1980-05-01
engineering ,ZteNo D R RPTE16 research w 9 laboratory COMPARISON OF BUILDING LOADS ANALYSIS AND SYSTEM THERMODYNAMICS (BLAST) AD 0 5 5,0 3COMPUTER PROGRAM...Building Loads Analysis and System Thermodynamics (BLAST) computer program. A dental clinic and a battalion headquarters and classroom building were...Building and HVAC System Data Computer Simulation Comparison of Actual and Simulated Results ANALYSIS AND FINDINGS
Structural analysis for a 40-story building
NASA Technical Reports Server (NTRS)
Hua, L.
1972-01-01
NASTRAN was chosen as the principal analytical tool for structural analysis of the Illinois Center Plaza Hotel Building in Chicago, Illinois. The building is a 40-story, reinforced concrete structure utilizing a monolithic slab-column system. The displacements, member stresses, and foundation loads due to wind load, live load, and dead load were obtained through a series of NASTRAN runs. These analyses and the input technique are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.
1979-06-01
The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less
Simulation of probabilistic wind loads and building analysis
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Chamis, Christos C.
1991-01-01
Probabilistic wind loads likely to occur on a structure during its design life are predicted. Described here is a suitable multifactor interactive equation (MFIE) model and its use in the Composite Load Spectra (CLS) computer program to simulate the wind pressure cumulative distribution functions on four sides of a building. The simulated probabilistic wind pressure load was applied to a building frame, and cumulative distribution functions of sway displacements and reliability against overturning were obtained using NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), a stochastic finite element computer code. The geometry of the building and the properties of building members were also considered as random in the NESSUS analysis. The uncertainties of wind pressure, building geometry, and member section property were qualified in terms of their respective sensitivities on the structural response.
Static and Dynamic Analysis in Design of Exoskeleton Structure
NASA Astrophysics Data System (ADS)
Ivánkova, Ol'ga; Méri, Dávid; Vojteková, Eva
2017-10-01
This paper introduces a numerical experiment of creating the load bearing system of a high rise building. When designing the high-rise building, it is always an important task to find the right proportion between the height of the building and its perceptive width from the various angles of street view. Investigated high rise building in this article was designed according to these criteria. The load bearing structure of the analysed object consists of a reinforced core, plates and steel tubes of an exoskeleton. Eight models of the building were created using the spatial variant of FEM in Scia Engineer Software. Individual models varied in number and dimensions of diagrids in the exoskeleton. In the models, loadings due to the own weight, weight of external glass cladding, and due to the wind according to the Standard, have been considered. The building was loaded by wind load from all four main directions with respect to its shape. Wind load was calculated using the 3D wind generator, which is a part of the Scia Engineer Software. For each model the static analysis was performed. Its most important criterion was the maximum or minimum horizontal displacement (rotation) of the highest point of the building. This displacement was compared with the limit values of the displacement of the analysed high-rise building. By step-by-step adding diagrids and optimizing their dimensions the building model was obtained that complied with the criteria of the Limit Serviceability State. The last model building was assessed also for the Ultimate Limit State. This model was loaded also by seismic loads for comparison with the load due to the wind.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olama, Mohammed M; Sharma, Isha; Kuruganti, Teja
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis ofmore » building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.« less
NECAP 4.1: NASA's Energy-Cost Analysis Program input manual
NASA Technical Reports Server (NTRS)
Jensen, R. N.
1982-01-01
The computer program NECAP (NASA's Energy Cost Analysis Program) is described. The program is a versatile building design and energy analysis tool which has embodied within it state of the art techniques for performing thermal load calculations and energy use predictions. With the program, comparisons of building designs and operational alternatives for new or existing buildings can be made. The major feature of the program is the response factor technique for calculating the heat transfer through the building surfaces which accounts for the building's mass. The program expands the response factor technique into a space response factor to account for internal building temperature swings; this is extremely important in determining true building loads and energy consumption when internal temperatures are allowed to swing.
Electric load shape benchmarking for small- and medium-sized commercial buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xuan; Hong, Tianzhen; Chen, Yixing
Small- and medium-sized commercial buildings owners and utility managers often look for opportunities for energy cost savings through energy efficiency and energy waste minimization. However, they currently lack easy access to low-cost tools that help interpret the massive amount of data needed to improve understanding of their energy use behaviors. Benchmarking is one of the techniques used in energy audits to identify which buildings are priorities for an energy analysis. Traditional energy performance indicators, such as the energy use intensity (annual energy per unit of floor area), consider only the total annual energy consumption, lacking consideration of the fluctuation ofmore » energy use behavior over time, which reveals the time of use information and represents distinct energy use behaviors during different time spans. To fill the gap, this study developed a general statistical method using 24-hour electric load shape benchmarking to compare a building or business/tenant space against peers. Specifically, the study developed new forms of benchmarking metrics and data analysis methods to infer the energy performance of a building based on its load shape. We first performed a data experiment with collected smart meter data using over 2,000 small- and medium-sized businesses in California. We then conducted a cluster analysis of the source data, and determined and interpreted the load shape features and parameters with peer group analysis. Finally, we implemented the load shape benchmarking feature in an open-access web-based toolkit (the Commercial Building Energy Saver) to provide straightforward and practical recommendations to users. The analysis techniques were generic and flexible for future datasets of other building types and in other utility territories.« less
Electric load shape benchmarking for small- and medium-sized commercial buildings
Luo, Xuan; Hong, Tianzhen; Chen, Yixing; ...
2017-07-28
Small- and medium-sized commercial buildings owners and utility managers often look for opportunities for energy cost savings through energy efficiency and energy waste minimization. However, they currently lack easy access to low-cost tools that help interpret the massive amount of data needed to improve understanding of their energy use behaviors. Benchmarking is one of the techniques used in energy audits to identify which buildings are priorities for an energy analysis. Traditional energy performance indicators, such as the energy use intensity (annual energy per unit of floor area), consider only the total annual energy consumption, lacking consideration of the fluctuation ofmore » energy use behavior over time, which reveals the time of use information and represents distinct energy use behaviors during different time spans. To fill the gap, this study developed a general statistical method using 24-hour electric load shape benchmarking to compare a building or business/tenant space against peers. Specifically, the study developed new forms of benchmarking metrics and data analysis methods to infer the energy performance of a building based on its load shape. We first performed a data experiment with collected smart meter data using over 2,000 small- and medium-sized businesses in California. We then conducted a cluster analysis of the source data, and determined and interpreted the load shape features and parameters with peer group analysis. Finally, we implemented the load shape benchmarking feature in an open-access web-based toolkit (the Commercial Building Energy Saver) to provide straightforward and practical recommendations to users. The analysis techniques were generic and flexible for future datasets of other building types and in other utility territories.« less
Energy Integrated Lighting-Heating-Cooling System.
ERIC Educational Resources Information Center
Meckler, Gershon; And Others
1964-01-01
Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish
2014-08-01
The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis ismore » based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.« less
Thermal dynamic simulation of wall for building energy efficiency under varied climate environment
NASA Astrophysics Data System (ADS)
Wang, Xuejin; Zhang, Yujin; Hong, Jing
2017-08-01
Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.
Modeling and Analysis of Commercial Building Electrical Loads for Demand Side Management
NASA Astrophysics Data System (ADS)
Berardino, Jonathan
In recent years there has been a push in the electric power industry for more customer involvement in the electricity markets. Traditionally the end user has played a passive role in the planning and operation of the power grid. However, many energy markets have begun opening up opportunities to consumers who wish to commit a certain amount of their electrical load under various demand side management programs. The potential benefits of more demand participation include reduced operating costs and new revenue opportunities for the consumer, as well as more reliable and secure operations for the utilities. The management of these load resources creates challenges and opportunities to the end user that were not present in previous market structures. This work examines the behavior of commercial-type building electrical loads and their capacity for supporting demand side management actions. This work is motivated by the need for accurate and dynamic tools to aid in the advancement of demand side operations. A dynamic load model is proposed for capturing the response of controllable building loads. Building-specific load forecasting techniques are developed, with particular focus paid to the integration of building management system (BMS) information. These approaches are tested using Drexel University building data. The application of building-specific load forecasts and dynamic load modeling to the optimal scheduling of multi-building systems in the energy market is proposed. Sources of potential load uncertainty are introduced in the proposed energy management problem formulation in order to investigate the impact on the resulting load schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, B. D.; Diamond, S. C.; Bennett, G. A.
1977-10-01
A set of computer programs, called Cal-ERDA, is described that is capable of rapid and detailed analysis of energy consumption in buildings. A new user-oriented input language, named the Building Design Language (BDL), has been written to allow simplified manipulation of the many variables used to describe a building and its operation. This manual provides the user with information necessary to understand in detail the Cal-ERDA set of computer programs. The new computer programs described include: an EXECUTIVE Processor to create computer system control commands; a BDL Processor to analyze input instructions, execute computer system control commands, perform assignments andmore » data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; a LOADS analysis program that calculates peak (design) zone and hourly loads and the effect of the ambient weather conditions, the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; a Heating, Ventilating, and Air-Conditioning (HVAC) SYSTEMS analysis program capable of modeling the operation of HVAC components including fans, coils, economizers, humidifiers, etc.; 16 standard configurations and operated according to various temperature and humidity control schedules. A plant equipment program models the operation of boilers, chillers, electrical generation equipment (diesel or turbines), heat storage apparatus (chilled or heated water), and solar heating and/or cooling systems. An ECONOMIC analysis program calculates life-cycle costs. A REPORT program produces tables of user-selected variables and arranges them according to user-specified formats. A set of WEATHER ANALYSIS programs manipulates, summarizes and plots weather data. Libraries of weather data, schedule data, and building data were prepared.« less
Shear-lag effect and its effect on the design of high-rise buildings
NASA Astrophysics Data System (ADS)
Thanh Dat, Bui; Traykov, Alexander; Traykova, Marina
2018-03-01
For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.
Structural pounding of concrete frame structure with masonry infill wall under seismic loading
NASA Astrophysics Data System (ADS)
Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis
2017-10-01
Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.
Code of Federal Regulations, 2010 CFR
2010-01-01
... systems, building load simulation models, statistical regression analysis, or some combination of these..., excluding any cogeneration process for other than a federally owned building or buildings or other federally...
Stress-strain state of the structure in the service area of underground railway
NASA Astrophysics Data System (ADS)
Barabash, M.; Bashinsky, Y.; Korjakins, A.
2017-10-01
The paper focuses on numerical study how vibration due to underground trains influences the load-bearing building structures. Diagrams of vibration levels for monolithic floor slab depending on frequency are obtained. Levels of vibrations on floor slabs and columns are measured. The simulation of dynamic load from underground railway onto load-bearing building structures is presented as an example with account of load transmission through the soil. Recommendations for generation of design model in dynamic analysis of structure are provided.
Study of fuel cell on-site, integrated energy systems in residential/commercial applications
NASA Technical Reports Server (NTRS)
Wakefield, R. A.; Karamchetty, S.; Rand, R. H.; Ku, W. S.; Tekumalla, V.
1980-01-01
Three building applications were selected for a detailed study: a low rise apartment building; a retail store, and a hospital. Building design data were then specified for each application, based on the design and construction of typical, actual buildings. Finally, a computerized building loads analysis program was used to estimate hourly end use load profiles for each building. Conventional and fuel cell based energy systems were designed and simulated for each building in each location. Based on the results of a computer simulation of each energy system, levelized annual costs and annual energy consumptions were calculated for all systems.
Mitigating shear lag in tall buildings
NASA Astrophysics Data System (ADS)
Gaur, Himanshu; Goliya, Ravindra K.
2015-09-01
As the height of building increases, effect of shear lag also becomes considerable in the design of high-rise buildings. In this paper, shear lag effect in tall buildings of heights, i.e., 120, 96, 72, 48 and 36 stories of which aspect ratio ranges from 3 to 10 is studied. Tube-in-tube structural system with façade bracing is used for designing the building of height 120 story. It is found that bracing system considerably reduces the shear lag effect and hence increases the building stiffness to withstand lateral loads. Different geometric patterns of bracing system are considered. The best effective geometric configuration of bracing system is concluded in this study. Lateral force, as wind load is applied on the buildings as it is the most dominating lateral force for such heights. Wind load is set as per Indian standard code of practice IS 875 Part-3. For analysis purpose SAP 2000 software program is used.
Interior moisture design loads for residences
Anton TenWolde; Iain S. Walker
2001-01-01
This paper outlines a methodology to obtain design values for indoor boundary conditions for moisture design calculations for residences. This is part of a larger effort by ASHRAE Standard Project Committee 160P, Design Criteria for Moisture Control in Buildings, to formulate criteria for moisture design loads, analysis techniques, and material and building performance...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-09-01
This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit.more » Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.« less
Performance evaluation of existing building structure with pushover analysis
NASA Astrophysics Data System (ADS)
Handana, MAP; Karolina, R.; Steven
2018-02-01
In the management of the infrastructure of the building, during the period of buildings common building damage as a result of several reasons, earthquakes are common. The building is planned to work for a certain service life. But during the certain service life, the building vulnerable to damage due to various things. Any damage to cultivate can be detected as early as possible, because the damage could spread, triggering and exacerbating the latest. The newest concept to earthquake engineering is Performance Based Earthquake Engineering (PBEE). PBEE divided into two, namely Performance Based Seismic Design (PBSD) and Performance Based Seismic Evaluation (PBSE). Evaluation on PBSE one of which is the analysis of nonlinear pushover. Pushover analysis is a static analysis of nonlinear where the influence of the earthquake plan on building structure is considered as burdens static catch at the center of mass of each floor, which it was increased gradually until the loading causing the melting (plastic hinge) first within the building structure, then the load increases further changes the shapes of post-elastic large it reached the condition of elastic. Then followed melting (plastic hinge) in the location of the other structured.
Recovery Act. Advanced Load Identification and Management for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Casey, Patrick; Du, Liang
2014-02-12
In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the buildingmore » sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.« less
1981-03-01
AD-A B99 054 CONSTRUCTION EN INEERIN RESEARCH LAB (ARMY) CHAMPAIGN IL F/ 9/2 BUILDING LOADS ANALYSIS AND SYSTEM THERMOD NAMICS (BLAST) PROGR...continued. systems , (11) induction unit systems , (12) direct-drive chillers, and (13) purchased steam from utilities. BLAST Version 3.0 also offers the user...their BLAST input. II UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGEftin Date Rnerod) FOREWORD This report was prepared for the Air Force Systems
Analysis and Representation of Miscellaneous Electric Loads in NEMS
2017-01-01
Miscellaneous Electric Loads (MELs) comprise a growing portion of delivered energy consumption in residential and commercial buildings. Miscellaneous end uses—including televisions, personal computers, security systems, data center servers, and many other devices—have continued to penetrate into building-related market segments. Part of this proliferation of devices and equipment can be attributed to increased service demand for entertainment, computing, and convenience appliances.
Samuel V. Glass; Stanley D. Gatland II; Kohta Ueno; Christopher J. Schumacher
2017-01-01
ASHRAE Standard 160, Criteria for Moisture-Control Design Analysis in Buildings, was published in 2009. The standard sets criteria for moisture design loads, hygrothermal analysis methods, and satisfactory moisture performance of the building envelope. One of the evaluation criteria specifies conditions necessary to avoid mold growth. The current standard requires that...
Plug and Process Loads Capacity and Power Requirements Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppy, M.; Gentile-Polese, L.
2014-09-01
This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus ofmore » this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.« less
Comparison of analytical methods for calculation of wind loads
NASA Technical Reports Server (NTRS)
Minderman, Donald J.; Schultz, Larry L.
1989-01-01
The following analysis is a comparison of analytical methods for calculation of wind load pressures. The analytical methods specified in ASCE Paper No. 3269, ANSI A58.1-1982, the Standard Building Code, and the Uniform Building Code were analyzed using various hurricane speeds to determine the differences in the calculated results. The winds used for the analysis ranged from 100 mph to 125 mph and applied inland from the shoreline of a large open body of water (i.e., an enormous lake or the ocean) a distance of 1500 feet or ten times the height of the building or structure considered. For a building or structure less than or equal to 250 feet in height acted upon by a wind greater than or equal to 115 mph, it was determined that the method specified in ANSI A58.1-1982 calculates a larger wind load pressure than the other methods. For a building or structure between 250 feet and 500 feet tall acted upon by a wind rangind from 100 mph to 110 mph, there is no clear choice of which method to use; for these cases, factors that must be considered are the steady-state or peak wind velocity, the geographic location, the distance from a large open body of water, and the expected design life and its risk factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazloom, M.
2008-07-08
The idea of safe room has been developed for decreasing the earthquake casualties in masonry buildings. The information obtained from the previous ground motions occurring in seismic zones expresses the lack of enough safety of these buildings against earthquakes. For this reason, an attempt has been made to create some safe areas inside the existing masonry buildings, which are called safe rooms. The practical method for making these safe areas is to install some prefabricated steel frames in some parts of the existing structure. These frames do not carry any service loads before an earthquake. However, if a devastating earthquakemore » happens and the load bearing walls of the building are destroyed, some parts of the floors, which are in the safe areas, will fall on the roof of the installed frames and the occupants who have sheltered there will survive. This paper presents the performance of these frames located in a destroying three storey masonry building with favorable conclusions. In fact, the experimental pushover diagram of the safe room located at the ground-floor level of this building is compared with the analytical results and it is concluded that pushover analysis is a good method for seismic performance evaluation of safe rooms. For time history analysis the 1940 El Centro, the 2003 Bam, and the 1990 Manjil earthquake records with the maximum peak accelerations of 0.35g were utilized. Also the design spectrum of Iranian Standard No. 2800-05 for the ground kind 2 is used for response spectrum analysis. The results of time history, response spectrum and pushover analyses show that the strength and displacement capacity of the steel frames are adequate to accommodate the distortions generated by seismic loads and aftershocks properly.« less
NASA Astrophysics Data System (ADS)
Afifuddin, M.; Panjaitan, M. A. R.; Ayuna, D.
2017-02-01
Earthquakes are one of the most dangerous, destructive and unpredictable natural hazards, which can leave everything up to a few hundred kilometres in complete destruction in seconds. Indonesia has a unique position as an earthquake prone country. It is the place of the interaction for three tectonic plates, namely the Indo-Australian, Eurasian and Pacific plates. Banda Aceh is one of the cities that located in earthquake-prone areas. Due to the vulnerable conditions of Banda Aceh some efforts have been exerted to reduce these unfavourable conditions. Many aspects have been addressed, starting from community awareness up to engineering solutions. One of them is all buildings that build in the city should be designed as an earthquake resistant building. The objectives of this research are to observe the response of a reinforced concrete structure due to several types of earthquake load, and to see the performance of the structure after earthquake loads applied. After Tsunami in 2004 many building has been build, one of them is a hotel building located at simpang lima. The hotel is made of reinforced concrete with a height of 34.95 meters with a total area of 8872.5 m2 building. So far this building was the tallest building in Banda Aceh.
A case study on the structural assessment of fire damaged building
NASA Astrophysics Data System (ADS)
Osman, M. H.; Sarbini, N. N.; Ibrahim, I. S.; Ma, C. K.; Ismail, M.; Mohd, M. F.
2017-11-01
This paper presents a case study on the structural assessment of building damaged by fire and discussed on the site investigations and test results prior to determine the existing condition of the building. The building was on fire for about one hour before it was extinguished. In order to ascertain the integrity of the building, a visual inspection was conducted for all elements (truss, beam, column and wall), followed by non-destructive, load and material tests. The load test was conducted to determine the ability of truss to resist service load, while the material test to determine the residual strength of the material. At the end of the investigation, a structural analysis was carried out to determine the new factor of safety by considering the residual strength. The highlighted was on the truss element due to steel behaviour that is hardly been predicted. Meanwhile, reinforced concrete elements (beam, column and wall) were found externally affected and caused its strength to be considered as sufficient for further used of building. The new factor of safety is equal to 2, considered as the minimum calculated value for the truss member. Therefore, this fire damaged building was found safe and can be used for further application.
Numerical Modelling of Connections Between Stones in Foundations of Historical Buildings
NASA Astrophysics Data System (ADS)
Przewlocki, Jaroslaw; Zielinska, Monika; Grebowski, Karol
2017-12-01
The aim of this paper is to analyse the behaviour of old building foundations composed of stones (the main load-bearing elements) and mortar, based on numerical analysis. Some basic aspects of historical foundations are briefly discussed, with an emphasis on their development, techniques, and material. The behaviour of a foundation subjected to the loads transmitted from the upper parts of the structure is described using the finite element method (FEM). The main problems in analysing the foundations of historical buildings are determining the characteristics of the materials and the degree of degradation of the mortar, which is the weakest part of the foundation. Mortar is graded using the damaged-plastic model. In this model, exceeding the bearing capacity occurs due to the degradation of materials. The damaged-plastic model is the most accurate model describing the work and properties of mortar because it shows exactly what happens with this material throughout its total load history. For a uniformly loaded fragment of the foundation, both stresses and strains were analysed. The results of the analysis presented in this paper contribute to further research in the field of understanding both behaviour and modelling in historical buildings’ foundations.
Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul; Bonnema, Eric; Sheppy, Michael
2015-09-01
Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.
VOLATILE ORGANIC CHEMICALS IN 10 PUBLIC-ACCESS BUILDINGS
The U.S. EPA carried out studies of indoor air quality in 10 buildings. Qualitative analysis identified over 200 aromatics, halogens, esters, alcohols, phenols, ethers, ketones, aldehydes, and epoxides, in addition to several hundred aliphatic hydrocarbons. The total organic load...
1980-08-01
orientation, and HVAC systems have on three Army buildings in five different climatic regions. f Optimization of EnerV Usage in Military Facilities...The clinic’s environment is maintained by a multizone air-handling unit served by its own boiler and chiller . The building was modeled with 30... setpoints for the space temperature. This type of throttling range allows the heating system to control around a throttling range of 67 to 69oF (19 to 200
ERIC Educational Resources Information Center
Petherbridge, P.
Formulas used in the calculation of cooling loads and indoor temperatures are employed to demonstrate the influence of various building parameters--such as thermal transmittance (U-value), solar absorptivity, and thermal storage--on the indoor thermal environment. The analysis leads to guidance on ways of limiting temperatures in naturally…
Seismic Performance Evaluation of Reinforced Concrete Frames Subjected to Seismic Loads
NASA Astrophysics Data System (ADS)
Zameeruddin, Mohd.; Sangle, Keshav K.
2017-06-01
Ten storied-3 bays reinforced concrete bare frame designed for gravity loads following the guidelines of IS 456 and IS 13920 for ductility is subjected to seismic loads. The seismic demands on this building were calculated by following IS 1893 for response spectra of 5% damping (for hard soil type). Plastic hinges were assigned to the beam and column at both ends to represent the failure mode, when member yields. Non-linear static (pushover) analysis was performed to evaluate the performance of the building in reference to first (ATC 40), second (FEMA 356) and next-generation (FEMA 440) performance based seismic design procedures. Base shear against top displacement curve of structure, known as pushover curve was obtained for two actions of plastic hinge behavior, force-controlled (brittle) and deformation-controlled (ductile) actions. Lateral deformation corresponding to performance point proves the building capability to sustain a certain level of seismic loads. The failure is represented by a sequence of formation of plastic hinges. Deformation-controlled action of hinges showed that building behaves like strong-column-weak-beam mechanism, whereas force-controlled action showed formation of hinges in the column. The study aims to understand the first, second and next generation performance based design procedure in prediction of actual building responses and their conservatism into the acceptance criteria.
Experimental study on lateral strength of wall-slab joint subjected to lateral cyclic load
NASA Astrophysics Data System (ADS)
Masrom, Mohd Asha'ari; Mohamad, Mohd Elfie; Hamid, Nor Hayati Abdul; Yusuff, Amer
2017-10-01
Tunnel form building has been utilised in building construction since 1960 in Malaysia. This method of construction has been applied extensively in the construction of high rise residential house (multistory building) such as condominium and apartment. Most of the tunnel form buildings have been designed according to British standard (BS) whereby there is no provision for seismic loading. The high-rise tunnel form buildings are vulnerable to seismic loading. The connections between slab and shear walls in the tunnel-form building constitute an essential link in the lateral load resisting mechanism. Malaysia is undergoing a shifting process from BS code to Eurocode (EC) for building construction since the country has realised the safety threats of earthquake. Hence, this study is intended to compare the performance of the interior wall slab joint for a tunnel form structure designed based on Euro and British codes. The experiment included a full scale test of the wall slab joint sub-assemblages under reversible lateral cyclic loading. Two sub-assemblage specimens of the wall slab joint were designed and constructed based on both codes. Each specimen was tested using lateral displacement control (drift control). The specimen designed by using Eurocode was found could survive up to 3.0% drift while BS specimen could last to 1.5% drift. The analysis results indicated that the BS specimen was governed by brittle failure modes with Ductility Class Low (DCL) while the EC specimen behaved in a ductile manner with Ductility Class Medium (DCM). The low ductility recorded in BS specimen was resulted from insufficient reinforcement provided in the BS code specimen. Consequently, the BS specimen could not absorb energy efficiently (low energy dissipation) and further sustain under inelastic deformation.
Wind/seismic comparisons for upgrading existing structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giller, R.A.
1989-10-01
This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluatedmore » for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations. 4 refs., 5 figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schetrit, Oren; Kim, Joyce; Yin, Rongxin
2014-08-01
Automated demand response (Auto-DR) is expected to close the loop between buildings and the grid by providing machine-to-machine communications to curtail loads without the need for human intervention. Hence, it can offer more reliable and repeatable demand response results to the grid than the manual approach and make demand response participation a hassle-free experience for customers. However, many building operators misunderstand Auto-DR and are afraid of losing control over their building operation. To ease the transition from manual to Auto-DR, we designed and implemented granular control of Auto-DR systems so that building operators could modify or opt out of individualmore » load-shed strategies whenever they wanted. This paper reports the research findings from this effort demonstrated through a field study in large commercial buildings located in New York City. We focused on (1) understanding how providing granular control affects building operators’ perspective on Auto-DR, and (2) evaluating the usefulness of granular control by examining their interaction with the Auto-DR user interface during test events. Through trend log analysis, interviews, and surveys, we found that: (1) the opt-out capability during Auto-DR events can remove the feeling of being forced into load curtailments and increase their willingness to adopt Auto-DR; (2) being able to modify individual load-shed strategies allows flexible Auto-DR participation that meets the building’s changing operational requirements; (3) a clear display of automation strategies helps building operators easily identify how Auto-DR is functioning and can build trust in Auto-DR systems.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... serve the load. Eligible borrower means a utility system that has direct or indirect responsibility for... analysis of energy flows in a building, process, or system with the goal of identifying opportunities to... output. HVAC means heating, ventilation, and air conditioning. Load means the Power delivered to power...
45. BUILDING NO. 462, CHEMISTRY LAB (FORMERLY TRACER LOADING BUILDING), ...
45. BUILDING NO. 462, CHEMISTRY LAB (FORMERLY TRACER LOADING BUILDING), VIEW LOOKING SOUTHEAST AT WEST SIDE. BUILDING NO. 462-B, GENERAL PURPOSE MAGAZINE, AT LEFT. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Effects of Cognitive Load on Trust
2013-10-01
that may be affected by load Build a parsing tool to extract relevant features Statistical analysis of results (by load components) Achieved...for a business application. Participants assessed potential job candidates and reviewed the applicants’ virtual resume which included standard...substantially different from each other that would make any confounding problems or other issues. Some statistics of the Australian data collection are
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Liu, Guopeng; Huang, Sen
Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivationmore » and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate variable generation sources. The flexible loads can successfully track a power dispatch signal from the coordinator, while having little impact on the quality of service to the end-users.« less
Seismic Behaviour of Masonry Vault-Slab Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco
2008-07-08
Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presentedmore » and the structural role resulting for the spandrels is discussed.« less
Effects of internal gain assumptions in building energy calculations
NASA Astrophysics Data System (ADS)
Christensen, C.; Perkins, R.
1981-01-01
The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multifamily-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.
Chen, Bei-Bei; Gong, Hui-Li; Li, Xiao-Juan; Lei, Kun-Chao; Lin, Zhu; Wang, Yan-Bing
2013-08-01
The excessive mining for underground water is the main reason inducing the land subsidence in Beijing, while, increasing of load brought by the urban construction aggravate the local land subsidence in a certain degree. As an international metropolis, the problems of land subsidence that caused by urban construction are becoming increasingly highlights, so revealing the relationship between regional load increase and the response of land subsidence also becomes one of the key problems in the land subsidence research field. In order to analyze the relationship between the load changes in construction and the land subsidence quantitatively, the present study selected the TM remote sensing image covering Beijing plain and used Erdas Modeler tool to invert the index based on building site (IBI), acquired the spatial and temporal change information in research area further; Based on results monitored by PS-InSAR (permanent scatterer interferometry) and IBI index method, and combined with the GIS spatial analysis method in the view of pixels in different scales, this paper analyzes the correlation between typical area load change and land subsidence, The conclusions show that there is a positive correlation between the density of load and the homogeneity of subsidence, especially in area which has a high sedimentation rate. Owing to such characteristics as the complexity and hysteretic nature of soil and geological structure, it is not obvious that the land subsidence caused by the increase of load in a short period. But with the increasing of local land load made by high density buildings and additional settlement of each monomer building superposed with each other, regional land subsidence is still a question that cannot be ignored and needs long-term systematic research and discussion.
Estimation of Gust Response Factor for a Tall Building Model with 1:1.5 Plan Ratios
NASA Astrophysics Data System (ADS)
Sarath Kumar, H.; Selvi Rajan, S.
2017-08-01
The purpose of structural analysis and design of structures as per the building codes and its corresponding standers is to ensure the safety of structure under maximum loads and remains functional under service load. The structure which is designed under consideration of codes should also satisfy the durability, economy and aesthetics. The primary purpose of this work is to understand and compare design wind loads according with the Gust Response Factor as per codes of practices. The paper is concerned with the calculation of design wind loads on a rectangular building model (1:300gemetric scale) of size 10cm x 15cm x 70cm with an aspect ratio of 1:1.5:7 at eight different levels over the height under sub-urban terrain category for 00 angle and 900 angle wind incidence. The experiment id conducted in an atmospheric boundary layer wind tunnel facility of CSIR-Structural engineering Research centre, Chennai. The measured pressures are integrated to evaluate mean and RMS (Root, Mean, Square). Further the variation of above mentioned loads and response factor along the heights of the building with respect to sub-urban terrain condition are discussed and summarized in addition, the codal values of various international standards [IS-875 part-3 1987, IS-875 part-3 draft, ASCE-07] have also considered for comparison.
REVIEW OF THE STABILITY ANALYSIS FOR THE LANL BSL-3 BUILDING FOUNDATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuze, F E; Wagoner, J L
2006-11-30
This work was performed upon request from Dr. Richard Thorpe from NNSA after his review of the LANL report on BSL-3 seismic stability [1]. The authors also reviewed report [1] and concluded, as did Dr. Thorpe, that the stability analysis was inappropriate. There are several reasons for that conclusion: (1) the assumption of a circular failure surface through the combined fill-and-rock foundation does not recognize the geologic structure involved. (2) the assumption of an equivalent static force to an earthquake loading does not represent the multiple cycles of shear loads created by a seismic event that can engender a substantialmore » degradation of shear modulus and shear strength of the soil under the building [2]. (3) there was no credible in-situ strength of the foundation materials (fill and rock mass) available for input into the stability analysis. Following that review, on September 26 the authors made a site visit and held discussions with LANL personnel connected to the BSL-3 building project. No information or evidence was presented to the authors indicating that the static stability of BSL-3 could be an issue. Accordingly, this report focuses on the topic of the BSL-3 site stability under seismic loading.« less
Daylighting performance and thermal implications of skylights vs. south-facing roof monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, M.; Coldham, B.
1997-12-31
This paper reports the results of a comparison of skylights vs. south-facing roof monitors for daylighting the north wall zone of a 10,000 ft{sup 2} office building near Manchester, NH. A physical model was constructed and tested. Simultaneously, the building`s annual thermal performance was modeled with Energy-10 hourly simulation software, and its peak heating and cooling load performance was modeled with the Carrier Corp. Hourly Analysis Program (HAP). Apertures were built into the roof of the model, and several skylight and south-facing roof monitor configurations were tested in both clear and overcast conditions. A design goal was to have themore » building be daylit on overcast as well as clear days. This goal was based more on enhancement of the working environment than it was on electrical energy savings. Monitors with overhangs performed poorly in the overcast conditions--it was determined that 2.4 times as much monitor aperture was needed to yield equivalent light levels in overcast conditions. The thermal models showed that the annual heating and cooling energy cost for the building was the same for either strategy, but that peak cooling loads and peak heating loads were lower with the skylit version. The authors concluded that skylights were preferred over monitors in this application, due to similar annual energy costs, lower peak loads, and lower construction cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C. Keith; Shen, Bo; Shrestha, Som S.
This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirementmore » (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).« less
Continuation Power Flow Analysis for PV Integration Studies at Distribution Feeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiyu; Zhu, Xiangqi; Lubkeman, David L.
2017-10-30
This paper presents a method for conducting continuation power flow simulation on high-solar penetration distribution feeders. A load disaggregation method is developed to disaggregate the daily feeder load profiles collected in substations down to each load node, where the electricity consumption of residential houses and commercial buildings are modeled using actual data collected from single family houses and commercial buildings. This allows the modeling of power flow and voltage profile along a distribution feeder on a continuing fashion for a 24- hour period at minute-by-minute resolution. By separating the feeder into load zones based on the distance between the loadmore » node and the feeder head, we studied the impact of PV penetration on distribution grid operation in different seasons and under different weather conditions for different PV placements.« less
NASA Astrophysics Data System (ADS)
Breen, M.; O'Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.
