Sample records for building high performance

  1. 77 FR 43084 - Office of Federal High-Performance Green Buildings; Federal Buildings Personnel Training Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Federal High-Performance Green Buildings; Federal Buildings Personnel Training Act; Notification of... High- Performance Green Buildings, Office of Governmentwide Policy, General Services Administration... download from the Office of Federal High-Performance Green Building Web site Library at-- http://www.gsa...

  2. 77 FR 2296 - Office of Federal High-Performance Green Buildings; the Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... Federal High-Performance Green Buildings; the Green Building Advisory Committee; Notification of Upcoming... teleconference meetings of the Green Building Advisory Committee (the Committee). The teleconference meetings are... Federal High Performance Green Buildings, Office of Governmentwide Policy, General Services Administration...

  3. 77 FR 24494 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... agenda for the May 9, 2012, meeting of the Green Building Advisory Committee Meeting (the Committee). The... Sandler, Designated Federal Officer, Office of Federal High-Performance Green Buildings, Office of...

  4. 76 FR 35894 - Office of Federal High-Performance Green Buildings; Establishment of the Green Building Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Federal High-Performance Green Buildings; Establishment of the Green Building Advisory Committee AGENCY... announces the establishment of the Green Building Advisory Committee (the Committee), pursuant to Section... strategic plans, products and activities of the Office of Federal High-Performance Green Buildings and...

  5. 76 FR 65511 - Office of Governmentwide Policy; Office of Federal High-Performance Green Buildings; the Green...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... Governmentwide Policy; Office of Federal High- Performance Green Buildings; the Green Building Advisory Committee... meeting of the Green Building Advisory Committee Meeting (the Committee). The meeting is open to the..., Office of Federal High-Performance Green Buildings, Office of Governmentwide Policy, General Services...

  6. 76 FR 13617 - Office of Federal High-Performance Green Buildings (OFHPGB); Notice of GSA Bulletin OFHPGB 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...-Performance Green Buildings (OFHPGB); Notice of GSA Bulletin OFHPGB 2011-OGP-1 AGENCY: Office of.... Procedures Bulletins regarding the Office of Federal High-Performance Green Building are located on the... Washington, DC 20405 OFFICE OF FEDERAL HIGH-PERFORMANCE GREEN BUILDINGS GSA Bulletin 2011-OGP-1 TO: Heads of...

  7. 78 FR 56703 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... Green Building Advisory Committee Meeting (the Committee) and the schedule for a series of conference..., Designated Federal Officer, [[Page 56704

  8. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Yang, Le; Hill, David

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energymore » audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.« less

  9. High-Performance Buildings – Value, Messaging, Financial and Policy Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Molly

    At the request of the Pacific Northwest National Laboratory, an in-depth analysis of the rapidly evolving state of real estate investments, high-performance building technology, and interest in efficiency was conducted by HaydenTanner, LLC, for the U.S. Department of Energy (DOE) Building Technologies Program. The analysis objectives were • to evaluate the link between high-performance buildings and their market value • to identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to appropriately value and deploy high-performance strategies and technologies across new and existing buildings • to summarize financial mechanisms that facilitate increased investment inmore » these buildings. To meet these objectives, work consisted of a literature review of relevant writings, examination of existing and emergent financial and policy mechanisms, interviews with industry stakeholders, and an evaluation of the value implications through financial modeling. This report documents the analysis methodology and findings, conclusion and recommendations. Its intent is to support and inform the DOE Building Technologies Program on policy and program planning for the financing of high-performance new buildings and building retrofit projects.« less

  10. 77 FR 66616 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... and agenda for the November 27, 2012, meeting of the Green Building Advisory Committee Meeting (the... Green Buildings, Office of Government-wide Policy, General Services Administration, 1275 First Street NE...

  11. 78 FR 21368 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... and agenda for the May 1, 2013, meeting of the Green Building Advisory Committee Meeting (the... Green Buildings, Office of Government-wide Policy, General Services Administration, 1275 First Street NE...

  12. High Performance Schools--It's a No-Brainer.

    ERIC Educational Resources Information Center

    Nicklas, Mike

    2002-01-01

    A North Carolina middle school demonstrates that high performance, sustainable school buildings cost no more to build and are more comfortable and productive learning environments than conventional buildings. (Author)

  13. Sustainable and Net Zero Buildings on the NREL Campus | NREL

    Science.gov Websites

    NREL Campus Many of the high-performance buildings on NREL's South Table Mountain campus have achieved high-performance, sustainable buildings on the South Table Mountain (STM) campus as of FY17. The campus campus also reported 100% compliance with the Guiding Principles for High Performance Sustainable

  14. INL High Performance Building Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer D. Morton

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflectmore » an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEED®) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.« less

  15. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  16. Analysis of the Energy Performance of the Chesapeake Bay Foundation's Philip Merrill Environmental Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, B.; Deru M.; Torcellini, P.

    2005-04-01

    The Chesapeake Bay Foundation designed their new headquarters building to minimize its environmental impact on the already highly polluted Chesapeake Bay by incorporating numerous high-performance energy saving features into the building design. CBF then contacted NREL to perform a nonbiased energy evaluation of the building. Because their building attracted much attention in the sustainable design community, an unbiased evaluation was necessary to help designers replicate successes and identify and correct problem areas. This report focuses on NREL's monitoring and analysis of the overall energy performance of the building.

  17. Evaluating the Life Cycle Environmental Benefits and Trade-Offs of Water Reuse Systems for Net-Zero Buildings.

    PubMed

    Hasik, Vaclav; Anderson, Naomi E; Collinge, William O; Thiel, Cassandra L; Khanna, Vikas; Wirick, Jason; Piacentini, Richard; Landis, Amy E; Bilec, Melissa M

    2017-02-07

    Aging water infrastructure and increased water scarcity have resulted in higher interest in water reuse and decentralization. Rating systems for high-performance buildings implicitly promote the use of building-scale, decentralized water supply and treatment technologies. It is important to recognize the potential benefits and trade-offs of decentralized and centralized water systems in the context of high-performance buildings. For this reason and to fill a gap in the current literature, we completed a life cycle assessment (LCA) of the decentralized water system of a high-performance, net-zero energy, net-zero water building (NZB) that received multiple green building certifications and compared the results with two modeled buildings (conventional and water efficient) using centralized water systems. We investigated the NZB's impacts over varying lifetimes, conducted a break-even analysis, and included Monte Carlo uncertainty analysis. The results show that, although the NZB performs better in most categories than the conventional building, the water efficient building generally outperforms the NZB. The lifetime of the NZB, septic tank aeration, and use of solar energy have been found to be important factors in the NZB's impacts. While these findings are specific to the case study building, location, and treatment technologies, the framework for comparison of water and wastewater impacts of various buildings can be applied during building design to aid decision making. As we design and operate high-performance buildings, the potential trade-offs of advanced decentralized water treatment systems should be considered.

  18. EEBA || The Energy & Environmental Building Alliance || EEBA

    Science.gov Websites

    Mechanical Selling High Performance Homes Water Efficiency Zero Energy Homes Upcoming Sessions HERS Associate Search High Performance Home Summit October 16-18, 2018 - San Diego, CA High Performance Home Summit Join collaboration with high performance building professionals from across the United States and Canada. More

  19. 48 CFR 36.104 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings (available at http... shall implement high-performance sustainable building design, construction, renovation, repair...

  20. 48 CFR 36.104 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings (available at http... shall implement high-performance sustainable building design, construction, renovation, repair...

  1. 48 CFR 36.104 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Principles for Federal Leadership in High-Performance and Sustainable Buildings (available at http://www.wbdg... implement high-performance sustainable building design, construction, renovation, repair, commissioning...

  2. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheib, J.; Pless, S.; Torcellini, P.

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy usemore » requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.« less

  3. Technology Solutions Case Study: Cladding Attachment Over Mineral Fiber Insulation Board

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    Exterior insulating sheathing for high performance building enclosures is an important strategy for meeting energy efficiency requirements in many climates and can position an existing building to perform at the level of best-in-class new construction. Insulation board is also important in high performance building retrofit situations where minimal disruption at the interior is typically desired.

  4. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGES

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are intended to help architects, engineers, operators, and policy makers improve the design and operation of HPBs.« less

  5. The 10 Building Blocks of High-Performing Primary Care

    PubMed Central

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements—engaged leadership, data-driven improvement, empanelment, and team-based care—that assist the implementation of the other 6 building blocks—patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement. PMID:24615313

  6. The 10 building blocks of high-performing primary care.

    PubMed

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements-engaged leadership, data-driven improvement, empanelment, and team-based care-that assist the implementation of the other 6 building blocks-patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement.

  7. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema

    None

    2018-06-06

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  8. Practices and Processes of Leading High Performance Home Builders in the Upper Midwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Von Thoma, E.; Ojczyk, C.

    2012-12-01

    The NorthernSTAR Building America Partnership team proposed this study to gain insight into the business, sales, and construction processes of successful high performance builders. The knowledge gained by understanding the high performance strategies used by individual builders, as well as the process each followed to move from traditional builder to high performance builder, will be beneficial in proposing more in-depth research to yield specific action items to assist the industry at large transform to high performance new home construction. This investigation identified the best practices of three successful high performance builders in the upper Midwest. In-depth field analysis of themore » performance levels of their homes, their business models, and their strategies for market acceptance were explored. All three builders commonly seek ENERGY STAR certification on their homes and implement strategies that would allow them to meet the requirements for the Building America Builders Challenge program. Their desire for continuous improvement, willingness to seek outside assistance, and ambition to be leaders in their field are common themes. Problem solving to overcome challenges was accepted as part of doing business. It was concluded that crossing the gap from code-based building to high performance based building was a natural evolution for these leading builders.« less

  9. Center for the Built Environment: Research on Controls and Information

    Science.gov Websites

    Foundation Complex Case Study Publications Research Area : Sustainability, Whole Building Energy, and Other commercial building energy use. Krege Foundation Complex Case Study Analyzing performance of LEED platinum criteria for high performance buildings. Building test equipment The first in-depth case study was

  10. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    NASA Astrophysics Data System (ADS)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  11. Whole School Improvement and Restructuring as Prevention and Promotion: Lessons from STEP and the Project on High Performance Learning Communities.

    ERIC Educational Resources Information Center

    Felner, Robert D.; Favazza, Antoinette; Shim, Minsuk; Brand, Stephen; Gu, Kenneth; Noonan, Nancy

    2001-01-01

    Describes the School Transitional Environment Project and its successor, the Project on High Performance Learning Communities, that have contributed to building a model for school improvement called the High Performance Learning Communities. The model seeks to build the principles of prevention into whole school change. Presents findings from…

  12. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.

  13. Creating high performance buildings: Lower energy, better comfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less

  14. Transforming State-of-the-Art into Best Practice: A Guide for High-Performance Energy Efficient Buildings in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Reshma; Ravache, Baptiste; Sartor, Dale

    India launched the Energy Conservation Building Code (ECBC) in 2007, and a revised version in 2017 as ambitious first steps towards promoting energy efficiency in the building sector. Pioneering early adopters—building owners, A&E firms, and energy consultants—have taken the lead to design customized solutions for their energy-efficient buildings. This Guide offers a synthesizing framework, critical lessons, and guidance to meet and exceed ECBC. Its whole-building lifecycle assurance framework provides a user-friendly methodology to achieve high performance in terms of energy, environmental, and societal impact. Class A offices are selected as a target typology, being a high-growth sector, with significant opportunitiesmore » for energy savings. The practices may be extrapolated to other commercial building sectors, as well as extended to other regions with similar cultural, climatic, construction, and developmental contexts« less

  15. Analysis of the Seismic Performance of Isolated Buildings according to Life-Cycle Cost

    PubMed Central

    Dang, Yu; Han, Jian-ping; Li, Yong-tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677

  16. Analysis of the seismic performance of isolated buildings according to life-cycle cost.

    PubMed

    Dang, Yu; Han, Jian-Ping; Li, Yong-Tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment.

  17. Highlighting High Performance: Michael E. Capuano Early Childhood Center; Somerville, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2006-03-01

    This brochure describes the key high-performance building features of the Michael E. Capuano Early Childhood Center. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  18. Kosol Kiatreungwattana | NREL

    Science.gov Websites

    Kosol Kiatreungwattana Kosol Kiatreungwattana Senior Engineer - Building and Renewable Energy experience in building energy systems and renewable technologies, building energy codes, LEED certified projects, sustainable high performance building design, building energy simulation analysis/optimization

  19. Building Awards | NREL

    Science.gov Websites

    Mountain campus is designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Research Facility. South Site Entrance Building South Site Entrance Building 2013 U.S. Green Buildings Building Awards Building Awards NREL's high-performance buildings are sustainability models for the

  20. Control Limits for Building Energy End Use Based on Engineering Judgment, Frequency Analysis, and Quantile Regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henze, Gregor P.; Pless, Shanti; Petersen, Anya

    2014-02-01

    Approaches are needed to continuously characterize the energy performance of commercial buildings to allow for (1) timely response to excess energy use by building operators; and (2) building occupants to develop energy awareness and to actively engage in reducing energy use. Energy information systems, often involving graphical dashboards, are gaining popularity in presenting energy performance metrics to occupants and operators in a (near) real-time fashion. Such an energy information system, called Building Agent, has been developed at NREL and incorporates a dashboard for public display. Each building is, by virtue of its purpose, location, and construction, unique. Thus, assessing buildingmore » energy performance is possible only in a relative sense, as comparison of absolute energy use out of context is not meaningful. In some cases, performance can be judged relative to average performance of comparable buildings. However, in cases of high-performance building designs, such as NREL's Research Support Facility (RSF) discussed in this report, relative performance is meaningful only when compared to historical performance of the facility or to a theoretical maximum performance of the facility as estimated through detailed building energy modeling.« less

  1. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in high...

  2. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in high...

  3. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in high...

  4. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in high...

  5. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    PubMed

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  6. A Review of Influence of Various Types of Structural Bracing to the Structural Performance of Buildings

    NASA Astrophysics Data System (ADS)

    Razak, S. M.; Kong, T. C.; Zainol, N. Z.; Adnan, A.; Azimi, M.

    2018-03-01

    Excessive lateral drift can contribute significantly towards crack formation, leading to structural damage. The structural damage will in turn reduce the capacity of the structure and weaken it from the intended design capacity. Generally, lateral drift is more pronounced in higher and longer structure, such as high rise buildings and bridges. A typical method employed to control lateral drift is structural bracing, which works by increasing stiffness and stability of structure. This paper reviews the influence of various types of structural bracing to structural performance of buildings. The history of structural bracing is visited and the differences between numerous structural bracing in term of suitability to different types of buildings and loading, mechanisms, technical details, advantages and limitations, and the overall effect on the structural behaviour and performance are dissected. Proper and efficient structural bracing is pertinent for each high rise building as this will lead towards safer, sustainable and more economical buildings, which are cheaper to maintain throughout the life of the buildings in the future.

  7. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Poerschke, R. Beach, T. Begg

    IBACOS investigated the performance of a small-diameter high-velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This case study describes a unique vocational program at Lancaster County Career Technology Center in Mount Joy, PA, where high school students are gaining hands-on construction experience in building high performance homes with help from Building America team, Home Innovation Research Labs. This collaboration resulted in the Green Home 3, the third in a series of high performance homes for Apprentice Green. As one of LCCTC’s key educational strategies for gaining practical experience, students are involved in building real houses that incorporate state-of-the-art energy efficiency and green technologies. With two homes already completed, the Green Home 3 achieved a 44%more » whole-house energy savings over the Building America New Construction B10 Benchmark, DOE Zero Energy Ready Home (formerly Challenge Home) certification, and National Green Building Standard Gold-level certification.« less

  9. Building America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  10. A High-Granularity Approach to Modeling Energy Consumption and Savings Potential in the U.S. Residential Building Stock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Building simulations are increasingly used in various applications related to energy efficient buildings. For individual buildings, applications include: design of new buildings, prediction of retrofit savings, ratings, performance path code compliance and qualification for incentives. Beyond individual building applications, larger scale applications (across the stock of buildings at various scales: national, regional and state) include: codes and standards development, utility program design, regional/state planning, and technology assessments. For these sorts of applications, a set of representative buildings are typically simulated to predict performance of the entire population of buildings. Focusing on the U.S. single-family residential building stock, this paper willmore » describe how multiple data sources for building characteristics are combined into a highly-granular database that preserves the important interdependencies of the characteristics. We will present the sampling technique used to generate a representative set of thousands (up to hundreds of thousands) of building models. We will also present results of detailed calibrations against building stock consumption data.« less

  11. National Best Practices Manual for Building High Performance Schools

    ERIC Educational Resources Information Center

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's Rebuild America EnergySmart Schools program provides school boards, administrators, and design staff with guidance to help make informed decisions about energy and environmental issues important to school systems and communities. "The National Best Practices Manual for Building High Performance Schools" is a part of…

  12. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double wallsmore » and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.« less

  13. Building America Case Study: Design Guidance for Passive Vents in New Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  14. Measure Guideline: Ventilation Guidance for Residential High-Performance New Construction - Multifamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph

    2017-01-01

    The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamilymore » units that satisfies the requirements of ASHRAE 62.2-2016.« less

  15. Measure Guideline: Ventilation Guidance for Residential High-Performance New Construction - Multifamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph

    The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamilymore » units that satisfies the requirements of ASHRAE 62.2-2016.« less

  16. Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, D.

    2011-01-01

    Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framingmore » properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.« less

  17. Building and managing high performance, scalable, commodity mass storage systems

    NASA Technical Reports Server (NTRS)

    Lekashman, John

    1998-01-01

    The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.

  18. SUNREL Applications | Buildings | NREL

    Science.gov Websites

    used by the building design team for energy analysis. Zion National Park Visitor's Center Grand Canyon National Park Bookstore NREL Thermal Test Facility NREL Wind Site Entrance Building DPD Office Building Performance Analysis of a High-Mass Residential Building Van Geet residence The Van Geet Off-Grid Home: An

  19. Software on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    . Development Tools View list of tools for build automation, version control, and high-level or specialized scripting. Toolchains Learn about the available toolchains to build applications from source code

  20. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    DTIC Science & Technology

    2012-02-01

    for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings

  1. Model Policies in Support of High Performance School Buildings for All Children

    ERIC Educational Resources Information Center

    21st Century School Fund, 2006

    2006-01-01

    Model Policies in Support of High Performance School Buildings for All Children is to begin to create a coherent and comprehensive set of state policies that will provide the governmental infrastructure for effective and creative practice in facility management. There are examples of good policy in many states, but no state has a coherent set of…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.

  3. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grin, A.; Lstiburek, J.

    2012-09-01

    This report describes the work conducted by the Building Science Corporation (BSC) Building America Research Team's 'Energy Efficient Housing Research Partnerships' project. Based on past experience in the Building America program, they have found that combinations of materials and approaches---in other words, systems--usually provide optimum performance. No single manufacturer typically provides all of the components for an assembly, nor has the specific understanding of all the individual components necessary for optimum performance.

  4. Play-Building: Creating a Documentary Theatre Performance in a High School Setting

    ERIC Educational Resources Information Center

    van Eyck, Philip

    2013-01-01

    This paper describes a high school theatre program's project in which Anna Deavere Smith's documentary theatre work serves as the foundation for play-building for students. Research in theatre arts supports the use of play-building as a way to explore major themes of relevance to students. However, there is little research addressing documentary…

  5. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    NASA Astrophysics Data System (ADS)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  6. Building Momentum: National Trends and Prospects for High-Performance Green Buildings.

    ERIC Educational Resources Information Center

    2003

    This report is an outgrowth of the Green Building Roundtable of the U.S. Senate Committee on Environment and Public Works held in conjunction with the U.S. Green Building Council on April 24, 2002. The roundtable brought together diverse interests to educate members of Congress on green building trends and generated discussion about the economic…

  7. Technology Solutions Case Study: Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast, Devens and Easthampton, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Transformations, Inc., has extensive experience building high-performance homes - production and custom - in a variety of Massachusetts locations and uses mini-split heat pumps (MSHPs) for space conditioning in most of its homes. The use of MSHPs for simplified space-conditioning distribution provides significant first-cost savings, which offsets the increased investment in the building enclosure. In this project, the U.S. Department of Energy Building America team Building Science Corporation evaluated the long-term performance of MSHPs in 8 homes during a period of 3 years. The work examined electrical use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point)more » heating systems in high-performance housing, and the impact of open-door/closed-door status on temperature distributions.« less

  8. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this study is to be incorporated in planning of short- and long term maintenance programs of the Swedish Defence. In general the military buildings are expected to have better status than civilian buildings, due to the more rigorous control during the building process, performed by military building authorities.

  9. Achieving and Maintaining Existing Building Sustainability Certification at Georgetown University

    ERIC Educational Resources Information Center

    Payant, Richard P.

    2013-01-01

    Sustainability is the promotion of high performance, healthful, energy-efficient, and environmentally stable buildings. Buildings intended for sustainable certification must meet guidelines developed by the Leadership in Energy and Environmental Design (LEED) of the U.S. Green Building Council. The problem is that LEED certification often fails to…

  10. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    PubMed

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-21

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for "green" buildings and the use of "environmentally friendly" products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m³, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates.

  11. The seasonal performance of a liquid-desiccant air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowenstein, A.; Novosel, D.

    1995-08-01

    Prior reports on liquid-desiccant systems have focused on their steady-state operation at ARI design conditions. By studying their performance during an entire cooling season, the computer modeling presented here shows that liquid-desiccant systems can have a very high seasonal coefficient of performance (COP). For a liquid-desiccant system that uses a double-effect boiler, COPs ranging from 1.44 in a humid location (Houston) to 2.24 in a dry location (Phoenix) are achieved by fully exploiting indirect evaporative cooling and providing only the minimum latent cooling needed to meet the loads on the building. This minimizes the amount of water absorbed by themore » desiccant and, hence, the amount of thermal energy needed to regenerate it. In applications where latent loads are very high, such as processing the high volumes of ventilation air required to maintain good indoor air quality, the liquid-desiccant air conditioner again has an advantage over vapor-compression equipment. In this study, a liquid-desiccant system is modeled that cools and dehumidifies only the ventilation air of an office building in Atlanta. Although processing an airstream that is only 25% of the total air delivered to the building, the liquid-desiccant system is able to meet 52% of the building`s seasonal cooling requirements and reduce the building`s peak electrical demand by about 47%.« less

  12. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    PubMed Central

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-01

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates. PMID:28117727

  13. Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

    NASA Astrophysics Data System (ADS)

    Abbaas, Esra'a. Sh.; Saif, Ala'eddin A.; Munaaim, MAC; Azree Othuman Mydin, Md.

    2018-03-01

    The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.

    This study, sponsored by the U.S. General Services Administration’s Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  15. Technology Solutions Case Study: Design Guidance for Passive Vents in New Construction, Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In an effort to improve indoor air quality in high-performance, new construction, multifamily buildings, dedicated sources of outdoor air are being implemented. Passive vents are being selected by some design teams over other strategies because of their lower first costs and operating costs. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings constructed eight steps, which outline the design and commissioning required for these passive vents to perform as intended.

  16. The spatial frequencies influence the aesthetic judgment of buildings transculturally.

    PubMed

    Vannucci, Manila; Gori, Simone; Kojima, Haruyuki

    2014-01-01

    Recent evidence has shown that buildings designed to be high-ranking, according to the Western architectural decorum, have more impact on the minds of their beholders than low-ranking buildings. Here we investigated whether and how the aesthetic judgment for high- and low-ranking buildings was affected by differences in cultural expertise and by power spectrum differences. A group of Italian and Japanese participants performed aesthetic judgment tasks, with line drawings of high- and low-ranking buildings and with their random-phase versions (an image with the exact power spectrum of the original one but non-recognizable anymore). Irrespective of cultural expertise, high-ranking buildings and their relative random-phase versions received higher aesthetic judgments than low-ranking buildings and their random-phase versions. These findings indicate that high- and low-ranking buildings are differentiated for their aesthetic value and they show that low-level visual processes influence the aesthetic judgment based on differences in the stimuli power spectrum, irrespective of the influence of cultural expertise.

  17. Sustainable Building in China -- A Green Leap Forward?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, Richard; Ye, Qing; Feng, Wei

    2013-09-01

    China is constructing new commercial buildings at an enormous rate -- roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR). The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC) systems. We present measured data on the performance of the building,more » including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI) of 63 kWh/m 2 (20 kBtu/ft 2), which is 61% of the mean EUI value of 103 kWh/m 2 (33 kBtu/ft 2) for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.« less

  18. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  19. Construction of high-rise buildings in the Far East of Russia

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Sergey; Bugunov, Semen; Pogulyaeva, Evgeniya; Peters, Anastasiya; Kotenko, Zhanna; Grigor'yev, Danil

    2018-03-01

    The construction of high-rise buildings on plate foundation in geotechnical conditions of the Russian Far East is a complicated problem. In this respect foundation engineering becomes rather essential. In order to set a firm foundation it is necessary to take into account the pressure distribution at the structure base, in homogeneity of building deformation, which is due to collaborative geotechnical calculations complicated by a number of factors: actual over-placement of soils, the complex geometry of the building under construction, spatial work of the foundation ground with consideration for physical nonlinearity, the influence of the stiffness of the superstructure (reinforced concrete framing) upon the development of foundation deformations, foundation performance (the performance of the bed plate under the building and stairwells), the origination of internal forces in the superstructure with differential settlement. The solution of spatial problems regarding the mutual interaction between buildings and foundations with account of the factors mentioned above is fully achievable via the application of numerical modeling methodology. The work makes a review of the results of high-rise plate building numerical modeling in geotechnical conditions of the Russian Far East by way of the example of Khabarovsk city.

  20. Energy Systems Integration Facility Named Lab of the Year | News | NREL

    Science.gov Websites

    series of LEED Platinum high-performance buildings at NREL. Constructed by the design-build team of medium voltage outdoor testing areas. The total cost to build and equip ESIF was $135 million. "To

  1. Builders Challenge High Performance Builder Spotlight: Yavapai College, Chino Valley, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-12-22

    Building America Builders Challenge fact sheet on Yavapai College of Chino Valley, Arizona. These college students built a Building America Builders Challenge house that achieved the remarkably low HERS score of -3 and achieved a tight building envelope.

  2. Energy Design Analysis and Evaluation of a Proposed Air Rescue and Fire Fighting Administration Building for Teterboro Airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, B.; Pless, S.; Talbert, B.

    2003-07-01

    A new/proposed building for the Teterboro Airport was selected as a case study for High Performance Building Initiative research efforts. This report documents research-level energy analysis conducted on the Teterboro Airport building during predesign and design phases of the project.

  3. Administrator Leadership Styles and Their Impact on School Nursing Part II. A High-Performance School Nurse-Building Administrator Relationship Model.

    PubMed

    Davis, Charles R; Lynch, Erik J

    2018-06-01

    There is a significant disparity in roles, responsibilities, education, training, and expertise between the school nurse and building administrator. Because of this disparity, a natural chasm must be bridged to optimize student health, safety, well-being, and achievement in the classroom while meeting the individual needs of both professionals. This article constructs and presents a new school nurse-building administrator relationship model, the foundation of which is formed from the pioneering and seminal work on high-performance professional relationships and outcomes of Lewin and Drucker. The authors posit that this new model provides the framework for successful school nurse-building administrator interactions that will lead to optimal student outcomes.

  4. An Illustrative Case Study of the Heuristic Practices of a High-Performing Research Department: Toward Building a Model Applicable in the Context of Large Urban Districts

    ERIC Educational Resources Information Center

    Munoz, Marco A.; Rodosky, Robert J.

    2011-01-01

    This case study provides an illustration of the heuristic practices of a high-performing research department, which in turn, will help build much needed models applicable in the context of large urban districts. This case study examines the accountability, planning, evaluation, testing, and research functions of a research department in a large…

  5. High Performance Building Mockup in FLEXLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeil, Andrew; Kohler, Christian; Lee, Eleanor S.

    Genentech has ambitious energy and indoor environmental quality performance goals for Building 35 (B35) being constructed by Webcor at the South San Francisco campus. Genentech and Webcor contracted with the Lawrence Berkeley National Laboratory (LBNL) to test building systems including lighting, lighting controls, shade fabric, and automated shading controls in LBNL’s new FLEXLAB facility. The goal of the testing is to ensure that the systems installed in the new office building will function in a way that reduces energy consumption and provides a comfortable work environment for employees.

  6. New Whole-House Solutions Case Study: Testing Ductless Heat Pumps in High-Performance Affordable Housing, the Woods at Golden Given - Tacoma, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-06-01

    The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and othermore » sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.« less

  7. 76 FR 40912 - Notice of Availability of the Draft Environmental Assessment for the Renovation of the Charles F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ..., evaluates, and documents the effects of the GSA renovating the Charles F. Prevedel Building, including the replacement of mechanical systems to meet high performance green building standards, and making needed... Building and Demolition of Federal Buildings 100, 101, and 102 at the Federal Records Center at Overland...

  8. Determinants of the Safety Performance of Private Multi-Storey Residential Buildings in Hong Kong

    ERIC Educational Resources Information Center

    Yau, Yung; Ho, Daniel Chi Wing; Chau, Kwong Wing

    2008-01-01

    Given the high population and development density in Hong Kong, building failures can result in catastrophic consequences. It is thus worthwhile identifying those dilapidated buildings, and this explains why the Hong Kong government has considered launching a mandatory building inspection scheme in the city. Apart from the measurement of building…

  9. Technology Solutions Case Study: High-Performance Ducts in Hot-Dry Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Hoeschele, A. German, E. Weitzel, R. Chitwood

    2015-08-01

    Ducts in conditioned space (DCS) represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. Various strategies exist for incorporating ducts within the conditioned thermal envelope. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of various DCS strategies. Builders were given incentives and design support in exchange for providing site access for construction observation, diagnostic testing, andmore » builder survey feedback. Information from the project was designed to feed into California's 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project complemented information collected in the California project with BEopt simulations of DCS performance in hot/dry climate regions.« less

  10. Retrofit of a Multifamily Mass Masonry Building in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goalsmore » but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.« less

  11. Retrofit of a MultiFamily Mass Masonry Building in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goalsmore » but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.« less

  12. Gregor Henze | Research | NREL

    Science.gov Websites

    , certified high-performance building design professional (HBDP), member of ASHRAE, fellow of the Renewable fundamentals, mechanical systems design, energy system modeling, building control and automation systems , advanced solar systems, data analysis for energy scientists and engineers, as well as sustainable building

  13. Center for the Built Environment: Research on Controls and Information

    Science.gov Websites

    and Control Sustainability and Whole Building Energy Publications Research Area : Research on Human Interactions Contributing to the next generation of high-performance building control systems. New information for sensing and control of buildings using wireless communications technology, micro-electromechancial

  14. SAME4HPC: A Promising Approach in Building a Scalable and Mobile Environment for High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthik, Rajasekar

    2014-01-01

    In this paper, an architecture for building Scalable And Mobile Environment For High-Performance Computing with spatial capabilities called SAME4HPC is described using cutting-edge technologies and standards such as Node.js, HTML5, ECMAScript 6, and PostgreSQL 9.4. Mobile devices are increasingly becoming powerful enough to run high-performance apps. At the same time, there exist a significant number of low-end and older devices that rely heavily on the server or the cloud infrastructure to do the heavy lifting. Our architecture aims to support both of these types of devices to provide high-performance and rich user experience. A cloud infrastructure consisting of OpenStack withmore » Ubuntu, GeoServer, and high-performance JavaScript frameworks are some of the key open-source and industry standard practices that has been adopted in this architecture.« less

  15. Guiding Principles for Sustainable Federal Buildings

    EPA Pesticide Factsheets

    This page provides and overview of the memorandum of understanding (MOU) which was voluntarily committed the Agency to follow the Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings.

