comparative plant genome research
Spannagl, Manuel; Noubibou, Octave; Haase, Dirk; Yang, Li; Gundlach, Heidrun; Hindemitt, Tobias; Klee, Kathrin; Haberer, Georg; Schoof, Heiko; Mayer, Klaus F. X.
2007-01-01
Genome-oriented plant research delivers rapidly increasing amount of plant genome data. Comprehensive and structured information resources are required to structure and communicate genome and associated analytical data for model organisms as well as for crops. The increase in available plant genomic data enables powerful comparative analysis and integrative approaches. PlantsDB aims to provide data and information resources for individual plant species and in addition to build a platform for integrative and comparative plant genome research. PlantsDB is constituted from genome databases for Arabidopsis, Medicago, Lotus, rice, maize and tomato. Complementary data resources for cis elements, repetive elements and extensive cross-species comparisons are implemented. The PlantsDB portal can be reached at . PMID:17202173
Adedokun, Babatunde O; Olopade, Christopher O; Olopade, Olufunmilayo I
2016-01-01
The poor genomics research capacity of Sub-Saharan Africa (SSA) could prevent maximal benefits from the applications of genomics in the practice of medicine and research. The objective of this study is to examine the author affiliations of genomic epidemiology publications in order to make recommendations for building local genomics research capacity in SSA. SSA genomic epidemiology articles published between 2004 and 2013 were extracted from the Human Genome Epidemiology (HuGE) database. Data on authorship details, country of population studied, and phenotype or disease were extracted. Factors associated with the first author, who has an SSA institution affiliation (AIAFA), were determined using a Chi-square test and multiple logistic regression analysis. The most commonly studied population was South Africa, accounting for 31.1%, followed by Ghana (10.6%) and Kenya (7.5%). About one-tenth of the papers were related to non-communicable diseases (NCDs) such as cancer (6.1%) and cardiovascular diseases (CVDs) (4.3%). Fewer than half of the first authors (46.9%) were affiliated with an African institution. Among the 238 articles with an African first author, over three-quarters (79.8%) belonged to a university or medical school, 16.8% were affiliated with a research institute, and 3.4% had affiliations with other institutions. Significant disparities currently exist among SSA countries in genomics research capacity. South Africa has the highest genomics research output, which is reflected in the investments made in its genomics and biotechnology sector. These findings underscore the need to focus on developing local capacity, especially among those affiliated with SSA universities where there are more opportunities for teaching and research.
The time course of protecting a visual memory representation from perceptual interference
van Moorselaar, Dirk; Gunseli, Eren; Theeuwes, Jan; N. L. Olivers, Christian
2015-01-01
Cueing a remembered item during the delay of a visual memory task leads to enhanced recall of the cued item compared to when an item is not cued. This cueing benefit has been proposed to reflect attention within visual memory being shifted from a distributed mode to a focused mode, thus protecting the cued item against perceptual interference. Here we investigated the dynamics of building up this mnemonic protection against visual interference by systematically varying the stimulus onset asynchrony (SOA) between cue onset and a subsequent visual mask in an orientation memory task. Experiment 1 showed that a cue counteracted the deteriorating effect of pattern masks. Experiment 2 demonstrated that building up this protection is a continuous process that is completed in approximately half a second after cue onset. The similarities between shifting attention in perceptual and remembered space are discussed. PMID:25628555
Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization
NASA Astrophysics Data System (ADS)
Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.
2015-02-01
This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.
A Core Knowledge Architecture of Visual Working Memory
ERIC Educational Resources Information Center
Wood, Justin N.
2011-01-01
Visual working memory (VWM) is widely thought to contain specialized buffers for retaining spatial and object information: a "spatial-object architecture." However, studies of adults, infants, and nonhuman animals show that visual cognition builds on core knowledge systems that retain more specialized representations: (1) spatiotemporal…
Company profile: Complete Genomics Inc.
Reid, Clifford
2011-02-01
Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery.
Transcriptome characterization for genome annotation and functional genomics in Theobroma cacao
USDA-ARS?s Scientific Manuscript database
Evidence from leaf transcriptome sequencing using two technology platforms, in combination with protein homology and trained ab initio predictions, previously enabled us to build 35,000 gene models in T. cacao (www.cacaogenomedb.org). Here we review the contribution of each data type to cacao gene a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutes, Robert G.; Neubauer, Casey C.; Haack, Jereme N.
2015-03-31
The Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of an open-source software tool for analyzing building energy and operational data: OpenEIS (open energy information system). This tool addresses the problems of both owners of building data and developers of tools to analyze this data. Building owners and managers have data but lack the tools to analyze it while tool developers lack data in a common format to ease development of reusable data analysis tools. This document is intended for developers of applications and explains the mechanisms for building analysis applications, accessing data, and displaying datamore » using a visualization from the included library. A brief introduction to the visualizations can be used as a jumping off point for developers familiar with JavaScript to produce their own. Several example applications are included which can be used along with this document to implement algorithms for performing energy data analysis.« less
, developing an analysis framework and data visualization for national residential building stock models, and include developing multifamily modeling capabilities for the BEopt building energy optimization software
PSYCHOSOCIAL PHENOMENA AND BUILDING DESIGN.
ERIC Educational Resources Information Center
IZUMI, KIYOSHI
THE DEPTH OF PSYCHOSOCIAL CONSIDERATION VARIES WITH ARCHITECTURAL FUNCTION. THESE FACTORS INCREASE AS A BUILDING USAGE BECOMES MORE ANTHROPOPHILIC. SITUATIONS RELATING TO AMBIGUOUS DESIGN MUST BE ELIMINATED IN BUILDING DESIGN. PROBLEMS INVOLVING VISUAL PERCEPTION SUCH AS (1) GLASS DOORS, (2) APPARENT INSECURITY OF STRUCTURE, (3) AMBIGUOUS SYMBOLIC…
Using Openstreetmap Data to Generate Building Models with Their Inner Structures for 3d Maps
NASA Astrophysics Data System (ADS)
Wang, Z.; Zipf, A.
2017-09-01
With the development of Web 2.0, more and more data related to indoor environments has been collected within the volunteered geographic information (VGI) framework, which creates a need for construction of indoor environments from VGI. In this study, we focus on generating 3D building models from OpenStreetMap (OSM) data, and provide an approach to support construction and visualization of indoor environments on 3D maps. In this paper, we present an algorithm which can extract building information from OSM data, and can construct building structures as well as inner building components (e.g., doors, rooms, and windows). A web application is built to support the processing and visualization of the building models on a 3D map. We test our approach with an indoor dataset collected from the field. The results show the feasibility of our approach and its potentials to provide support for a wide range of applications, such as indoor and outdoor navigation, urban planning, and incident management.
Triticeae Resources in Ensembl Plants
Bolser, Dan M.; Kerhornou, Arnaud; Walts, Brandon; Kersey, Paul
2015-01-01
Recent developments in DNA sequencing have enabled the large and complex genomes of many crop species to be determined for the first time, even those previously intractable due to their polyploid nature. Indeed, over the course of the last 2 years, the genome sequences of several commercially important cereals, notably barley and bread wheat, have become available, as well as those of related wild species. While still incomplete, comparison with other, more completely assembled species suggests that coverage of genic regions is likely to be high. Ensembl Plants (http://plants.ensembl.org) is an integrative resource organizing, analyzing and visualizing genome-scale information for important crop and model plants. Available data include reference genome sequence, variant loci, gene models and functional annotation. For variant loci, individual and population genotypes, linkage information and, where available, phenotypic information are shown. Comparative analyses are performed on DNA and protein sequence alignments. The resulting genome alignments and gene trees, representing the implied evolutionary history of the gene family, are made available for visualization and analysis. Driven by the case of bread wheat, specific extensions to the analysis pipelines and web interface have recently been developed to support polyploid genomes. Data in Ensembl Plants is accessible through a genome browser incorporating various specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These interfaces are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests and pollinators, facilitating the study of the plant in its environment. PMID:25432969
BigQ: a NoSQL based framework to handle genomic variants in i2b2.
Gabetta, Matteo; Limongelli, Ivan; Rizzo, Ettore; Riva, Alberto; Segagni, Daniele; Bellazzi, Riccardo
2015-12-29
Precision medicine requires the tight integration of clinical and molecular data. To this end, it is mandatory to define proper technological solutions able to manage the overwhelming amount of high throughput genomic data needed to test associations between genomic signatures and human phenotypes. The i2b2 Center (Informatics for Integrating Biology and the Bedside) has developed a widely internationally adopted framework to use existing clinical data for discovery research that can help the definition of precision medicine interventions when coupled with genetic data. i2b2 can be significantly advanced by designing efficient management solutions of Next Generation Sequencing data. We developed BigQ, an extension of the i2b2 framework, which integrates patient clinical phenotypes with genomic variant profiles generated by Next Generation Sequencing. A visual programming i2b2 plugin allows retrieving variants belonging to the patients in a cohort by applying filters on genomic variant annotations. We report an evaluation of the query performance of our system on more than 11 million variants, showing that the implemented solution scales linearly in terms of query time and disk space with the number of variants. In this paper we describe a new i2b2 web service composed of an efficient and scalable document-based database that manages annotations of genomic variants and of a visual programming plug-in designed to dynamically perform queries on clinical and genetic data. The system therefore allows managing the fast growing volume of genomic variants and can be used to integrate heterogeneous genomic annotations.
Analysis and Visualization of ChIP-Seq and RNA-Seq Sequence Alignments Using ngs.plot.
Loh, Yong-Hwee Eddie; Shen, Li
2016-01-01
The continual maturation and increasing applications of next-generation sequencing technology in scientific research have yielded ever-increasing amounts of data that need to be effectively and efficiently analyzed and innovatively mined for new biological insights. We have developed ngs.plot-a quick and easy-to-use bioinformatics tool that performs visualizations of the spatial relationships between sequencing alignment enrichment and specific genomic features or regions. More importantly, ngs.plot is customizable beyond the use of standard genomic feature databases to allow the analysis and visualization of user-specified regions of interest generated by the user's own hypotheses. In this protocol, we demonstrate and explain the use of ngs.plot using command line executions, as well as a web-based workflow on the Galaxy framework. We replicate the underlying commands used in the analysis of a true biological dataset that we had reported and published earlier and demonstrate how ngs.plot can easily generate publication-ready figures. With ngs.plot, users would be able to efficiently and innovatively mine their own datasets without having to be involved in the technical aspects of sequence coverage calculations and genomic databases.
ReadXplorer—visualization and analysis of mapped sequences
Hilker, Rolf; Stadermann, Kai Bernd; Doppmeier, Daniel; Kalinowski, Jörn; Stoye, Jens; Straube, Jasmin; Winnebald, Jörn; Goesmann, Alexander
2014-01-01
Motivation: Fast algorithms and well-arranged visualizations are required for the comprehensive analysis of the ever-growing size of genomic and transcriptomic next-generation sequencing data. Results: ReadXplorer is a software offering straightforward visualization and extensive analysis functions for genomic and transcriptomic DNA sequences mapped on a reference. A unique specialty of ReadXplorer is the quality classification of the read mappings. It is incorporated in all analysis functions and displayed in ReadXplorer's various synchronized data viewers for (i) the reference sequence, its base coverage as (ii) normalizable plot and (iii) histogram, (iv) read alignments and (v) read pairs. ReadXplorer's analysis capability covers RNA secondary structure prediction, single nucleotide polymorphism and deletion–insertion polymorphism detection, genomic feature and general coverage analysis. Especially for RNA-Seq data, it offers differential gene expression analysis, transcription start site and operon detection as well as RPKM value and read count calculations. Furthermore, ReadXplorer can combine or superimpose coverage of different datasets. Availability and implementation: ReadXplorer is available as open-source software at http://www.readxplorer.org along with a detailed manual. Contact: rhilker@mikrobio.med.uni-giessen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24790157
Innovative Visualization Techniques applied to a Flood Scenario
NASA Astrophysics Data System (ADS)
Falcão, António; Ho, Quan; Lopes, Pedro; Malamud, Bruce D.; Ribeiro, Rita; Jern, Mikael
2013-04-01
The large and ever-increasing amounts of multi-dimensional, time-varying and geospatial digital information from multiple sources represent a major challenge for today's analysts. We present a set of visualization techniques that can be used for the interactive analysis of geo-referenced and time sampled data sets, providing an integrated mechanism and that aids the user to collaboratively explore, present and communicate visually complex and dynamic data. Here we present these concepts in the context of a 4 hour flood scenario from Lisbon in 2010, with data that includes measures of water column (flood height) every 10 minutes at a 4.5 m x 4.5 m resolution, topography, building damage, building information, and online base maps. Techniques we use include web-based linked views, multiple charts, map layers and storytelling. We explain two of these in more detail that are not currently in common use for visualization of data: storytelling and web-based linked views. Visual storytelling is a method for providing a guided but interactive process of visualizing data, allowing more engaging data exploration through interactive web-enabled visualizations. Within storytelling, a snapshot mechanism helps the author of a story to highlight data views of particular interest and subsequently share or guide others within the data analysis process. This allows a particular person to select relevant attributes for a snapshot, such as highlighted regions for comparisons, time step, class values for colour legend, etc. and provide a snapshot of the current application state, which can then be provided as a hyperlink and recreated by someone else. Since data can be embedded within this snapshot, it is possible to interactively visualize and manipulate it. The second technique, web-based linked views, includes multiple windows which interactively respond to the user selections, so that when selecting an object and changing it one window, it will automatically update in all the other windows. These concepts can be part of a collaborative platform, where multiple people share and work together on the data, via online access, which also allows its remote usage from a mobile platform. Storytelling augments analysis and decision-making capabilities allowing to assimilate complex situations and reach informed decisions, in addition to helping the public visualize information. In our visualization scenario, developed in the context of the VA-4D project for the European Space Agency (see http://www.ca3-uninova.org/project_va4d), we make use of the GAV (GeoAnalytics Visualization) framework, a web-oriented visual analytics application based on multiple interactive views. The final visualization that we produce includes multiple interactive views, including a dynamic multi-layer map surrounded by other visualizations such as bar charts, time graphs and scatter plots. The map provides flood and building information, on top of a base city map (street maps and/or satellite imagery provided by online map services such as Google Maps, Bing Maps etc.). Damage over time for selected buildings, damage for all buildings at a chosen time period, correlation between damage and water depth can be analysed in the other views. This interactive web-based visualization that incorporates the ideas of storytelling, web-based linked views, and other visualization techniques, for a 4 hour flood event in Lisbon in 2010, can be found online at http://www.ncomva.se/flash/projects/esa/flooding/.
e23D: database and visualization of A-to-I RNA editing sites mapped to 3D protein structures.
Solomon, Oz; Eyal, Eran; Amariglio, Ninette; Unger, Ron; Rechavi, Gidi
2016-07-15
e23D, a database of A-to-I RNA editing sites from human, mouse and fly mapped to evolutionary related protein 3D structures, is presented. Genomic coordinates of A-to-I RNA editing sites are converted to protein coordinates and mapped onto 3D structures from PDB or theoretical models from ModBase. e23D allows visualization of the protein structure, modeling of recoding events and orientation of the editing with respect to nearby genomic functional sites from databases of disease causing mutations and genomic polymorphism. http://www.sheba-cancer.org.il/e23D CONTACT: oz.solomon@live.biu.ac.il or Eran.Eyal@sheba.health.gov.il. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Huang, Zhenzhen; Duan, Huilong; Li, Haomin
2015-01-01
Large-scale human cancer genomics projects, such as TCGA, generated large genomics data for further study. Exploring and mining these data to obtain meaningful analysis results can help researchers find potential genomics alterations that intervene the development and metastasis of tumors. We developed a web-based gene analysis platform, named TCGA4U, which used statistics methods and models to help translational investigators explore, mine and visualize human cancer genomic characteristic information from the TCGA datasets. Furthermore, through Gene Ontology (GO) annotation and clinical data integration, the genomic data were transformed into biological process, molecular function, cellular component and survival curves to help researchers identify potential driver genes. Clinical researchers without expertise in data analysis will benefit from such a user-friendly genomic analysis platform.
SOFIA: an R package for enhancing genetic visualization with Circos
USDA-ARS?s Scientific Manuscript database
Visualization of data from any stage of genetic and genomic research is one of the most useful approaches for detecting potential errors, ensuring accuracy and reproducibility, and presentation of the resulting data. Currently software such as Circos, ClicO FS, and RCircos, among others, provide too...
The Saccharomyces Genome Database Variant Viewer
Sheppard, Travis K.; Hitz, Benjamin C.; Engel, Stacia R.; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C.; Dalusag, Kyla S.; Demeter, Janos; Hellerstedt, Sage T.; Karra, Kalpana; Nash, Robert S.; Paskov, Kelley M.; Skrzypek, Marek S.; Weng, Shuai; Wong, Edith D.; Cherry, J. Michael
2016-01-01
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. PMID:26578556
ERIC Educational Resources Information Center
Brisco, Nicole
2011-01-01
Build, create, make, blog, develop, organize, structure, perform. These are just a few verbs that illustrate the visual world. These words create images that allow students to respond to their environment. Visual culture studies recognize the predominance of visual forms of media, communication, and information in the postmodern world. This…
TreeGenes and CartograTree: Enabling visualization and analysis in forest tree genomics
E.S. Grau; S.A. Demurjian; H.A. Vasquez-Gross; D.G. Gessler; D.B. Neale; J.L. Wegrzyn
2017-01-01
Association studies integrating environmental, phenotypic, and genetic data are key in understanding forest tree resilience to climate change and disease. As genomic resources increase, both in terms of complete reference sequences and magnitude of individuals genotyped, researchers are better equipped to identify correlations between genetic variation and adaptive or...
Figure 1 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics
A screenshot of the IGV user interface at the chromosome view. IGV user interface showing five data types (copy number, methylation, gene expression, and loss of heterozygosity; mutations are overlaid with black boxes) from approximately 80 glioblastoma multiforme samples. Adapted from Figure S1; Robinson et al. 2011
Fast neutron mutants database and web displays at SoyBase
USDA-ARS?s Scientific Manuscript database
SoyBase, the USDA-ARS soybean genetics and genomics database, has been expanded to include data for the fast neutron mutants produced by Bolon, Vance, et al. In addition to the expected text and sequence homology searches and visualization of the indels in the context of the genome sequence viewer, ...
Panoptes: web-based exploration of large scale genome variation data.