2016-03-01
The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.
NASA Astrophysics Data System (ADS)
Huang, Yin-Nan
Nuclear power plants (NPPs) and spent nuclear fuel (SNF) are required by code and regulations to be designed for a family of extreme events, including very rare earthquake shaking, loss of coolant accidents, and tornado-borne missile impacts. Blast loading due to malevolent attack became a design consideration for NPPs and SNF after the terrorist attacks of September 11, 2001. The studies presented in this dissertation assess the performance of sample conventional and base isolated NPP reactor buildings subjected to seismic effects and blast loadings. The response of the sample reactor building to tornado-borne missile impacts and internal events (e.g., loss of coolant accidents) will not change if the building is base isolated and so these hazards were not considered. The sample NPP reactor building studied in this dissertation is composed of containment and internal structures with a total weight of approximately 75,000 tons. Four configurations of the reactor building are studied, including one conventional fixed-base reactor building and three base-isolated reactor buildings using Friction Pendulum(TM), lead rubber and low damping rubber bearings. The seismic assessment of the sample reactor building is performed using a new procedure proposed in this dissertation that builds on the methodology presented in the draft ATC-58 Guidelines and the widely used Zion method, which uses fragility curves defined in terms of ground-motion parameters for NPP seismic probabilistic risk assessment. The new procedure improves the Zion method by using fragility curves that are defined in terms of structural response parameters since damage and failure of NPP components are more closely tied to structural response parameters than to ground motion parameters. Alternate ground motion scaling methods are studied to help establish an optimal procedure for scaling ground motions for the purpose of seismic performance assessment. The proposed performance assessment procedure is used to evaluate the vulnerability of the conventional and base-isolated NPP reactor buildings. The seismic performance assessment confirms the utility of seismic isolation at reducing spectral demands on secondary systems. Procedures to reduce the construction cost of secondary systems in isolated reactor buildings are presented. A blast assessment of the sample reactor building is performed for an assumed threat of 2000 kg of TNT explosive detonated on the surface with a closest distance to the reactor building of 10 m. The air and ground shock waves produced by the design threat are generated and used for performance assessment. The air blast loading to the sample reactor building is computed using a Computational Fluid Dynamics code Air3D and the ground shock time series is generated using an attenuation model for soil/rock response. Response-history analysis of the sample conventional and base isolated reactor buildings to external blast loadings is performed using the hydrocode LS-DYNA. The spectral demands on the secondary systems in the isolated reactor building due to air blast loading are greater than those for the conventional reactor building but much smaller than those spectral demands associated with Safe Shutdown Earthquake shaking. The isolators are extremely effective at filtering out high acceleration, high frequency ground shock loading.
10. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
10. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), LOOKING AT SOUTHEAST CORNER. BUILDING NO. 332, CHANGE HOUSE, IN RIGHT BACKGROUND; BUILDING NO. 445-F, MAGAZINE, IN LEFT BACKGROUND. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Analysis of an Irregular RC Multi-storeyed Building Subjected to Dynamic Loading
NASA Astrophysics Data System (ADS)
AkashRaut; Pachpor, Prabodh; Dautkhani, Sanket
2018-03-01
Many buildings in the present scenario have irregular configurations both in plan and elevation. This in future may subject to devastating earthquakes. So it is necessary to analyze the structure. The present paper is made to study three type of irregularity wiz vertical, mass and plan irregularity as per clause 7.1 of IS 1893 (part1)2002 code. The paper discusses the analysis of RC (Reinforced Concrete) Buildings with vertical irregularity. The study as a whole makes an effort to evaluate the effect of vertical irregularity on RC buildings for which comparison of three parameters namely shear force, bending moment and deflection are taken into account.
Termites utilise clay to build structural supports and so increase foraging resources.
Oberst, Sebastian; Lai, Joseph C S; Evans, Theodore A
2016-02-08
Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites.
13. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
13. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), VIEW NORTH AT SOUTH END OF BUILDING. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Comfort air temperature influence on heating and cooling loads of a residential building
NASA Astrophysics Data System (ADS)
Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.
2016-08-01
The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jon; Booten, Chuck
Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity.more » The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.« less
Economic analysis of solar assisted absorption chiller for a commercial building
NASA Astrophysics Data System (ADS)
Antonyraj, Gnananesan
Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.
24 CFR 200.925b - Residential and institutional building code comparison items.
Code of Federal Regulations, 2014 CFR
2014-04-01
...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...
24 CFR 200.925b - Residential and institutional building code comparison items.
Code of Federal Regulations, 2012 CFR
2012-04-01
...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...
24 CFR 200.925b - Residential and institutional building code comparison items.
Code of Federal Regulations, 2013 CFR
2013-04-01
...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...
Upgrading Basements for Combined Nuclear Weapons Effects: Expedient Options
1976-05-01
reinforced concrete stairwell walls can be expected to be substantial in these cases, since they are supporting an axial load from higher floors. F...desirability) include: a. Stacked concrete block or brick b. Stacked timber * The latter situation is likely to occur only in load - bearing wall...concrete flat slab 4 Reinforced concrete flat plate 4 Load - bearing wall 3 The analysis of the floor systems for the 34 NSS buildings required the dynamic
Design Analysis of a Prepackaged Nuclear Power Plant for an Ice Cap Location
1959-01-15
requirements and heating load 1.3 Site Conditions 1,U Air Transportability 1.5 Standby Power Availability 1.6 Building Structuree and Foundations 2,0...Skid with Reactor and Steam Generator Generator Weight Distribution Foundation Load Diagram (Secondary) Turbine Generator Package - Typical...Requirements and Heating Load The plant shall be capable of producing a minimum of 1500 Kw net ^ electrical energy at 4160/2400 volts, three phase
NASA Astrophysics Data System (ADS)
Kala, J.; Bajer, M.; Barnat, J.; Smutný, J.
2010-12-01
Pedestrian-induced vibrations are a criterion for serviceability. This loading is significant for light-weight footbridge structures, but was established as a basic loading for the ceilings of various ordinary buildings. Wide variations of this action exist. To verify the different conclusions of various authors, vertical pressure measurements invoked during walking were performed. In the article the approaches of different design codes are also shown.
Design and implementation of an air-conditioning system with storage tank for load shifting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Y.Y.; Wu, C.J.; Liou, K.L.
1987-11-01
The experience with the design, simulation and implementation of an air-conditioning system with chilled water storage tank is presented in this paper. The system is used to shift air-conditioning load of residential and commercial buildings from on-peak to off-peak period. Demand-side load management can thus be achieved if many buildings are equipped with such storage devices. In the design of this system, a lumped-parameter circuit model is first employed to simulate the heat transfer within the air-conditioned building such that the required capacity of the storage tank can be figured out. Then, a set of desirable parameters for the temperaturemore » controller of the system are determined using the parameter plane method and the root locus method. The validity of the proposed mathematical model and design approach is verified by comparing the results obtained from field tests with those from the computer simulations. Cost-benefit analysis of the system is also discussed.« less
Termites utilise clay to build structural supports and so increase foraging resources
Oberst, Sebastian; Lai, Joseph C. S.; Evans, Theodore A.
2016-01-01
Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites. PMID:26854187
Selecting a Control Strategy for Plug and Process Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobato, C.; Sheppy, M.; Brackney, L.
2012-09-01
Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less
Structural evaluation of the 2736Z Building for seismic loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giller, R.A.
The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements.
Measuring and Understanding the Energy Use Signatures of a Bank Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, YuLong; Liu, Bing; Athalye, Rahul A.
The Pacific Northwest National Laboratory measured and analyzed the energy end-use patterns in a bank building located in the north-eastern United States. This work was performed in collaboration with PNC Financial Service Group under the US DOE’s Commercial Building Partnerships Program. This paper presents the metering study and the results of the metered data analysis. It provides a benchmark for the energy use of different bank-related equipments. The paper also reveals the importance of metering in fully understanding building loads and indentifying opportunities for energy efficiency improvements that will have impacts across PNC’s portfolio of buildings and were crucial tomore » reducing receptacle loads in the design of a net-zero bank branches. PNNL worked with PNC to meter a 4,000 ft2 bank branch in the state of Pennsylvania. 71 electrical circuits were monitored and 25 stand-alone watt-hour meters were installed at the bank. These meters monitored the consumption of all interior and exterior lighting, receptacle loads, service water heating, and the HVAC rooftop unit at a 5-minute sampling interval from November 2009 to November 2010. A total of over 8 million data records were generated, which were then analyzed to produce the end-use patterns, daily usage profiles, rooftop unit usage cycles, and inputs for calibrating the energy model of the building.« less
Probabilistic safety assessment of the design of a tall buildings under the extreme load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk
2016-06-08
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
NASA Astrophysics Data System (ADS)
Králik, Juraj
2016-06-01
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs,more » Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)« less
Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction
NASA Astrophysics Data System (ADS)
Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro
Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.
14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), LOOKING EAST AT SOUTHWEST END OF BUILDING. HVAC EQUIPMENT LOCATED OUTDOORS IN FOREGROUND. DUCTS CONDUCT HOT OR COLD AIR INDOORS. ROUND PIPES ARE INSULATED STEAM LINES. BUILDING NO. 448, ORDNANCE FACILITY, IN BACKGROUND. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Modeling of two-storey precast school building using Ruaumoko 2D program
NASA Astrophysics Data System (ADS)
Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.
2015-05-01
The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.
NASA Astrophysics Data System (ADS)
Avci, Mesut
A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.
2. General oblique view of north loading dock showing loading ...
2. General oblique view of north loading dock showing loading docks with doors opening into refrigerated rooms - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
NECAP: NASA's Energy-Cost Analysis Program. Part 1: User's manual
NASA Technical Reports Server (NTRS)
Henninger, R. H. (Editor)
1975-01-01
The NECAP is a sophisticated building design and energy analysis tool which has embodied within it all of the latest ASHRAE state-of-the-art techniques for performing thermal load calculation and energy usage predictions. It is a set of six individual computer programs which include: response factor program, data verification program, thermal load analysis program, variable temperature program, system and equipment simulation program, and owning and operating cost program. Each segment of NECAP is described, and instructions are set forth for preparing the required input data and for interpreting the resulting reports.
11. GENERAL VIEW LOOKING NORTHEAST, BUILDING NO. 823, AMMUNITIOM NITRATE ...
11. GENERAL VIEW LOOKING NORTHEAST, BUILDING NO. 823, AMMUNITIOM NITRATE LOADING BUILDING, IN LEFT BACKGROUND. BUILDING NO. 824, TNT SCREENING BUILDING, IN RIGHT BACKGROUND. - Picatinny Arsenal, 800 Area, Complete Rounds-Melt Loading District, State Route 15 near I-80, Dover, Morris County, NJ
An analysis of travel costs on transport of load and nest building in golden hamster.
Guerra, Rogerio F.; Ades, Cesar
2002-03-28
We investigated the effects of travel costs on transporting nest material and nest-building activity in golden hamsters. Nest-deprived animals were submitted to run alleys 30, 90 and 180 cm long to access a source containing paper strips as nest material (Experiment 1) or were submitted to the same travel costs in 24-h experimental sessions (Experiment 2). We noted that increased travel costs were related to a decreased number of trips to the source, larger amounts (cm(2)) of nest material transported per trip (although total loads also decreased in longer alleys), longer intervals between trips, and increased time spent at the source and in nest building activity. Foraging efficiency (i.e. size of load divided by the time spent at the source) decreased as a function of travel costs, and animals transported their loads in two fundamental ways: in 30-cm alleys, they simply used their mouth to pull the paper strips, but in 90- or 180-cm alleys they transported the loads in their cheek pouches. The animals were faster when returning to the home-cage and their running speed (cm/s) increased as a function of the length of the alley, showing that animals are under different environmental pressures when searching for resources and subsequently running back with the load to the nest. Both male and female subjects were sensitive to travel costs, but males engaged in nest building activity more promptly and exhibited higher mean performances in most measures. We conclude that nest material is a good reinforcer, and our major results are in accordance with the predictions of microeconomic and optimal foraging theories.
End-use energy consumption estimates for US commercial buildings, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D.B.; Wrench, L.E.; Marsh, T.L.
An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment.more » Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.« less
NASA Astrophysics Data System (ADS)
Heidarinejad, Mohammad
This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate the indoor condition regardless of the contribution of internal and external loads. To deploy the methodology to another portfolio of buildings, simulated LEED NC office buildings are selected. The advantage of this approach is to isolate energy performance due to inherent building characteristics and location, rather than operational and maintenance factors that can contribute to significant variation in building energy use. A framework for detailed building energy databases with annual energy end-uses is developed to select variables and omit outliers. The results show that the high performance office buildings are internally-load dominated with existence of three different clusters of low-intensity, medium-intensity, and high-intensity energy use pattern for the reviewed office buildings. Low-intensity cluster buildings benefit from small building area, while the medium- and high-intensity clusters have a similar range of floor areas and different energy use intensities. Half of the energy use in the low-intensity buildings is associated with the internal loads, such as lighting and plug loads, indicating that there are opportunities to save energy by using lighting or plug load management systems. A comparison between the frameworks developed for the campus buildings and LEED NC office buildings indicates these two frameworks are complementary to each other. Availability of the information has yielded to two different procedures, suggesting future studies for a portfolio of buildings such as city benchmarking and disclosure ordinance should collect and disclose minimal required inputs suggested by this study with the minimum level of monthly energy consumption granularity. This dissertation developed automated methods using the OpenStudio API (Application Programing Interface) to create energy models based on the building class. ASHRAE Guideline 14 defines well-accepted criteria to measure accuracy of energy simulations; however, there is no well-accepted methodology to quantify the model complexity without the influence of the energy modeler judgment about the model complexity. This study developed a novel method using two weighting factors, including weighting factors based on (1) computational time and (2) easiness of on-site data collection, to measure complexity of the energy models. Therefore, this dissertation enables measurement of both model complexity and accuracy as well as assessment of the inherent tradeoffs between energy simulation model complexity and accuracy. The results of this methodology suggest for most of the internal load contributors such as operation schedules the on-site data collection adds more complexity to the model compared to the computational time. Overall, this study provided specific data on tradeoffs between accuracy and model complexity that points to critical inputs for different building classes, rather than an increase in the volume and detail of model inputs as the current research and consulting practice indicates. (Abstract shortened by UMI.).
Influence of Loads That Are Not Contemplated In the Structure Calculation Process
NASA Astrophysics Data System (ADS)
Gil Carrillo, Francisco; José Mas-Guindal, Antonio
2017-10-01
The approach to the calculation of the structure of a building, apart from the geometry and its peculiarities always in the first instance, the first approach is to analyze the state of loads, according to current legislation CTE, to which the building will be subjected and In their respective plants and areas, these loads are defined in any of the regulations in force at the moment in Spain and almost all the professionals of the sector known for their application. In addition to the loads described above, there are others that intervene in the building, although they are evident only during the execution phase of the building, those loads that are forgotten and not taken into account, nor even the existing mandatory regulations CTE, EHE-08, in that first approach of load state for the calculation of the structure of the building, are there and have their direct consequences on the structure, ultimately on the useful life of the structure and the interaction with The rest of the elements that make up the building can cause instantaneous pathologies, medium and long term in the structures and consequently in the rest of the building with the effects derived from them.
Sliding contact fracture of dental ceramics: Principles and validation
Ren, Linlin; Zhang, Yu
2014-01-01
Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact—a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models. PMID:24632538
NASA Technical Reports Server (NTRS)
Holland, D. B.; Virgin, L. N.; Belvin, W. K.
2003-01-01
This paper presents a parameter study of the effect of boom axial loading on the global dynamics of a 2-meter solar sail scale model. The experimental model used is meant for building expertise in finite element analysis and experimental execution, not as a predecessor to any planned flight mission or particular design concept. The results here are to demonstrate the ability to predict and measure structural dynamics and mode shapes in the presence of axial loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Matthew; Simpkins, Travis; Cutler, Dylan
There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less
A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Matthew; Simpkins, Travis; Cutler, Dylan
There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less
Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregor P. Henze; Moncef Krarti
2005-09-30
Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulationmore » research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal storage control. (2) By using economizer to take advantage of the cool fresh air during the night, the building electrical cost can be reduced by using less mechanical cooling. (3) Larger base chiller and active thermal storage capacities have the potential of shifting more cooling loads to off-peak hours and thus higher savings can be achieved. (4) Optimal combined thermal storage control with a thermal comfort penalty included in the objective function can improve the thermal comfort levels of building occupants when compared to the non-optimized base case. Lab testing conducted in the Larson HVAC Laboratory during Phase 2 showed that the EnergyPlus-based simulation was a surprisingly accurate prediction of the experiment. Therefore, actual savings of building energy costs can be expected by applying optimal controls from simulation results.« less
Loads specification and embedded plate definition for the ITER cryoline system
NASA Astrophysics Data System (ADS)
Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.
2015-12-01
ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.
Examing the prospective of implementing passive house standards in providing sustainable schools
NASA Astrophysics Data System (ADS)
Suhaili, Wan Farhani; Shahrill, Masitah
2018-04-01
This study examines the potential of implementing the passive house standards to reduce energy consumption on school buildings in Brunei. Furthermore, it investigates whether sustainable school buildings make business sense to the government. To do this, conventional and Passive House primary school buildings are compared in terms of their performances using the Passive House Planning Package as well as the Ecotect environmental analysis tool. The findings indicated that by replacing lower U-values building fabrics brought a significantly reduction in the cooling demand of 54%. Whereas, Ecotect models have demonstrated that the heating and cooling loads have tremendously reduced to 75% by reorienting the location of the building to south elevation and by replacing the building fabrics with a lower U-values. These findings were then evaluated with a cost benefit analysis that proved to save cost energy annually from air-conditioning usage from a typical primary school with eight years of pay back period.
Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, R.G.; Williamson, M.A.; Richman, E.E.
1990-07-01
The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoringmore » of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.« less
Parallel processing methods for space based power systems
NASA Technical Reports Server (NTRS)
Berry, F. C.
1993-01-01
This report presents a method for doing load-flow analysis of a power system by using a decomposition approach. The power system for the Space Shuttle is used as a basis to build a model for the load-flow analysis. To test the decomposition method for doing load-flow analysis, simulations were performed on power systems of 16, 25, 34, 43, 52, 61, 70, and 79 nodes. Each of the power systems was divided into subsystems and simulated under steady-state conditions. The results from these tests have been found to be as accurate as tests performed using a standard serial simulator. The division of the power systems into different subsystems was done by assigning a processor to each area. There were 13 transputers available, therefore, up to 13 different subsystems could be simulated at the same time. This report has preliminary results for a load-flow analysis using a decomposition principal. The report shows that the decomposition algorithm for load-flow analysis is well suited for parallel processing and provides increases in the speed of execution.
Load Diffusion in Composite and Smart Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)
2003-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.
Modeling of two-storey precast school building using Ruaumoko 2D program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.
The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971more » using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.« less
NASA Astrophysics Data System (ADS)
Dalvi, Ambalika Rajendra
Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.
Solar-Energy System for a Commercial Building--Topeka, Kansas
NASA Technical Reports Server (NTRS)
1982-01-01
Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.
Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds
NASA Astrophysics Data System (ADS)
Cheng, Tian
Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A fast Fourier transform (FFT) method is presented to avoid the root-searching process in the inverse Laplace transform of multilayered walls. Generalized explicit FFT formulae for calculating the discrete Fourier transform (DFT) are developed for the first time. They can largely facilitate the implementation of FFT. The new method also provides a basis for generating the symbolic response factors. Validation simulations show that it can generate the response factors as accurate as the analytical solutions. The second method is for direct estimation of annual or seasonal cooling loads without the need for tedious hourly energy simulations. It is validated by hourly simulation results with DOE2. Then symbolic long-term cooling load can be created by combining the two methods with thermal network analysis. The symbolic long-term cooling load can keep the design parameters of interest as symbols, which is particularly useful for the optimal design and sensitivity analysis. The methodology is applied to an office building in Hong Kong for the optimal design of building envelope. Design variables such as window-to-wall ratio, building orientation, and glazing optical and thermal properties are included in the study. Results show that the selected design values could significantly impact the energy performance of windows, and the optimal design of side-lit buildings could greatly enhance energy savings. The application example also demonstrates that the developed methodology significantly facilitates the optimal building design and sensitivity analysis, and leads to high computational efficiency.
Analysis of energy conservation alternatives for standard Army building. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hittle, D.C.; O'Brien, R.E.; Percivall, G.S.
1983-03-01
This report describes energy conservation alternatives for five standard Army building designs. By surveying maps of major Army installations and using the Integrated Facilities System, the most popular designs were determined to be a two-company, rolling-pin-shaped barracks for enlisted personnel; a Type 64 barracks; a motor repair shop; a battalion headquarters and classroom building; and an enlisted personnel mess hall. The Building Loads Analysis and System Thermodynamics (BLAST) energy-analysis computer program was used to develop baseline energy consumption for each design based on the building descriptions and calibrated by comparison with the measured energy usage of similar buildings. Once themore » baseline was established, the BLAST program was used to study energy conservation alternatives (ECAs) which could be retrofit to the existing buildings. The ECAs included closing off air-handling units, adding storm windows, adding 2 in. (0.051 m) of exterior insulation to the walls, partially blocking the windows, adding roof insulation, putting up south overhangs, installing programmable thermostats, recovering heat from exhaust fans, installing temperature economizers, replacing lights, and installing partitions between areas of differing temperature.« less
Load Diffusion in Composite and Smart Structures
NASA Technical Reports Server (NTRS)
Horgan, C. O.
2003-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies. Special purpose analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and in assessing results from general purpose finite element analyses. For example, a rational basis is needed in choosing where to use three-dimensional to two-dimensional transition finite elements in analyzing stiffened plates and shells. The decay behavior of stresses and other field quantities furnished by this research provides a significant aid towards this element transition issue. A priori knowledge of the extent of boundary-layers induced by edge effects is also useful in determination of the instrumentation location in structural verification tests or in material characterization tests.
Dynamic analysis of the BMW tower in Munich
NASA Astrophysics Data System (ADS)
Indacochea-Beltran, Joaquin; Elgindy, Pearl; Lee, Elaine; Vignesh, Thiviya; Ansourian, Peter; Tahmasebinia, Faham; Marroquín, Fernando Alonso
2016-08-01
In the 1970s, world famous Austrian architect Karl Schwanzer designed an avant-garde suspended skyscraper for the new BMW headquarters. The BMW Tower was envisioned to resemble a four-cylinder motor and become a symbol for the recent flourishing success of BMW. Throughout its four decades, the BMW Tower has become the main architectural feature of modern Munich and a pride for one of the World leading car manufacturers. The structural design of the BMW Tower represented a major challenge to Germany's finest engineers because the suspended 99.5m-high structure had to whitstand not only static loading but large wind dynamic loading while having deflections within appropriate serviceability limits. Strand7 has been used to determine the stresses and deflections the structure is subjected to in order to analyse its behavior under static and dynamic loadings. Ultimately, this analysis helps to understand the nature of suspended structures in relation to the Eurocode building standards. Finally, thermal resistance has also been analysed using Strand7 to simulate a fire scenario and analyse the behaviour of the cable structure, which is the most critical building component.
15. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
15. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), INTERIOR, FOURTH LEVEL. POWDER HOPPER AT TOP OF ELEVATOR SHAFT. POWDER DISTRIBUTED FROM HERE TO LOADING ROOMS BY TUBES. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Dynamic Analysis of an Office Building due to Vibration from Road Construction Activities
NASA Astrophysics Data System (ADS)
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.; Ibrahim, M. H. W.
2018-04-01
Construction activities are widely known as one of the predominant sources of man-made vibrations that able to create nuisance towards any adjacent building, and this includes the road construction operations. Few studies conclude the construction-induced vibration may be harmful directly and indirectly towards the neighbouring building. This lead to the awareness of study the building vibration response of concrete masonry load bearing system and its vibrational performance towards the road construction activities. This study will simulate multi-storey office building of Sekolah Menengah Kebangsaan (SMK) Bandar Enstek at Negeri Sembilan by using finite element vibration analyses. The excitation of transient loads from ground borne vibrations which triggered by the road construction activities are modelled into the building. The vibration response was recorded during in-situ ambient vibration test by using Laser Doppler Vibrometer (LDV), which specifically performed on four different locations. The finite element simulation process was developed in the commercial FEA software ABAQUS. Then, the experimental data was processed and evaluated in MATLAB ModalV to assess the vibration criteria of the floor in building. As a result, the vibration level of floor in building is fall under VC-E curve which was under the maximum permissible level for office building (VC-ISO). The vibration level on floor is acceptable within the limit that have been referred.
NASA Astrophysics Data System (ADS)
Yagi Kim, Mika
As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.
Multicriteria Analysis of Assembling Buildings from Steel Frame Structures
NASA Astrophysics Data System (ADS)
Miniotaite, Ruta
2017-10-01
Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.
Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-04-01
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less
Solar-heated and cooled savings and loan building-1-Leavenworth, Kanasas
NASA Technical Reports Server (NTRS)
1981-01-01
Report describes heating and cooling system which furnishes 90 percent of annual heating load, 70 percent of cooling load, and all hot water for two-story building. Roof-mounted flat-plate collectors allow three distinct flow rates and are oriented south for optimum energy collection. Building contains fully automated temperature controls is divided into five temperature-load zones, each with independent heat pump.
Solution of Fire Protection in Historic Buildings
NASA Astrophysics Data System (ADS)
Iringová, Agnes; Idunk, Róbert
2016-12-01
The paper introduces optimization of the functional use of renovated spaces in historic buildings in terms of fire risk. It brings assessment of fire protection in the folk house Habánsky Dvor, situated in the village of Veľké Leváre, whose function was changed into the museum. It goes into static analysis of existing load-bearing structures and assessment of their fire resistance according to Eurocodes.
Analysis of a school building damaged by the 2015 Ranau earthquake Malaysia
NASA Astrophysics Data System (ADS)
Takano, Shugo; Saito, Taiki
2017-10-01
On June 5th, 2015 a severe earthquake with a moment Magnitude of 6.0 occurred in Ranau, Malaysia. Depth of the epicenter is 10 km. Due to the earthquake, many facilities were damaged and 18 people were killed due to rockfalls [1]. Because the British Standard (BS) is adopted as a regulation for built buildings in Malaysia, the seismic force is not considered in the structural design. Therefore, the seismic resistance of Malaysian buildings is unclear. To secure the human life and building safety, it is important to grasp seismic resistance of the building. The objective of this study is to evaluate the seismic resistance of the existing buildings in Malaysia built by the British Standard. A school building that was damaged at the Ranau earthquake is selected as the target building. The building is a four story building and the ground floor is designed to be a parking space for the staff. The structural types are infill masonries where main frame is configured by reinforced concrete columns and beams and brick is installed inside the frame as walls. Analysis is performed using the STERA_3D software that is the software to analyze the seismic performance of buildings developed by one of the authors. Firstly, the natural period of the building is calculated and compared with the result of micro-tremor measurement. Secondly, the nonlinear push-over analysis was conducted to evaluate the horizontal load bearing capacity of the building. Thirdly, the earthquake response analysis was conducted using the time history acceleration data measured at the Ranau earthquake by the seismograph installed at Kota Kinabalu. By comparing the results of earthquake response analysis and the actual damage of the building, the reason that caused damage to the building is clarified.
Simulation of short-term electric load using an artificial neural network
NASA Astrophysics Data System (ADS)
Ivanin, O. A.
2018-01-01
While solving the task of optimizing operation modes and equipment composition of small energy complexes or other tasks connected with energy planning, it is necessary to have data on energy loads of a consumer. Usually, there is a problem with obtaining real load charts and detailed information about the consumer, because a method of load-charts simulation on the basis of minimal information should be developed. The analysis of work devoted to short-term loads prediction allows choosing artificial neural networks as a most suitable mathematical instrument for solving this problem. The article provides an overview of applied short-term load simulation methods; it describes the advantages of artificial neural networks and offers a neural network structure for electric loads of residential buildings simulation. The results of modeling loads with proposed method and the estimation of its error are presented.
NASA Astrophysics Data System (ADS)
Mortezaei, A.; Ronagh, H. R.
2013-06-01
Near-fault ground motions with long-period pulses have been identified as being critical in the design of structures. These motions, which have caused severe damage in recent disastrous earthquakes, are characterized by a short-duration impulsive motion that transmits large amounts of energy into the structures at the beginning of the earthquake. In nearly all of the past near-fault earthquakes, significant higher mode contributions have been evident in building structures near the fault rupture, resulting in the migration of dynamic demands (i.e. drifts) from the lower to the upper stories. Due to this, the static nonlinear pushover analysis (which utilizes a load pattern proportional to the shape of the fundamental mode of vibration) may not produce accurate results when used in the analysis of structures subjected to near-fault ground motions. The objective of this paper is to improve the accuracy of the pushover method in these situations by introducing a new load pattern into the common pushover procedure. Several pushover analyses are performed for six existing reinforced concrete buildings that possess a variety of natural periods. Then, a comparison is made between the pushover analyses' results (with four new load patterns) and those of FEMA (Federal Emergency Management Agency)-356 with reference to nonlinear dynamic time-history analyses. The comparison shows that, generally, the proposed pushover method yields better results than all FEMA-356 pushover analysis procedures for all investigated response quantities and is a closer match to the nonlinear time-history responses. In general, the method is able to reproduce the essential response features providing a reasonable measure of the likely contribution of higher modes in all phases of the response.
NASA Astrophysics Data System (ADS)
Wada, Daichi; Sugimoto, Yohei
2017-04-01
Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.
Gowda, Srinivasa; Quadras, Dilip D; Sesappa, Shetty R; Maiya, G R Ramakrishna; Kumar, Lalit; Kulkarni, Dinraj; Mishra, Nitu
2018-05-01
The aim of the study was to evaluate the fracture strength of three types of composite core build-up materials. The objectives were to study and evaluate the fracture strength and type of fracture in composite core build-up in restoration of endodonti-cally treated teeth with or without a prefabricated metallic post. A total of 60 freshly extracted mandibular premolars free of caries, cracks, or fractures were end-odontically treated and restored with composite core build-up with prefabricated metallic posts cemented with resin luting cement (group I) and without a post (group II). This was followed by a core build-up of 10 teeth each with three different types of composite materials: Hybrid composite, nanocomposite, and ormocer respectively. The samples were mounted on polyvinyl chloride block and then loaded in the universal load frame at 90° to the long axis of tooth. The fracture strength of the samples was directly obtained from the load indicator attached to the universal load frame. Analysis of variance (ANOVA) test revealed that teeth restored with post exhibited highest fracture strength (1552.32 N) and teeth restored without post exhibited lowest fracture strength (232.20 N). Bonferroni's test revealed that values for hybrid composite (Z-100, 3M ESPE) with post, nanocomposite (Z-350, 3M ESPE) with post, ormocer composite (Admira-VOCO) with post, and nanocomposite (Z-350, 3M ESPE) without post were not significantly different from each other. Teeth restored with post and core using hybrid composite yielded the highest values for fracture strength. Teeth restored with ormocer core without post exhibited the lowest values. Teeth restored with nanocomposite core without post exhibited strength that was comparable with hybrid composite core but higher than that of ormocer. Mutilated endodontically treated teeth can be prosthetically rehabilitated successfully by using adhesive composite core build-up along with post to meet anatomical, functional, and esthetic demands.
Engaging Tenants in Reducing Plug Load Energy Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schantz, Marta; Langner, Rois
Plug and Process Loads (PPLs) account for an increasingly large percentage of commercial building energy use in the U.S. due to the rising number of energy intensive plug-in devices. In addition, buildings are becoming more and more efficient and plug load energy use has become an increasingly pertinent component to achieving aggressive energy targets and netzero energy status. For multi-tenant buildings, controlling plug loads in tenant spaces can be a significant challenge. Luckily, there are a number of PPL reduction strategies, best practices, and lessons learned from numerous commercial real estate and higher education leaders who have successfully engaged buildingmore » occupants and tenants in reducing PPL energy use. This paper provides actionable PPL reduction strategies and best practices that building owners and managers can immediately apply to their own buildings.« less
Probabilistic seismic vulnerability and risk assessment of stone masonry structures
NASA Astrophysics Data System (ADS)
Abo El Ezz, Ahmad
Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.
FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Baxter, Van D.; Shen, Bo
2017-01-01
The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, foodmore » service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.« less
Skylight energy performance and design optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arasteh, D.; Johnson, R.; Selkowitz, S.
1984-02-01
Proper skylight utilization can significantly lower energy requirements and peak electrical loads for space conditioning and lighting in commercial buildings. In this study we systematically explore the energy effects of skylight systems in a prototypical office building and examine the savings from daylighting. The DOE-2.1B energy analysis computer program with its newly incorporated daylighting algorithms was used to generate more than 2000 parametric simulations for seven US climates. The parameters varied include skylight-to-roof ratio, shading coefficient, visible transmittance, skylight well light loss, electric lighting power density, roof heat transfer coefficient, and type of electric lighting control. For specific climates wemore » identify roof/skylight characteristics that minimize total energy or peak electrical load requirements.« less
16. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
16. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), INTERIOR, SECOND LEVEL. LOOKING UP AT POWDER AND DISTRIBUTION TUBES. ELEVATOR SHAFT ON LEFT. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and facesheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
5. LOOKING NORTH TOWARD BARRICADES AROUND BUILDING NO. 230, PRIMER ...
5. LOOKING NORTH TOWARD BARRICADES AROUND BUILDING NO. 230, PRIMER AND DETONATOR LOADING BUILDING. BARRICADES DIRECT FORCE OF BLAST UPWARD IN THE EVENT OF AN EXPLOSION. - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ
End Effects and Load Diffusion in Composite Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)
2002-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.