  16. Building Maintenance. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Taylor, Ernest

    Several intermediate performance objectives and corresponding criterion measures are listed for each of the 13 terminal objectives for a basic high school building maintenance course (the first year of a 3-year program). The materials were developed for a 36-week course (2 hours daily) designed to enable 10th grade students to develop competencies…

  17. Custodial Services and Building Maint: Performance Objectives.

    ERIC Educational Resources Information Center

    Downing, Charles; And Others

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 14 terminal objectives for high school custodial service and building maintenance course (the third year of a 3-year program). The materials were developed for a 36-week course (3 hours daily) designed to prepare 12th graders with entry level…

  18. Evaluation of Passive Vents in New Construction Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sean Maxwell; Berger, David; Zuluaga, Marc

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high performance, new construction, multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards.

  19. Performance assessment of conventional and base-isolated nuclear power plants for earthquake and blast loadings

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Nan

    Nuclear power plants (NPPs) and spent nuclear fuel (SNF) are required by code and regulations to be designed for a family of extreme events, including very rare earthquake shaking, loss of coolant accidents, and tornado-borne missile impacts. Blast loading due to malevolent attack became a design consideration for NPPs and SNF after the terrorist attacks of September 11, 2001. The studies presented in this dissertation assess the performance of sample conventional and base isolated NPP reactor buildings subjected to seismic effects and blast loadings. The response of the sample reactor building to tornado-borne missile impacts and internal events (e.g., loss of coolant accidents) will not change if the building is base isolated and so these hazards were not considered. The sample NPP reactor building studied in this dissertation is composed of containment and internal structures with a total weight of approximately 75,000 tons. Four configurations of the reactor building are studied, including one conventional fixed-base reactor building and three base-isolated reactor buildings using Friction Pendulum(TM), lead rubber and low damping rubber bearings. The seismic assessment of the sample reactor building is performed using a new procedure proposed in this dissertation that builds on the methodology presented in the draft ATC-58 Guidelines and the widely used Zion method, which uses fragility curves defined in terms of ground-motion parameters for NPP seismic probabilistic risk assessment. The new procedure improves the Zion method by using fragility curves that are defined in terms of structural response parameters since damage and failure of NPP components are more closely tied to structural response parameters than to ground motion parameters. Alternate ground motion scaling methods are studied to help establish an optimal procedure for scaling ground motions for the purpose of seismic performance assessment. The proposed performance assessment procedure is used to evaluate the vulnerability of the conventional and base-isolated NPP reactor buildings. The seismic performance assessment confirms the utility of seismic isolation at reducing spectral demands on secondary systems. Procedures to reduce the construction cost of secondary systems in isolated reactor buildings are presented. A blast assessment of the sample reactor building is performed for an assumed threat of 2000 kg of TNT explosive detonated on the surface with a closest distance to the reactor building of 10 m. The air and ground shock waves produced by the design threat are generated and used for performance assessment. The air blast loading to the sample reactor building is computed using a Computational Fluid Dynamics code Air3D and the ground shock time series is generated using an attenuation model for soil/rock response. Response-history analysis of the sample conventional and base isolated reactor buildings to external blast loadings is performed using the hydrocode LS-DYNA. The spectral demands on the secondary systems in the isolated reactor building due to air blast loading are greater than those for the conventional reactor building but much smaller than those spectral demands associated with Safe Shutdown Earthquake shaking. The isolators are extremely effective at filtering out high acceleration, high frequency ground shock loading.

  20. BAKE-OUT OF A PORTION OF A NEW HIGH-RISE OFFICE BUILDING

    EPA Science Inventory

    A partial building bake-out was performed in U.S. EPA's new Region IX Headquarters' Building in San Francisco, California in July, 1990. The intent of the bake-out was to reduce indoor air contaminant concentrations associated with residual volatile organic compounds (VOCs) found...

  1. WinHPC System Programming | High-Performance Computing | NREL

    Science.gov Websites

    Programming WinHPC System Programming Learn how to build and run an MPI (message passing interface (mpi.h) and library (msmpi.lib) are. To build from the command line, run... Start > Intel Software Development Tools > Intel C++ Compiler Professional... > C++ Build Environment for applications running

  2. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Zhang, Jianshun; Pelken, Michael

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation toolsmore » as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus on evaluating thermal performance, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via the internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predicts the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium-sized, five story office building that received LEED Platinum Certification from USGBC.« less

  4. Examining the Role of the Principal: Case Study of a High-Poverty, High-Performing Rural Elementary School

    ERIC Educational Resources Information Center

    Coleman, Howard D.

    2013-01-01

    Since the inception of high-stakes standardized testing, schools have been labeled as either succeeding or failing based on student standardized assessment performance. If students perform adequately, the building principal receives acknowledgement for being an effective instructional leader. Conversely, if students perform poorly, the principal…

  5. New Whole-House Solutions Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes - Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-01

    This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). In this project, the Northwest Energy Efficient Manufactured Housing Program worked with Building America Partnership for Improved Residential Construction and Bonneville Power Administration to help four factory homebuilders build prototype zero energy ready manufactured homes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). Previous phases of this project created a HPMH specification and prototyped individual measuresmore » from the package to obtain engineering approvals and develop preliminary factory construction processes. This case study describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability. Monitoring is expected to continue into 2016.« less

  6. Building America Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as amore » potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.« less

  7. Performance evaluation on cool roofs for green remodeling

    NASA Astrophysics Data System (ADS)

    Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo

    2018-06-01

    Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.

  8. High-Performance Federal Buildings Act of 2011

    THOMAS, 112th Congress

    Rep. Carnahan, Russ [D-MO-3

    2011-11-04

    House - 11/07/2011 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Green Building and School Construction.

    ERIC Educational Resources Information Center

    DiNola, Ralph; Guerra, Jerry

    2002-01-01

    Discusses the benefits of green, or high-performance, buildings, such as health and comfort, cost effectiveness, and sustainability. Explores the barriers to their use by schools--most notably cost. Offers suggestions on overcoming these barriers. (EV)

  10. Building America Top Innovations 2012: Reduced Call-Backs with High-Performance Production Builders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-01-01

    This Building America Top Innovations profile describes ways Building America teams have helped builders cut call-backs. Harvard University study found builders who worked with Building America had a 50% drop in call-backs. One builder reported a 50-fold reduction in the incidence of pipe freezing, a 50% reduction in drywall cracking, and a 60% decline in call-backs.

  11. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    ERIC Educational Resources Information Center

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  12. Measure Guideline: Passive Vents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, David; Neri, Robin

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  13. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energymore » Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.« less

  14. Performance of fasteners in wood flour-thermoplastic composite panels

    Treesearch

    Robert H. Falk; Daniel J. Vos; Steven M. Cramer; Brent W. English

    2001-01-01

    In the building community, there is a growing demand for high-performance, low-maintenance, and low-cost building products. To meet this demand, natural fiberthermoplastic composites are being used to produce such products as decking, window and door elements, panels, roofing, and siding. In spite of the rapid growth in the use of these composites, little is known...

  15. Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Treesearch

    Samuel Glass; Vladimir Kochkin; S. Drumheller; Lance Barta

    2015-01-01

    Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB)...

  16. Automatic Building Detection based on Supervised Classification using High Resolution Google Earth Images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, S.; Ghaffarian, S.

    2014-08-01

    This paper presents a novel approach to detect the buildings by automization of the training area collecting stage for supervised classification. The method based on the fact that a 3d building structure should cast a shadow under suitable imaging conditions. Therefore, the methodology begins with the detection and masking out the shadow areas using luminance component of the LAB color space, which indicates the lightness of the image, and a novel double thresholding technique. Further, the training areas for supervised classification are selected by automatically determining a buffer zone on each building whose shadow is detected by using the shadow shape and the sun illumination direction. Thereafter, by calculating the statistic values of each buffer zone which is collected from the building areas the Improved Parallelepiped Supervised Classification is executed to detect the buildings. Standard deviation thresholding applied to the Parallelepiped classification method to improve its accuracy. Finally, simple morphological operations conducted for releasing the noises and increasing the accuracy of the results. The experiments were performed on set of high resolution Google Earth images. The performance of the proposed approach was assessed by comparing the results of the proposed approach with the reference data by using well-known quality measurements (Precision, Recall and F1-score) to evaluate the pixel-based and object-based performances of the proposed approach. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.4 % and 853 % overall pixel-based and object-based precision performances, respectively.

  17. Mission possible: Building an effective business continuity team in seven steps.

    PubMed

    Porter, David

    2016-01-01

    Several books and studies exist on the creation, development and benefits of high-performing teams; many others offer insights into the business continuity management (BCM) discipline, crisis response and planning. Very rarely, however, do they cover both. This paper will explore the seven main development areas that helped build the foundation for a successful and high-performing BCM team in the Australian Taxation Office. Practical, actionable advice will be provided, recognising that the task for those starting out can be quite daunting and complex.

  18. NREL’s Advanced Analytics Research for Energy-Efficient Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, Chuck; Livingood, Bill; Wilson, Eric

    At NREL, we believe in building better buildings. More importantly, high-performance buildings that can do more and be smarter than ever before. Forty percent of the total energy consumption in the United States comes from buildings. Working together, we can dramatically shrink that number. But first, it starts with the research: our observations, experiments, modeling, analysis, and more. NREL’s advanced analytics research has already proven to reduce energy use, save money, and stabilize the grid.

  19. Time Step Considerations when Simulating Dynamic Behavior of High Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabares-Velasco, Paulo Cesar

    2016-09-01

    Building energy simulations, especially those concerning pre-cooling strategies and cooling/heating peak demand management, require careful analysis and detailed understanding of building characteristics. Accurate modeling of the building thermal response and material properties for thermally massive walls or advanced materials like phase change materials (PCMs) are critically important.

  20. A semi-active H∞ control strategy with application to the vibration suppression of nonlinear high-rise building under earthquake excitations.

    PubMed

    Yan, Guiyun; Chen, Fuquan; Wu, Yingxiong

    2016-01-01

    Different from previous researches which mostly focused on linear response control of seismically excited high-rise buildings, this study aims to control nonlinear seismic response of high-rise buildings. To this end, a semi-active control strategy, in which H∞ control algorithm is used and magneto-rheological dampers are employed for an actuator, is presented to suppress the nonlinear vibration. In this strategy, a modified Kalman-Bucy observer which is suitable for the proposed semi-active strategy is developed to obtain the state vector from the measured semi-active control force and acceleration feedback, taking into account of the effects of nonlinearity, disturbance and uncertainty of controlled system parameters by the observed nonlinear accelerations. Then, the proposed semi-active H∞ control strategy is applied to the ASCE 20-story benchmark building when subjected to earthquake excitation and compared with the other control approaches by some control criteria. It is indicated that the proposed semi-active H∞ control strategy provides much better control performances by comparison with the semi-active MPC and Clipped-LQG control approaches, and can reduce nonlinear seismic response and minimize the damage in the buildings. Besides, it enhances the reliability of the control performance when compared with the active control strategy. Thus, the proposed semi-active H∞ control strategy is suitable for suppressing the nonlinear vibration of high-rise buildings.

  1. Guidelines for Building Science Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, Cheryn E.; Rashkin, Samuel; Huelman, Pat

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part inmore » the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to building science education. This report summarizes the steps DOE has taken to develop guidance for building science education and outlines a path forward towards creating real change for an industry in need. The Guidelines for Building Science Education outlined in Appendix A of this report have been developed for external stakeholders to use to certify that their programs are incorporating the most important aspects of building science at the most appropriate proficiency level for their role. The guidelines are intended to be used primarily by training organizations, universities, and certification bodies. Each guideline can be printed or saved as a stand-alone document for ease-of-use by the respective stakeholder group. In 2015, DOE, with leadership from Pacific Northwest National Laboratory (PNNL), is launching a multi-year campaign to promote the adoption of the Guidelines for Building Science Education in a variety of training settings.« less

  2. Design and Optimization of Slot Aluminum Alloy Connectors of Photovoltaics Applied to High-rise Building Facades

    NASA Astrophysics Data System (ADS)

    Liang, Ya-Wei; Zhang, Hong-Mei; Dong, Jin-Zhi; Shi, Zhen-Hua

    2016-05-01

    Building Integrated Photovoltaic (BIPV) is a resort to save energy and reduce heat gain of buildings, utilize new and renewable energy, solve environment problems and alleviate electricity shortage in large cities. The area needed to generate power makes facade integrated photovoltaic panel a superb choice, especially in high-rise buildings. Numerous scholars have hitherto explored Building Facade Integrated Photovoltaic, however, focusing mainly on thermal performance, which fails to ensure seismic safety of high-rise buildings integrated photovoltaic. Based on connecting forms of the glass curtain wall, a connector jointing photovoltaic panel and facade was designed, which underwent loading position and size optimization. Static loading scenarios were conducted to test and verify the connector's mechanical properties under gravity and wind loading by means of HyperWorks. Compared to the unoptimized design, the optimized one saved material and managed to reduce maximum deflection by 74.64%.

  3. The Effect of Body Build and BMI on Aerobic Test Performance in School Children (10-15 Years)

    PubMed Central

    Slinger, Jantine; Verstappen, Frans; Breda, Eric Van; Kuipers, Harm

    2006-01-01

    Body Mass Index (BMI) has often questionably been used to define body build. In the present study body build was defined more specifically using fat free mass index (FFMI = fat free mass normalised to the stature) and fat mass index (FMI = fat mass normalised to stature). The body build of an individual is ‘solid’ in individuals with a high FFMI for their FMI and is ‘slender’ in individuals with a low FFMI relative to their FMI. The aim of the present study was to investigate the association between aerobic test performance and body build defined as solid, average or slender in 10 to 15 year old children. Five-hundred-and-two children (53% boys) aged 10 to 15 years of age were included in the study. Aerobic test performance was estimated with an incremental cycle ergometer protocol and a shuttle run test. BMI and percentage fat (by skin folds) were determined to calculate FMI and FFMI. After adjustment for differences in age, gender and body mass the solid group achieved a significantly higher maximal power output (W) and power output relative to body mass (W/kg) during the cycle test (p < 0.05) and a higher shuttle-run score (p < 0.05) compared to the slender group. The power output relative to FFM (W/kg FFM) was comparable (p > 0.05) between different body build groups. This study showed that body build is an important determinant of the aerobic test performance. In contrast, there were no differences in aerobic test performance per kilogramme FFM over the body build groups. This suggests that the body build may be determined by genetic predisposition. Key Points Children with a solid body build perform better in aerobic exercise tests than slender children. The power output relative to fat free mass was comparable in the solid, slender and average group. Besides body composition, body build should be considered related to other performance measurements. PMID:24357967

  4. Heat-pump-centered integrated community energy systems: Systems development, Consolidated Natural Gas Service Company

    NASA Astrophysics Data System (ADS)

    Baker, N. R.; Donakowski, T. D.; Foster, R. B.; Sala, D. L.; Tison, R. R.; Whaley, T. P.; Yudow, B. D.; Swenson, P. F.

    1980-01-01

    The heat actuated heat pump centered integrated community energy system (HAHP-ICES) is described. The system utilizes a gas fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general nonsite specific application assumes a hypothetical community of one 59,000 cu ft office building and five 24 unit, low rise apartment buildings located in a region with a climate similar to Chicago. Various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results provided the selection criteria for the site specific application of the HAHP-ICES concept to a real world community. The site-specific community consists of: 42 town houses; five 120 unit, low rise apartment buildings; five 104 unit high rise apartment buildings; one 124,000 cu ft office building; and a single 135,000 cu ft retail building.

  5. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    DTIC Science & Technology

    2008-10-21

    transportation combined by 2050 (DOE 2007a). Figure 1. Energy Consumption in the United States Source: 2007 DOE Buildings Energy Data Book , Tables...poor indoor air quality (IAQ) include Legionnaires’ disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning. More...www.eere.energy.gov/buildings/publications/pdfs/highperformance/commercialbuildin gsroadmap.pdf DOE. 2007a. Buildings energy data book . http

  6. Response of high-rise and base-isolated buildings to a hypothetical M w 7.0 blind thrust earthquake

    USGS Publications Warehouse

    Heaton, T.H.; Hall, J.F.; Wald, D.J.; Halling, M.W.

    1995-01-01

    High-rise flexible-frame buildings are commonly considered to be resistant to shaking from the largest earthquakes. In addition, base isolation has become increasingly popular for critical buildings that should still function after an earthquake. How will these two types of buildings perform if a large earthquake occurs beneath a metropolitan area? To answer this question, we simulated the near-source ground motions of a Mw 7.0 thrust earthquake and then mathematically modeled the response of a 20-story steel-frame building and a 3-story base-isolated building. The synthesized ground motions were characterized by large displacement pulses (up to 2 meters) and large ground velocities. These ground motions caused large deformation and possible collapse of the frame building, and they required exceptional measures in the design of the base-isolated building if it was to remain functional.

  7. 78 FR 59696 - Leased Asset Energy and GHG Reporting Interpretive Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... Green Buildings (MG), Office of Government-Wide Policy, GSA, at 202-501-0762 or via email at kinga.porst...: September 23, 2013. Kevin Kampschroer, Federal Director, Office of Federal High Performance Green Buildings...

  8. CHP Fundamentals, NFMT High Performance Buildings (Presentation) – June 3, 2015

    EPA Pesticide Factsheets

    This presentation discusses how CHP can improve energy efficiency at a building or facility, and play a major role in reducing carbon emissions, optimizing fuel flexibility, lowering operating costs, and earning LEED points.

  9. The improvement of thermal characteristics of autoclave aerated concrete for energy efficient high-rise buildings application

    NASA Astrophysics Data System (ADS)

    Khavanov, Pavel; Fomina, Ekaterina; Kozhukhova, Natalia

    2018-03-01

    Nowadays, the problem of energy saving is very relevant. One of the ways to reduction energy consumption in construction materials production and construction of civil and industrial high-rise buildings is the application of claddings with heat-insulating performance. The concept of energy efficiency of high-rise buildings is closely related to environmental aspect and sustainability of applied construction materials; reducing service costs; energy saving and microclimate comfortability. A complexity of architectural and structural design as well as aesthetic characteristics of construction materials are also should be considered. The high interest focused on materials with combined properties. This work is oriented on the study of energy efficiency of buildings by improving heat-insulation and strength performance of autoclave aerated concrete. The applied method of sulfate activation of lime allows monitoring phase and structure formation in aerated concrete. The optimal mix design of aerated concrete with the compressive strength up to 8.5 MPa and decreased density up to 760 kg/m3 was proposed. Analysis of structure at macro-and microscale was performed as well as the criteria of an optimal porosity formation was considered a number, size, shape of pore and density of interior partition. SEM analysis and BET method were performed in this research work. The research results demonstrated the correlation between structure and vapor permeability resistance, also it was found that the increase of strength can lead to reduction of thermal conductivity.

  10. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  11. NREL's Research Support Facility Certified LEED® Platinum | News | NREL

    Science.gov Websites

    to sustainable building design and construction. At 222,000 square-feet, the RSF is a model for sustainable, high performance building design that leverages the best in energy efficiency and environmental energy use in commercial buildings that were incorporated in the design of the RSF. NREL researchers are

  12. Technology for Building Systems Integration and Optimization – Landscape Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Bargach, Youssef

    BTO's Commercial Building Integration (CBI) program helps advance a range of innovative building integration and optimization technologies and solutions, paving the way for high-performing buildings that could use 50-70% less energy than typical buildings. CBI’s work focuses on early stage technology innovation, with an emphasis on how components and systems work together and how whole buildings are integrated and optimized. This landscape study outlines the current body of knowledge, capabilities, and the broader array of solutions supporting integration and optimization in commercial buildings. CBI seeks to support solutions for both existing buildings and new construction, which often present very differentmore » challenges.« less

  13. Modern energy efficient technologies of high-rise construction

    NASA Astrophysics Data System (ADS)

    Lukmanova, Inessa; Golov, Roman

    2018-03-01

    The paper analyzes modern energy-efficient technologies, both being applied, and only introduced into the application in the construction of high-rise residential buildings. All technologies are systematized by the authors as part of a unified model of "Arrows of Energy-Efficient Technologies", which imply performing energy-saving measures in the design, construction and operation of buildings.

  14. U.S. Team Green Building Challenge 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2002-09-01

    Flier about the U.S. Team and its projects participating in the International Green Building Challenge. Along with many other countries, the United States accepted the Green Building Challenge (GBC), an international effort to evaluate and improve the performance of buildings worldwide. GBC started out in 1996 as a competition to determine which country had the greenest buildings; it evolved into a cooperative process among the countries to measure the performance of green buildings. Although the auto industry can easily measure efficiency in terms of miles per gallon, the buildings industry has no standard way to quantify energy and environmental performance.more » The Green Building Challenge participants hope that better tools for measuring the energy and environmental performance of buildings will be an outcome of their efforts and that these tools will lead to higher and better performance levels in buildings around the world. The ultimate goal is to design, construct, and operate buildings that contribute to global sustainability by conserving and/or regenerating natural resources and minimizing nonrenewable energy use. The United States' Green Building Challenge Team '02 selected five buildings from around the country to serve as case studies; each of the five U.S. building designs (as well as all international case studies) were assessed using an in-depth evaluation tool, called the Green Building Assessment Tool (GBTool). The GBTool was specifically created and refined by international teams, for the GBC efforts. The goal of this collaborative effort is to improve this evaluation software tool so that it can be used globally, while taking into account regional and national conditions. The GBTool was used by the U.S. Team to assess and evaluate the energy and environmental performance of these five buildings: (1) Retail (in operation): BigHorn Home Improvement Center, Silverthorne, Colorado; (2) Office (in operation), Philip Merrill Environmental; (3) School (in construction), Clearview Elementary School, Hanover, Pennsylvania; (4) Multi-family residential (in construction), Twenty River Terrace, Battery Park City, New York; and (5) Office/lab (in design), National Oceanic Atmospheric Administration, Honolulu, Hawaii. These projects were selected, not only because they were good examples of high-performance buildings and had interested owners/design team members, but also because building data was available as inputs to test the software tool. Both the tool and the process have been repeatedly refined and enhanced since the first Green Building Challenge event in 1998; participating countries are continuously providing feedback to further improve the tool and global process for the greatest positive effect.« less

  15. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    PubMed

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyson, Anna

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat andmore » power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for active and passive benefits, along with the potential savings of avoiding transmission losses through direct current (DC) transfer to all buildings systems directly from the site of solar conversion, gives the system a compounded economic viability within the commercial and institutional building markets.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    ?Ducts in conditioned space (DCS) represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. Various strategies exist for incorporating ducts within the conditioned thermal envelope. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of various DCS strategies. Builders were given incentives and design support in exchange for providing site access for construction observation, diagnostic testing, andmore » builder survey feedback. Information from the project was designed to feed into California's 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project complemented information collected in the California project with BEopt simulations of DCS performance in hot/dry climate regions.« less

  18. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    DTIC Science & Technology

    2008-09-30

    Source: 2007 DOE Buildings Energy Data Book . Tables 1.1.3, 1.2.3, 1.3.3 Energy consumption associated with buildings has a substantial impact on...from poor indoor air quality (IAQ) include Legionnaire’s disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning...publications/pdfs/highperformance/commercialbuildi ngsroadmap.pdf DOE. 2007a. Buildings energy data book . http://buildingsdatabook.eren.doe.gov/ DOE

  19. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    DOE PAGES

    Biswas, Kaushik; Abhari, Ramin

    2014-10-03

    A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test buildingmore » in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. Furthermore, this article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.« less

  20. Optimized design and control of an off grid solar PV/hydrogen fuel cell power system for green buildings

    NASA Astrophysics Data System (ADS)

    Ghenai, C.; Bettayeb, M.

    2017-11-01

    Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.

  1. A review in high early strength concrete and local materials potential

    NASA Astrophysics Data System (ADS)

    Yasin, A. K.; Bayuaji, R.; Susanto, T. E.

    2017-11-01

    High early strength concrete is one of the type in high performance concrete. A high early strength concrete means that the compressive strength of the concrete at the first 24 hours after site-pouring could achieve structural concrete quality (compressive strength > 21 MPa). There are 4 (four) important factors that must be considered in the making process, those factors including: portland cement type, cement content, water to cement ratio, and admixture. In accordance with its high performance, the production cost is estimated to be 25 to 30% higher than conventional concrete. One effort to cut the production cost is to utilize local materials. This paper will also explain about the local materials which were abundantly available, cheap, and located in strategic coast area of East Java Province, that is: Gresik, Tuban and Bojonegoro city. In addition, the application of this study is not limited only to a large building project, but also for a small scale building which has one to three-story. The performance of this concrete was apparently able to achieve the quality of compressive strength of 27 MPa at the age of 24 hours, which qualified enough to support building structurally.

  2. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air tomore » apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.« less

  3. Understanding product cost vs. performance through an in-depth system Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Sanson, Mark C.

    2017-08-01

    The manner in which an optical system is toleranced and compensated greatly affects the cost to build it. By having a detailed understanding of different tolerance and compensation methods, the end user can decide on the balance of cost and performance. A detailed phased approach Monte Carlo analysis can be used to demonstrate the tradeoffs between cost and performance. In complex high performance optical systems, performance is fine-tuned by making adjustments to the optical systems after they are initially built. This process enables the overall best system performance, without the need for fabricating components to stringent tolerance levels that often can be outside of a fabricator's manufacturing capabilities. A good performance simulation of as built performance can interrogate different steps of the fabrication and build process. Such a simulation may aid the evaluation of whether the measured parameters are within the acceptable range of system performance at that stage of the build process. Finding errors before an optical system progresses further into the build process saves both time and money. Having the appropriate tolerances and compensation strategy tied to a specific performance level will optimize the overall product cost.

  4. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    NASA Astrophysics Data System (ADS)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to examine the interrelationships among the identified CSFs, KPIs, and sustainable dimensions of BEER. The findings indicate that the success of sustainable BEER in hotel buildings under the EPC mechanism is mainly decided by project objectives control mechanism, available technology, organizing capacity of team leader, trust among partners, accurate M&V, and team workers' technical skills.

  5. Energy performance of building fabric - Comparing two types of vernacular residential houses

    NASA Astrophysics Data System (ADS)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  6. Building and measuring a high performance network architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning.more » The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.« less

  7. The Use and Efficacy of Capacity-Building Assistance for Low-Performing Districts: The Case of California's District Assistance and Intervention Teams

    ERIC Educational Resources Information Center

    Strunk, Katharine O.; McEachin, Andrew; Westover, Theresa N.

    2014-01-01

    The theory of action upon which high-stakes accountability policies are based calls for systemic reforms in educational systems that will emerge by pairing incentives for improvement with extensive and targeted technical assistance (TA) to build the capacity of low-performing schools and districts. To this end, a little discussed and often…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.

  9. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  10. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  11. Evaluation of a High-Performance Solar Home in Loveland, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    2006-01-01

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  12. Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  13. Buildings Lean Maintenance Implementation Model

    NASA Astrophysics Data System (ADS)

    Abreu, Antonio; Calado, João; Requeijo, José

    2016-11-01

    Nowadays, companies in global markets have to achieve high levels of performance and competitiveness to stay "alive".Within this assumption, the building maintenance cannot be done in a casual and improvised way due to the costs related. Starting with some discussion about lean management and building maintenance, this paper introduces a model to support the Lean Building Maintenance (LBM) approach. Finally based on a real case study from a Portuguese company, the benefits, challenges and difficulties are presented and discussed.

  14. Design of an energy conservation building

    NASA Astrophysics Data System (ADS)

    Jensen, R. N.

    1981-11-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  15. Design of an energy conservation building

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  16. Study on Building Extraction from High-Resolution Images Using Mbi

    NASA Astrophysics Data System (ADS)

    Ding, Z.; Wang, X. Q.; Li, Y. L.; Zhang, S. S.

    2018-04-01

    Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. However, the diversity and complexity of buildings make building extraction methods still face challenges in terms of accuracy, efficiency, and so on. In this study, a new building extraction framework based on MBI and combined with image segmentation techniques, spectral constraint, shadow constraint, and shape constraint is proposed. In order to verify the proposed method, worldview-2, GF-2, GF-1 remote sensing images covered Xiamen Software Park were used for building extraction experiments. Experimental results indicate that the proposed method improve the original MBI significantly, and the correct rate is over 86 %. Furthermore, the proposed framework reduces the false alarms by 42 % on average compared to the performance of the original MBI.

  17. From Smart-Eco Building to High-Performance Architecture: Optimization of Energy Consumption in Architecture of Developing Countries

    NASA Astrophysics Data System (ADS)

    Mahdavinejad, M.; Bitaab, N.

    2017-08-01

    Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.

  18. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  19. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  20. An overview of solar energy applications in buildings in Greece

    NASA Astrophysics Data System (ADS)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  1. Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings

    NASA Astrophysics Data System (ADS)

    Lokko, Mae-ling Jovenes

    As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste building materials, influence social and cultural acceptability and create value translation frameworks that sufficiently characterize the composite value proposition of upcycled building systems.

  2. A new multiple regression model to identify multi-family houses with a high prevalence of sick building symptoms "SBS", within the healthy sustainable house study in Stockholm (3H).

    PubMed

    Engvall, Karin; Hult, M; Corner, R; Lampa, E; Norbäck, D; Emenius, G

    2010-01-01

    The aim was to develop a new model to identify residential buildings with higher frequencies of "SBS" than expected, "risk buildings". In 2005, 481 multi-family buildings with 10,506 dwellings in Stockholm were studied by a new stratified random sampling. A standardised self-administered questionnaire was used to assess "SBS", atopy and personal factors. The response rate was 73%. Statistical analysis was performed by multiple logistic regressions. Dwellers owning their building reported less "SBS" than those renting. There was a strong relationship between socio-economic factors and ownership. The regression model, ended up with high explanatory values for age, gender, atopy and ownership. Applying our model, 9% of all residential buildings in Stockholm were classified as "risk buildings" with the highest proportion in houses built 1961-1975 (26%) and lowest in houses built 1985-1990 (4%). To identify "risk buildings", it is necessary to adjust for ownership and population characteristics.