Vauterin, Paul; Jeffery, Ben; Miles, Alistair; Amato, Roberto; Hart, Lee; Wright, Ian; Kwiatkowski, Dominic
2017-10-15
The size and complexity of modern large-scale genome variation studies demand novel approaches for exploring and sharing the data. In order to unlock the potential of these data for a broad audience of scientists with various areas of expertise, a unified exploration framework is required that is accessible, coherent and user-friendly. Panoptes is an open-source software framework for collaborative visual exploration of large-scale genome variation data and associated metadata in a web browser. It relies on technology choices that allow it to operate in near real-time on very large datasets. It can be used to browse rich, hybrid content in a coherent way, and offers interactive visual analytics approaches to assist the exploration. We illustrate its application using genome variation data of Anopheles gambiae, Plasmodium falciparum and Plasmodium vivax. Freely available at https://github.com/cggh/panoptes, under the GNU Affero General Public License. paul.vauterin@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
CartograTree: connecting tree genomes, phenotypes and environment.
Vasquez-Gross, Hans A; Yu, John J; Figueroa, Ben; Gessler, Damian D G; Neale, David B; Wegrzyn, Jill L
2013-05-01
Today, researchers spend a tremendous amount of time gathering, formatting, filtering and visualizing data collected from disparate sources. Under the umbrella of forest tree biology, we seek to provide a platform and leverage modern technologies to connect biotic and abiotic data. Our goal is to provide an integrated web-based workspace that connects environmental, genomic and phenotypic data via geo-referenced coordinates. Here, we connect the genomic query web-based workspace, DiversiTree and a novel geographical interface called CartograTree to data housed on the TreeGenes database. To accomplish this goal, we implemented Simple Semantic Web Architecture and Protocol to enable the primary genomics database, TreeGenes, to communicate with semantic web services regardless of platform or back-end technologies. The novelty of CartograTree lies in the interactive workspace that allows for geographical visualization and engagement of high performance computing (HPC) resources. The application provides a unique tool set to facilitate research on the ecology, physiology and evolution of forest tree species. CartograTree can be accessed at: http://dendrome.ucdavis.edu/cartogratree. © 2013 Blackwell Publishing Ltd.
GlobAl Distribution of GEnetic Traits (GADGET) web server: polygenic trait scores worldwide.
Chande, Aroon T; Wang, Lu; Rishishwar, Lavanya; Conley, Andrew B; Norris, Emily T; Valderrama-Aguirre, Augusto; Jordan, I King
2018-05-18
Human populations from around the world show striking phenotypic variation across a wide variety of traits. Genome-wide association studies (GWAS) are used to uncover genetic variants that influence the expression of heritable human traits; accordingly, population-specific distributions of GWAS-implicated variants may shed light on the genetic basis of human phenotypic diversity. With this in mind, we developed the GlobAl Distribution of GEnetic Traits web server (GADGET http://gadget.biosci.gatech.edu). The GADGET web server provides users with a dynamic visual platform for exploring the relationship between worldwide genetic diversity and the genetic architecture underlying numerous human phenotypes. GADGET integrates trait-implicated single nucleotide polymorphisms (SNPs) from GWAS, with population genetic data from the 1000 Genomes Project, to calculate genome-wide polygenic trait scores (PTS) for 818 phenotypes in 2504 individual genomes. Population-specific distributions of PTS are shown for 26 human populations across 5 continental population groups, with traits ordered based on the extent of variation observed among populations. Users of GADGET can also upload custom trait SNP sets to visualize global PTS distributions for their own traits of interest.
Shen, Li; Shao, Ningyi; Liu, Xiaochuan; Nestler, Eric
2014-04-15
Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. We have developed ngs.plot - a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data.
2014-01-01
Background Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. Results We have developed ngs.plot – a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. Conclusions We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data. PMID:24735413
Fujimoto, Satoru; Sugano, Shigeo S.; Kuwata, Keiko; Osakabe, Keishi; Matsunaga, Sachihiro
2016-01-01
Live imaging of the dynamics of nuclear organization provides the opportunity to uncover the mechanisms responsible for four-dimensional genome architecture. Here, we describe the use of fluorescent protein (FP) fusions of transcription activator-like effectors (TALEs) to visualize endogenous genomic sequences in Arabidopsis thaliana. The ability to engineer sequence-specific TALEs permits the investigation of precise genomic sequences. We could detect TALE-FP signals associated with centromeric, telomeric, and rDNA repeats and the signal distribution was consistent with that observed by fluorescent in situ hybridization. TALE-FPs are advantageous because they permit the observation of intact tissues. We used our TALE-FP method to investigate the nuclei of several multicellular plant tissues including roots, hypocotyls, leaves, and flowers. Because TALE-FPs permit live-cell imaging, we successfully observed the temporal dynamics of centromeres and telomeres in plant organs. Fusing TALEs to multimeric FPs enhanced the signal intensity when observing telomeres. We found that the mobility of telomeres was different in sub-nuclear regions. Transgenic plants stably expressing TALE-FPs will provide new insights into chromatin organization and dynamics in multicellular organisms. PMID:27811079
A versatile genome-scale PCR-based pipeline for high-definition DNA FISH.
Bienko, Magda; Crosetto, Nicola; Teytelman, Leonid; Klemm, Sandy; Itzkovitz, Shalev; van Oudenaarden, Alexander
2013-02-01
We developed a cost-effective genome-scale PCR-based method for high-definition DNA FISH (HD-FISH). We visualized gene loci with diffraction-limited resolution, chromosomes as spot clusters and single genes together with transcripts by combining HD-FISH with single-molecule RNA FISH. We provide a database of over 4.3 million primer pairs targeting the human and mouse genomes that is readily usable for rapid and flexible generation of probes.
Precise photorealistic visualization for restoration of historic buildings based on tacheometry data
NASA Astrophysics Data System (ADS)
Ragia, Lemonia; Sarri, Froso; Mania, Katerina
2018-03-01
This paper puts forward a 3D reconstruction methodology applied to the restoration of historic buildings taking advantage of the speed, range and accuracy of a total geodetic station. The measurements representing geo-referenced points produced an interactive and photorealistic geometric mesh of a monument named `Neoria.' `Neoria' is a Venetian building located by the old harbor at Chania, Crete, Greece. The integration of tacheometry acquisition and computer graphics puts forward a novel integrated software framework for the accurate 3D reconstruction of a historical building. The main technical challenge of this work was the production of a precise 3D mesh based on a sufficient number of tacheometry measurements acquired fast and at low cost, employing a combination of surface reconstruction and processing methods. A fully interactive application based on game engine technologies was developed. The user can visualize and walk through the monument and the area around it as well as photorealistically view it at different times of day and night. Advanced interactive functionalities are offered to the user in relation to identifying restoration areas and visualizing the outcome of such works. The user could visualize the coordinates of the points measured, calculate distances and navigate through the complete 3D mesh of the monument. The geographical data are stored in a database connected with the application. Features referencing and associating the database with the monument are developed. The goal was to utilize a small number of acquired data points and present a fully interactive visualization of a geo-referenced 3D model.
Precise photorealistic visualization for restoration of historic buildings based on tacheometry data
NASA Astrophysics Data System (ADS)
Ragia, Lemonia; Sarri, Froso; Mania, Katerina
2018-04-01
This paper puts forward a 3D reconstruction methodology applied to the restoration of historic buildings taking advantage of the speed, range and accuracy of a total geodetic station. The measurements representing geo-referenced points produced an interactive and photorealistic geometric mesh of a monument named `Neoria.' `Neoria' is a Venetian building located by the old harbor at Chania, Crete, Greece. The integration of tacheometry acquisition and computer graphics puts forward a novel integrated software framework for the accurate 3D reconstruction of a historical building. The main technical challenge of this work was the production of a precise 3D mesh based on a sufficient number of tacheometry measurements acquired fast and at low cost, employing a combination of surface reconstruction and processing methods. A fully interactive application based on game engine technologies was developed. The user can visualize and walk through the monument and the area around it as well as photorealistically view it at different times of day and night. Advanced interactive functionalities are offered to the user in relation to identifying restoration areas and visualizing the outcome of such works. The user could visualize the coordinates of the points measured, calculate distances and navigate through the complete 3D mesh of the monument. The geographical data are stored in a database connected with the application. Features referencing and associating the database with the monument are developed. The goal was to utilize a small number of acquired data points and present a fully interactive visualization of a geo-referenced 3D model.
Gordo, D G M; Espigolan, R; Tonussi, R L; Júnior, G A F; Bresolin, T; Magalhães, A F Braga; Feitosa, F L; Baldi, F; Carvalheiro, R; Tonhati, H; de Oliveira, H N; Chardulo, L A L; de Albuquerque, L G
2016-05-01
The objective of this study was to determine whether visual scores used as selection criteria in Nellore breeding programs are effective indicators of carcass traits measured after slaughter. Additionally, this study evaluated the effect of different structures of the relationship matrix ( and ) on the estimation of genetic parameters and on the prediction accuracy of breeding values. There were 13,524 animals for visual scores of conformation (CS), finishing precocity (FP), and muscling (MS) and 1,753, 1,747, and 1,564 for LM area (LMA), backfat thickness (BF), and HCW, respectively. Of these, 1,566 animals were genotyped using a high-density panel containing 777,962 SNP. Six analyses were performed using multitrait animal models, each including the 3 visual scores and 1 carcass trait. For the visual scores, the model included direct additive genetic and residual random effects and the fixed effects of contemporary group (defined by year of birth, management group at yearling, and farm) and the linear effect of age of animal at yearling. The same model was used for the carcass traits, replacing the effect of age of animal at yearling with the linear effect of age of animal at slaughter. The variance and covariance components were estimated by the REML method in analyses using the numerator relationship matrix () or combining the genomic and the numerator relationship matrices (). The heritability estimates for the visual scores obtained with the 2 methods were similar and of moderate magnitude (0.23-0.34), indicating that these traits should response to direct selection. The heritabilities for LMA, BF, and HCW were 0.13, 0.07, and 0.17, respectively, using matrix and 0.29, 0.16, and 0.23, respectively, using matrix . The genetic correlations between the visual scores and carcass traits were positive, and higher correlations were generally obtained when matrix was used. Considering the difficulties and cost of measuring carcass traits postmortem, visual scores of CS, FP, and MS could be used as selection criteria to improve HCW, BF, and LMA. The use of genomic information permitted the detection of greater additive genetic variability for LMA and BF. For HCW, the high magnitude of the genetic correlations with visual scores was probably sufficient to recover genetic variability. The methods provided similar breeding value accuracies, especially for the visual scores.
Structure and Evolution of Chlorate Reduction Composite Transposons
Clark, Iain C.; Melnyk, Ryan A.; Engelbrektson, Anna; Coates, John D.
2013-01-01
ABSTRACT The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of genomes failed to join regions adjacent to genes involved in chlorate reduction, suggesting the presence of repeat regions. Using a bioinformatics approach and finishing PCRs to connect fragmented contigs, we discovered that chlorate reduction genes are flanked by insertion sequences, forming composite transposons in all four newly sequenced strains. These insertion sequences delineate regions with the potential to move horizontally and define a set of genes that may be important for chlorate reduction. In addition to core metabolic components, we have highlighted several such genes through comparative analysis and visualization. Phylogenetic analysis places chlorate reductase within a functionally diverse clade of type II dimethyl sulfoxide (DMSO) reductases, part of a larger family of enzymes with reactivity toward chlorate. Nucleotide-level forensics of regions surrounding chlorite dismutase (cld), as well as its phylogenetic clustering in a betaproteobacterial Cld clade, indicate that cld has been mobilized at least once from a perchlorate reducer to build chlorate respiration. PMID:23919996
Evolution of the vertebrate phototransduction cascade activation steps.
Lamb, Trevor D; Hunt, David M
2017-11-01
We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.
PNNLâs Building Operations Control Center
Belew, Shan
2018-01-16
PNNL's Building Operations Control Center (BOCC) video provides an overview of the center, its capabilities, and its objectives. The BOCC was relocated to PNNL's new 3820 Systems Engineering Building in 2015. Although a key focus of the BOCC is on monitoring and improving the operations of PNNL buildings, the center's state-of-the-art computational, software and visualization resources also have provided a platform for PNNL buildings-related research projects.
Warner, Jeremy L; Rioth, Matthew J; Mandl, Kenneth D; Mandel, Joshua C; Kreda, David A; Kohane, Isaac S; Carbone, Daniel; Oreto, Ross; Wang, Lucy; Zhu, Shilin; Yao, Heming; Alterovitz, Gil
2016-07-01
Precision cancer medicine (PCM) will require ready access to genomic data within the clinical workflow and tools to assist clinical interpretation and enable decisions. Since most electronic health record (EHR) systems do not yet provide such functionality, we developed an EHR-agnostic, clinico-genomic mobile app to demonstrate several features that will be needed for point-of-care conversations. Our prototype, called Substitutable Medical Applications and Reusable Technology (SMART)® PCM, visualizes genomic information in real time, comparing a patient's diagnosis-specific somatic gene mutations detected by PCR-based hotspot testing to a population-level set of comparable data. The initial prototype works for patient specimens with 0 or 1 detected mutation. Genomics extensions were created for the Health Level Seven® Fast Healthcare Interoperability Resources (FHIR)® standard; otherwise, the prototype is a normal SMART on FHIR app. The PCM prototype can rapidly present a visualization that compares a patient's somatic genomic alterations against a distribution built from more than 3000 patients, along with context-specific links to external knowledge bases. Initial evaluation by oncologists provided important feedback about the prototype's strengths and weaknesses. We added several requested enhancements and successfully demonstrated the app at the inaugural American Society of Clinical Oncology Interoperability Demonstration; we have also begun to expand visualization capabilities to include cancer specimens with multiple mutations. PCM is open-source software for clinicians to present the individual patient within the population-level spectrum of cancer somatic mutations. The app can be implemented on any SMART on FHIR-enabled EHRs, and future versions of PCM should be able to evolve in parallel with external knowledge bases. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mapping the Space of Genomic Signatures
Kari, Lila; Hill, Kathleen A.; Sayem, Abu S.; Karamichalis, Rallis; Bryans, Nathaniel; Davis, Katelyn; Dattani, Nikesh S.
2015-01-01
We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR), is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM), implicitly compares the occurrences of oligomers of length up to k (herein k = 9) in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS) to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (super)kingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal, the Denisovan, and the chimp), and that the sequence most different from it in this dataset belongs to a cucumber. PMID:26000734
Cho, Yun Sung; Kim, Hyunho; Kim, Hak-Min; Jho, Sungwoong; Jun, JeHoon; Lee, Yong Joo; Chae, Kyun Shik; Kim, Chang Geun; Kim, Sangsoo; Eriksson, Anders; Edwards, Jeremy S.; Lee, Semin; Kim, Byung Chul; Manica, Andrea; Oh, Tae-Kwang; Church, George M.; Bhak, Jong
2016-01-01
Human genomes are routinely compared against a universal reference. However, this strategy could miss population-specific and personal genomic variations, which may be detected more efficiently using an ethnically relevant or personal reference. Here we report a hybrid assembly of a Korean reference genome (KOREF) for constructing personal and ethnic references by combining sequencing and mapping methods. We also build its consensus variome reference, providing information on millions of variants from 40 additional ethnically homogeneous genomes from the Korean Personal Genome Project. We find that the ethnically relevant consensus reference can be beneficial for efficient variant detection. Systematic comparison of human assemblies shows the importance of assembly quality, suggesting the necessity of new technologies to comprehensively map ethnic and personal genomic structure variations. In the era of large-scale population genome projects, the leveraging of ethnicity-specific genome assemblies as well as the human reference genome will accelerate mapping all human genome diversity. PMID:27882922
Update on RefSeq microbial genomes resources.
Tatusova, Tatiana; Ciufo, Stacy; Federhen, Scott; Fedorov, Boris; McVeigh, Richard; O'Neill, Kathleen; Tolstoy, Igor; Zaslavsky, Leonid
2015-01-01
NCBI RefSeq genome collection http://www.ncbi.nlm.nih.gov/genome represents all three major domains of life: Eukarya, Bacteria and Archaea as well as Viruses. Prokaryotic genome sequences are the most rapidly growing part of the collection. During the year of 2014 more than 10,000 microbial genome assemblies have been publicly released bringing the total number of prokaryotic genomes close to 30,000. We continue to improve the quality and usability of the microbial genome resources by providing easy access to the data and the results of the pre-computed analysis, and improving analysis and visualization tools. A number of improvements have been incorporated into the Prokaryotic Genome Annotation Pipeline. Several new features have been added to RefSeq prokaryotic genomes data processing pipeline including the calculation of genome groups (clades) and the optimization of protein clusters generation using pan-genome approach. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.
The coffee genome hub: a resource for coffee genomes
Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan
2015-01-01
The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413
From Iconic to Lingual: Interpreting Visual Statements.
ERIC Educational Resources Information Center
Curtiss, Deborah
In this age of proliferating visual communications, there is a permissiveness in subject matter, content, and meaning that is exhilarating, yet overwhelming to interpret in a meaningful or consensual way. By recognizing visual statements, whether a piece of sculpture, an advertisement, a video, or a building, as communication, one can approach…
The Physical Environment and the Visually Impaired.
ERIC Educational Resources Information Center
Braf, Per-Gunnar
Reported are results of a project carried out at the Swedish Institute for the Handicapped to determine needs of the visually impaired in the planning and adaptation of buildings and other forms of physical environment. Chapter 1 considers implications of impaired vision and includes definitions, statistics, and problems of the visually impaired…
Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes
Beliveau, Brian J.; Joyce, Eric F.; Apostolopoulos, Nicholas; Yilmaz, Feyza; Fonseka, Chamith Y.; McCole, Ruth B.; Chang, Yiming; Li, Jin Billy; Senaratne, Tharanga Niroshini; Williams, Benjamin R.; Rouillard, Jean-Marie; Wu, Chao-ting
2012-01-01
A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide- and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes. PMID:23236188
The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video.
Harper, Lisa C; Schaeffer, Mary L; Thistle, Jordan; Gardiner, Jack M; Andorf, Carson M; Campbell, Darwin A; Cannon, Ethalinda K S; Braun, Bremen L; Birkett, Scott M; Lawrence, Carolyn J; Sen, Taner Z
2011-01-01
Video tutorials are an effective way for researchers to quickly learn how to use online tools offered by biological databases. At MaizeGDB, we have developed a number of video tutorials that demonstrate how to use various tools and explicitly outline the caveats researchers should know to interpret the information available to them. One such popular video currently available is 'Using the MaizeGDB Genome Browser', which describes how the maize genome was sequenced and assembled as well as how the sequence can be visualized and interacted with via the MaizeGDB Genome Browser. Database
Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning
Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi
2017-01-01
Motivation: Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. Results: We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Availability and Implementation: Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/, R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError Contacts: toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27797775
Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning.