Data characteristic analysis of air conditioning load based on fast Fourier transform
NASA Astrophysics Data System (ADS)
Li, Min; Zhang, Yanchi; Xie, Da
2018-04-01
With the development of economy and the improvement of people's living standards, air conditioning equipment is more and more popular. The influence of air conditioning load for power grid is becoming more and more serious. In this context it is necessary to study the characteristics of air conditioning load. This paper analyzes the data of air conditioning power consumption in an office building. The data is used for Fast Fourier Transform by data analysis software. Then a series of maps are drawn for the transformed data. The characteristics of each map were analyzed separately. The hidden rules of these data are mined from the angle of frequency domain. And these rules are hard to find in the time domain.
Plug-Load Control and Behavioral Change Research in GSA Office Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Cutler, D.; Sheppy, M.
2012-10-01
The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-loadmore » energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.« less
Sonic-boom-induced building structure responses including damage.
NASA Technical Reports Server (NTRS)
Clarkson, B. L.; Mayes, W. H.
1972-01-01
Concepts of sonic-boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic-boom load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of such other phenomena as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared, where possible, with predicted values. Damage complaint and claim experience due both to controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic-boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanford, J.W.; Huang, Y.J.
The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and coolingmore » loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.« less
Solar + Storage Synergies for Managing Commercial-Customer Demand Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, P.; Govindarajan, A.; Bird, L.
Demand charges, which are based on a customer’s maximum demand in kilowatts (kW), are a common element of electricity rate structures for commercial customers. Customer-sited solar photovoltaic (PV) systems can potentially reduce demand charges, but the level of savings is difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating on a series of studies to understand how solar PV can impact demand charges. Prior studies in the series examined demand charge reductions from solar on a stand-alone basis formore » residential and commercial customers. Those earlier analyses found that solar, alone, has limited ability to reduce demand charges depending on the specific design of the demand charge and on the shape of the customer’s load profile. This latest analysis estimates demand charge savings from solar in commercial buildings when co-deployed with behind-the-meter storage, highlighting the complementary roles of the two technologies. The analysis is based on simulated loads, solar generation, and storage dispatch across a wide variety of building types, locations, system configurations, and demand charge designs.« less
Response of Olive View Hospital to Northridge and Whittier earthquakes
Celebi, M.
1997-01-01
The purpose of this paper is to study the response of the conventionally designed new Olive View Medical Center (OVMC) building at 16 km from the epicenter of the January 17, 1994 Northridge, California earthquake (Ms = 6.8). OVMC is on an alluvial deposit. The building was subjected to design level peak accelerations during the earthquake and suffered only limited structural and nonstructural damage. The recorded motions at different levels of the OVMC building as well as its associated free-field sites are analyzed using spectral analyses and system identification techniques. The new OVMC building was conservatively designed in 1976 with very high lateral load resisting capability - particularly as a reaction to the detrimental fate of the original Olive View Hospital that was heavily damaged during the 1971 San Fernando earthquake. The original hospital building was later razed. The replacement structure, the new cross-shaped OVMC building, experienced peak acceleration of 2.31g at the roof while its peak ground floor acceleration was 0.82g. The free-field peak acceleration was 0.91g. The lateral load resisting system of the OVMC building consists of concrete shear walls in the lower two stories and steel shear walls at the perimeter of the upper four stories. Spectral analysis shows that this stiff structure was not affected by the long duration pulses of the motions recorded at this site.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.
29 CFR 1910.22 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mechanical handling equipment is used, sufficient safe clearances shall be allowed for aisles, at loading.... (d) Floor loading protection. (1) In every building or other structure, or part thereof, used for... roof of a building or other structure a load greater than that for which such floor or roof is approved...
29 CFR 1910.22 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mechanical handling equipment is used, sufficient safe clearances shall be allowed for aisles, at loading.... (d) Floor loading protection. (1) In every building or other structure, or part thereof, used for... roof of a building or other structure a load greater than that for which such floor or roof is approved...
29 CFR 1910.22 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mechanical handling equipment is used, sufficient safe clearances shall be allowed for aisles, at loading.... (d) Floor loading protection. (1) In every building or other structure, or part thereof, used for... roof of a building or other structure a load greater than that for which such floor or roof is approved...
10 CFR 434.512 - Internal loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Internal loads. 434.512 Section 434.512 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.512 Internal loads. 512.1 The systems...
10 CFR 434.512 - Internal loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Internal loads. 434.512 Section 434.512 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.512 Internal loads. 512.1The systems...
10 CFR 434.512 - Internal loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Internal loads. 434.512 Section 434.512 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.512 Internal loads. 512.1The systems...
10 CFR 434.512 - Internal loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Internal loads. 434.512 Section 434.512 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.512 Internal loads. 512.1The systems...
Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, D.W.; Shedd, A.C.
This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building,more » and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunsberger, Randolph; Tomberlin, Gregg; Gaul, Chris
As part of the Army Net-Zero Energy Installation program, the Fort Carson Army Base requested that NREL evaluate the feasibility of adding a biomass boiler to the district heating system served by Building 1860. We have also developed an Excel-spreadsheet-based decision support tool--specific to the historic loads served by Building 1860--with which users can perform what-if analysis on gas costs, biomass costs, and other parameters. For economic reasons, we do not recommend adding a biomass system at this time.
Economic competitiveness of fuel cell onsite integrated energy systems
NASA Technical Reports Server (NTRS)
Bollenbacher, G.
1983-01-01
The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.
Comparative study on diagonal equivalent methods of masonry infill panel
NASA Astrophysics Data System (ADS)
Amalia, Aniendhita Rizki; Iranata, Data
2017-06-01
Infrastructure construction in earthquake prone area needs good design process, including modeling a structure in a correct way to reduce damages caused by an earthquake. Earthquakes cause many damages e.g. collapsed buildings that are dangerous. An incorrect modeling in design process certainly affects the structure's ability in responding to load, i.e. an earthquake load, and it needs to be paid attention to in order to reduce damages and fatalities. A correct modeling considers every aspect that affects the strength of a building, including stiffness of resisting lateral loads caused by an earthquake. Most of structural analyses still use open frame method that does not consider the effect of stiffness of masonry panel to the stiffness and strength of the whole structure. Effect of masonry panel is usually not included in design process, but the presence of this panel greatly affects behavior of the building in responding to an earthquake. In worst case scenario, it can even cause the building to collapse as what has been reported after great earthquakes worldwide. Modeling a structure with masonry panel as consideration can be performed by designing the panel as compression brace or shell element. In designing masonry panel as a compression brace, there are fourteen methods popular to be used by structure designers formulated by Saneinejad-Hobbs, Holmes, Stafford-Smith, Mainstones, Mainstones-Weeks, Bazan-Meli, Liauw Kwan, Paulay and Priestley, FEMA 356, Durani Luo, Hendry, Al-Chaar, Papia and Chen-Iranata. Every method has its own equation and parameters to use, therefore the model of every method was compared to results of experimental test to see which one gives closer values. Moreover, those methods also need to be compared to the open frame to see if they can result values within limits. Experimental test that was used in comparing all methods was taken from Mehrabi's research (Fig. 1), which was a prototype of a frame in a structure with 0.5 scale and the ratio of height to width of 1 to 1.5. Load used in the experiment was based on Uniform Building Code (UBC) 1991. Every method compared was calculated first to get equivalent diagonal strut width. The second step was modelling method using structure analysis software as a frame with a diagonal in a linear mode. The linear mode was chosen based on structure analysis commonly used by structure designers. The frame was loaded and for every model, its load and deformation values were identified. The values of load - deformation of every method were compared to those of experimental test specimen by Mehrabi and open frame. From comparative study performed, Holmes' and Bazan-Meli's equations gave results the closest to the experimental test specimen by Mehrabi. Other equations that gave close values within the limit (by comparing it to the open frame) are Saneinejad-Hobbs, Stafford-Smith, Bazan-Meli, Liauw Kwan, Paulay and Priestley, FEMA 356, Durani Luo, Hendry, Papia and Chen-Iranata.
Verification and Validation of EnergyPlus Phase Change Material Model for Opaque Wall Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.
2012-08-01
Phase change materials (PCMs) represent a technology that may reduce peak loads and HVAC energy consumption in buildings. A few building energy simulation programs have the capability to simulate PCMs, but their accuracy has not been completely tested. This study shows the procedure used to verify and validate the PCM model in EnergyPlus using a similar approach as dictated by ASHRAE Standard 140, which consists of analytical verification, comparative testing, and empirical validation. This process was valuable, as two bugs were identified and fixed in the PCM model, and version 7.1 of EnergyPlus will have a validated PCM model. Preliminarymore » results using whole-building energy analysis show that careful analysis should be done when designing PCMs in homes, as their thermal performance depends on several variables such as PCM properties and location in the building envelope.« less
Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio
2016-06-13
During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy.
Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio
2016-01-01
During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy. PMID:28773586
DOE Office of Scientific and Technical Information (OSTI.GOV)
KESSLER, S.F.
This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weldmore » station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.« less
WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Khamamkar
2000-06-23
The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less
Energy efficiency indicators for high electric-load buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar
2003-06-01
Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.
Behavior of sandwich panels in a fire
NASA Astrophysics Data System (ADS)
Chelekova, Eugenia
2018-03-01
For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.
Chilled water study EEAP program for Walter Reed Army Medical Center: Book 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons. The chilled water systems were reviewed for alternative ways of conserving energy on site and reducing the peak-cooling load. Distribution systems were reviewed to determine which buildings were served by each of the chilled water plants and to determine chilled water usage on site. Evaluations were made of building exterior and interior composition in order to estimate cooling loads. Interviews with site personnel helped Entech better understand the chilled water plants, the distribution systems, and how each system was utilized.« less
Analysis of Wind Forces on Roof-Top Solar Panel
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Kudav, Ganesh
2011-03-01
Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).
ERIC Educational Resources Information Center
Chiarini, Marc A.
2010-01-01
Traditional methods for system performance analysis have long relied on a mix of queuing theory, detailed system knowledge, intuition, and trial-and-error. These approaches often require construction of incomplete gray-box models that can be costly to build and difficult to scale or generalize. In this thesis, we present a black-box analysis…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; Marnay, Chris; Firestone, Ryan
The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating thesemore » distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively used for both heating and cooling. The same examination was done for the 5,000 m{sup 2} buildings. Although CHP installation capacity is smaller and the payback periods are longer, economic, fuel efficiency, and environmental benefits are still seen. While these benefits remain even when subsidies are removed, the increased installation costs lead to lower levels of installation capacity and thus benefit.« less
Technology Solutions Case Study: Hygrothermal Performance of a Double-Stud Cellulose Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
Moisture problems within the building shell can be caused by a number of factors including excess interior moisture that is transported into the wall through air leakage and vapor drive, bulk water intrusion from leaks and wind-driven rain, capillary action from concrete to wood connections, and through wetted building materials such as siding wetted from rain splash back. With the increasing thickness of walls, moisture issues could increase. Several builders have successfully used “double-wall” systems to more practically achieve higher R-values in thicker framed walls. A double wall typically consists of a load-bearing external frame wall constructed with 2 ×more » 4 framing at 16 in. on center using conventional methods. After the building is enclosed, an additional frame wall is constructed several inches inside the load-bearing wall. Several researchers have used moisture modeling software to conduct extensive analysis of these assemblies; however, little field research has been conducted to validate the results. In this project, the Building America research team Consortium for Advanced Residential Buildings monitored a double-stud assembly in climate zone 5A to determine the accu¬racy of moisture modeling and make recommendations to ensure durable and efficient assemblies.« less
Numerical simulation of tornado wind loading on structures
NASA Technical Reports Server (NTRS)
Maiden, D. E.
1976-01-01
A numerical simulation of a tornado interacting with a building was undertaken in order to compare the pressures due to a rotational unsteady wind with that due to steady straight winds used in design of nuclear facilities. The numerical simulations were performed on a two-dimensional compressible hydrodynamics code. Calculated pressure profiles for a typical building were then subjected to a tornado wind field and the results were compared with current quasisteady design calculations. The analysis indicates that current design practices are conservative.
NASA Astrophysics Data System (ADS)
Liang, Ya-Wei; Zhang, Hong-Mei; Dong, Jin-Zhi; Shi, Zhen-Hua
2016-05-01
Building Integrated Photovoltaic (BIPV) is a resort to save energy and reduce heat gain of buildings, utilize new and renewable energy, solve environment problems and alleviate electricity shortage in large cities. The area needed to generate power makes facade integrated photovoltaic panel a superb choice, especially in high-rise buildings. Numerous scholars have hitherto explored Building Facade Integrated Photovoltaic, however, focusing mainly on thermal performance, which fails to ensure seismic safety of high-rise buildings integrated photovoltaic. Based on connecting forms of the glass curtain wall, a connector jointing photovoltaic panel and facade was designed, which underwent loading position and size optimization. Static loading scenarios were conducted to test and verify the connector's mechanical properties under gravity and wind loading by means of HyperWorks. Compared to the unoptimized design, the optimized one saved material and managed to reduce maximum deflection by 74.64%.
Looking Northwest at First Floor Typical Wall and Ceiling Juncture ...
Looking Northwest at First Floor Typical Wall and Ceiling Juncture in Oxide Building and Loading Dock - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Pickering, Ethan M; Hossain, Mohammad A; Mousseau, Jack P; Swanson, Rachel A; French, Roger H; Abramson, Alexis R
2017-01-01
Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). The utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged-Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15-minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickering, Ethan M.; Hossain, Mohammad A.; Mousseau, Jack P.
Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). Themore » utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged- Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15- minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.« less
Pickering, Ethan M.; Hossain, Mohammad A.; Mousseau, Jack P.; ...
2017-10-31
Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). Themore » utility of a cross-sectional analysis of a sample set of building's electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged- Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15- minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures.« less
Experimental study of geotextile as plinth beam in a pile group-supported modeled building frame
NASA Astrophysics Data System (ADS)
Ravi Kumar Reddy, C.; Gunneswara Rao, T. D.
2017-12-01
This paper presents the experimental results of static vertical load tests on a model building frame with geotextile as plinth beam supported by pile groups embedded in cohesionless soil (sand). The experimental results have been compared with those obtained from the nonlinear FEA and conventional method of analysis. The results revealed that the conventional method of analysis gives a shear force of about 53%, bending moment at the top of the column about 17% and at the base of the column about 50-98% higher than that by the nonlinear FEA for the frame with geotextile as plinth beam.
Comparison between a typical and a simplified model for blast load-induced structural response
NASA Astrophysics Data System (ADS)
Abd-Elhamed, A.; Mahmoud, S.
2017-02-01
As explosive blasts continue to cause severe damage as well as victims in both civil and military environments. There is a bad need for understanding the behavior of structural elements to such extremely short duration dynamic loads where it is of great concern nowadays. Due to the complexity of the typical blast pressure profile model and in order to reduce the modelling and computational efforts, the simplified triangle model for blast loads profile is used to analyze structural response. This simplified model considers only the positive phase and ignores the suction phase which characterizes the typical one in simulating blast loads. The closed from solution for the equation of motion under blast load as a forcing term modelled either typical or simplified models has been derived. The considered herein two approaches have been compared using the obtained results from simulation response analysis of a building structure under an applied blast load. The computed error in simulating response using the simplified model with respect to the typical one has been computed. In general, both simplified and typical models can perform the dynamic blast-load induced response of building structures. However, the simplified one shows a remarkably different response behavior as compared to the typical one despite its simplicity and the use of only positive phase for simulating the explosive loads. The prediction of the dynamic system responses using the simplified model is not satisfactory due to the obtained larger errors as compared to the system responses obtained using the typical one.
Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India
NASA Astrophysics Data System (ADS)
Agrawal, Tanmay; Varun; Kumar, Anoop
2015-10-01
Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.
Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads
NASA Astrophysics Data System (ADS)
Liang, Li; Guo, Yuming
One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.
NASA Astrophysics Data System (ADS)
Badry, Pallavi; Satyam, Neelima
2017-01-01
Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.
Feasibility of solid oxide fuel cell dynamic hydrogen coproduction to meet building demand
NASA Astrophysics Data System (ADS)
Shaffer, Brendan; Brouwer, Jacob
2014-02-01
A dynamic internal reforming-solid oxide fuel cell system model is developed and used to simulate the coproduction of electricity and hydrogen while meeting the measured dynamic load of a typical southern California commercial building. The simulated direct internal reforming-solid oxide fuel cell (DIR-SOFC) system is controlled to become an electrical load following device that well follows the measured building load data (3-s resolution). The feasibility of the DIR-SOFC system to meet the dynamic building demand while co-producing hydrogen is demonstrated. The resulting thermal responses of the system to the electrical load dynamics as well as those dynamics associated with the filling of a hydrogen collection tank are investigated. The DIR-SOFC system model also allows for resolution of the fuel cell species and temperature distributions during these dynamics since thermal gradients are a concern for DIR-SOFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.
2012-08-01
Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conductionmore » Finite Difference (CondFD) algorithms.« less
Load Composition Model Workflow (BPA TIP-371 Deliverable 1A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Cezar, Gustavo V.
This project is funded under Bonneville Power Administration (BPA) Strategic Partnership Project (SPP) 17-005 between BPA and SLAC National Accelerator Laboratory. The project in a BPA Technology Improvement Project (TIP) that builds on and validates the Composite Load Model developed by the Western Electric Coordinating Council's (WECC) Load Modeling Task Force (LMTF). The composite load model is used by the WECC Modeling and Validation Work Group to study the stability and security of the western electricity interconnection. The work includes development of load composition data sets, collection of load disturbance data, and model development and validation. This work supports reliablemore » and economic operation of the power system. This report was produced for Deliverable 1A of the BPA TIP-371 Project entitled \\TIP 371: Advancing the Load Composition Model". The deliverable documents the proposed work ow for the Composite Load Model, which provides the basis for the instrumentation, data acquisition, analysis and data dissemination activities addressed by later phases of the project.« less
NREL's Work for the U.S. Navy Illuminates Energy and Cost Savings | News
load controls and whole-building energy efficiency retrofits as good investments for the Navy. " Program Director Steve Gorin said. Advanced power strips, a plug load control technology that cuts power and an office building with capacity for roughly 100 staff. While plug load savings depend on what can
NASA Astrophysics Data System (ADS)
Xu, Xiaoyu; Chen, Fei; Shen, Shuanghe; Miao, Shiguang; Barlage, Michael; Guo, Wenli; Mahalov, Alex
2018-03-01
The air conditioning (AC) electric loads and their impacts on local weather over Beijing during a 5 day heat wave event in 2010 are investigated by using the Weather Research and Forecasting (WRF) model, in which the Noah land surface model with multiparameterization options (Noah-MP) is coupled to the multilayer Building Effect Parameterization and Building Energy Model (BEP+BEM). Compared to the legacy Noah scheme coupled to BEP+BEM, this modeling system shows a better performance, decreasing the root-mean-square error of 2 m air temperature to 1.9°C for urban stations. The simulated AC electric loads in suburban and rural districts are significantly improved by introducing the urban class-dependent building cooled fraction. Analysis reveals that the observed AC electric loads in each district are characterized by a common double peak at 3 p.m. and at 9 p.m. local standard time, and the incorporation of more realistic AC working schedules helps reproduce the evening peak. Waste heat from AC systems has a smaller effect ( 1°C) on the afternoon 2 m air temperature than the evening one (1.5 2.4°C) if AC systems work for 24 h and vent sensible waste heat into air. Influences of AC systems can only reach up to 400 m above the ground for the evening air temperature and humidity due to a shallower urban boundary layer than daytime. Spatially varying maps of AC working schedules and the ratio of sensible to latent waste heat release are critical for correctly simulating the cooling electric loads and capturing the thermal stratification of urban boundary layer.
Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahimpour, Alireza; Qi, Hairong; Fugate, David L
Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumptionmore » of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.« less
Review of Residential Low-Load HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Scott A.; Thornton, Brian A.; Widder, Sarah H.
In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVACmore » technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.« less
Hossain, Mohammad A.; Mousseau, Jack P.; Swanson, Rachel A.; French, Roger H.; Abramson, Alexis R.
2017-01-01
Current approaches to building efficiency diagnoses include conventional energy audit techniques that can be expensive and time consuming. In contrast, virtual energy audits of readily available 15-minute-interval building electricity consumption are being explored to provide quick, inexpensive, and useful insights into building operation characteristics. A cross sectional analysis of six buildings in two different climate zones provides methods for data cleaning, population-based building comparisons, and relationships (correlations) of weather and electricity consumption. Data cleaning methods have been developed to categorize and appropriately filter or correct anomalous data including outliers, missing data, and erroneous values (resulting in < 0.5% anomalies). The utility of a cross-sectional analysis of a sample set of building’s electricity consumption is found through comparisons of baseload, daily consumption variance, and energy use intensity. Correlations of weather and electricity consumption 15-minute interval datasets show important relationships for the heating and cooling seasons using computed correlations of a Time-Specific-Averaged-Ordered Variable (exterior temperature) and corresponding averaged variables (electricity consumption)(TSAOV method). The TSAOV method is unique as it introduces time of day as a third variable while also minimizing randomness in both correlated variables through averaging. This study found that many of the pair-wise linear correlation analyses lacked strong relationships, prompting the development of the new TSAOV method to uncover the causal relationship between electricity and weather. We conclude that a combination of varied HVAC system operations, building thermal mass, plug load use, and building set point temperatures are likely responsible for the poor correlations in the prior studies, while the correlation of time-specific-averaged-ordered temperature and corresponding averaged variables method developed herein adequately accounts for these issues and enables discovery of strong linear pair-wise correlation R values. TSAOV correlations lay the foundation for a new approach to building studies, that mitigates plug load interferences and identifies more accurate insights into weather-energy relationship for all building types. Over all six buildings analyzed the TSAOV method reported very significant average correlations per building of 0.94 to 0.82 in magnitude. Our rigorous statistics-based methods applied to 15-minute-interval electricity data further enables virtual energy audits of buildings to quickly and inexpensively inform energy savings measures. PMID:29088269
Analysis of Soldier Effectiveness in a Mine Resistant Ambush Protected Ground Vehicle
2010-08-17
5% 15% 25% 50% 75% 85% 95% Figure 9: Overall thermal comfort CONCLUSION The effectiveness of Soldiers with varying physiological builds was...Curran, A., Pryor, J., Hepokoski, M. 2010 “Assessment of Various Environmental Thermal Loads on Passenger Thermal Comfort .” SAE Paper 2010-01-1205.
3. BUILDING 0503, NORTH FRONT AND WEST SIDE, WITH LOADING ...
3. BUILDING 0503, NORTH FRONT AND WEST SIDE, WITH LOADING DOCK AND GABLE ROOFED SHED. - Edwards Air Force Base, South Base Sled Track, Earth Covered Bunker Types, North of Sled Track, Lancaster, Los Angeles County, CA
Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames
NASA Astrophysics Data System (ADS)
Kamanli, Mehmet; Unal, Alptug
2017-10-01
After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auslander, David; Culler, David; Wright, Paul
The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Responsemore » (openADR), Auto-Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-to-building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov- March) and a steam absorption chiller for use in the warm months (April-October). Lighting in the open office areas is provided by direct-indirect luminaries with Building Management System-based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-based DR controller (dubbed the Central Load-Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-tune the strategies accordingly.« less
Analysis of field test data on residential heating and cooling
NASA Astrophysics Data System (ADS)
Talbert, S. G.
1980-12-01
The computer program using field site data collected on 48 homes located in six cities in different climatic regions of the United States is discussed. In addition, a User's Guide was prepared for the computer program which is contained in a separate two-volume document entitled User's Guide for REAP: Residential Energy Analysis Program. Feasibility studies were conducted pertaining to potential improvements for REAP, including: the addition of an oil-furnace model; improving the infiltration subroutine; adding active and/or passive solar subroutines; incorporating a thermal energy storage model; and providing dual HVAC systems (e.g., heat pump-gas furnace). The purpose of REAP is to enable building designers and energy analysts to evaluate how such factors as building design, weather conditions, internal heat loads, and HVAC equipment performance, influence the energy requirements of residential buildings.
Calculation of the Strip Foundation on Solid Elastic Base, Taking into Account the Karst Collapse
NASA Astrophysics Data System (ADS)
Sharapov, R.; Lodigina, N.
2017-07-01
Karst processes greatly complicate the construction and operation of buildings and structures. Due to the karstic deformations at different times there have been several major accidents, which analysis showed that in all cases the fundamental errors committed at different stages of building development: site selection, engineering survey, design, construction or operation of the facilities. Theory analysis of beams on elastic foundation is essential in building practice. Specialist engineering facilities often have to resort to multiple designing in finding efficient forms of construction of these facilities. In work the calculation of stresses in cross-sections of the strip foundation evenly distributed load in the event of karst. A comparison of extreme stress in the event of karst and without accounting for the strip foundation as a beam on an elastic foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghatikar, Girish; Cheung, Iris; Lanzisera, Steven
This report documents the technical evaluation of a collaborative research, development, and demonstration (RD&D) project that aims to address energy efficiency of Miscellaneous and Electronic Loads (MELs) (referred to as plug loads interchangeably in this report) using load monitoring and control devices. The goal s of this project are to identify and provide energy efficiency and building technologies to exemplary information technology (IT) office buildings, and to assist in transforming markets via technical assistance and engagement of Indian and U.S. stakeholders. This report describes the results of technology evaluation and United States – India collaboration between the Lawrence Berkeley Nationalmore » Laboratory (LBNL), Infosys Technologies Limited (India), and Smartenit, Inc. (U.S.) to address plug - load efficiency. The conclusions and recommendations focus on the larger benefits of such technologies and their impacts on both U.S. and Indian stakeholders.« less
Conceptual optimization using genetic algorithms for tube in tube structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pârv, Bianca Roxana; Hulea, Radu; Mojolic, Cristian
2015-03-10
The purpose of this article is to optimize the tube in tube structural systems for tall buildings under the horizontal wind loads. It is well-known that the horizontal wind loads is the main criteria when choosing the structural system, the types and the dimensions of structural elements in the majority of tall buildings. Thus, the structural response of tall buildings under the horizontal wind loads will be analyzed for 40 story buildings and a total height of 120 meters; the horizontal dimensions will be 30m × 30m for the first two optimization problems and 15m × 15m for the third.more » The optimization problems will have the following as objective function the cross section area, as restrictions the displacement of the building< the admissible displacement (H/500), and as variables the cross section dimensions of the structural elements.« less
33. Photocopied 1983 from original drawing (DP29179), Picatinny Arsenal, April ...
33. Photocopied 1983 from original drawing (DP-29179), Picatinny Arsenal, April 15, 1941. 'BUILDING NO. 454: BAG LOADING BUILDING, LIGHTNING PROTECTION--ELEVATION'. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Healthcare Energy End-Use Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppy, M.; Pless, S.; Kung, F.
NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; Marnay, Chris; Firestone, Ryan
2006-06-16
This research demonstrates economically optimal distributedenergy resource (DER) system choice using the DER choice and operationsoptimization program, the Distributed Energy Resources Customer AdoptionModel (DER-CAM). DER-CAM finds the optimal combination of installedequipment given prevailing utility tariffs and fuel prices, siteelectrical and thermal loads (including absorption cooling), and a menuof available equipment. It provides a global optimization, albeitidealized, that shows how site useful energy loads can be served atminimum cost. Five prototype Japanese commercial buildings are examinedand DER-CAM is applied to select the economically optimal DER system foreach. Based on the optimization results, energy and emission reductionsare evaluated. Significant decreases in fuelmore » consumption, carbonemissions, and energy costs were seen in the DER-CAM results. Savingswere most noticeable in the prototype sports facility, followed by thehospital, hotel, and office building. Results show that DER with combinedheat and power equipment is a promising efficiency and carbon mitigationstrategy, but that precise system design is necessary. Furthermore, aJapan-U.S. comparison study of policy, technology, and utility tariffsrelevant to DER installation is presented.« less
NASA Astrophysics Data System (ADS)
Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa
2017-09-01
Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.
NASA Astrophysics Data System (ADS)
Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.
2016-07-01
This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.
Space Heating Load Estimation Procedure for CHP Systems sizing
NASA Astrophysics Data System (ADS)
Vocale, P.; Pagliarini, G.; Rainieri, S.
2015-11-01
Due to its environmental and energy benefits, the Combined Heat and Power (CHP) represents certainly an important measure to improve energy efficiency of buildings. Since the energy performance of the CHP systems strongly depends on the fraction of the useful cogenerated heat (i.e. the cogenerated heat that is actually used to meet building thermal demand), in building applications of CHP, it is necessary to know the space heating and cooling loads profile to optimise the system efficiency. When the heating load profile is unknown or difficult to calculate with a sufficient accuracy, as may occur for existing buildings, it can be estimated from the cumulated energy uses by adopting the loads estimation procedure (h-LEP). With the aim to evaluate the useful fraction of the cogenerated heat for different operating conditions in terms of buildings characteristics, weather data and system capacity, the h-LEP is here implemented with a single climate variable: the hourly average dry- bulb temperature. The proposed procedure have been validated resorting to the TRNSYS simulation tool. The results, obtained by considering a building for hospital use, reveal that the useful fraction of the cogenerated heat can be estimated with an average accuracy of ± 3%, within the range of operative conditions considered in the present study.
Energy efficiency evaluation of hospital building office
NASA Astrophysics Data System (ADS)
Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.
2017-01-01
One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.
Nano-Composite Material Development for 3-D Printers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satches, Michael Randolph
Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matricesmore » and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.« less
Analysis of the Explosive Internal Impact on the Barriers of Building Structures
NASA Astrophysics Data System (ADS)
Siwiński, Jarosław; Stolarski, Adam
2017-10-01
Work issues concern the safety of construction in relation to the hazards arising from explosion of the explosive charge located inside the building. The algorithms proposed in the paper for determining the parameters of the overpressure wave resulting from the detonation of clustered explosive charges, determine the basis for numerical simulation analyzes. Determination of the maximum value of peak pressure on the wave forehead of an internal explosion is presented on the basis of reflected wave analysis. Changeability in time of the internal explosion action describes the overpressure phase only. The analysis of the load caused by the internal explosive charge detonation was carried out under conditions of the undisturbed standard atmosphere. A load determination algorithm has been developed, taking into account the geometrical characteristics of the building barriers and the rooms as well as the parameters of environment in which the detonation occurs. The way of taking into account the influence of venting surfaces, i.e. windows, doors, ventilation ducts, on the overpressure wave parameters, was presented. Discloses a method to take into account the effect of the surface relief, i.e. windows, doors, air ducts, pressure wave parameters. Modification of the method for explosive overpressure determination presented by Cormie, Smith, Mays (2009), was proposed in the paper. This modification was developed on the basis of substitute impulse analysis for multiple overpressure pulses. In order to take into account the pressure distribution of explosive gases on the barrier surface, the method of modification the relationship for determination the changeability over time and space of the pressure of explosive gases, was presented. For this purpose, the changeability of the pressure wave angles of incidence to the barrier and the distance of the explosive charge to any point on the surface of the barrier, was taken into account. Based on the developed procedure, the overpressure changeability over time was determined for selected measurement points of the reference room. A comparative analysis of the determined loadings with experimental results and theoretical results of other authors, taken from the original work of Weerhiejm et al. (2012), was carried out.
NASA Astrophysics Data System (ADS)
Derbentsev, I.; Karyakin, A. A.; Volodin, A.
2017-11-01
The article deals with the behaviour of a contact-monolithic joint of large-panel buildings under compression. It gives a detailed analysis and the descriptions of the stages of such joints failure based on the results of the tests and computational modelling. The article is of interest to specialists who deal with computational modelling or the research of large-panel multi-storey buildings. The text gives a valuable information on the values of their bearing capacity and flexibility, the eccentricity of load transfer from upper panel to lower, the value of thrust passed to a ceiling panel. Recommendations are given to estimate all the above-listed parameters.
Ignition and Reaction Analysis of High Loading Nano-Al/Fluoropolymer Energetic Composite Films
2014-01-01
through a small nozzle electrically connected to a high voltage. Charges that build up on the surface create a columbic driven hydrodynamic instability...hours to dissolve the PVDF, sonicated for 1 hour in a Branson 5510 ultrasonicator , and then stirred again for 24 hours. C. Electrospray deposition
Site dependent factors affecting the economic feasibility of solar powered absorption cooling
NASA Technical Reports Server (NTRS)
Bartlett, J. C.
1978-01-01
A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.
Introduction to Building Systems Performance: Houses That Work II. Revised February 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-03-01
Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.
2001-04-01
construction, numerous non load- bearing walls, and large windows. Commercial offices and high rise buildings are generally framed with steel girders...Mass buildings are built so exterior walls bear the weight of the structure. The walls of mass structures are usually thick and constructed of...buildings are similar in size to Type 5 office buildings, but with less glass and with load- bearing reinforced concrete walls. They offer greater protection
NASA Astrophysics Data System (ADS)
Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.
2018-02-01
This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.
45. Building 102, view of waveguide "coaxial waste load" device ...
45. Building 102, view of waveguide "coaxial waste load" device connected to waveguide combiner. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
19. Photocopied 1983, from original drawing (CP12501), Picatinny Arsenal, September ...
19. Photocopied 1983, from original drawing (CP-12501), Picatinny Arsenal, September 25, 1929. BUILDING NO. 448, 'BAG LOADING AREA SAFETY CHUTE--BUILDING T-868 448'. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
NASA Astrophysics Data System (ADS)
Kadela, Marta; Chomacki, Leszek
2017-10-01
The soil’s load on retention walls or underground elements of engineering structures consists of three basic types of pressure: active pressure (p a ), passive pressure (p b ) and at-rest pressure (p 0 ). In undisturbed areas without any mining, due to lack of activity in the soil, specific forces from the soil are stable and unchanging throughout the structure’s life. Mining activity performed at a certain depth activates the soil. Displacements take place in the surface layer of the rock mass, which begins to act on the structure embedded in it, significantly changing the original stress distribution. Deformation of the subgrade, mainly horizontal strains, becomes a source of significant additional actions in the contact zone between the structure and the soil, constituting an additional load for the structure. In order to monitor the mining influence in the form of compressive load on building walls, an observation line was set up in front of two buildings located in Silesia (in Mysłowice). In 2013, some mining activity took place directly under those buildings, with expected horizontal strains of εx = -5.8 mm/m. The measurement results discussed in this paper showed that, as predicted, the buildings were subjected only to horizontal compressive strains with the values parallel to the analysed wall being less than -4.0 ‰ for first building and -1.5‰ for second building, and values perpendicular to the analysed wall being less than -6.0‰ for first building and -4.0‰ for second building (the only exception was the measurement in line 8-13, where εx = -17.04‰ for first building and -4.57‰ for second building). The horizontal displacement indicate that the impact of mining activity was greater on first building. This is also confirmed by inspections of the damage.