  3. NREL's Sustainable Campus Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rukavina, Frank; Pless, Shanti

    2015-04-06

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  4. Primer to Design Safe School Projects in Case of Terrorist Attacks and School Shootings. Buildings and Infrastructure Protection Series. FEMA-428/BIPS-07/January 2012. Edition 2

    ERIC Educational Resources Information Center

    Chipley, Michael; Lyon, Wesley; Smilowitz, Robert; Williams, Pax; Arnold, Christopher; Blewett, William; Hazen, Lee; Krimgold, Fred

    2012-01-01

    This publication, part of the new Building and Infrastructure Protection Series (BIPS) published by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Infrastructure Protection and Disaster Management Division (IDD), serves to advance high performance and integrated design for buildings and infrastructure. This…

  5. Evaluation of Passive Vents in New Construction Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sean; Berger, David; Zuluaga, Marc

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as amore » potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.« less

  6. Building America Case Study: Performance and Costs of Ductless Heat Pumps in Marine Climate High-Performance Homes: Habitat for Humanity -- The Woods, Tacoma, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Woods is a Habitat for Humanity (HFH) community of ENERGY STAR Homes (c) Northwest (ESHNW)-certified homes located in the marine climate of Tacoma/Pierce County, Washington. This research report builds on an earlier preliminary draft 2014 BA report, and includes significant billing analysis and cost effectiveness research from a collaborative, ongoing Ductless Heat Pump (DHP) research effort for Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013more » and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH.« less

  7. A Sustainable Approach

    ERIC Educational Resources Information Center

    del Monte, Betsy

    2006-01-01

    Many school districts and education institutions are making green facilities a greater priority. Green buildings, also called sustainable or high-performance buildings, can provide many advantages for schools and the people who use them. They cost less to operate, last longer and provide a better learning environment. Constructing sustainable…

  8. Building America Best Practices Series - High-Performance Home Technologies: Guide to Determining Climate Regions by County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Cole, Pam C.

    2013-11-01

    This report identifies the climate region of each county in the United States. The report is intended as an aid in helping builders to identify the appropriate climate designation for the counties in which they are building.

  9. Early stage design decisions: the way to achieve sustainable buildings at lower costs.

    PubMed

    Bragança, Luís; Vieira, Susana M; Andrade, Joana B

    2014-01-01

    The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle.

  10. Early Stage Design Decisions: The Way to Achieve Sustainable Buildings at Lower Costs

    PubMed Central

    Bragança, Luís; Vieira, Susana M.; Andrade, Joana B.

    2014-01-01

    The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle. PMID:24578630

  11. Hurricane Harvey Building Damage Assessment Using UAV Data

    NASA Astrophysics Data System (ADS)

    Yeom, J.; Jung, J.; Chang, A.; Choi, I.

    2017-12-01

    Hurricane Harvey which was extremely destructive major hurricane struck southern Texas, U.S.A on August 25, causing catastrophic flooding and storm damages. We visited Rockport suffered severe building destruction and conducted UAV (Unmanned Aerial Vehicle) surveying for building damage assessment. UAV provides very high resolution images compared with traditional remote sensing data. In addition, prompt and cost-effective damage assessment can be performed regardless of several limitations in other remote sensing platforms such as revisit interval of satellite platforms, complicated flight plan in aerial surveying, and cloud amounts. In this study, UAV flight and GPS surveying were conducted two weeks after hurricane damage to generate an orthomosaic image and a DEM (Digital Elevation Model). 3D region growing scheme has been proposed to quantitatively estimate building damages considering building debris' elevation change and spectral difference. The result showed that the proposed method can be used for high definition building damage assessment in a time- and cost-effective way.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. Through Building America research and other innovative programs throughout the country, many of the technical challenges to building to the ZERH standard have been addressed. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, CA. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovationmore » worked with Mutual Housing throughout the project. The case study discusses challenges encountered, lessons learned, and how obstacles were overcome. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.« less

  13. Teacher Performance of the State Vocational High School Teachers in Surabaya

    ERIC Educational Resources Information Center

    Kusumaningtyas, Amiartuti; Setyawati, Endang

    2015-01-01

    This research talked about Analysis of Teacher Performance Through Competence, Compensation, and Job Satisfaction of the State Vocational High School Teachers in Surabaya. State Vocational High School Teacher is a professional educator with major duties to educate, teach, build, direct, coach, assess and evaluate learners on the vocational high…

  14. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors.

    PubMed

    Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin

    2017-03-22

    Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m 2 /g), and good electrochemical performance: high energy (552.3 μWh/cm 3 ), power densities (561.9 mW/cm 3 ), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).

  15. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    PubMed Central

    Huang, Shiping; Hu, Mengyu; Cui, Nannan; Wang, Weifeng

    2018-01-01

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry. PMID:29673176

  16. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.

    PubMed

    Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng

    2018-04-17

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  17. Performance and Costs of Ductless Heat Pumps in Marine-Climate High-Performance Homes -- Habitat for Humanity The Woods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Lubliner; Howard, Luke; Hales, David

    2016-02-23

    This final Building America Partnership report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing.

  18. NREL's Sustainable Campus Overview

    ScienceCinema

    Rukavina, Frank; Pless, Shanti

    2018-05-11

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  19. Identifying critical success factors (CSFs) of Facilities Management (FM) in non-low cost high-rise residential buildings

    NASA Astrophysics Data System (ADS)

    Dahlan, F. M.; Zainuddin, A.

    2018-02-01

    Critical success factors (CSFs) are important key areas of activity that must be performed well in any Facilities Management (FM) organisation to achieve its missions, objectives or goals. Before implementing CSFs, an FM organisation must identify the key areas where things must be done properly to enable the business to flourish. Although many performance measurements in FM organisation have been discussed in previous research, not much research has been done on CSFs from the perspective of FM business in non-low cost high-rise residential buildings. The purpose of this study is to develop a methodology in developing the CSFs group and CSFs for FM organisation in non-low cost residential buildings. This research will involve three (3) phases of research strategy to achieve the objective of this research.

  20. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units.

    PubMed

    Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2014-08-14

    Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.

  1. Methodology for the preliminary design of high performance schools in hot and humid climates

    NASA Astrophysics Data System (ADS)

    Im, Piljae

    A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: (1) Using an actual 2006 weather file with measured solar radiation, (2) Modifying lighting & equipment schedule using ASHRAE's RP-1093 methods, (3) Using actual equipment performance curves (i.e., scroll chiller), (4) Using the Winkelmann's method for the underground floor heat transfer, and (5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 code-compliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K-12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.

  2. Maintaining High-Performance Schools after Construction or Renovation

    ERIC Educational Resources Information Center

    Luepke, Gary; Ronsivalli, Louis J., Jr.

    2009-01-01

    With taxpayers' considerable investment in schools, it is critical for school districts to preserve their community's assets with new construction or renovation and effective facility maintenance programs. "High-performance" school buildings are designed to link the physical environment to positive student achievement while providing such benefits…

  3. Center for the Built Environment

    Science.gov Websites

    wellbeing research, who will share insights on how to design, operate and measure healthy and productive buildings that showcase sustainable design that provide high quality spaces for work and study have been recognized annual Livable Buildings Award. Reports Reveal New Insights into Energy Performance and Design

  4. Small Changes Won't Assure Sustainability--but Reimagining Might

    ERIC Educational Resources Information Center

    Holdaway, Xarissa

    2008-01-01

    Almost every day, the author learns about new green buildings from press releases. One example is that of Arizona State University's new Biodesign Institute, a soaring, "uber"-chic, high-performance, Leadership in Energy and Environmental Design-certified center. However, the author maintains that such buildings are undoubtedly a step up…

  5. ACHP | News

    Science.gov Websites

    high-performance building district. The Seattle 2030 District recently was chosen as one of the first community partners in the Department of Energy’s Better Buildings Challenge. They saw examples of the Section 106. The discussion was important in identifying a number of issues. One issue raised was that

  6. Building America Top Innovations 2012: Affordable High Performance in Production Homes: Artistic Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Artistic Homes, a successful New Mexico production builder, who went from code-minimum to under HERS 50 standard on every home, with optional PV upgrades to HERS 35 or true net zero on every home plan offered.

  7. Green, Clean, & Mean: Pushing the Energy Envelope in Tech Industry Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Granderson, Jessica; Chan, Rengie

    When it comes to innovation in energy and building performance, one can expect leading-edge activity from the technology sector. As front-line innovators in design, materials science, and information management, developing and operating high-performance buildings is a natural extension of their core business. The energy choices made by technology companies have broad importance given their influence on society at large as well as the extent of their own energy footprint. Microsoft, for example, has approximately 250 facilities around the world (30 million square feet of floor area), with significant aggregate energy use of approximately 4 million kilowatt-hours per day (Figure 1).

  8. 48 CFR 36.104 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings (available at http://www.wbdg.org/pdfs/hpsb_guidance.pdf); (2) Pursue cost-effective, innovative strategies, such as highly...

  9. A comprehensive framework to assess, model, and enhance the human role in conserving energy in commercial buildings

    NASA Astrophysics Data System (ADS)

    Azar, Elie

    Energy conservation and sustainability are subjects of great interest today, especially in the commercial building sector which is witnessing a very high and growing demand for energy. Traditionally, efforts to reduce energy consumption in this sector consisted of researching and developing energy efficient building technologies and systems. On the other hand, recent studies indicate that human actions are major determinants of building energy performance and can lead to excessive energy use even in advanced low-energy buildings. As a result, it is essential to determine if the approach to future energy reduction initiatives should remain solely technology-focused, or if a human-focused approach is also needed to complement advancements in technology and improve building operation and performance. In practice, while technology-focused solutions have been extensively researched, promoted, and adopted in commercial buildings, research efforts on the role of human actions and energy use behaviors in energy conservation remain very limited. This study fills the missing gap in literature by presenting a comprehensive framework to (1) understand and quantify the influence of human actions on building energy performance, (2) model building occupants' energy use behaviors and account for potential changes in these behaviors over time, and (3) test and optimize different human-focused energy reduction interventions to increase their adoption in commercial buildings. Results are significant and prove that human actions have a major role to play in reducing the energy intensity of the commercial building sector. This sheds the light on the need for a shift in how people currently use and control different buildings systems, as this is crucial to ensure efficient building operation and to maximize the return on investment in energy-efficient technologies. Furthermore, this study proposes methods and tools that can be applied on any individual or groups of commercial buildings to evaluate the human impact on their energy performance. This is expected to boost research on the topic and promote the integration of human-focused interventions in large-scale energy reduction initiatives and policies. Finally, this dissertation presents a roadmap for the future challenges to energy conservation and the steps to take towards a more sustainable building sector and society.

  10. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    NASA Astrophysics Data System (ADS)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  11. Producing lasting amphiphobic building surfaces with self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Facio, Dario S.; Carrascosa, Luis A. M.; Mosquera, María J.

    2017-06-01

    Nowadays, producing building surfaces that prevent water and oil uptake and which present self-cleaning activity is still a challenge. In this study, amphiphobic (superhydrophobic and oleophobic) building surfaces were successfully produced. A simple and low-cost process was developed, which is applicable to large-scale building surfaces, according the following procedure: (1) by spraying a SiO2 nanocomposite which produces a closely-packed nanoparticle uniform topography; (2) by functionalizing the previous coating with a fluorinated alkoxysilane, producing high hydrophobicity and oleophobicity. The formation of a Cassie-Baxter regime, in which air pockets could be trapped between the aggregates of particles, was confirmed by topographic study. The building surface demonstrated an excellent self-cleaning performance. Finally, the surface presented lasting superhydrophobicity with high stability against successive attachment/detachment force cycles. This high durability can be explained by the effective grafting of the silica nanocomposite coating skeleton with the substrate, and with the additional fluorinated coating produced by condensation reactions.

  12. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    PubMed

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  13. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study

    PubMed Central

    Long, Linshuang; Ye, Hong

    2016-01-01

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials. PMID:27052186

  14. High-Performance Classrooms for Women? Applying a Relational Frame to Management/Organizational Behavior Courses.

    ERIC Educational Resources Information Center

    Buttner, E. Holly

    2002-01-01

    Attributes of relational theory, based on women's development, include preventive connecting, mutual empowering, achieving, and team building. These attributes are compatible with the practices of high performance work organizations. Relational practices should be integrated into management and organizational behavior courses. (Contains 53…

  15. The Case for High-Performance, Healthy Green Schools

    ERIC Educational Resources Information Center

    Carter, Leesa

    2011-01-01

    When trying to reach their sustainability goals, schools and school districts often run into obstacles, including financing, training, and implementation tools. Last fall, the U.S. Green Building Council-Georgia (USGBC-Georgia) launched its High Performance, Healthy Schools (HPHS) Program to help Georgia schools overcome those obstacles. By…

  16. The Shape of Things

    ERIC Educational Resources Information Center

    Aliotta, Joe; Pde, Gerald

    2008-01-01

    Many people narrowly focus on energy efficiency when defining a "high-performance" school--a school building that is economical with respect to heating, cooling, and electric lighting. That is certainly true, but in the broadest terms, a high-performance school is designed to minimize reliance on fossil fuels--and provide a comfortable, healthful,…

  17. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    NASA Astrophysics Data System (ADS)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  18. Italian guidelines for energy performance of cultural heritage and historical buildings: the case study of the Sassi of Matera.

    NASA Astrophysics Data System (ADS)

    Negro, Elisabetta; Cardinale, Tiziana; Cardinale, Nicola

    2016-04-01

    The Sassi of Matera are a unique example in the world of rock settlement, developed from natural caves carved into the rock and then molded into increasingly complex structures inside two large natural amphitheatres: the Sasso Caveoso and the Sasso Barisano. Thanks also to this aspects Matera is an UNESCO world heritage site and was elected European Capital of Culture in 2019. Our research focuses on the compatibility of the energy efficiency measures applied in of Sassi buildings with the recent MiBACT (Italian Ministry of Cultural Heritage) guidelines on "Energy efficiency improvements in the cultural heritage" and AiCARR (Italian Association of Air Conditioning) guidelines on "Energy efficiency of historical building". One of the essential measures highlighted by Mibact guidelines is ensure the Indoor Environmental Quality improvement of the historical architecture in order to preserve their identity and cultural heritage. These paper aims to analyze energy and environmental performance of different buildings typology and monuments present in the Sassi site. The energy performance and microclimate measures conducted on different type of building by non-destructive measurements and laboratory tests in situ are useful to verify and quantify the thermal characteristics of the envelopes of the Mediterranean tradition and also to demonstrate their capacity to ensure internal comfort conditions. The calcarenite walls of vernacular building of Sassi show the excellent energy behavior of these constructions. But these material often present high moisture content which negatively influence the room microclimate in particular in presence of mural frescos and rocky churches. However these structures, once restored and in a condition of normal use, give indoor comfort within the limits of thermo-hygrometrics standards established by indices as the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). Another interesting consideration stated from our researches is that these buildings are able to reduce the temperature oscillations of the external environment as a result of their high thermal mass. These traditional settlements are typical of the Mediterranean area that has summers with high temperature and daily thermal oscillations. So we can conclude that these buildings could be considered as bioclimatic. Regarding the monuments, as the Matera Cathedral, the evaluation of the indoor microclimate during and after the restoration works shows excellent results and ensures the optimal preservation of artistic heritage from the thermo hygrometric point of view. The plant solution adopted (installation of floor heating system) is in line with the Italian guidelines because this type of system at low temperature allows high energy savings as it enables the use of combustion systems with high-efficiency (condensing boilers) and/or renewable energy installations (heat pumps, solar thermal collectors). A complete knowledge of historical heritage and energy performance of Sassi building is a strategy indicated by Italian guidelines in order to preserve the identity of their inhabitants. So it is necessary to conduct a complete mapping of the entire heritage of this city and develop specific guidelines which combine technical and economic feasibility, appropriate landscaping and architectural integration and environmental sustainability within a proper building lifecycle.

  19. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    NASA Astrophysics Data System (ADS)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  20. Scaling predictive modeling in drug development with cloud computing.

    PubMed

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  1. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less

  2. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.« less

  3. Effect of heat and moisture transport and storage properties of building stones on the hygrothermal performance of historical building envelopes

    NASA Astrophysics Data System (ADS)

    KoÅáková, Dana; Kočí, Václav; Žumár, Jaromír; Keppert, Martin; Holčapek, Ondřej; Vejmelková, Eva; Černý, Robert

    2016-12-01

    The heat and moisture transport and storage parameters of three different natural stones used on the Czech territory since medieval times are determined experimentally, together with the basic physical properties and mechanical parameters. The measured data are applied as input parameters in the computational modeling of hygrothermal performance of building envelopes made of the analyzed stones. Test reference year climatic data of three different locations within the Czech Republic are used as boundary conditions on the exterior side. Using the simulated hygric and thermal performance of particular stone walls, their applicability is assessed in a relation to the geographical and climatic conditions. The obtained results indicate that all three investigated stones are highly resistant to weather conditions, freeze/thaw cycles in particular.

  4. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings

    NASA Astrophysics Data System (ADS)

    Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.

    2016-05-01

    The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.

  5. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Glisic, B.; Inaudi, D.; Lau, J. M.; Fong, C. C.

    2013-05-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper.

  6. Operative air temperature data for different measures applied on a building envelope in warm climate.

    PubMed

    Baglivo, Cristina; Congedo, Paolo Maria

    2018-04-01

    Several technical combinations have been evaluated in order to design high energy performance buildings for the warm climate. The analysis has been developed in several steps, avoiding the use of HVAC systems. The methodological approach of this study is based on a sequential search technique and it is shown on the paper entitled "Envelope Design Optimization by Thermal Modeling of a Building in a Warm Climate" [1]. The Operative Air Temperature trends (TOP), for each combination, have been plotted through a dynamic simulation performed using the software TRNSYS 17 (a transient system simulation program, University of Wisconsin, Solar Energy Laboratory, USA, 2010). Starting from the simplest building configuration consisting of 9 rooms (equal-sized modules of 5 × 5 m 2 ), the different building components are sequentially evaluated until the envelope design is optimized. The aim of this study is to perform a step-by-step simulation, simplifying as much as possible the model without making additional variables that can modify their performances. Walls, slab-on-ground floor, roof, shading and windows are among the simulated building components. The results are shown for each combination and evaluated for Brindisi, a city in southern Italy having 1083 degrees day, belonging to the national climatic zone C. The data show the trends of the TOP for each measure applied in the case study for a total of 17 combinations divided into eight steps.

  7. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  8. Monitoring the Deformation of High-Rise Buildings in Shanghai Luijiazui Zone by Tomo-Psinsar

    NASA Astrophysics Data System (ADS)

    Zhou, L. F.; Ma, P. F.; Xia, Y.; Xie, C. H.

    2018-05-01

    In this study, we utilize a Tomography-based Persistent Scatterers Interferometry (Tomo-PSInSAR) approach for monitoring the deformation performances of high-rise buildings, i.e. SWFC and Jin Mao Tower, in Shanghai Lujiazui Zone. For the purpose of this study, we use 31 Stripmap acquisitions from TerraSAR-X missions, spanning from December 2009 to February 2013. Considering thermal expansion, creep and shrinkage are two long-term movements that occur in high-rise buildings with concrete structures, we use an extended 4-D SAR phase model, and three parameters (height, deformation velocity, and thermal amplitude) are estimated simultaneously. Moreover, we apply a two-tier network strategy to detect single and double PSs with no need for preliminary removal of the atmospheric phase screen (APS) in the study area, avoiding possible error caused by the uncertainty in spatiotemporal filtering. Thermal expansion is illustrated in the thermal amplitude map, and deformation due to creep and shrinkage is revealed in the linear deformation velocity map. The thermal amplitude map demonstrates that the derived thermal amplitude of the two high-rise buildings both dilate and contract periodically, which is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that SWFC is subject to deformation during the new built period due to creep and shrinkage, which is height-dependent movements in the linear velocity map. It is worth mention that creep and shrinkage induces movements that increase with the increasing height in the downward direction. In addition, the deformation rates caused by creep and shrinkage are largest at the beginning and gradually decrease, and at last achieve a steady state as time goes infinity. On the contrary, the linear deformation velocity map shows that Jin Mao Tower is almost stable, and the reason is that it is an old built building, which is not influenced by creep and shrinkage as the load is relaxed and dehydration proceeds. This study underlines the potential of the Tomo-PSInSAR solution for the monitoring deformation performance of high-rise buildings, which offers a quantitative indicator to local authorities and planners for assessing potential damages.

  9. Modeling work of the dispatching service of high-rise building as queuing system

    NASA Astrophysics Data System (ADS)

    Dement'eva, Marina; Dement'eva, Anastasiya

    2018-03-01

    The article presents the results of calculating the performance indicators of the dispatcher service of a high-rise building as a queuing system with an unlimited queue. The calculation was carried out for three models: with a single control room and brigade of service, with a single control room and a specialized service, with several dispatch centers and specialized services. The aim of the work was to investigate the influence of the structural scheme of the organization of the dispatcher service of a high-rise building on the amount of operating costs and the time of processing and fulfilling applications. The problems of high-rise construction and their impact on the complication of exploitation are analyzed. The composition of exploitation activities of high-rise buildings is analyzed. The relevance of the study is justified by the need to review the role of dispatch services in the structure of management of the quality of buildings. Dispatching service from the lower level of management of individual engineering systems becomes the main link in the centralized automated management of the exploitation of high-rise buildings. With the transition to market relations, the criterion of profitability at the organization of the dispatching service becomes one of the main parameters of the effectiveness of its work. A mathematical model for assessing the efficiency of the dispatching service on a set of quality of service indicators is proposed. The structure of operating costs is presented. The algorithm of decision-making is given when choosing the optimal structural scheme of the dispatching service of a high-rise building.

  10. The Transformational Leadership Characteristics of the Building Principal as a Predictor of High School Teacher Efficacy

    ERIC Educational Resources Information Center

    Bennardo, David P.

    2007-01-01

    It is an undeniable fact of our contemporary educational environment that Building Principals are required to take increased responsibility for student achievement. Despite this reality, the background literature offers few empirical studies connecting school leadership behaviors directly to student performance. However, the supporting research…

  11. Daylighting Strategies Promote Healthy High Performance Buildings

    ERIC Educational Resources Information Center

    Gille, Steve

    2010-01-01

    There are many reasons to incorporate daylighting into the building or renovation of K-16 learning facilities. Benefits include increased productivity for students and staff, improved health, a better connection to the outdoors, energy savings and better quality of light. Add the role daylighting can play in LEED certification and it's clear that…

  12. Building Scientific Confidence in Read-Across: Progress in using HT Data to inform Read-Across Performance (Toxicology Forum)

    EPA Science Inventory

    Presentation at the 41st Annual Winter Meeting of The Toxicology Forum - From Assay to Assessment: Incorporating High Throughput Strategies into Health and Safety Evaluations on Building Scientific Confidence in Read-Across: Progress in using HT Data to inform Read-Across Perfor...

  13. A Sustainable and Holistic Approach to Design and Construction

    ERIC Educational Resources Information Center

    Bobadilla, Leo

    2010-01-01

    Building energy-efficient school facilities is not just about being "green." It is about providing high-performance facilities that are safe, healthy, and conducive to learning. It is also about building facilities that are cost-effective from their inception and in the long term. Many school districts are working under ever-tightening…

  14. Indoor Air Quality in 24 California Residences Designed as High-Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Mullen, Nasim; Singer, Brett

    2015-07-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California.

  15. Compact and Hybrid Feature Description for Building Extraction

    NASA Astrophysics Data System (ADS)

    Li, Z.; Liu, Y.; Hu, Y.; Li, P.; Ding, Y.

    2017-05-01

    Building extraction in aerial orthophotos is crucial for various applications. Currently, deep learning has been shown to be successful in addressing building extraction with high accuracy and high robustness. However, quite a large number of samples is required in training a classifier when using deep learning model. In order to realize accurate and semi-interactive labelling, the performance of feature description is crucial, as it has significant effect on the accuracy of classification. In this paper, we bring forward a compact and hybrid feature description method, in order to guarantees desirable classification accuracy of the corners on the building roof contours. The proposed descriptor is a hybrid description of an image patch constructed from 4 sets of binary intensity tests. Experiments show that benefiting from binary description and making full use of color channels, this descriptor is not only computationally frugal, but also accurate than SURF for building extraction.

  16. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  17. Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project (Briefing Charts)

    DTIC Science & Technology

    2015-02-01

    Production Approved for public release; distribution is unlimited. PA clearance # 15122. 4 Epitrochoid Power-Law Nozzle Build/Test Build on SpaceX ...Multiengine Approach SpaceX ) Approved for public release; distribution is unlimited. PA clearance # 15122. Engines: Merlin 1D on Falcon 9 v1.1 (Photo 5...to utilize features of high performance engines advances and the economies of scale of the multi-engine approach of SpaceX Falcon 9 – Rapid Prototype

  18. User's guide for LTGSTD24 program, Version 2. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanlon, R.L.; Connell, L.M.

    1993-05-01

    On January 30, 1989, the US Department of Energy (DOE) promulgated an interim rule entitled [open quotes]Energy Conservation Voluntary Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings; Mandatory for New Federal Buildings[close quotes] (10 CFR Part 435, Subpart A). These standards require federal agencies to design all future federal commercial and multifamily high-rise residential buildings in accordance with the standards, or demonstrate that their current requirements already meet or exceed the energy-efficiency requirements of the standards. Although these newly enacted standards do not regulate the design of non-federal buildings, the DOE recommends that all design professionals usemore » the standards as guidelines for designing energy-conserving buildings. To encourage private sector use, the DOE published the standards in the January 30, 1989, Federal Register in the format typical of commercial standards. The Pacific Northwest Laboratory developed several computer programs for the DOE to make it easier for designers to comply with the standards. One of the programs, LTGSTD24 (Version 2.4), is detailed in this user's guide and is provided on the accompanying diskettes. The program will facilitate the designer's use of the standards dealing specifically with building lighting design. Using this program will greatly simplify the designer's task of performing the calculations needed to determine if a design complies with the standards.« less

  19. The Impact of Working in a Green Certified Building on Cognitive Function and Health.

    PubMed

    MacNaughton, Piers; Satish, Usha; Laurent, Jose Guillermo Cedeno; Flanigan, Skye; Vallarino, Jose; Coull, Brent; Spengler, John D; Allen, Joseph G

    2017-03-01

    Thirty years of public health research have demonstrated that improved indoor environmental quality is associated with better health outcomes. Recent research has demonstrated an impact of the indoor environment on cognitive function. We recruited 109 participants from 10 high-performing buildings (i.e. buildings surpassing the ASHRAE Standard 62.1-2010 ventilation requirement and with low total volatile organic compound concentrations) in five U.S. cities. In each city, buildings were matched by week of assessment, tenant, type of worker and work functions. A key distinction between the matched buildings was whether they had achieved green certification. Workers were administered a cognitive function test of higher order decision-making performance twice during the same week while indoor environmental quality parameters were monitored. Workers in green certified buildings scored 26.4% (95% CI: [12.8%, 39.7%]) higher on cognitive function tests, controlling for annual earnings, job category and level of schooling, and had 30% fewer sick building symptoms than those in non-certified buildings. These outcomes may be partially explained by IEQ factors, including thermal conditions and lighting, but the findings suggest that the benefits of green certification standards go beyond measureable IEQ factors. We describe a holistic "buildingomics" approach for examining the complexity of factors in a building that influence human health.

  20. The Impact of Working in a Green Certified Building on Cognitive Function and Health

    PubMed Central

    MacNaughton, Piers; Satish, Usha; Laurent, Jose Guillermo Cedeno; Flanigan, Skye; Vallarino, Jose; Coull, Brent; Spengler, John D.; Allen, Joseph G.

    2017-01-01

    Thirty years of public health research have demonstrated that improved indoor environmental quality is associated with better health outcomes. Recent research has demonstrated an impact of the indoor environment on cognitive function. We recruited 109 participants from 10 high-performing buildings (i.e. buildings surpassing the ASHRAE Standard 62.1-2010 ventilation requirement and with low total volatile organic compound concentrations) in five U.S. cities. In each city, buildings were matched by week of assessment, tenant, type of worker and work functions. A key distinction between the matched buildings was whether they had achieved green certification. Workers were administered a cognitive function test of higher order decision-making performance twice during the same week while indoor environmental quality parameters were monitored. Workers in green certified buildings scored 26.4% (95% CI: [12.8%, 39.7%]) higher on cognitive function tests, controlling for annual earnings, job category and level of schooling, and had 30% fewer sick building symptoms than those in non-certified buildings. These outcomes may be partially explained by IEQ factors, including thermal conditions and lighting, but the findings suggest that the benefits of green certification standards go beyond measureable IEQ factors. We describe a holistic “buildingomics” approach for examining the complexity of factors in a building that influence human health. PMID:28785124

  1. Behavioral Change and Building Performance: Strategies for Significant, Persistent, and Measurable Institutional Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Amy K.; Malone, Elizabeth L.; Heerwagen, Judith H.

    2014-04-01

    The people who use Federal buildings — Federal employees, operations and maintenance staff, and the general public — can significantly impact a building’s environmental performance and the consumption of energy, water, and materials. Many factors influence building occupants’ use of resources (use behaviors) including work process requirements, ability to fulfill agency missions, new and possibly unfamiliar high-efficiency/high-performance building technologies; a lack of understanding, education, and training; inaccessible information or ineffective feedback mechanisms; and cultural norms and institutional rules and requirements, among others. While many strategies have been used to introduce new occupant use behaviors that promote sustainability and reduced resourcemore » consumption, few have been verified in the scientific literature or have properly documented case study results. This paper documents validated strategies that have been shown to encourage new use behaviors that can result in significant, persistent, and measureable reductions in resource consumption. From the peer-reviewed literature, the paper identifies relevant strategies for Federal facilities and commercial buildings that focus on the individual, groups of individuals (e.g., work groups), and institutions — their policies, requirements, and culture. The paper documents methods with evidence of success in changing use behaviors and enabling occupants to effectively interact with new technologies/designs. It also provides a case study of the strategies used at a Federal facility — Fort Carson, Colorado. The paper documents gaps in the current literature and approaches, and provides topics for future research.« less

  2. The energy performance of thermochromic glazing

    NASA Astrophysics Data System (ADS)

    Diamantouros, Pavlos

    This study investigated the energy performance of thermochromic glazing. It was done by simulating the model of a small building in a highly advanced computer program (EnergyPlus - U.S. DOE). The physical attributes of the thermochromic samples examined came from actual laboratory samples fabricated in UCL's Department of Chemistry (Prof I. P. Parkin). It was found that they can substantially reduce cooling loads while requiring the same heating loads as a high end low-e double glazing. The reductions in annual cooling energy required were in the 20%-40% range depending on sample, location and building layout. A series of sensitivity analyses showed the importance of switching temperature and emissivity factor in the performance of the glazing. Finally an ideal pane was designed to explore the limits this technology has to offer.

  3. New Whole-House Solutions Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Springer and A. German

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. An objective of this project was to gain a highly visible foothold for residential buildings built to themore » DOE ZERH specification that can be used to encourage participation by other California builders.« less

  4. Cobra Strikes! High-Performance Car Inspires Students, Markets Program

    ERIC Educational Resources Information Center

    Jenkins, Bonita

    2008-01-01

    Nestled in the Lower Piedmont region of upstate South Carolina, Piedmont Technical College (PTC) is one of 16 technical colleges in the state. Automotive technology is one of its most popular programs. The program features an instructive, motivating activity that the author describes in this article: building a high-performance car. The Cobra…

  5. Towards building high performance medical image management system for clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-03-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTfulWeb Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  6. Evaluation of green building rating tools based on existing green building achievement in Indonesia using Life Cycle Assessment Method

    NASA Astrophysics Data System (ADS)

    Basten, Van; Latief, Yusuf; Berawi, Mohammed Ali; Budiman, Rachmat; Riswanto

    2017-03-01

    Total completed building construction value in Indonesia increased 116% during 2009 to 2011. That's followed by increasing 11% energy consumption in Indonesia in the last three years with 70% energy met to the electricity needs of commercial building. In addition, a few application of green building concept in Indonesia made the greenhouse gas emissions or CO2 amount increased by 25%. Construction, operation, and maintain of building cost consider relatively high. The evaluation in this research is used to improve the building performance with some of green concept alternatives. The research methodology is conducted by combination of qualitative and quantitative approaches through interview and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment (LCA) Method. The result of optimization that is the largest efficiency and effective of building life cycle.