Hocking, Toby Dylan; Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi; Bourque, Guillaume
2017-02-15
Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ , R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError. toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Werner-Lin, Allison; McCoyd, Judith L M; Doyle, Maya H; Gehlert, Sarah J
2016-08-01
The transdisciplinary field of genomics is revolutionizing conceptualizations of health, mental health, family formation, and public policy. Many professions must rapidly acquire genomic expertise to maintain state-of-the-art knowledge in their practice. Calls for social workers to build genomic capacity come regularly, yet social work education has not prepared practitioners to join the genomics workforce in providing socially just, ethically informed care to all clients, particularly those from vulnerable and marginalized groups. The authors suggest a set of action steps for bringing social work skills and practice into the 21st century. They propose that good genomic practice entails bringing social work values, skills, and behaviors to genomics. With education and training, social workers may facilitate socially just dissemination of genomic knowledge and services across practice domains. Increased genomic literacy will support the profession's mission to address disparities in health, health care access, and mortality. © 2016 National Association of Social Workers.
Werner-Lin, Allison; McCoyd, Judith L. M.; Doyle, Maya H.; Gehlert, Sarah J.
2016-01-01
The transdisciplinary field of genomics is revolutionizing conceptualizations of health, mental health, family formation, and public policy. Many professions must rapidly acquire genomic expertise to maintain state-of-the-art knowledge in their practice. Calls for social workers to build genomic capacity come regularly, yet social work education has not prepared practitioners to join the genomics workforce in providing socially just, ethically informed care to all clients, particularly those from vulnerable and marginalized groups. The authors suggest a set of action steps for bringing social work skills and practice into the 21st century. They propose that good genomic practice entails bringing social work values, skills, and behaviors to genomics. With education and training, social workers may facilitate socially just dissemination of genomic knowledge and services across practice domains. Increased genomic literacy will support the profession’s mission to address disparities in health, health care access, and mortality. PMID:29206948
KGCAK: a K-mer based database for genome-wide phylogeny and complexity evaluation.
Wang, Dapeng; Xu, Jiayue; Yu, Jun
2015-09-16
The K-mer approach, treating genomic sequences as simple characters and counting the relative abundance of each string upon a fixed K, has been extensively applied to phylogeny inference for genome assembly, annotation, and comparison. To meet increasing demands for comparing large genome sequences and to promote the use of the K-mer approach, we develop a versatile database, KGCAK ( http://kgcak.big.ac.cn/KGCAK/ ), containing ~8,000 genomes that include genome sequences of diverse life forms (viruses, prokaryotes, protists, animals, and plants) and cellular organelles of eukaryotic lineages. It builds phylogeny based on genomic elements in an alignment-free fashion and provides in-depth data processing enabling users to compare the complexity of genome sequences based on K-mer distribution. We hope that KGCAK becomes a powerful tool for exploring relationship within and among groups of species in a tree of life based on genomic data.
Piecewise polynomial representations of genomic tracks.
Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz
2012-01-01
Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/.
A Protocol for Generating and Exchanging (Genome-Scale) Metabolic Resource Allocation Models.
Reimers, Alexandra-M; Lindhorst, Henning; Waldherr, Steffen
2017-09-06
In this article, we present a protocol for generating a complete (genome-scale) metabolic resource allocation model, as well as a proposal for how to represent such models in the systems biology markup language (SBML). Such models are used to investigate enzyme levels and achievable growth rates in large-scale metabolic networks. Although the idea of metabolic resource allocation studies has been present in the field of systems biology for some years, no guidelines for generating such a model have been published up to now. This paper presents step-by-step instructions for building a (dynamic) resource allocation model, starting with prerequisites such as a genome-scale metabolic reconstruction, through building protein and noncatalytic biomass synthesis reactions and assigning turnover rates for each reaction. In addition, we explain how one can use SBML level 3 in combination with the flux balance constraints and our resource allocation modeling annotation to represent such models.
Leveraging non-targeted metabolite profiling via statistical genomics
USDA-ARS?s Scientific Manuscript database
One of the challenges of systems biology is to integrate multiple sources of data in order to build a cohesive view of the system of study. Here we describe the mass spectrometry based profiling of maize kernels, a model system for genomic studies and a cornerstone of the agroeconomy. Using a networ...
Building on the Past, Shaping the Future: The Environmental Mutagenesis and Genomics Society
In late 2012 the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 19...
Were protein internal repeats formed by "bricolage"?
Lavorgna, G; Patthy, L; Boncinelli, E
2001-03-01
Is evolution an engineer, or is it a tinkerer--a "bricoleur"--building up complex molecules in organisms by increasing and adapting the materials at hand? An analysis of completely sequenced genomes suggests the latter, showing that increasing repetition of modules within the proteins encoded by these genomes is correlated with increasing complexity of the organism.
Harnessing vision for computation.
Changizi, Mark
2008-01-01
Might it be possible to harness the visual system to carry out artificial computations, somewhat akin to how DNA has been harnessed to carry out computation? I provide the beginnings of a research programme attempting to do this. In particular, new techniques are described for building 'visual circuits' (or 'visual software') using wire, NOT, OR, and AND gates in a visual 6modality such that our visual system acts as 'visual hardware' computing the circuit, and generating a resultant perception which is the output.
Law, MeiYee; Childs, Kevin L; Campbell, Michael S; Stein, Joshua C; Olson, Andrew J; Holt, Carson; Panchy, Nicholas; Lei, Jikai; Jiao, Dian; Andorf, Carson M; Lawrence, Carolyn J; Ware, Doreen; Shiu, Shin-Han; Sun, Yanni; Jiang, Ning; Yandell, Mark
2015-01-01
The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-P to update and revise the maize (Zea mays) B73 RefGen_v3 annotation build (5b+) in less than 3 h using the iPlant Cyberinfrastructure. MAKER-P identified and annotated 4,466 additional, well-supported protein-coding genes not present in the 5b+ annotation build, added additional untranslated regions to 1,393 5b+ gene models, identified 2,647 5b+ gene models that lack any supporting evidence (despite the use of large and diverse evidence data sets), identified 104,215 pseudogene fragments, and created an additional 2,522 noncoding gene annotations. We also describe a method for de novo training of MAKER-P for the annotation of newly sequenced grass genomes. Collectively, these results lead to the 6a maize genome annotation and demonstrate the utility of MAKER-P for rapid annotation, management, and quality control of grasses and other difficult-to-annotate plant genomes. © 2015 American Society of Plant Biologists. All Rights Reserved.
Genomic analysis and geographic visualization of H5N1 and SARS-CoV.
Hill, Andrew W; Alexandrov, Boyan; Guralnick, Robert P; Janies, Daniel
2007-10-11
Emerging infectious diseases and organisms present critical issues of national security public health, and economic welfare. We still understand little about the zoonotic potential of many viruses. To this end, we are developing novel database tools to manage comparative genomic datasets. These tools add value because they allow us to summarize the direction, frequency and order of genomic changes. We will perform numerous real world tests with our tools with both Avian Influenza and Coronaviruses.
Application of Genomic In Situ Hybridization in Horticultural Science
Ramzan, Fahad; Lim, Ki-Byung
2017-01-01
Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH) techniques in horticultural plants. PMID:28459054
Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark
2011-02-01
We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Explorative visual analytics on interval-based genomic data and their metadata.
Jalili, Vahid; Matteucci, Matteo; Masseroli, Marco; Ceri, Stefano
2017-12-04
With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable interactive analytics, an exploratory approach for the seamless "sense-making" of data through on-the-fly integration of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and adapting NGS data analysis pipelines. This paper presents abstractions for supporting the early analysis of NGS processed data and their implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative visualizations of heatmaps. GeMSE effective application and practical usefulness is demonstrated through significant use cases of biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/ , and its source code is available at https://github.com/Genometric/GeMSE under GPLv3 open-source license.
USDA-ARS?s Scientific Manuscript database
The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data, and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on beh...
svviz: a read viewer for validating structural variants.
Spies, Noah; Zook, Justin M; Salit, Marc; Sidow, Arend
2015-12-15
Visualizing read alignments is the most effective way to validate candidate structural variants (SVs) with existing data. We present svviz, a sequencing read visualizer for SVs that sorts and displays only reads relevant to a candidate SV. svviz works by searching input bam(s) for potentially relevant reads, realigning them against the inferred sequence of the putative variant allele as well as the reference allele and identifying reads that match one allele better than the other. Separate views of the two alleles are then displayed in a scrollable web browser view, enabling a more intuitive visualization of each allele, compared with the single reference genome-based view common to most current read browsers. The browser view facilitates examining the evidence for or against a putative variant, estimating zygosity, visualizing affected genomic annotations and manual refinement of breakpoints. svviz supports data from most modern sequencing platforms. svviz is implemented in python and freely available from http://svviz.github.io/. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
Setting Up the JBrowse Genome Browser
Skinner, Mitchell E; Holmes, Ian H
2010-01-01
JBrowse is a web-based tool for visualizing genomic data. Unlike most other web-based genome browsers, JBrowse exploits the capabilities of the user's web browser to make scrolling and zooming fast and smooth. It supports the browsers used by almost all internet users, and is relatively simple to install. JBrowse can utilize multiple types of data in a variety of common genomic data formats, including genomic feature data in bioperl databases, GFF files, and BED files, and quantitative data in wiggle files. This unit describes how to obtain the JBrowse software, set it up on a Linux or Mac OS X computer running as a web server and incorporate genome annotation data from multiple sources into JBrowse. After completing the protocols described in this unit, the reader will have a web site that other users can visit to browse the genomic data. PMID:21154710
RefSeq microbial genomes database: new representation and annotation strategy.
Tatusova, Tatiana; Ciufo, Stacy; Fedorov, Boris; O'Neill, Kathleen; Tolstoy, Igor
2014-01-01
The source of the microbial genomic sequences in the RefSeq collection is the set of primary sequence records submitted to the International Nucleotide Sequence Database public archives. These can be accessed through the Entrez search and retrieval system at http://www.ncbi.nlm.nih.gov/genome. Next-generation sequencing has enabled researchers to perform genomic sequencing at rates that were unimaginable in the past. Microbial genomes can now be sequenced in a matter of hours, which has led to a significant increase in the number of assembled genomes deposited in the public archives. This huge increase in DNA sequence data presents new challenges for the annotation, analysis and visualization bioinformatics tools. New strategies have been developed for the annotation and representation of reference genomes and sequence variations derived from population studies and clinical outbreaks.
A comprehensive and quantitative exploration of thousands of viral genomes
Mahmoudabadi, Gita
2018-01-01
The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. PMID:29624169
A comprehensive and quantitative exploration of thousands of viral genomes.
Mahmoudabadi, Gita; Phillips, Rob
2018-04-19
The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends - such as gene density, noncoding percentage, and abundances of functional gene categories - across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. © 2018, Mahmoudabadi et al.
Hybrid 3D reconstruction and image-based rendering techniques for reality modeling
NASA Astrophysics Data System (ADS)
Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.
2000-12-01
This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.
Building technolgies program. 1994 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkowitz, S.E.
1995-04-01
The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effectivemore » solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.« less
A Data-Driven Approach to Interactive Visualization of Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jun
Driven by emerging industry standards, electric utilities and grid coordination organizations are eager to seek advanced tools to assist grid operators to perform mission-critical tasks and enable them to make quick and accurate decisions. The emerging field of visual analytics holds tremendous promise for improving the business practices in today’s electric power industry. The conducted investigation, however, has revealed that the existing commercial power grid visualization tools heavily rely on human designers, hindering user’s ability to discover. Additionally, for a large grid, it is very labor-intensive and costly to build and maintain the pre-designed visual displays. This project proposes amore » data-driven approach to overcome the common challenges. The proposed approach relies on developing powerful data manipulation algorithms to create visualizations based on the characteristics of empirically or mathematically derived data. The resulting visual presentations emphasize what the data is rather than how the data should be presented, thus fostering comprehension and discovery. Furthermore, the data-driven approach formulates visualizations on-the-fly. It does not require a visualization design stage, completely eliminating or significantly reducing the cost for building and maintaining visual displays. The research and development (R&D) conducted in this project is mainly divided into two phases. The first phase (Phase I & II) focuses on developing data driven techniques for visualization of power grid and its operation. Various data-driven visualization techniques were investigated, including pattern recognition for auto-generation of one-line diagrams, fuzzy model based rich data visualization for situational awareness, etc. The R&D conducted during the second phase (Phase IIB) focuses on enhancing the prototyped data driven visualization tool based on the gathered requirements and use cases. The goal is to evolve the prototyped tool developed during the first phase into a commercial grade product. We will use one of the identified application areas as an example to demonstrate how research results achieved in this project are successfully utilized to address an emerging industry need. In summary, the data-driven visualization approach developed in this project has proven to be promising for building the next-generation power grid visualization tools. Application of this approach has resulted in a state-of-the-art commercial tool currently being leveraged by more than 60 utility organizations in North America and Europe .« less
The effect of contextual sound cues on visual fidelity perception.
Rojas, David; Cowan, Brent; Kapralos, Bill; Collins, Karen; Dubrowski, Adam
2014-01-01
Previous work has shown that sound can affect the perception of visual fidelity. Here we build upon this previous work by examining the effect of contextual sound cues (i.e., sounds that are related to the visuals) on visual fidelity perception. Results suggest that contextual sound cues do influence visual fidelity perception and, more specifically, our perception of visual fidelity increases with contextual sound cues. These results have implications for designers of multimodal virtual worlds and serious games that, with the appropriate use of contextual sounds, can reduce visual rendering requirements without a corresponding decrease in the perception of visual fidelity.
Draw Me an Enthymeme: Visual Pedagogy and Verbal Organization.
ERIC Educational Resources Information Center
Danis, M. Francine
Both enthymemes and visual pedagogy speak to the capacity--and the need--of humans to make a coherent story out of the scraps of information they possess. Three possibilities exist for building on the connection between enthymemes and pictures when teaching argumentative writing--using visual aids to help students: generate material, suggest a…
SOPanG: online text searching over a pan-genome.
Cislak, Aleksander; Grabowski, Szymon; Holub, Jan
2018-06-22
The many thousands of high-quality genomes available nowadays imply a shift from single genome to pan-genomic analyses. A basic algorithmic building brick for such a scenario is online search over a collection of similar texts, a problem with surprisingly few solutions presented so far. We present SOPanG, a simple tool for exact pattern matching over an elastic-degenerate string, a recently proposed simplified model for the pan-genome. Thanks to bit-parallelism, it achieves pattern matching speeds above 400MB/s, more than an order of magnitude higher than of other software. SOPanG is available for free from: https://github.com/MrAlexSee/sopang. Supplementary data are available at Bioinformatics online.
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications
Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.
2018-01-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.
Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D
2017-04-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.
Rendahl, K G; Jones, K R; Kulkarni, S J; Bagully, S H; Hall, J C
1992-02-01
Genetic and molecular results are here presented revealing that the dissonance (diss) courtship song mutation is an allele of the no-on-transient-A (nonA) locus of Drosophila melanogaster. diss (now called nonAdiss) was originally isolated as a mutant with aberrant pulse song, although it was then noted to exhibit defects in responses to visual stimuli as well. The lack of transient spikes in the electroretinogram (ERG) and optomotor blindness associated with nonAdiss are shown to be similar to the visual abnormalities caused by the original nonA mutations. nonAdiss failed to complement either the ERG or optomotor defects associated with four other nonA mutations. However, all four of these nonA mutants--which were isolated on visual criteria alone--sang a normal courtship song. nonAdiss complemented at least three of the nonA mutations with regard to the singing phenotype, as assessed by a new method for temporal analysis of the male's pulse song. Both visual and song abnormalities caused by nonAdiss were rescued by P-element-mediated transformation with overlapping 11 and 16 kilobase (kb) fragments of genomic DNA (originally cloned from the nonA locus by Jones and Rubin, 1990). Analysis of behavioral phenotypes in transformed flies carrying mutagenized versions of the 11 kb genomic fragment (in a nonAdiss genomic background) localized the rescuing DNA to a region containing an open reading frame that encodes a polypeptide (NONA) with similarity to a family of RNA-binding proteins. Immunohistochemical determination of NONA's spatial and temporal expression revealed that it is localized to the nuclei of cells in many neural and non-neural tissues, at all stages of the life cycle after very early in development. Genetic connections between the control of two quite different behaviors--reproductive and visual--are discussed, along with precedences for generally expressed gene products playing roles in specific behaviors.
A Spatial Framework for Understanding Population Structure and Admixture.
Bradburd, Gideon S; Ralph, Peter L; Coop, Graham M
2016-01-01
Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build "geogenetic maps," which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix.
A Spatial Framework for Understanding Population Structure and Admixture
Bradburd, Gideon S.; Ralph, Peter L.; Coop, Graham M.
2016-01-01
Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. PMID:26771578
Neural codes of seeing architectural styles
Choo, Heeyoung; Nasar, Jack L.; Nikrahei, Bardia; Walther, Dirk B.
2017-01-01
Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people’s visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture. PMID:28071765
Neural codes of seeing architectural styles.
Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B
2017-01-10
Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.
Microbial taxonomy in the post-genomic era: Rebuilding from scratch?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Cristiane C.; Amaral, Gilda R.; Campeão, Mariana
2014-12-23
Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. We re-evaluated the prokaryote species twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. We will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
Building Our Children's Future: An Interdisciplinary Curriculum for Grades K-12.
ERIC Educational Resources Information Center
Mumma, Tracy; Gant, Shaun; Stone, Laura Armstrong; Harnish, Chris; Fowle, Abigail
This interdisciplinary curriculum provides students with the opportunity to learn about the connection between natural resources and buildings while practicing skills in language arts, math, science, social studies, and visual arts. The learning activities are divided by topic into 15 Building Blocks (units). These units cover such topics as…
Building international genomics collaboration for global health security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.
Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less
Building international genomics collaboration for global health security
Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; ...
2015-12-07
Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less
First responder tracking and visualization for command and control toolkit
NASA Astrophysics Data System (ADS)
Woodley, Robert; Petrov, Plamen; Meisinger, Roger
2010-04-01
In order for First Responder Command and Control personnel to visualize incidents at urban building locations, DHS sponsored a small business research program to develop a tool to visualize 3D building interiors and movement of First Responders on site. 21st Century Systems, Inc. (21CSI), has developed a toolkit called Hierarchical Grid Referenced Normalized Display (HiGRND). HiGRND utilizes three components to provide a full spectrum of visualization tools to the First Responder. First, HiGRND visualizes the structure in 3D. Utilities in the 3D environment allow the user to switch between views (2D floor plans, 3D spatial, evacuation routes, etc.) and manually edit fast changing environments. HiGRND accepts CAD drawings and 3D digital objects and renders these in the 3D space. Second, HiGRND has a First Responder tracker that uses the transponder signals from First Responders to locate them in the virtual space. We use the movements of the First Responder to map the interior of structures. Finally, HiGRND can turn 2D blueprints into 3D objects. The 3D extruder extracts walls, symbols, and text from scanned blueprints to create the 3D mesh of the building. HiGRND increases the situational awareness of First Responders and allows them to make better, faster decisions in critical urban situations.
Building Capacity for a Global Genome Editing Observatory: Institutional Design.