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda
2017-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.
Occupancy schedules learning process through a data mining framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Oca, Simona; Hong, Tianzhen
Building occupancy is a paramount factor in building energy simulations. Specifically, lighting, plug loads, HVAC equipment utilization, fresh air requirements and internal heat gain or loss greatly depends on the level of occupancy within a building. Developing the appropriate methodologies to describe and reproduce the intricate network responsible for human-building interactions are needed. Extrapolation of patterns from big data streams is a powerful analysis technique which will allow for a better understanding of energy usage in buildings. A three-step data mining framework is applied to discover occupancy patterns in office spaces. First, a data set of 16 offices with 10more » minute interval occupancy data, over a two year period is mined through a decision tree model which predicts the occupancy presence. Then a rule induction algorithm is used to learn a pruned set of rules on the results from the decision tree model. Finally, a cluster analysis is employed in order to obtain consistent patterns of occupancy schedules. Furthermore, the identified occupancy rules and schedules are representative as four archetypal working profiles that can be used as input to current building energy modeling programs, such as EnergyPlus or IDA-ICE, to investigate impact of occupant presence on design, operation and energy use in office buildings.« less
Occupancy schedules learning process through a data mining framework
D'Oca, Simona; Hong, Tianzhen
2014-12-17
Building occupancy is a paramount factor in building energy simulations. Specifically, lighting, plug loads, HVAC equipment utilization, fresh air requirements and internal heat gain or loss greatly depends on the level of occupancy within a building. Developing the appropriate methodologies to describe and reproduce the intricate network responsible for human-building interactions are needed. Extrapolation of patterns from big data streams is a powerful analysis technique which will allow for a better understanding of energy usage in buildings. A three-step data mining framework is applied to discover occupancy patterns in office spaces. First, a data set of 16 offices with 10more » minute interval occupancy data, over a two year period is mined through a decision tree model which predicts the occupancy presence. Then a rule induction algorithm is used to learn a pruned set of rules on the results from the decision tree model. Finally, a cluster analysis is employed in order to obtain consistent patterns of occupancy schedules. Furthermore, the identified occupancy rules and schedules are representative as four archetypal working profiles that can be used as input to current building energy modeling programs, such as EnergyPlus or IDA-ICE, to investigate impact of occupant presence on design, operation and energy use in office buildings.« less
10 CFR 434.512 - Internal loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE... Proposed Design or for calculation of Design Energy Cost. 512.2Internal loads for multi-family high-rise residential buildings are prescribed in Tables 512.2.a and b, Multi-Family High Rise Residential Building...
Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions
Damiani, Rick R.; Dana, Scott; Annoni, Jennifer; ...
2018-04-13
Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less
Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, Rick R.; Dana, Scott; Annoni, Jennifer
Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less
Comparison of Building Energy Modeling Programs: Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Dandan; Hong, Tianzhen; Yan, Da
This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In themore » fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to identify the differences in solution algorithms, modeling assumptions and simplifications. Identifying inputs of each program and their default values or algorithms for load simulation was a critical step. These tend to be overlooked by users, but can lead to large discrepancies in simulation results. As weather data was an important input, weather file formats and weather variables used by each program were summarized. Some common mistakes in the weather data conversion process were discussed. ASHRAE Standard 140-2007 tests were carried out to test the fundamental modeling capabilities of the load calculations of the three BEMPs, where inputs for each test case were strictly defined and specified. The tests indicated that the cooling and heating load results of the three BEMPs fell mostly within the range of spread of results from other programs. Based on ASHRAE 140-2007 test results, the finer differences between DeST and EnergyPlus were further analyzed by designing and conducting additional tests. Potential key influencing factors (such as internal gains, air infiltration, convection coefficients of windows and opaque surfaces) were added one at a time to a simple base case with an analytical solution, to compare their relative impacts on load calculation results. Finally, special tests were designed and conducted aiming to ascertain the potential limitations of each program to perform accurate load calculations. The heat balance module was tested for both single and double zone cases. Furthermore, cooling and heating load calculations were compared between the three programs by varying the heat transfer between adjacent zones, the occupancy of the building, and the air-conditioning schedule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa
The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problemmore » is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.« less
Seismic performance for vertical geometric irregularity frame structures
NASA Astrophysics Data System (ADS)
Ismail, R.; Mahmud, N. A.; Ishak, I. S.
2018-04-01
This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.
Tornado and extreme wind design criteria for nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-12-01
Nuclear power plant design criteria for tornadoes and extreme winds are presented. Data, formulas, and procedures for determining maximum wind loading on structures and parts of structures are included. Extreme wind loading is applied to structures using methods and procedures consistent with ANSI Building Code A58.1- 1972. The design wind velocities specified generally exceed 100-year recurrent interval winds. Tornado wind loading is applied to structures using procedures paralleling those for extrene winds with additional criteria resulting from the atmospheric pressure change accompanying tornadoes and tornado missile inipact effects. Tornado loading for the 48 contiguous United States is specified for twomore » major zones separated by the Continental Divide. A cross reference listing items related to Atomic Energy Commission Safety Analysis Report format is provided. Development supporting tornado criteria is included. (auth)« less
Bollmann, Ulla E; Vollertsen, Jes; Carmeliet, Jan; Bester, Kai
2014-06-01
Biocides such as isothiazolinones, carbamates, triazines, phenylureas, azoles and others are used to protect the surfaces of buildings, e.g. painted or unpainted render or wood. These biocides can be mobilized from the materials if rainwater gets into contact with these buildings. Hence, these biocides will be found in rainwater runoff (stormwater) from buildings that is traditionally managed as "clean water" in stormwater sewer systems and often directly discharged into surface waters without further treatment. By means of a 9 month event-based high resolution sampling campaign the biocide emissions in a small suburban stormwater catchment were analysed and the emission dynamics throughout the single rain events were investigated. Five out of twelve of the rain events (peak events) proved significantly higher concentrations than the rest (average) for at least one compound. Highest median concentrations of 0.045 and 0.052 μg L(-1) were found for terbutryn and carbendazim, while the concentrations for isoproturon, diuron, N-octylisothiazolinone, benzoisothiazolinone, cybutryn, propiconazole, tebuconazole, and mecoprop were one order of magnitude lower. However, during the peak events the concentrations reached up to 1.8 and 0.3 μg L(-1) for terbutryn and carbendazim, respectively. Emissions of an averaged single family house into the stormwater sewer turned out to be 59 and 50 μg event(-1) house(-1) terbutryn and carbendazim, respectively. Emissions for the other biocides ranged from 0.1 to 11 μg event(-1) house(-1). Mass load analysis revealed that peak events contributed in single events as much to the emissions as 11 average events. However, the mass loads were highly dependent on the amounts of rainwater, i.e. the hydraulic flow in the receiving sewer pipe. The analysis of the emission dynamics showed first flush emissions only for single parameters in three events out of twelve. Generally biocides seemed to be introduced into the stormwater system rather continuously during the respective events than in the beginning of them. Mass flows during the events did correlate to driving rain, whereas mass loads neither correlated to the length or the intensity of rainfall nor the length of dry period. Copyright © 2014 Elsevier Ltd. All rights reserved.
Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile-Polese, L.; Frank, S.; Sheppy, M.
2014-02-01
Buildings account for 40% of primary energy consumption in the United States (residential 22%; commercial 18%). Most (70% residential and 79% commercial) is used as electricity. Thus, almost 30% of U.S. primary energy is used to provide electricity to buildings. Plug loads play an increasingly critical role in reducing energy use in new buildings (because of their increased efficiency requirements), and in existing buildings (as a significant energy savings opportunity). If all installed commercial building miscellaneous electrical loads (CMELs) were replaced with energy-efficient equipment, a potential annual energy saving of 175 TWh, or 35% of the 504 TWh annual energymore » use devoted to MELs, could be achieved. This energy saving is equivalent to the annual energy production of 14 average-sized nuclear power plants. To meet DOE's long-term goals of reducing commercial building energy use and carbon emissions, the energy efficiency community must better understand the components and drivers of CMEL energy use, and develop effective reduction strategies. These goals can be facilitated through improved data collection and monitoring methodologies, and evaluation of CMELs energy-saving techniques.« less
Low-Load Space Conditioning Needs Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puttagunta, Srikanth
Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has providedmore » certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Hong, Tianzhen
We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less
Chen, Yixing; Hong, Tianzhen
2018-02-20
We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less
Method of energy load management using PCM for heating and cooling of buildings
Stovall, T.K.; Tomlinson, J.J.
1996-03-26
A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.
Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey
NASA Astrophysics Data System (ADS)
Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.
2017-12-01
Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.
Improving Thermal Performance of a Residential Building, Related to Its Orientations - A Case Study
NASA Astrophysics Data System (ADS)
Akshaya, S.; Harish, S.; Arthy, R.; Muthu, D.; Venkatasubramanian, C.
2017-07-01
Urban planners and stakeholders require knowledge about the effectiveness of city-scale climate adaptation measures in order to develop climate resilient cities and to push forward the political process for the implementation of climate adaptation strategies. This study examines the impact of modifications in orientation of buildings with respect to heat load. Heat load calculation is a mathematical process to determine the best capacity, application and style of HVAC system. The purpose is to ensure energy efficiency while also maximizing comfort inside the building. This study of load calculation is essential for a building because it helps to pick the best orientation and focuses to find an orientation that will reduce energy due to direct solar radiation. One of the factors affecting this assessment is the latitude of the location. The heat gain is effective through walls and fenestration. Improper management through ineffective orientation of the building’s natural heat gain leads to excessive consumption of energy in the form of CL. The total heat gain for the above factors is calculated with the equations and assumptions as per ASHRAE code. After the calculation of heat load for different orientations, the best suited orientation of the building is found. By altering the building to suitable orientation, the dependence on electrical equipment can be minimized and thereby helps in energy conservation.
Method of energy load management using PCM for heating and cooling of buildings
Stovall, Therese K.; Tomlinson, John J.
1996-01-01
A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.
Method of energy load management using PCM for heating and cooling of buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, T.K.; Tomlinson, J.J.
1996-03-26
A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material ismore » preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.« less
Predictive models of energy consumption in multi-family housing in College Station, Texas
NASA Astrophysics Data System (ADS)
Ali, Hikmat Hummad
Patterns of energy consumption in apartment buildings are different than those in single-family houses. Apartment buildings have different physical characteristics, and their inhabitants have different demographic attributes. This study develops models that predict energy usage in apartment buildings in College Station. This is accomplished by analyzing and identifying the predictive variables that affect energy usage, studying the consumption patterns, and creating formulas based on combinations of these variables. According to the hypotheses and the specific research context, a cross-sectional design strategy is adopted. This choice implies analyses across variations within a sample of fourplex apartments in College Station. The data available for analysis include the monthly billing data along with the physical characteristics of the building, climate data for College Station, and occupant demographic characteristics. A simple random sampling procedure is adopted. The sample size of 176 apartments is drawn from the population in such a way that every possible sample has the same chance of being selected. Statistical methods used to interpret the data include univariate analysis (mean, standard deviation, range, and distribution of data), correlation analysis, regression analysis, and ANOVA (analyses of variance). The results show there are significant differences in cooling efficiency and actual energy consumption among different building types, but there are no significant differences in heating consumption. There are no significant differences in actual energy consumption between student and non-student groups or among ethnic groups. The findings indicate that there are significant differences in actual energy consumption among marital status groups and educational level groups. The multiple regression procedures show there is a significant relationship between normalized annual consumption and the combined variables of floor area, marital status, dead band, construction material, summer thermostat setting, heating, slope, and base load, as well as a relationship between cooling slope and the combined variables of share wall, floor level, summer thermostat setting, external wall, and American household. In addition, there is a significant relationship between heating slope and the combined variables of winter thermostat setting, market value, student, and rent. The results also indicate there is a relationship between base load and the combined variables of floor area, market value, age of the building, marital status, student, and summer thermostat setting.
Assessment and Rehabilitation Issues Concerning Existing 70’s Structural Stock
NASA Astrophysics Data System (ADS)
Sabareanu, E.
2017-06-01
The last 30 years were very demanding in terms of norms and standards change concerning the structural calculus for buildings, leaving a large stock of structures erected during 70-90 decades in a weak position concerning seismic loads and loads level for live loads, wind and snow. In the same time, taking into account that a large amount of buildings are in service all over the country, they cannot be demolished, but suitable rehabilitation methods should be proposed, structural durability being achieved. The paper proposes some rehabilitation methods suitable in terms of structural safety and cost optimization for diaphragm reinforced concrete structures, with an example on an existing multi storey building.
Control of Smart Building Using Advanced SCADA
NASA Astrophysics Data System (ADS)
Samuel, Vivin Thomas
For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-04-01
Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.
Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials.
Barker, Gary C; Malakar, Pradeep K; Plowman, June; Peck, Michael W
2016-01-04
We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg(-1). Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments. Copyright © 2016 Barker et al.
Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials
Barker, Gary C.; Malakar, Pradeep K.; Plowman, June
2016-01-01
We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg−1. Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments. PMID:26729721
The project is an integrative educational and research project that will revolutionize design and construction methods towards more sustainable buildings. The project will develop and test new product design concepts using bio-composite materials in load-bearing and fa&cced...
Development of Interlocking Masonry Bricks and its’ Structural Behaviour: A Review Paper
NASA Astrophysics Data System (ADS)
Al-Fakih, Amin; Mohammed, Bashar S.; Nuruddin, Fadhil; Nikbakht, Ehsan
2018-04-01
Conventional bricks are the most elementary building materials for houses construction. However, the rapid growth in today’s construction industry has obliged the civil engineers in searching for a new building technique that may result in even greater economy, more efficient and durable as an alternative for the conventional brick. Moreover, the high demands for having a speedy and less labour and cost building systems is one of the factor that cause the changes of the masonry conventional systems. These changes have led to improved constructability, performance, and cost as well. Several interlocking bricks has been developed and implemented in building constructions and a number of researches had studied the manufacturing of interlocking brick and its structural behaviour as load bearing and non-load bearing element. This technical paper aims to review the development of interlocking brick and its structural behaviour. In conclusion, the concept of interlocking system has been widely used as a replacement of the conventional system where it has been utilized either as load bearing or non-load bearing masonry system.
Optimal Scheduling Method of Controllable Loads in DC Smart Apartment Building
NASA Astrophysics Data System (ADS)
Shimoji, Tsubasa; Tahara, Hayato; Matayoshi, Hidehito; Yona, Atsushi; Senjyu, Tomonobu
2015-12-01
From the perspective of global warming suppression and the depletion of energy resources, renewable energies, such as the solar collector (SC) and photovoltaic generation (PV), have been gaining attention in worldwide. Houses or buildings with PV and heat pumps (HPs) are recently being used in residential areas widely due to the time of use (TOU) electricity pricing scheme which is essentially inexpensive during middle-night and expensive during day-time. If fixed batteries and electric vehicles (EVs) can be introduced in the premises, the electricity cost would be even more reduced. While, if the occupants arbitrarily use these controllable loads respectively, power demand in residential buildings may fluctuate in the future. Thus, an optimal operation of controllable loads such as HPs, batteries and EV should be scheduled in the buildings in order to prevent power flow from fluctuating rapidly. This paper proposes an optimal scheduling method of controllable loads, and the purpose is not only the minimization of electricity cost for the consumers, but also suppression of fluctuation of power flow on the power supply side. Furthermore, a novel electricity pricing scheme is also suggested in this paper.
Building-Based Analysis of the Spatial Provision of Urban Parks in Shenzhen, China.
Gao, Wenxiu; Lyu, Qiang; Fan, Xiang; Yang, Xiaochun; Liu, Jiangtao; Zhang, Xirui
2017-12-06
Urban parks provide important environmental, social, and economic benefits to people and urban areas. The literature demonstrates that proximity to urban parks is one of the key factors influencing people's willingness to use them. Therefore, the provision of urban parks near residential areas and workplaces is one of the key factors influencing quality of life. This study designed a solution based on the spatial association between urban parks and buildings where people live or work to identify whether people in different buildings have nearby urban parks available for their daily lives. A building density map based on building floor area (BFA) was used to illustrate the spatial distribution of urban parks and five indices were designed to measure the scales, service coverage and potential service loads of urban parks and reveal areas lacking urban park services in an acceptable walking distance. With such solution, we investigated the provision of urban parks in ten districts of Shenzhen in China, which has grown from several small villages to a megacity in only 30 years. The results indicate that the spatial provision of urban parks in Shenzhen is not sufficient since people in about 65% of the buildings cannot access urban parks by walking 10-min. The distribution and service coverage of the existing urban parks is not balanced at the district level. In some districts, the existing urban parks have good numbers of potential users and even have large service loads, while in some districts, the building densities surrounding the existing parks are quite low and at the same time there is no urban parks nearby some high-density areas.
Building-Based Analysis of the Spatial Provision of Urban Parks in Shenzhen, China
Gao, Wenxiu; Lyu, Qiang; Fan, Xiang; Liu, Jiangtao; Zhang, Xirui
2017-01-01
Urban parks provide important environmental, social, and economic benefits to people and urban areas. The literature demonstrates that proximity to urban parks is one of the key factors influencing people’s willingness to use them. Therefore, the provision of urban parks near residential areas and workplaces is one of the key factors influencing quality of life. This study designed a solution based on the spatial association between urban parks and buildings where people live or work to identify whether people in different buildings have nearby urban parks available for their daily lives. A building density map based on building floor area (BFA) was used to illustrate the spatial distribution of urban parks and five indices were designed to measure the scales, service coverage and potential service loads of urban parks and reveal areas lacking urban park services in an acceptable walking distance. With such solution, we investigated the provision of urban parks in ten districts of Shenzhen in China, which has grown from several small villages to a megacity in only 30 years. The results indicate that the spatial provision of urban parks in Shenzhen is not sufficient since people in about 65% of the buildings cannot access urban parks by walking 10-min. The distribution and service coverage of the existing urban parks is not balanced at the district level. In some districts, the existing urban parks have good numbers of potential users and even have large service loads, while in some districts, the building densities surrounding the existing parks are quite low and at the same time there is no urban parks nearby some high-density areas. PMID:29211046
Influence of Shading on Cooling Energy Demand
NASA Astrophysics Data System (ADS)
Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof
2017-10-01
The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.
Simulating Vibrations in a Complex Loaded Structure
NASA Technical Reports Server (NTRS)
Cao, Tim T.
2005-01-01
The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.
Design automation of load-bearing arched structures of roofs of tall buildings
NASA Astrophysics Data System (ADS)
Kulikov, Vladimir
2018-03-01
The article considers aspects of the possible use of arched roofs in the construction of skyscrapers. Tall buildings experience large load from various environmental factors. Skyscrapers are subject to various and complex types of deformation of its structural elements. The paper discusses issues related to the aerodynamics of various structural elements of tall buildings. The technique of solving systems of equations state method of Simpson. The article describes the optimization of geometric parameters of bearing elements of the arched roofs of skyscrapers.
View northnorthwest of turret shed (building 56), at right of ...
View north-northwest of turret shed (building 56), at right of photograph. Electrical and electronics facility (building 1000) located south of drydock no. 2. The gantry crane and its supporting structure (left foreground) was used to load assembled gun turrets onto barges moored in the barge basin under the gantry structure. After loading on a crane on pier 4 and lifted into positioned on a battleship or cruiser. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Drydock No. 2, League Island, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Burleyson, C. D.; Voisin, N.; Taylor, T.; Xie, Y.; Kraucunas, I.
2017-12-01
The DOE's Pacific Northwest National Laboratory (PNNL) has been developing the Building ENergy Demand (BEND) model to simulate energy usage in residential and commercial buildings responding to changes in weather, climate, population, and building technologies. At its core, BEND is a mechanism to aggregate EnergyPlus simulations of a large number of individual buildings with a diversity of characteristics over large spatial scales. We have completed a series of experiments to explore methods to calibrate the BEND model, measure its ability to capture interannual variability in energy demand due to weather using simulations of two distinct weather years, and understand the sensitivity to the number and location of weather stations used to force the model. The use of weather from "representative cities" reduces computational costs, but often fails to capture spatial heterogeneity that may be important for simulations aimed at understanding how building stocks respond to a changing climate (Fig. 1). We quantify the potential reduction in temperature and load biases from using an increasing number of weather stations across the western U.S., ranging from 8 to roughly 150. Using 8 stations results in an average absolute summertime temperature bias of 4.0°C. The mean absolute bias drops to 1.5°C using all available stations. Temperature biases of this magnitude translate to absolute summertime mean simulated load biases as high as 13.8%. Additionally, using only 8 representative weather stations can lead to a 20-40% bias of peak building loads under heat wave or cold snap conditions, a significant error for capacity expansion planners who may rely on these types of simulations. This analysis suggests that using 4 stations per climate zone may be sufficient for most purposes. Our novel approach, which requires no new EnergyPlus simulations, could be useful to other researchers designing or calibrating aggregate building model simulations - particularly those looking at the impact of future climate scenarios. Fig. 1. An example of temperature bias that results from using 8 representative weather stations: (a) surface temperature from NLDAS on 5-July 2008 at 2000 UTC; (b) temperature from 8 representative stations at the same time mapped to all counties within a given IECC climate zone; (c) the difference between (a) and (b).
Strength resistance of reinforced concrete elements of high-rise buildings under dynamic loads
NASA Astrophysics Data System (ADS)
Berlinov, Mikhail
2018-03-01
A new method for calculating reinforced concrete constructions of high-rise buildings under dynamic loads from wind, seismic, transport and equipment based on the initial assumptions of the modern phenomenological theory of a nonlinearly deformable elastic-creeping body is proposed. In the article examined the influence of reinforcement on the work of concrete in the conditions of triaxial stress-strain state, based on the compatibility of the deformation of concrete and reinforcement. Mathematical phenomenological equations have been obtained that make it possible to calculate the reinforced concrete elements working without and with cracks. A method for linearizing of these equations based on integral estimates is proposed, which provides the fixation of the vibro-creep processes in the considered period of time. Application of such a technique using the finite-difference method, step method and successive approximations will allow to find a numerical solution of the problem. Such an approach in the design of reinforced concrete constructions will allow not only more fully to take into account the real conditions of their work, revealing additional reserves of load capacity, but also to open additional opportunities for analysis and forecasting their functioning at various stages of operation.
Materials, used in historical buildings, analysis methods and solutions puroposals
NASA Astrophysics Data System (ADS)
Döndüren, M. Sami; Sişik, Ozlem
2017-10-01
Most of historical buildings are built with pressure principle and have the characteristics of masonry structures. Therefore, the structure components of buildings are constituted bearing walls, columns, buttresses, vaults and domes. Natural stone, cut stone, rubble stone brick or alternate materials were used in the bearing elements. Brick-dust and mortar with more binding feature were used as combination elements. In time, some problems were occurred in used materials and in structure as a result of various effects. Therefore, it is necessary to apply various applications in framework of repair and strengthening of buildings. In this study, restoration of historic buildings and the control of the adequacy of the bearing systems as one most important part of structure were examined. For this purpose, static analysis of Edirne-Merkez Demirtaş (Timurtaş) mosque located in Edirne was tested. Testes could give suggestions and be applied if buildings needed be revealed. The structure was modelled with finite element model of sap2000 package program and the forces generated under various loads and stresses, the occurred deformation due to that, overflow of allowable stress of this deformation and stresses were investigated. As the results of this study can be note that the maximum compressive stress at the construction is calculated as 1.1 MPa.
BLAST: Building energy simulation in Hong Kong
NASA Astrophysics Data System (ADS)
Fong, Sai-Keung
1999-11-01
The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was evaluated. It was found that the supply of cool air to the lower portion of the compartment provided significant performance of space cooling. The mathematical relationships between different shading patterns and different glass window to wall ratios of single compartments were established to provide a guide for easy approximation of energy use under similar conditions. In addition, the Overall Thermal Transfer Values (OTTV) for the compartments were studied. The monthly and annual energy use of three realistic buildings were investigated. They were a commercial building, an industrial building and a dual-purpose building. The cooling loads per floor area for the buildings were studied and the OTTV were evaluated by two different methods. Sensitivity analysis was carried out to investigate the impact of the parameters of internal heat gains on the energy use of an academic building. It was found that there was major influence of indoor temperature setting on building energy use The performances of using the local weather data file of TMY and example weather years 1980 and 1989 were evaluated. TMY was found to be the most suitable for energy simulation while the weather years 1980 and 1989 yielded good results.
Investigation of Concrete Floor Vibration Using Heel-Drop Test
NASA Astrophysics Data System (ADS)
Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd
2018-04-01
In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.
23. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), ...
23. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), INTERIOR, LOOKING SOUTH DOWN CENTRAL CORRIDOR. NOTE BINS IN WALLS ON EITHER SIDE OF CORRIDOR, USED FOR PASSING EXPLOSIVES AND LOADED ITEMS TO SIEVING ROOMS BEYOND WALLS. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
5. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING NORTHWEST AT ...
5. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING NORTHWEST AT SOUTH SIDE OF BUILDING. BUILDING NO. 403 IN BACKGROUND RIGHT. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Characteristics and Performance of Existing Load Disaggregation Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony T.; Sullivan, Greg P.; Butner, Ryan S.
2015-04-10
Non-intrusive load monitoring (NILM) or non-intrusive appliance load monitoring (NIALM) is an analytic approach to disaggregate building loads based on a single metering point. This advanced load monitoring and disaggregation technique has the potential to provide an alternative solution to high-priced traditional sub-metering and enable innovative approaches for energy conservation, energy efficiency, and demand response. However, since the inception of the concept in the 1980’s, evaluations of these technologies have focused on reporting performance accuracy without investigating sources of inaccuracies or fully understanding and articulating the meaning of the metrics used to quantify performance. As a result, the market for,more » as well as, advances in these technologies have been slowly maturing.To improve the market for these NILM technologies, there has to be confidence that the deployment will lead to benefits. In reality, every end-user and application that this technology may enable does not require the highest levels of performance accuracy to produce benefits. Also, there are other important characteristics that need to be considered, which may affect the appeal of NILM products to certain market targets (i.e. residential and commercial building consumers) and the suitability for particular applications. These characteristics include the following: 1) ease of use, the level of expertise/bandwidth required to properly use the product; 2) ease of installation, the level of expertise required to install along with hardware needs that impact product cost; and 3) ability to inform decisions and actions, whether the energy outputs received by end-users (e.g. third party applications, residential users, building operators, etc.) empower decisions and actions to be taken at time frames required for certain applications. Therefore, stakeholders, researchers, and other interested parties should be kept abreast of the evolving capabilities, uses, and characteristics of NILM that make them attractive for certain building environments and different classes of end-users. The intent of this report is to raise awareness of trending NILM approaches. Additionally, three existing technologies were acquired and evaluated using the Residential Building Stock Assessment (RBSA) owner-occupied test bed operated by the Northwest Energy Efficiency Alliance (NEEA) to understand performance accuracy of current NILM products under realistic conditions. Based on this field study experience, the characteristics exhibited by the NILM products included in the assessment are also discussed in this report in terms of ease of use, ease of installation, ability to inform decisions and actions. Results of the analysis performed to investigate the accuracy of the participating NILM products in estimating energy use of individual appliances are also presented.« less
Building energy modeling for green architecture and intelligent dashboard applications
NASA Astrophysics Data System (ADS)
DeBlois, Justin
Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the representation of unpredictable occupancy patterns on model results. Combined, these studies inform modelers and researchers on frameworks for simulating holistically designed architecture and improving the interaction between models and building occupants, in residential and commercial settings. v
NASA Astrophysics Data System (ADS)
Stanca, C.; Acomi, N.; Ancuta, C.; Georgescu, S.
2015-11-01
Container ships carry cargoes that are considered light from the weight point of view, compared to their volumetric capacity. This fact makes the still water vertical bending moment to be in hogging condition. Thus, the double bottom structure is permanent subject to compressive load. With the enlargement of container ships to the Post Panamax vessels, the breadth to depth ratio tends to be increased comparative to those of Panamax container ships that present restriction related to maximum breadth of the ship.The current studies on new build models reveal the impossibility for Panamax container ships to comply with the minimum metacentric height value of stability without loading ballast water in the double bottom tanks. In contrast, the Post-Panamax container ships, as resulted from metacentric height calculation, have adequate stability even if the ballast water is not loaded in the double bottom tanks. This analysis was conducted considering two partially loaded port-container vessels. Given the minimization of ballast quantities, the frequency with which the still water vertical bending moment reaches close to the allowable value increases.This study aims to analyse the ships’ behaviour in partially loaded conditions and carrying ballast water in the double bottom tanks. By calculating the metacentric height that influences the stability of the partially loaded port container vessels, this study will emphasize the critical level of loading condition which triggers the uptake of ballast water in the double bottom tanks, due to metacentric height variation.
3D engineered fiberboard : engineering analysis of a new building product
John F. Hunt; Jerrold E. Winandy
2003-01-01
In many forests across the United States, the high forest fuel loadings are contributing to our recent forest fire problems. Many fire-prone timber stands are generally far from traditional timber markets or the timber is not economically valuable enough to cover the costs of removal. To help address this problem, the USDA Forest Products Laboratory has developed a...
Fatigue behaviour analysis for the durability prequalification of strengthening mortars
NASA Astrophysics Data System (ADS)
Bocca, P.; Grazzini, A.; Masera, D.
2011-07-01
An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann
Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less
Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann
2017-08-07
Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less
Analysis of electrical audit and energy efficiency in building Hotel BC, North Jakarta
NASA Astrophysics Data System (ADS)
Wahyudi Biantoro, Agung
2018-03-01
The Hotel BC is using power source from PLN with capacity of 4300 kVA which is divided into 3 units of 2000 kVA transformer. Transformers are used to supply the load of Mall tenants, and Utility loads, such as Chiller, pumps and others. Problems found in the field are complaints from the hotel regarding the safety of electrical installations and wasteful, inefficient electrical costs. The purpose of this study is to check the electrical installation in the building and determine the Energy Use Intensity (EUI) and the cost of payment according to usage based on historical data of the building then compare it with the EUI standard of Ministry of Energy and Mineral Resources of Indonesia. The method used is survey measurement method and quantitative descriptive analysis by comparing in general condition of energy consumption of this building with standard issued by Ministry of Energy and Mineral Resources of Indonesia. The EUI is average 645.58 kWh/m2/year, or 53.79 kWh/m2/month, this is inefficient category, because its EUI value is > 24 kWh / m2 / month. For Electrical audit on imaging thermal test at Panel Out Going of chiller pump, 200 ampere, the highest temperature is 97.3° C, at 200 ampere phase S termination, and this is included in the major category. The numbers of hot spots on the Capacitor bank panels are 10 major points and Chiller panel has 10 major. There are many major points and they are quite dangerous because they can cause fire hazard on the panel. The AC average temperature and humidity distribution did not meet the standard of SNI (Indonesia National Standard).
Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul
2015-10-01
The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation inmore » retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.« less
Žuvela-Aloise, M
2017-03-01
The numerical model MUKLIMO_3 is used to simulate the urban climate of an imaginary city as an illustrative example to demonstrate that the residential areas with deprived socio-economic conditions can exhibit an enhanced heat load at night, and thus more disadvantageous environmental conditions, compared with the areas of higher socio-economic status. The urban climate modelling simulations differentiate between orographic, natural landscape, building and social effects, where social differences are introduced by selection of location, building type and amount of vegetation. The model results show that the increase of heat load can be found in the areas inhabited by the poor population as a combined effect of natural and anthropogenic factors. The unfavourable location in the city and the building type, consisting of high density, low housing with high fraction of pavement and small amount of vegetation contribute to the formation of excessive heat load. This abstract example shows that the enhancement of urban heat load can be linked to the concept of a socially stratified city and is independent of the historical development of any specific city.
NASA Astrophysics Data System (ADS)
Žuvela-Aloise, M.
2017-03-01
The numerical model MUKLIMO_3 is used to simulate the urban climate of an imaginary city as an illustrative example to demonstrate that the residential areas with deprived socio-economic conditions can exhibit an enhanced heat load at night, and thus more disadvantageous environmental conditions, compared with the areas of higher socio-economic status. The urban climate modelling simulations differentiate between orographic, natural landscape, building and social effects, where social differences are introduced by selection of location, building type and amount of vegetation. The model results show that the increase of heat load can be found in the areas inhabited by the poor population as a combined effect of natural and anthropogenic factors. The unfavourable location in the city and the building type, consisting of high density, low housing with high fraction of pavement and small amount of vegetation contribute to the formation of excessive heat load. This abstract example shows that the enhancement of urban heat load can be linked to the concept of a socially stratified city and is independent of the historical development of any specific city.
NASA Astrophysics Data System (ADS)
Abdel Raheem, Shehata E.; Ahmed, Mohamed M.; Alazrak, Tarek M. A.