  7. High-Performance Energy-Efficient Cool Metal Roof Assemblies Utilizing Building Integrated Renewable Solar Energy Technologies for New and Retrofit Building Construction

    DTIC Science & Technology

    2014-04-01

    technology described in this proposal was first commercialized in 2004. It has been installed in 35 states and 5 countries primarily on residential ...temperatures. o Rainwater harvesting systems help reduce demands on potable water systems and help crowded cities manage stormwater drainage problems...of high density polyisocyanurate rigid insulation board installed over the existing roof and between the sub-purlins with the top layer taped to

  8. Analysis Methods for Post Occupancy Evaluation of Energy-Use in High Performance Buildings Using Short-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Singh, Vipul

    2011-12-01

    The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of 'green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility-bills only. The results obtained show that often less than three to four months of monitored data is adequate for estimating the annual building energy use, provided that the monitoring is initiated at the right time, and the seasonal as well as daily variations are adequately captured by the short dataset. The predictive accuracy of the short data-sets is found to be strongly influenced by the closeness of the dataset's mean temperature to the annual average temperature. The analysis methods studied would be very useful for energy professionals involved in POE.

  9. A high-speed DAQ framework for future high-level trigger and event building clusters

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Ardila Perez, L. E.; Balzer, M.; Dritschler, T.; Kopmann, A.; Mohr, H.; Rota, L.; Vogelgesang, M.; Weber, M.

    2017-03-01

    Modern data acquisition and trigger systems require a throughput of several GB/s and latencies of the order of microseconds. To satisfy such requirements, a heterogeneous readout system based on FPGA readout cards and GPU-based computing nodes coupled by InfiniBand has been developed. The incoming data from the back-end electronics is delivered directly into the internal memory of GPUs through a dedicated peer-to-peer PCIe communication. High performance DMA engines have been developed for direct communication between FPGAs and GPUs using "DirectGMA (AMD)" and "GPUDirect (NVIDIA)" technologies. The proposed infrastructure is a candidate for future generations of event building clusters, high-level trigger filter farms and low-level trigger system. In this paper the heterogeneous FPGA-GPU architecture will be presented and its performance be discussed.

  10. Review of Methods for Buildings Energy Performance Modelling

    NASA Astrophysics Data System (ADS)

    Krstić, Hrvoje; Teni, Mihaela

    2017-10-01

    Research presented in this paper gives a brief review of methods used for buildings energy performance modelling. This paper gives also a comprehensive review of the advantages and disadvantages of available methods as well as the input parameters used for modelling buildings energy performance. European Directive EPBD obliges the implementation of energy certification procedure which gives an insight on buildings energy performance via exiting energy certificate databases. Some of the methods for buildings energy performance modelling mentioned in this paper are developed by employing data sets of buildings which have already undergone an energy certification procedure. Such database is used in this paper where the majority of buildings in the database have already gone under some form of partial retrofitting - replacement of windows or installation of thermal insulation but still have poor energy performance. The case study presented in this paper utilizes energy certificates database obtained from residential units in Croatia (over 400 buildings) in order to determine the dependence between buildings energy performance and variables from database by using statistical dependencies tests. Building energy performance in database is presented with building energy efficiency rate (from A+ to G) which is based on specific annual energy needs for heating for referential climatic data [kWh/(m2a)]. Independent variables in database are surfaces and volume of the conditioned part of the building, building shape factor, energy used for heating, CO2 emission, building age and year of reconstruction. Research results presented in this paper give an insight in possibilities of methods used for buildings energy performance modelling. Further on it gives an analysis of dependencies between buildings energy performance as a dependent variable and independent variables from the database. Presented results could be used for development of new building energy performance predictive model.

  11. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    DOEpatents

    Liu, Yi; He, Bo; Pun, Andrew

    2015-11-24

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  12. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    DOEpatents

    Liu, Yi; He, Bo; Pun, Andrew

    2016-04-19

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  13. GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen

    2015-01-01

    GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.

  14. [Indoor air pollution by volatile organic compounds in large buildings: pollution levels and remaining issues after revision of the Act on Maintenance of Sanitation in Buildings in 2002].

    PubMed

    Sakai, Kiyoshi; Kamijima, Michihiro; Shibata, Eiji; Ohno, Hiroyuki; Nakajima, Tamie

    2010-09-01

    This study aimed to clarify indoor air pollution levels of volatile organic compounds (VOCs), especially 2-ethyl-1-hexanol (2E1H) in large buildings after revising of the Act on Maintenance of Sanitation in Buildings in 2002. We measured indoor air VOC concentrations in 57 (97%) out of a total of 61 large buildings completed within one year in half of the area of Nagoya, Japan, from 2003 through 2007. Airborne concentrations of 13 carbonyl compounds were determined with diffusion samplers and high-performance liquid chromatography, and of the other 32 VOCs with diffusion samplers and gas chromatography with a mass spectrometer. Formaldehyde was detected in all samples of indoor air but the concentrations were lower than the indoor air quality standard value set in Japan (100 microg/m3). Geometric mean concentrations of the other major VOCs, namely toluene, xylene, ethylbenzene, styrene, p-dichlorobenzene and acetaldehyde were also low. 2E1H was found to be one of the predominating VOCs in indoor air of large buildings. A few rooms in a small number of buildings surveyed showed high concentrations of 2E1H, while low concentrations were observed in most rooms of those buildings as well as in other buildings. It was estimated that about 310 buildings had high indoor air pollution levels of 2E1H, with increase during the 5 years from 2003 in Japan. Indoor air pollution levels of VOCs in new large buildings are generally good, although a few rooms in a small number of buildings showed high concentrations in 2E1H, a possible causative chemical in sick building symptoms. Therefore, 2E1H needs particular attention as an important indoor air pollutant.

  15. Static and Dynamic Analysis in Design of Exoskeleton Structure

    NASA Astrophysics Data System (ADS)

    Ivánkova, Ol'ga; Méri, Dávid; Vojteková, Eva

    2017-10-01

    This paper introduces a numerical experiment of creating the load bearing system of a high rise building. When designing the high-rise building, it is always an important task to find the right proportion between the height of the building and its perceptive width from the various angles of street view. Investigated high rise building in this article was designed according to these criteria. The load bearing structure of the analysed object consists of a reinforced core, plates and steel tubes of an exoskeleton. Eight models of the building were created using the spatial variant of FEM in Scia Engineer Software. Individual models varied in number and dimensions of diagrids in the exoskeleton. In the models, loadings due to the own weight, weight of external glass cladding, and due to the wind according to the Standard, have been considered. The building was loaded by wind load from all four main directions with respect to its shape. Wind load was calculated using the 3D wind generator, which is a part of the Scia Engineer Software. For each model the static analysis was performed. Its most important criterion was the maximum or minimum horizontal displacement (rotation) of the highest point of the building. This displacement was compared with the limit values of the displacement of the analysed high-rise building. By step-by-step adding diagrids and optimizing their dimensions the building model was obtained that complied with the criteria of the Limit Serviceability State. The last model building was assessed also for the Ultimate Limit State. This model was loaded also by seismic loads for comparison with the load due to the wind.

  16. Conducting experimental investigations of wind influence on high-rise constructions

    NASA Astrophysics Data System (ADS)

    Poddaeva, Olga I.; Fedosova, Anastasia N.; Churin, Pavel S.; Gribach, Julia S.

    2018-03-01

    The design of buildings with a height of more than 100 meters is accompanied by strict control in determining the external loads and the subsequent calculation of building structures, which is due to the uniqueness of these facilities. An important factor, the impact of which must be carefully studied at the stage of development of project documentation, is the wind. This work is devoted to the problem of studying the wind impact on buildings above 100 meters. In the article the technique of carrying out of experimental researches of wind influence on high-rise buildings and constructions, developed in the Educational-research-and-production laboratory on aerodynamic and aeroacoustic tests of building designs of NRU MGSU is presented. The publication contains a description of the main stages of the implementation of wind tunnel tests. The article presents the approbation of the methodology, based on the presented algorithm, on the example of a high-rise building under construction. This paper reflects the key requirements that are established at different stages of performing wind impact studies, as well as the results obtained, including the average values of the aerodynamic pressure coefficients, total forces and aerodynamic drag coefficients. Based on the results of the work, conclusions are presented.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, P.; Pless, S.; Lobato, C.

    Until recently, large-scale, cost-effective net-zero energy buildings (NZEBs) were thought to lie decades in the future. However, ongoing work at the National Renewable Energy Laboratory (NREL) indicates that NZEB status is both achievable and repeatable today. This paper presents a definition framework for classifying NZEBs and a real-life example that demonstrates how a large-scale office building can cost-effectively achieve net-zero energy. The vision of NZEBs is compelling. In theory, these highly energy-efficient buildings will produce, during a typical year, enough renewable energy to offset the energy they consume from the grid. The NREL NZEB definition framework classifies NZEBs according tomore » the criteria being used to judge net-zero status and the way renewable energy is supplied to achieve that status. We use the new U.S. Department of Energy/NREL 220,000-ft{sub 2} Research Support Facilities (RSF) building to illustrate why a clear picture of NZEB definitions is important and how the framework provides a methodology for creating a cost-effective NZEB. The RSF, scheduled to open in June 2010, includes contractual commitments to deliver a Leadership in Energy Efficiency and Design (LEED) Platinum Rating, an energy use intensity of 25 kBtu/ft{sub 2} (half that of a typical LEED Platinum office building), and net-zero energy status. We will discuss the analysis method and cost tradeoffs that were performed throughout the design and build phases to meet these commitments and maintain construction costs at $259/ft{sub 2}. We will discuss ways to achieve large-scale, replicable NZEB performance. Many passive and renewable energy strategies are utilized, including full daylighting, high-performance lighting, natural ventilation through operable windows, thermal mass, transpired solar collectors, radiant heating and cooling, and workstation configurations allow for maximum daylighting.« less

  18. Energy effectiveness and the ecology of work: Links to productivity and well-being

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heerwagen, J.; Johnson, J.A.; Brothers, P.

    In general, research on the positive outcomes of buildings lags behind research on problems and discomforts. A similar state exists in the field of medicine. The medical profession knows far more about what makes us sick than what makes us healthy. However, they also know that the mere absence of bad habits does not by itself promotes good health. Healthiness derives from a very different set of characteristics--including one's social network, psychological hardiness, general outlook on life, and a perceived sense of control over life situations. Research and theory in environmental psychology suggests that a similar situation exists in buildings.more » That is, the mere absence of discomforts and problems may not by itself produce high states of well being and performance. Realization of well-being and performance benefits may depend upon the degrees to which a building directly or indirectly affects psychological and cognitive functioning and physical health. An accumulating body of research in cognitive neuroscience, health psychology, and organizational behavior suggests that the physical environment can play a role in cultivating high states of well being and performance. While some of these features and attributes are directly related to energy efficient design, others have more indirect, and less obvious, linkages. In this paper, the authors look at research on factors affecting human performance, with an emphasis on information and knowledge based work. The paper includes a discussion about the effects of building design features on performance, well being, and comfort. They explore the energy linkages, both direct and indirect, in the final section of the paper.« less

  19. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Schirber, B. Schoenbauer

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high-performance water heaters difficult to justify economically. However, recent advancements in high-performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high-efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands.

  20. Assembly of [Cu2(COO)4] and [M3(μ3-O)(COO)6] (M = Sc, Fe, Ga, and In) building blocks into porous frameworks towards ultra-high C2H2/CO2 and C2H2/CH4 separation performance.

    PubMed

    Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Qu, Peng; Zhai, Quan-Guo

    2018-02-20

    A porous MOF platform (SNNU-65s) formed by creatively combining paddle-wheel-like [Cu 2 (COO) 4 ] and trigonal prismatic [M 3 (μ 3 -O)(COO) 6 ] building blocks was designed herein. The mixed and high-density open metal sites and the OH-functionalized pore surface promote SNNU-65s to exhibit ultra-high C 2 H 2 uptake and separation performance. Impressively, SNNU-65-Cu-Ga stands out for the highest C 2 H 2 /CO 2 (18.7) and C 2 H 2 /CH 4 (120.6) selectivity among all the reported MOFs at room temperature.

  1. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    PubMed

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  2. How School Administrators and Board Members Are Improving Learning and Saving Money. Energy-Smart Building Choices.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This guide shows ways that school administrators and board members can contribute to energy choice decisions for educational facilities, and it discusses how reducing operating costs also can create better learning environments. The guide reveals how design guidelines help create high-performance school buildings. It explains the use of energy…

  3. Chioke Harris | NREL

    Science.gov Websites

    transfer and materials science to the development of high-performance building components. He is member of the Building Energy Science Group, his research focuses on the application of fundamental heat particularly interested in the development of novel opaque insulation and window frame materials using nano

  4. Green Pays Its Way--Performance-Based Fees.

    ERIC Educational Resources Information Center

    Burns, Cameron M.; Eubank, Huston

    2002-01-01

    Reports that giving building and design professionals a financial incentive to create high-efficiency schools has proven to be a winning strategy for both the firms that design and build schools and the students who learn in them. Discusses a group of educators who had heard about the effects of natural lighting and ventilation on student and…

  5. Assessing School Council Contribution to the Enabling Conditions for Instructional Capacity Building: "An Urban District in Kentucky"

    ERIC Educational Resources Information Center

    Talley, Wade Kenneth; Keedy, John L.

    2006-01-01

    This study identified the enabling conditions related to building instructional capacity created by the councils in three high-performance schools in an urban district. The authors collected the data through observation, interview, and document mining. School-level data were sorted inductively into themes through constant comparative analysis.…

  6. Intelligent Facades for High Performance Green Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyson, Anna

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, wemore » have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for active and passive benefits, along with the potential savings of avoiding transmission losses through direct current (DC) transfer to all buildings systems directly from the site of solar conversion, gives the system a compounded economic viability within the commercial and institutional building markets. With a team that spans multiple stakeholders across disparate industries, from CPV to A&E partners that are responsible for the design and development of District and Regional Scale Urban Development, this project demonstrates that integrating utility-scale high efficiency CPV installations with urban and suburban environments is both viable and desirable within the marketplace. The historical schism between utility scale CPV and BIPV has been one of differing scale and cultures. There is no technical reason why utility-scale CPV cannot be located within urban embedded district scale sites of energy harvesting. New models for leasing large areas of district scale roofs and facades are emerging, such that the model for utility scale energy harvesting can be reconciled to commercial and public scale building sites and campuses. This consortium is designed to unite utility scale solar harvesting into building applications for smart grid development.« less

  7. Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Milos Manic

    2013-08-01

    Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount ofmore » information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.« less

  8. A Fast Evaluation Method for Energy Building Consumption Based on the Design of Experiments

    NASA Astrophysics Data System (ADS)

    Belahya, Hocine; Boubekri, Abdelghani; Kriker, Abdelouahed

    2017-08-01

    Building sector is one of the effective consumer energy by 42% in Algeria. The need for energy has continued to grow, in inordinate way, due to lack of legislation on energy performance in this large consumer sector. Another reason is the simultaneous change of users’ requirements to maintain their comfort, especially summer in dry lands and parts of southern Algeria, where the town of Ouargla presents a typical example which leads to a large amount of electricity consumption through the use of air conditioning. In order to achieve a high performance envelope of the building, an optimization of major parameters building envelope is required, using design of experiments (DOE), can determine the most effective parameters and eliminate the less importance. The study building is often complex and time consuming due to the large number of parameters to consider. This study focuses on reducing the computing time and determines the major parameters of building energy consumption, such as area of building, factor shape, orientation, ration walls to windows …etc to make some proposal models in order to minimize the seasonal energy consumption due to air conditioning needs.

  9. AL-Amyloidosis Presenting with Negative Congo Red Staining in the Setting of High Clinical Suspicion: A Case Report

    DTIC Science & Technology

    2012-01-01

    1Department of Internal Medicine, William Beaumont Army Medical Center, 5005 N Piedras Street, Building 7777, 9th floor East, El Paso, TX 79920, USA...2Department of Nephrology, William Beaumont Army Medical Center, 5005 N Piedras Street, Building 7777, 12th floor, El Paso, TX 79920, USA 3Propath...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) William Beaumont Army Medical Center,Department of Nephrology,5005 N Piedras Street,Building

  10. Technology Solutions for New Homes Case Study: Columbia County Habitat for Humanity Passive Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-04-01

    The Columbia County (New York) Habitat for Humanity (Columbia County Habitat) affiliate has been experimenting with high-performance building since 2012, starting with ENERGY STAR® Certified Homes. In 2013, they constructed their first homes aimed at the Passive House standards. Building off of this effort, in 2014 they began work on a second set of Passive Townhomes in Hudson, New York, in partnership with the Advanced Residential Integrated Energy Solutions (ARIES) Building America team and BarlisWedlick Architects.

  11. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...

  12. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...

  13. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...

  14. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  15. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    NASA Astrophysics Data System (ADS)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate the indoor condition regardless of the contribution of internal and external loads. To deploy the methodology to another portfolio of buildings, simulated LEED NC office buildings are selected. The advantage of this approach is to isolate energy performance due to inherent building characteristics and location, rather than operational and maintenance factors that can contribute to significant variation in building energy use. A framework for detailed building energy databases with annual energy end-uses is developed to select variables and omit outliers. The results show that the high performance office buildings are internally-load dominated with existence of three different clusters of low-intensity, medium-intensity, and high-intensity energy use pattern for the reviewed office buildings. Low-intensity cluster buildings benefit from small building area, while the medium- and high-intensity clusters have a similar range of floor areas and different energy use intensities. Half of the energy use in the low-intensity buildings is associated with the internal loads, such as lighting and plug loads, indicating that there are opportunities to save energy by using lighting or plug load management systems. A comparison between the frameworks developed for the campus buildings and LEED NC office buildings indicates these two frameworks are complementary to each other. Availability of the information has yielded to two different procedures, suggesting future studies for a portfolio of buildings such as city benchmarking and disclosure ordinance should collect and disclose minimal required inputs suggested by this study with the minimum level of monthly energy consumption granularity. This dissertation developed automated methods using the OpenStudio API (Application Programing Interface) to create energy models based on the building class. ASHRAE Guideline 14 defines well-accepted criteria to measure accuracy of energy simulations; however, there is no well-accepted methodology to quantify the model complexity without the influence of the energy modeler judgment about the model complexity. This study developed a novel method using two weighting factors, including weighting factors based on (1) computational time and (2) easiness of on-site data collection, to measure complexity of the energy models. Therefore, this dissertation enables measurement of both model complexity and accuracy as well as assessment of the inherent tradeoffs between energy simulation model complexity and accuracy. The results of this methodology suggest for most of the internal load contributors such as operation schedules the on-site data collection adds more complexity to the model compared to the computational time. Overall, this study provided specific data on tradeoffs between accuracy and model complexity that points to critical inputs for different building classes, rather than an increase in the volume and detail of model inputs as the current research and consulting practice indicates. (Abstract shortened by UMI.).

  16. Failure Is Not an Option (TM). Six Principles That Guide Student Achievement in High-Performing Schools

    ERIC Educational Resources Information Center

    Blankstein, Alan M.

    2004-01-01

    The author builds upon a foundation which identifies courageous school leadership and the professional learning community as the center of effective school reform. The author offers six guiding principles steps for creating and sustaining a high-performing school: (1) Common mission, vision, values, and goals: (2) Systems for prevention and…

  17. High-performance commercial building systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in newmore » buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort by reviewing and critiquing work to date, and by partnering in activities that advance results toward market impacts. The goals, objectives and key accomplishments of each technical program element and projects are described in the sections that follow. For each project we then summarize the Task Approach, the Outcomes of each task, and our Conclusions and Recommendations. We also provide a list and short summary of each significant research product e.g. report, prototype, software, standard, etc.« less

  18. GPS in dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.

    2000-01-01

    Global Positioning System (GPS) technology with high sampling rates (??? 10 samples per second) allows scientifically justified and economically feasible dynamic measurements of relative displacements of long-period structures-otherwise difficult to measure directly by other means, such as the most commonly used accelerometers that require post-processing including double integration. We describe an experiment whereby the displacement responses of a simulated tall building are measured clearly and accurately in real-time. Such measurements can be used to assess average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the building performance during extreme motions caused by earthquakes and strong winds. By establishing threshold displacements or drift ratios and identifying changing dynamic characteristics, procedures can be developed to use such information to secure public safety and/or take steps to improve the performance of the building. Published by Elsevier Science Ltd.

  19. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    PubMed Central

    Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan

    2017-01-01

    In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images. PMID:28125018

  20. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction.

    PubMed

    Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan

    2017-01-24

    In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed 'occlusions of random textures model' are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.

  1. Methodology for estimating human perception to tremors in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Du, Wenqi; Goh, Key Seng; Pan, Tso-Chien

    2017-07-01

    Human perception to tremors during earthquakes in high-rise buildings is usually associated with psychological discomfort such as fear and anxiety. This paper presents a methodology for estimating the level of perception to tremors for occupants living in high-rise buildings subjected to ground motion excitations. Unlike other approaches based on empirical or historical data, the proposed methodology performs a regression analysis using the analytical results of two generic models of 15 and 30 stories. The recorded ground motions in Singapore are collected and modified for structural response analyses. Simple predictive models are then developed to estimate the perception level to tremors based on a proposed ground motion intensity parameter—the average response spectrum intensity in the period range between 0.1 and 2.0 s. These models can be used to predict the percentage of occupants in high-rise buildings who may perceive the tremors at a given ground motion intensity. Furthermore, the models are validated with two recent tremor events reportedly felt in Singapore. It is found that the estimated results match reasonably well with the reports in the local newspapers and from the authorities. The proposed methodology is applicable to urban regions where people living in high-rise buildings might feel tremors during earthquakes.

  2. Commercial Building Energy Asset Rating Program -- Market Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing nationalmore » and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.« less

  3. Premium cost optimization of operational and maintenance of green building in Indonesia using life cycle assessment method

    NASA Astrophysics Data System (ADS)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Budiman, Rachmat; Riswanto

    2017-06-01

    Building has a big impact on the environmental developments. There are three general motives in building, namely the economy, society, and environment. Total completed building construction in Indonesia increased by 116% during 2009 to 2011. It made the energy consumption increased by 11% within the last three years. In fact, 70% of energy consumption is used for electricity needs on commercial buildings which leads to an increase of greenhouse gas emissions by 25%. Green Building cycle costs is known as highly building upfront cost in Indonesia. The purpose of optimization in this research improves building performance with some of green concept alternatives. Research methodology is mixed method of qualitative and quantitative approaches through questionnaire surveys and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment Method. Choosing optimization results were based on the largest efficiency of building life cycle and the most effective cost to refund.

  4. Play for Performance: Using Computer Games to Improve Motivation and Test-Taking Performance

    ERIC Educational Resources Information Center

    Dennis, Alan R.; Bhagwatwar, Akshay; Minas, Randall K.

    2013-01-01

    The importance of testing, especially certification and high-stakes testing, has increased substantially over the past decade. Building on the "serious gaming" literature and the psychology "priming" literature, we developed a computer game designed to improve test-taking performance using psychological priming. The game primed…

  5. Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Loomis, H.

    Transformations, Inc. has extensive experience building their high performance housing at a variety of Massachusetts locations, in both a production and custom home setting. The majority of their construction uses mini-split heat pumps (MSHPs) for space conditioning. This research covered the long-term performance of MSHPs in Zone 5A; it is the culmination of up to 3 years' worth of monitoring in a set of eight houses. This research examined electricity use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point) heating systems in high-performance housing, and the impact of open-door/closed-door status on temperature distributions. The use ofmore » simplified space conditioning distribution (through use of MSHPs) provides significant first cost savings, which are used to offset the increased investment in the building enclosure.« less

  6. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich; Lois Arena; Dianne Griffiths

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less

  7. Users guide for ENVSTD program Version 2. 0 and LTGSTD program Version 2. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawley, D.B.; Riesen, P.K.; Briggs, R.S.

    1989-02-01

    On January 30, 1989, the US Department of Energy (DOE) promulgated 10 CFR Part 435, Subpart A, an Interim Rule entitled ''Energy Conservation Voluntary Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings; Mandatory for New Federal Buildings.'' As a consequence, federal agencies must design all future federal commercial and multifamily high rise residential buildings in accordance with the Standards, or show that their current standards already meet or exceed the energy-efficiency requirements of the Standards. Although these newly enacted Standards do not regulate the design of nonfederal buildings, DOE recommends that all design professionals use the Standardsmore » as guidelines for designing energy-conserving buildings. To encourage private sector use, the Standards were presented in the January 30, 1989, Federal Register in the format typical of commercial standards rather than a federal regulation. As a further help, DOE supported the development of various microcomputer programs to ease the use of the Standards. Two of these programs/emdash/ENVSTD (Version 2.0) and LTGSTD (Version 2.0)/emdash/are detailed in this users guide and provided on the accompanying diskette. This package, developed by Pacific Northwest Laboratory (PNL), is intended to facilitate the designer's use of the Standards dealing specifically with a building's envelope and lighting system designs. Using these programs will greatly simplify the designer's task of performing the sometimes complex calculations needed to determine a design's compliance with the Standards. 3 refs., 6 figs.« less

  8. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Abhari, Mr. Ramin; Shukla, Dr. Nitin

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installedmore » in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.« less

  9. Technical - Economic Research for Passive Buildings

    NASA Astrophysics Data System (ADS)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  10. Finite element analysis of composite beam-to-column connection with cold-formed steel section

    NASA Astrophysics Data System (ADS)

    Firdaus, Muhammad; Saggaff, Anis; Tahir, Mahmood Md

    2017-11-01

    Cold-formed steel (CFS) sections are well known due to its lightweight and high structural performance which is very popular for building construction. Conventionally, they are used as purlins and side rails in the building envelopes of the industrial buildings. Recent research development on cold-formed steel has shown that the usage is expanded to the use in composite construction. This paper presents the modelling of the proposed composite connection of beam-to-column connection where cold-formed steel of lipped steel section is positioned back-to-back to perform as beam. Reinforcement bars is used to perform the composite action anchoring to the column and part of it is embedded into a slab. The results of the finite element and numerical analysis has showed good agreement. The results show that the proposed composite connection contributes to significant increase to the moment capacity.

  11. Toward the 21st Century: Preparing Proactive Visionary Transformational Leaders for Building Learning Communities. Human Resource Development. South Florida Cluster.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    The first part of this document describes Nova University's doctoral program in Vocational, Technical, and Occupational (VTO) Education, developed in response to the need to create high performance learners and leaders for building learning communities. It discusses how a curriculum change in 1990 resulted in the following: conversion of the…

  12. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Treesearch

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  13. Constructing Wood Agricultural Buildings. An Instructional Unit for High School Teachers of Vocational Agriculture.

    ERIC Educational Resources Information Center

    Williams, Paul; Carpenter, Bruce

    This 5-week unit on constructing wood agricultural buildings is designed for the junior or senior year of the regular agribusiness course of study or as part of the agricultural mechanics program. In outline form, the unit is divided into eight major performance objectives. Each objective is subdivided into the areas of content, suggested…

  14. Meso-oblate spheroids of thermal-stabile linker-free aggregates with size-tunable subunits for reversible lithium storage.

    PubMed

    Deng, Da; Lee, Jim Yang

    2014-01-22

    The organization of nanoscale materials as building units into extended structures with specific geometry and functional properties is a challenging endeavor. Hereby, an environmentally benign, simple, and scalable method for preparation of stable, linker-free, self-supported, high-order 3D meso-oblate spheroids of CuO nanoparticle aggregates with size-tunable building nanounits for reversible lithium-ion storage is reported. In contrast to traditional spherical nanoparticle aggregation, a unique oblate spheroid morphology is achieved. The formation mechanism of the unusual oblate spheroid of aggregated nanoparticles is proposed. When tested for reversible lithium ion storage, the unique 3D meso-oblate spheroids of CuO nanoparticle aggregate demonstrated highly improved electrochemical performance (around ∼600 mAh/g over 20 cycles), which could be ascribed to the nanoporous aggregated mesostructure with abundant crystalline imperfection. Furthermore, the size of building units can be controlled (12 and 21 nm were tested) to further improve their electrochemical performance.

  15. Web building and silk properties functionally covary among species of wolf spider.

    PubMed

    Lacava, Mariángeles; Camargo, Arley; Garcia, Luis F; Benamú, Marco A; Santana, Martin; Fang, Jian; Wang, Xungai; Blamires, Sean J

    2018-04-15

    Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2-like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non-web building, but a select few species build webs. We accordingly collected MA silk from two web-building and six non-web-building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2-like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web-building and non-web-building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web-building and non-web-building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2-like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co-evolution and the ecological implications of spider silk properties. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    By working with builder partners on test homes, researchers from the U.S. Department of Energy’s Building America program can vet whole-house building strategies and avoid potential unintended consequences of implementing untested solution packages on a production scale. To support this research, Building America team Consortium for Advanced Residential Buildings (CARB) partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, Connecticut. The philosophy and science behind the 2,700 ft2 “Performance House” was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adaptable to the needs of homeowners. The technologies and strategies usedmore » in the “Performance House” were best practices rather than cutting edge, with a focus on simplicity in construction, maintenance, and operation. Achieving 30% source energy savings compared with a home built to the 2009 International Energy Conservation Code in the cold climate zone requires that nearly all components and systems be optimized. Careful planning and design are critical. The end result was a DOE Challenge Home that achieved a Home Energy Rating System (HERS) Index Score of 20 (43 without photovoltaics [PV]).« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    By working with builder partners on test homes, researchers from the U.S. Department of Energy's Building America program can vet whole-house building strategies and avoid potential unintended consequences of implementing untested solution packages on a production scale. To support this research, Building America team Consortium for Advanced Residential Buildings (CARB) partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, Connecticut. The philosophy and science behind the 2,700 ft2 "Performance House" was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adaptable to the needs of homeowners. The technologies and strategies usedmore » in the "Performance House" were best practices rather than cutting edge, with a focus on simplicity in construction, maintenance, and operation. Achieving 30% source energy savings compared with a home built to the 2009 International Energy Conservation Code in the cold climate zone requires that nearly all components and systems be optimized. Careful planning and design are critical. The end result was a DOE Challenge Home that achieved a Home Energy Rating System (HERS) Index Score of 20 (43 without photovoltaics [PV]).« less

  18. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms With Practical Applications.