Saha, Krishanu; Hurlbut, J Benjamin; Jasanoff, Sheila; Ahmed, Aziza; Appiah, Anthony; Bartholet, Elizabeth; Baylis, Françoise; Bennett, Gaymon; Church, George; Cohen, I Glenn; Daley, George; Finneran, Kevin; Hurlbut, William; Jaenisch, Rudolf; Lwoff, Laurence; Kimes, John Paul; Mills, Peter; Moses, Jacob; Park, Buhm Soon; Parens, Erik; Salzman, Rachel; Saxena, Abha; Simmet, Hilton; Simoncelli, Tania; Snead, O Carter; Rajan, Kaushik Sunder; Truog, Robert D; Williams, Patricia; Woopen, Christiane
2018-06-08
A new infrastructure is urgently needed at the global level to facilitate exchange on key issues concerning genome editing. We advocate the establishment of a global observatory to serve as a center for international, interdisciplinary, and cosmopolitan reflection. This article is the second of a two-part series. Copyright © 2018 Elsevier Ltd. All rights reserved.
Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges.
Hurlbut, J Benjamin; Jasanoff, Sheila; Saha, Krishanu; Ahmed, Aziza; Appiah, Anthony; Bartholet, Elizabeth; Baylis, Françoise; Bennett, Gaymon; Church, George; Cohen, I Glenn; Daley, George; Finneran, Kevin; Hurlbut, William; Jaenisch, Rudolf; Lwoff, Laurence; Kimes, John Paul; Mills, Peter; Moses, Jacob; Park, Buhm Soon; Parens, Erik; Salzman, Rachel; Saxena, Abha; Simmet, Hilton; Simoncelli, Tania; Snead, O Carter; Rajan, Kaushik Sunder; Truog, Robert D; Williams, Patricia; Woopen, Christiane
2018-07-01
A new infrastructure is urgently needed at the global level to facilitate exchange on key issues concerning genome editing. We advocate the establishment of a global observatory to serve as a center for international, interdisciplinary, and cosmopolitan reflection. This article is the first of a two-part series. Copyright © 2018 Elsevier Ltd. All rights reserved.
The H3Africa policy framework: negotiating fairness in genomics
de Vries, Jantina; Tindana, Paulina; Littler, Katherine; Ramsay, Michèle; Rotimi, Charles; Abayomi, Akin; Mulder, Nicola; Mayosi, Bongani M.
2015-01-01
Human Heredity and Health in Africa (H3Africa) research seeks to promote fair collaboration between scientists in Africa and those from elsewhere. Here, we outline how concerns over inequality and exploitation led to a policy framework that places a firm focus on African leadership and capacity building as guiding principles for African genomics research. PMID:25601285
Newborn chickens generate invariant object representations at the onset of visual object experience
Wood, Justin N.
2013-01-01
To recognize objects quickly and accurately, mature visual systems build invariant object representations that generalize across a range of novel viewing conditions (e.g., changes in viewpoint). To date, however, the origins of this core cognitive ability have not yet been established. To examine how invariant object recognition develops in a newborn visual system, I raised chickens from birth for 2 weeks within controlled-rearing chambers. These chambers provided complete control over all visual object experiences. In the first week of life, subjects’ visual object experience was limited to a single virtual object rotating through a 60° viewpoint range. In the second week of life, I examined whether subjects could recognize that virtual object from novel viewpoints. Newborn chickens were able to generate viewpoint-invariant representations that supported object recognition across large, novel, and complex changes in the object’s appearance. Thus, newborn visual systems can begin building invariant object representations at the onset of visual object experience. These abstract representations can be generated from sparse data, in this case from a visual world containing a single virtual object seen from a limited range of viewpoints. This study shows that powerful, robust, and invariant object recognition machinery is an inherent feature of the newborn brain. PMID:23918372
The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video
Harper, Lisa C.; Schaeffer, Mary L.; Thistle, Jordan; Gardiner, Jack M.; Andorf, Carson M.; Campbell, Darwin A.; Cannon, Ethalinda K.S.; Braun, Bremen L.; Birkett, Scott M.; Lawrence, Carolyn J.; Sen, Taner Z.
2011-01-01
Video tutorials are an effective way for researchers to quickly learn how to use online tools offered by biological databases. At MaizeGDB, we have developed a number of video tutorials that demonstrate how to use various tools and explicitly outline the caveats researchers should know to interpret the information available to them. One such popular video currently available is ‘Using the MaizeGDB Genome Browser’, which describes how the maize genome was sequenced and assembled as well as how the sequence can be visualized and interacted with via the MaizeGDB Genome Browser. Database URL: http://www.maizegdb.org/ PMID:21565781
RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.
Novichkov, Pavel S; Kazakov, Alexey E; Ravcheev, Dmitry A; Leyn, Semen A; Kovaleva, Galina Y; Sutormin, Roman A; Kazanov, Marat D; Riehl, William; Arkin, Adam P; Dubchak, Inna; Rodionov, Dmitry A
2013-11-01
Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities.
Applications of the pipeline environment for visual informatics and genomics computations
2011-01-01
Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102
Using the Saccharomyces Genome Database (SGD) for analysis of genomic information
Skrzypek, Marek S.; Hirschman, Jodi
2011-01-01
Analysis of genomic data requires access to software tools that place the sequence-derived information in the context of biology. The Saccharomyces Genome Database (SGD) integrates functional information about budding yeast genes and their products with a set of analysis tools that facilitate exploring their biological details. This unit describes how the various types of functional data available at SGD can be searched, retrieved, and analyzed. Starting with the guided tour of the SGD Home page and Locus Summary page, this unit highlights how to retrieve data using YeastMine, how to visualize genomic information with GBrowse, how to explore gene expression patterns with SPELL, and how to use Gene Ontology tools to characterize large-scale datasets. PMID:21901739
A lncRNA Perspective into (Re)Building the Heart.
Frank, Stefan; Aguirre, Aitor; Hescheler, Juergen; Kurian, Leo
2016-01-01
Our conception of the human genome, long focused on the 2% that codes for proteins, has profoundly changed since its first draft assembly in 2001. Since then, an unanticipatedly expansive functionality and convolution has been attributed to the majority of the genome that is transcribed in a cell-type/context-specific manner into transcripts with no apparent protein coding ability. While the majority of these transcripts, currently annotated as long non-coding RNAs (lncRNAs), are functionally uncharacterized, their prominent role in embryonic development and tissue homeostasis, especially in the context of the heart, is emerging. In this review, we summarize and discuss the latest advances in understanding the relevance of lncRNAs in (re)building the heart.
D3GB: An Interactive Genome Browser for R, Python, and WordPress.
Barrios, David; Prieto, Carlos
2017-05-01
Genome browsers are useful not only for showing final results but also for improving analysis protocols, testing data quality, and generating result drafts. Its integration in analysis pipelines allows the optimization of parameters, which leads to better results. New developments that facilitate the creation and utilization of genome browsers could contribute to improving analysis results and supporting the quick visualization of genomic data. D3 Genome Browser is an interactive genome browser that can be easily integrated in analysis protocols and shared on the Web. It is distributed as an R package, a Python module, and a WordPress plugin to facilitate its integration in pipelines and the utilization of platform capabilities. It is compatible with popular data formats such as GenBank, GFF, BED, FASTA, and VCF, and enables the exploration of genomic data with a Web browser.
The topography of mutational processes in breast cancer genomes.
Morganella, Sandro; Alexandrov, Ludmil B; Glodzik, Dominik; Zou, Xueqing; Davies, Helen; Staaf, Johan; Sieuwerts, Anieta M; Brinkman, Arie B; Martin, Sancha; Ramakrishna, Manasa; Butler, Adam; Kim, Hyung-Yong; Borg, Åke; Sotiriou, Christos; Futreal, P Andrew; Campbell, Peter J; Span, Paul N; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E; Thompson, Alastair M; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W M; Børresen-Dale, Anne-Lise; Richardson, Andrea L; Kong, Gu; Thomas, Gilles; Sale, Julian; Rada, Cristina; Stratton, Michael R; Birney, Ewan; Nik-Zainal, Serena
2016-05-02
Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.
The Saccharomyces Genome Database Variant Viewer.
Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael
2016-01-04
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
A Task-Dependent Causal Role for Low-Level Visual Processes in Spoken Word Comprehension
ERIC Educational Resources Information Center
Ostarek, Markus; Huettig, Falk
2017-01-01
It is well established that the comprehension of spoken words referring to object concepts relies on high-level visual areas in the ventral stream that build increasingly abstract representations. It is much less clear whether basic low-level visual representations are also involved. Here we asked in what task situations low-level visual…
3D chromosome rendering from Hi-C data using virtual reality
NASA Astrophysics Data System (ADS)
Zhu, Yixin; Selvaraj, Siddarth; Weber, Philip; Fang, Jennifer; Schulze, Jürgen P.; Ren, Bing
2015-01-01
Most genome browsers display DNA linearly, using single-dimensional depictions that are useful to examine certain epigenetic mechanisms such as DNA methylation. However, these representations are insufficient to visualize intrachromosomal interactions and relationships between distal genome features. Relationships between DNA regions may be difficult to decipher or missed entirely if those regions are distant in one dimension but could be spatially proximal when mapped to three-dimensional space. For example, the visualization of enhancers folding over genes is only fully expressed in three-dimensional space. Thus, to accurately understand DNA behavior during gene expression, a means to model chromosomes is essential. Using coordinates generated from Hi-C interaction frequency data, we have created interactive 3D models of whole chromosome structures and its respective domains. We have also rendered information on genomic features such as genes, CTCF binding sites, and enhancers. The goal of this article is to present the procedure, findings, and conclusions of our models and renderings.
BigWig and BigBed: enabling browsing of large distributed datasets.
Kent, W J; Zweig, A S; Barber, G; Hinrichs, A S; Karolchik, D
2010-09-01
BigWig and BigBed files are compressed binary indexed files containing data at several resolutions that allow the high-performance display of next-generation sequencing experiment results in the UCSC Genome Browser. The visualization is implemented using a multi-layered software approach that takes advantage of specific capabilities of web-based protocols and Linux and UNIX operating systems files, R trees and various indexing and compression tricks. As a result, only the data needed to support the current browser view is transmitted rather than the entire file, enabling fast remote access to large distributed data sets. Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/. Source code for the creation and visualization software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. The UCSC Genome Browser is available at http://genome.ucsc.edu.
The Gene Expression Omnibus Database.
Clough, Emily; Barrett, Tanya
2016-01-01
The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/.
SEURAT: visual analytics for the integrated analysis of microarray data.
Gribov, Alexander; Sill, Martin; Lück, Sonja; Rücker, Frank; Döhner, Konstanze; Bullinger, Lars; Benner, Axel; Unwin, Antony
2010-06-03
In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data.
An interactive environment for agile analysis and visualization of ChIP-sequencing data.
Lerdrup, Mads; Johansen, Jens Vilstrup; Agrawal-Singh, Shuchi; Hansen, Klaus
2016-04-01
To empower experimentalists with a means for fast and comprehensive chromatin immunoprecipitation sequencing (ChIP-seq) data analyses, we introduce an integrated computational environment, EaSeq. The software combines the exploratory power of genome browsers with an extensive set of interactive and user-friendly tools for genome-wide abstraction and visualization. It enables experimentalists to easily extract information and generate hypotheses from their own data and public genome-wide datasets. For demonstration purposes, we performed meta-analyses of public Polycomb ChIP-seq data and established a new screening approach to analyze more than 900 datasets from mouse embryonic stem cells for factors potentially associated with Polycomb recruitment. EaSeq, which is freely available and works on a standard personal computer, can substantially increase the throughput of many analysis workflows, facilitate transparency and reproducibility by automatically documenting and organizing analyses, and enable a broader group of scientists to gain insights from ChIP-seq data.
C.A. Clausen; L. Haughton; C. Murphy
2003-01-01
Early and accurate detection of the extent of fungal deterioration during forensic inspection of the building envelope would eliminate excessive or unnecessary replacement of wood-based building materials. Areas of water infiltration in wood-framed building envelopes in the Pacific Northwest were evaluated visually and sampled for moisture content. Wood samples were...
A Visual Information Tool for User Participation during the Lifecycle of School Building Design: BIM
ERIC Educational Resources Information Center
Koutamanis, Alexander; Heuer, Jos; Könings, Karen D.
2017-01-01
User participation is a key element in decision processes concerning the accommodation of dynamic organisations such as schools. This article addresses the discrepancy between the perspectives of the architects and engineers, as the makers of school buildings, and school management, teachers and students, as the users of the buildings, and…
RATT: Rapid Annotation Transfer Tool
Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew
2011-01-01
Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991
Catch the live show: Visualizing damaged DNA in vivo.
Oshidari, Roxanne; Mekhail, Karim
2018-06-01
The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong
2018-04-01
The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.
Choi, Ickwon; Kattan, Michael W; Wells, Brian J; Yu, Changhong
2012-01-01
In medical society, the prognostic models, which use clinicopathologic features and predict prognosis after a certain treatment, have been externally validated and used in practice. In recent years, most research has focused on high dimensional genomic data and small sample sizes. Since clinically similar but molecularly heterogeneous tumors may produce different clinical outcomes, the combination of clinical and genomic information, which may be complementary, is crucial to improve the quality of prognostic predictions. However, there is a lack of an integrating scheme for clinic-genomic models due to the P ≥ N problem, in particular, for a parsimonious model. We propose a methodology to build a reduced yet accurate integrative model using a hybrid approach based on the Cox regression model, which uses several dimension reduction techniques, L₂ penalized maximum likelihood estimation (PMLE), and resampling methods to tackle the problem. The predictive accuracy of the modeling approach is assessed by several metrics via an independent and thorough scheme to compare competing methods. In breast cancer data studies on a metastasis and death event, we show that the proposed methodology can improve prediction accuracy and build a final model with a hybrid signature that is parsimonious when integrating both types of variables.
A survey of tools for variant analysis of next-generation genome sequencing data
Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes
2014-01-01
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494
Zhang, Chao; Gao, Yang; Liu, Jiaojiao; Xue, Zhe; Lu, Yan; Deng, Lian; Tian, Lei; Feng, Qidi
2018-01-01
Abstract There are a growing number of studies focusing on delineating genetic variations that are associated with complex human traits and diseases due to recent advances in next-generation sequencing technologies. However, identifying and prioritizing disease-associated causal variants relies on understanding the distribution of genetic variations within and among populations. The PGG.Population database documents 7122 genomes representing 356 global populations from 107 countries and provides essential information for researchers to understand human genomic diversity and genetic ancestry. These data and information can facilitate the design of research studies and the interpretation of results of both evolutionary and medical studies involving human populations. The database is carefully maintained and constantly updated when new data are available. We included miscellaneous functions and a user-friendly graphical interface for visualization of genomic diversity, population relationships (genetic affinity), ancestral makeup, footprints of natural selection, and population history etc. Moreover, PGG.Population provides a useful feature for users to analyze data and visualize results in a dynamic style via online illustration. The long-term ambition of the PGG.Population, together with the joint efforts from other researchers who contribute their data to our database, is to create a comprehensive depository of geographic and ethnic variation of human genome, as well as a platform bringing influence on future practitioners of medicine and clinical investigators. PGG.Population is available at https://www.pggpopulation.org. PMID:29112749
pileup.js: a JavaScript library for interactive and in-browser visualization of genomic data.
Vanderkam, Dan; Aksoy, B Arman; Hodes, Isaac; Perrone, Jaclyn; Hammerbacher, Jeff
2016-08-01
P: ileup.js is a new browser-based genome viewer. It is designed to facilitate the investigation of evidence for genomic variants within larger web applications. It takes advantage of recent developments in the JavaScript ecosystem to provide a modular, reliable and easily embedded library. The code and documentation for pileup.js is publicly available at https://github.com/hammerlab/pileup.js under the Apache 2.0 license. correspondence@hammerlab.org. © The Author 2016. Published by Oxford University Press.
Building Communities: The Community Sequencing Program at JGI (2011 JGI User Meeting)
Bristow, Jim
2018-01-22
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. DOE JGI Deputy Director Jim Bristow gives a presentation on the Community Sequencing Program at the 6th annual Genomics of Energy and Environment Meeting on March 23, 2011.
Strain, Errol; Melka, David; Bunning, Kelly; Musser, Steven M.; Brown, Eric W.; Timme, Ruth
2016-01-01
The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks. PMID:27008877
Eppig, Janan T; Smith, Cynthia L; Blake, Judith A; Ringwald, Martin; Kadin, James A; Richardson, Joel E; Bult, Carol J
2017-01-01
The Mouse Genome Informatics (MGI), resource ( www.informatics.jax.org ) has existed for over 25 years, and over this time its data content, informatics infrastructure, and user interfaces and tools have undergone dramatic changes (Eppig et al., Mamm Genome 26:272-284, 2015). Change has been driven by scientific methodological advances, rapid improvements in computational software, growth in computer hardware capacity, and the ongoing collaborative nature of the mouse genomics community in building resources and sharing data. Here we present an overview of the current data content of MGI, describe its general organization, and provide examples using simple and complex searches, and tools for mining and retrieving sets of data.
Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck.
Emerling, Christopher A
2017-03-01
Vertebrate color vision has evolved partly through the modification of five ancestral visual opsin proteins via gene duplication, loss, and shifts in spectral sensitivity. While many vertebrates, particularly mammals, birds, and fishes, have had their visual opsin repertoires studied in great detail, testudines (turtles) and crocodylians have largely been neglected. Here I examine the genomic basis for color vision in four species of turtles and four species of crocodylians, and demonstrate that while turtles appear to vary in their number of visual opsins, crocodylians experienced a reduction in their color discrimination capacity after their divergence from Aves. Based on the opsin sequences present in their genomes and previous measurements of crocodylian cones, I provide evidence that crocodylians have co-opted the rod opsin (RH1) for cone function. This suggests that some crocodylians might have reinvented trichromatic color vision in a novel way, analogous to several primate lineages. The loss of visual opsins in crocodylians paralleled the loss of various anatomical features associated with photoreception, attributed to a "nocturnal bottleneck" similar to that hypothesized for Mesozoic mammals. I further queried crocodylian genomes for nonvisual opsins and genes associated with protection from ultraviolet light, and found evidence for gene inactivation or loss for several of these genes. Two genes, encoding parietopsin and parapinopsin, were additionally inactivated in birds and turtles, likely co-occurring with the loss of the parietal eye in these lineages. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Treelink: data integration, clustering and visualization of phylogenetic trees.