2015-03-01
Soil conditions have a great deal to do with damage to structures during earthquakes. Hence the investigation on the energy transfer mechanism from soils to buildings during earthquakes is critical for the seismic design of multi-story buildings and for upgrading existing structures. Thus, the need for research into soil-structure interaction (SSI) problems is greater than ever. Moreover, recent studies show that the effects of SSI may be detrimental to the seismic response of structure and neglecting SSI in analysis may lead to un-conservative design. Despite this, the conventional design procedure usually involves assumption of fixity at the base of foundation neglecting the flexibility of the foundation, the compressibility of the underneath soil and, consequently, the effect of foundation settlement on further redistribution of bending moment and shear force demands. Hence the SSI analysis of multi-story buildings is the main focus of this research; the effects of SSI are analyzed for typical multi-story building resting on raft foundation. Three methods of analysis are used for seismic demands evaluation of the target moment-resistant frame buildings: equivalent static load; response spectrum methods and nonlinear time history analysis with suit of nine time history records. Three-dimensional FE model is constructed to investigate the effects of different soil conditions and number of stories on the vibration characteristics and seismic response demands of building structures. Numerical results obtained using SSI model with different soil conditions are compared to those corresponding to fixed-base support modeling assumption. The peak responses of story shear, story moment, story displacement, story drift, moments at beam ends, as well as force of inner columns are analyzed. The results of different analysis approaches are used to evaluate the advantages, limitations, and ease of application of each approach for seismic analysis.
Performative building envelope design correlated to solar radiation and cooling energy consumption
NASA Astrophysics Data System (ADS)
Jacky, Thiodore; Santoni
2017-11-01
Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.
Cakmak, Ercan; Kirka, Michael M.; Watkins, Thomas R.; ...
2016-02-23
Theta-shaped specimens were additively manufactured out of Inconel 718 powders using an electron beam melting technique, as a model complex load bearing structure. We employed two different build strategies; producing two sets of specimens. Microstructural and micro-mechanical characterizations were performed using electron back-scatter, synchrotron x-ray and in-situ neutron diffraction techniques. In particular, the cross-members of the specimens were the focus of the synchrotron x-ray and in-situ neutron diffraction measurements. The build strategies employed resulted in the formation of distinct microstructures and crystallographic textures, signifying the importance of build-parameter manipulation for microstructural optimization. Large strain anisotropy of the different lattice planesmore » was observed during in-situ loading. Texture was concluded to have a distinct effect upon both the axial and transverse strain responses of the cross-members. In particular, the (200), (220) and (420) transverse lattice strains all showed unexpected overlapping trends in both builds. This was related to the strong {200} textures along the build/loading direction, providing agreement between the experimental and calculated results.« less
Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Nicholas E.P.; Katipamula, Srinivas; Wang, Weimin
Commercial buildings in the United States use about 18 Quadrillion British thermal units (Quads) of primary energy annually . Studies have shown that as much as 30% of building energy consumption can be avoided by using more accurate sensing, using existing controls better, and deploying advanced controls; hence, the motivation for the work described in this report. Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed/curtailed to provide grid services. Although many studies have indicated significant potential for reducing the energy consumption in commercial buildings, very few have documented the actualmore » savings. The studies that did so only provided savings at the whole building level, which makes it difficult to assess the savings potential of each individual measure deployed.« less
Nonlinear analysis of NPP safety against the aircraft attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk; Králik, Juraj, E-mail: kralik@fa.stuba.sk
The paper presents the nonlinear probabilistic analysis of the reinforced concrete buildings of nuclear power plant under the aircraft attack. The dynamic load is defined in time on base of the airplane impact simulations considering the real stiffness, masses, direction and velocity of the flight. The dynamic response is calculated in the system ANSYS using the transient nonlinear analysis solution method. The damage of the concrete wall is evaluated in accordance with the standard NDRC considering the spalling, scabbing and perforation effects. The simple and detailed calculations of the wall damage are compared.
26. BUILDING NO. 271I, LEAD AZIDE PRIMER BUILDING, WESTERN CORNER ...
26. BUILDING NO. 271-I, LEAD AZIDE PRIMER BUILDING, WESTERN CORNER OF BUILDING SHOWING DOORS TO MIXING ROOM NO. 4. HAND CRANK VISIBLE AT RIGHT ROTATED SMALL POTS (CONTAINING LEAD AZIDE) IN MIXING ROOMS. - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ
NASA Astrophysics Data System (ADS)
Tan, Chee Ghuan; Chia, Wei Ting; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Adiyanto, Mohd Irwan
2017-10-01
On 5th June 2015, a moderate earthquake with Mw 5.9 hit Ranau, resulted in damages of the existing non-seismically designed buildings, such that 61 buildings, including mosques, schools, hospitals and Ranau police headquarters were suffered from different level structural damages. Soft storey irregularity is one of the main reasons of the building damage. This study is to investigate the soft-story effect on the propagation path of plastic hinges RC building under seismic excitation. The plastic hinges formation and seismic performance of five moment resisting RC frames with different infill configurations are studied. The seismic performance of building is evaluated by Incremental Dynamic Analysis (IDA). Open ground soft storey structure shows the lowest seismic resistance, collapses at 0.55g pga. The maximum interstorey drift ratio (IDRmax) in soft storey buildings ranging from 0.53% to 2.96% which are far greater than bare frame ranging from 0.095% to 0.69%. The presence of infill walls creates stiffer upper stories causing moments concentrate at the soft storey, resulting the path of plastic hinge propagation is dominant at the soft storey columns. Hence, the buildings with soft storey are very susceptible under earthquake load.
1992-10-01
Manual CI APPENDIX D: Drawing Navigator Field Test D1 DISTRIBUTION Accesion For NTIS CRA&I OTIC TAB Unannouncea JustiteCdtOn By Distribution I "".i•I...methods replace manual methods, the automation will handle the data for the designer, thus reducing error and increasing throughput. However, the two...actively move data from one automation tool (CADD) to the other (the analysis program). This intervention involves a manual rekeying of data already in
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda
2016-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230
View of North End of Oxide Building Interior Including Roof ...
View of North End of Oxide Building Interior Including Roof and Wall Juncture and Crane Trolley - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
SUNREL Energy Simulation Software | Buildings | NREL
SUNREL Energy Simulation Software SUNREL Energy Simulation Software SUNREL® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are
NASA Astrophysics Data System (ADS)
Ghenai, C.; Bettayeb, M.
2017-11-01
Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.
Curvilinear steel elements in load-bearing structures of high-rise building spatial frames
NASA Astrophysics Data System (ADS)
Ibragimov, Alexander; Danilov, Alexander
2018-03-01
The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.
NASA Astrophysics Data System (ADS)
Fanget, Alain
2009-06-01
Many authors claim that to understand the response of a propellant, specifically under quasi static and dynamic loading, the mesostructural morphology and the mechanical behaviour of each of its components have to be known. However the scale of the mechanical description of the behaviour of a propellant is relative to its heterogeneities and the wavelength of loading. The shorter it is, the more important the topological description of the material is. In our problems, involving the safety of energetic materials, the propellant can be subjected to a large spectrum of loadings. This presentation is divided into five parts. The first part describes the processes used to extract the information about the morphology of the meso-structure of the material and presents some results. The results, the difficulties and the perspectives for this part will be recalled. The second part determines the physical processes involved at this scale from experimental results. Taking into account the knowledge of the morphology, two ways have been chosen to describe the response of the material. One concerns the quasi static loading, the object of the third part, in which we show how we use the mesoscopic scale as a base of development to build constitutive models. The fourth part presents for low but dynamic loading the comparison between numerical analysis and experiments.
Building Energy Management Open Source Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications.more » (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote monitoring ability with role-based access control. (7) Security – In addition to built-in security features provided by VOLTTRON, BEMOSS provides enhanced security features, including BEMOSS discovery approval process, encrypted core-to-node communication, thermostat anti-tampering feature and many more. (8) Support from the Advisory Committee – BEMOSS was developed in consultation with an advisory committee from the beginning of the project. BEMOSS advisory committee comprises representatives from 22 organizations from government and industry.« less
Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun
2014-08-19
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.
Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun
2014-01-01
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170
Subcontracted activities related to TES for building heating and cooling
NASA Technical Reports Server (NTRS)
Martin, J.
1980-01-01
The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.
NASA Astrophysics Data System (ADS)
Ścigałło, Jacek
2015-06-01
The article refers to the problems of adaptation of Collegium Chemicum facilities belonging to Adam Mickiewicz Uniwersity in Poznań to its storage needs. The subject building is situated in Grunwaldzka Street in Poznań. In the introduction part, the building and its structural solutions are described. The results of the materials research and the measurements of the used reinforcement have been presented. The structure diagnostic analyses were performed basing on measurements and research. The analysis allowed the determination of the limit loads. The results of the performed analysis of the current state turned out to be unsatisfactory, not only in terms of the planned storage load but also in terms of the current load state, as was shown by the construction analysis. W pracy przedstawiono problemy związane z adaptacją budynku dydaktycznego Collegium Chemicum przy ul. Grunwaldzkiej w Poznaniu na cele magazynowe Biblioteki Głównej UAM. Na wstępie opisano badany budynek oraz scharakteryzowano zastosowane w nim rozwiązania konstrukcyjne. Przedstawiono wyniki wykonanych badań materiałowych oraz pomiarów inwentaryzacyjnych zastosowanego zbrojenia. Na podstawie wykonanych pomiarów i badań przeprowadzono analizę diagnostyczną konstrukcji, która pozwoliła na wyznaczenie dopuszczalnych wartości obciążeń powierzchni stropowych. Wyniki wykonanej analizy konstrukcji w stanie istniejącym okazały się dalece niezadowalające nie tylko z punktu widzenia planowanych, znacznych obciążeń magazynowych. Analiza wykazała bowiem, że konstrukcja jest już znacznie przeciążona w aktualnym stanie jej obciążenia
Looking Northeast in Oxide Building at Reactors on Second Floor ...
Looking Northeast in Oxide Building at Reactors on Second Floor Including Reactor One (Left) and Reactor Two (Right) - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
NASA Astrophysics Data System (ADS)
Ham, Youngjib
The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and localization issues of 2D thermal image-based inspection, a new computer vision-based method is presented for automated 3D spatio-thermal modeling of building environments from images and localizing the thermal images into the 3D reconstructed scenes, which helps better characterize the as-is condition of existing buildings in 3D. By using these models, auditors can conduct virtual walk-through in buildings and explore the as-is condition of building geometry and the associated thermal conditions in 3D. Second, to address the challenges in qualitative and subjective interpretation of visual data, a new model-based method is presented to convert the 3D thermal profiles of building environments into their associated energy performance metrics. More specifically, the Energy Performance Augmented Reality (EPAR) models are formed which integrate the actual 3D spatio-thermal models ('as-is') with energy performance benchmarks ('as-designed') in 3D. In the EPAR models, the presence and location of potential energy problems in building environments are inferred based on performance deviations. The as-is thermal resistances of the building assemblies are also calculated at the level of mesh vertex in 3D. Then, based on the historical weather data reflecting energy load for space conditioning, the amount of heat transfer that can be saved by improving the as-is thermal resistances of the defective areas to the recommended level is calculated, and the equivalent energy cost for this saving is estimated. The outcome provides building practitioners with unique information that can facilitate energy efficient retrofit decision-makings. This is a major departure from offhand calculations that are based on historical cost data of industry best practices. Finally, to improve the reliability of BIM-based energy performance modeling and analysis for existing buildings, a new model-based automated method is presented to map actual thermal resistance measurements at the level of 3D vertexes to the associated BIM elements and update their corresponding thermal properties in the gbXML schema. By reflecting the as-is building condition in the BIM-based energy modeling process, this method bridges over the gap between the architectural information in the as-designed BIM and the as-is building condition for accurate energy performance analysis. The performance of each method was validated on ten case studies from interiors and exteriors of existing residential and instructional buildings in IL and VA. The extensive experimental results show the promise of the proposed methods in addressing the fundamental challenges of (1) visual sensing : scaling 2D visual assessments to real-world building environments and localizing energy problems; (2) analytics: subjective and qualitative assessments; and (3) BIM-based building energy analysis : a lack of procedures for reflecting the as-is building condition in the energy modeling process. Beyond the technical contributions, the domain expert surveys conducted in this dissertation show that the proposed methods have potential to improve the quality of thermographic inspection processes and complement the current building energy analysis tools.
Transactive Control of Commercial Buildings for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Corbin, Charles D.; Kalsi, Karanjit
Transactive control is a type of distributed control strategy that uses market mechanism to engage self-interested responsive loads to achieve power balance in the electrical power grid. In this paper, we propose a transactive control approach of commercial building Heating, Ventilation, and Air- Conditioning (HVAC) systems for demand response. We first describe the system models, and identify their model parameters using data collected from Systems Engineering Building (SEB) located on our Pacific Northwest National Laboratory (PNNL) campus. We next present a transactive control market structure for commercial building HVAC system, and describe its agent bidding and market clearing strategies. Severalmore » case studies are performed in a simulation environment using Building Control Virtual Test Bed (BCVTB) and calibrated SEB EnergyPlus model. We show that the proposed transactive control approach is very effective at peak clipping, load shifting, and strategic conservation for commercial building HVAC systems.« less
Constructive systems, load-bearing and enclosing structures of high-rise buildings
NASA Astrophysics Data System (ADS)
Anatol'evna Korol', Elena; Olegovna Kustikova, Yuliya
2018-03-01
As the height of the building increases, loads on load-carrying structures increase dramatically, and as a result of the development of high-rise construction, several structural systems of such buildings have been developed: frame, frame-frame, cross-wall, barrel, box-type, box-to-wall ("pipe in pipe", "Trumpet in the farm"), etc. In turn, the barrel systems have their own versions: cantilever support of the ceilings on the trunk, suspension of the outer part of the overlap to the upper carrying console "hanging house" or its support by means of the walls on the lower bearing cantilever, intermediate position of the supporting cantilevers in height to the floor, from a part of floors. The object of the study are the structural solutions of high-rise buildings. The subject of the study is the layout of structural schemes of high-rise buildings, taking into account the main parameters - altitude (height), natural climatic conditions of construction, materials of structural elements and their physical and mechanical characteristics. The purpose of the study is to identify the features and systematization of structural systems of high-rise buildings and the corresponding structural elements. The results of the research make it possible, at the stage of making design decisions, to establish rational parameters for the correspondence between the structural systems of high-rise buildings and their individual elements.
Lateral Displacement and Shear Lag Effect of Combination of Diagrid-Frame
NASA Astrophysics Data System (ADS)
Abd. Samat, Roslida; Chua, Fong Teng; Mustakim, Nur Akmal Hayati Mohd; Saad, Sariffuddin; Abu Bakar, Suhaimi
2018-03-01
Diagrid system, which is the portmanteau of diagonal grid member, is an exterior lateral load resisting system for tall building that has gained a wide acceptance in the design of tall buildings. There is abundance of researches that studied the efficiency of diagrid systems, which are constructed from the ground level to the top of the buildings in resisting the lateral load. Nevertheless, no study had been performed on the effectiveness of the diagrid that is constructed above other tall building systems despite the existence of a few buildings in the world that employ such system. The objective of this research is to understand the behavior of the lateral displacement and shear lag effect due to wind load when the diagrid structure is constructed above a frame. Models of 60-story buildings with a footprint of 36m x 36m were analyzed by using Staad.Pro software. The level where the diagrid members started was altered. The lateral displacement was reduced to 60.6 percent and 41 percent of the lateral displacement of a building with full frame system when the combination of frame-diagrid that had the diagrid started at Level 1 and Level 45, respectively were employed. Furthermore, the shear lag ratio was reduced from 1.7 to 1.3 when the level where the diagrid started was increased from Level 1 to Level 45.
Solar thermal heating and cooling. A bibliography with abstracts
NASA Technical Reports Server (NTRS)
Arenson, M.
1979-01-01
This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.
Power system security enhancement through direct non-disruptive load control
NASA Astrophysics Data System (ADS)
Ramanathan, Badri Narayanan
The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads. The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system. This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two different algorithms based on dynamic programming are proposed for air-conditioner loads, while a decision-tree based algorithm is proposed for water-heater loads. An optimization framework has been developed employing the above algorithms. Monte Carlo simulations have been performed using this framework with the objective of studying the impact of different parameters and constraints on the effectiveness as well as the effect of control. The conclusions drawn from this research strongly advocate direct load control for stability enhancement from the perspectives of robustness and coordination, as well as economic viability and the developments towards availability of the institutional framework for load participation in providing system reliability services.
Wijesiri, Buddhi; Egodawatta, Prasanna; McGree, James; Goonetilleke, Ashantha
2016-09-15
Accurate prediction of stormwater quality is essential for developing effective pollution mitigation strategies. The use of models incorporating simplified mathematical replications of pollutant processes is the common practice for determining stormwater quality. However, an inherent process uncertainty arises due to the intrinsic variability associated with pollutant processes, which has neither been comprehensively understood, nor well accounted for in uncertainty assessment of stormwater quality modelling. This review provides the context for defining and quantifying the uncertainty associated with pollutant build-up and wash-off on urban impervious surfaces based on the hypothesis that particle size is predominant in influencing process variability. Critical analysis of published research literature brings scientific evidence together in order to establish the fact that particle size changes with time, and different sized particles exhibit distinct behaviour during build-up and wash-off, resulting in process variability. Analysis of the different adsorption behaviour of particles confirmed that the variations in pollutant load and composition are influenced by particle size. Particle behaviour and variations in pollutant load and composition are related due to the strong affinity of pollutants such as heavy metals and hydrocarbons for specific particle size ranges. As such, the temporal variation in particle size is identified as the key to establishing a basis for assessing build-up and wash-off process uncertainty. Therefore, accounting for pollutant build-up and wash-off process variability, which is influenced by particle size, would facilitate the assessment of the uncertainty associated with modelling outcomes. Furthermore, the review identified fundamental knowledge gaps where further research is needed in relation to: (1) the aggregation of particles suspended in the atmosphere during build-up; (2) particle re-suspension during wash-off; (3) pollutant re-adsorption by different particle size fractions; and (4) development of evidence-based techniques for assessing uncertainty; and (5) methods for translating the knowledge acquired from the investigation of process mechanisms at small scale into catchment scale for stormwater quality modelling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of new methodologies for evaluating the energy performance of new commercial buildings
NASA Astrophysics Data System (ADS)
Song, Suwon
The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against Standards 90.1-1989 and 90.1-2001, and (3) A new evaluation of the performance of selected Energy Conservation Design Measures (ECDMs). Finally, potential energy savings were also simulated from selected improvements, including: minimum supply air flow, undocumented exhaust air, and daylighting.
Probability-Based Design Criteria of the ASCE 7 Tsunami Loads and Effects Provisions (Invited)
NASA Astrophysics Data System (ADS)
Chock, G.
2013-12-01
Mitigation of tsunami risk requires a combination of emergency preparedness for evacuation in addition to providing structural resilience of critical facilities, infrastructure, and key resources necessary for immediate response and economic and social recovery. Critical facilities would include emergency response, medical, tsunami refuges and shelters, ports and harbors, lifelines, transportation, telecommunications, power, financial institutions, and major industrial/commercial facilities. The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 - Tsunami Loads and Effects for the 2016 edition of the ASCE 7 Standard. ASCE 7 provides the minimum design loads and requirements for structures subject to building codes such as the International Building Code utilized in the USA. In this paper we will provide a review emphasizing the intent of these new code provisions and explain the design methodology. The ASCE 7 provisions for Tsunami Loads and Effects enables a set of analysis and design methodologies that are consistent with performance-based engineering based on probabilistic criteria. . The ASCE 7 Tsunami Loads and Effects chapter will be initially applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii. Ground shaking effects and subsidence from a preceding local offshore Maximum Considered Earthquake will also be considered prior to tsunami arrival for Alaska and states in the Pacific Northwest regions governed by nearby offshore subduction earthquakes. For national tsunami design provisions to achieve a consistent reliability standard of structural performance for community resilience, a new generation of tsunami inundation hazard maps for design is required. The lesson of recent tsunami is that historical records alone do not provide a sufficient measure of the potential heights of future tsunamis. Engineering design must consider the occurrence of events greater than scenarios in the historical record, and should properly be based on the underlying seismicity of subduction zones. Therefore, Probabilistic Tsunami Hazard Analysis (PTHA) consistent with source seismicity must be performed in addition to consideration of historical event scenarios. A method of Probabilistic Tsunami Hazard Analysis has been established that is generally consistent with Probabilistic Seismic Hazard Analysis in the treatment of uncertainty. These new tsunami design zone maps will define the coastal zones where structures of greater importance would be designed for tsunami resistance and community resilience. Structural member acceptability criteria will be based on performance objectives for a 2,500-year Maximum Considered Tsunami. The approach developed by the ASCE Tsunami Loads and Effects Subcommittee of the ASCE 7 Standard would result in the first national unification of tsunami hazard criteria for design codes reflecting the modern approach of Performance-Based Engineering.
Simulated building energy demand biases resulting from the use of representative weather stations
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; ...
2017-11-06
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
Simulated building energy demand biases resulting from the use of representative weather stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
VOLTTRON-Based System for Providing Ancillary Services with Residential Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin
2016-07-01
Ancillary services entail controlled modulation of building equipment to maintain a stable balance of generation and load in the power system. Ancillary services include frequency regulation and contingency reserves, whose acting time ranges from several seconds to several minutes. Many pilot studies have been implemented to use industrial loads to provide ancillary services, and some have explored services from commercial building loads or electric vehicle charging loads. Residential loads, such as space conditioning and water heating, represent a largely untapped resource for providing ancillary services. The residential building sector accounts for a significant fraction of the total electricity use inmore » the United States. Many loads in residential buildings are flexible and could potentially be curtailed or shifted at the request of the grid. However, there are many barriers that prevent residential loads being widely used for ancillary services. One of the major technical barriers is the lack of communication capabilities between end-use devices and the grid. End-use devices need to be able to receive the automatic generation control (AGC) signal from the grid operator and supply certain types of telemetry to verify response. With the advance of consumer electronics, communication-enabled, or 'connected,' residential equipment has emerged to overcome the communication barrier. However, these end-use devices have introduced a new interoperability challenge due to the existence of numerous standards and communication protocols among different end devices. In this paper, we present a VOLTTRON-based system that overcomes these technical challenges and provides ancillary services with residential loads. VOLTTRON is an open-source control and sensing platform for building energy management, facilitating interoperability solutions for end devices. We have developed drivers to communicate and control different types of end devices through standard-based interfaces, manufacturer-provided application programming interfaces, and proprietary communication interfaces. We document the ability to manage nine appliances, using four different standards or proprietary communication methods. A hardware-in-the-loop test was performed in a laboratory environment where the loads of a laboratory home and a large number of simulated homes are controlled by an aggregator. Upon receipt of an AGC signal, the VOLTTRON home energy management system (HEMS) of the laboratory home adjusts the end-device controls based on the comfort criteria set by the end users and sends telemetry to the aggregator to verify response. The aggregator then sends the AGC signal to other simulated homes in attempts to match the utility request as closely as possible. Frequency regulation is generally considered a higher value service than other ancillary services but it is also more challenging due to the constraint of short response time. A frequency regulation use case has been implemented with the regulation signals sent every 10 seconds. Experimental results indicate that the VOLTTRON-controlled residential loads are able to be controlled with sufficient fidelity to enable an aggregator to meet frequency regulation requirements. Future work is warranted, such as understanding the impact of this type of control on equipment life, and market requirements needed to open up residential loads to ancillary service aggregators.« less
Looking Southwest at First Floor View of Oxide Building Interior ...
Looking Southwest at First Floor View of Oxide Building Interior Including Steam Lines, Weigh and Sample Hood, and Superheater - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
76. Neg. No. F58, Apr 13, 1930, INTERIORASSEMBLY BUILDING, BURNOFF, ...
76. Neg. No. F-58, Apr 13, 1930, INTERIOR-ASSEMBLY BUILDING, BURNOFF, LOAD END OF ENAMEL OVEN - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA
Reducing Heat Gains and Cooling Loads Through Roof Structure Configurations of A House in Medan
NASA Astrophysics Data System (ADS)
Handayani Lubis, Irma; Donny Koerniawan, Mochamad
2018-05-01
Heat gains and heat losses through building surfaces are the main factors that determine the building’s cooling and heating loads. Roof as a building surface that has the most exposed area to the sun, contribute most of heat gains in the building. Therefore, the amount of solar heat gains on the roofs need to be minimized by roof structure configurations. This research aims to discover the optimization of roof structure configurations (coating material, structure material, inclination, overhang, and insulation) as one of passive design strategies that reduce heat gains and cooling loads of a house in Medan. The result showed that case four, white-painted metal roof combined with 45° roof pitched, 1.5m overhang, and addition of insulation, indicates the minimum heat gains production and the less cooling loads during clear sky day but not in the overcast sky condition. In conclusion, heat gains and cooling loads of a house in Medan could be diminished during clear sky day by the addition of roof coating with high reflectance low solar absorbtance, the slope roof, the extension of wider veranda, and the addition of insulation in the roof structure.
NASA Astrophysics Data System (ADS)
Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama
2017-06-01
A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.
NASA Technical Reports Server (NTRS)
Davis, E. S.; French, R. L.; Hirshberg, A. S.
1976-01-01
Plausible future market scenarios for solar heating and cooling systems into buildings in the area served by the Southern California Edison Company. A range of plausible estimates for the number of solar systems which might be installed and the electrical energy which might be displaced by energy from these systems are provided. The effect on peak electrical load was not explicitly calculated but preliminary conclusions concerning peak load can be inferred from the estimates presented. Two markets are investigated: the single family market and the large power commercial market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Danny S.; Cummings, Jamie E.; Vieira, Robin K.
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
NASA Astrophysics Data System (ADS)
Hassan, Wael Mohammed
Beam-column joints in concrete buildings are key components to ensure structural integrity of building performance under seismic loading. Earthquake reconnaissance has reported the substantial damage that can result from inadequate beam-column joints. In some cases, failure of older-type corner joints appears to have led to building collapse. Since the 1960s, many advances have been made to improve seismic performance of building components, including beam-column joints. New design and detailing approaches are expected to produce new construction that will perform satisfactorily during strong earthquake shaking. Much less attention has been focused on beam-column joints of older construction that may be seismically vulnerable. Concrete buildings constructed prior to developing details for ductility in the 1970s normally lack joint transverse reinforcement. The available literature concerning the performance of such joints is relatively limited, but concerns about performance exist. The current study aimed to improve understanding and assessment of seismic performance of unconfined exterior and corner beam-column joints in existing buildings. An extensive literature survey was performed, leading to development of a database of about a hundred tests. Study of the data enabled identification of the most important parameters and the effect of each parameter on the seismic performance. The available analytical models and guidelines for strength and deformability assessment of unconfined joints were surveyed and evaluated. In particular, The ASCE 41 existing building document proved to be substantially conservative in joint shear strength estimation. Upon identifying deficiencies in these models, two new joint shear strength models, a bond capacity model, and two axial capacity models designed and tailored specifically for unconfined beam-column joints were developed. The proposed models strongly correlated with previous test results. In the laboratory testing phase of the current study, four full-scale corner beam-column joint subassemblies, with slab included, were designed, built, instrumented, tested, and analyzed. The specimens were tested under unidirectional and bidirectional displacement-controlled quasi-static loading that incorporated varying axial loads that simulated overturning seismic moment effects. The axial loads varied between tension and high compression loads reaching about 50% of the column axial capacity. The test parameters were axial load level, loading history, joint aspect ratio, and beam reinforcement ratio. The test results proved that high axial load increases joint shear strength and decreases the deformability of joints failing in pure shear failure mode without beam yielding. On the contrary, high axial load did not affect the strength of joints failing in shear after significant beam yielding; however, it substantially increased their displacement ductility. Joint aspect ratio proved to be instrumental in deciding joint shear strength; that is the deeper the joint the lower the shear strength. Bidirectional loading reduced the apparent strength of the joint in the uniaxial principal axes. However, circular shear strength interaction is an appropriate approximation to predict the biaxial strength. The developed shear strength models predicted successfully the strength of test specimens. Based on the literature database investigation, the shear and axial capacity models developed and the test results of the current study, an analytical finite element component model based on a proposed joint shear stress-rotation backbone constitutive curve was developed to represent the behavior of unconfined beam-column joints in computer numerical simulations of concrete frame buildings. The proposed finite element model included the effect of axial load, mode of joint failure, joint aspect ratio and axial capacity of joint. The proposed backbone curve along with the developed joint element exhibited high accuracy in simulating the test response of the current test specimens as well as previous test joints. Finally, a parametric study was conducted to assess the axial failure vulnerability of unconfined beam-column joints based on the developed shear and axial capacity models. This parametric study compared the axial failure potential of unconfined beam-column joint with that of shear critical columns to provide a preliminary insight into the axial collapse vulnerability of older-type buildings during intense ground shaking.
What are the potential benefits of including latent storage in common wallboard?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, T.K.; Tomlinson, J.J.
1995-11-01
Previous work has shown that wallboard can be successfully manufactured to contain up to 30% phase-change material (PCM), or wax, thus enabling this common building material to serve as a thermal energy storage device. The PCM wallboard was analyzed for passive solar applications and found to save energy with a reasonable payback time period of five years. Further evaluations of the wallboard are reported in this paper. This analysis looks at potential applications of PCM wallboard as a load management device and as a comfort enhancer. Results show that the wallboard is ineffective in modifying the comfort level but canmore » provide significant load management relief. In some applications the load management strategy also serves to save a small amount of energy, in others there is a small energy penalty.« less
Effect of URM infills on seismic vulnerability of Indian code designed RC frame buildings
NASA Astrophysics Data System (ADS)
Haldar, Putul; Singh, Yogendra; Paul, D. K.
2012-03-01
Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction, the general design practice is to treat infills as nonstructural elements and their stiffness, strength and interaction with the frame is often ignored, primarily because of difficulties in simulation and lack of modeling guidelines in design codes. The Indian Standard, like many other national codes, does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames. This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills. Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered. HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames. The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.
12. Threequarter view of southwest corner of building 500, Gwing, ...
12. Three-quarter view of southwest corner of building 500, G-wing, and loading dock looking northeast, from Apollo Drive - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE
4. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING SOUTHEAST AT ...
4. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING SOUTHEAST AT SOUTH AND WEST SIDES OF BUILDING. ORIGINALLY USED AS A STOREHOUSE. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Spring back of infinite honeycomb sheets beyond plastic deformation
NASA Astrophysics Data System (ADS)
Bonfanti, A.; Bhaskar, A.
2015-02-01
Cellular structures are promising for applications where high stiffness and strength are required with the minimal use of material. They are often used in applications where the plastic deformation plays an important role, such as those involving crashworthiness, energy absorption, and stents. The elastic analysis of a honeycomb sheet has been carried out in the past [1]. The present analysis extends this classical work in the elasto-plastic regime. Recoil analysis due to elastic recovery is absent from the published literature. This work aims to develop an analytical model to calculate the spring back for a simplified case, that of an infinite honeycomb sheet. An elastic-perfectly plastic material model is assumed. The recoil for a clamped beam with a load and moment applied at the free edge is analytically calculated first. This is carried out by relating the stress distribution of the cross section to the final deformed shape. The part corresponding to the elastic contribution is subsequently subtracted in order to obtain the final configuration after the external load is removed. This simple elasto-plastic analysis is then incorporated into the analysis of an infinite sheet made of uniform hexagonal cells. The translational symmetry of the lattice is exploited along with the analysis of a beam under tip loading through to plastic stage and recoil. The final shape of the struts upon the removal of the remote stress is completely determined by the plastic deformation which cannot be recovered. The expression for the beam thus obtained is then used to build an analytical model for an infinite honeycomb sheet loaded in both directions.
94. Neg. No. F130, Sep 24, 1931, EXTERIOROFFICE BUILDING AND ...
94. Neg. No. F-130, Sep 24, 1931, EXTERIOR-OFFICE BUILDING AND ASSEMBLY BUILDING, WEST SIDE, SHOWING TRUCKS AND TRAILORS LOADED WITH NEW TRUCKS DISPLAYING SIGNS 'MORE FORDS FOR HOOVER DAM' - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA
Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei; ...
2017-06-12
Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei
Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less
Finite element analysis of provisional structures of implant-supported complete prostheses.
Carneiro, Bruno Albuquerque; de Brito, Rui Barbosa; França, Fabiana Mantovani Gomes
2014-04-01
The use of provisional resin implant-supported complete dentures is a fast and safe procedure to restore mastication and esthetics of patients soon after surgery and during the adaptation phase to the new denture. This study assessed stress distribution of provisional implant-supported fixed dentures and the all-on-4 concept using self-curing acrylic resin (Tempron) and bis-acrylic resin (Luxatemp) to simulate functional loads through the three-dimensional finite element method. Solidworks software was used to build three-dimensional models using acrylic resin (Tempron, model A) and bis-acrylic resin (Luxatemp, model B) for denture captions. Two loading patterns were applied on each model: (1) right unilateral axial loading of 150 N on the occlusal surfaces of posterior teeth and (2) oblique loading vector of 150 N at 45°. The results showed that higher stress was found on the bone crest below oblique load application with a maximum value of 187.57 MPa on model A and 167.45 MPa on model B. It was concluded that model B improved stress distribution on the denture compared with model A.
Designing Glass Panels for Economy and Reliability
NASA Technical Reports Server (NTRS)
Moore, D. M.
1983-01-01
Analytical method determines probability of failure of rectangular glass plates subjected to uniformly distributed loads such as those from wind, earthquake, snow, and deadweight. Developed as aid in design of protective glass covers for solar-cell arrays and solar collectors, method is also useful in estimating the reliability of large windows in buildings exposed to high winds and is adapted to nonlinear stress analysis of simply supported plates of any elastic material.
NASA Astrophysics Data System (ADS)
Cretcher, C. K.; Rountredd, R. C.