    PubMed

    Van Hooren, Bas; Zolotarjova, Julia

    2017-07-01

    Van Hooren, B and Zolotarjova, J. The difference between countermovement and squat jump performances: a review of underlying mechanisms with practical applications. J Strength Cond Res 31(7): 2011-2020, 2017-Two movements that are widely used to monitor athletic performance are the countermovement jump (CMJ) and squat jump (SJ). Countermovement jump performance is almost always better than SJ performance, and the difference in performance is thought to reflect an effective utilization of the stretch-shortening cycle. However, the mechanisms responsible for the performance-enhancing effect of the stretch-shortening cycle are frequently undefined. Uncovering and understanding these mechanisms is essential to make an inference regarding the difference between the jumps. Therefore, we will review the potential mechanisms that explain the better performance in a CMJ as compared with a SJ. It is concluded that the difference in performance may primarily be related to the greater uptake of muscle slack and the buildup of stimulation during the countermovement in a CMJ. Elastic energy may also have a small contribution to an enhanced CMJ performance. Therefore, a larger difference between the jumps is not necessarily a better indicator of high-intensity sports performance. Although a larger difference may reflect the utilization of elastic energy in a small-amplitude CMJ as a result of a well-developed capability to co-activate muscles and quickly build up stimulation, a larger difference may also reflect a poor capability to reduce the degree of muscle slack and build up stimulation in the SJ. Because the capability to reduce the degree of muscle slack and quickly build up stimulation in the SJ may be especially important to high-intensity sports performance, training protocols might concentrate on attaining a smaller difference between the jumps.

  19. Highly-Damped Spectral Acceleration as a Ground Motion Intensity Measure for Estimating Collapse Vulnerability of Buildings

    NASA Astrophysics Data System (ADS)

    Buyco, K.; Heaton, T. H.

    2016-12-01

    Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.

  20. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.

    PubMed

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  1. Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers tomore » specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less

  2. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answersmore » to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less

  3. Analysis of Building Envelope Insulation Performance Utilizing Integrated Temperature and Humidity Sensors

    PubMed Central

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529

  4. Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.

    2017-12-01

    Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.

  5. WIYN tip-tilt module performance

    NASA Astrophysics Data System (ADS)

    Claver, Charles F.; Corson, Charles; Gomez, R. Richard, Jr.; Daly, Philip N.; Dryden, David M.; Abareshi, Behzod

    2003-02-01

    The WIYN Tip-Tilt Module (WTTM) is an addition to the existing Instrument Adapter System (IAS) providing a high performance optical-NIR image stabilized port on the WIYN 3.5m telescope. The WTTM optical system uses a 3-mirror off-axis design along with a high bandwidth tilt mirror. The WTTM is a reimaging system with 15% magnification producing a 4x4 arcminute field of view and near diffraction limited imagery from 400-2000nm. The optics are diamond turned in electroless Nickel over an Aluminum substrate. The WTTM opto-mechanical assembly was designed and built using the principals of the "build-to-print" technique, where the entire system is fabricated and assembled to tolerance with no adjustments. A unique high performance error sensor, using an internal mirrorlette array that feeds 4 fiber coupled avalanche photodiode photon counters, provides the tilt signal. The system runs under the Real-Time Linux operating system providing a maximum closed loop rate of 3khz. In this paper we report on the successful lab testing, verification of the "build-to-print" technique and on telescope performance of the WTTM.

  6. Aggregation of LoD 1 building models as an optimization problem

    NASA Astrophysics Data System (ADS)

    Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M.

    3D city models offered by digital map providers typically consist of several thousands or even millions of individual buildings. Those buildings are usually generated in an automated fashion from high resolution cadastral and remote sensing data and can be very detailed. However, not in every application such a high degree of detail is desirable. One way to remove complexity is to aggregate individual buildings, simplify the ground plan and assign an appropriate average building height. This task is computationally complex because it includes the combinatorial optimization problem of determining which subset of the original set of buildings should best be aggregated to meet the demands of an application. In this article, we introduce approaches to express different aspects of the aggregation of LoD 1 building models in the form of Mixed Integer Programming (MIP) problems. The advantage of this approach is that for linear (and some quadratic) MIP problems, sophisticated software exists to find exact solutions (global optima) with reasonable effort. We also propose two different heuristic approaches based on the region growing strategy and evaluate their potential for optimization by comparing their performance to a MIP-based approach.

  7. Exploring Cloud Computing for Large-scale Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Han, Binh; Yin, Jian

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less

  8. Environmental assessment of low-energy social housing, Boatemah Walk building, Brixton

    NASA Astrophysics Data System (ADS)

    Vargas, Lidia Johansen

    Energy use from buildings represents a considerable share from the UK energy consumption as a whole and the resulting C02 emissions are considered the main driver for climate change. There is a global urge for new and existing buildings to be truly effective in reducing their energy consumption. This study evaluates the performance in use of low energy design in social housing: Boatemah Walk is a newly built residential block of 18 flats located in Angell Town, Brixton, which benefits from various low energy enhancing features such as: a low embodied energy building fabric, super insulation, photovoltaic panels integrated in the roof, rainwater recycling system and non-toxic building materials and finishes. The new building layout and surrounding landscape influences positively the community integration and safety. The evaluation has been done through observation, monitoring, interviews with tenants and the use of TAS software, throughout the year after occupation. Boatemah Walk building has proved successful in some aspects and less successful in others. It is crucial that a demonstration project like Boatemah Walk building considers all mechanisms necessary to monitor its efficiency, as this would provide feedback to prove the efficiency and encourage similar investments. However, during the course of the study it was found that a meter for the recycled water and export meters for the photovoltaic production were missing. This proved to be an obstacle for the accurate monitoring of the building performance. The annual heating in Boatemah Walk is below the national averages, which confirms the good performance of its building fabric. In hot summer days the lightweight building is expectedly vulnerable to the outside. This is not a frequent occurrence however the effects of climate change are very likely to increase the length and temperatures in the future. The tenants' energy consuming behavior has a definitive impact, as revealed through monitoring and direct interviews. There is a wide difference between tenants in terms of their environmental concern and attitudes, which is reflected in the overall performance of the building. One of the most successful aspects of this development is probably the effect it is having in the community. The tenants are highly satisfied with the building in various aspects, and the ones who used to live in Angell Town before the regeneration have experienced a very positive change in their quality of life and a sense of pride about their community.

  9. Retrofitting solutions for two different occupancy levels of educational buildings in tropics

    NASA Astrophysics Data System (ADS)

    Yang, Junjing; Pantazaras, Alexandros; Lee, Siew Eang; Santamouris, Mattheos

    2018-01-01

    Within the multi-functionality of educational buildings, the energy conservation potential can be very different. In addition, among different retrofitting solutions investigated involving interventions on the building envelope, ventilation strategies, artificial lighting systems as well as equipment upgrading, different saving potential would come from different aspects. The opportunities for energy saving potential from the overall point of view and from the detailed aspect view of different retrofitting solutions would be very useful and important for building renovation decision making. This study presents a detailed retrofitting study of two different educational buildings. One represents a building with average occupancy variation and containing mainly offices and labs. The other one represents a building with high occupancy variation and containing mainly lecture rooms and studios. This comparison of the results gives an idea of the different energy saving potential for different types of educational buildings. Principal component analysis is also adopted to investigate the detailed performance of one of the buildings which is influenced stronger by these retrofitting solutions.

  10. Building High-Performing and Improving Education Systems. Systems and Structures: Powers, Duties and Funding. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    This Review looks at the way high-performing and improving education systems share out power and responsibility. Resources--in the form of funding, capital investment or payment of salaries and other ongoing costs--are some of the main levers used to make policy happen, but are not a substitute for well thought-through and appropriate policy…

  11. Governor's Educator Excellence Grant (GEEG) Program: Year Three Evaluation Report. Policy Evaluation Report

    ERIC Educational Resources Information Center

    Springer, Matthew G.; Lewis, Jessica L.; Podgursky, Michael J.; Ehlert, Mark W.; Taylor, Lori L.; Lopez, Omar S.; Peng, Art

    2009-01-01

    The Governor's Educator Excellence Grant (GEEG) program was federally- and state-funded and provided three-year grants to schools to design and implement performance pay plans from the 2005-06 to 2007-08 school years. GEEG was implemented in 99 high poverty, high performing Texas public schools. This report builds on the previous GEEG evaluation…

  12. Tailored high-resolution numerical weather forecasts for energy efficient predictive building control

    NASA Astrophysics Data System (ADS)

    Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.

    2010-09-01

    The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the other hand, buildings are affected by particularly local weather conditions at the building site. To overcome this discrepancy, we make use of local measurements to statistically adapt the COSMO-7 model output to the meteorological conditions at the building. For this, we have developed a general correction algorithm that exploits systematic properties of the COSMO-7 prediction error and explicitly estimates the degree of temporal autocorrelation using online recursive estimation. The resulting corrected predictions are improved especially for the first few hours being the most crucial for the predictive controller and, ultimately for the reduction of primary energy consumption using predictive control. The use of numerical weather forecasts in predictive building automation is one example in a wide field of weather dependent advanced energy saving technologies. Our work particularly highlights the need for the development of specifically tailored weather forecast products by (statistical) postprocessing in order to meet the requirements of specific applications.

  13. Oregon Sustainability Center: Weighing Approaches to Net Zero

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cindy; Robinson, Alastair; Settlemyre, Kevin

    2013-10-01

    The Oregon Sustainability Center (OSC) was to represent a unique public/private partnership between the city of Portland, Oregon, state government, higher education, non-profit organizations, and the business community. A unique group of stakeholders partnered with the U.S. Department of Energy (DOE) technical expert team (TET) to collaboratively identify, analyze, and evaluate solutions to enable the OSC to become a high-performance sustainability landmark in downtown Portland. The goal was to build a new, low-energy mixed-use urban high-rise that consumes at least 50 percent less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioningmore » Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program.1 In addition, the building design was to incorporate renewable energy sources that would account for the remaining energy consumption, resulting in a net zero building. The challenge for the CBP DOE technical team was to evaluate factors of risk and components of resiliency in the current net zero energy design and analyze that design to see if the same high performance could be achieved by alternative measures at lower costs. In addition, the team was to use a “lens of scalability” to assess whether or not the strategies could be applied to more projects. However, a key component of the required project funding did not pass, and therefore this innovative building design was discontinued while it was in the design development stage.« less

  14. Analytical and Experimental Assessment of Seismic Vulnerability of Beam-Column Joints without Transverse Reinforcement in Concrete Buildings

    NASA Astrophysics Data System (ADS)

    Hassan, Wael Mohammed

    Beam-column joints in concrete buildings are key components to ensure structural integrity of building performance under seismic loading. Earthquake reconnaissance has reported the substantial damage that can result from inadequate beam-column joints. In some cases, failure of older-type corner joints appears to have led to building collapse. Since the 1960s, many advances have been made to improve seismic performance of building components, including beam-column joints. New design and detailing approaches are expected to produce new construction that will perform satisfactorily during strong earthquake shaking. Much less attention has been focused on beam-column joints of older construction that may be seismically vulnerable. Concrete buildings constructed prior to developing details for ductility in the 1970s normally lack joint transverse reinforcement. The available literature concerning the performance of such joints is relatively limited, but concerns about performance exist. The current study aimed to improve understanding and assessment of seismic performance of unconfined exterior and corner beam-column joints in existing buildings. An extensive literature survey was performed, leading to development of a database of about a hundred tests. Study of the data enabled identification of the most important parameters and the effect of each parameter on the seismic performance. The available analytical models and guidelines for strength and deformability assessment of unconfined joints were surveyed and evaluated. In particular, The ASCE 41 existing building document proved to be substantially conservative in joint shear strength estimation. Upon identifying deficiencies in these models, two new joint shear strength models, a bond capacity model, and two axial capacity models designed and tailored specifically for unconfined beam-column joints were developed. The proposed models strongly correlated with previous test results. In the laboratory testing phase of the current study, four full-scale corner beam-column joint subassemblies, with slab included, were designed, built, instrumented, tested, and analyzed. The specimens were tested under unidirectional and bidirectional displacement-controlled quasi-static loading that incorporated varying axial loads that simulated overturning seismic moment effects. The axial loads varied between tension and high compression loads reaching about 50% of the column axial capacity. The test parameters were axial load level, loading history, joint aspect ratio, and beam reinforcement ratio. The test results proved that high axial load increases joint shear strength and decreases the deformability of joints failing in pure shear failure mode without beam yielding. On the contrary, high axial load did not affect the strength of joints failing in shear after significant beam yielding; however, it substantially increased their displacement ductility. Joint aspect ratio proved to be instrumental in deciding joint shear strength; that is the deeper the joint the lower the shear strength. Bidirectional loading reduced the apparent strength of the joint in the uniaxial principal axes. However, circular shear strength interaction is an appropriate approximation to predict the biaxial strength. The developed shear strength models predicted successfully the strength of test specimens. Based on the literature database investigation, the shear and axial capacity models developed and the test results of the current study, an analytical finite element component model based on a proposed joint shear stress-rotation backbone constitutive curve was developed to represent the behavior of unconfined beam-column joints in computer numerical simulations of concrete frame buildings. The proposed finite element model included the effect of axial load, mode of joint failure, joint aspect ratio and axial capacity of joint. The proposed backbone curve along with the developed joint element exhibited high accuracy in simulating the test response of the current test specimens as well as previous test joints. Finally, a parametric study was conducted to assess the axial failure vulnerability of unconfined beam-column joints based on the developed shear and axial capacity models. This parametric study compared the axial failure potential of unconfined beam-column joint with that of shear critical columns to provide a preliminary insight into the axial collapse vulnerability of older-type buildings during intense ground shaking.

  15. Modeling lift operations with SASmacr Simulation Studio

    NASA Astrophysics Data System (ADS)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aimmore » of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.« less

  17. Multi-type sensor placement and response reconstruction for building structures: Experimental investigations

    NASA Astrophysics Data System (ADS)

    Hu, Rong-Pan; Xu, You-Lin; Zhan, Sheng

    2018-01-01

    Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.

  18. 48 CFR 7.103 - Agency-head responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... depleting products; (3) Comply with the Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings (Guiding Principles), for the design, construction, renovation, repair, or...

  19. Lessons learned from the 2016 Kumamoto earthquake: Building damages and behavior of seismically isolated buildings

    NASA Astrophysics Data System (ADS)

    Morita, Keiko; Takayama, Mineo

    2017-10-01

    Powerful earthquakes stuck Kumamoto and Oita Prefectures in Kyushu, Japan. It began with the Magnitude 6.5 foreshock at 21:26 JST 14 April, followed by the Magnitude 7.3 mainshock at 1:25 JST 16 April, 2016. The sequence earthquakes also involved more than 1700 perceptible earthquakes as of 13 June. The entire sequence was named the 2016 Kumamoto earthquake by the Japan Meteorological Agency. Thousands of buildings and many roads were damaged, and landslides occurred. The Japanese building standard law is revised in 1981. Structural damages were concentrated on buildings constructed prior to 1981. The area of Mashiki and Southern Aso were most badly affected, especially wooden houses extremely damaged. In Japan, Prof. Hideyuki Tada (title at the time) undertook research on laminated rubber bearings in 1978, and put it into practical use in 1981. The single family house at Yachiyodai, Chiba Prefecture is completed in 1983, it's the first seismically isolated building which is installed laminated rubber bearings in Japan. Afterward, this system is gradually adopted to mainly office buildings, like a research laboratory, a hospital, a computer center and other offices. In the 1994 Northridge earthquake, the 1995 Kobe earthquake and 2011 Tohoku earthquake, seismically isolated buildings improve these good performances, and recently number of the buildings have increased, mainly high risk area of earthquakes. Many people believed that Kumamoto was a low risk area. But there were 24 seismically isolated buildings in Kumamoto Prefecture at the time. The seismically isolated buildings indicated excellent performances during the earthquakes. They protected people, buildings and other important facilities from damages caused by the earthquake. The purpose of this paper is to discuss lessons learned from the 2016 Kumamoto earthquake and behavior of seismically isolated buildings in the earthquake.

  20. Through the Past Decade: How Advanced Energy Design Guides have influenced the Design Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bing; Athalye, Rahul A.

    Advanced Energy Design Guides (AEDGs) were originally developed intended to provide a simple approach to building professionals seeking energy efficient building designs better than ASHRAE Standard 90.1. Since its first book was released in 2004, the AEDG series provided inspiration for the design industry and were seen by designers as a starting point for buildings that wished to go beyond minimum codes and standards. In addition, U.S. Department of Energy’s successful Commercial Building Partnerships (CBP) program leveraged many of the recommendations from the AEDGs to achieve 50% energy savings over ASHRAE Standard 90.1-2004 for prototypical designs of large commercial entitiesmore » in the retail, banking and lodging sectors. Low-energy technologies and strategies developed during the CBP process have been applied by commercial partners throughout their national portfolio of buildings. Later, the AEDGs served as the perfect platform for both Standard 90.1 and ASHRAE’s high performance buildings standard, Standard 189.1. What was high performance a few years ago, however, has become minimum code today. Indeed, most of the prescriptive envelope component requirements in ASHRAE Standard 90.1-2013 are values recommended in the 50% AEDGs several years ago. Similarly, AEDG strategies and recommendations have penetrated the lighting and HVAC sections of both Standard 189.1 and Standard 90.1. Finally, as we look to the future of codes and standards, the AEDGs are serving as a blueprint for how minimum code requirements could be expressed. By customizing codes to specific building types, design strategies tailored for individual buildings could be prescribed as minimum code, just like in the AEDGs. This paper describes the impact that AEDGs have had over the last decade on the design industry and how they continue to influence the future of codes and Standards. From design professionals to code officials, everyone in the building industry has been affected by the AEDGs.« less

  1. Fusion PIC code performance analysis on the Cori KNL system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, Tuomas S.; Deslippe, Jack; Friesen, Brian

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization ismore » shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.« less

  2. Technology Solutions Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the "normal leakage paths through the building envelope" disappear. Consortium for Advanced Residential Buildings researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust withmore » ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. This research effort included several weeks of building pressure monitoring to validate system performance of the different strategies for providing make-up air to apartments.« less

  3. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    DTIC Science & Technology

    2016-11-21

    This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid

  4. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, M.; Gilbride, T.; Ruiz, K.

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  5. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    2017-08-31

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  6. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  7. Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Ni, Yanchun; Lu, Xilin; Lu, Wensheng

    2017-03-01

    The field non-destructive vibration test plays an important role in the area of structural health monitoring. It assists in monitoring the health status and reducing the risk caused by the poor performance of structures. As the most economic field test among the various vibration tests, the ambient vibration test is the most popular and is widely used to assess the physical condition of a structure under operational service. Based on the ambient vibration data, modal identification can help provide significant previous study for model updating and damage detection during the service life of a structure. It has been proved that modal identification works well in the investigation of the dynamic performance of different kinds of structures. In this paper, the objective structure is a high-rise multi-function office building. The whole building is composed of seven three-story structural units. Each unit comprises one complete floor and two L shaped floors to form large spaces along the vertical direction. There are 56 viscous dampers installed in the building to improve the energy dissipation capacity. Due to the special feature of the structure, field vibration tests and further modal identification were performed to investigate its dynamic performance. Twenty-nine setups were designed to cover all the degrees of freedom of interest. About two years later, another field test was carried out to measure the building for 48 h to investigate the performance variance and the distribution of the modal parameters. A Fast Bayesian FFT method was employed to perform the modal identification. This Bayesian method not only provides the most probable values of the modal parameters but also assesses the associated posterior uncertainty analytically, which is especially relevant in field vibration tests arising due to measurement noise, sensor alignment error, modelling error, etc. A shaking table test was also implemented including cases with and without dampers, which assists in investigating the effect of dampers. The modal parameters obtained from different tests were investigated separately and then compared with each other.

  8. Assessment of SIP Buildings for Sustainable Development in Rural China Using AHP-Grey Correlation Analysis.

    PubMed

    Bai, Libiao; Wang, Hailing; Shi, Chunming; Du, Qiang; Li, Yi

    2017-10-25

    Traditional rural residential construction has the problems of high energy consumption and severe pollution. In general, with sustainable development in the construction industry, rural residential construction should be aimed towards low energy consumption and low carbon emissions. To help achieve this objective, in this paper, we evaluated four different possible building structures using AHP-Grey Correlation Analysis, which consists of the Analytic Hierarchy Process (AHP) and the Grey Correlation Analysis. The four structures included the traditional and currently widely used brick and concrete structure, as well as structure insulated panels (SIPs). Comparing the performances of economic benefit and carbon emission, the conclusion that SIPs have the best overall performance can be obtained, providing a reference to help builders choose the most appropriate building structure in rural China.

  9. Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.

    2010-06-01

    2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year ofmore » measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.« less

  10. Ventilation and infiltration in high-rise apartment buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, R.C.; Feustel, H.E.; Dickerhoff, D.J.

    1996-03-01

    Air flow, air leakage measurements and numerical simulations were made on a 13-story apartment building to characterize the ventilation rates for the individual apartments. Parametric simulations were performed for specific conditions, e.g., height, orientation, outside temperature and wind speed. Our analysis of the air flow simulations suggest that the ventilation to the individual units varies considerably. With the mechanical ventilation system disabled and no wind, units at the lower level of the building have adequate ventilation only on days with high temperature differences, while units on higher floors have no ventilation at all. Units facing the windward side will bemore » over-ventilated when the building experiences wind directions between west and north. At the same time, leeward apartments did not experience any fresh air-because, in these cases, air flows enter the apartments from the corridor and exit through the exhaust shafts and the cracks in the facade. Even with the mechanical ventilation system operating, we found wide variation in the air flows to the individual apartments. In addition to the specific case presented here, these findings have more general implications for energy retrofits and health and comfort of occupants in high-rise apartment buildings.« less

  11. Building Extraction from Remote Sensing Data Using Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Bittner, K.; Cui, S.; Reinartz, P.

    2017-05-01

    Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM) using a Fully Convolution Network (FCN) architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM) as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF), which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.

  12. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    PubMed

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerrigan, P.

    This report describes a research study that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance homes in a hot-humid climate. The purpose of this research project was to observe and compare the humidity control performance. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses; homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjectsmore » of the study were 10 single-family, new construction homes in New Orleans, LA.« less

  14. Design of AN Intelligent Individual Evacuation Model for High Rise Building Fires Based on Neural Network Within the Scope of 3d GIS

    NASA Astrophysics Data System (ADS)

    Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.

    2013-09-01

    One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.

  15. High resolution tsunami modelling for the evaluation of potential risk areas in Setúbal (Portugal)

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Silva, A.; Leitão, P.

    2011-08-01

    The use of high resolution hydrodynamic modelling to simulate the potential effects of tsunami events can provide relevant information about the most probable inundation areas. Moreover, the consideration of complementary data such as the type of buildings, location of priority equipment, type of roads, enables mapping of the most vulnerable zones, computing of the expected damage on man-made structures, constrain of the definition of rescue areas and escape routes, adaptation of emergency plans and proper evaluation of the vulnerability associated with different areas and/or equipment. Such an approach was used to evaluate the specific risks associated with a potential occurrence of a tsunami event in the region of Setúbal (Portugal), which was one of the areas most seriously affected by the 1755 tsunami. In order to perform an evaluation of the hazard associated with the occurrence of a similar event, high resolution wave propagation simulations were performed considering different potential earthquake sources with different magnitudes. Based on these simulations, detailed inundation maps associated with the different events were produced. These results were combined with the available information on the vulnerability of the local infrastructures (building types, roads and streets characteristics, priority buildings) in order to impose restrictions in the production of high-scale potential damage maps, escape routes and emergency routes maps.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Oberlin College’s Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials

  17. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leah Glameyer

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how tomore » best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.« less

  18. Minimizing End-to-End Interference in I/O Stacks Spanning Shared Multi-Level Buffer Caches

    ERIC Educational Resources Information Center

    Patrick, Christina M.

    2011-01-01

    This thesis presents an end-to-end interference minimizing uniquely designed high performance I/O stack that spans multi-level shared buffer cache hierarchies accessing shared I/O servers to deliver a seamless high performance I/O stack. In this thesis, I show that I can build a superior I/O stack which minimizes the inter-application interference…

  19. π-Extended Isoindigo-Based Derivative: A Promising Electron-Deficient Building Block for Polymer Semiconductors.

    PubMed

    Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi

    2017-11-22

    The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.

  20. Development of High Performance Composite Foam Insulation with Vacuum Insulation Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Desjarlais, Andre Omer; SmithPhD, Douglas

    Development of a high performance thermal insulation (thermal resistance or R-value per inch of R-12 hr-ft2- F/Btu-in or greater), with twice the thermal resistance of state-of-the-art commercial insulation materials ( R6/inch for foam insulation), promises a transformational impact in the area of building insulation. In 2010, in the US, the building envelope-related primary energy consumption was 15.6 quads, of which 5.75 quads were due to opaque wall and roof sections; the total US consumption (building, industrial and transportation) was 98 quads. In other words, the wall and roof contribution was almost 6% of the entire US primary energy consumption. Buildingmore » energy modeling analyses have shown that adding insulation to increase the R-value of the external walls of residential buildings by R10-20 (hr-ft2- F/Btu) can yield savings of 38-50% in wall-generated heating and cooling loads. Adding R20 will require substantial thicknesses of current commercial insulation materials, often requiring significant (and sometimes cost-prohibitive) alterations to existing buildings. This article describes the development of a next-generation composite insulation with a target thermal resistance of R25 for a 2 inch thick board (R12/inch or higher). The composite insulation will contain vacuum insulation cores, which are nominally R35-40/inch, encapsulated in polyisocyanurate foam. A recently-developed variant of vacuum insulation, called modified atmosphere insulation (MAI), was used in this research. Some background information on the thermal performance and distinguishing features of MAI has been provided. Technical details of the composite insulation development and manufacturing as well as laboratory evaluation of prototype insulation boards are presented.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Achieving aggressive energy efficiency targets requires tight coordination and clear communication among owners, designers, builders, and subcontractors. For this townhome project, MassDevelopment, the quasi-governmental agency owner, selected Metric Development of Boston, teaming with Building America team Consortium for Advanced Residential Buildings (CARB) and Cambridge Seven Architects, to build very high performing market-rate homes. Fort Devens is part of a decommissioned army base in working-class Harvard, Massachusetts, approximately one hour northwest of Boston. The team proposed 12 net zero energy-ready townhomes that were also designed to achieve a Home Energy Rating System (HERS) Index Score of 41 before adding renewables. Themore » team carefully planned the site to maximize solar access, daylighting, and efficient building forms.« less

  2. Construction Performance Optimization toward Green Building Premium Cost Based on Greenship Rating Tools Assessment with Value Engineering Method

    NASA Astrophysics Data System (ADS)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat

    2017-07-01

    Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.

  3. Synthesis and Characterization of Reactive Powder Concrete for its Application on Thermal Insulation Panels

    NASA Astrophysics Data System (ADS)

    Chozas, V.; Larraza, Í.; Vera-Agullo, J.; Williams-Portal, N.; Mueller, U.; Da Silva, N.; Flansbjer, M.

    2015-11-01

    This paper describes the synthesis and characterization of a set of textile reinforced reactive powder concrete (RPC) mixes that have been prepared in the framework of the SESBE project which aims to develop facade panels for the building envelope. In order to reduce the environmental impact, high concentration of type I and II mineral additions were added to the mixtures (up to 40% of cement replacement). The mechanical properties of the materials were analysed showing high values of compression strength thus indicating no disadvantages in the compression mechanical performance (∼140 MPa) and modulus of elasticity. In order to enable the use of these materials in building applications, textile reinforcement was introduced by incorporating layers of carbon fibre grids into the RPC matrix. The flexural performance of these samples was analysed showing high strength values and suitability for their further utilization.

  4. Builders Challenge High Performance Builder Spotlight: Artistic Homes, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-12-22

    Building America Builders Challenge fact sheet on Artistic Homes of Albuquerque, New Mexico. Standard features of their homes include advanced framed 2x6 24-inch on center walls, R-21 blown insulation in the walls, and high-efficiency windows.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbary, Lawrence D.; Perkins, Laura L.; Serino, Roland

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed usingmore » typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of 2012 compared to previous winters. This project achieved its goal of developing a system that is constructible, offers protection to the VIPs, and meets all performance targets established for the project.« less

  6. High performance solutions and data for nZEBs offices located in warm climates.

    PubMed

    Congedo, Paolo Maria; Baglivo, Cristina; Zacà, Ilaria; D Agostino, Delia

    2015-12-01

    This data article contains eleven tables supporting the research article entitled: Cost-Optimal Design For Nearly Zero Energy Office Buildings Located In Warm Climates [1]. The data explain the procedure of minimum energy performance requirements presented by the European Directive (EPBD) [2] to establish several variants of energy efficiency measures with the integration of renewable energy sources in order to reach nZEBs (nearly zero energy buildings) by 2020. This files include the application of comparative methodological framework and give the cost-optimal solutions for non-residential building located in Southern Italy. The data describe office sector in which direct the current European policies and investments [3], [4]. In particular, the localization of the building, geometrical features, thermal properties of the envelope and technical systems for HVAC are reported in the first sections. Energy efficiency measures related to orientation, walls, windows, heating, cooling, dhw and RES are given in the second part of the group; this data article provides 256 combinations for a financial and macroeconomic analysis.

  7. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  8. Cross-cultural differences in processing of architectural ranking: evidence from an event-related potential study.

    PubMed

    Mecklinger, Axel; Kriukova, Olga; Mühlmann, Heiner; Grunwald, Thomas

    2014-01-01

    Visual object identification is modulated by perceptual experience. In a cross-cultural ERP study we investigated whether cultural expertise determines how buildings that vary in their ranking between high and low according to the Western architectural decorum are perceived. Two groups of German and Chinese participants performed an object classification task in which high- and low-ranking Western buildings had to be discriminated from everyday life objects. ERP results indicate that an early stage of visual object identification (i.e., object model selection) is facilitated for high-ranking buildings for the German participants, only. At a later stage of object identification, in which object knowledge is complemented by information from semantic and episodic long-term memory, no ERP evidence for cultural differences was obtained. These results suggest that the identification of architectural ranking is modulated by culturally specific expertise with Western-style architecture already at an early processing stage.

  9. Compact Buried Ducts in a Hot-Humid Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, D.

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  10. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  11. Method for detecting moment connection fracture using high-frequency transients in recorded accelerations

    USGS Publications Warehouse

    Rodgers, J.E.; Elebi, M.

    2011-01-01

    The 1994 Northridge earthquake caused brittle fractures in steel moment frame building connections, despite causing little visible building damage in most cases. Future strong earthquakes are likely to cause similar damage to the many un-retrofitted pre-Northridge buildings in the western US and elsewhere. Without obvious permanent building deformation, costly intrusive inspections are currently the only way to determine if major fracture damage that compromises building safety has occurred. Building instrumentation has the potential to provide engineers and owners with timely information on fracture occurrence. Structural dynamics theory predicts and scale model experiments have demonstrated that sudden, large changes in structure properties caused by moment connection fractures will cause transient dynamic response. A method is proposed for detecting the building-wide level of connection fracture damage, based on observing high-frequency, fracture-induced transient dynamic responses in strong motion accelerograms. High-frequency transients are short (<1 s), sudden-onset waveforms with frequency content above 25 Hz that are visually apparent in recorded accelerations. Strong motion data and damage information from intrusive inspections collected from 24 sparsely instrumented buildings following the 1994 Northridge earthquake are used to evaluate the proposed method. The method's overall success rate for this data set is 67%, but this rate varies significantly with damage level. The method performs reasonably well in detecting significant fracture damage and in identifying cases with no damage, but fails in cases with few fractures. Combining the method with other damage indicators and removing records with excessive noise improves the ability to detect the level of damage. ?? 2010 Elsevier B.V. All rights reserved.