Allende, Christian; Sohn, Erik; Little, Cedric
2015-12-29
Phylogenetic trees are central to a wide range of biological studies. In many of these studies, tree nodes need to be associated with a variety of attributes. For example, in studies concerned with viral relationships, tree nodes are associated with epidemiological information, such as location, age and subtype. Gene trees used in comparative genomics are usually linked with taxonomic information, such as functional annotations and events. A wide variety of tree visualization and annotation tools have been developed in the past, however none of them are intended for an integrative and comparative analysis. Treelink is a platform-independent software for linking datasets and sequence files to phylogenetic trees. The application allows an automated integration of datasets to trees for operations such as classifying a tree based on a field or showing the distribution of selected data attributes in branches and leafs. Genomic and proteonomic sequences can also be linked to the tree and extracted from internal and external nodes. A novel clustering algorithm to simplify trees and display the most divergent clades was also developed, where validation can be achieved using the data integration and classification function. Integrated geographical information allows ancestral character reconstruction for phylogeographic plotting based on parsimony and likelihood algorithms. Our software can successfully integrate phylogenetic trees with different data sources, and perform operations to differentiate and visualize those differences within a tree. File support includes the most popular formats such as newick and csv. Exporting visualizations as images, cluster outputs and genomic sequences is supported. Treelink is available as a web and desktop application at http://www.treelinkapp.com .
Multiscale modeling of three-dimensional genome
NASA Astrophysics Data System (ADS)
Zhang, Bin; Wolynes, Peter
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
Big Data Analytics for Genomic Medicine
He, Karen Y.; Ge, Dongliang; He, Max M.
2017-01-01
Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic decision-making by utilizing patients’ genomic information. Big Data analytics uncovers hidden patterns, unknown correlations, and other insights through examining large-scale various data sets. While integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible opportunity to develop an efficient and effective approach to identify clinically actionable genetic variants for individualized diagnosis and therapy. In this paper, we review the challenges of manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived from the EHRs for genomic medicine. We introduce possible solutions for different challenges in manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine. Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs. PMID:28212287
Big Data Analytics for Genomic Medicine.
He, Karen Y; Ge, Dongliang; He, Max M
2017-02-15
Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic decision-making by utilizing patients' genomic information. Big Data analytics uncovers hidden patterns, unknown correlations, and other insights through examining large-scale various data sets. While integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible opportunity to develop an efficient and effective approach to identify clinically actionable genetic variants for individualized diagnosis and therapy. In this paper, we review the challenges of manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived from the EHRs for genomic medicine. We introduce possible solutions for different challenges in manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine. Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs.
05/04 VIG Seminar @ 3:00 pm - 4:00 pm Bldg 50/2328 | Center for Cancer Research
Please join us for the next VIG seminar on Thursday, May 4th from 3:00-4:00 in Building 50, Room 2328. Presenter: Gustavo Palacios, Ph.D. Director, Genomic Center, USAMRIID Title: How Genomic Tools could improve our Biopreparedness?: Pathogen Discovery, Near Real-Time Advanced characterization and Immunomics
AP1 Keeps Chromatin Poised for Action | Center for Cancer Research
The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins
Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research.
Manolio, Teri A; Fowler, Douglas M; Starita, Lea M; Haendel, Melissa A; MacArthur, Daniel G; Biesecker, Leslie G; Worthey, Elizabeth; Chisholm, Rex L; Green, Eric D; Jacob, Howard J; McLeod, Howard L; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S; Cooper, Gregory M; Cox, Nancy J; Herman, Gail E; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A; Nussbaum, Robert L; Ordovas, Jose M; Ramos, Erin M; Robinson, Peter N; Rubinstein, Wendy S; Seidman, Christine; Stranger, Barbara E; Wang, Haoyi; Westerfield, Monte; Bult, Carol
2017-03-23
Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. Published by Elsevier Inc.
Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research
Manolio, Teri A.; Fowler, Douglas M.; Starita, Lea M.; Haendel, Melissa A.; MacArthur, Daniel G.; Biesecker, Leslie G.; Worthey, Elizabeth; Chisholm, Rex L.; Green, Eric D.; Jacob, Howard J.; McLeod, Howard L.; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S.; Cooper, Gregory M.; Cox, Nancy J.; Herman, Gail E.; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A.; Nussbaum, Robert L.; Ordovas, Jose M.; Ramos, Erin M.; Robinson, Peter N.; Rubinstein, Wendy S.; Seidman, Christine; Stranger, Barbara E.; Wang, Haoyi; Westerfield, Monte; Bult, Carol
2017-01-01
Summary Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. PMID:28340351
bioWidgets: data interaction components for genomics.
Fischer, S; Crabtree, J; Brunk, B; Gibson, M; Overton, G C
1999-10-01
The presentation of genomics data in a perspicuous visual format is critical for its rapid interpretation and validation. Relatively few public database developers have the resources to implement sophisticated front-end user interfaces themselves. Accordingly, these developers would benefit from a reusable toolkit of user interface and data visualization components. We have designed the bioWidget toolkit as a set of JavaBean components. It includes a wide array of user interface components and defines an architecture for assembling applications. The toolkit is founded on established software engineering design patterns and principles, including componentry, Model-View-Controller, factored models and schema neutrality. As a proof of concept, we have used the bioWidget toolkit to create three extendible applications: AnnotView, BlastView and AlignView.
ARG-based genome-wide analysis of cacao cultivars.
Utro, Filippo; Cornejo, Omar Eduardo; Livingstone, Donald; Motamayor, Juan Carlos; Parida, Laxmi
2012-01-01
Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG.As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci from a genome of approximately 400 megabases. The results are visualized both as MDS plots and as classification trees. To evaluate the accuracy of the ARG approach, we compare the results with those available in literature. We have extended the ARG model to incorporate genome-wide (ensemble of multiple chromosomes) data in a natural way. We present a simple scheme to implement this in practice. Finally, this is the first time that a plant population data set is being studied by estimating its underlying ARG. We demonstrate an overall precision of 0.92 and an overall recall of 0.93 of the ARG-based classification, with respect to the gold standard. While we have corroborated the classification of the samples with that in literature, this opens the door to other potential studies that can be made on the ARG.
ARG-based genome-wide analysis of cacao cultivars
2012-01-01
Background Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. Results While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG. As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci from a genome of approximately 400 megabases. The results are visualized both as MDS plots and as classification trees. To evaluate the accuracy of the ARG approach, we compare the results with those available in literature. Conclusions We have extended the ARG model to incorporate genome-wide (ensemble of multiple chromosomes) data in a natural way. We present a simple scheme to implement this in practice. Finally, this is the first time that a plant population data set is being studied by estimating its underlying ARG. We demonstrate an overall precision of 0.92 and an overall recall of 0.93 of the ARG-based classification, with respect to the gold standard. While we have corroborated the classification of the samples with that in literature, this opens the door to other potential studies that can be made on the ARG. PMID:23281769
CRF: detection of CRISPR arrays using random forest.
Wang, Kai; Liang, Chun
2017-01-01
CRISPRs (clustered regularly interspaced short palindromic repeats) are particular repeat sequences found in wide range of bacteria and archaea genomes. Several tools are available for detecting CRISPR arrays in the genomes of both domains. Here we developed a new web-based CRISPR detection tool named CRF (CRISPR Finder by Random Forest). Different from other CRISPR detection tools, a random forest classifier was used in CRF to filter out invalid CRISPR arrays from all putative candidates and accordingly enhanced detection accuracy. In CRF, particularly, triplet elements that combine both sequence content and structure information were extracted from CRISPR repeats for classifier training. The classifier achieved high accuracy and sensitivity. Moreover, CRF offers a highly interactive web interface for robust data visualization that is not available among other CRISPR detection tools. After detection, the query sequence, CRISPR array architecture, and the sequences and secondary structures of CRISPR repeats and spacers can be visualized for visual examination and validation. CRF is freely available at http://bioinfolab.miamioh.edu/crf/home.php.
Exploring variation-aware contig graphs for (comparative) metagenomics using MaryGold
Nijkamp, Jurgen F.; Pop, Mihai; Reinders, Marcel J. T.; de Ridder, Dick
2013-01-01
Motivation: Although many tools are available to study variation and its impact in single genomes, there is a lack of algorithms for finding such variation in metagenomes. This hampers the interpretation of metagenomics sequencing datasets, which are increasingly acquired in research on the (human) microbiome, in environmental studies and in the study of processes in the production of foods and beverages. Existing algorithms often depend on the use of reference genomes, which pose a problem when a metagenome of a priori unknown strain composition is studied. In this article, we develop a method to perform reference-free detection and visual exploration of genomic variation, both within a single metagenome and between metagenomes. Results: We present the MaryGold algorithm and its implementation, which efficiently detects bubble structures in contig graphs using graph decomposition. These bubbles represent variable genomic regions in closely related strains in metagenomic samples. The variation found is presented in a condensed Circos-based visualization, which allows for easy exploration and interpretation of the found variation. We validated the algorithm on two simulated datasets containing three respectively seven Escherichia coli genomes and showed that finding allelic variation in these genomes improves assemblies. Additionally, we applied MaryGold to publicly available real metagenomic datasets, enabling us to find within-sample genomic variation in the metagenomes of a kimchi fermentation process, the microbiome of a premature infant and in microbial communities living on acid mine drainage. Moreover, we used MaryGold for between-sample variation detection and exploration by comparing sequencing data sampled at different time points for both of these datasets. Availability: MaryGold has been written in C++ and Python and can be downloaded from http://bioinformatics.tudelft.nl/software Contact: d.deridder@tudelft.nl PMID:24058058
Efficient CRISPR/Cas9-based genome editing in carrot cells.
Klimek-Chodacka, Magdalena; Oleszkiewicz, Tomasz; Lowder, Levi G; Qi, Yiping; Baranski, Rafal
2018-04-01
The first report presenting successful and efficient carrot genome editing using CRISPR/Cas9 system. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas9) is a powerful genome editing tool that has been widely adopted in model organisms recently, but has not been used in carrot-a model species for in vitro culture studies and an important health-promoting crop grown worldwide. In this study, for the first time, we report application of the CRISPR/Cas9 system for efficient targeted mutagenesis of the carrot genome. Multiplexing CRISPR/Cas9 vectors expressing two single-guide RNA (gRNAs) targeting the carrot flavanone-3-hydroxylase (F3H) gene were tested for blockage of the anthocyanin biosynthesis in a model purple-colored callus using Agrobacterium-mediated genetic transformation. This approach allowed fast and visual comparison of three codon-optimized Cas9 genes and revealed that the most efficient one in generating F3H mutants was the Arabidopsis codon-optimized AteCas9 gene with up to 90% efficiency. Knockout of F3H gene resulted in the discoloration of calli, validating the functional role of this gene in the anthocyanin biosynthesis in carrot as well as providing a visual marker for screening successfully edited events. Most resulting mutations were small Indels, but long chromosome fragment deletions of 116-119 nt were also generated with simultaneous cleavage mediated by two gRNAs. The results demonstrate successful site-directed mutagenesis in carrot with CRISPR/Cas9 and the usefulness of a model callus culture to validate genome editing systems. Given that the carrot genome has been sequenced recently, our timely study sheds light on the promising application of genome editing tools for boosting basic and translational research in this important vegetable crop.
SVGenes: a library for rendering genomic features in scalable vector graphic format.
Etherington, Graham J; MacLean, Daniel
2013-08-01
Drawing genomic features in attractive and informative ways is a key task in visualization of genomics data. Scalable Vector Graphics (SVG) format is a modern and flexible open standard that provides advanced features including modular graphic design, advanced web interactivity and animation within a suitable client. SVGs do not suffer from loss of image quality on re-scaling and provide the ability to edit individual elements of a graphic on the whole object level independent of the whole image. These features make SVG a potentially useful format for the preparation of publication quality figures including genomic objects such as genes or sequencing coverage and for web applications that require rich user-interaction with the graphical elements. SVGenes is a Ruby-language library that uses SVG primitives to render typical genomic glyphs through a simple and flexible Ruby interface. The library implements a simple Page object that spaces and contains horizontal Track objects that in turn style, colour and positions features within them. Tracks are the level at which visual information is supplied providing the full styling capability of the SVG standard. Genomic entities like genes, transcripts and histograms are modelled in Glyph objects that are attached to a track and take advantage of SVG primitives to render the genomic features in a track as any of a selection of defined glyphs. The feature model within SVGenes is simple but flexible and not dependent on particular existing gene feature formats meaning graphics for any existing datasets can easily be created without need for conversion. The library is provided as a Ruby Gem from https://rubygems.org/gems/bio-svgenes under the MIT license, and open source code is available at https://github.com/danmaclean/bioruby-svgenes also under the MIT License. dan.maclean@tsl.ac.uk.
Louis, Alexandra; Nguyen, Nga Thi Thuy; Muffato, Matthieu; Roest Crollius, Hugues
2015-01-01
The Genomicus web server (http://www.genomicus.biologie.ens.fr/genomicus) is a visualization tool allowing comparative genomics in four different phyla (Vertebrate, Fungi, Metazoan and Plants). It provides access to genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants. Here we present the new features available for vertebrate genome with a focus on new graphical tools. The interface to enter the database has been improved, two pairwise genome comparison tools are now available (KaryoView and MatrixView) and the multiple genome comparison tools (PhyloView and AlignView) propose three new kinds of representation and a more intuitive menu. These new developments have been implemented for Genomicus portal dedicated to vertebrates. This allows the analysis of 68 extant animal genomes, as well as 58 ancestral reconstructed genomes. The Genomicus server also provides access to ancestral gene orders, to facilitate evolutionary and comparative genomics studies, as well as computationally predicted regulatory interactions, thanks to the representation of conserved non-coding elements with their putative gene targets. PMID:25378326
Gene context analysis in the Integrated Microbial Genomes (IMG) data management system.
Mavromatis, Konstantinos; Chu, Ken; Ivanova, Natalia; Hooper, Sean D; Markowitz, Victor M; Kyrpides, Nikos C
2009-11-24
Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov.
Energy Landscapes of Folding Chromosomes
NASA Astrophysics Data System (ADS)
Zhang, Bin
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data.
Koch, Alexander; De Meyer, Tim; Jeschke, Jana; Van Criekinge, Wim
2015-08-26
In recent years, increasing amounts of genomic and clinical cancer data have become publically available through large-scale collaborative projects such as The Cancer Genome Atlas (TCGA). However, as long as these datasets are difficult to access and interpret, they are essentially useless for a major part of the research community and their scientific potential will not be fully realized. To address these issues we developed MEXPRESS, a straightforward and easy-to-use web tool for the integration and visualization of the expression, DNA methylation and clinical TCGA data on a single-gene level ( http://mexpress.be ). In comparison to existing tools, MEXPRESS allows researchers to quickly visualize and interpret the different TCGA datasets and their relationships for a single gene, as demonstrated for GSTP1 in prostate adenocarcinoma. We also used MEXPRESS to reveal the differences in the DNA methylation status of the PAM50 marker gene MLPH between the breast cancer subtypes and how these differences were linked to the expression of MPLH. We have created a user-friendly tool for the visualization and interpretation of TCGA data, offering clinical researchers a simple way to evaluate the TCGA data for their genes or candidate biomarkers of interest.
Understanding How to Build Long-Lived Learning Collaborators
2016-03-16
discrimination in learning, and dynamic encoding strategies to improve visual encoding for learning via analogical generalization. We showed that spatial concepts...a 20,000 sketch corpus to examine the tradeoffs involved in visual representation and analogical generalization. 15. SUBJECT TERMS...strategies to improve visual encoding for learning via analogical generalization. We showed that spatial concepts can be learned via analogical
Assessment of Indoor Route-finding Technology for People with Visual Impairment
Kalia, Amy A.; Legge, Gordon E.; Roy, Rudrava; Ogale, Advait
2010-01-01
This study investigated navigation with route instructions generated by digital-map software and synthetic speech. Participants, either visually impaired or sighted wearing blind folds, successfully located rooms in an unfamiliar building. Users with visual impairment demonstrated better route-finding performance when the technology provided distance information in number of steps rather than walking time or number of feet. PMID:21869851
Survey of Network Visualization Tools
2007-12-01
Dimensionality • 2D Comments: Deployment Type: • Components for tool building • Standalone Tool OS: • Windows Extensibility • ActiveX ...Visual Basic Comments: Interoperability Daisy is fully compliant with Microsoft’s ActiveX , therefore, other Windows based programs can...other functions that improve analytic decision making. Available in ActiveX , C++, Java, and .NET editions. • Tom Sawyer Visualization: Enables you to
Visualization of the Construction of Ancient Roman Buildings in Ostia Using Point Cloud Data
NASA Astrophysics Data System (ADS)
Hori, Y.; Ogawa, T.
2017-02-01
The implementation of laser scanning in the field of archaeology provides us with an entirely new dimension in research and surveying. It allows us to digitally recreate individual objects, or entire cities, using millions of three-dimensional points grouped together in what is referred to as "point clouds". In addition, the visualization of the point cloud data, which can be used in the final report by archaeologists and architects, should usually be produced as a JPG or TIFF file. Not only the visualization of point cloud data, but also re-examination of older data and new survey of the construction of Roman building applying remote-sensing technology for precise and detailed measurements afford new information that may lead to revising drawings of ancient buildings which had been adduced as evidence without any consideration of a degree of accuracy, and finally can provide new research of ancient buildings. We used laser scanners at fields because of its speed, comprehensive coverage, accuracy and flexibility of data manipulation. Therefore, we "skipped" many of post-processing and focused on the images created from the meta-data simply aligned using a tool which extended automatic feature-matching algorithm and a popular renderer that can provide graphic results.
Ni, Guiyan; Cavero, David; Fangmann, Anna; Erbe, Malena; Simianer, Henner
2017-01-16
With the availability of next-generation sequencing technologies, genomic prediction based on whole-genome sequencing (WGS) data is now feasible in animal breeding schemes and was expected to lead to higher predictive ability, since such data may contain all genomic variants including causal mutations. Our objective was to compare prediction ability with high-density (HD) array data and WGS data in a commercial brown layer line with genomic best linear unbiased prediction (GBLUP) models using various approaches to weight single nucleotide polymorphisms (SNPs). A total of 892 chickens from a commercial brown layer line were genotyped with 336 K segregating SNPs (array data) that included 157 K genic SNPs (i.e. SNPs in or around a gene). For these individuals, genome-wide sequence information was imputed based on data from re-sequencing runs of 25 individuals, leading to 5.2 million (M) imputed SNPs (WGS data), including 2.6 M genic SNPs. De-regressed proofs (DRP) for eggshell strength, feed intake and laying rate were used as quasi-phenotypic data in genomic prediction analyses. Four weighting factors for building a trait-specific genomic relationship matrix were investigated: identical weights, -(log 10 P) from genome-wide association study results, squares of SNP effects from random regression BLUP, and variable selection based weights (known as BLUP|GA). Predictive ability was measured as the correlation between DRP and direct genomic breeding values in five replications of a fivefold cross-validation. Averaged over the three traits, the highest predictive ability (0.366 ± 0.075) was obtained when only genic SNPs from WGS data were used. Predictive abilities with genic SNPs and all SNPs from HD array data were 0.361 ± 0.072 and 0.353 ± 0.074, respectively. Prediction with -(log 10 P) or squares of SNP effects as weighting factors for building a genomic relationship matrix or BLUP|GA did not increase accuracy, compared to that with identical weights, regardless of the SNP set used. Our results show that little or no benefit was gained when using all imputed WGS data to perform genomic prediction compared to using HD array data regardless of the weighting factors tested. However, using only genic SNPs from WGS data had a positive effect on prediction ability.