1980-11-01
Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.
Passive detection of vehicle loading
NASA Astrophysics Data System (ADS)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Salvaggio, Philip S.; McKeown, Donald M.; Garrett, Alfred J.; Coleman, David H.; Koffman, Larry D.
2012-01-01
The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clauss, D.B.
A 1:6-scale model of a reinforced concrete containment building was pressurized incrementally to failure at a remote site at Sandia National Laboratories. The response of the model was recorded with more than 1000 channels of data (primarily strain and displacement measurements) at 37 discrete pressure levels. The primary objective of this test was to generate data that could be used to validate methods for predicting the performance of containment buildings subject to loads beyond their design basis. Extensive analyses were conducted before the test to predict the behavior of the model. Ten organizations in Europe and the US conducted independentmore » analyses of the model and contributed to a report on the pretest predictions. Predictions included structural response at certain predetermined locations in the model as well as capacity and failure mode. This report discusses comparisons between the pretest predictions and the experimental results. Posttest evaluations that were conducted to provide additional insight into the model behavior are also described. The significance of the analysis and testing of the 1:6-scale model to performance evaluations of actual containments subject to beyond design basis loads is also discussed. 70 refs., 428 figs., 24 tabs.« less
Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan
2017-09-01
The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture resistance and bonding to tooth.
Numerical analysis of behaviour of cross laminated timber (CLT) in blast loading
NASA Astrophysics Data System (ADS)
Šliseris, J.; Gaile, L.; Pakrastiņš, L.
2017-10-01
A non-linear computation model for CLT wall element that includes explicit dynamics and composite damage constitutive model was developed. The numerical model was compared with classical beam theory and it turned out that shear wood layer has significant shear deformations that must be taken into account when designing CLT. It turned out that impulse duration time has a major effect on the strength of CLT. Special attention must be payed when designing CLT wall, window and door architectural system in order to guarantee the robustness of structure. The proposed numerical modelling framework can be used when designing CLT buildings that can be affected by blast loading, whilst structural robustness must be guaranteed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Withers, Chuck; McIlvaine, Janet
The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. Themore » problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.« less
External shading devices for energy efficient building
NASA Astrophysics Data System (ADS)
Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.
2018-02-01
External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.
NASA Astrophysics Data System (ADS)
Hirave, Vivek; Kalyanshetti, Mahesh
2018-02-01
Conventional fixed-base analysis ignoring the effect of soil-flexibility may result in unsafe design. Therefore, to evaluate the realistic behavior of structure the soil structure interaction (SSI) effect shall be incorporated in the analysis. In seismic analysis, provision of bracing system is one of the important option for the structure to have sufficient strength with adequate stiffness to resist lateral forces. The different configuration of these bracing systems alters the response of buildings, and therefore, it is important to evaluate the most effective bracing systems in view point of stability against SSI effect. In present study, three RC building frames, G+3, G+5 and G+7 and their respective scaled down steel model with two types of steel bracing system incorporating the effect of soil flexibility is considered for experimental and analytical study. The analytical study is carried out using Elastic continuum approach and the experimental study is carried out using Shake Table. The influence of SSI on various seismic parameters is presented. The study reveals that, steel bracing system is beneficial to control SSI effect and it is observed that V bracing is more effective, in resisting seismic load considering SSI.
Method development of damage detection in asymmetric buildings
NASA Astrophysics Data System (ADS)
Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy
2018-01-01
Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results obtained from a number of different damage scenarios confirm the feasibility of the proposed vibration based damage detection method for three dimensional asymmetric buildings.
A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management.
Elias, Daniel; Wang, Lixin; Jacinthe, Pierre-Andre
2018-01-12
Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985-2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models.
Extreme winds and tornadoes: design and evaluation of buildings and structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.
1985-01-01
The general provisions of ANSI A58.1-1982 are explained in detail. As mentioned above, these procedures may be used to determine design wind loads on structures from extreme winds, hurricane and tornado winds. Treatment of atmospheric pressure change loads are discussed, including recommendations for venting a building, if necessary, and the effects of rate of pressure change on HVAC systems. Finally, techniques for evaluating existing facilities are described.
NASA Astrophysics Data System (ADS)
Flores, Robert Joseph
Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load being met in an effort to reduce demand. In addition, buildings with large thermal demand have access to the least expensive natural gas, lowering the cost of operating distributed generation. Recovery of exhaust heat from DG reduces cost only if the buildings thermal demand coincides with the electrical demand. Capacity limits exist where annual savings from operation of distributed generation decrease if further generation is installed. For low operating cost generators, the approximate limit is the average building load. This limit decreases as operating costs increase. In addition, a high capital cost of distributed generation can be accepted if generator operating costs are low. As generator operating costs increase, capital cost must decrease if a positive economic performance is desired.
NASA Astrophysics Data System (ADS)
Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.
2017-11-01
The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.
Assessment of Technogenic Accident Risk of Industrial Building Structures
NASA Astrophysics Data System (ADS)
Baiburin, D. A.; Baiburin, A. Kh
2017-11-01
A methodology for assessing the risk of an industrial building accident was developed taking into account the damage caused by various localization of collapse. Before the beginning of the survey of a facility technical condition, groups including the same type of building structures are selected. Further, assessment is made for the reduction in their load-carrying capacity from the strength and stability conditions taking into account defects. The characteristics of the influence of defects and structural damage on a building safety is the degree of compliance with the standards expressed by the reliability level. Reliability levels assignment is carried out on the basis of calculations, operating experience and inspection of a particular type of structure according to the formalized rules. The risk of collapse according to a separate scenario is calculated for structures that are capable and incapable of causing a progressive ossification. The results of the technique application are based on the analysis of the accident risk at the welding shop “Vysota (Height) 239” of the Chelyabinsk Pipe Rolling Plant.
Kim, David; Sung, Eun Hee; Park, Kwan-Soon; Park, Jaegyun
2014-01-01
This paper presents the evaluation of seismic performance and cost-effectiveness of a multiple slim-type damper system developed for the vibration control of earthquake excited buildings. The multiple slim-type damper (MSD) that consists of several small slim-type dampers and linkage units can control damping capacity easily by changing the number of small dampers. To evaluate the performance of the MSD, dynamic loading tests are performed with three slim-type dampers manufactured at a real scale. Numerical simulations are also carried out by nonlinear time history analysis with a ten-story earthquake excited building structure. The seismic performance and cost-effectiveness of the MSD system are investigated according to the various installation configurations of the MSD system. From the results of numerical simulation and cost-effectiveness evaluation, it is shown that combinations of the MSD systems can effectively improve the seismic performance of earthquake excited building structures. PMID:25301387
NASA Astrophysics Data System (ADS)
Kamal, Rajeev
Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at part load operation. The study highlighted the need for optimum system sizing for GEHP/HVAC systems to meet the building load to obtain better performance in buildings. The second part of this study focusses on using chilled water or ice as thermal energy storage for shifting the air conditioning load from peak to off-peak in a commercial building. Thermal energy storage can play a very important role in providing demand-side management for diversifying the utility demand from buildings. Model of a large commercial office building is developed with thermal storage for cooling for peak power shifting. Three variations of the model were developed and analyzed for their performance with 1) ice storage, 2) chilled water storage with mixed storage tank and 3) chilled water storage with stratified tank, using EnergyPlus 8.5 software developed by the US Department of Energy. Operation strategy with tactical control to incorporate peak power schedule was developed using energy management system (EMS). The modeled HVAC system was optimized for minimum cost with the optimal storage capacity and chiller size using JEPlus. Based on the simulation, an optimal storage capacity of 40-45 GJ was estimated for the large office building model along with 40% smaller chiller capacity resulting in higher chiller part-load performance. Additionally, the auxiliary system like pump and condenser were also optimized to smaller capacities and thus resulting in less power demand during operation. The overall annual saving potential was found in the range of 7-10% for cooling electricity use resulting in 10-17% reduction in costs to the consumer. A possible annual peak shifting of 25-78% was found from the simulation results after comparing with the reference models. Adopting TES in commercial buildings and achieving 25% peak shifting could result in a reduction in peak summer demand of 1398 MW in Tampa.
30. BUILDING NO.S 271K AND 271L, VIEW LOOKING SOUTH AT ...
30. BUILDING NO.S 271-K AND 271-L, VIEW LOOKING SOUTH AT BACK OF BUILDING NO. 271-L (LEFT), 271-K (MIDDLE) AND ROOF OF BUILDING NO. 271-I (VISIBLE OVER WALKWAY ON RIGHT). - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ
System performance predictions for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.
1993-01-01
Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.
Automated Measurement and Verification and Innovative Occupancy Detection Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Phillip; Bruce, Nordman; Piette, Mary Ann
In support of DOE’s sensors and controls research, the goal of this project is to move toward integrated building to grid systems by building on previous work to develop and demonstrate a set of load characterization measurement and evaluation tools that are envisioned to be part of a suite of applications for transactive efficient buildings, built upon data-driven load characterization and prediction models. This will include the ability to include occupancy data in the models, plus data collection and archival methods to include different types of occupancy data with existing networks and a taxonomy for naming these data within amore » Volttron agent platform.« less
NASA Astrophysics Data System (ADS)
Liu, Yong Jun; Li, Chao; Zhou, When Jun
2018-06-01
This paper presents some numerical simulation results of tensile properties of reinforcing bars spliced by grout-filled coupling sleeves under fire conditions to identify the effect of load ratio on fire resistance time of spliced reinforcing bars, which provide a useful base for predicting structural behaviors of pre-cast reinforced concrete buildings in fires. A spliced rebar system investigated in this paper consists of two equal-diameter steel reinforcing bars with 25mm diameter and a straight coupling sleeve with 50mm outer and 45mm inner diameters. As a result, the thickness of grout between steel bars and sleeves are 20mm. Firstly, the temperature distributions in steel bars connected by grout- filled coupling sleeves exposed to ISO 834 standard fire were calculated utilizing finite element analysis software ANSYS. Secondly, the stress changes in heated steel bars connected by grout-filled coupling sleeves under different constant tensile loads were calculated step by step until the rebar system failed due to fire. Thus, the fire resistant time of rebar spliced by grout-filled coupling sleeves under different axial tensile loads can be determined, further, the relationship between fire resistance time and axial tensile loads ratio can could be obtained. Finally, the fire resistant times versus axial tensile load ratios curve of grout-filled splice sleeve rebars exposed to ISO 834 standard fire is presented.
Behavior of tunnel form buildings under quasi-static cyclic lateral loading
Yuksel, S.B.; Kalkan, E.
2007-01-01
In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.
Particle loading rates for HVAC filters, heat exchangers, and ducts.
Waring, M S; Siegel, J A
2008-06-01
The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.
Syazwan, AI; Rafee, B Mohd; Juahir, Hafizan; Azman, AZF; Nizar, AM; Izwyn, Z; Syahidatussyakirah, K; Muhaimin, AA; Yunos, MA Syafiq; Anita, AR; Hanafiah, J Muhamad; Shaharuddin, MS; Ibthisham, A Mohd; Hasmadi, I Mohd; Azhar, MN Mohamad; Azizan, HS; Zulfadhli, I; Othman, J; Rozalini, M; Kamarul, FT
2012-01-01
Purpose To analyze and characterize a multidisciplinary, integrated indoor air quality checklist for evaluating the health risk of building occupants in a nonindustrial workplace setting. Design A cross-sectional study based on a participatory occupational health program conducted by the National Institute of Occupational Safety and Health (Malaysia) and Universiti Putra Malaysia. Method A modified version of the indoor environmental checklist published by the Department of Occupational Health and Safety, based on the literature and discussion with occupational health and safety professionals, was used in the evaluation process. Summated scores were given according to the cluster analysis and principal component analysis in the characterization of risk. Environmetric techniques was used to classify the risk of variables in the checklist. Identification of the possible source of item pollutants was also evaluated from a semiquantitative approach. Result Hierarchical agglomerative cluster analysis resulted in the grouping of factorial components into three clusters (high complaint, moderate-high complaint, moderate complaint), which were further analyzed by discriminant analysis. From this, 15 major variables that influence indoor air quality were determined. Principal component analysis of each cluster revealed that the main factors influencing the high complaint group were fungal-related problems, chemical indoor dispersion, detergent, renovation, thermal comfort, and location of fresh air intake. The moderate-high complaint group showed significant high loading on ventilation, air filters, and smoking-related activities. The moderate complaint group showed high loading on dampness, odor, and thermal comfort. Conclusion This semiquantitative assessment, which graded risk from low to high based on the intensity of the problem, shows promising and reliable results. It should be used as an important tool in the preliminary assessment of indoor air quality and as a categorizing method for further IAQ investigations and complaints procedures. PMID:23055779
Syazwan, Ai; Rafee, B Mohd; Juahir, Hafizan; Azman, Azf; Nizar, Am; Izwyn, Z; Syahidatussyakirah, K; Muhaimin, Aa; Yunos, Ma Syafiq; Anita, Ar; Hanafiah, J Muhamad; Shaharuddin, Ms; Ibthisham, A Mohd; Hasmadi, I Mohd; Azhar, Mn Mohamad; Azizan, Hs; Zulfadhli, I; Othman, J; Rozalini, M; Kamarul, Ft
2012-01-01
To analyze and characterize a multidisciplinary, integrated indoor air quality checklist for evaluating the health risk of building occupants in a nonindustrial workplace setting. A cross-sectional study based on a participatory occupational health program conducted by the National Institute of Occupational Safety and Health (Malaysia) and Universiti Putra Malaysia. A modified version of the indoor environmental checklist published by the Department of Occupational Health and Safety, based on the literature and discussion with occupational health and safety professionals, was used in the evaluation process. Summated scores were given according to the cluster analysis and principal component analysis in the characterization of risk. Environmetric techniques was used to classify the risk of variables in the checklist. Identification of the possible source of item pollutants was also evaluated from a semiquantitative approach. Hierarchical agglomerative cluster analysis resulted in the grouping of factorial components into three clusters (high complaint, moderate-high complaint, moderate complaint), which were further analyzed by discriminant analysis. From this, 15 major variables that influence indoor air quality were determined. Principal component analysis of each cluster revealed that the main factors influencing the high complaint group were fungal-related problems, chemical indoor dispersion, detergent, renovation, thermal comfort, and location of fresh air intake. The moderate-high complaint group showed significant high loading on ventilation, air filters, and smoking-related activities. The moderate complaint group showed high loading on dampness, odor, and thermal comfort. This semiquantitative assessment, which graded risk from low to high based on the intensity of the problem, shows promising and reliable results. It should be used as an important tool in the preliminary assessment of indoor air quality and as a categorizing method for further IAQ investigations and complaints procedures.
Impact force as a scaling parameter
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.; Jackson, Wade C.
1994-01-01
The Federal Aviation Administration (FAR PART 25) requires that a structure carry ultimate load with nonvisible impact damage and carry 70 percent of limit flight loads with discrete damage. The Air Force has similar criteria (MIL-STD-1530A). Both civilian and military structures are designed by a building block approach. First, critical areas of the structure are determined, and potential failure modes are identified. Then, a series of representative specimens are tested that will fail in those modes. The series begins with tests of simple coupons, progresses through larger and more complex subcomponents, and ends with a test on a full-scale component, hence the term 'building block.' In order to minimize testing, analytical models are needed to scale impact damage and residual strength from the simple coupons to the full-scale component. Using experiments and analysis, the present paper illustrates that impact damage can be better understood and scaled using impact force than just kinetic energy. The plate parameters considered are size and thickness, boundary conditions, and material, and the impact parameters are mass, shape, and velocity.
Optimal Coordination of Building Loads and Energy Storage for Power Grid and End User Services
Hao, He; Wu, Di; Lian, Jianming; ...
2017-01-18
Demand response and energy storage play a profound role in the smart grid. The focus of this study is to evaluate benefits of coordinating flexible loads and energy storage to provide power grid and end user services. We present a Generalized Battery Model (GBM) to describe the flexibility of building loads and energy storage. An optimization-based approach is proposed to characterize the parameters (power and energy limits) of the GBM for flexible building loads. We then develop optimal coordination algorithms to provide power grid and end user services such as energy arbitrage, frequency regulation, spinning reserve, as well as energymore » cost and demand charge reduction. Several case studies have been performed to demonstrate the efficacy of the GBM and coordination algorithms, and evaluate the benefits of using their flexibility for power grid and end user services. We show that optimal coordination yields significant cost savings and revenue. Moreover, the best option for power grid services is to provide energy arbitrage and frequency regulation. Finally and furthermore, when coordinating flexible loads with energy storage to provide end user services, it is recommended to consider demand charge in addition to time-of-use price in order to flatten the aggregate power profile.« less
Literature Review of the Effects of Natural Light on Building Occupants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, L.; Torcellini, P.
This paper presents summary findings from a literature search of the term ''daylighting''-using natural light in a building to offset or replace electric lighting. According to the Department of Energy's Office of Building Technology, State and Community Programs 2000 BTS Core Databook, in 1998, commercial buildings consumed 32% of the total electricity in the United States, of which more than one-third went to lighting. Using daylighting systems and turning off the lights will help reduce this energy load. Electrical lighting adds to both the electrical and cooling loads in a commercial building. Utility costs can be decreased when daylighting ismore » properly designed to replace electrical lighting. Along with the importance of energy savings, studies have demonstrated the non-energy-related benefits of daylighting. We compiled the data from books, periodicals, Internet articles, and interviews. The books, periodicals, and Internet articles provided the background information used to identify the main subjects of the paper. The interviews provided us with details related to specific buildings and companies that have integrated daylighting into their buildings.« less
Active colloids as mobile microelectrodes for unified label-free selective cargo transport.
Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad
2018-02-22
Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.
A study of facilities and fixtures for testing of a high speed civil transport wing component
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Vause, R. F.; Bowman, L. M.; Jensen, J. K.; Martin, C. J., Jr.; Stockwell, A. E.; Waters, W. A., Jr.
1996-01-01
A study was performed to determine the feasibility of testing a large-scale High Speed Civil Transport wing component in the Structures and Materials Testing Laboratory in Building 1148 at NASA Langley Research Center. The report includes a survey of the electrical and hydraulic resources and identifies the backing structure and floor hard points which would be available for reacting the test loads. The backing structure analysis uses a new finite element model of the floor and backstop support system in the Structures Laboratory. Information on the data acquisition system and the thermal power requirements is also presented. The study identified the hardware that would be required to test a typical component, including the number and arrangement of hydraulic actuators required to simulate expected flight loads. Load introduction and reaction structure concepts were analyzed to investigate the effects of experimentally induced boundary conditions.
Operating and Maintaining Energy Smart Schools Action Plan Template - All Action Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2009-07-01
EnergySmart Schools action plan templates for benchmarking, lighting, HVAC, water heating, building envelope, transformer, plug loads, kitchen equipment, swimming pool, building automation system, other.
Successful NEES Grand Challenge Tests on Non-Ductile Beam-Column Joints
potential of existing gravity load designed RC buildings is a great concern during intense seismic events evaluate unreinforced corner joints shear strength and axial residual capacity under high axial load axial load is 0.20f Âc Ag , while the overturning axial loads vary with displacement reversals to range
Deformations of temporary wooden supports used to reduce building deflections in mining areas
NASA Astrophysics Data System (ADS)
Gromysz, Krzysztof
2018-04-01
Temporary supports, consisting of a stack of wooden elements and a hydraulic jack, are used in the process of removing deflections in buildings with one to three aboveground floors in mining areas. During uneven raising, the supports are loaded monotonically, unloaded and loaded cyclically. Laboratory tests were designed for the supports. For the investigated range of loads of 0 to 400 kN, under a growing load, a linear relationship exists between a load and the change in the stack length, which signifies that the deformations of wooden elements and displacements related to their mutual interactions increase proportionally. A seemingly higher stack stiffness is seen at the beginning of the unloading process and for cyclical loads, meaning that in this phase of loading, the material deformation of the wooden elements and the jack is responsible for changing the jack length in this load phase, with a negligible presence of mutual displacements of wooden elements. The support, after being unloaded, returns to the initial position and its permanent deformations are not observed. The stiffness of a temporary support decreases as the height of the stack of wooden elements increases.
2007-02-01
on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device
2007-02-01
on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S
2015-01-01
Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double wallsmore » and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.« less
Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M
2016-04-01
We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target controllable risk factors, such as soil nutrient status, soil condition and crop cover. Copyright © 2015 Elsevier B.V. All rights reserved.
Smart Grid | Climate Neutral Research Campuses | NREL
begun to build smart grids. Most operate electricity grids that include power generation; load control plant managers use these communications for energy management and load shedding, which are among the top familiar with equipment interoperability, central dispatch, and load shedding. These are common in smart
Code of Federal Regulations, 2011 CFR
2011-01-01
... includes any non-heating season pilot input loss. Area of the space (A): the horizontal lighted area of a... doors of a building. Integrated part-load value (IPLV): a single-number figure of merit based on part-load EER or COP expressing part-load efficiency for air-conditioning and heat pump equipment on the...
NASA Astrophysics Data System (ADS)
Korjenic, Sinan; Nowak, Bernhard; Löffler, Philipp; Vašková, Anna
2015-11-01
This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.
Analysis on energy use in reuse cement silo for campus building
NASA Astrophysics Data System (ADS)
Fidiya Nugrahani, Elita; Winda Murti, Izzati; Arifianti, Qurrotin M. O.
2018-03-01
Semen Gresik, the first cement factory in Indonesia owned by the government was operated since 1957 and stopped the operation around 1997. The owner, PT. Semen Indonesia (Persero) intended to reuse cement factory for the campus building, Universitas Internasional Semen Indonesia (UISI). This research proposed to analyze the future Energy Use Intensity (EUI) and recommendation energy efficiency in renovating silo through simulation. The result of future EUI in existing building was 234 kWh/m2.year. The scenarios created to reduce energy use in six sectors: window shades, window material, infiltration, daylighting, plug load, air-conditioning and operation schedule. The lowest EUI estimated at 98.27 by use 2/3 window shades, triple low emission window glass, lighting efficiency at 3.23 W/m2, maximize daylighting and occupancy control, minimize infiltration to 0.17 ACH, and 12/5 for operation schedule.
Development of heat-storage building materials for passive-solar applications
NASA Astrophysics Data System (ADS)
Fletcher, J. W.
A heat storage building material to be used for passive solar applications and general load leveling within building spaces was developed. Specifically, PCM-filled plastic panels are to be developed as wallboard and ceiling panels. Three PCMs (CaCl2, 6H2O; Na2SO4, 10H2O; LiNO3, 3H2O are to be evaluated for use in the double walled, hollow channeled plastic panels. Laboratory development of the panels will include determination of filling and sealing techniques, behavior of the PCMs, container properties and materials compatibility. Testing will include vapor transmission, thermal cycle, dynamic performance, accelerated life and durability tests. In addition to development and testing, an applications analysis will be performed for specific passive solar applications. Conceptual design of a single family passive solar residence will be prepared and performance evaluated. Screening of the three PCM candidates is essentially complete.
Super Energy Efficiency Design (S.E.E.D.) Home Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Dakin, B.; Backman, C.
This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less
Super Energy Efficient Design (S.E.E.D.) Home Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Dakin, B.; Backman, C.
This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the “Super Energy Efficient Design” (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less
8. DETAIL OF COVERED LOADING DOCK ON NORTH SIDE. VIEW ...
8. DETAIL OF COVERED LOADING DOCK ON NORTH SIDE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA
Military Base Off-Taker Opportunities for Tribal Renewable Energy Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nangle, J.
This white paper surveys DOD installations that could have an increased potential interest in the purchase of energy from renewable energy projects on tribal lands. Identification of likely purchasers of renewable energy is a first step in the energy project development process, and this paper aims to identify likely electricity customers that tribal commercial-scale projects could serve. This white paper builds on a geospatial analysis completed in November 2012 identifying 53 reservations within 10 miles of military bases (DOE 2012). This analysis builds on those findings by further refining the list of potential opportunity sites to 15 reservations (Table ES-1),more » based on five additional factors: 1) The potential renewable resources required to meet the installation energy loads; 2) Proximity to transmission lines; 3) Military installation energy demand; 4) State electricity prices; 5) Local policy and regulatory environment.« less
Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques
NASA Astrophysics Data System (ADS)
Heckman, V.; Kohler, M. D.; Heaton, T. H.
2009-12-01
Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.
NASA Astrophysics Data System (ADS)
Zhu, Na
This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.
11. SOUTH SIDE OF WAREHOUSE, WITH LOADING DOCK IN FOREGROUND. ...
11. SOUTH SIDE OF WAREHOUSE, WITH LOADING DOCK IN FOREGROUND. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA
3. Cement and Plaster Warehouse, north facade. Loading ramp on ...
3. Cement and Plaster Warehouse, north facade. Loading ramp on the right. Utility building, intrusion, on the far right. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA
20. VIEW OF WORTHINGTON BASE LOAD OXYGEN COMPRESSOR IN THE ...
20. VIEW OF WORTHINGTON BASE LOAD OXYGEN COMPRESSOR IN THE HIGH PURITY OXYGEN BUILDING LOOKING NORTH. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; LuPh.D., Jue; Soroushian, Parviz
2014-01-01
In the United States, forty-eight (48) percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced building envelopes can facilitate maximizing the energy efficiency of buildings. Combined experimental testing and numerical modeling of PCM-enhanced envelope components are two important aspects of the evaluation of their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conductive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweightmore » building components. A wall with cellulose cavity insulation and prototype PCM-enhanced interior wallboards was built and tested in a natural exposure test (NET) facility in a hot-humid climate location. The test wall contained PCM wallboards and regular gypsum wallboard, for a side-by-side annual comparison study. Further, numerical modeling of the walls containing the nano-PCM wallboard was performed to determine its actual impact on wall-generated heating and cooling loads. The model was first validated using experimental data, and then used for annual simulations using Typical Meteorological Year (TMY3) weather data. This article presents the measured performance and numerical analysis evaluating the energy-saving potential of the nano-PCM-enhanced wallboard.« less
Finite Element Modeling Techniques for Analysis of VIIP
NASA Technical Reports Server (NTRS)
Feola, Andrew J.; Raykin, J.; Gleason, R.; Mulugeta, Lealem; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.; Ethier, C. Ross
2015-01-01
Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP.
Looking Southwest to Dry and Wet Exterior Scrubbers at Rear ...
Looking Southwest to Dry and Wet Exterior Scrubbers at Rear of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Looking West From rear (East) End of Office Building Including ...
Looking West From rear (East) End of Office Building Including Recycle Storage Area, Loading Docks, and Decontamination Zone - Hematite Fuel Fabrication Facility, Office, 3300 State Road P, Festus, Jefferson County, MO
Design New Buildings To Save Energy -- and Money
ERIC Educational Resources Information Center
Rittelmann, Richard
1974-01-01
Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.
1979-01-01
The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.
Energy consumption program: A computer model simulating energy loads in buildings
NASA Technical Reports Server (NTRS)
Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.
1978-01-01
The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Aldrich and J. Williamson
Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2.) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support form the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldrich, Robb; Williamson, James
Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2) Because of better scale, SDHW systems in multifamily buildings cost significantly lessmore » per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhiyang; Zhang, Xiong
A dynamic computer simulation is carried out in the climates of 35 cities distributed around the world. The variation of the annual air-conditioning energy loads due to changes in the longwave emissivity and the solar reflectance of the building envelopes is studied to find the most appropriate exterior building finishes in various climates (including a tropical climate, a subtropical climate, a mountain plateau climate, a frigid-temperate climate and a temperate climate). Both the longwave emissivity and the solar reflectance are set from 0.1 to 0.9 with an interval of 0.1 in the simulation. The annual air-conditioning energy loads trends ofmore » each city are listed in a chart. The results show that both the longwave emissivity and the solar reflectance of building envelopes play significant roles in energy-saving for buildings. In tropical climates, the optical parameters of the building exterior surface affect the building energy-saving most significantly. In the mountain plateau climates and the subarctic climates, the impacts on energy-saving in buildings due to changes in the longwave emissivity and the solar reflectance are still considerable, but in the temperate continental climates and the temperate maritime climates, only limited effects are seen. (author)« less
NASA Astrophysics Data System (ADS)
Singh, Vipul
2011-12-01
The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of 'green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility-bills only. The results obtained show that often less than three to four months of monitored data is adequate for estimating the annual building energy use, provided that the monitoring is initiated at the right time, and the seasonal as well as daily variations are adequately captured by the short dataset. The predictive accuracy of the short data-sets is found to be strongly influenced by the closeness of the dataset's mean temperature to the annual average temperature. The analysis methods studied would be very useful for energy professionals involved in POE.
Building Energy Modeling and Control Methods for Optimization and Renewables Integration
NASA Astrophysics Data System (ADS)
Burger, Eric M.
This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled dynamics within a building by learning from sensor data. Control techniques encompass the application of optimal control theory, model predictive control, and convex distributed optimization to TCLs. First, we present the alternative control trajectory (ACT) representation, a novel method for the approximate optimization of non-convex discrete systems. This approach enables the optimal control of a population of non-convex agents using distributed convex optimization techniques. Second, we present a distributed convex optimization algorithm for the control of a TCL population. Experimental results demonstrate the application of this algorithm to the problem of renewable energy generation following. This dissertation contributes to the development of intelligent energy management systems for buildings by presenting a suite of novel and adaptable modeling and control techniques. Applications focus on optimizing the performance of building operations and on facilitating the integration of renewable energy resources.
Dynamic Analyses Including Joints Of Truss Structures
NASA Technical Reports Server (NTRS)
Belvin, W. Keith
1991-01-01
Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.
A Summary Report on the NPH Evaluation of 105-L Disassembly Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, J.R.
2002-04-30
The L Area Disassembly Basin (LDB) is evaluated for the natural phenomena hazards (NPH) effects due to earthquake, wind, and tornado in accordance with DOE Order 420.1 and DOE-STD-1020. The deterministic analysis is performed for a Performance Category 3 (PC3) level of loads. Savannah River Site (SRS) specific NPH loads and design criteria are obtained from Engineering Standard 01060. It is demonstrated that the demand to capacity (D/C) ratios for primary and significant structural elements are acceptable (equal to or less than 1.0). Thus, 105-L Disassembly Basin building structure is qualified for the PC3 NPH effects in accordance with DOEmore » Order 420.1.« less
PS3-21: Extracting Utilization Data from Clarity into VDW Using Oracle and SAS
Chimmula, Srivardhan
2013-01-01
Background/Aims The purpose of the presentation is to demonstrate how we use SAS and Oracle to load VDW_Utilization, VDW_DX, and VDW_PX tables from Clarity at the Kaiser Permanente Northern California (KPNC) Division of Research (DOR) site. Methods DOR uses the best of Oracle PL/ SQL and SAS capabilities in building Extract Transform and Load (ETL) processes. These processes extract patient encounter, diagnosis, and procedure data from Teradata-based Clarity. The data is then transformed to fit HMORN’s VDW definitions of the table. This data is then loaded into the Oracle-based VDW table on DOR’s research database and then finally a copy of the table is also created as a SAS dataset. Results DOR builds robust and efficient ETL processes that refresh VDW Utilization table on a monthly basis processing millions of records/observations. The ETL processes have the capability to identify daily changes in Clarity and update the VDW tables on a daily basis. Conclusions KPNC DOR combines the best of both Oracle and SAS worlds to build ETL processes that load the data into VDW Utilization tables efficiently.
Center for the Built Environment: UFAD Cooling Load Design Tool
Energy Publications Project Title: Underfloor Air Distribution (UFAD) Cooling Load Design Tool Providing . Webster, 2010. Development of a simplified cooling load design tool for underfloor air distribution Near-ZNE Buildings Setpoint Energy Savings Calculator UFAD Case Studies UFAD Cooling Design Tool UFAD
Geothermal-retrofit study for the National Orange Show Facilities in San Bernardino, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-17
The cost and feasibility of retrofitting the National Orange Show Facilities to use geothermal heat instead of natural gas for heating are determined. Because of the limited usage of the smaller facilities the study was limited to the conversion of the six major buildings: Domed, Hobby, Citrus, Auditorium, Restaurant and Commercial. A major problem is that most of the buildings are used on a very limited basis. This drastically reduced the amount of savings that could be used to amortize the retrofit cost. Another problem is that the buildings are spread over a large area and so the below grademore » piping costs were high. Finally, all of the buildings except for the Auditorium have direct gas fired heaters that would require all new terminal heating systems. In order to limit the retrofit cost, the retrofit system was designed to handle less than the peak load. This seemed appropriate because the facility might not even be in operation when a peak load condition occurred. Also, the existing systems could be used to supplement the geothermal system if necessary. The calculated and design peak loads are summarized.« less
Hong, Nian; Zhu, Panfeng; Liu, An
2017-12-01
Urban road stormwater is an alternative water resource to mitigate water shortage issues in the worldwide. Heavy metals deposited (build-up) on urban road surface can enter road stormwater runoff, undermining stormwater reuse safety. As heavy metal build-up loads perform high variabilities in terms of spatial distribution and is strongly influenced by surrounding land uses, it is essential to develop an approach to identify hot-spots where stormwater runoff could include high heavy metal concentrations and hence cannot be reused if it is not properly treated. This study developed a robust modelling approach to estimating heavy metal build-up loads on urban roads using land use fractions (representing percentages of land uses within a given area) by an artificial neural network (ANN) model technique. Based on the modelling results, a series of heavy metal load spatial distribution maps and a comprehensive ecological risk map were generated. These maps provided a visualization platform to identify priority areas where the stormwater can be safely reused. Additionally, these maps can be utilized as an urban land use planning tool in the context of effective stormwater reuse strategy implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.