  12. Analysis of indoor environmental quality influence toward occupants' work performance in Kompleks Eureka, USM

    NASA Astrophysics Data System (ADS)

    Zainon, Mohamad Rizal; Baharum, Faizal; Seng, Loh Yong

    2016-08-01

    The indoor environment much more important for people health and comfort than the outdoor environment. This scenario would make the performance of occupants at their work more important than energy costs in the building. So, this task is to upgrade indoor environmental quality conditions for comfort and work performance of occupants in Kompleks Eureka, USM while conserving energy of the building.. Recent studies have shown an important impact of the indoor thermal environment on occupants' work performance. Also studies on occupants medical leave show a very high loss of work time and working performance, which have important economical consequences for companies. The paper will mainly dealing with the indoor environmental qualities, such as thermal comfort level, air quality, lighting, and acoustic quality. The studies before showing that comfortable room temperatures, increased air ventilation above normal recommendation, comfortable acoustic surrounding will increases the work performance of occupants in Kompleks Eureka, USM.

  13. ADVANCED INSULATIONS FOR REFRIGERATOR/FREEZERS: THE POTENTIAL FOR NEW SHELL DESIGNS INCORPORATING POLYMER BARRIER CONSTRUCTION

    EPA Science Inventory

    The report examines domestic refrigerator/freezer (R/F) design alternatives which may offer greater increase in thermal performance than is possible with panel/foam composites. (NOTE: Current efforts to design and build R/Fs with high performance insulation technology are directe...

  14. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy...

  15. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy...

  16. J/Ψ resonant formation and mass measurement in antiproton-proton annihilations

    NASA Astrophysics Data System (ADS)

    Baglin, C.; Bassompierre, G.; Brient, J. C.; Broll, C.; Bussiere, A.; Guillaud, J. P.; Morch, C.; Poulet, M.; Baird, S.; Khan-Aronsen, E.; Leistam, L.; Lundby, A.; Mouellic, B.; Poole, J.; Buzzo, A.; Ferroni, S.; Gracco, V.; Macri', M.; Mattera, L.; Pia, M. G.; Pozzo, A.; Santroni, A.; Tomasini, F.; Valbusa, U.; Burq, J. P.; Chemarin, M.; Chevallier, M.; Fay, J.; Ille, B.; Lambert, M.; Bugge, L.; Buran, T.; Kirsebom, K.; Skjevling, G.; Stapnes, S.; Stugu, B.; Petrillo, L.; Severi, M.; Brom, J. M.; Escoubes, B.; Biino, C.; Borreani, G.; Cester, R.; Marchetto, F.; Menichetti, E.; Pastrone, N.; Rinaudo, G.

    Experiment R704, the last to be performed at the CERN-ISR, has successfully applied a new method to study ( overlinecc ) states formed directly in antiproton-proton annihilations. The novelty of the method rests on the capability to build a highly performing annihilation source by letting a cold

  17. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  18. Deep Energy Retrofit Guidance for the Building America Solutions Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services andmore » miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs.« less

  19. Staying Power: The Impact of the TAP System on Retaining Teachers Nationwide

    ERIC Educational Resources Information Center

    Barnett, Joshua H.; Hudgens, Tanee M.

    2014-01-01

    Each year teacher turnover presents instructional, organizational, and financial burdens that impact students, teachers, schools, and communities. High levels of teacher turnover drain valuable resources and make it difficult to build a high performing, stable teaching faculty. This is particularly true in high need schools where teacher attrition…

  20. Assessment of SIP Buildings for Sustainable Development in Rural China Using AHP-Grey Correlation Analysis

    PubMed Central

    Wang, Hailing; Shi, Chunming; Li, Yi

    2017-01-01

    Traditional rural residential construction has the problems of high energy consumption and severe pollution. In general, with sustainable development in the construction industry, rural residential construction should be aimed towards low energy consumption and low carbon emissions. To help achieve this objective, in this paper, we evaluated four different possible building structures using AHP-Grey Correlation Analysis, which consists of the Analytic Hierarchy Process (AHP) and the Grey Correlation Analysis. The four structures included the traditional and currently widely used brick and concrete structure, as well as structure insulated panels (SIPs). Comparing the performances of economic benefit and carbon emission, the conclusion that SIPs have the best overall performance can be obtained, providing a reference to help builders choose the most appropriate building structure in rural China. PMID:29068420

  1. Building human resources capability in health care: a global analysis of best practice--Part III.

    PubMed

    Zairi, M

    1998-01-01

    This is the last part of a series of three papers which discussed very comprehensively best practice applications in human resource management by drawing special inferences to the healthcare context. It emerged from parts I and II that high performing organisations plan and intend to build sustainable capability through a systematic consideration of the human element as the key asset and through a continuous process of training, developing, empowering and engaging people in all aspects of organisational excellence. Part III brings this debate to a close by demonstrating what brings about organisational excellence and proposes a road map for effective human resource development and management, based on world class standards. Healthcare human resource professionals can now rise to the challenge and plan ahead for building organisational capability and sustainable performance.

  2. Thermal performance of phase change wallboard for residential cooling application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.; Stetiu, C.

    1997-04-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two importantmore » advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.« less

  3. Building Inventory Database on the Urban Scale Using GIS for Earthquake Risk Assessment

    NASA Astrophysics Data System (ADS)

    Kaplan, O.; Avdan, U.; Guney, Y.; Helvaci, C.

    2016-12-01

    The majority of the existing buildings are not safe against earthquakes in most of the developing countries. Before a devastating earthquake, existing buildings need to be assessed and the vulnerable ones must be determined. Determining the seismic performance of existing buildings which is usually made with collecting the attributes of existing buildings, making the analysis and the necessary queries, and producing the result maps is very hard and complicated procedure that can be simplified with Geographic Information System (GIS). The aim of this study is to produce a building inventory database using GIS for assessing the earthquake risk of existing buildings. In this paper, a building inventory database for 310 buildings, located in Eskisehir, Turkey, was produced in order to assess the earthquake risk of the buildings. The results from this study show that 26% of the buildings have high earthquake risk, 33% of the buildings have medium earthquake risk and the 41% of the buildings have low earthquake risk. The produced building inventory database can be very useful especially for governments in dealing with the problem of determining seismically vulnerable buildings in the large existing building stocks. With the help of this kind of methods, determination of the buildings, which may collapse and cause life and property loss during a possible future earthquake, will be very quick, cheap and reliable.

  4. Effect of the implosion and demolition of a hospital building on the concentration of fungi in the air.

    PubMed

    Barreiros, Gloria; Akiti, Tiyomi; Magalhães, Ana Cristina Gouveia; Nouér, Simone A; Nucci, Marcio

    2015-12-01

    Building renovations increase the concentration of Aspergillus conidia in the air. In 2010, one wing of the hospital building was imploded due to structural problems. To evaluate the impact of building implosion on the concentration of fungi in the air, the demolition was performed in two phases: mechanical demolition of 30 m of the building, followed by implosion of the wing. Patients at high risk for aspergillosis were placed in protected wards. Air sampling was performed during mechanical demolition, on the day of implosion and after implosion. Total and specific fungal concentrations were compared in the different areas and periods of sampling, using the anova test. The incidence of IA in the year before and after implosion was calculated. The mean concentration of Aspergillus increased during mechanical demolition and on the day of implosion. However, in the most protected areas, there was no significant difference in the concentration of fungi. The incidence of invasive aspergillosis (cases per 1000 admissions) was 0.9 in the 12 months before, 0.4 during, and 0.5 in the 12 months after mechanical demolition (P > 0.05). Continuous monitoring of the quality of air and effective infection control measures are important to minimize the impact of building demolition. © 2015 Blackwell Verlag GmbH.

  5. Whole Building Cost and Performance Measurement: Data Collection Protocol Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Spees, Kathleen L.; Kora, Angela R.

    2009-03-27

    This protocol was written for the Department of Energy’s Federal Energy Management Program (FEMP) to be used by the public as a tool for assessing building cost and performance measurement. The primary audiences are sustainable design professionals, asset owners, building managers, and research professionals within the Federal sector. The protocol was developed based on the need for measured performance and cost data on sustainable design projects. Historically there has not been a significant driver in the public or private sector to quantify whole building performance in comparable terms. The deployment of sustainable design into the building sector has initiated manymore » questions on the performance and operational cost of these buildings.« less

  6. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore themore » small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.« less

  7. Covert situational awareness with handheld ultrawideband short-pulse radar

    NASA Astrophysics Data System (ADS)

    Barnes, Mark A.; Nag, Soumya; Payment, Tim

    2001-08-01

    Law enforcement and emergency services all face the difficult task of determining the locations of people within a building. A handheld radar able to detect motion through walls and other obstructions has been developed to fill this need. This paper describes the attributes and difficulties of the radar design and includes test results of the radar's performance. This discussion begins by summarizing key user requirements and the electromagnetic losses of typical building materials. Ultra-wideband (UWB) short pulse radars are well suited for a handheld sensor primarily because of their inherit time isolation in high clutter environments and their capability to achieve high resolution at low spectral center frequencies. There are also constraints that complicate the system design. Using a technique referred to as time-modulation allows the radars to reject range ambiguities and enhances electromagnetic compatibility with similar radars and ambient systems. An outline of the specifications of the radar developed and a process diagram on how it generates a motion map showing range and direction of the people moving within structures is included. Images are then presented to illustrate its performance. The images include adults, child, and a dog. The test results also include data showing the radar's performance through a variety of building materials.

  8. Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, C.; Neuhauser, K.

    2014-03-01

    Between December, 2009 and December, 2012, 42 deep energy retrofit (DER) projects were completed through a pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. Thirty-seven of these projects were comprehensive retrofits while five were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. Building Science Corporation developed a consistent "package" of measures in terms of the performance targeted for major building components. Based on the community experience, this DER package is expected to result in yearly source energy use near 110more » MMBtu/year or approximately 40% below the Northeast regional average.« less

  9. Nicholas Long | NREL

    Science.gov Websites

    Orcid ID http://orcid.org/0000-0001-9244-6736 Nicholas joined NREL in 2003 and works in the Commercial -scale analyses using high-performance computing to evaluate commercial buildings. Education B.S

  10. Structural vibration passive control and economic analysis of a high-rise building in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, Yongqi; Cao, Tiezhu; Ma, Liangzhe; Luo, Chaoying

    2009-12-01

    Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper. The plaza is a 39-story steel high-rise building, 191 m high, located in Beijing close to the 2008 Olympic main stadium. It has both fluid viscous dampers (FVDs) and buckling restrained braces or unbonded brace (BRB or UBB) installed. A repeated iteration procedure in its design and analysis was adopted for optimization. Results from the seismic response analysis in the horizontal and vertical directions show that the FVDs are highly effective in reducing the response of both the main structure and the secondary system. A comparative analysis of structural seismic performance and economic impact was conducted using traditional methods, i.e., increased size of steel columns and beams and/or use of an increased number of seismic braces versus using FVD. Both the structural response and economic analysis show that using FVD to absorb seismic energy not only satisfies the Chinese seismic design code for a “rare” earthquake, but is also the most economical way to improve seismic performance both for one-time direct investment and long term maintenance.

  11. Nonlinear damping based semi-active building isolation system

    NASA Astrophysics Data System (ADS)

    Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka

    2018-06-01

    Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.

  12. Technology Assessments of High Performance Envelope with Optimized Lighting, Solar Control, and Daylighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Thanachareonkit, Anothai; Touzani, Samir

    The objective of this monitored field study was to identify near-term innovative façade technologies for solar control and daylighting with a goal of 20-40% energy use savings below Title 24 2013 in the 30-ft deep perimeter zone near vertical windows within cost and comfort constraints. The targeted market was new or existing commercial office buildings or buildings with similar patterns of use.

  13. Performance or marketing benefits? The case of LEED certification.

    PubMed

    Matisoff, Daniel C; Noonan, Douglas S; Mazzolini, Anna M

    2014-01-01

    Green building adoption is driven by both performance-based benefits and marketing based benefits. Performance based benefits are those that improve performance or lower operating costs of the building or of building users. Marketing benefits stem from the consumer response to green certification. This study illustrates the relative importance of the marketing based benefits that accrue to Leadership in Energy and Environmental Design (LEED) buildings due to green signaling mechanisms, specifically related to the certification itself are identified. Of course, all participants in the LEED certification scheme seek marketing benefits. But even among LEED participants, the interest in green signaling is pronounced. The green signaling mechanism that occurs at the certification thresholds shifts building patterns from just below to just above the threshold level, and motivates builders to cluster buildings just above each threshold. Results are consistent across subsamples, though nonprofit organizations appear to build greener buildings and engage in more green signaling than for-profit entities. Using nonparametric regression discontinuity, signaling across different building types is observed. Marketing benefits due to LEED certification drives organizations to build "greener" buildings by upgrading buildings at the thresholds to reach certification levels.

  14. Building thermography as a tool in energy audits and building commissioning procedure

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo

    2007-04-01

    A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

  15. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, Ken

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago—a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area, in which high heating energy use typical in these buildings threaten housing affordability, and uninsulated mass masonry wall assemblies are uncomfortable for residents. In this project, the Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by DOE to pursue a pilot implementationmore » of innovative approaches to retrofit in masonry wall enclosures. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.« less

  16. Evaluation of energy savings potential of variable refrigerant flow (VRF) from variable air volume (VAV) in the U.S. climate locations

    DOE PAGES

    Kim, Dongsu; Cox, Sam J.; Cho, Heejin; ...

    2017-05-22

    Variable refrigerant flow (VRF) systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV) and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE), is used to assessmore » the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.« less

  17. Evaluation of energy savings potential of variable refrigerant flow (VRF) from variable air volume (VAV) in the U.S. climate locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongsu; Cox, Sam J.; Cho, Heejin

    Variable refrigerant flow (VRF) systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV) and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE), is used to assessmore » the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.« less

  18. Understanding medical practice team roles.

    PubMed

    Hills, Laura

    2015-01-01

    Do you believe that the roles your employees play on your medical practice team are identical to their job titles or job descriptions? Do you believe that team roles are determined by personality type? This article suggests that a more effective way to build and manage your medical practice team is to define team roles through employee behaviors. It provides 10 rules of behavioral team roles that can help practice managers to select and build high-performing teams, build more productive team relationships, improve the employee recruitment process, build greater team trust and understanding; and increase their own effectiveness. This article describes in detail Belbin's highly regarded and widely used team role theory and summarizes four additional behavioral team role theories and systems. It offers lessons learned when applying team role theory to practice. Finally, this article offers an easy-to-implement method for assessing current team roles. It provides a simple four-question checklist that will help practice managers balance an imbalanced medical practice team.

  19. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation, fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.

  20. Multi-family Buildings

    EPA Pesticide Factsheets

    Apartments and condos that have earned the label will have WaterSense labeled toilets, faucets, and showerheads that have been independently certified to be high-performing and water-efficient, saving 20 percent more water than standard models.

  1. Builders Challenge High Performance Builder Spotlight - Martha Rose Construction, Inc., Seattle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-01-01

    Building America/Builders Challenge fact sheet on Martha Rose Construction, an energy-efficient home builder in marine climate using the German Passiv Haus design, improved insulation, and solar photovoltaics.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Oberlin Colleges Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Oberlin College's Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.

  4. A dynamic experimental study on the evaporative cooling performance of porous building materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui

    2017-08-01

    Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.

  5. Rational Design of N- S- Fe- Doped Nanoporous Carbon Catalysts from Covalent Triazine Framework for High Efficient ORR.

    PubMed

    Zhu, Yuanzhi; Chen, Xifan; Liu, Jing; Zhang, Junfeng; Xu, Danyun; Peng, Wenchao; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2018-05-15

    Porous organic polymers (POFs) are promising precursors for developing high performance transition metal-nitrogen-carbon (M-N/C) catalysts towards ORR. But the rational design of POFs precursors remain a great challenge, because of the elusive structural association between the sacrificial POFs and the final M-N/C catalysts. Based on covalent triazine frameworks (CTFs), we developed a series of sulfur-doped Fe-N/C catalysts by selecting six different aromatic nitriles as building blocks. A new mixed solvent of molten FeCl3 and S was used for CTF polymerization, which benefit the formation of Fe-Nx site and make the subsequent pyrolysis process more convenient. Comprehensive study on these CTF-derived catalysts shows their ORR activities are not directly dependent on the theoretical N/C ratio of the building block, but closely correlated to the ratios of the nitrile group to benzene ring (Nnitrile/Nbenzene) and geometries of the building blocks. The high ratios of the Nnitrile/Nbenzene are crucial for ORR activity of the final catalysts due to the formation of more N-doped microporous and Fe-Nx sites in pyrolysis possess. The optimized catalyst shows high ORR performances in acid and superior ORR activity to the Pt/C catalysts under alkaline conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Performance Assessment of Baseline Cells for the High Efficiency Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2012-01-01

    The Enabling Technology Development and Demonstration (ETDD) Program High Efficiency Space Power Systems (HESPS) Project, formerly the Exploration Technology Development Program (ETDP) Energy Storage Project is tasked with developing advanced lithium-ion cells for future NASA Exploration missions. Under this project, components under development via various in-house and contracted efforts are delivered to Saft America for scale-up and integration into cells. Progress toward meeting project goals will be measured by comparing the performance to these cells with cells of a similar format with Saft s state-of-the-art aerospace chemistry. This report discusses the results of testing performed on the first set of baseline cells delivered by Saft to the NASA Glenn Research Center. This build is a cylindrical "DD" geometry with a 10 Ah nameplate capacity. Testing is being performed to establish baseline cell performance at conditions relevant to ETDD HESPS Battery Key Performance Parameter (KPP) goals including various temperatures, rates, and cycle life conditions. Data obtained from these cells will serve as a performance baseline for future cell builds containing optimized ETDD HESPSdeveloped materials. A test plan for these cells was developed to measure cell performance against the high energy cell KPP goals. The goal for cell-level specific energy of the high energy technology is 180 Wh/kg at a C/10 discharge rate and 0 C. The cells should operate for at least 2000 cycles at 100 percent DOD with 80 percent capacity retention. Baseline DD cells delivered 152 Wh/kg at 20 C. This number decreased to 143.9 Wh/kg with a 0 C discharge. This report provides performance data and summarizes results of the testing performed on the DD cells.

  7. School Uniforms in Urban Public High Schools

    ERIC Educational Resources Information Center

    Draa, Virginia Ann Bendel

    2005-01-01

    The purpose of this study was to determine whether or not the implementation of a mandatory uniform policy in urban public high schools improved school performance measures at the building level for rates of attendance, graduation, academic proficiency, and student conduct as measured by rates of suspensions and expulsions. Sixty-four secondary…

  8. Effect of Reading Ability and Internet Experience on Keyword-Based Image Search

    ERIC Educational Resources Information Center

    Lei, Pei-Lan; Lin, Sunny S. J.; Sun, Chuen-Tsai

    2013-01-01

    Image searches are now crucial for obtaining information, constructing knowledge, and building successful educational outcomes. We investigated how reading ability and Internet experience influence keyword-based image search behaviors and performance. We categorized 58 junior-high-school students into four groups of high/low reading ability and…

  9. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  10. STEM Attrition among High-Performing College Students in the United States: Scope and Potential Causes

    ERIC Educational Resources Information Center

    Chen, Xianglei

    2015-01-01

    Postsecondary education plays a critical role in building a strong workforce in Science, Technology, Engineering, and Mathematics (STEM) fields. The U.S. postsecondary education system, however, frequently loses many potential STEM graduates through attrition. An increasing portion of STEM leavers are top performers who might have made valuable…

  11. The Castle Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom Anderson; David Culler; James Demmel

    2000-02-16

    The goal of the Castle project was to provide a parallel programming environment that enables the construction of high performance applications that run portably across many platforms. The authors approach was to design and implement a multilayered architecture, with higher levels building on lower ones to ensure portability, but with care taken not to introduce abstractions that sacrifice performance.

  12. Vulnerability and seismic damage scenarios for Barcelona (Spain) by using GIS

    NASA Astrophysics Data System (ADS)

    Lantada, N.; Pujades, L. G.; Barbat, A.

    2003-04-01

    An integrated GIS-based analysis (using ArcView GIS) is performed in order to estimate damage scenarios for VI, VII and VIII EMS-98 seismic intensities in Barcelona (Spain). The analysis of vulnerability and damage of individual buildings is performed according to a simplified method developed by Giovanazzi and Lagomarsino at the University of Genoa (Italy). An index of average vulnerability is associated to each building typology, which may be refined on the basis of behaviour modifiers. The index allows identification of an analytical relationship between seismic input (intensity) and damage, described by a binomial distribution. This methodology, which is based on the EMS-98 building typologies and preserves the compatibility with preceding methods, is applied to the two main residential building typologies of Barcelona, that is, unreinforced masonry and reinforced concrete buildings. Then, the specific residential buildings of Barcelona are classified in different groups characterized by a similar seismic behaviour. Therefore, all buildings belonging to each typology are cast in the most probable class according to vulnerability. In this way, the average vulnerability index is associated to each building typology of Barcelona and it is refined later on the basis of behaviour modifiers, linked to the number of stories, the year of construction and their state of maintenance. The ability of GIS tools to store, manage, analyse, and display the large amount of spatial and tabular data involved in this study allows to map average vulnerability indexes, and damage for the entire city. That is, vulnerability and damage scenarios. The obtained results show a high vulnerability and high expected seismic damage. For a VI degree of intensity, the maximum expected damage is in the range 15-30 % in the oldest zones of the city, the downtown, while for intensity VII it is in the range 45-60%. The developed GIS tool involves a friendly interface that allows new models and database information to be included in the same framework. As a new step to the seismic risk assessment, and in addition to the building characteristics, the destination of the building, as well as the essential buildings, and the density of population for census zones, have been included in the GIS database. Combining this information with the previous damage maps we will be able to obtain more complete damage scenarios including, deaths, injuries, and homeless.

  13. Super Energy Efficiency Design (S.E.E.D.) Home Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, A.; Dakin, B.; Backman, C.

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less

  14. Super Energy Efficient Design (S.E.E.D.) Home Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, A.; Dakin, B.; Backman, C.

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the “Super Energy Efficient Design” (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less

  15. Sleep, circadian rhythms, and psychomotor vigilance.

    PubMed

    Van Dongen, Hans P A; Dinges, David F

    2005-04-01

    Psychomotor vigilance performance is highly relevant to athletic performance. It is influenced by a sleep homeostatic process, which builds up pressure for sleep during wakefulness and dissipates this pressure during sleep, and a circadian rhythm process, which produces a waxing and waning of pressure for wakefulness over a 24 hours of the day. During total sleep deprivation, these two processes cause performance to deteriorate progressively over days, modulated within days by further performance reductions at night and relative improvements during the daytime. As the homeostatic pressure for sleep builds up higher across prolonged wakefulness, the rate of dissipation of that pressure during subsequent sleep is enhanced exponentially, so that even brief periods of sleep provide significant performance recuperation. Nevertheless, sleep restriction practiced on a chronic basis induces cumulative performance deficits of the same order of magnitude as observed during total sleep deprivation. There are also considerable individual differences in the degree of vulnerability to performance impairment from sleep loss, and these differences represent a trait.

  16. Control of dispatch dynamics for lowering the cost of distributed generation in the built environment

    NASA Astrophysics Data System (ADS)

    Flores, Robert Joseph

    Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load being met in an effort to reduce demand. In addition, buildings with large thermal demand have access to the least expensive natural gas, lowering the cost of operating distributed generation. Recovery of exhaust heat from DG reduces cost only if the buildings thermal demand coincides with the electrical demand. Capacity limits exist where annual savings from operation of distributed generation decrease if further generation is installed. For low operating cost generators, the approximate limit is the average building load. This limit decreases as operating costs increase. In addition, a high capital cost of distributed generation can be accepted if generator operating costs are low. As generator operating costs increase, capital cost must decrease if a positive economic performance is desired.

  17. An Experimental Study of the Low-cost MEMS-type Seismometer for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Yin, RenCheng; Wu, Yih-Min; Hsu, Ting-Yu

    2016-04-01

    The Earthquake Early Warning (EEW) research group at National Taiwan University (NTU) and a technology company have been developing a Micro Electro Mechanical Systems (MEMS) type of accelerometer named Palert designed for EEW purpose. The main advantage of Palert is that it is a relatively low-cost seismometer. On the other hand, due to the high price of commercial hardware of Structural Health Monitoring (SHM) systems, the application of SHM to buildings is limited. Therefore, the low price of Palert devices makes it affordable to general purpose application and would lead to popularization of SHM for buildings. This study serves as a pre-study for this purpose and the feasibility for SHM application for Palert is also verified. In order to monitor the health of the building, the method proposed by Nakata et al. is used to estimate fundamental normal-mode frequency of a steel building in the laboratory of the National Center for Research on Earthquake Engineering (NCREE). The results show that the Palert is reliable to measure the building's response for the most of the normal buildings with less than ten stories. The fundamental normal-mode frequencies estimated using the Palert are quite comparable to the ones estimated using the high-performance accelerometers and data acquisition system. The Palert illustrates the possibility to be used to monitor the health of a building but further studies are still necessary.

  18. An Investigation into Energy Requirements and Conservation Techniques for Sustainable Buildings

    NASA Astrophysics Data System (ADS)

    Robitaille, Jad

    Traditionally, societies use to design their built environment in a way that was in line with the climate and the geographical location that they evolved in, thereby supporting sustainable lifestyles (i.e. thick walls with small windows in cold climates). With the industrial revolution and the heavy use and reliance on cheap fossil fuels, it can be argued that the built environment has become more focused on aesthetics and cost savings rather than on true sustainability. This, in turn, has led to energy intensive practices associated with the construction of homes, buildings, cities and megalopolises. Environmental concerns with regards to the future have pushed people, entities and industries to search for ways to decrease human's energy dependency and/or to supply the demand in ways that are deemed sustainable. Efforts to address this concern with respect to the built environment were translated into 'green buildings', sustainable building technologies and high performance buildings that can be rated and/or licensed by selected certifying bodies with varying metrics of building construction and performance. The growing number of such systems has brought real concerns: Do certified sustainable buildings really achieve the level of sustainability (i.e. performance) they were intended to? For the purpose of this study, buildings' energy consumption will be analysed, as it is one of the main drivers when taking into consideration greenhouse gas emissions. Heating and cooling in the residential and commercial/institutional sector, combined account for approximately a fifth of the secondary energy use in Canada. For this reason, this research aims at evaluating the main rating systems in Canada based on the efficacy of their rating systems' certification methodology and the weighting and comparison of energy requirements under each scheme. It has been proven through numerous studies that major energy savings can be achieved by focusing primarily on building designs (such as Thermal Building Envelopes) and Passive Systems and that rating systems may wish to incorporate such criteria more thoroughly and explicitly within their evaluation scheme of metrics. Hence, this paper will also aim at evaluating the inclusion of energy conservation techniques into the different rating schemes.

  19. Awards | NREL

    Science.gov Websites

    about NREL's outstanding researchers and scientists, high-performance buildings, and R&D 100 Award -winning technologies. photo of R&D 100 awards R&D 100 Awards R&D 100 Awards are presented to

  20. Investigation of fiber-reinforced self-consolidating concrete.

    DOT National Transportation Integrated Search

    2010-05-01

    The rising cost of materials and labor, as well as the demand for faster construction, has prompted development of cheaper, faster alternatives to conventional building techniques. Self-consolidating concrete (SCC), a high performance concrete charac...

  1. Computing Systems | High-Performance Computing | NREL

    Science.gov Websites

    investigate, build, and test models of complex phenomena or entire integrated systems-that cannot be directly observed or manipulated in the lab, or would be too expensive or time consuming. Models and visualizations

  2. Design, Monitoring, and Validation of a High Performance Sustainable Building

    DTIC Science & Technology

    2013-08-01

    normalized by building average population and square footage. Longstreet had a larger number of emergency calls than CESS, but the ESTCP team did not have...system was measured sUSEPArately from the domestic water use. The rainwater was used to displace potable water for toilet flushing and vehicle washing...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for

  3. Rapid Energy Modeling Workflow Demonstration Project

    DTIC Science & Technology

    2014-01-01

    Conditioning Engineers BIM Building Information Model BLCC building life cycle costs BPA Building Performance Analysis CAD computer assisted...invited to enroll in the Autodesk Building Performance Analysis ( BPA ) Certificate Program under a group 30 specifically for DoD installation

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Jonathan R.; Burnett, Damon J.

    Sandia National Laboratories operates the Scaled Wind Farm Technology Facility (SWiFT) on behalf of the Department of Energy Wind and Water Power Technologies Office. An analysis was performed to evaluate the hazards associated with debris thrown from one of SWiFT’s operating wind turbines, assuming a catastrophic failure. A Monte Carlo analysis was conducted to assess the complex variable space associated with debris throw hazards that included wind speed, wind direction, azimuth and pitch angles of the blade, and percentage of the blade that was separated. In addition, a set of high fidelity explicit dynamic finite element simulations were performed tomore » determine the threshold impact energy envelope for the turbine control building located on-site. Assuming that all of the layered, independent, passive and active engineered safety systems and administrative procedures failed (a 100% failure rate of the safety systems), the likelihood of the control building being struck was calculated to be less than 5/10,000 and ballistic simulations showed that the control building would not provide passive protection for the majority of impact scenarios. Although options exist to improve the ballistic resistance of the control building, the recommendation is not to pursue them because there is a low probability of strike and there is an equal likelihood personnel could be located at similar distances in other areas of the SWiFT facility which are not passively protected, while the turbines are operating. A fenced exclusion area has been created around the turbines which restricts access to the boundary of the 1/100 strike probability. The overall recommendation is to neither relocate nor improve passive protection of the control building as the turbine safety systems have been improved to have no less than two independent, redundant, high quality engineered safety systems. Considering this, in combination with a control building strike probability of less than 5/10,000, the overall probability of turbine debris striking the control building is less than 1/1,000,000.« less

  5. U.S.– India Joint Center for Building Energy Research and Development (CBERD) Caring for the Energy Health of Healthcare Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Reshma; Mathew, Paul; Granderson, Jessica

    The U.S.-India Joint Center for Building Energy Research & Development (CBERD), created through the Partnership to Accelerate Clean Energy (PACE) agreement between the United States and India, is a research and development (R&D) center with over 30 institutional and industry partners from both nations. This five-year presidential initiative is jointly funded by the U.S. Department of Energy and the Government of India. CBERD aims to build upon a foundation of collaborative knowledge, tools, and technologies, and human capabilities that will increase development of high-performance buildings. To reach this goal, the R&D focuses on energy use reduction throughout the entire lifemore » cycle of buildings—i.e., design, construction, and operations. During the operations phase of buildings, even with best-practice energy-efficient design, actual energy use can be much higher than the design intent. Every day, much of the energy consumed by buildings serves no purpose (Roth et al. 2005). Building energy information systems (EIS) are commercially available systems that building owners and facility managers use to assess their building operations, measure, visualize, analyze, and report energy cost and consumption. Energy information systems can enable significant energy savings by tracking energy use, identifying consumption patterns, and benchmarking performance against similar buildings, thereby identifying improvement opportunities. The CBERD team has identified potential energy savings of approximately 2 quads of primary energy in the United States, while industry building energy audits in India have indicated potential energy savings of up to 30 percent in commercial buildings such as offices. Additionally, the CBERD team has identified healthcare facilities (e.g., hospitals, clinics), hotels, and offices as the three of the highest-growth sectors in India that have significant energy consumption, and that would benefit the most from implementation of EIS.« less

  6. Performance of Buildings in the 2009 Western Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Deierlein, G.; Hart, T.; Alexander, N.; Hausler, E.; Henderson, S.; Wood, K.; Cedillos, V.; Wijanto, S.; Cabrera, C.; Rudianto, S.