CoCoNUT: an efficient system for the comparison and analysis of genomes
2008-01-01
Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics. PMID:19014477
Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A
2016-10-15
Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
GenColors-based comparative genome databases for small eukaryotic genomes.
Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot
2013-01-01
Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.
Genomic analyses provide insights into the history of tomato breeding.
Lin, Tao; Zhu, Guangtao; Zhang, Junhong; Xu, Xiangyang; Yu, Qinghui; Zheng, Zheng; Zhang, Zhonghua; Lun, Yaoyao; Li, Shuai; Wang, Xiaoxuan; Huang, Zejun; Li, Junming; Zhang, Chunzhi; Wang, Taotao; Zhang, Yuyang; Wang, Aoxue; Zhang, Yancong; Lin, Kui; Li, Chuanyou; Xiong, Guosheng; Xue, Yongbiao; Mazzucato, Andrea; Causse, Mathilde; Fei, Zhangjun; Giovannoni, James J; Chetelat, Roger T; Zamir, Dani; Städler, Thomas; Li, Jingfu; Ye, Zhibiao; Du, Yongchen; Huang, Sanwen
2014-11-01
The histories of crop domestication and breeding are recorded in genomes. Although tomato is a model species for plant biology and breeding, the nature of human selection that altered its genome remains largely unknown. Here we report a comprehensive analysis of tomato evolution based on the genome sequences of 360 accessions. We provide evidence that domestication and improvement focused on two independent sets of quantitative trait loci (QTLs), resulting in modern tomato fruit ∼100 times larger than its ancestor. Furthermore, we discovered a major genomic signature for modern processing tomatoes, identified the causative variants that confer pink fruit color and precisely visualized the linkage drag associated with wild introgressions. This study outlines the accomplishments as well as the costs of historical selection and provides molecular insights toward further improvement.
Fort Bliss Standards for the Treatment of Historic Buildings
2008-05-01
visual disparity between the two materials. Typical historical uses for sandstone included • Urban row houses, commercial buildings and churches...migration within walls due to interior condensation and humidity, va- por drive problems caused by furnace, bathroom and kitchen vents, and rising damp...Replacing Deteriorated Woodwork • Historic Exteriors: Preserving Wood • Preservation Brief #31: Mothballing Historic Buildings Pests can be
ERIC Educational Resources Information Center
Baker, Kate
2014-01-01
The context-free "object building," the sculptural form, reigned in schools of architecture for decades. As we are finally moving on from 20th century modernism, there is an urgency to re-place buildings within their contexts. All too often, students with a background in the discipline of architecture, struggle to design buildings that…
Maunula, Leena; Rönnqvist, M; Åberg, R; Lunden, J; Nevas, M
2017-09-01
Norovirus (NoV) gastroenteritis outbreaks appear frequently in food service operations (FSOs), such as in restaurants and canteens. In this study the presence of NoV and adenovirus (AdV) genomes was investigated on the surfaces of premises, especially in kitchens, of 30 FSOs where foodborne gastroenteritis outbreaks were suspected. The objective was to establish a possible association between the presence of virus genomes on surfaces and a visual hygienic status of the FSOs. NoV genome was found in 11 and AdV genome in 8 out of 30 FSOs. In total, 291 swabs were taken, of which 8.9% contained NoV and 5.8% AdV genome. The presence of NoV genomes on the surfaces was not found to associate with lower hygiene level of the premises when based on visual inspection; most (7/9) of the FSOs with NoV contamination on surfaces and a completed evaluation form had a good hygiene level (the best category). Restaurants had a significantly lower proportion of NoV-positive swabs compared to other FSOs (canteens, cafeteria, schools etc.) taken together (p = 0.00014). The presence of a designated break room for the workers was found to be significantly more common in AdV-negative kitchens (p = 0.046). Our findings suggest that swabbing is necessary for revealing viral contamination of surfaces and emphasis of hygiene inspections should be on the food handling procedures, and the education of food workers on virus transmission.
Investigating Methods for Serving Visualizations of Vertical Profiles
NASA Astrophysics Data System (ADS)
Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.
2017-12-01
Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.
Jäger, Daniel T.; Rüsseler, Jascha
2016-01-01
The Broaden-and-Build Theory states that positive emotions broaden cognition and therefore build personal resources. However, missing theoretical precision regarding the interaction of the cognitive processes involved offers a variety of possible explanations for the mechanisms of broadening and building. In Experiment 1 we tested the causality assumption which states that positive emotions first broaden visual attention which in turn leads to broadened cognition. We examined the effects of a broadened, narrowed or neutral attentional scope of 72 subjects (30 men) on their momentary thought-action repertoire. Results showed that there were no significant differences between groups regarding the breadth or the content of the thought-action repertoire. In Experiment 2 we studied the non-causality hypothesis which assumes a non-causal relationship between cognitive processes. We did so by investigating the effects of negative, neutral, and positive affect on the visual attentional scope of 85 subjects (41 men) in Experiment 2a, as well as on the thought-action repertoire of 85 participants (42 men) in Experiment 2b. Results revealed an attentional broadening effect in Experiment 2a but no differences between groups concerning the breadth of the thought-action repertoire in Experiment 2b. However, a theory driven content analysis showed that positive affect promoted social actions. Thus, our results favor the non-causality assumption. Moreover, results indicate that positive emotions do not target personal resources in general but rather resources associated with social behavior. In conclusion, we argue that the Broaden-and-Build Theory should be refined. PMID:27826276
The archetype-genome exemplar in molecular dynamics and continuum mechanics
NASA Astrophysics Data System (ADS)
Greene, M. Steven; Li, Ying; Chen, Wei; Liu, Wing Kam
2014-04-01
We argue that mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, this work presents the mathematical ingredients and computational implementation of theories in solid mechanics that are (1) molecular and (2) continuum manifestations of the assembly process. Both coarse-grained molecular dynamics (CGMD) and the archetype-blending continuum (ABC) theories are formulated then applied to polymer nanocomposites (PNCs) to demonstrate the impact the components of the assembly triplet have on a material genome. CGMD simulations demonstrate the sensitivity of nanocomposite viscosities and diffusion coefficients to polymer chain types (archetype), polymer-nanoparticle interaction potentials (interaction), and the structural configuration (conformation) of dispersed nanoparticles. ABC simulations show the contributions of bulk polymer (archetype) properties, occluded region of bound rubber (interaction) properties, and microstructural binary images (conformation) to predictions of linear damping properties, the Payne effect, and localization/size effects in the same class of PNC material. The paper is light on mathematics. Instead, the focus is on the usefulness of the archetype-genome exemplar to predict system behavior inaccessible to classical theories by transitioning mechanics away from heuristic laws to mechanism-based ones. There are two core contributions of this research: (1) presentation of a fundamental axiom—the archetype-genome exemplar—to guide theory development in computational mechanics, and (2) demonstrations of its utility in modern theoretical realms: CGMD, and generalized continuum mechanics.
Integrating visualization and interaction research to improve scientific workflows.
Keefe, Daniel F
2010-01-01
Scientific-visualization research is, nearly by necessity, interdisciplinary. In addition to their collaborators in application domains (for example, cell biology), researchers regularly build on close ties with disciplines related to visualization, such as graphics, human-computer interaction, and cognitive science. One of these ties is the connection between visualization and interaction research. This isn't a new direction for scientific visualization (see the "Early Connections" sidebar). However, momentum recently seems to be increasing toward integrating visualization research (for example, effective visual presentation of data) with interaction research (for example, innovative interactive techniques that facilitate manipulating and exploring data). We see evidence of this trend in several places, including the visualization literature and conferences.
Chemical Instrumentation for the Visually Handicapped.
ERIC Educational Resources Information Center
Anderson, James L.
1982-01-01
Describes a simple, relatively inexpensive, and easily implemented approach for introducing visually handicapped students to chemical instrumentation via experiments on operational amplifiers as examples of some of the electronic building blocks of chemical instrumentation. The approach is applicable to other chemical instruments having electrical…
Update on Genomic Databases and Resources at the National Center for Biotechnology Information.
Tatusova, Tatiana
2016-01-01
The National Center for Biotechnology Information (NCBI), as a primary public repository of genomic sequence data, collects and maintains enormous amounts of heterogeneous data. Data for genomes, genes, gene expressions, gene variation, gene families, proteins, and protein domains are integrated with the analytical, search, and retrieval resources through the NCBI website, text-based search and retrieval system, provides a fast and easy way to navigate across diverse biological databases.Comparative genome analysis tools lead to further understanding of evolution processes quickening the pace of discovery. Recent technological innovations have ignited an explosion in genome sequencing that has fundamentally changed our understanding of the biology of living organisms. This huge increase in DNA sequence data presents new challenges for the information management system and the visualization tools. New strategies have been designed to bring an order to this genome sequence shockwave and improve the usability of associated data.
Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates
Stanton, Brynne C.; Nielsen, Alec A.K.; Tamsir, Alvin; Clancy, Kevin; Peterson, Todd; Voigt, Christopher A.
2014-01-01
Genetic circuits perform computational operations based on interactions between freely diffusing molecules within a cell. When transcription factors are combined to build a circuit, unintended interactions can disrupt its function. Here, we apply “part mining” to build a library of 73 TetR-family repressors gleaned from prokaryotic genomes. The operators of a subset were determined using an in vitro method and this information was used to build synthetic promoters. The promoters and repressors were screened for cross-reactions. Of these, 16 were identified that both strongly repress their cognate promoter (5- to 207-fold) and do not interact with other promoters. Each repressor:promoter pair was converted to a NOT gate and characterized. Used as a set of 16 NOR gates, there are >1054 circuits that could be built by changing the pattern of input and output promoters. This represents a large set of compatible gates that can be used to construct user-defined circuits. PMID:24316737
Sun, Sangrong; Wang, Jinpeng; Yu, Jigao; Meng, Fanbo; Xia, Ruiyan; Wang, Li; Wang, Zhenyi; Ge, Weina; Liu, Xiaojian; Li, Yuxian; Liu, Yinzhe; Yang, Nanshan; Wang, Xiyin
2017-01-01
Grass genomes are complicated structures as they share a common tetraploidization, and particular genomes have been further affected by extra polyploidizations. These events and the following genomic re-patternings have resulted in a complex, interweaving gene homology both within a genome, and between genomes. Accurately deciphering the structure of these complicated plant genomes would help us better understand their compositional and functional evolution at multiple scales. Here, we build on our previous research by performing a hierarchical alignment of the common wheat genome vis-à-vis eight other sequenced grass genomes with most up-to-date assemblies, and annotations. With this data, we constructed a list of the homologous genes, and then, in a layer-by-layer process, separated their orthology, and paralogy that were established by speciations and recursive polyploidizations, respectively. Compared with the other grasses, the far fewer collinear outparalogous genes within each of three subgenomes of common wheat suggest that homoeologous recombination, and genomic fractionation should have occurred after its formation. In sum, this work contributes to the establishment of an important and timely comparative genomics platform for researchers in the grass community and possibly beyond. Homologous gene list can be found in Supplemental material. PMID:28912789
3DScapeCS: application of three dimensional, parallel, dynamic network visualization in Cytoscape
2013-01-01
Background The exponential growth of gigantic biological data from various sources, such as protein-protein interaction (PPI), genome sequences scaffolding, Mass spectrometry (MS) molecular networking and metabolic flux, demands an efficient way for better visualization and interpretation beyond the conventional, two-dimensional visualization tools. Results We developed a 3D Cytoscape Client/Server (3DScapeCS) plugin, which adopted Cytoscape in interpreting different types of data, and UbiGraph for three-dimensional visualization. The extra dimension is useful in accommodating, visualizing, and distinguishing large-scale networks with multiple crossed connections in five case studies. Conclusions Evaluation on several experimental data using 3DScapeCS and its special features, including multilevel graph layout, time-course data animation, and parallel visualization has proven its usefulness in visualizing complex data and help to make insightful conclusions. PMID:24225050
Das, Subhadeep; Singh, Deeksha; Madduluri, Madhavi; Chandrababunaidu, Mathu Malar; Gupta, Akash
2015-01-01
We report here the draft genome sequence of Tolypothrix campylonemoides VB511288, isolated from building facades in Santiniketan, India. The members of this genus produce several compounds of commercial importance. The draft assembly is 10,627,177 bases in 135 scaffolds, and it contains 7,886 protein-coding genes, 994 pseudogenes, 18 rRNA genes, and 76 tRNA genes. PMID:25838485
Ward, Ben J; van Oosterhout, Cock
2016-03-01
HYBRIDCHECK is a software package to visualize the recombination signal in large DNA sequence data set, and it can be used to analyse recombination, genetic introgression, hybridization and horizontal gene transfer. It can scan large (multiple kb) contigs and whole-genome sequences of three or more individuals. HYBRIDCHECK is written in the r software for OS X, Linux and Windows operating systems, and it has a simple graphical user interface. In addition, the r code can be readily incorporated in scripts and analysis pipelines. HYBRIDCHECK implements several ABBA-BABA tests and visualizes the effects of hybridization and the resulting mosaic-like genome structure in high-density graphics. The package also reports the following: (i) the breakpoint positions, (ii) the number of mutations in each introgressed block, (iii) the probability that the identified region is not caused by recombination and (iv) the estimated age of each recombination event. The divergence times between the donor and recombinant sequence are calculated using a JC, K80, F81, HKY or GTR correction, and the dating algorithm is exceedingly fast. By estimating the coalescence time of introgressed blocks, it is possible to distinguish between hybridization and incomplete lineage sorting. HYBRIDCHECK is libré software and it and its manual are free to download from http://ward9250.github.io/HybridCheck/. © 2015 John Wiley & Sons Ltd.
The UCSC Genome Browser database: extensions and updates 2013.
Meyer, Laurence R; Zweig, Ann S; Hinrichs, Angie S; Karolchik, Donna; Kuhn, Robert M; Wong, Matthew; Sloan, Cricket A; Rosenbloom, Kate R; Roe, Greg; Rhead, Brooke; Raney, Brian J; Pohl, Andy; Malladi, Venkat S; Li, Chin H; Lee, Brian T; Learned, Katrina; Kirkup, Vanessa; Hsu, Fan; Heitner, Steve; Harte, Rachel A; Haeussler, Maximilian; Guruvadoo, Luvina; Goldman, Mary; Giardine, Belinda M; Fujita, Pauline A; Dreszer, Timothy R; Diekhans, Mark; Cline, Melissa S; Clawson, Hiram; Barber, Galt P; Haussler, David; Kent, W James
2013-01-01
The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic datasets. As of September 2012, genomic sequence and a basic set of annotation 'tracks' are provided for 63 organisms, including 26 mammals, 13 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms, yeast and sea hare. In the past year 19 new genome assemblies have been added, and we anticipate releasing another 28 in early 2013. Further, a large number of annotation tracks have been either added, updated by contributors or remapped to the latest human reference genome. Among these are an updated UCSC Genes track for human and mouse assemblies. We have also introduced several features to improve usability, including new navigation menus. This article provides an update to the UCSC Genome Browser database, which has been previously featured in the Database issue of this journal.
NASA Astrophysics Data System (ADS)
Takano, K.; Ito, T.
2010-12-01
There are a lot of buildings which is not experienced severe earthquakes in urban area. In Hanshin-Awaji (Kobe) Earthquake, it was presumed that 80 percent or more of the person was dead immediately after the earthquake by building collapse. Also in Haiti, a lot of buildings deprived of the life of persons. In order to prevent the earthquake damage of urban area, it is the most effective to make the building earthquake-proof. However, there are still a lot of buildings not made earthquake-proof in Japan though 15 years passed since Kobe Earthquake. In order to promote making of the building earthquake-proof, various approaches such as visualization of seismic hazard, education of disaster prevention and legal system for promotion are needed. We have developed the IT Kyoshin(strong motion) Seismometer for Building which is the observation system of the usual weak earthquake ground motion by installing a lot of acceleration sensors in building, and have been setting it up in some buildings of the University of Tokyo. We have also developed the visualization tool that can reproduce the building vibration during earthquake from the observed data. By this tool, we can successfully show where is more shaking in the building or what is the feature of building vibration easily. Such information contributes to not only promotion of making building earthquake-proof but also promotion of disaster prevention action such as fixation of bookshelf, making the safety area in building, etc. In addition, we proposed a concrete technique of the health investigation of buildings by using weak earthquake ground motion. Because there are 20 to 30 felt earthquakes in year in Tokyo area, it is possible to observe these building vibrations by using weak earthquake ground motions. In addition, we have developed the high sensitive ITK sensor which can observe from the microtremor to the felt earthquake in the place without the felt earthquake either.
Krause, Denise D
2015-01-01
There are a variety of challenges to developing strategies to improve access to health care, but access to data is critical for effective evidence-based decision-making. Many agencies and organizations throughout Mississippi have been collecting quality health data for many years. However, those data have historically resided in data silos and have not been readily shared. A strategy was developed to build and coordinate infrastructure, capacity, tools, and resources to facilitate health workforce and population health planning throughout the state. Realizing data as the foundation upon which to build, the primary objective was to develop the capacity to collect, store, maintain, visualize, and analyze data from a variety of disparate sources -- with the ultimate goal of improving access to health care. Specific aims were to: 1) build a centralized data repository and scalable informatics platform, 2) develop a data management solution for this platform and then, 3) derive value from this platform by facilitating data visualization and analysis. A managed data lake was designed and constructed for health data from disparate sources throughout the state of Mississippi. A data management application was developed to log and track all data sources, maps and geographies, and data marts. With this informatics platform as a foundation, a variety of tools are used to visualize and analyze data. To illustrate, a web mapping application was developed to examine the health workforce geographically and attractive data visualizations and dynamic dashboards were created to facilitate health planning and research. Samples of data visualizations that aim to inform health planners and policymakers are presented. Many agencies and organizations throughout the state benefit from this platform. The overarching goal is that by providing timely, reliable information to stakeholders, Mississippians in general will experience improved access to quality care.
Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji
2015-04-01
Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.
Allard, Marc W; Strain, Errol; Melka, David; Bunning, Kelly; Musser, Steven M; Brown, Eric W; Timme, Ruth
2016-08-01
The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Empowering Mayo Clinic Individualized Medicine with Genomic Data Warehousing
Horton, Iain; Lin, Yaxiong; Reed, Gay; Wiepert, Mathieu
2017-01-01
Individualized medicine enables better diagnoses and treatment decisions for patients and promotes research in understanding the molecular underpinnings of disease. Linking individual patient’s genomic and molecular information with their clinical phenotypes is crucial to these efforts. To address this need, the Center for Individualized Medicine at Mayo Clinic has implemented a genomic data warehouse and a workflow management system to bring data from institutional electronic health records and genomic sequencing data from both clinical and research bioinformatics sources into the warehouse. The system is the foundation for Mayo Clinic to build a suite of tools and interfaces to support various clinical and research use cases. The genomic data warehouse is positioned to play a key role in enhancing the research capabilities and advancing individualized patient care at Mayo Clinic. PMID:28829408
Empowering Mayo Clinic Individualized Medicine with Genomic Data Warehousing.