4. DETAIL OF NORTH SIDE OF OFFICE/SHOWROOM, SHOWING COVERED LOADING ...
4. DETAIL OF NORTH SIDE OF OFFICE/SHOWROOM, SHOWING COVERED LOADING DOCK. VIEW TO SOUTH. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA
12. VIEW OF CANOPY OVER NORTHWEST LOADING PLATFORM, RUNNING NEARLY ...
12. VIEW OF CANOPY OVER NORTHWEST LOADING PLATFORM, RUNNING NEARLY THE ENTIRE LENGTH OF THE BUILDING - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
36. ASSEMBLY LINE AREA FROM NEAR INTERIOR LOADING DOCK. VIEW ...
36. ASSEMBLY LINE AREA FROM NEAR INTERIOR LOADING DOCK. VIEW TO WEST-NORTHWEST. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; Morris, Hugh; Worth, Margaret; Gaul, Andrew; Jager, Simon; Desgeorges, Yohann
2012-04-01
An innovative three-story timber building, using self-centering, post-tensioned timber shear walls as the main horizontal load resisting system and lightweight non-composite timber-concrete floors, has recently been completed in Nelson, New Zealand. It is expected to be the trailblazer for similar but taller structures to be more widely adopted. Performance based standards require an advanced understanding of building responses and in order to meet the need for in-situ performance data the building has been subjected to forced vibration testing and instrumented for continuous monitoring using a total of approximately 90 data channels to capture its dynamic and long-term responses. The first part of the paper presents a brief discussion of the existing research on the seismic performance of timber frame buildings and footfall induced floor vibrations. An outline of the building structural system, focusing on the novel design solutions, is then discussed. This is followed by the description of the monitoring system. The analysis of monitoring results starts with a discussion of the monitoring of long-term deformations. Next, the assessment of the floor vibration serviceability performance is outlined. Then, the forced vibration tests conducted on the whole building at different construction stages are reviewed. The system identification results from seismic shaking records are also discussed. Finally, updating of a finite element model of the building is conducted.
10 CFR 434.518 - Service water heating.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person in...
10 CFR 434.518 - Service water heating.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1 The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person in...
10 CFR 434.518 - Service water heating.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Service water heating. 434.518 Section 434.518 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.518 Service water heating. 518.1The service water loads for Prototype and Reference Buildings are defined in terms of Btu/h per person in...
Simulated building energy demand biases resulting from the use of representative weather stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the potential reduction in bias from using an increasing number of weather stations over the western U.S. The approach is based on deriving temperature and load time series using incrementally more weather stations, ranging from 8 to roughly 150, tomore » capture weather across different seasons. Using 8 stations, one from each climate zone, across the western U.S. results in an average absolute summertime temperature bias of 7.2°F with respect to a spatially-resolved gridded dataset. The mean absolute bias drops to 2.8°F using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.8%, a significant error for capacity expansion planners who may use these types of simulations. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20-40% overestimation of peak building loads during both summer and winter. Using weather stations close to population centers reduces both mean and peak load biases. This approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
1. General oblique view of north and east sides, view ...
1. General oblique view of north and east sides, view to southwest, showing main loading docks - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
Looking North at Reactor Number One and Air Vent on ...
Looking North at Reactor Number One and Air Vent on Fourth Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Design, Analysis and Testing of a PRSEUS Pressure Cube to Investigate Assembly Joints
NASA Technical Reports Server (NTRS)
Yovanof, Nicolette; Lovejoy, Andrew E.; Baraja, Jaime; Gould, Kevin
2012-01-01
Due to its potential to significantly increase fuel efficiency, the current focus of NASA's Environmentally Responsible Aviation Program is the hybrid wing body (HWB) aircraft. Due to the complex load condition that exists in HWB structure, as compared to traditional aircraft configurations, light-weight, cost-effective and manufacturable structural concepts are required to enable the HWB. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is one such structural concept. A building block approach for technology development of the PRSEUS concept is being conducted. As part of this approach, a PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept. This paper describes the design, analysis and testing of the PRSEUS pressure cube test article. The pressure cube was required to withstand a 2P, 18.4 psi, overpressure load requirement. The pristine pressure cube was tested to 2.2P with no catastrophic failure. After the addition of barely visible impact damage, the cube was pressure loaded to 48 psi where catastrophic failure occurred, meeting the scale-up requirement. Comparison of pretest and posttest analyses with the cube test response agree well, and indicate that current analysis methods can be used to accurately analyze PRSEUS structure for initial failure response.
Computational analysis of high resolution unsteady airloads for rotor aeroacoustics
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.
1994-01-01
The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-31
This volume begins with an Introduction summarizing the history, methodology and scope of the study, the project team members and the private and public groups consulted in the course of the study. The Load and Service Area Assessment follows, including: a compilation and analysis of existing statistical thermal load data from census data, industrial directories, PSE and G records and other sources; an analysis of responses to a detailed, 4-page thermal load questionnaire; data on public buildings and fuel and energy use provided by the New Jersey Dept. of Energy; and results of other customer surveys conducted by PSE andmore » G. A discussion of institutional questions follows. The general topic of rates is then discussed, including a draft hypothetical Tariff for Thermal Services. Financial considerations are discussed including a report identifying alternative ownership/financing options for district heating systems and the tax implications of these options. Four of these options were then selected by PSE and G and a financial (cash-flow) analysis done (by the PSE and G System Planning Dept.) in comparison with a conventional heating alternative. Year-by-year cost of heat ($/10/sup 6/ Btu) was calculated and tabulated, and the various options compared.« less
Shock-treated Lunar Soil Simulant: Preliminary Assessment as a Construction Material
NASA Technical Reports Server (NTRS)
Boslough, Mark B.; Bernold, Leonhard E.; Horie, Yasuyuki
1992-01-01
In an effort to examine the feasibility of applying dynamic compaction techniques to fabricate construction materials from lunar regolith, preliminary explosive shock-loading experiments on lunar soil simulants were carried out. Analysis of our shock-treated samples suggests that binding additives, such as metallic aluminum powder, may provide the necessary characteristics to fabricate a strong and durable building material (lunar adobe) that takes advantage of a cheap base material available in abundance: lunar regolith.
Pressure Testing of a Minimum Gauge PRSEUS Panel
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew J.; Rouse, Marshall; Linton, Kim A.; Li, Victor P.
2011-01-01
Advanced aircraft configurations that have been developed to increase fuel efficiency require advanced, novel structural concepts capable of handling the unique load conditions that arise. One such concept is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) developed by the Boeing Company. The PRSEUS concept is being investigated by NASA s Environmentally Responsible Aviation (ERA) Program for use in a hybrid-wing body (HWB) aircraft. This paper summarizes the analysis and test of a PRSEUS panel subjected to internal pressure, the first such pressure test for this structural concept. The pressure panel used minimum gauge skin, with stringer and frame configurations consistent with previous PRSEUS tests. Analysis indicated that for the minimum gauge skin panel, the stringer locations exhibit fairly linear response, but the skin bays between the stringers exhibit nonlinear response. Excellent agreement was seen between nonlinear analysis and test results in the critical portion at the center of the panel. The pristine panel was capable of withstanding the required 18.4 psi pressure load condition without exhibiting any damage. The impacted panel was capable of withstanding a pressure load in excess of 28 psi before initial failure occurred at the center stringer, and the panel was capable of sustaining increased pressure load after the initial failure. This successful PRSEUS panel pressure panel test was a critical step in the building block approach for enabling the use of this advanced structural concept on future aircraft, such as the HWB.
On the design of high-rise buildings with a specified level of reliability
NASA Astrophysics Data System (ADS)
Dolganov, Andrey; Kagan, Pavel
2018-03-01
High-rise buildings have a specificity, which significantly distinguishes them from traditional buildings of high-rise and multi-storey buildings. Steel structures in high-rise buildings are advisable to be used in earthquake-proof regions, since steel, due to its plasticity, provides damping of the kinetic energy of seismic impacts. These aspects should be taken into account when choosing a structural scheme of a high-rise building and designing load-bearing structures. Currently, modern regulatory documents do not quantify the reliability of structures. Although the problem of assigning an optimal level of reliability has existed for a long time. The article shows the possibility of designing metal structures of high-rise buildings with specified reliability. Currently, modern regulatory documents do not quantify the reliability of high-rise buildings. Although the problem of assigning an optimal level of reliability has existed for a long time. It is proposed to establish the value of reliability 0.99865 (3σ) for constructions of buildings and structures of a normal level of responsibility in calculations for the first group of limiting states. For increased (construction of high-rise buildings) and reduced levels of responsibility for the provision of load-bearing capacity, it is proposed to assign respectively 0.99997 (4σ) and 0.97725 (2σ). The coefficients of the use of the cross section of a metal beam for different levels of security are given.
Harano, Ken-Ichi; Nakamura, Jun
2016-06-01
When honeybee foragers leave the nest, they receive nectar from nest mates for use as fuel for flight or as binding material to build pollen loads. We examined whether the concentration of nectar carried from the nest changes with the need for sugar. We found that pollen foragers had more-concentrated nectar (61.8 %) than nectar foragers (43.8 %). Further analysis revealed that the sugar concentration of the crop load increased significantly with waggle duration, an indicator of food-source distance, in both groups of foragers. Crop volume also increased with waggle duration. The results support our argument that foragers use concentrated nectar when the need for sugar is high and suggest that they precisely adjust the amount of sugar in the crop by altering both volume and nectar concentrations. We also investigated the impact of the area where foragers receive nectar on the crop load concentration at departure. Although nectar and pollen foragers tend to load nectar at different areas in the nest, area did not have a significant effect on crop load concentration. Departing foragers showed an average of 2.2 momentary (<1 s) begging trophallactic contacts before leaving the nest. They might be rejecting nectar with inappropriate concentrations during these contacts.
NASA Astrophysics Data System (ADS)
Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.
2017-10-01
As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.
Structural vibration passive control and economic analysis of a high-rise building in Beijing
NASA Astrophysics Data System (ADS)
Chen, Yongqi; Cao, Tiezhu; Ma, Liangzhe; Luo, Chaoying
2009-12-01
Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper. The plaza is a 39-story steel high-rise building, 191 m high, located in Beijing close to the 2008 Olympic main stadium. It has both fluid viscous dampers (FVDs) and buckling restrained braces or unbonded brace (BRB or UBB) installed. A repeated iteration procedure in its design and analysis was adopted for optimization. Results from the seismic response analysis in the horizontal and vertical directions show that the FVDs are highly effective in reducing the response of both the main structure and the secondary system. A comparative analysis of structural seismic performance and economic impact was conducted using traditional methods, i.e., increased size of steel columns and beams and/or use of an increased number of seismic braces versus using FVD. Both the structural response and economic analysis show that using FVD to absorb seismic energy not only satisfies the Chinese seismic design code for a “rare” earthquake, but is also the most economical way to improve seismic performance both for one-time direct investment and long term maintenance.
NASA Technical Reports Server (NTRS)
Bibel, George; Lewicki, David G. (Technical Monitor)
2002-01-01
A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Jeffrey D; Odukomaiya, Adewale O; Gehl, Anthony C
2014-01-01
With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses,more » and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.« less
Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.; Herrmann, L.; Deru, M.
2014-09-01
Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less
After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.
2004-01-22
This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers.more » This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modern, energy-efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impactmore » of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.« less
24 CFR 200.926a - Residential building code comparison items.
Code of Federal Regulations, 2013 CFR
2013-04-01
... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...
24 CFR 200.926a - Residential building code comparison items.
Code of Federal Regulations, 2011 CFR
2011-04-01
... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...
24 CFR 200.926a - Residential building code comparison items.
Code of Federal Regulations, 2014 CFR
2014-04-01
... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...
24 CFR 200.926a - Residential building code comparison items.
Code of Federal Regulations, 2012 CFR
2012-04-01
... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...
24 CFR 200.926a - Residential building code comparison items.
Code of Federal Regulations, 2010 CFR
2010-04-01
... doors and windows; (5) Unit smoke detectors; (6) Flame spread. (b) Light and ventilation. (1) Habitable... of ASCE-7-88 (formerly ANSI A58.1-82); (4) Wind loads; (5) Earthquake loads (for jurisdictions in...
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. Fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a strength reduction of 10 percent due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Bao, Yihai; Main, Joseph A; Noh, Sam-Young
2017-08-01
A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.
2D and 3D GPR imaging of structural ceilings in historic and existing constructions
NASA Astrophysics Data System (ADS)
Colla, Camilla
2014-05-01
GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for investigating with rapidity and high resolution, thin as well as very thick ceilings, in a non-destructive manner. Ceilings may be made up as masonry vaults or timber/metal/concrete beams and elements laid down in one or two directions or, again, can be made as a combination of the above. A number of cases are here presented reporting on typical features to be recognised in radargrams in order to distinguish the material and possible shape of the relevant objects with the aim of providing a first small catalogue useful to the radar user and to professionals. This abstract is of interest for COST Action TU1208.
Cost/Value Approach to Insulation Produces Savings at Sibley School
ERIC Educational Resources Information Center
School Business Affairs, 1978
1978-01-01
An energy savings study revealed that adding insulation to an existing building and reducing ventilation loads would enable the school to heat both the existing building and the addition with existing boiler equipment. (Author/MLF)
NASA Astrophysics Data System (ADS)
Mukherjee, Sananda
In recent years, there has been great interest in the potential of green roofs as an alternative roofing option to reduce the energy consumed by individual buildings as well as mitigate large scale urban environmental problems such as the heat island effect. There is a widespread recognition and a growing literature of measured data that suggest green roofs can reduce building energy consumption. This thesis investigates the potential of green roofs in reducing the building energy loads and focuses on how the different parameters of a green roof assembly affect the thermal performance of a building. A green roof assembly is modeled in Design Builder- a 3D graphical design modeling and energy use simulation program (interface) that uses the EnergyPlus simulation engine, and the simulated data set thus obtained is compared to field experiment data to validate the roof assembly model on the basis of how accurately it simulates the behavior of a green roof. Then the software is used to evaluate the thermal performance of several green roof assemblies under three different climate types, looking at the whole building energy consumption. For the purpose of this parametric simulation study, a prototypical single story small office building is considered and one parameter of the green roof is altered for each simulation run in order to understand its effect on building's energy loads. These parameters include different insulation thicknesses, leaf area indices (LAI) and growing medium or soil depth, each of which are tested under the three different climate types. The energy use intensities (EUIs), the peak and annual heating and cooling loads resulting from the use of these green roof assemblies are compared with each other and to a cool roof base case to determine the energy load reductions, if any. The heat flux through the roof is also evaluated and compared. The simulation results are then organized and finally presented as a decision support tool that would facilitate the adoption and appropriate utilization of green roof technologies and make it possible to account for green roof benefits in energy codes and related energy efficiency standards and rating systems such as LEED.
NASA Astrophysics Data System (ADS)
Patton, S. L.; Takle, E. S.; Passe, U.; Kalvelage, K.
2013-12-01
Current simulations of building energy consumption use weather input files based on the past thirty years of climate observations. These 20th century climate conditions may be inadequate when designing buildings meant to function well into the 21st century. An alternative is using model projections of climate change to estimate future risk to the built environment. In this study, model-projected changes in climate were combined with existing typical meteorological year data to create future typical meteorological year data. These data were then formatted for use in EnergyPlus simulation software to evaluate their potential impact on commercial building energy consumption. The modeled climate data were taken from the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP uses results of global climate models to drive regional climate models, also known as dynamical downscaling. This downscaling gives higher resolution results over specific locations, and the multiple global/regional climate model combinations provide a unique opportunity to quantify the uncertainty of climate change projections and their impacts. Our results show a projected decrease in heating energy consumption and a projected increase in cooling energy consumption for nine locations across the United States for all model combinations. Warmer locations may expect a decrease in heating load of around 30% to 45% and an increase in cooling load of around 25% to 35%. Colder locations may expect a decrease in heating load of around 15% to 25% and an increase in cooling load of around 40% to 70%. The change in net energy consumption is determined by the balance between the magnitudes of heating change and cooling change. Net energy consumption is projected to increase by an average of 5% for lower-latitude locations and decrease by an average of 5% for higher-latitude locations. With these projected annual and seasonal changes presenting strong evidence for the unsuitable nature of current building practices holding up under future climate change, we recommend using our methods and results to make modifications and adaptations to existing buildings and to aid in the design of future buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Feitau; Frank, Stephen; Scheib, Jennifer
A zero energy building (ZEB)—also known as a net zero energy or zero net energy building—is a building that exports as much renewable energy as the total energy it imports from other sources on an annual basis (DOE 2015). Large-scale and commercially viable ZEBs are now in the marketplace, and they are expected to become a larger share of the commercial building footprint as government and private sector policies continue to promote the development of buildings that produce more on-site energy than they use. However, the load profiles of ZEBs are currently perceived by electric utilities to be unfavorable andmore » unpredictable. As shown in Figure ES-1, ZEB load profiles can have abrupt changes in magnitude, at times switching rapidly between exporting and importing electricity. This is a challenge for utilities, which are responsible for constantly balancing electricity supply and demand across the grid. Addressing these concerns will require new strategies and tools.« less
The use of nanomodified concrete in construction of high-rise buildings
NASA Astrophysics Data System (ADS)
Prokhorov, Sergei
2018-03-01
Construction is one of the leading economy sectors. Currently, concrete is the basis of most of the structural elements, without which it is impossible to imagine the construction of a single building or facility. Their strength, reinforcement and the period of concrete lifetime are determined at the design stage, taking into account long-term operation. However, in real life, the number of impacts that affects the structural strength is pretty high. In some cases, they are random and do not have standardized values. This is especially true in the construction and exploitation of high-rise buildings and structures. Unlike the multi-storey buildings, they experience significant loads already at the stage of erection, as they support load-lifting mechanisms, formwork systems, workers, etc. The purpose of the presented article is to develop a methodology for estimating the internal fatigue of concrete structures based on changes in their electrical conductivity.
Human Health Science Building Geothermal Heat Pump Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leidel, James
2014-12-22
The grant objectives of the DOE grant funded project have been successfully completed. The Human Health Building (HHB) was constructed and opened for occupancy for the Fall 2012 semester of Oakland University. As with any large construction project, some issues arose which all were overcome to deliver the project on budget and on time. The facility design is a geothermal / solar-thermal hybrid building utilizing both desiccant dehumidification and variable refrigerant flow heat pumps. It is a cooling dominant building with a 400 ton cooling design day load, and 150 ton heating load on a design day. A 256 verticalmore » borehole (320 ft depth) ground source heat pump array is located south of the building under the existing parking lot. The temperature swing and performance over 2013 through 2015 shows the ground loop is well sized, and may even have excess capacity for a future building to the north (planned lab facility). The HHB achieve a US Green Building Counsel LEED Platinum rating by collecting 52 of the total 69 available LEED points for the New Construction v.2 scoring checklist. Being Oakland's first geothermal project, we were very pleased with the building outcome and performance with the energy consumption approximately 1/2 of the campus average facility, on a square foot basis.« less
Demonstration of reduced-order urban scale building energy models
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew; ...
2017-09-08
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
Demonstration of reduced-order urban scale building energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
Bed load transport in gravel-bed rivers
Jeffrey J. Barry
2007-01-01
Bed load transport is a fundamental physical process in alluvial rivers, building and maintaining a channel geometry that reflects both the quantity and timing of water and the volume and caliber of sediment delivered from the watershed. A variety of formulae have been developed to predict bed load transport in gravel-bed rivers, but testing of the equations in natural...
ERIC Educational Resources Information Center
Hsiao, Ya-Ping; Brouns, Francis; van Bruggen, Jan; Sloep, Peter B.
2012-01-01
In Learning Networks, learners need to share knowledge with others to build knowledge. In particular, when working on complex tasks, they often need to acquire extra cognitive resources from others to process a high task load. However, without support high task load and organizing knowledge sharing themselves might easily overload learners'…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert G.
This report describes how the intelligent load control (ILC) algorithm can be implemented to achieve peak demand reduction while minimizing impacts on occupant comfort. The algorithm was designed to minimize the additional sensors and minimum configuration requirements to enable a scalable and cost-effective implementation for both large and small-/medium-sized commercial buildings. The ILC algorithm uses an analytic hierarchy process (AHP) to dynamically prioritize the available curtailable loads based on both quantitative (deviation of zone conditions from set point) and qualitative rules (types of zone). Although the ILC algorithm described in this report was highly tailored to work with rooftop units,more » it can be generalized for application to other building loads such as variable-air-volume (VAV) boxes and lighting systems.« less
Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.
ERIC Educational Resources Information Center
TRW Systems Group, Redondo Beach, CA.
The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…
User News. Volume 17, Number 1 -- Spring 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This is a newsletter for users of the DOE-2, PowerDOE, SPARK, and BLAST building energy simulation programs. The topics for the Spring 1996 issue include the SPARK simulation environment, DOE-2 validation, listing of free fenestration software from LBNL, Web sites for building energy efficiency, the heat balance method of calculating building heating and cooling loads.
6. Detail view north of typical window and loading door ...
6. Detail view north of typical window and loading door at east end of south elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA
The impact of solar radiation on the heating and cooling of buildings
NASA Astrophysics Data System (ADS)
Witmer, Lucas
This work focuses on the impact of solar energy on the heating and cooling of buildings. The sun can be the primary driver for building cooling loads as well as a significant source of heat in the winter. Methods are presented for the calculation of solar energy incident on tilted surfaces and the irradiance data source options. A key deficiency in current building energy modeling softwares is reviewed with a demonstration of the impact of calculating for shade on opaque surfaces. Several tools include methods for calculating shade incident on windows, while none do so automatically for opaque surfaces. The resulting calculations for fully irradiated wall surfaces underestimate building energy consumption in the winter and overestimate in the summer by significant margins. A method has been developed for processing and filtering solar irradiance data based on local shading. This method is used to compare situations where a model predictive control system can make poor decisions for building comfort control. An MPC system informed by poor quality solar data will negatively impact comfort in perimeter building zones during the cooling season. The direct component of irradiance is necessary for the calculation of irradiance on a tilted surface. Using graphical analysis and conditional probability distributions, this work demonstrates a proof of concept for estimating direct normal irradiance from a multi-pyranometer array by leveraging inter-surface relationships without directly inverting a sky model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.; Winkler, J.
As energy-efficiency efforts focus increasingly on existing homes, we scratch our heads about construction decisions made 30, 40, 50-years ago and ask: 'What were they thinking?' A logical follow-on question is: 'What will folks think in 2050 about the homes we're building today?' This question can lead to a lively discussion, but the current practice that we find most alarming is placing ducts in the attic. In this paper, we explore through literature and analysis the impact duct location has on cooling load, peak demand, and energy cost in hot climates. For a typical new home in these climates, wemore » estimate that locating ducts in attics rather than inside conditioned space increases the cooling load 0.5 to 1 ton, increases cooling costs 15% and increases demand by 0.75 kW. The aggregate demand to service duct loss in homes built in Houston, Las Vegas, and Phoenix during the period 2000 through 2009 is estimated to be 700 MW. We present options for building homes with ducts in conditioned space and demonstrate that these options compare favorably with other common approaches to achieving electricity peak demand and consumption savings in homes.« less
Kim, Sangyong; Moon, Joon-Ho; Shin, Yoonseok; Kim, Gwang-Hee; Seo, Deok-Seok
2013-01-01
The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO₂ emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC) or steel (S) structures. An input-output framework analysis was used to measure energy consumption and CO₂ emissions of input materials for each structural frame type. In addition, the CO₂ emissions cost was measured using the trading price of CO₂ emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO₂ emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO₂ emissions cost) of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future.
Structural analysis and sizing of stiffened, metal matrix composite panels for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Collier, Craig S.
1992-01-01
The present method for strength and stability analyses of stiffened, fiber-reinforced composite panels to be used in hypersonic vehicle structures is of great generality, and can be linked with planar finite-element analysis (FEA). Nonlinear temperature and load-dependent material data for each laminate are used to 'build-up' the stiffened panel's membrane, bending, and membrane-bending coupling stiffness terms, as well as thermal coefficients. The resulting, FEA-solved thermomechanical forces and moments are used to calculate strain at any location in the panel; this allows an effective ply-by-ply orthotropic strength analysis to be conducted, together with orthotropic instability checks for each laminated segment of the cross-section.
NASA Astrophysics Data System (ADS)
Lee, Keun
Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals with the optimization of the hybrid system design (which consists of PV panels and/or wind turbines and/or storage devices for building applications) by developing an algorithm designed to make the system cost effective and energy efficient. Input data includes electrical load demand profile of the buildings, buildings' structural and geographical characteristics, real time pricing of electricity, and the costs of hybrid systems and storage devices. When the electrical load demand profile of a building that is being studied is available, a measured demand profile is directly used as input data. However, if that information is not available, a building's electric load demand is estimated using a developed algorithm based on three large data sources from a public domain, and used as input data. Using the acquired input data, the algorithm of this research is designed and programmed in order to determine the size of renewable components and to minimize the total yearly net cost. This dissertation also addresses the parametric sensitivity analysis to determine which factors are more significant and are expected to produce useful guidelines in the decision making process. An engineered and more practical, simplified solution has been provided for the optimized design process.
What are the potential benefits of including latent storage in common wallboard?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, T.K.; Tomlinson, J.J.
1992-07-01
Previous work has shown that wallboard can be successfully manufactured to contain up to 30% phase change material (PCM), or wax, thus enabling this common building material to serve as a thermal energy storage device. This material was analyzed for passive solar applications and found to save energy with a reasonable pay-back time period. Further evaluations of the wallboard are reported in this paper. This analysis looks at potential applications of PCM wallboard as a load management device and as a comfort enhancer. Results show that the wallboard is ineffective in modifying the comfort level but can provide significant loadmore » management relief with no energy penalty. Modifications to typical heating and air-conditioning control strategies were necessary for successful load management.« less
What are the potential benefits of including latent storage in common wallboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, T.K.; Tomlinson, J.J.
1992-01-01
Previous work has shown that wallboard can be successfully manufactured to contain up to 30% phase change material (PCM), or wax, thus enabling this common building material to serve as a thermal energy storage device. This material was analyzed for passive solar applications and found to save energy with a reasonable pay-back time period. Further evaluations of the wallboard are reported in this paper. This analysis looks at potential applications of PCM wallboard as a load management device and as a comfort enhancer. Results show that the wallboard is ineffective in modifying the comfort level but can provide significant loadmore » management relief with no energy penalty. Modifications to typical heating and air-conditioning control strategies were necessary for successful load management.« less
Systems and applications analysis for concentrating photovoltaic-thermal systems
NASA Astrophysics Data System (ADS)
Schwinkendorf, W. E.
Numerical simulations were carried out of the performance, costs, and land use requirements of five commercial and six residential applications of combined photovoltaic-thermal (PVT) power plants. Line focus Fresnel concentrators (LFF) systems were selected after a simulated comparison of different PVT systems. Load profiles were configured from industrial data and ASHRAE and building codes. Assumptions included costs of $1/Wp, 0.15 efficiency, and a cost of $275/sq m, as well as a 25 percent solar tax credit. The calculations showed that a significant low temperature thermal load must be available, but no heat recovery system. Industrial situations were identified which favor solar thermal energy alone rather than a combined system. The thermal energy displacement was determined to be the critical factor in assessing the economics of the PVT systems.
Passivhaus: indoor comfort and energy dynamic analysis.
NASA Astrophysics Data System (ADS)
Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca
2013-04-01
The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous-state analysis" (that provides the only energy performance of the structure) and considering the "building-equipments" as a system (which provides the overall performance of the "building system"). The first analysis shows as the absence of thermal mass and the envelope super-heating prevent to incoming heat to exit, overheating the indoor environment. The analysis of the overall performance of the "building system" highlights, instead, as the thermal load is much greater during the summer than in winter; this means that, using a low inertia envelopes, the energy saved in the winter can be used to satisfy the thermal performance in the summer. This is further demonstrated by comparing the performance of indoor temperatures and the relative energy consumption of a similar building with greater thermal inertia. Further analysis involved a critical comparison between the "semisteady-state analysis" ("CasaClima" methodology) and the analysis in dynamic conditions (using "Energy Plus" software).
CrossWater - Modelling micropollutant loads from different sources in the Rhine basin
NASA Astrophysics Data System (ADS)
Moser, Andreas; Bader, Hans-Peter; Fenicia, Fabrizio; Scheidegger, Ruth; Stamm, Christian
2016-04-01
The pressure on rivers from micropollutants (MPs) originating from various sources is a growing environmental issue and requiring political regulations. The challenges for the water management are numerous, particularly for international water basins. Spatial knowledge of MP sources and the water quality are prerequisites for an effective water quality policy. In this study we analyze the sources of MPs in the international Rhine basin in Europe, and model their transport to the streams. The spatial patterns of MP loads and concentrations from different use classes are investigated with a mass flow analysis and compared to the territorial jurisdictions that shape the spatial arrangement of water management. The source area of MPs depends on the specific use of a compound. Here, we focus on i) herbicides from agricultural land use, ii) biocides from material protection on buildings and iii) human pharmaceuticals from households. The total mass of MPs available for release to the stream network is estimated from statistical application and consumption data. The available mass of MPs is spatially distributed to the catchments areas based on GIS data of agricultural land use, vector data of buildings and wastewater treatment plant (WWTP) locations, respectively. The actual release of MPs to the stream network is calculated with empirical loss rates related to river discharge for agricultural herbicides and to precipitation for biocides. For the pharmaceuticals the release is coupled to the human metabolism rates and elimination rates in WWTP. The released loads from the catchments are propagated downstream with hydraulic routing. Water flow, transport and fate of the substances are simulated within linked river reaches. Time series of herbicide concentrations and loads are simulated for the main rivers in the Rhine basin. Accordingly the loads from the primary catchments are aggregated and constitute lateral or upstream input to the simulated river reaches. Pronounced differences in the spatial patterns of concentrations in the aquatic system are observed between the different compounds. The comparison with measurements from monitoring stations along the Rhine yield satisfactory results.
High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy
NASA Astrophysics Data System (ADS)
Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.
2017-05-01
Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prowell, I.; Elgamal, A.; Romanowitz, H.
Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools usedmore » to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.« less
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMar, P.
Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency.more » Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.« less
Wind tunnel tests for wind pressure distribution on gable roof buildings.
Jing, Xiao-kun; Li, Yuan-qi
2013-01-01
Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.
Improving stability and strength characteristics of framed structures with nonlinear behavior
NASA Technical Reports Server (NTRS)
Pezeshk, Shahram
1990-01-01
In this paper an optimal design procedure is introduced to improve the overall performance of nonlinear framed structures. The design methodology presented here is a multiple-objective optimization procedure whose objective functions involve the buckling eigenvalues and eigenvectors of the structure. A constant volume with bounds on the design variables is used in conjunction with an optimality criterion approach. The method provides a general tool for solving complex design problems and generally leads to structures with better limit strength and stability. Many algorithms have been developed to improve the limit strength of structures. In most applications geometrically linear analysis is employed with the consequence that overall strength of the design is overestimated. Directly optimizing the limit load of the structure would require a full nonlinear analysis at each iteration which would be prohibitively expensive. The objective of this paper is to develop an algorithm that can improve the limit-load of geometrically nonlinear framed structures while avoiding the nonlinear analysis. One of the novelties of the new design methodology is its ability to efficiently model and design structures under multiple loading conditions. These loading conditions can be different factored loads or any kind of loads that can be applied to the structure simultaneously or independently. Attention is focused on optimal design of space framed structures. Three-dimensional design problems are more complicated to carry out, but they yield insight into real behavior of the structure and can help avoiding some of the problems that might appear in planar design procedure such as the need for out-of-plane buckling constraint. Although researchers in the field of structural engineering generally agree that optimum design of three-dimension building frames especially in the seismic regions would be beneficial, methods have been slow to emerge. Most of the research in this area has dealt with the optimization of truss and plane frame structures.
Investigation of the seismic resistance of interior building partitions, phase 1
NASA Astrophysics Data System (ADS)
Anderson, R. W.; Yee, Y. C.; Savulian, G.; Barclay, B.; Lee, G.
1981-02-01
The effective participation of wood-framed interior shear wall partitions when determining the ultimate resistance capacity of two- and three-story masonry apartment buildings to seismic loading was investigated. Load vs. deflection tests were performed on 8 ft by 8 ft wall panel specimens constructed of four different facing materials, including wood lath and plaster, gypsum lath and plaster, and gypsum wallboard with joints placed either horizontally or vertically. The wood lath and plaster construction is found to be significantly stronger and stiffer than the other three specimens. Analyses of the test panels using finite element methods to predict their static resistance characteristics indicates that the facing material acts as the primary shear-resisting structural element. Resistance of shear wall partitions to lateral loads was assessed.
Optimal Sizing of Energy Storage for Community Microgrids Considering Building Thermal Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Li, Zhi; Starke, Michael R.
This paper proposes an optimization model for the optimal sizing of energy storage in community microgrids considering the building thermal dynamics and customer comfort preference. The proposed model minimizes the annualized cost of the community microgrid, including energy storage investment, purchased energy cost, demand charge, energy storage degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation. The decision variables are the power and energy capacity of invested energy storage. In particular, we assume the heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently by the microgrid central controller while maintainingmore » the indoor temperature in the comfort range set by customers. For this purpose, the detailed thermal dynamic characteristics of buildings have been integrated into the optimization model. Numerical simulation shows significant cost reduction by the proposed model. The impacts of various costs on the optimal solution are investigated by sensitivity analysis.« less
NASA Astrophysics Data System (ADS)
Phan, Duoc T.; Lim, James B. P.; Sha, Wei; Siew, Calvin Y. M.; Tanyimboh, Tiku T.; Issa, Honar K.; Mohammad, Fouad A.
2013-04-01
Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes. A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.