    2009-12-01

    The M7.6 earthquake of 30 September 2009 in Western Sumatra, Indonesia caused significant damage and collapse to hundreds of buildings and the deaths of 1,117 people. In Padang City, with a population of about 900,000 people, building collapse was the primary cause of deaths and serious injuries (313 deaths and 431 serious injuries). The predominant building construction types in Padang are concrete moment frames with brick infill and masonry bearing wall systems. Concrete frames are common in multistory commercial retail buildings, offices, schools, and hotels; and masonry bearing wall systems are primarily used in low-rise (usually single story) residential and school buildings. In general, buildings that collapsed did not conform to modern seismic engineering practices that are required by the current Indonesian building code and would be expected in regions of moderate to high seismicity. While collapse of multi-story concrete buildings was more prevalent in older buildings (more than 10 years old), there were several newer buildings that collapsed. Primary deficiencies identified in collapsed or severely damaged buildings included: (a) soft or weak stories that failed in either by sidesway mechanisms or shear failures followed by loss of axial capacity of columns, (b) lack of ductile reinforcing bar detailing in concrete beams, columns, and beam-column joints, (c) poor quality concrete and mortar materials and workmanship, (d) vulnerable building configurations and designs with incomplete or deficient load paths, and (e) out-of-plane wall failures in unreinforced (or marginally reinforced) masonry. While these deficiencies may be expected in older buildings, damage and collapse to some modern (or recently rennovated buildings) indicates a lack of enforcement of building code provisions for design and construction quality assurance. Many new buildings whose structural systems were undamaged were closed due to extensive earthquake damage to brick infill walls, glass facades, ceiling systems and other architectural finishes. These demonstrated the importance of considering deformation compatibility and seismic considerations in the design and detail of architectural elements and non-structural components. Another important lesson learned from this earthquake is the critical role that buildings serve for vertical evacuation (refuge) from tsunami inundation in Padang and similar coastal cities in regions of high tsunami hazards. Severe traffic congestion immediately after the September 30 earthquake demonstrated that horizontal evacuation alone is insufficient to safely evacuate Padang City residents to high ground. Therefore, efforts must be stepped up to pre-screen, assess, and engineer buildings tha can be utilized for vertical evacuation.

  7. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less

  8. New Trends on Green Buildings: Investigation of the Feasibility of Using Plastic Members in RC Buildings with SWs

    NASA Astrophysics Data System (ADS)

    Arslan, M. H.; Arslan, H. D.

    2017-08-01

    Shear walled (SW) reinforced concrete (RC) buildings are considered to be a type of high seismic safety building. Although this structural system has an important seismic advantage, it also has some disadvantages, especially in acoustic and thermal comfort. In this study, experimental studies have been conducted on RC members produced with plastic material having circular sections to determine structural performance. RC members have been produced with and without 6 cm diameter balls to analyze the structural behaviour under loading and to investigate the thermal performance and sound absorption behaviour of the members. In the study, structural parameters have been determined for RC members such as slabs and SWs produced with and without balls to discover the feasibility of the research and discuss the findings comparatively. The results obtained from the experimental studies show that PB used in RC with suitable positions do not significantly decrease strength but improve the thermal and acoustic features. It has been also seen that using plastic balls reduce the total concrete materials.

  9. The uncompromising leader.

    PubMed

    Eisenstat, Russell A; Beer, Michael; Foote, Nathaniel; Fredberg, Tobias; Norrgren, Flemming

    2008-01-01

    Managing the tension between performance and people is at the heart of the CEO's job. But CEOs under fierce pressure from capital markets often focus solely on the shareholder, which can lead to employee disenchantment. Others put so much stock in their firms' heritage that they don't notice as their organizations slide into complacency. Some leaders, though, manage to avoid those traps and create high-commitment, high-performance (HCHP) companies. The authors' in-depth research of HCHP CEOs reveals several shared traits: These CEOs earn the trust of their organizations through their openness to the unvarnished truth. They are deeply engaged with their people, and their exchanges are direct and personal. They mobilize employees around a focused agenda, concentrating on only one or two initiatives. And they work to build collective leadership capabilities. These leaders also forge an emotionally resonant shared purpose across their companies. That consists of a three-part promise: The company will help employees build a better world and deliver performance they can be proud of, and will provide an environment in which they can grow. HCHP CEOs approach finding a firm's moral and strategic center in a competitive market as a calling, not an engineering problem. They drive their firms to be strongly market focused while at the same time reinforcing their firms' core values. They are committed to short-term performance while also investing in long-term leadership and organizational capabilities. By refusing to compromise on any of these terms, they build great companies.

  10. Dinosaurs can fly -- High performance refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treat, J.E.

    1995-09-01

    High performance refining requires that one develop a winning strategy based on a clear understanding of one`s position in one`s company`s value chain; one`s competitive position in the products markets one serves; and the most likely drivers and direction of future market forces. The author discussed all three points, then described measuring performance of the company. To become a true high performance refiner often involves redesigning the organization as well as the business processes. The author discusses such redesigning. The paper summarizes ten rules to follow to achieve high performance: listen to the market; optimize; organize around asset or areamore » teams; trust the operators; stay flexible; source strategically; all maintenance is not equal; energy is not free; build project discipline; and measure and reward performance. The paper then discusses the constraints to the implementation of change.« less

  11. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STARmore » requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.« less

  12. Metrics for building performance assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koles, G.; Hitchcock, R.; Sherman, M.

    This report documents part of the work performed in phase I of a Laboratory Directors Research and Development (LDRD) funded project entitled Building Performance Assurances (BPA). The focus of the BPA effort is to transform the way buildings are built and operated in order to improve building performance by facilitating or providing tools, infrastructure, and information. The efforts described herein focus on the development of metrics with which to evaluate building performance and for which information and optimization tools need to be developed. The classes of building performance metrics reviewed are (1) Building Services (2) First Costs, (3) Operating Costs,more » (4) Maintenance Costs, and (5) Energy and Environmental Factors. The first category defines the direct benefits associated with buildings; the next three are different kinds of costs associated with providing those benefits; the last category includes concerns that are broader than direct costs and benefits to the building owner and building occupants. The level of detail of the various issues reflect the current state of knowledge in those scientific areas and the ability of the to determine that state of knowledge, rather than directly reflecting the importance of these issues; it intentionally does not specifically focus on energy issues. The report describes work in progress and is intended as a resource and can be used to indicate the areas needing more investigation. Other reports on BPA activities are also available.« less

  13. Lakeland Habitat for Humanity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.

    2009-03-30

    This is a case study of the Lakeland, FLorida, Habitat for Humanity affiliate, which has partnered with DOE's Building America program to homes that achieve energy savings of 30% or more over the Building America baseline home (a home built to the 1993 Model Energy Code). The article includes a description of the energy-efficiency features used. The Lakeland affiliate built several of its homes with ducts in conditioned space, which minimizes heat losses and gains. They also used high-efficiency SEER 14 air conditioners; radiant barriers in the roof to keep attics cooler; above-code high-performance dual-pane vinyl-framed low-emissivity windows; a passivemore » fresh air duct to the air handler; and duct blaster and blower door testing of every home to ensure the home's air tightness. This case study was also prepared as a flier titled "High Performance Builder Spotlight: Lakeland Habitat for Humanity, Lakeland, Florida,: which was cleared as PNNL-SA-59068 and distributed at the International Builders’ Show Feb 13-16, 2008, in Orlando, Florida.« less

  14. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers.

    PubMed

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children's block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children's block building performance. Chinese preschoolers ( N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children's block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation.

  15. Some Observations on the Current Status of Performing Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr; Shivakumar, Kunigal N.

    2015-01-01

    Aerospace structures are complex high-performance structures. Advances in reliable and efficient computing and modeling tools are enabling analysts to consider complex configurations, build complex finite element models, and perform analysis rapidly. Many of the early career engineers of today are very proficient in the usage of modern computers, computing engines, complex software systems, and visualization tools. These young engineers are becoming increasingly efficient in building complex 3D models of complicated aerospace components. However, the current trends demonstrate blind acceptance of the results of the finite element analysis results. This paper is aimed at raising an awareness of this situation. Examples of the common encounters are presented. To overcome the current trends, some guidelines and suggestions for analysts, senior engineers, and educators are offered.

  16. AGT100 turbomachinery. [for automobiles

    NASA Technical Reports Server (NTRS)

    Tipton, D. L.; Mckain, T. F.

    1982-01-01

    High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.

  17. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.

  18. Green Buildings in Use: Post Occupancy Evaluations

    ERIC Educational Resources Information Center

    Watson, Chris

    2007-01-01

    This article briefly describes users' experiences of two "green" education buildings. It goes on to conclude that stakeholders' negotiation of building performance is necessary to minimise environmental impact, just as it is necessary to achieve other aspects of building performance.

  19. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of productionmore » builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.« less

  20. Enabling laser applications in microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf

    2016-02-01

    In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.

  1. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  2. The Effects of Primary Light Sources on Worker Performance and Alertness

    NASA Technical Reports Server (NTRS)

    Wong, Lily; Caddick, Zachary; Kuriyagawa, Yukiyo; Flynn-Evans, Erin

    2017-01-01

    Traditional office buildings use a variety of primary light sources (e.g., LED/fluorescent lights). As interest in LEED certified office buildings increase and research has shown that enhanced lighting design improves human performance and alertness (Viola et al., 2008; Juslén & Tenner, 2005; Edwards & Torcellini, 2002), more office buildings are incorporating a daylighting design. We investigated the differences between employee performance and alertness in two different building types (daylight vs. artificial light). We hypothesized that employee performance and sleep duration would be improved in a building designed to increase exposure to natural daylight compared to traditional office settings.

  3. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    NASA Technical Reports Server (NTRS)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called digital materials. We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  4. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    NASA Technical Reports Server (NTRS)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called "digital materials." We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  5. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  6. Post occupancy evaluation of energy-efficient behavior in informal housing of high density area

    NASA Astrophysics Data System (ADS)

    Aulia, D. N.; Marpaung, B. O. Y.

    2018-02-01

    The concept of energy-efficient building emphasizes the critical of efficiency in the use of water, electrical energy, and building materials, beginning with design, construction, to the maintenance of the building in the future. This study was conducted to observe the behavior of Energy Saving of the residents in performing everyday activities in the building. The observed variables are the consumption of natural resources (energy, material, water, and land) and the emissions of air, water, and land related to the environment and health. This research is a descriptive qualitative research with the method of data collection is the distribution of questionnaires and observation. The method of analyzing data is posted occupancy evaluation undertaken to obtain patterns of community-based behavior in urban areas. The informal high-density housing area is a typology of population settlements that found in many big cities in Indonesia. This community represents various community groups regarding occupation, education, income, and race. The results of the study concluded that there are five components of energy-saving behavioral formers in housing namely: residential building components, environmental components in occupancy, external occupancy components, components of social activities and elements of business

  7. Application of Boosting Regression Trees to Preliminary Cost Estimation in Building Construction Projects

    PubMed Central

    2015-01-01

    Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project. PMID:26339227

  8. Application of Boosting Regression Trees to Preliminary Cost Estimation in Building Construction Projects.

    PubMed

    Shin, Yoonseok

    2015-01-01

    Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project.

  9. Novel Techniques for Seismic Performance of High Rise Structures in 21st Century: State-Of-The Art Review

    NASA Astrophysics Data System (ADS)

    Patil, R.; Naringe, A.; Kalyana Rama, J. S.

    2018-03-01

    Natural disasters like earthquakes are causing catastrophic failure for various structures in and around the world because of its unpredictable nature. Even in India, almost 80% of, India’s capital, Delhi’s buildings are not earthquake resistant. If at all there is a moderate earthquake in Delhi, millions of lives and huge of property will be lost. There are many places in India including four metropolitan cities, in which majority of high rise buildings are not earthquake resistant. It is important to account for damage caused by earthquakes, incorporating suitable resistant techniques for the safeguard of the people. The present study deals with highlighting the novel techniques adopted in the recent past to make the structures earthquake resistant. Performance based design is one such approach where in performance of structure is given the utmost importance unlike the existing standards. Lateral load resisting systems like chevron braces, knee braces in combination with aluminium shear links are found to reduce the impact of earthquake on the structures w.r.t its drift. It is also observed that the use of economical and feasible passive and active control vibration systems like dampers, isolation techniques led to revolutionary changes in the overall performance of high rise.

  10. MOSFET's for Cryogenic Amplifiers

    NASA Technical Reports Server (NTRS)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  11. TiO2-SiO2 Coatings with a Low Content of AuNPs for Producing Self-Cleaning Building Materials

    PubMed Central

    Gil, M. L. Almoraima; Mosquera, María J.

    2018-01-01

    The high pollution levels in our cities are producing a significant increase of dust on buildings. An application of photoactive coatings on building materials can produce buildings with self-cleaning surfaces. In this study, we have developed a simple sol-gel route for producing Au-TiO2/SiO2 photocatalysts with application on buildings. The gold nanoparticles (AuNPs) improved the TiO2 photoactivity under solar radiation because they promoted absorption in the visible range. We varied the content of AuNPs in the sols under study, in order to investigate their effect on self-cleaning properties. The sols obtained were sprayed on a common building stone, producing coatings which adhere firmly to the stone and preserve their aesthetic qualities. We studied the decolourization efficiency of the photocatalysts under study against methylene blue and against soot (a real staining agent for buildings). Finally, we established that the coating with an intermediate Au content presented the best self-cleaning performance, due to the role played by its structure and texture on its photoactivity. PMID:29558437

  12. Data of cost-optimal solutions and retrofit design methods for school renovation in a warm climate.

    PubMed

    Zacà, Ilaria; Tornese, Giuliano; Baglivo, Cristina; Congedo, Paolo Maria; D'Agostino, Delia

    2016-12-01

    "Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings" (Paolo Maria Congedo, Delia D'Agostino, Cristina Baglivo, Giuliano Tornese, Ilaria Zacà) [1] is the paper that refers to this article. It reports the data related to the establishment of several variants of energy efficient retrofit measures selected for two existing school buildings located in the Mediterranean area. In compliance with the cost-optimal analysis described in the Energy Performance of Buildings Directive and its guidelines (EU, Directive, EU 244,) [2], [3], these data are useful for the integration of renewable energy sources and high performance technical systems for school renovation. The data of cost-efficient high performance solutions are provided in tables that are explained within the following sections. The data focus on the describe school refurbishment sector to which European policies and investments are directed. A methodological approach already used in previous studies about new buildings is followed (Baglivo Cristina, Congedo Paolo Maria, D׳Agostino Delia, Zacà Ilaria, 2015; IlariaZacà, Delia D'Agostino, Paolo Maria Congedo, Cristina Baglivo; Baglivo Cristina, Congedo Paolo Maria, D'Agostino Delia, Zacà Ilaria, 2015; Ilaria Zacà, Delia D'Agostino, Paolo Maria Congedo, Cristina Baglivo, 2015; Paolo Maria Congedo, Cristina Baglivo, IlariaZacà, Delia D'Agostino,2015) [4], [5], [6], [7], [8]. The files give the cost-optimal solutions for a kindergarten (REF1) and a nursery (REF2) school located in Sanarica and Squinzano (province of Lecce Southern Italy). The two reference buildings differ for construction period, materials and systems. The eleven tables provided contain data about the localization of the buildings, geometrical features and thermal properties of the envelope, as well as the energy efficiency measures related to walls, windows, heating, cooling, dhw and renewables. Output values of energy consumption, gas emission and costs are given for a financial and a macro-economic analysis. This data article provides 288 and 96 combinations for REF1 and REF2, respectively. The output values are obtained using the software ProCasaClima 2015v.2.0.

  13. Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data

    PubMed Central

    Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho

    2017-01-01

    With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models. PMID:28335486

  14. Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data.

    PubMed

    Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho

    2017-03-19

    With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models.

  15. Developing Diverse Teams to Improve Performance in the Organizational Setting

    ERIC Educational Resources Information Center

    Yeager, Katherine L.; Nafukho, Fredrick M.

    2012-01-01

    Purpose: The use of teams in organizations given the current trend toward globalization, population changes, and an aging workforce, especially in high-income countries, makes the issue of diverse team building critical. The purpose of this paper is to explore the issue of team diversity and team performance through the examination of theory and…

  16. Green Schools as High Performance Learning Facilities

    ERIC Educational Resources Information Center

    Gordon, Douglas E.

    2010-01-01

    In practice, a green school is the physical result of a consensus process of planning, design, and construction that takes into account a building's performance over its entire 50- to 60-year life cycle. The main focus of the process is to reinforce optimal learning, a goal very much in keeping with the parallel goals of resource efficiency and…

  17. Cultures of Learning in Effective High Schools

    ERIC Educational Resources Information Center

    Tichnor-Wagner, Ariel; Harrison, Christopher; Cohen-Vogel, Lora

    2016-01-01

    Purpose: Research indicates that a culture of learning is a key factor in building high schools that foster academic achievement in all students. Yet less is known about which elements of a culture of learning differentiate schools with higher levels of academic performance. To fill this gap, this comparative case study examined the cultures of…

  18. The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Are Biophilic-Designed Site Office Buildings Linked to Health Benefits and High Performing Occupants?

    PubMed Central

    Gray, Tonia; Birrell, Carol

    2014-01-01

    This paper discusses the first phase of a longitudinal study underway in Australia to ascertain the broad health benefits of specific types of biophilic design for workers in a building site office. A bespoke site design was formulated to include open plan workspace, natural lighting, ventilation, significant plants, prospect and views, recycled materials and use of non-synthetic materials. Initial data in the first three months was gathered from a series of demographic questions and from interviews and observations of site workers. Preliminary data indicates a strong positive effect from incorporating aspects of biophilic design to boost productivity, ameliorate stress, enhance well-being, foster a collaborative work environment and promote workplace satisfaction, thus contributing towards a high performance workspace. The longitudinal study spanning over two years will track human-plant interactions in a biophilic influenced space, whilst also assessing the concomitant cognitive, social, psychological and physical health benefits for workers. PMID:25431874

  20. Determining radiated sound power of building structures by means of laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    This paper introduces a methodology that makes use of laser Doppler vibrometry to assess the acoustic insulation performance of a building element. The sound power radiated by the surface of the element is numerically determined from the vibrational pattern, offering an alternative for classical microphone measurements. Compared to the latter the proposed analysis is not sensitive to room acoustical effects. This allows the proposed methodology to be used at low frequencies, where the standardized microphone based approach suffers from a high uncertainty due to a low acoustic modal density. Standardized measurements as well as laser Doppler vibrometry measurements and computations have been performed on two test panels, a light-weight wall and a gypsum block wall and are compared and discussed in this paper. The proposed methodology offers an adequate solution for the assessment of the acoustic insulation of building elements at low frequencies. This is crucial in the framework of recent proposals of acoustic standards for measurement approaches and single number sound insulation performance ratings to take into account frequencies down to 50 Hz.

  1. Performance-based building codes: a call for injury prevention indicators that bridge health and building sectors.

    PubMed

    Edwards, N

    2008-10-01

    The international introduction of performance-based building codes calls for a re-examination of indicators used to monitor their implementation. Indicators used in the building sector have a business orientation, target the life cycle of buildings, and guide asset management. In contrast, indicators used in the health sector focus on injury prevention, have a behavioural orientation, lack specificity with respect to features of the built environment, and do not take into account patterns of building use or building longevity. Suggestions for metrics that bridge the building and health sectors are discussed. The need for integrated surveillance systems in health and building sectors is outlined. It is time to reconsider commonly used epidemiological indicators in the field of injury prevention and determine their utility to address the accountability requirements of performance-based codes.

  2. Distribution trend of high-rise buildings worldwide and factor exploration

    NASA Astrophysics Data System (ADS)

    Yu, Shao-Qiao

    2017-08-01

    This paper elaborates the development phenomenon of high-rise buildings nowadays. The development trend of super high-rise buildings worldwide is analyzed based on data from the Council on Tall Buildings and Urban Habitat, taking the top 100 high-rise buildings in different continents and with the time development and building type as the objects. Through analysis, the trend of flourishing of UAE super high-rise buildings and stable development of European and American high-rise buildings is obtained. The reasons for different development degrees of the regions are demonstrated from the aspects of social development, economy, culture and consciousness. This paper also presents unavoidable issues of super high-rise buildings and calls for rational treatment to these buildings.

  3. Mobile clusters of single board computers: an option for providing resources to student projects and researchers.

    PubMed

    Baun, Christian

    2016-01-01

    Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized.

  4. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  5. Substructure hybrid testing of reinforced concrete shear wall structure using a domain overlapping technique

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Pan, Peng; Gong, Runhua; Wang, Tao; Xue, Weichen

    2017-10-01

    An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.

  6. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC datamore » center.« less

  7. Performance of the CMS Event Builder

    NASA Astrophysics Data System (ADS)

    Andre, J.-M.; Behrens, U.; Branson, J.; Brummer, P.; Chaze, O.; Cittolin, S.; Contescu, C.; Craigs, B. G.; Darlea, G.-L.; Deldicque, C.; Demiragli, Z.; Dobson, M.; Doualot, N.; Erhan, S.; Fulcher, J. F.; Gigi, D.; Gładki, M.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Janulis, M.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; O'Dell, V.; Orsini, L.; Paus, C.; Petrova, P.; Pieri, M.; Racz, A.; Reis, T.; Sakulin, H.; Schwick, C.; Simelevicius, D.; Zejdl, P.

    2017-10-01

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of {\\mathscr{O}}(100 {{GB}}/{{s}}) to the high-level trigger farm. The DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbit/s Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbit/s Infiniband FDR Clos network has been chosen for the event builder. This paper presents the implementation and performance of the event-building system.

  8. Energy Systems Integration Facility (ESIF): Golden, CO - Energy Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, Michael; VanGeet, Otto; Pless, Shanti

    2015-03-01

    At NREL's Energy Systems Integration Facility (ESIF) in Golden, Colo., scientists and engineers work to overcome challenges related to how the nation generates, delivers and uses energy by modernizing the interplay between energy sources, infrastructure, and data. Test facilities include a megawatt-scale ac electric grid, photovoltaic simulators and a load bank. Additionally, a high performance computing data center (HPCDC) is dedicated to advancing renewable energy and energy efficient technologies. A key design strategy is to use waste heat from the HPCDC to heat parts of the building. The ESIF boasts an annual EUI of 168.3 kBtu/ft2. This article describes themore » building's procurement, design and first year of performance.« less

  9. Time dependence of 50 Hz magnetic fields in apartment buildings with indoor transformer stations.

    PubMed

    Yitzhak, Nir-Mordechay; Hareuveny, Ronen; Kandel, Shaiela; Ruppin, Raphael

    2012-04-01

    Twenty-four hour measurements of 50 Hz magnetic fields (MFs) in apartment buildings containing transformer stations have been performed. The apartments were classified into four types, according to their location relative to the transformer room. Temporal correlation coefficients between the MF in various apartments, as well as between MF and transformer load curves, were calculated. It was found that, in addition to their high average MF, the apartments located right above the transformer room also exhibit unique temporal correlation properties.

  10. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers

    PubMed Central

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation. PMID:29441031

  11. Leveraging OpenStudio's Application Programming Interfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, N.; Ball, B.; Goldwasser, D.

    2013-11-01

    OpenStudio development efforts have been focused on providing Application Programming Interfaces (APIs) where users are able to extend OpenStudio without the need to compile the open source libraries. This paper will discuss the basic purposes and functionalities of the core libraries that have been wrapped with APIs including the Building Model, Results Processing, Advanced Analysis, UncertaintyQuantification, and Data Interoperability through Translators. Several building energy modeling applications have been produced using OpenStudio's API and Software Development Kits (SDK) including the United States Department of Energy's Asset ScoreCalculator, a mobile-based audit tool, an energy design assistance reporting protocol, and a portfolio scalemore » incentive optimization analysismethodology. Each of these software applications will be discussed briefly and will describe how the APIs were leveraged for various uses including high-level modeling, data transformations from detailed building audits, error checking/quality assurance of models, and use of high-performance computing for mass simulations.« less

  12. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costeux, Stephane; Bunker, Shanon

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand andmore » stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS), and efforts to drive cost down will help acceptance in residential and commercial retrofit and new construction.« less

  13. A technical framework to describe occupant behavior for building energy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Hong, Tianzhen

    2013-12-20

    Green buildings that fail to meet expected design performance criteria indicate that technology alone does not guarantee high performance. Human influences are quite often simplified and ignored in the design, construction, and operation of buildings. Energy-conscious human behavior has been demonstrated to be a significant positive factor for improving the indoor environment while reducing the energy use of buildings. In our study we developed a new technical framework to describe energy-related human behavior in buildings. The energy-related behavior includes accounting for individuals and groups of occupants and their interactions with building energy services systems, appliances and facilities. The technical frameworkmore » consists of four key components: i. the drivers behind energy-related occupant behavior, which are biological, societal, environmental, physical, and economical in nature ii. the needs of the occupants are based on satisfying criteria that are either physical (e.g. thermal, visual and acoustic comfort) or non-physical (e.g. entertainment, privacy, and social reward) iii. the actions that building occupants perform when their needs are not fulfilled iv. the systems with which an occupant can interact to satisfy their needs The technical framework aims to provide a standardized description of a complete set of human energy-related behaviors in the form of an XML schema. For each type of behavior (e.g., occupants opening/closing windows, switching on/off lights etc.) we identify a set of common behaviors based on a literature review, survey data, and our own field study and analysis. Stochastic models are adopted or developed for each type of behavior to enable the evaluation of the impact of human behavior on energy use in buildings, during either the design or operation phase. We will also demonstrate the use of the technical framework in assessing the impact of occupancy behavior on energy saving technologies. The technical framework presented is part of our human behavior research, a 5-year program under the U.S. - China Clean Energy Research Center for Building Energy Efficiency.« less

  14. A Learning Framework for Control-Oriented Modeling of Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio-Herrero, Javier; Chandan, Vikas; Siegel, Charles M.

    Buildings consume a significant amount of energy worldwide. Several building optimization and control use cases require models of energy consumption which are control oriented, have high predictive capability, imposes minimal data pre-processing requirements, and have the ability to be adapted continuously to account for changing conditions as new data becomes available. Data driven modeling techniques, that have been investigated so far, while promising in the context of buildings, have been unable to simultaneously satisfy all the requirements mentioned above. In this context, deep learning techniques such as Recurrent Neural Networks (RNNs) hold promise, empowered by advanced computational capabilities and bigmore » data opportunities. In this paper, we propose a deep learning based methodology for the development of control oriented models for building energy management and test in on data from a real building. Results show that the proposed methodology outperforms other data driven modeling techniques significantly. We perform a detailed analysis of the proposed methodology along dimensions such as topology, sensitivity, and downsampling. Lastly, we conclude by envisioning a building analytics suite empowered by the proposed deep framework, that can drive several use cases related to building energy management.« less

  15. RETScreen Plus Software Tutorial

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene D.; Stackhouse, Paul W., Jr.; DeYoung, Russell J.

    2014-01-01

    Greater emphasis is being placed on reducing both the carbon footprint and energy cost of buildings. A building's energy usage depends upon many factors one of the most important is the local weather and climate conditions to which it's electrical, heating and air conditioning systems must respond. Incorporating renewable energy systems, including solar systems, to supplement energy supplies and increase energy efficiency is important to saving costs and reducing emissions. Also retrofitting technologies to buildings requires knowledge of building performance in its current state, potential future climate state, projection of potential savings with capital investment, and then monitoring the performance once the improvements are made. RETScreen Plus is a performance analysis software module that supplies the needed functions of monitoring current building performance, targeting projected energy efficiency improvements and verifying improvements once completed. This tutorial defines the functions of RETScreen Plus as well as outlines the general procedure for monitoring and reporting building energy performance.

  16. Performance evaluation of an agent-based occupancy simulation model

    DOE PAGES

    Luo, Xuan; Lam, Khee Poh; Chen, Yixing; ...

    2017-01-17

    Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less

  17. Performance evaluation of an agent-based occupancy simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xuan; Lam, Khee Poh; Chen, Yixing

    Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less

  18. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  19. Large-eddy simulation of plume dispersion within regular arrays of cubic buildings

    NASA Astrophysics Data System (ADS)

    Nakayama, H.; Jurcakova, K.; Nagai, H.

    2011-04-01

    There is a potential problem that hazardous and flammable materials are accidentally or intentionally released within populated urban areas. For the assessment of human health hazard from toxic substances, the existence of high concentration peaks in a plume should be considered. For the safety analysis of flammable gas, certain critical threshold levels should be evaluated. Therefore, in such a situation, not only average levels but also instantaneous magnitudes of concentration should be accurately predicted. In this study, we perform Large-Eddy Simulation (LES) of plume dispersion within regular arrays of cubic buildings with large obstacle densities and investigate the influence of the building arrangement on the characteristics of mean and fluctuating concentrations.

  20. Codes Don't Always Get Enforced, But Contracts Do: Changing the Procurement Paradigm to Drive Building Energy Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A; Scheib, Jennifer G; Pless, Shanti

    New construction could account for more than 25% of the U.S. energy consumption by 2030. Millions of square feet are built every year that will not perform as expected - despite advancing codes, rating systems, super-efficient technologies, and advanced utility programs. With retrofits of these under-performers decades away, savings potential will be lost for years to come. Only the building owner is in the driver's seat to demand - and verify - higher-performing buildings. Yet our current policy and market interventions really target the design team, not the owner. Accelerate Performance, a U.S. Department of Energy funded initiative, is changingmore » the building procurement approach to drive deeper, verified savings in three pilot states: Illinois, Minnesota, and Connecticut. Performance-based procurement ties energy performance to design and contractor team compensation while freeing them to meet energy targets with strategies most familiar to them. The process teases out the creativity of the design and contracting teams to deliver energy performance - without driving up the construction cost. The paper will share early results and lessons learned from new procurement and contract approaches in government, public, and private sector building projects. The paper provides practical guidance for building owners, facilities managers, design, and contractor teams who wish to incorporate effective performance-based procurement for deeper energy savings in their buildings.« less

  1. A Cautionary Analysis of a Billion Dollar Athletic Expenditure: The History of the Renovation of California Memorial Stadium and the Construction of the Barclay Simpson Student Athlete High Performance Center. Research & Occasional Paper Series: CSHE.3.17

    ERIC Educational Resources Information Center

    Cummins, John

    2017-01-01

    This paper is a description and analysis of the history of the renovation of Memorial Stadium and the building of the Barclay Simpson Student Athlete High Performance Center (SAHPC) on the Berkeley campus, showing how incremental changes over time result in a much riskier and financially less viable project than originally anticipated. It…

  2. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrissey, Elmer; O'Donnell, James; Keane, Marcus

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offeringmore » an accurate method of quantitatively assessing building performance.« less

  3. Seismic performance of low-rise wood buildings

    Treesearch

    Lawrence A. Soltis; Robert H. Falk

    1992-01-01

    This article updates a previous literature review paper on the performance of woodframe buildings during earthquakes and summarizes recent research related to understanding seismic behavior of low-rise wood buildings.

  4. Effects of salinity build-up on the performance and microbial community of partial-denitrification granular sludge with high nitrite accumulation.