Horton, Iain; Lin, Yaxiong; Reed, Gay; Wiepert, Mathieu; Hart, Steven
2017-08-22
Individualized medicine enables better diagnoses and treatment decisions for patients and promotes research in understanding the molecular underpinnings of disease. Linking individual patient's genomic and molecular information with their clinical phenotypes is crucial to these efforts. To address this need, the Center for Individualized Medicine at Mayo Clinic has implemented a genomic data warehouse and a workflow management system to bring data from institutional electronic health records and genomic sequencing data from both clinical and research bioinformatics sources into the warehouse. The system is the foundation for Mayo Clinic to build a suite of tools and interfaces to support various clinical and research use cases. The genomic data warehouse is positioned to play a key role in enhancing the research capabilities and advancing individualized patient care at Mayo Clinic.
Trafficking of bluetongue virus visualized by recovery of tetracysteine-tagged virion particles.
Du, Junzheng; Bhattacharya, Bishnupriya; Ward, Theresa H; Roy, Polly
2014-11-01
Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a double-capsid insect-borne virus enclosing a genome of 10 double-stranded RNA segments. Like those of other members of the family, BTV virions are nonenveloped particles containing two architecturally complex capsids. The two proteins of the outer capsid, VP2 and VP5, are involved in BTV entry and in the delivery of the transcriptionally active core to the cell cytoplasm. Although the importance of the endocytic pathway in BTV entry has been reported, detailed analyses of entry and the role of each protein in virus trafficking have not been possible due to the lack of availability of a tagged virus. Here, for the first time, we report on the successful manipulation of a segmented genome of a nonenveloped capsid virus by the introduction of tags that were subsequently fluorescently visualized in infected cells. The genetically engineered fluorescent BTV particles were observed to enter live cells immediately after virus adsorption. Further, we showed the separation of VP2 from VP5 during virus entry and confirmed that while VP2 is shed from virions in early endosomes, virus particles still consisting of VP5 were trafficked sequentially from early to late endosomes. Since BTV infects both mammalian and insect cells, the generation of tagged viruses will allow visualization of the trafficking of BTV farther downstream in different host cells. In addition, the tagging technology has potential for transferable application to other nonenveloped complex viruses. Live-virus trafficking in host cells has been highly informative on the interactions between virus and host cells. Although the insertion of fluorescent markers into viral genomes has made it possible to study the trafficking of enveloped viruses, the physical constraints of architecturally complex capsid viruses have imposed practical limitations. In this study, we have successfully genetically engineered the segmented RNA genome of bluetongue virus (BTV), a complex nonenveloped virus belonging to the Reoviridae family. The resulting fluorescent virus particles could be visualized in virus entry studies of both live and fixed cells. This is the first time a structurally complex capsid virus has been successfully genetically manipulated to generate virus particles that could be visualized in infected cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
De novo assembly of human genomes with massively parallel short read sequencing.
Li, Ruiqiang; Zhu, Hongmei; Ruan, Jue; Qian, Wubin; Fang, Xiaodong; Shi, Zhongbin; Li, Yingrui; Li, Shengting; Shan, Gao; Kristiansen, Karsten; Li, Songgang; Yang, Huanming; Wang, Jian; Wang, Jun
2010-02-01
Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length sequences, making de novo assembly extremely challenging. Here, we describe a novel method for de novo assembly of large genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.
Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters
Rhodius, Virgil A; Segall-Shapiro, Thomas H; Sharon, Brian D; Ghodasara, Amar; Orlova, Ekaterina; Tabakh, Hannah; Burkhardt, David H; Clancy, Kevin; Peterson, Todd C; Gross, Carol A; Voigt, Christopher A
2013-01-01
Cells react to their environment through gene regulatory networks. Network integrity requires minimization of undesired crosstalk between their biomolecules. Similar constraints also limit the use of regulators when building synthetic circuits for engineering applications. Here, we mapped the promoter specificities of extracytoplasmic function (ECF) σs as well as the specificity of their interaction with anti-σs. DNA synthesis was used to build 86 ECF σs (two from every subgroup), their promoters, and 62 anti-σs identified from the genomes of diverse bacteria. A subset of 20 σs and promoters were found to be highly orthogonal to each other. This set can be increased by combining the −35 and −10 binding domains from different subgroups to build chimeras that target sequences unrepresented in any subgroup. The orthogonal σs, anti-σs, and promoters were used to build synthetic genetic switches in Escherichia coli. This represents a genome-scale resource of the properties of ECF σs and a resource for synthetic biology, where this set of well-characterized regulatory parts will enable the construction of sophisticated gene expression programs. PMID:24169405
High-throughput physical mapping of chromosomes using automated in situ hybridization.
George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V
2012-06-28
Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and, thus, the quality of genomic analyses. First, we use a high-pressure method to prepare polytene chromosome spreads. This method, originally developed for Drosophila, allows the user to visualize more details on chromosomes than the regular squashing technique. Second, a fully automated, front-end system for FISH is used for high-throughput physical genome mapping. The automated slide staining system runs multiple assays simultaneously and dramatically reduces hands-on time. Third, an automatic fluorescent imaging system, which includes a motorized slide stage, automatically scans and photographs labeled chromosomes after FISH. This system is especially useful for identifying and visualizing multiple chromosomal plates on the same slide. In addition, the scanning process captures a more uniform FISH result. Overall, the automated high-throughput physical mapping protocol is more efficient than a standard manual protocol.
Enhancing knowledge discovery from cancer genomics data with Galaxy
Albuquerque, Marco A.; Grande, Bruno M.; Ritch, Elie J.; Pararajalingam, Prasath; Jessa, Selin; Krzywinski, Martin; Grewal, Jasleen K.; Shah, Sohrab P.; Boutros, Paul C.
2017-01-01
Abstract The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker. PMID:28327945
Enhancing knowledge discovery from cancer genomics data with Galaxy.
Albuquerque, Marco A; Grande, Bruno M; Ritch, Elie J; Pararajalingam, Prasath; Jessa, Selin; Krzywinski, Martin; Grewal, Jasleen K; Shah, Sohrab P; Boutros, Paul C; Morin, Ryan D
2017-05-01
The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker. © The Author 2017. Published by Oxford University Press.
7 CFR 650.24 - Scenic beauty (visual resource).
Code of Federal Regulations, 2013 CFR
2013-01-01
... conservation districts. This is best accomplished by considering the landscape visual resource when providing... develop the scenic beauty of the rural landscape. Department of Agriculture Secretary's Memorandum 1695..., and farmsteads; siting or positioning of structures and buildings to be in harmony with the landscape...
7 CFR 650.24 - Scenic beauty (visual resource).
Code of Federal Regulations, 2014 CFR
2014-01-01
... conservation districts. This is best accomplished by considering the landscape visual resource when providing... develop the scenic beauty of the rural landscape. Department of Agriculture Secretary's Memorandum 1695..., and farmsteads; siting or positioning of structures and buildings to be in harmony with the landscape...
SNPversity: A web-based tool for visualizing diversity
USDA-ARS?s Scientific Manuscript database
Background: Many stand-alone desktop software suites exist to visualize single nucleotide polymorphisms (SNP) diversity, but web-based software that can be easily implemented and used for biological databases is absent. SNPversity was created to answer this need by building an open-source visualizat...
Facilitating Walking by Young Children with Visual Impairments.
ERIC Educational Resources Information Center
Lowry, Susan Shier; Hatton, Deborah D.
2002-01-01
Discussion of ways to encourage walking by young children with visual impairments first notes factors that constrain motor development. Suggestions include providing incentives for movement, building trust, fostering postural readiness, encouraging cruising, utilizing familiar spaces and short distances, and using protective and support devices…
Loftus, Stacie K
2018-05-01
The number of melanocyte- and melanoma-derived next generation sequence genome-scale datasets have rapidly expanded over the past several years. This resource guide provides a summary of publicly available sources of melanocyte cell derived whole genome, exome, mRNA and miRNA transcriptome, chromatin accessibility and epigenetic datasets. Also highlighted are bioinformatic resources and tools for visualization and data queries which allow researchers a genome-scale view of the melanocyte. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Indoor Navigation by People with Visual Impairment Using a Digital Sign System
Legge, Gordon E.; Beckmann, Paul J.; Tjan, Bosco S.; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan
2013-01-01
There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects—blind, low vision, blindfolded sighted, and normally sighted controls—were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156
Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C
2005-04-01
We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.
Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.
Lin, Yao-Cheng; Boone, Morgane; Meuris, Leander; Lemmens, Irma; Van Roy, Nadine; Soete, Arne; Reumers, Joke; Moisse, Matthieu; Plaisance, Stéphane; Drmanac, Radoje; Chen, Jason; Speleman, Frank; Lambrechts, Diether; Van de Peer, Yves; Tavernier, Jan; Callewaert, Nico
2014-09-03
The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.
The topography of mutational processes in breast cancer genomes
Morganella, Sandro; Alexandrov, Ludmil B.; Glodzik, Dominik; ...
2016-01-01
Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription,more » DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Lastly, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.« less
DCODE.ORG Anthology of Comparative Genomic Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2005-01-11
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a toolmore » for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.« less
UCSC genome browser: deep support for molecular biomedical research.
Mangan, Mary E; Williams, Jennifer M; Lathe, Scott M; Karolchik, Donna; Lathe, Warren C
2008-01-01
The volume and complexity of genomic sequence data, and the additional experimental data required for annotation of the genomic context, pose a major challenge for display and access for biomedical researchers. Genome browsers organize this data and make it available in various ways to extract useful information to advance research projects. The UCSC Genome Browser is one of these resources. The official sequence data for a given species forms the framework to display many other types of data such as expression, variation, cross-species comparisons, and more. Visual representations of the data are available for exploration. Data can be queried with sequences. Complex database queries are also easily achieved with the Table Browser interface. Associated tools permit additional query types or access to additional data sources such as images of in situ localizations. Support for solving researcher's issues is provided with active discussion mailing lists and by providing updated training materials. The UCSC Genome Browser provides a source of deep support for a wide range of biomedical molecular research (http://genome.ucsc.edu).
Kablammo: an interactive, web-based BLAST results visualizer.
Wintersinger, Jeff A; Wasmuth, James D
2015-04-15
Kablammo is a web-based application that produces interactive, vector-based visualizations of sequence alignments generated by BLAST. These visualizations can illustrate many features, including shared protein domains, chromosome structural modifications and genome misassembly. Kablammo can be used at http://kablammo.wasmuthlab.org. For a local installation, the source code and instructions are available under the MIT license at http://github.com/jwintersinger/kablammo. jeff@wintersinger.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A dictionary based informational genome analysis
2012-01-01
Background In the post-genomic era several methods of computational genomics are emerging to understand how the whole information is structured within genomes. Literature of last five years accounts for several alignment-free methods, arisen as alternative metrics for dissimilarity of biological sequences. Among the others, recent approaches are based on empirical frequencies of DNA k-mers in whole genomes. Results Any set of words (factors) occurring in a genome provides a genomic dictionary. About sixty genomes were analyzed by means of informational indexes based on genomic dictionaries, where a systemic view replaces a local sequence analysis. A software prototype applying a methodology here outlined carried out some computations on genomic data. We computed informational indexes, built the genomic dictionaries with different sizes, along with frequency distributions. The software performed three main tasks: computation of informational indexes, storage of these in a database, index analysis and visualization. The validation was done by investigating genomes of various organisms. A systematic analysis of genomic repeats of several lengths, which is of vivid interest in biology (for example to compute excessively represented functional sequences, such as promoters), was discussed, and suggested a method to define synthetic genetic networks. Conclusions We introduced a methodology based on dictionaries, and an efficient motif-finding software application for comparative genomics. This approach could be extended along many investigation lines, namely exported in other contexts of computational genomics, as a basis for discrimination of genomic pathologies. PMID:22985068
ERIC Educational Resources Information Center
Thompson, Ella Belzberg
2014-01-01
In 1999, it was necessary to build an interface for the Shoah Foundation's Visual History Archive (the world's largest digital video archive at the time) that constituted over 120,000 hours of video of over 52,000 video testimonies of Holocaust survivors, rescuers and witnesses. In order to build this educational research interface, an…
Shinkai, Yoichi; Kuramochi, Masahiro; Doi, Motomichi
2018-05-03
Recently, advances in next-generation sequencing technologies have enabled genome-wide analyses of epigenetic modifications; however, it remains difficult to analyze the states of histone modifications at a single-cell resolution in living multicellular organisms because of the heterogeneity within cellular populations. Here we describe a simple method to visualize histone modifications on the specific sequence of target locus at a single-cell resolution in living Caenorhabditis elegans , by combining the LacO/LacI system and a genetically-encoded H4K20me1-specific probe, "mintbody". We demonstrate that Venus-labeled mintbody and mTurquoise2-labeled LacI can co-localize on an artificial chromosome carrying both the target locus and LacO sequences, where H4K20me1 marks the target locus. We demonstrate that our visualization method can precisely detect H4K20me1 depositions on the her-1 gene sequences on the artificial chromosome, to which the dosage compensation complex binds to regulate sex determination. The degree of H4K20me1 deposition on the her-1 sequences on the artificial chromosome correlated strongly with sex, suggesting that, using the artificial chromosome, this method can reflect context-dependent changes of H4K20me1 on endogenous genomes. Furthermore, we demonstrate live imaging of H4K20me1 depositions on the artificial chromosome. Combined with ChIP assays, this mintbody-LacO/LacI visualization method will enable analysis of developmental and context-dependent alterations of locus-specific histone modifications in specific cells and elucidation of the underlying molecular mechanisms. Copyright © 2018, G3: Genes, Genomes, Genetics.
ERIC Educational Resources Information Center
Scott Dunda, Jessica Mae
2017-01-01
This article is focused on building interdependence among diverse learners through four specific engagements in the art room: Friend/Family Involvement, Team-Building, Leadership Habits, and Service Learning. These strategies have been beneficial to the author in creating a sustainable model for high-quality visual arts instruction.
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.
Simonyan, Vahan; Mazumder, Raja
2014-09-30
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis
Simonyan, Vahan; Mazumder, Raja
2014-01-01
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953
INSIGHT: RFID and Bluetooth enabled automated space for the blind and visually impaired.
Ganz, Aura; Gandhi, Siddhesh Rajan; Wilson, Carole; Mullett, Gary
2010-01-01
In this paper we introduce INSIGHT, an indoor location tracking and navigation system to help the blind and visually impaired to easily navigate to their chosen destination in a public building. INSIGHT makes use of RFID and Bluetooth technology deployed within the building to locate and track the users. The PDA based user device interacts with INSIGHT server and provides the user navigation instructions in an audio form. The proposed system provides multi-resolution localization of the users, facilitating the provision of accurate navigation instructions when the user is in the vicinity of the RFID tags as well as accommodating a PANIC button which provides navigation instructions when the user is anywhere in the building. Moreover, the system will continuously monitor the zone in which the user walks. This will enable the system to identify if the user is located in the wrong zone of the building which may not lead to the desired destination.
Wernet, Mathias F.; Klovstad, Martha; Clandinin, Thomas R.
2014-01-01
Arthropod RNA viruses pose a serious threat to human health, yet many aspects of their replication cycle remain incompletely understood. Here we describe a versatile Drosophila toolkit of transgenic, self-replicating genomes (‘replicons’) from Sindbis virus that allow rapid visualization and quantification of viral replication in vivo. We generated replicons expressing Luciferase for the quantification of viral replication, serving as useful new tools for large-scale genetic screens for identifying cellular pathways that influence viral replication. We also present a new binary system in which replication-deficient viral genomes can be activated ‘in trans’, through co-expression of an intact replicon contributing an RNA-dependent RNA polymerase. The utility of this toolkit for studying virus biology is demonstrated by the observation of stochastic exclusion between replicons expressing different fluorescent proteins, when co-expressed under control of the same cellular promoter. This process is analogous to ‘superinfection exclusion’ between virus particles in cell culture, a process that is incompletely understood. We show that viral polymerases strongly prefer to replicate the genome that encoded them, and that almost invariably only a single virus genome is stochastically chosen for replication in each cell. Our in vivo system now makes this process amenable to detailed genetic dissection. Thus, this toolkit allows the cell-type specific, quantitative study of viral replication in a genetic model organism, opening new avenues for molecular, genetic and pharmacological dissection of virus biology and tool development. PMID:25386852
CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.
Deng, Wulan; Shi, Xinghua; Tjian, Robert; Lionnet, Timothée; Singer, Robert H
2015-09-22
Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis.
Zhang, Chao; Gao, Yang; Liu, Jiaojiao; Xue, Zhe; Lu, Yan; Deng, Lian; Tian, Lei; Feng, Qidi; Xu, Shuhua
2018-01-04
There are a growing number of studies focusing on delineating genetic variations that are associated with complex human traits and diseases due to recent advances in next-generation sequencing technologies. However, identifying and prioritizing disease-associated causal variants relies on understanding the distribution of genetic variations within and among populations. The PGG.Population database documents 7122 genomes representing 356 global populations from 107 countries and provides essential information for researchers to understand human genomic diversity and genetic ancestry. These data and information can facilitate the design of research studies and the interpretation of results of both evolutionary and medical studies involving human populations. The database is carefully maintained and constantly updated when new data are available. We included miscellaneous functions and a user-friendly graphical interface for visualization of genomic diversity, population relationships (genetic affinity), ancestral makeup, footprints of natural selection, and population history etc. Moreover, PGG.Population provides a useful feature for users to analyze data and visualize results in a dynamic style via online illustration. The long-term ambition of the PGG.Population, together with the joint efforts from other researchers who contribute their data to our database, is to create a comprehensive depository of geographic and ethnic variation of human genome, as well as a platform bringing influence on future practitioners of medicine and clinical investigators. PGG.Population is available at https://www.pggpopulation.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Klee, Kathrin; Ernst, Rebecca; Spannagl, Manuel; Mayer, Klaus F X
2007-08-30
Apollo, a genome annotation viewer and editor, has become a widely used genome annotation and visualization tool for distributed genome annotation projects. When using Apollo for annotation, database updates are carried out by uploading intermediate annotation files into the respective database. This non-direct database upload is laborious and evokes problems of data synchronicity. To overcome these limitations we extended the Apollo data adapter with a generic, configurable web service client that is able to retrieve annotation data in a GAME-XML-formatted string and pass it on to Apollo's internal input routine. This Apollo web service adapter, Apollo2Go, simplifies the data exchange in distributed projects and aims to render the annotation process more comfortable. The Apollo2Go software is freely available from ftp://ftpmips.gsf.de/plants/apollo_webservice.