Seismic risk assessment of Trani's Cathedral bell tower in Apulia, Italy
NASA Astrophysics Data System (ADS)
Diaferio, Mariella; Foti, Dora
2017-09-01
The present paper deals with the evaluation of the seismic vulnerability of slender historical buildings; these structures, in fact, may manifest a high risk with respect to seismic actions as usually they have been designed to resist to gravitational loads only, and are characterized by a high flexibility. To evaluate this behavior, the bell tower of the Trani's Cathedral is investigated. The tower is 57 m tall and is characterized by an unusual building typology, i.e., the walls are composed of a concrete core coupled with external masonry stones. The dynamic parameters and the mechanical properties of the tower have been evaluated on the basis of an extensive experimental campaign that made use of ambient vibration tests and ground penetrating radar tests. Such data have been utilized to calibrate a numerical model of the examined tower. A linear static analysis, a dynamic analysis and a nonlinear static analysis have been carried out on such model to evaluate the displacement capacity of the tower and the seismic risk assessment in accordance with the Italian guidelines.
1. EAST ENTRANCE FROM LOADING AREA. CONCRETE TUNNEL TO TEST ...
1. EAST ENTRANCE FROM LOADING AREA. CONCRETE TUNNEL TO TEST STAND 1-3 IS AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
7. Photograph is copy of historic photo (original print located ...
7. Photograph is copy of historic photo (original print located in Ogden Air Logistics Center, Hill Air Force Base, Utah). Photographer unknown. - Ogden Arsenal, Primer Loading Building for 37mm Shell Loading, 7726 North Carolina Way, Layton, Davis County, UT
VIEW OF 77710A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO ...
VIEW OF 777-10A REACTOR WING, LOOKING NORTHEAST,SHOWING LOADING DOOR TO THE PROCESS DEVELOPMENT PILE ROOM. BUILDING 305-A IN BACKGROUND ON LEFT - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Dynamic research of masonry vault in a technical scale
NASA Astrophysics Data System (ADS)
Golebiewski, Michal; Lubowiecka, Izabela; Kujawa, Marcin
2017-03-01
The paper presents preliminary results of dynamic tests of the masonry barrel vault in a technical scale. Experimental studies are intended to identify material properties of homogenized masonry vaults under dynamic loads. The aim of the work is to create numerical models to analyse vault's dynamic response to dynamic loads in a simplest and accurate way. The process of building the vault in a technical scale is presented in the paper. Furthermore a excitation of vibrations with an electrodynamic modal exciter placed on the vault, controlled by an arbitrary waveform function generator, is discussed. Finally paper presents trends in the research for homogenization algorithm enabling dynamic analysis of masonry vaults. Experimental results were compared with outcomes of so-called macromodels (macromodel of a brick masonry is a model in which masonry, i.e. a medium consisting of two different fractions - bricks and mortar, is represented by a homogenized, uniformed, material). Homogenization entail significant simplifications, nevertheless according to the authors, can be a useful approach in a static and dynamic analysis of masonry structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A.; Christensen, Dane T.
This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin; Baker, Kyri A; Isley, Steven C
This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less
Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources.
Davis, A P; Shokouhian, M; Ni, S
2001-08-01
Urban stormwater runoff is being recognized as a substantial source of pollutants to receiving waters. A number of investigators have found significant levels of metals in runoff from urban areas, especially in highway runoff. As an initiatory study, this work estimates lead, copper, cadmium, and zinc loadings from various sources in a developed area utilizing information available in the literature, in conjunction with controlled experimental and sampling investigations. Specific sources examined include building siding and roofs; automobile brakes, tires, and oil leakage; and wet and dry atmospheric deposition. Important sources identified are building siding for all four metals, vehicle brake emissions for copper and tire wear for zinc. Atmospheric deposition is an important source for cadmium, copper, and lead. Loadings and source distributions depend on building and automobile density assumptions and the type of materials present in the area examined. Identified important sources are targeted for future comprehensive mechanistic studies. Improved information on the metal release and distributions from the specific sources, along with detailed characterization of watershed areas will allow refinements in the predictions.
28. BUILDING NO. 527, DEHYDRATING HOUSE, LOOKING SOUTH AT NORTH ...
28. BUILDING NO. 527, DEHYDRATING HOUSE, LOOKING SOUTH AT NORTH (REAR) ELEVATION OF PRELIMINARY SOLVENT RECOVERY WING. RAILS LEADING FROM DOORS CARRIED STANDARD GUAGE R.R. CARTS ONTO SMALL FLATCARS RIDING IN TRACKS IN FOREGROUND. FROM HERE THE CARS WERE TAKEN TO BUILDING NO. 533, SOLVENT RECOVERY. BUILDING NO. 540, LOADING DOCK (STORAGE FOR POWDER BUGGIES) IN BACKGROUND LEFT. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ
Experimental analysis and constitutive modelling of steel of A-IIIN strength class
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Janiszewski, Jacek
2015-09-01
Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.
Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete
NASA Astrophysics Data System (ADS)
Broukalová, I.; Šeps, K.
2017-09-01
The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.
Fire development and wall endurance in sandwich and wood-frame structures
Carlton A. Holmes; Herbert W. Eickner; John J. Brenden; Curtis C. Peters; Robert H. White
1980-01-01
Large-scale fire tests were conducted on seven 16- by 24-foot structures. Four of these structures were of sandwich construction with cores of plastic or paper honeycomb and three were of wood-frame construction. The wasss were loaded to a computer design loading, and the fire endurance determined under a fire exposure from a typical building contents loading of 4-1/2...
Analysis of recurrent neural networks for short-term energy load forecasting
NASA Astrophysics Data System (ADS)
Di Persio, Luca; Honchar, Oleksandr
2017-11-01
Short-term forecasts have recently gained an increasing attention because of the rise of competitive electricity markets. In fact, short-terms forecast of possible future loads turn out to be fundamental to build efficient energy management strategies as well as to avoid energy wastage. Such type of challenges are difficult to tackle both from a theoretical and applied point of view. Latter tasks require sophisticated methods to manage multidimensional time series related to stochastic phenomena which are often highly interconnected. In the present work we first review novel approaches to energy load forecasting based on recurrent neural network, focusing our attention on long/short term memory architectures (LSTMs). Such type of artificial neural networks have been widely applied to problems dealing with sequential data such it happens, e.g., in socio-economics settings, for text recognition purposes, concerning video signals, etc., always showing their effectiveness to model complex temporal data. Moreover, we consider different novel variations of basic LSTMs, such as sequence-to-sequence approach and bidirectional LSTMs, aiming at providing effective models for energy load data. Last but not least, we test all the described algorithms on real energy load data showing not only that deep recurrent networks can be successfully applied to energy load forecasting, but also that this approach can be extended to other problems based on time series prediction.
NASA Astrophysics Data System (ADS)
Lefebvre, Karine
Reinforced concrete structures with unreinforced masonry infills (BMR) are considered vulnerable to earthquakes. Under seismic actions, infills could fail (causing injuries or death) and cause damages to columns. In Quebec and Canada, most of BMR structures have been constructed prior to the introduction of modern seismic design codes raising question on the contribution of the infill to the structure lateral resistance. The aim of this thesis is to improve modelling technique of BMR structures built in Quebec between 1915 and 1960. This type of structures is found in hospitals or schools buildings, which must comply with some post-earthquake functionality requirements. They could also be residential or office buildings. Actually, practicing engineers usually calculate seismic capacity of BMR structures without considering the infill's structural contribution to the lateral resistance. Yet, this contribution should not be omitted. The first part of the thesis investigates the construction techniques and material properties of the old BMR structures in the Province. The results are the material properties (concrete, reinforcing steel, brick, terra cotta tile, and mortar) and the characteristics of the assemblies (wall section, reinforcement details…). The second part of the thesis presents the results of series of parametric analyses to identify among modelling and geometric parameters, which ones are the most influent on the lateral load response (rigidity, fundamental period, normal modes). Linear and modal analyses were performed. The most influent parameters identified are: number of storeys, number of bays, bay's width, soft storey, openings, upper storeys modelized (instead of being replaced by punctual loads) and the modelization technique of infills panels (strut or shell). Nonlinear static analyses have been performed to identify the most influent parameters to be considered for evaluating the lateral resistance, the capacity (load / displacement) and the yielding sequence (beam versus columns versus infills). The identified parameters are the presence of the infills, the openings and the geometric characteristics of the models (number of storeys and number of bays). One important contribution of this work is the development of an equivalent strut model to represent the action of the infill. The model could be easily implemented in standard analysis software. A central axial hinge reproducing the nonlinear behaviour of the masonry is added to the strut element. This model is a hybridization of existing proposals (FEMA and others) with added innovations by the author. It has been validated with experimental and numerical analyses results from literature. An important conclusion of this thesis is that the contribution of infills to lateral load resisting capacities of BMR structures should be considered for structure of more than one storey. Infills can add up to 51 % to bare frame capacity. The National building code requires that the lateral resistance of existing buildings must be at least 60 % of the equivalent static seismic force (V2005). It is concluded that one storey BMR buildings have a sufficient resistance, while three-storeys structures exhibit plastic deformations for loads under 0,6* V2005.
DEEP: Database of Energy Efficiency Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon
A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less
O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; ...
2018-01-11
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less
Earthquake Loading Assessment to Evaluate Liquefaction Potential in Emilia-Romagna Region
NASA Astrophysics Data System (ADS)
Daminelli, R.; Marcellini, A.; Tento, A.
2016-12-01
The May-June 2012 seismic sequence that struck Lombardia and Emilia-Romagna consisted of seven main events of magnitude greater than 5 followed by numerous aftershocks. The strongest earthquakes occurred on May 20 (M=5.9) and May 29 (M=5.8). The widespread soil liquefaction, unexpected because of the moderate magnitude of the events, pushed the local authorities to issue research projects aimed to define the earthquake loading to evaluate the liquefaction safety factor. The reasons explained below led us to adopt a deterministic hazard approach to evaluate the seismic parameters relevant to liquefaction assessment, despite the fact that the Italian Seismic Building Code (NTC08) is based on probabilistic hazard analysis. For urban planning and building design geologists generally adopt the CRR/CSR technique to assess liquefaction potential; therefore we considered PGA and a design magnitude to be representative of the seismic loading. The procedure adopted consists: a) identification of seismic source zones and characterization of each zone by the maximum magnitude; b) evaluation of the source to site distance and c) adoption of a suitable attenuation law to compute the expected PGA at the site, given the site condition and the design magnitude. The design magnitude can be: the maximum magnitude; the magnitude that causes the largest PGA, or both. The PGA values obtained are larger with respect to the 474 years return period PGA prescribed by NTC08 for the seismic design for ordinary buildings. We conducted a CPTU resistance test intended to define the CRR at the village of Cavezzo, situated in the epicentral area of the 2012 earthquake. The CRR/CSR ratio led to an elevated liquefaction risk at the analysed site. On the contrary the adoption of the 474 years return period PGA of the NTCO8 prescribed for Cavezzo site led to a negligible liquefaction risk. Note that very close to the investigated site several liquefaction phenomena were observed.
Earthquake Loading Assessment to Evaluate Liquefaction Potential in Emilia-Romagna Region
NASA Astrophysics Data System (ADS)
Daminelli, Rosastella; Marcellini, Alberto; Tento, Alberto
2017-04-01
The May-June 2012 seismic sequence that struck Lombardia and Emilia-Romagna consisted of seven main events of magnitude greater than 5 followed by numerous aftershocks. The strongest earthquakes occurred on May 20 (M=5.9) and May 29 (M=5.8). The widespread soil liquefaction, unexpected because of the moderate magnitude of the events, pushed the local authorities to issue research projects aimed to define the earthquake loading to evaluate the liquefaction safety factor. The reasons explained below led us to adopt a deterministic hazard approach to evaluate the seismic parameters relevant to liquefaction assessment, despite the fact that the Italian Seismic Building Code (NTC08) is based on probabilistic hazard analysis. For urban planning and building design geologists generally adopt the CRR/CSR technique to assess liquefaction potential; therefore we considered PGA and a design magnitude to be representative of the seismic loading. The procedure adopted consists: a) identification of seismic source zones and characterization of each zone by the maximum magnitude; b) evaluation of the source to site distance and c) adoption of a suitable attenuation law to compute the expected PGA at the site, given the site condition and the design magnitude. The design magnitude can be: the maximum magnitude; the magnitude that causes the largest PGA, or both. The PGA values obtained are larger with respect to the 474 years return period PGA prescribed by NTC08 for the seismic design for ordinary buildings. We conducted a CPTU resistance test intended to define the CRR at the village of Cavezzo, situated in the epicentral area of the 2012 earthquake. The CRR/CSR ratio led to an elevated liquefaction risk at the analysed site. On the contrary the adoption of the 474 years return period PGA of the NTCO8 prescribed for Cavezzo site led to a negligible liquefaction risk. Note that very close to the investigated site several liquefaction phenomena were observed.
A retrospective analysis of the flash flood in Braunsbach on May 29th, 2016
NASA Astrophysics Data System (ADS)
Laudan, Jonas; Öztürk, Ugur; Sieg, Tobias; Wendi, Dadiyorto; Riemer, Adrian; Agarwal, Ankit; Rözer, Viktor; Korup, Oliver; Thieken, Annegret; Vogel, Kristin
2017-04-01
At the end of May and early June 2016 several rainstorms caused severe surface water flooding and flash floods, partly accompanied by mud and debris flows, in Central Europe, and especially in southern Germany. On the evening of May 29, 2016, a flood outburst with massive amounts of rubble and muddy sediments hit the town of Braunsbach, Baden-Württemberg, damaging numerous buildings, cars, and town facilities. The DFG Graduate School "Natural hazards and risks in a changing world" (NatRiskChange) at the University of Potsdam investigated the Braunsbach "flash flood" as an exemplary catastrophic event triggered by severe weather. Bringing together scientists from the fields of meteorology, hydrology, geomorphology, flood risk, natural hazards, and mathematics the research team was especially interested in the interplay of causes and triggers leading to the event. Accordingly, the team focused on the entire process chain from heavy precipitation to runoff and flood generation and the geomorphic aftermath. The steep slopes in the catchment area promote the episodic supply of gravel, debris and organic material, which remains stored for decades to millennia, only to be remobilized during rare and extreme runoff events such as in 2016. Field mapping revealed at least 48 landslides as sources of high sediment loads. Nonetheless, numerous scars of river erosion along the tributary creeks into Braunsbach indicate that most of the material carried by the flash flood was due to bank undercutting. The flow also entrained more rubble, trees, cars, and other anthropogenic sediments further downstream. This enhanced solids load increased the physical impact, and hence damage, to buildings. Local effects of flow depth, flow velocity, and exposition of buildings into the advancing non-steady and non-uniform flow caused the damage to exceed that of a clearwater flood with comparable return period. We conclude that, to meaningfully inform the implementation of precautionary measures, a quantitative hazard assessment of similarly extreme flash floods may include more explicitly the effects of high sediment loads and flow-roughness elements.
NASA Astrophysics Data System (ADS)
Dehbozorgi, Mohammad Reza
2000-10-01
Improvements in power system reliability have always been of interest to both power companies and customers. Since there are no sizable electrical energy storage elements in electrical power systems, the generated power should match the load demand at any given time. Failure to meet this balance may cause severe system problems, including loss of generation and system blackouts. This thesis proposes a methodology which can respond to either loss of generation or loss of load. It is based on switching of electric water heaters using power system frequency as the controlling signal. The proposed methodology encounters, and the thesis has addressed, the following associated problems. The controller must be interfaced with the existing thermostat control. When necessary to switch on loads, the water in the tank should not be overheated. Rapid switching of blocks of load, or chattering, has been considered. The contributions of the thesis are: (A) A system has been proposed which makes a significant portion of the distributed loads connected to a power system to behave in a predetermined manner to improve the power system response during disturbances. (B) The action of the proposed system is transparent to the customers. (C) The thesis proposes a simple analysis for determining the amount of such loads which might be switched and relates this amount to the size of the disturbances which can occur in the utility. (D) The proposed system acts without any formal communication links, solely using the embedded information present system-wide. (E) The methodology of the thesis proposes switching of water heater loads based on a simple, localized frequency set-point controller. The thesis has identified the consequent problem of rapid switching of distributed loads, which is referred to as chattering. (F) Two approaches have been proposed to reduce chattering to tolerable levels. (G) A frequency controller has been designed and built according to the specifications required to switch electric water heater loads in response to power system disturbances. (H) A cost analysis for building and installing the distributed frequency controller has been carried out. (I) The proposed equipment and methodology has been implemented and tested successfully. (Abstract shortened by UMI.)
CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.F. Loros
2000-06-23
The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS,more » as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building structures and space allocations. The Carrier/Cask Handling System interfaces with the Waste Handling Building Electrical System for electrical power.« less
Architecture of high-rise buildings as a brand of the modern Kazakhstan
NASA Astrophysics Data System (ADS)
Abdrassilova, Gulnara; Kozbagarova, Nina; Tuyakayeva, Ainagul
2018-03-01
Using practical examples article reviews urban-planning and space-planning features of design and construction of high-rise buildings in Kazakhstan conditions; methods are identified that provide for structural stability against wind and seismic loads based on innovative technical and technological solutions. Article authors stress out the fashion function of high-rise buildings in the new capital of Kazakhstan, the Astana city.
After-hours power status of office equipment and energy use of miscellaneous plug-load equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.
2004-05-27
This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers.more » For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small business offices (< 50 employees each). Two buildings are in the San Francisco Bay are a of California, nine (including the five small businesses) are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.« less
Stiffness analysis of glued connection of the timber-concrete structure
NASA Astrophysics Data System (ADS)
Daňková, Jana; Mec, Pavel; Majstríková, Tereza
2016-01-01
This paper presents results of experimental and mathematical analysis of stiffness characteristics of a composite timber-concrete structure. The composite timberconcrete structure presented herein is non-typical compared to similar types of building structures. The interaction between the timber and concrete part of the composite cross-section is not based on metal connecting elements, but it is ensured by a glued-in perforated mesh made of plywood. The paper presents results of experimental and mathematical analysis for material alternatives of the solution of the glued joint. The slip modulus values were determined experimentally. Data obtained from the experiment evaluated by means of regression analysis. Test results were also used as input data for the compilation of a 3D model of a composite structure by means of the 3D finite element model. On the basis of result evaluation, it can be stated that the stress-deformation behaviour at shear loading of this specific timber-concrete composite structure can be affected by the type of glue used. Parameters of the 3D model of both alternative of the structure represent well the behaviour of the composite structure and the model can be used for predicting design parameters of a building structure.
Strategy Guideline. Proper Water Heater Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, M.; Springer, D.; German, A.
2015-04-09
This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.
Strategy Guideline: Proper Water Heater Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, M.; Springer, D.; German, A.
2015-04-01
This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.
Building with integral solar-heat storage--Starkville, Mississippi
NASA Technical Reports Server (NTRS)
1981-01-01
Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.
Evaluation of Advanced Polymers for Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Carter, William G.; Kutchko, Cindy
The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficientmore » mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.« less
Bao, Yihai; Main, Joseph A.; Noh, Sam-Young
2017-01-01
A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness. PMID:28890599
Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen
Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.; ...
2015-11-20
Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less
Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.
Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...
VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, David Robert; Fensin, Saryu Jindal; Dippo, Olivia
Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on amore » plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.« less
Seismic fragility assessment of low-rise stone masonry buildings
NASA Astrophysics Data System (ADS)
Abo-El-Ezz, Ahmad; Nollet, Marie-José; Nastev, Miroslav
2013-03-01
Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads. Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers. This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada. The old historic center of Quebec City has been selected as a typical study area. The standard fragility analysis combines the inelastic spectral displacement, a structure-dependent earthquake intensity measure, and the building damage state correlated to the induced building displacement. The proposed procedure consists of a three-step development process: (1) mechanics-based capacity model, (2) displacement-based damage model and (3) seismic demand model. The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings. Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER. Hazus shows the highest probability of the occurrence of no to slight damage, whereas the highest probability of extensive and complete damage is predicted with ELER. This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Receptacles. 434.515 Section 434.515 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.515 Receptacles. 515.1Receptacle loads and...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Receptacles. 434.515 Section 434.515 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.515 Receptacles. 515.1 Receptacle loads and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Receptacles. 434.515 Section 434.515 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.515 Receptacles. 515.1Receptacle loads and...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Receptacles. 434.515 Section 434.515 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.515 Receptacles. 515.1Receptacle loads and...
Looking East at BottomHalf of Reactor Number One and TopHalf ...
Looking East at Bottom-Half of Reactor Number One and Top-Half of Reactor Number 2 Including Weigh Hopper on Third Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
29 CFR 1926.758 - Systems-engineered metal buildings.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...
29 CFR 1926.758 - Systems-engineered metal buildings.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...
29 CFR 1926.758 - Systems-engineered metal buildings.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...
Extreme winds and tornadoes: an overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.
1985-01-01
The objective of this course on extreme winds, hurricanes and tornadoes is to provide an overview of these natural phenomenon from the perspective of design of new buildings and structures or the evaluation of existing ones. Information is directly applicable to design and evaluation processes. The premise is that the facility under consideration, which may consist of various buildings, structures, processing equipment, stacks, ventilation ducts, etc., can be classified into certain categories, depending on the importance of the mission performed in the facility or the hazard that is presented by the particular operation. Having classified the facility into an appropriatemore » category will automatically define certain design goals for the facility. The design goals are then met by selecting a design wind speed that is appropriate for the specified exceedance probability and by following certain specified design procedures. The problem then is to determine appropriate wind loads and other applicable loads, including dead loads, live loads, seismic loads and other loads that may act on the structures. The design process can then proceed in the usual manner. In the case of existing facilities the strengths of the various structural elements, subsystems and systems are evaluated and these strengths are related to wind speeds that would result in failure to meet the design goals. 12 refs.« less
Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Marla; Webber, Carrie; Brown, Richard
2007-02-28
Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and typesmore » of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.« less
He, Zhi Chao; Huang, Shuo; Guo, Qing Hai; Xiao, Li Shan; Yang, De Wei; Wang, Ying; Yang, Yi Fu
2016-08-01
Urban sprawl has impacted increasingly on water environment quality in watersheds. Based on water environmental response, the simulation and prediction of expanding threshold of urban building land could provide an alternative reference for urban construction planning. Taking three watersheds (i.e., Yundang Lake at complete urbanization phase, Maluan Bay at peri-urbanization phase and Xinglin Bay at early urbanization phase) with 2009-2012 observation data as example, we calculated the upper limit of TN and TP capacity in three watersheds and identified the threshold value of urban building land in watersheds using the regional nutrient management (ReNuMa) model, and also predicted the water environmental effects associated with the changes of urban landscape pattern. Results indicated that the upper limit value of TN was 12900, 42800 and 43120 kg, while that of TP was 340, 420 and 450 kg for Yundang, Maluan and Xinglin watershed, respectively. In reality, the environment capacity of pollutants in Yundang Lake was not yet satura-ted, and annual pollutant loads in Maluan Bay and Xinglin Bay were close to the upper limit. How-ever, an obvious upward trend of annual TN and TP loads was observed in Xinglin Bay. The annual pollutant load was not beyond the annual upper limit in three watersheds under Scenario 1, while performed oppositely under Scenario 3. Under Scenario 2, the annual pollutant load in Yundang Lake was under-saturation, and the TN and TP in Maluan Bay were over their limits. The area thresholds of urban building land were 1320, 5600 and 4750 hm 2 in Yundang Lake, Maluan Bay and Xinglin Bay, respectively. This study could benefit the regulation on urban landscape planning.
NASA Astrophysics Data System (ADS)
Meng, Fanchao; Li, Mingcai; Cao, Jingfu; Li, Ji; Xiong, Mingming; Feng, Xiaomei; Ren, Guoyu
2017-06-01
Climate plays an important role in heating energy consumption owing to the direct relationship between space heating and changes in meteorological conditions. To quantify the impact, the Transient System Simulation Program software was used to simulate the heating loads of office buildings in Harbin, Tianjin, and Shanghai, representing three major climate zones (i.e., severe cold, cold, and hot summer and cold winter climate zones) in China during 1961-2010. Stepwise multiple linear regression was performed to determine the key climatic parameters influencing heating energy consumption. The results showed that dry bulb temperature (DBT) is the dominant climatic parameter affecting building heating loads in all three climate zones across China during the heating period at daily, monthly, and yearly scales (R 2 ≥ 0.86). With the continuous warming climate in winter over the past 50 years, heating loads decreased by 14.2, 7.2, and 7.1 W/m2 in Harbin, Tianjin, and Shanghai, respectively, indicating that the decreasing rate is more apparent in severe cold climate zone. When the DBT increases by 1 °C, the heating loads decrease by 253.1 W/m2 in Harbin, 177.2 W/m2 in Tianjin, and 126.4 W/m2 in Shanghai. These results suggest that the heating energy consumption can be well predicted by the regression models at different temporal scales in different climate conditions owing to the high determination coefficients. In addition, a greater decrease in heating energy consumption in northern severe cold and cold climate zones may efficiently promote the energy saving in these areas with high energy consumption for heating. Particularly, the likely future increase in temperatures should be considered in improving building energy efficiency.
Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, J.; Winkler, J.; Christensen, D.
2014-08-01
Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputsmore » for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.« less
NASA Astrophysics Data System (ADS)
Rovithis, Emmanouil; Kirtas, Emmanouil; Marini, Eleftheria; Bliziotis, Dimitris; Maltezos, Evangelos; Pitilakis, Dimitris; Makra, Konstantia; Savvaidis, Alexandros
2016-08-01
Airborne LiDAR monitoring integrated with field data is employed to assess the fundamental period and the seismic loading of structures composing an urban area under prescribed earthquake scenarios. Α piecewise work-flow is adopted by combining geometrical data of the building stock derived from a LiDAR-based 3D city model, structural data from in-situ inspections on representative city blocks and results of soil response analyses. The procedure is implemented in the residential area of Kalochori, (west of Thessaloniki in Northern Greece). Special attention is paid to the in-situ inspection of the building stock in order to discriminate recordings between actual buildings and man-made constructions that do not conform to seismic design codes and to acquire additional building stock data on structural materials, typologies and number of stories which is not feasible by the LiDAR process. The processed LiDAR and field data are employed to compute the fundamental period of each building by means of code-defined formulas. Knowledge of soil conditions in the Kalochoti area allows for soil response analyses to obtain free-field at ground surface under earthquake scenarios with varying return period. Upon combining the computed vibrational characteristics of the structures with the free-field response spectra, the seismic loading imposed on the structures of the urban area under investigation is derived for each one of the prescribed seismic motions. Results are presented in GIS environment in the form of spatially distributed spectral accelerations with direct implications in seismic vulnerability studies of an urban area.
Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral
2016-07-01
Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.
Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral
2016-01-01
Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement. PMID:27376303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavuzturk, C. C.; Chiasson, A. D.; Filburn, T. P.
This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance themore » ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is provided that is based on mathematically robust, validated models. An automated optimization tool is used to balance ground loads and incorporated into the simulation engine. With knowledge of the building loads, thermal properties of the ground, the borehole heat exchanger configuration, the heat pump peak hourly and seasonal COP for heating and cooling, the critical heat pump design entering fluid temperature, and the thermal performance of a solar collector, the total GHX length can be calculated along with the area of a supplemental solar collector array and the corresponding reduced GHX length. An economic analysis module allows for the calculation of the lowest capital cost combination of solar collector area and GHX length. ACKNOWLEDGMENTS This project was funded by the United States Department of Energy DOE-DE-FOA-0000116, Recovery Act Geothermal Technologies Program: Ground Source Heat Pumps. The lead contractor, The University of Hartford, was supported by The University of Dayton, and the Oak Ridge National Laboratories. All funding and support for this project as well as contributions of graduate and undergraduate students from the contributing institutions are gratefully acknowledged.« less
Thiesen, Guilherme; Shimizu, Roberto Hideo; do Valle, Caio Vinicius Martins; do Valle-Corotti, Karyna Martins; Pereira, Jefferson Ricardo; Conti, Paulo Cesar Rodrigues
2013-03-15
To determine the mechanical characteristics of teardrop loop with and without helix fabricated using different metal alloy compositions (stainless steel and beta-titanium), submitted to different intensities of bends preactivation (0° and 40°), and with different cross-sectional dimension of the wire used to build these loops (0.017 x 0.025-in and 0.019 x 0.025-in). Eighty loops used to close spaces were submitted to mechanical tests. The magnitudes of horizontal force, the moment/force ratio, and the load/deflection ratio produced by the specimens were quantified. Loops were submitted to a total activation of 5.0 mm and the values were registered for each 1.0 mm of activation. For statistic data analysis, a analysis of variance was performed and a Tukey's Multiple Comparison test was used as supplement, considering a 5% level of significance. In general, teardrop loops with helix produced lower magnitudes of horizontal force and load/deflection ratio, and higher moment/force ratio than teardrop loops without helix. Among all analyzed variables, metal alloy composition presented greater influence in the horizontal force and in the load/deflection ratio. The moment/force ratio showed to be more influenced by the preactivation of loops for space closure.
Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading
NASA Astrophysics Data System (ADS)
Gerami, Mohsen; Lotfi, Mohsen; Nejat, Roya
2015-06-01
The ever-increasing need for housing generated the search for new and innovative building methods to increase speed and efficiency and enhance quality. One method is the use of light thin steel profiles as load-bearing elements having different solutions for interior and exterior cladding. Due to the increase in CFS construction in low-rise residential structures in the modern construction industry, there is an increased demand for performance inelastic analysis of CFS walls. In this study, the nonlinear behavior of cold-formed steel frames with various bracing arrangements including cross, chevron and k-shape straps was evaluated under cyclic and monotonic loading and using nonlinear finite element analysis methods. In total, 68 frames with different bracing arrangements and different ratios of dimensions were studied. Also, seismic parameters including resistance reduction factor, ductility and force reduction factor due to ductility were evaluated for all samples. On the other hand, the seismic response modification factor was calculated for these systems. It was concluded that the highest response modification factor would be obtained for walls with bilateral cross bracing systems with a value of 3.14. In all samples, on increasing the distance of straps from each other, shear strength increased and shear strength of the wall with bilateral bracing system was 60 % greater than that with lateral bracing system.
The seasonal performance of a liquid-desiccant air conditioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowenstein, A.; Novosel, D.
1995-08-01
Prior reports on liquid-desiccant systems have focused on their steady-state operation at ARI design conditions. By studying their performance during an entire cooling season, the computer modeling presented here shows that liquid-desiccant systems can have a very high seasonal coefficient of performance (COP). For a liquid-desiccant system that uses a double-effect boiler, COPs ranging from 1.44 in a humid location (Houston) to 2.24 in a dry location (Phoenix) are achieved by fully exploiting indirect evaporative cooling and providing only the minimum latent cooling needed to meet the loads on the building. This minimizes the amount of water absorbed by themore » desiccant and, hence, the amount of thermal energy needed to regenerate it. In applications where latent loads are very high, such as processing the high volumes of ventilation air required to maintain good indoor air quality, the liquid-desiccant air conditioner again has an advantage over vapor-compression equipment. In this study, a liquid-desiccant system is modeled that cools and dehumidifies only the ventilation air of an office building in Atlanta. Although processing an airstream that is only 25% of the total air delivered to the building, the liquid-desiccant system is able to meet 52% of the building`s seasonal cooling requirements and reduce the building`s peak electrical demand by about 47%.« less
Development of a Knowledge-Based System Approach for Decision Making in Construction Projects
1992-05-01
a generic model for an administrative facility and medical facility with predefined fixed building systems based on Air Force criteria and past...MAINTENANCE HANGAR (MEDIUM BAY) CORROSION CONTROL HANGAR (HIGH BAY) FUEL SYSTEM MAINTENANCE HANGAR (MEDIUM BAY) MEDICAL MODEL 82 Table 5-1--continued...BUILDING SUPPORT MEDICAL LOGISTICS MEDICAL TOTAL 85 Table 5-2--continued MISSILE ASSEMBLY AND MAINTENANCE BUILDING TOTAL MISSILE LOADING AND UNLOADING
NASA Astrophysics Data System (ADS)
Formisano, Antonio; Chieffo, Nicola; Milo, Bartolomeo; Fabbrocino, Francesco
2016-12-01
The current paper deals with the seismic vulnerability evaluation of masonry constructions grouped in aggregates through an "ad hoc" quick vulnerability form based on new assessment parameters considering local collapse mechanisms. First, a parametric kinematic analysis on masonry walls with different height (h) / thickness (t) ratios has been developed with the purpose of identifying the collapse load multiplier for activation of the main four first-order failure mechanisms. Subsequently, a form initially conceived for building aggregates suffering second-mode collapse mechanisms, has been expanded on the basis of the achieved results. Tre proposed quick vulnerability technique has been applied to one case study within the territory of Arsita (Teramo, Italy) and, finally, it has been also validated by the comparison of results with those deriving from application of the well-known FaMIVE procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, E.O. Jr.
1987-10-15
The active solar Domestic Hot Water (DHW) system at the HQ Army-Air Force Exchange Service (AAFES) Building was designed and constructed as part of the Solar in Federal Buildings Programs (SFBP). This retrofitted system is one of eight of the systems in the SFBP selected for quality monitoring. The purpose of this monitoring effort is to document the performance of quality state-of-the-art solar systems in large federal building applications. The six-story HQ AAFES Building houses a cafeteria, officer's mess and club and office space for 2400 employees. The siphon-return drainback system uses 1147 ft/sup 2/ of Aircraftsman flat-plate collectors tomore » collect solar energy which is used to preheat domestic hot water. Solar energy is stored in a 1329-gallon tank and transferred to the hot water load through a heat exchanger located in the 356-gallon DHW preheat tank. Auxiliary energy is supplied by two gas fired boilers which boost the temperature to 130/sup 0/F before it is distributed to the load. Highlights of the performance of the HQ AAFES Building solar system during the monitoring period from August 1984 through May 1985 are presented in this report.« less
Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings
2013-01-01
Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetiu, C.; Feustel, H.E.
1998-07-01
As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage canmore » thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.« less