    PubMed

    Ji, Jiantao; Peng, Yongzhen; Wang, Bo; Mai, Wenke; Li, Xiyao; Zhang, Qiong; Wang, Shuying

    2018-05-31

    High inorganic salts inevitably impose a toxic impact on biological treatment processes. In this study, the effect of salinity on the performance and microbial community structures of partial-denitrification (PD) was firstly investigated. Results showed the denitrifying activities of non-domesticated PD sludge were completely inhibited under a temporary high salinity (≥1.5 wt%). However, after domestication, denitrifying activities maintained above 50% of the maximum with salinity build-up step-by-step from 0.0 wt% to 3.0 wt%. High nitrite production was stably achieved during 120 days with nitrate-to-nitrite transformation ratio around 90%. Further investigation showed extracellular polymeric substances content of PD sludge increased from 184.59 mg gVSS -1 to 560.64 mg gVSS -1 , accompanied by the elevation of average particle size. This occurred against high salinity as a protective response of PD bacteria. Moreover, Thauera, the functional bacteria of PD system, was still dominant with the relative abundance increasing to 83.36% (3.0 wt%) from 51.33% (0.0 wt%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Tall Buildings Initiative

    Science.gov Websites

    Design Task 7 - Guidelines on Modeling and Acceptance Values Task 8 - Input Ground Motions for Tall - Performance-Based Seismic Design Guidelines for Tall Buildings Task 12 - Quantification of seismic performance published Report No. 2017/06 titled: "Guidelines for Performance-Based Seismic Design of Tall Buildings

  6. Building Pathways to Transfer: Community Colleges That Break the Chain of Failure for Students of Color

    ERIC Educational Resources Information Center

    Gandara, Patricia; Alvarado, Elizabeth; Driscoll, Anne; Orfield, Gary

    2012-01-01

    It has been well established that the high schools students attend contribute significantly to how well they do in college, and even if they choose to attend college at all (Lee & Frank, 1990). Low performing high schools tend to under-prepare their students for post-secondary education and contribute to the very high percentages of students…

  7. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

    PubMed

    Rosenegger, David G; Tran, Cam Ha T; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.

  8. A High Performance, Cost-Effective, Open-Source Microscope for Scanning Two-Photon Microscopy that Is Modular and Readily Adaptable

    PubMed Central

    Rosenegger, David G.; Tran, Cam Ha T.; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R.

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems. PMID:25333934

  9. Building simulation: Ten challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Langevin, Jared; Sun, Kaiyu

    Buildings consume more than one-third of the world’s primary energy. Reducing energy use and greenhouse-gas emissions in the buildings sector through energy conservation and efficiency improvements constitutes a key strategy for achieving global energy and environmental goals. Building performance simulation has been increasingly used as a tool for designing, operating and retrofitting buildings to save energy and utility costs. However, opportunities remain for researchers, software developers, practitioners and policymakers to maximize the value of building performance simulation in the design and operation of low energy buildings and communities that leverage interdisciplinary approaches to integrate humans, buildings, and the power gridmore » at a large scale. This paper presents ten challenges that highlight some of the most important issues in building performance simulation, covering the full building life cycle and a wide range of modeling scales. In conclusion, the formulation and discussion of each challenge aims to provide insights into the state-of-the-art and future research opportunities for each topic, and to inspire new questions from young researchers in this field.« less

  10. Building simulation: Ten challenges

    DOE PAGES

    Hong, Tianzhen; Langevin, Jared; Sun, Kaiyu

    2018-04-12

    Buildings consume more than one-third of the world’s primary energy. Reducing energy use and greenhouse-gas emissions in the buildings sector through energy conservation and efficiency improvements constitutes a key strategy for achieving global energy and environmental goals. Building performance simulation has been increasingly used as a tool for designing, operating and retrofitting buildings to save energy and utility costs. However, opportunities remain for researchers, software developers, practitioners and policymakers to maximize the value of building performance simulation in the design and operation of low energy buildings and communities that leverage interdisciplinary approaches to integrate humans, buildings, and the power gridmore » at a large scale. This paper presents ten challenges that highlight some of the most important issues in building performance simulation, covering the full building life cycle and a wide range of modeling scales. In conclusion, the formulation and discussion of each challenge aims to provide insights into the state-of-the-art and future research opportunities for each topic, and to inspire new questions from young researchers in this field.« less

  11. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less

  12. NIRPS: A Year of Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Thomas, Dale

    2012-01-01

    In the past 14 months NIRPS has gone from an idea on a sheet of paper to a working organization, performing tasks of national scale. NIRPS is beginning to establish itself among the Propulsion Community. Need is recognized for a coordination and integration function across the US Government s propulsion activities. NIRPS acts as a collaboration agent - serves as a catalyst and multi-agency facilitator NIRPS is leading a high-priority Government-wide task. 2012 Defense Authorization Act, Sec 1095; Develop National Rocket Propulsion Strategy. Beginning to perform in accordance with Grand Challenges. Performing to an Executable plan, adjusting to to Center and Agency priorities. Challenges remain to building a sustainable Institute. Effective integration and Coordination with other Government Agencies. Continued Active engagement with Industry and Academia. Building an Efficient and Responsive Governance System for a growing Institute.

  13. Tierra Concrete Homes Honored with Energy Star Award

    Science.gov Websites

    building. NREL's research on low energy residences is sponsored by DOE's Building America Program. Building America conducts systems engineering research and system cost/performance tradeoffs to increase energy performance with minimal increases in housing cost. See the Building America Web site. Tierra Concrete Homes

  14. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    NASA Astrophysics Data System (ADS)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  15. Sustainable earth-based vs. conventional construction systems in the Mediterranean climate: Experimental analysis of thermal performance

    NASA Astrophysics Data System (ADS)

    Serrano, S.; de Gracia, A.; Pérez, G.; Cabeza, L. F.

    2017-10-01

    The building envelope has high potential to reduce the energy consumption of buildings according to the International Energy Agency (IEA) because it is involved along all the building process: design, construction, use, and end-of-life. The present study compares the thermal behavior of seven different building prototypes tested under Mediterranean climate: two of them were built with sustainable earth-based construction systems and the other five, with conventional brick construction systems. The tested earth-based construction systems consist of rammed earth walls and wooden green roofs, which have been adapted to contemporary requirements by reducing their thickness. In order to balance the thermal response, wooden insulation panels were placed in one of the earth prototypes. All building prototypes have the same inner dimensions and orientation, and they are fully monitored to register inner temperature and humidity, surface walls temperatures and temperatures inside walls. Furthermore, all building prototypes are equipped with a heat pump and an electricity meter to measure the electrical energy consumed to maintain a certain level of comfort. The experimentation was performed along a whole year by carrying out several experiments in free floating and controlled temperature conditions. This study aims at demonstrating that sustainable construction systems can behave similarly or even better than conventional ones under summer and winter conditions. Results show that thermal behavior is strongly penalized when rammed earth wall thickness is reduced. However, the addition of 6 cm of wooden insulation panels in the outer surface of the building prototype successfully improves the thermal response.

  16. Effects of Newly Designed Hospital Buildings on Staff Perceptions: A Pre-Post Study to Validate Design Decisions.

    PubMed

    Schreuder, Eliane; van Heel, Liesbeth; Goedhart, Rien; Dusseldorp, Elise; Schraagen, Jan Maarten; Burdorf, Alex

    2015-01-01

    This study investigates effects of the newly built nonpatient-related buildings of a large university medical center on staff perceptions and whether the design objectives were achieved. The medical center is gradually renewing its hospital building area of 200,000 m.(2) This redevelopment is carefully planned and because lessons learned can guide design decisions of the next phase, the medical center is keen to evaluate the performance of the new buildings. A pre- and post-study with a control group was conducted. Prior to the move to the new buildings an occupancy evaluation was carried out in the old setting (n = 729) (pre-study). Post occupation of the new buildings another occupancy evaluation (post-study) was carried out in the new setting (intervention group) and again in some old settings (control group) (n = 664). The occupancy evaluation consisted of an online survey that measured the perceived performance of different aspects of the building. Longitudinal multilevel analysis was used to compare the performance of the old buildings with the new buildings. Significant improvements were found in indoor climate, perceived safety, working environment, well-being, facilities, sustainability, and overall satisfaction. Commitment to the employer, working atmosphere, orientation, work performance, and knowledge sharing did not improve. The results were interpreted by relating them to specific design choices. We showed that it is possible to measure the performance improvements of a complex intervention being a new building design and validate design decisions. A focused design process aiming for a safe, pleasant and sustainable building resulted in actual improvements in some of the related performance measures. © The Author(s) 2015.

  17. DOE Zero Energy Ready Home Case Study: Alliance Green Builders, Casa Aguila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Alliance Green Builders built this 3,129-ft2 home in the hills above Ramona, California, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The home should perform far better than net zero thanks to a super-efficient building shell, a wind turbine, three suntracking solar photovoltaic arrays, and solar thermal water heating.

  18. How I Became White while Punching De Tar Baby

    ERIC Educational Resources Information Center

    Lensmire, Timothy J.

    2008-01-01

    Drawing on critical whiteness studies, I examine a performance I did over 25 years ago in high school, in which I told a story at an awards program. I interpret my performance as later-day blackface minstrelsy--one without blackface, but with a black folktale and with ways of speaking and moving that my audience recognized as "black." I build up…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aldrich and J. Williamson

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2.) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support form the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, Robb; Williamson, James

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less

  2. High Temperature Ultrasonic Transducers : Material Selection and Testing

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bruno, Alessandro

    2012-01-01

    The task of my two-months internship was to test different materials to be used to build an high temperature transducer, to develop some prototypes and to test their performance, to assess the reliability of commercial product rated for such a temperature, as well as to collaborate in developing the signal processing code to measure the condensed water levels.

  3. How to Recruit High-Performing Charter Management Organizations to a New Region: Results from the 2015 CMO Survey

    ERIC Educational Resources Information Center

    National Alliance for Public Charter Schools, 2016

    2016-01-01

    Charter Management Organizations (CMOs) are nonprofit entities that manage at least two charter schools. They play an important role in increasing the number of high-quality charter public schools by enabling the replication and expansion of models that work, creating economies of scale, encouraging collaboration, and building support structures…

  4. Building Synergy for High-Impact Educational Initiatives: First-Year Seminars and Learning Communities

    ERIC Educational Resources Information Center

    Schmidt, Lauren Chism, Ed.; Graziano, Janine, Ed.

    2016-01-01

    Over the years, a number of interventions aimed at increasing student engagement and performance have been implemented in higher education. Some of these, labeled high-impact practices (HIPs), when done well, have led to documented evidence of student success. Two approaches that have been identified as HIPs--first-year seminars and learning…

  5. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 4: High pressure fuel turbo-pump inlet housing analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    The analysis performed on the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) inlet housings is summarized. Three DIAL finite element models were build to aid in assessing the structural life of the welds and fillets at the vanes. Complete results are given.

  6. Building a Grad Nation. Executive Brief: Overview of 2012-13 High School Graduation Rates

    ERIC Educational Resources Information Center

    Civic Enterprises, 2015

    2015-01-01

    Over the past dozen years, schools, districts, and states have begun to focus increased attention on boosting high school graduation rates. During this period, the nation has seen more evidence-based educational reforms in low-performing schools, more support for struggling students, and better data and stronger accountability to chart progress…

  7. Effects of Peer-Tutor Competences on Learner Cognitive Load and Learning Performance during Knowledge Sharing

    ERIC Educational Resources Information Center

    Hsiao, Ya-Ping; Brouns, Francis; van Bruggen, Jan; Sloep, Peter B.

    2012-01-01

    In Learning Networks, learners need to share knowledge with others to build knowledge. In particular, when working on complex tasks, they often need to acquire extra cognitive resources from others to process a high task load. However, without support high task load and organizing knowledge sharing themselves might easily overload learners'…

  8. Cooling season performance of an earth-sheltered office/dormitory building in Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.E.

    1984-07-01

    Detailed hourly measurements taken in and around an underground office-dormitory building for two summers document energy savings; whole building-component interface problems; and specific cooling contributions from earth contact, interior thermal mass, and an economizer. The Joint Institute Dormitory (JID) saves about 30% compared with well-built above-grade buildings in a climate typical of Oak Ridge, Tennessee, and has the potential to save as much as 50%. The detailed measurements, which include extensive thermal comfort data, indicate that at least 90% of the occupants are comfortable all of the time. The thermal performance measurements and analysis determine that the peak cooling requirementmore » of this building is 50% less than that of well-built above-grade structures, permitting a cost savings on installed cooling capacity. The dominant building components contributing to the good thermal performance are the structural thermal mass, the earth-covered roof, and the earth contact provided by the bermed walls and slab floor. The 372-m/sup 2/ (4000 gross ft/sup 2/) building used about $300 (at 5.7 cents/kWh) to cool and ventilate from May through September. Eliminating a number of building design and construction anomalies could improve the whole-building performance and reduce the seasonal cooling cost another $85. Close examination of the thermal performance of this building revealed that a very efficient heat pump and thermally sound envelope do not necessarily produce otpimum performance without careful attention given to component interface details. 8 references, 24 figures, 12 tables.« less

  9. Successful Strategies for Planning a Green Building.

    ERIC Educational Resources Information Center

    Browning, William D.

    2003-01-01

    Presents several strategies for successful green building on campus: develop a set of clear environmental performance goals (buildings as pedagogical tools, climate-neutral operations, maximized human performance), use Leadership in Energy and Environmental Design (LEED) as a gauge of performance, and use the project to reform the campus building…

  10. Dataset on the energy performance of atrium type hotel buildings.

    PubMed

    Vujosevic, Milica; Krstic-Furundzic, Aleksandra

    2018-04-01

    The data presented in this article are related to the research article entitled "The Influence of Atrium on Energy Performance of Hotel Building" (Vujosevic and Krstic-Furundzic, 2017) [1], which describes the annual energy performance of atrium type hotel building in Belgrade climate conditions, with the objective to present the impact of the atrium on the hotel building's energy demands for space heating and cooling. This dataset is made publicly available to show energy performance of selected hotel design alternatives, in order to enable extended analyzes of these data for other researchers.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, T.; Curtis, O.; Stephenson, R.

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA, in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STARmore » requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, T.; Curtis, O.; Stephenson, R.

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta-based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach topotential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements,more » and a high performance heating and cooling system. Construction quality and execution was a high priority for TaCStudios and was ensured by a third party review process. Post-construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowners wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this homewas evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored todetermine their impact on overall energy consumption.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance.

  14. ERCMExpress. Volume 2, Issue 2

    ERIC Educational Resources Information Center

    US Department of Education, 2006

    2006-01-01

    This issue of the Emergency Response and Crisis Management (ERCM) Technical Assistance Center's "ERCMExpress" introduces the National Clearinghouse for Educational Facilities (NCEF), a free public service that provides information on planning, designing, funding, building, improving and maintaining safe, healthy, high-performance schools. NCEF is…

  15. 75 FR 41892 - Solicitation for a Cooperative Agreement: Guidebook for Building High Performance Correctional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... of the guidebook on leadership, assessments, intervention, change management and other related topics...: (1) Leadership and management development, (2) information and knowledge management; (3) comprehensive criminal justice planning, (4) offender management, (5) collaborative partnerships, (6...

  16. Footwear Physics.

    ERIC Educational Resources Information Center

    Blaser, Mark; Larsen, Jamie

    1996-01-01

    Presents five interactive, computer-based activities that mimic scientific tests used by sport researchers to help companies design high-performance athletic shoes, including impact tests, flexion tests, friction tests, video analysis, and computer modeling. Provides a platform for teachers to build connections between chemistry (polymer science),…

  17. An Experimental Analog for Metal-Sulfide Partitioning in Acapulcoite-Lodranite Meteorites

    NASA Astrophysics Data System (ADS)

    Dhaliwal, J. K.; Chabot, N. L.; Ash, R. D.; McCoy, T. J.

    2018-05-01

    This study builds on prior analyses of highly siderophile element (HSE) abundances in primitive achondrites. We performed melting experiments of naturally occurring FeNi and FeS to examine the effect of sulfur on HSE inter-element partitioning.

  18. The Effects of Partnership Management on Supply Chain Cooperative Performance: A Case Study of High-Tech Industry

    NASA Astrophysics Data System (ADS)

    Wu, Mei-Ying; Chang, Yun-Ju; Weng, Yung-Chien

    2009-08-01

    With the structural change of global supply chains, the relationship between manufacturers and suppliers has transformed into a long-term partnership. Thus, this study aims to explore the partnership between manufacturers and suppliers in Taiwan's high-tech industry. Four constructs, including partner characteristic, partnership quality, partnership closeness, and cooperative performance, induced from previous literatures are used to construct the research framework and hypotheses. A questionnaire survey is then performed on executives and staffs involved in the high-tech industry. The proposed framework and hypotheses are empirically validated through confirmatory factory analysis and structural equation modeling. It is expected that the research findings can serve as a reference for Taiwan's high-tech industry on building partnerships.

  19. Energy benchmarking of commercial buildings: a low-cost pathway toward urban sustainability

    NASA Astrophysics Data System (ADS)

    Cox, Matt; Brown, Marilyn A.; Sun, Xiaojing

    2013-09-01

    US cities are beginning to experiment with a regulatory approach to address information failures in the real estate market by mandating the energy benchmarking of commercial buildings. Understanding how a commercial building uses energy has many benefits; for example, it helps building owners and tenants identify poor-performing buildings and subsystems and it enables high-performing buildings to achieve greater occupancy rates, rents, and property values. This paper estimates the possible impacts of a national energy benchmarking mandate through analysis chiefly utilizing the Georgia Tech version of the National Energy Modeling System (GT-NEMS). Correcting input discount rates results in a 4.0% reduction in projected energy consumption for seven major classes of equipment relative to the reference case forecast in 2020, rising to 8.7% in 2035. Thus, the official US energy forecasts appear to overestimate future energy consumption by underestimating investments in energy-efficient equipment. Further discount rate reductions spurred by benchmarking policies yield another 1.3-1.4% in energy savings in 2020, increasing to 2.2-2.4% in 2035. Benchmarking would increase the purchase of energy-efficient equipment, reducing energy bills, CO2 emissions, and conventional air pollution. Achieving comparable CO2 savings would require more than tripling existing US solar capacity. Our analysis suggests that nearly 90% of the energy saved by a national benchmarking policy would benefit metropolitan areas, and the policy’s benefits would outweigh its costs, both to the private sector and society broadly.

  20. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi,more » to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoeller, William; Slattery, Matt; Grab, Joanna

    In 2009, Mass Development issued a RFP for teams to develop moderately priced high-efficiency homes on two sites within the Devens Regional Enterprise Zone. MassDevelopment, a Massachusetts agency that owns the Devens site (formerly Fort Devens Army Base, in Harvard, Massachusetts), set a goal of producing a replicable example of current and innovative sustainable building practices with a near-zero energy potential. Metric Development, as primary developer and construction manager, formed one of the successful teams that included CARB and Cambridge Seven Architects (C7A). This report describes the development of high performance, affordable, and replicable designs developed by the team inmore » test homes and plans to move forward with the next buildings.« less

  2. Performance-Based Seismic Retrofit of Soft-Story Woodframe Buildings Using Energy-Dissipation Systems

    NASA Astrophysics Data System (ADS)

    Tian, Jingjing

    Low-rise woodframe buildings with disproportionately flexible ground stories represent a significant percentage of the building stock in seismically vulnerable communities in the Western United States. These structures have a readily identifiable structural weakness at the ground level due to an asymmetric distribution of large openings in the perimeter wall lines and to a lack of interior partition walls, resulting in a soft story condition that makes the structure highly susceptible to severe damage or collapse under design-level earthquakes. The conventional approach to retrofitting such structures is to increase the ground story stiffness. An alternate approach is to increase the energy dissipation capacity of the structure via the incorporation of supplemental energy dissipation devices (dampers), thereby relieving the energy dissipation demands on the framing system. Such a retrofit approach is consistent with a Performance-Based Seismic Retrofit (PBSR) philosophy through which multiple performance levels may be targeted. The effectiveness of such a retrofit is presented via examination of the seismic response of a full-scale four-story building that was tested on the outdoor shake table at NEES-UCSD and a full-scale three-story building that was tested using slow pseudo-dynamic hybrid testing at NEES-UB. In addition, a Direct Displacement Design (DDD) methodology was developed as an improvement over current DDD methods by considering torsion, with or without the implementation of damping devices, in an attempt to avoid the computational expense of nonlinear time-history analysis (NLTHA) and thus facilitating widespread application of PBSR in engineering practice.

  3. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Associationmore » of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.« less

  4. Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics.

    PubMed

    Osaka, Itaru; Takimiya, Kazuo

    2017-07-01

    π-Conjugated polymers are an important class of materials for organic electronics. In the past decade, numerous polymers with donor-acceptor molecular structures have been developed and used as the active materials for organic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). The choice of the building unit is the primary step for designing the polymers. Benzochalcogenadiazoles (BXzs) are one of the most familiar acceptor building units studied in this area. As their doubly fused system, naphthobischalcogenadiazoles (NXzs), i.e., naphthobisthiadiazole (NTz), naphthobisoxadiazole (NOz), and naphthobisselenadiazole (NSz) are emerging building units that provide interesting electronic properties and highly self-assembling nature for π-conjugated polymers. With these fruitful features, π-conjugated polymers based on these building units demonstrate great performances in OFETs and OPVs. In particular, in OPVs, NTz-based polymers have exhibited more than 10% efficiency, which is among the highest values reported so far. In this Progress Report, the synthesis, properties, and structures of NXzs and their polymers is summarized. The device performance is also highlighted and the structure-property relationships of the polymers are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhancement of a virtual reality wheelchair simulator to include qualitative and quantitative performance metrics.

    PubMed

    Harrison, C S; Grant, P M; Conway, B A

    2010-01-01

    The increasing importance of inclusive design and in particular accessibility guidelines established in the U.K. 1996 Disability Discrimination Act (DDA) has been a prime motivation for the work on wheelchair access, a subset of the DDA guidelines, described in this article. The development of these guidelines mirrors the long-standing provisions developed in the U.S. In order to raise awareness of these guidelines and in particular to give architects, building designers, and users a physical sensation of how a planned development could be experienced, a wheelchair virtual reality system was developed. This compares with conventional methods of measuring against drawings and comparing dimensions against building regulations, established in the U.K. under British standards. Features of this approach include the marriage of an electromechanical force-feedback system with high-quality immersive graphics as well as the potential ability to generate a physiological rating of buildings that do not yet exist. The provision of this sense of "feel" augments immersion within the virtual reality environment and also provides the basis from which both qualitative and quantitative measures of a building's access performance can be gained.

  6. Progress Towards Highly Efficient Windows for Zero—Energy Buildings

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    2008-09-01

    Energy efficient windows could save 4 quads/year, with an additional 1 quad/year gain from daylighting in commercial buildings. This corresponds to 13% of energy used by US buildings and 5% of all energy used by the US. The technical potential is thus very large and the economic potential is slowly becoming a reality. This paper describes the progress in energy efficient windows that employ low-emissivity glazing, electrochromic switchable coatings and other novel materials. Dynamic systems are being developed that use sensors and controls to modulate daylighting and shading contributions in response to occupancy, comfort and energy needs. Improving the energy performance of windows involves physics in a variety of application: optics, heat transfer, materials science and applied engineering. Technical solutions must also be compatible with national policy, codes and standards, economics, business practice and investment, real and perceived risks, comfort, health, safety, productivity, amenities, and occupant preference and values. The challenge is to optimize energy performance by understanding and reinforcing the synergetic coupling between these many issues.

  7. A C++11 implementation of arbitrary-rank tensors for high-performance computing

    NASA Astrophysics Data System (ADS)

    Aragón, Alejandro M.

    2014-06-01

    This article discusses an efficient implementation of tensors of arbitrary rank by using some of the idioms introduced by the recently published C++ ISO Standard (C++11). With the aims at providing a basic building block for high-performance computing, a single Array class template is carefully crafted, from which vectors, matrices, and even higher-order tensors can be created. An expression template facility is also built around the array class template to provide convenient mathematical syntax. As a result, by using templates, an extra high-level layer is added to the C++ language when dealing with algebraic objects and their operations, without compromising performance. The implementation is tested running on both CPU and GPU.

  8. A C++11 implementation of arbitrary-rank tensors for high-performance computing

    NASA Astrophysics Data System (ADS)

    Aragón, Alejandro M.

    2014-11-01

    This article discusses an efficient implementation of tensors of arbitrary rank by using some of the idioms introduced by the recently published C++ ISO Standard (C++11). With the aims at providing a basic building block for high-performance computing, a single Array class template is carefully crafted, from which vectors, matrices, and even higher-order tensors can be created. An expression template facility is also built around the array class template to provide convenient mathematical syntax. As a result, by using templates, an extra high-level layer is added to the C++ language when dealing with algebraic objects and their operations, without compromising performance. The implementation is tested running on both CPU and GPU.

  9. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments.

    PubMed

    Allen, Joseph G; MacNaughton, Piers; Satish, Usha; Santanam, Suresh; Vallarino, Jose; Spengler, John D

    2016-06-01

    The indoor built environment plays a critical role in our overall well-being because of both the amount of time we spend indoors (~90%) and the ability of buildings to positively or negatively influence our health. The advent of sustainable design or green building strategies reinvigorated questions regarding the specific factors in buildings that lead to optimized conditions for health and productivity. We simulated indoor environmental quality (IEQ) conditions in "Green" and "Conventional" buildings and evaluated the impacts on an objective measure of human performance: higher-order cognitive function. Twenty-four participants spent 6 full work days (0900-1700 hours) in an environmentally controlled office space, blinded to test conditions. On different days, they were exposed to IEQ conditions representative of Conventional [high concentrations of volatile organic compounds (VOCs)] and Green (low concentrations of VOCs) office buildings in the United States. Additional conditions simulated a Green building with a high outdoor air ventilation rate (labeled Green+) and artificially elevated carbon dioxide (CO2) levels independent of ventilation. On average, cognitive scores were 61% higher on the Green building day and 101% higher on the two Green+ building days than on the Conventional building day (p < 0.0001). VOCs and CO2 were independently associated with cognitive scores. Cognitive function scores were significantly better under Green+ building conditions than in the Conventional building conditions for all nine functional domains. These findings have wide-ranging implications because this study was designed to reflect conditions that are commonly encountered every day in many indoor environments. Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD. 2016. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments. Environ Health Perspect 124:805-812; http://dx.doi.org/10.1289/ehp.1510037.

  10. Probabilistic performance-based design for high performance control systems

    NASA Astrophysics Data System (ADS)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  11. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled

    NASA Astrophysics Data System (ADS)

    Huang, Jianfei; Zhu, Yihua; Yang, Xiaoling; Chen, Wei; Zhou, Ying; Li, Chunzhong

    2014-12-01

    Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires pile (NWP) immobilized with polymer binder by conventional drop-casting technique were both studied for enzymeless glucose sensing. The NWA electrode exhibited greatly promoted electrochemistry characterized by decreased overpotential for electro-oxidation of glucose and over 5-fold higher sensitivity compared to the NWP counterpart, benefiting from the binder-free nanoarray structure. Besides, its sensing performance was also satisfying in terms of rapidness, selectivity and durability. Further, the CuO NWA was utilized to fabricate a flexible sensor which showed excellent performance stability against mechanical bending. Thanks to its favorable electrode architecture, the CuO NWA is believed to offer opportunities for building high-efficiency flexible electrochemical devices.Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires pile (NWP) immobilized with polymer binder by conventional drop-casting technique were both studied for enzymeless glucose sensing. The NWA electrode exhibited greatly promoted electrochemistry characterized by decreased overpotential for electro-oxidation of glucose and over 5-fold higher sensitivity compared to the NWP counterpart, benefiting from the binder-free nanoarray structure. Besides, its sensing performance was also satisfying in terms of rapidness, selectivity and durability. Further, the CuO NWA was utilized to fabricate a flexible sensor which showed excellent performance stability against mechanical bending. Thanks to its favorable electrode architecture, the CuO NWA is believed to offer opportunities for building high-efficiency flexible electrochemical devices. Electronic supplementary information (ESI) available: TEM images of CuO nanowires. SEM images of the composite film of CuO NWs in the Nafion binder. Flowchart of electrodes fabrication procedures. Current response time to addition of the glucose. Amperometric i-t test for the NWP under +0.35 V. Nyquist plot of the electrodes. SEM images of fractured parts of CuO nanowires at the NWP-Nafion film. Parameter comparison of enzymeless sensors for glucose detection. See DOI: 10.1039/c4nr05620e

  12. The effectiveness of energy management system on energy efficiency in the building

    NASA Astrophysics Data System (ADS)

    Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.

    2017-10-01

    Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.

  13. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    NASA Astrophysics Data System (ADS)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  14. Automated Decomposition of Model-based Learning Problems

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Millar, Bill

    1996-01-01

    A new generation of sensor rich, massively distributed autonomous systems is being developed that has the potential for unprecedented performance, such as smart buildings, reconfigurable factories, adaptive traffic systems and remote earth ecosystem monitoring. To achieve high performance these massive systems will need to accurately model themselves and their environment from sensor information. Accomplishing this on a grand scale requires automating the art of large-scale modeling. This paper presents a formalization of [\\em decompositional model-based learning (DML)], a method developed by observing a modeler's expertise at decomposing large scale model estimation tasks. The method exploits a striking analogy between learning and consistency-based diagnosis. Moriarty, an implementation of DML, has been applied to thermal modeling of a smart building, demonstrating a significant improvement in learning rate.

  15. Thermally adapted design strategy of colonial houses in Surabaya

    NASA Astrophysics Data System (ADS)

    Antaryama, I. G. N.; Ekasiwi, S. N. N.; Mappajaya, A.; Ulum, M. S.

    2018-03-01

    Colonial buildings, including houses, have been considered as a representation of climate-responsive architecture. The design was thought to be a hybrid model of Dutch and tropical architecture. It was created by way of reinventing tropical and Dutch architecture design principles, and expressed in a new form, i.e. neither resembling Dutch nor tropical building. Aside from this new image, colonial house does show good climatic responses. Previous researches on colonial house generally focus on qualitative assessment of climate performance of the building. Yet this kind of study tends to concentrate on building elements, e.g. wall, window, etc. The present study is designed to give more complete picture of architecture design strategy of the house by exploring and analysing thermal performance of colonial buildings and their related architecture design strategies. Field measurements are conducted during the dry season in several colonial building in Surabaya. Air temperature and humidity are both taken, representing internal and external thermal conditions of the building. These data are then evaluated to determine thermal performance of the house. Finally, various design strategies are examined in order to reveal their significant contributions to its thermal performance. Results of the study in Surabaya confirm findings of the previous researches that are conducted in other locations, which stated that thermal performance of the house is generally good. Passive design strategies such as mass effect and ventilation play an important role in determining performance of the building.

  16. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less

  17. Performance analysis of phase-change material storage unit for both heating and cooling of buildings

    NASA Astrophysics Data System (ADS)

    Waqas, Adeel; Ali, Majid; Ud Din, Zia

    2017-04-01

    Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ∼29°C in summer and 21°C during winter season. The appropriate melting point was ∼27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.

  18. Selecting a Control Strategy for Plug and Process Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobato, C.; Sheppy, M.; Brackney, L.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less

  19. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  20. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

Top