Klee, Kathrin; Ernst, Rebecca; Spannagl, Manuel; Mayer, Klaus FX
2007-01-01
Background Apollo, a genome annotation viewer and editor, has become a widely used genome annotation and visualization tool for distributed genome annotation projects. When using Apollo for annotation, database updates are carried out by uploading intermediate annotation files into the respective database. This non-direct database upload is laborious and evokes problems of data synchronicity. Results To overcome these limitations we extended the Apollo data adapter with a generic, configurable web service client that is able to retrieve annotation data in a GAME-XML-formatted string and pass it on to Apollo's internal input routine. Conclusion This Apollo web service adapter, Apollo2Go, simplifies the data exchange in distributed projects and aims to render the annotation process more comfortable. The Apollo2Go software is freely available from . PMID:17760972
TMC-SNPdb: an Indian germline variant database derived from whole exome sequences.
Upadhyay, Pawan; Gardi, Nilesh; Desai, Sanket; Sahoo, Bikram; Singh, Ankita; Togar, Trupti; Iyer, Prajish; Prasad, Ratnam; Chandrani, Pratik; Gupta, Sudeep; Dutt, Amit
2016-01-01
Cancer is predominantly a somatic disease. A mutant allele present in a cancer cell genome is considered somatic when it's absent in the paired normal genome along with public SNP databases. The current build of dbSNP, the most comprehensive public SNP database, however inadequately represents several non-European Caucasian populations, posing a limitation in cancer genomic analyses of data from these populations. We present the T: ata M: emorial C: entre-SNP D: ata B: ase (TMC-SNPdb), as the first open source, flexible, upgradable, and freely available SNP database (accessible through dbSNP build 149 and ANNOVAR)-representing 114 309 unique germline variants-generated from whole exome data of 62 normal samples derived from cancer patients of Indian origin. The TMC-SNPdb is presented with a companion subtraction tool that can be executed with command line option or using an easy-to-use graphical user interface with the ability to deplete additional Indian population specific SNPs over and above dbSNP and 1000 Genomes databases. Using an institutional generated whole exome data set of 132 samples of Indian origin, we demonstrate that TMC-SNPdb could deplete 42, 33 and 28% false positive somatic events post dbSNP depletion in Indian origin tongue, gallbladder, and cervical cancer samples, respectively. Beyond cancer somatic analyses, we anticipate utility of the TMC-SNPdb in several Mendelian germline diseases. In addition to dbSNP build 149 and ANNOVAR, the TMC-SNPdb along with the subtraction tool is available for download in the public domain at the following:Database URL: http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNP/TMCSNPdp.html. © The Author(s) 2016. Published by Oxford University Press.
Agren, Rasmus; Liu, Liming; Shoaie, Saeed; Vongsangnak, Wanwipa; Nookaew, Intawat; Nielsen, Jens
2013-01-01
We present the RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox: a software suite that allows for semi-automated reconstruction of genome-scale models. It makes use of published models and/or the KEGG database, coupled with extensive gap-filling and quality control features. The software suite also contains methods for visualizing simulation results and omics data, as well as a range of methods for performing simulations and analyzing the results. The software is a useful tool for system-wide data analysis in a metabolic context and for streamlined reconstruction of metabolic networks based on protein homology. The RAVEN Toolbox workflow was applied in order to reconstruct a genome-scale metabolic model for the important microbial cell factory Penicillium chrysogenum Wisconsin54-1255. The model was validated in a bibliomic study of in total 440 references, and it comprises 1471 unique biochemical reactions and 1006 ORFs. It was then used to study the roles of ATP and NADPH in the biosynthesis of penicillin, and to identify potential metabolic engineering targets for maximization of penicillin production. PMID:23555215
Natural language processing and visualization in the molecular imaging domain.
Tulipano, P Karina; Tao, Ying; Millar, William S; Zanzonico, Pat; Kolbert, Katherine; Xu, Hua; Yu, Hong; Chen, Lifeng; Lussier, Yves A; Friedman, Carol
2007-06-01
Molecular imaging is at the crossroads of genomic sciences and medical imaging. Information within the molecular imaging literature could be used to link to genomic and imaging information resources and to organize and index images in a way that is potentially useful to researchers. A number of natural language processing (NLP) systems are available to automatically extract information from genomic literature. One existing NLP system, known as BioMedLEE, automatically extracts biological information consisting of biomolecular substances and phenotypic data. This paper focuses on the adaptation, evaluation, and application of BioMedLEE to the molecular imaging domain. In order to adapt BioMedLEE for this domain, we extend an existing molecular imaging terminology and incorporate it into BioMedLEE. BioMedLEE's performance is assessed with a formal evaluation study. The system's performance, measured as recall and precision, is 0.74 (95% CI: [.70-.76]) and 0.70 (95% CI [.63-.76]), respectively. We adapt a JAVA viewer known as PGviewer for the simultaneous visualization of images with NLP extracted information.
SEURAT: Visual analytics for the integrated analysis of microarray data
2010-01-01
Background In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. Results We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. Conclusions The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data. PMID:20525257
Gene Graphics: a genomic neighborhood data visualization web application.
Harrison, Katherine J; Crécy-Lagard, Valérie de; Zallot, Rémi
2018-04-15
The examination of gene neighborhood is an integral part of comparative genomics but no tools to produce publication quality graphics of gene clusters are available. Gene Graphics is a straightforward web application for creating such visuals. Supported inputs include National Center for Biotechnology Information gene and protein identifiers with automatic fetching of neighboring information, GenBank files and data extracted from the SEED database. Gene representations can be customized for many parameters including gene and genome names, colors and sizes. Gene attributes can be copied and pasted for rapid and user-friendly customization of homologous genes between species. In addition to Portable Network Graphics and Scalable Vector Graphics, produced representations can be exported as Tagged Image File Format or Encapsulated PostScript, formats that are standard for publication. Hands-on tutorials with real life examples inspired from publications are available for training. Gene Graphics is freely available at https://katlabs.cc/genegraphics/ and source code is hosted at https://github.com/katlabs/genegraphics. katherinejh@ufl.edu or remizallot@ufl.edu. Supplementary data are available at Bioinformatics online.
An integrative model for in-silico clinical-genomics discovery science.
Lussier, Yves A; Sarkar, Indra Nell; Cantor, Michael
2002-01-01
Human Genome discovery research has set the pace for Post-Genomic Discovery Research. While post-genomic fields focused at the molecular level are intensively pursued, little effort is being deployed in the later stages of molecular medicine discovery research, such as clinical-genomics. The objective of this study is to demonstrate the relevance and significance of integrating mainstream clinical informatics decision support systems to current bioinformatics genomic discovery science. This paper is a feasibility study of an original model enabling novel "in-silico" clinical-genomic discovery science and that demonstrates its feasibility. This model is designed to mediate queries among clinical and genomic knowledge bases with relevant bioinformatic analytic tools (e.g. gene clustering). Briefly, trait-disease-gene relationships were successfully illustrated using QMR, OMIM, SNOMED-RT, GeneCluster and TreeView. The analyses were visualized as two-dimensional dendrograms of clinical observations clustered around genes. To our knowledge, this is the first study using knowledge bases of clinical decision support systems for genomic discovery. Although this study is a proof of principle, it provides a framework for the development of clinical decision-support-system driven, high-throughput clinical-genomic technologies which could potentially unveil significant high-level functions of genes.
Coordinates and intervals in graph-based reference genomes.
Rand, Knut D; Grytten, Ivar; Nederbragt, Alexander J; Storvik, Geir O; Glad, Ingrid K; Sandve, Geir K
2017-05-18
It has been proposed that future reference genomes should be graph structures in order to better represent the sequence diversity present in a species. However, there is currently no standard method to represent genomic intervals, such as the positions of genes or transcription factor binding sites, on graph-based reference genomes. We formalize offset-based coordinate systems on graph-based reference genomes and introduce methods for representing intervals on these reference structures. We show the advantage of our methods by representing genes on a graph-based representation of the newest assembly of the human genome (GRCh38) and its alternative loci for regions that are highly variable. More complex reference genomes, containing alternative loci, require methods to represent genomic data on these structures. Our proposed notation for genomic intervals makes it possible to fully utilize the alternative loci of the GRCh38 assembly and potential future graph-based reference genomes. We have made a Python package for representing such intervals on offset-based coordinate systems, available at https://github.com/uio-cels/offsetbasedgraph . An interactive web-tool using this Python package to visualize genes on a graph created from GRCh38 is available at https://github.com/uio-cels/genomicgraphcoords .
CSAR-web: a web server of contig scaffolding using algebraic rearrangements.
Chen, Kun-Tze; Lu, Chin Lung
2018-05-04
CSAR-web is a web-based tool that allows the users to efficiently and accurately scaffold (i.e. order and orient) the contigs of a target draft genome based on a complete or incomplete reference genome from a related organism. It takes as input a target genome in multi-FASTA format and a reference genome in FASTA or multi-FASTA format, depending on whether the reference genome is complete or incomplete, respectively. In addition, it requires the users to choose either 'NUCmer on nucleotides' or 'PROmer on translated amino acids' for CSAR-web to identify conserved genomic markers (i.e. matched sequence regions) between the target and reference genomes, which are used by the rearrangement-based scaffolding algorithm in CSAR-web to order and orient the contigs of the target genome based on the reference genome. In the output page, CSAR-web displays its scaffolding result in a graphical mode (i.e. scalable dotplot) allowing the users to visually validate the correctness of scaffolded contigs and in a tabular mode allowing the users to view the details of scaffolds. CSAR-web is available online at http://genome.cs.nthu.edu.tw/CSAR-web.
Louis, Alexandra; Nguyen, Nga Thi Thuy; Muffato, Matthieu; Roest Crollius, Hugues
2015-01-01
The Genomicus web server (http://www.genomicus.biologie.ens.fr/genomicus) is a visualization tool allowing comparative genomics in four different phyla (Vertebrate, Fungi, Metazoan and Plants). It provides access to genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants. Here we present the new features available for vertebrate genome with a focus on new graphical tools. The interface to enter the database has been improved, two pairwise genome comparison tools are now available (KaryoView and MatrixView) and the multiple genome comparison tools (PhyloView and AlignView) propose three new kinds of representation and a more intuitive menu. These new developments have been implemented for Genomicus portal dedicated to vertebrates. This allows the analysis of 68 extant animal genomes, as well as 58 ancestral reconstructed genomes. The Genomicus server also provides access to ancestral gene orders, to facilitate evolutionary and comparative genomics studies, as well as computationally predicted regulatory interactions, thanks to the representation of conserved non-coding elements with their putative gene targets. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Facilitating Understanding of Movements in Dynamic Visualizations: An Embodied Perspective
ERIC Educational Resources Information Center
de Koning, Bjorn B.; Tabbers, Huib K.
2011-01-01
Learners studying mechanical or technical processes via dynamic visualizations often fail to build an accurate mental representation of the system's movements. Based on embodied theories of cognition assuming that action, perception, and cognition are closely intertwined, this paper proposes that the learning effectiveness of dynamic…
A New System To Support Knowledge Discovery: Telemakus.
ERIC Educational Resources Information Center
Revere, Debra; Fuller, Sherrilynne S.; Bugni, Paul F.; Martin, George M.
2003-01-01
The Telemakus System builds on the areas of concept representation, schema theory, and information visualization to enhance knowledge discovery from scientific literature. This article describes the underlying theories and an overview of a working implementation designed to enhance the knowledge discovery process through retrieval, visual and…
ERIC Educational Resources Information Center
Mitchell, Donald P.; Scigliano, John A.
2000-01-01
Describes the development of an online learning environment for a visually impaired professional. Topics include physical barriers, intellectual barriers, psychological barriers, and technological barriers; selecting appropriate hardware and software; and combining technologies that include personal computers, Web-based resources, network…
ERIC Educational Resources Information Center
Essley, Roger
2005-01-01
Essley was a "different learner," and now he works in schools showing teachers how visual/verbal tools can help all students, including their "different learners," succeed. One valuable tool is storyboarding, a process by which students build a story through visual stages--drafts, conferences, revisions--before writing even begins. Essley shares…
MaGnET: Malaria Genome Exploration Tool.
Sharman, Joanna L; Gerloff, Dietlind L
2013-09-15
The Malaria Genome Exploration Tool (MaGnET) is a software tool enabling intuitive 'exploration-style' visualization of functional genomics data relating to the malaria parasite, Plasmodium falciparum. MaGnET provides innovative integrated graphic displays for different datasets, including genomic location of genes, mRNA expression data, protein-protein interactions and more. Any selection of genes to explore made by the user is easily carried over between the different viewers for different datasets, and can be changed interactively at any point (without returning to a search). Free online use (Java Web Start) or download (Java application archive and MySQL database; requires local MySQL installation) at http://malariagenomeexplorer.org joanna.sharman@ed.ac.uk or dgerloff@ffame.org Supplementary data are available at Bioinformatics online.
The H3Africa policy framework: negotiating fairness in genomics.
de Vries, Jantina; Tindana, Paulina; Littler, Katherine; Ramsay, Michèle; Rotimi, Charles; Abayomi, Akin; Mulder, Nicola; Mayosi, Bongani M
2015-03-01
Human Heredity and Health in Africa (H3Africa) research seeks to promote fair collaboration between scientists in Africa and those from elsewhere. Here, we outline how concerns over inequality and exploitation led to a policy framework that places a firm focus on African leadership and capacity building as guiding principles for African genomics research. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Das, Subhadeep; Singh, Deeksha; Madduluri, Madhavi; Chandrababunaidu, Mathu Malar; Gupta, Akash; Adhikary, Siba Prasad; Tripathy, Sucheta
2015-04-02
We report here the draft genome sequence of Tolypothrix campylonemoides VB511288, isolated from building facades in Santiniketan, India. The members of this genus produce several compounds of commercial importance. The draft assembly is 10,627,177 bases in 135 scaffolds, and it contains 7,886 protein-coding genes, 994 pseudogenes, 18 rRNA genes, and 76 tRNA genes. Copyright © 2015 Das et al.
Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.
Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M
2016-03-31
Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.
Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system
Speth, Daan R.; in 't Zandt, Michiel H.; Guerrero-Cruz, Simon; Dutilh, Bas E.; Jetten, Mike S. M.
2016-01-01
Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date. PMID:27029554
Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering
Si, Tong; Xiao, Han; Zhao, Huimin
2014-01-01
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192
"Building" 3D visualization skills in mineralogy
NASA Astrophysics Data System (ADS)
Gaudio, S. J.; Ajoku, C. N.; McCarthy, B. S.; Lambart, S.
2016-12-01
Studying mineralogy is fundamental for understanding the composition and physical behavior of natural materials in terrestrial and extraterrestrial environments. However, some students struggle and ultimately get discouraged with mineralogy course material because they lack well-developed spatial visualization skills that are needed to deal with three-dimensional (3D) objects, such as crystal forms or atomic-scale structures, typically represented in two-dimensional (2D) space. Fortunately, spatial visualization can improve with practice. Our presentation demonstrates a set of experiential learning activities designed to support the development and improvement of spatial visualization skills in mineralogy using commercially available magnetic building tiles, rods, and spheres. These instructional support activities guide students in the creation of 3D models that replicate macroscopic crystal forms and atomic-scale structures in a low-pressure learning environment and at low cost. Students physically manipulate square and triangularly shaped magnetic tiles to build 3D open and closed crystal forms (platonic solids, prisms, pyramids and pinacoids). Prismatic shapes with different closing forms are used to demonstrate the relationship between crystal faces and Miller Indices. Silica tetrahedra and octahedra are constructed out of magnetic rods (bonds) and spheres (oxygen atoms) to illustrate polymerization, connectivity, and the consequences for mineral formulae. In another activity, students practice the identification of symmetry elements and plane lattice types by laying magnetic rods and spheres over wallpaper patterns. The spatial visualization skills developed and improved through our experiential learning activities are critical to the study of mineralogy and many other geology sub-disciplines. We will also present pre- and post- activity assessments that are aligned with explicit learning outcomes.
Designing for the Physically Disabled.
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto.
This publication provides instructions and visual diagrams both for adapting existing structures and for building new facilities to meet the special needs of the disabled. Each of the two main sections is divided into two parts: "The Site" and "The Building." The first section, "Modification of Existing Schools,"…
Rust, Nicole C.; DiCarlo, James J.
2012-01-01
While popular accounts suggest that neurons along the ventral visual processing stream become increasingly selective for particular objects, this appears at odds with the fact that inferior temporal cortical (IT) neurons are broadly tuned. To explore this apparent contradiction, we compared processing in two ventral stream stages (V4 and IT) in the rhesus macaque monkey. We confirmed that IT neurons are indeed more selective for conjunctions of visual features than V4 neurons, and that this increase in feature conjunction selectivity is accompanied by an increase in tolerance (“invariance”) to identity-preserving transformations (e.g. shifting, scaling) of those features. We report here that V4 and IT neurons are, on average, tightly matched in their tuning breadth for natural images (“sparseness”), and that the average V4 or IT neuron will produce a robust firing rate response (over 50% of its peak observed firing rate) to ~10% of all natural images. We also observed that sparseness was positively correlated with conjunction selectivity and negatively correlated with tolerance within both V4 and IT, consistent with selectivity-building and invariance-building computations that offset one another to produce sparseness. Our results imply that the conjunction-selectivity-building and invariance-building computations necessary to support object recognition are implemented in a balanced fashion to maintain sparseness at each stage of processing. PMID:22836252
Leigh, J.; Renambot, L.; Johnson, Aaron H.; Jeong, B.; Jagodic, R.; Schwarz, N.; Svistula, D.; Singh, R.; Aguilera, J.; Wang, X.; Vishwanath, V.; Lopez, B.; Sandin, D.; Peterka, T.; Girado, J.; Kooima, R.; Ge, J.; Long, L.; Verlo, A.; DeFanti, T.A.; Brown, M.; Cox, D.; Patterson, R.; Dorn, P.; Wefel, P.; Levy, S.; Talandis, J.; Reitzer, J.; Prudhomme, T.; Coffin, T.; Davis, B.; Wielinga, P.; Stolk, B.; Bum, Koo G.; Kim, J.; Han, S.; Corrie, B.; Zimmerman, T.; Boulanger, P.; Garcia, M.
2006-01-01
The research outlined in this paper marks an initial global cooperative effort between visualization and collaboration researchers to build a persistent virtual visualization facility linked by ultra-high-speed optical networks. The goal is to enable the comprehensive and synergistic research and development of the necessary hardware, software and interaction techniques to realize the next generation of end-user tools for scientists to collaborate on the global Lambda Grid. This paper outlines some of the visualization research projects that were demonstrated at the iGrid 2005 workshop in San Diego, California.