Sample records for building software systems

  1. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  2. Large Scale Software Building with CMake in ATLAS

    NASA Astrophysics Data System (ADS)

    Elmsheuser, J.; Krasznahorkay, A.; Obreshkov, E.; Undrus, A.; ATLAS Collaboration

    2017-10-01

    The offline software of the ATLAS experiment at the Large Hadron Collider (LHC) serves as the platform for detector data reconstruction, simulation and analysis. It is also used in the detector’s trigger system to select LHC collision events during data taking. The ATLAS offline software consists of several million lines of C++ and Python code organized in a modular design of more than 2000 specialized packages. Because of different workflows, many stable numbered releases are in parallel production use. To accommodate specific workflow requests, software patches with modified libraries are distributed on top of existing software releases on a daily basis. The different ATLAS software applications also require a flexible build system that strongly supports unit and integration tests. Within the last year this build system was migrated to CMake. A CMake configuration has been developed that allows one to easily set up and build the above mentioned software packages. This also makes it possible to develop and test new and modified packages on top of existing releases. The system also allows one to detect and execute partial rebuilds of the release based on single package changes. The build system makes use of CPack for building RPM packages out of the software releases, and CTest for running unit and integration tests. We report on the migration and integration of the ATLAS software to CMake and show working examples of this large scale project in production.

  3. ETICS: the international software engineering service for the grid

    NASA Astrophysics Data System (ADS)

    Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.

    2008-07-01

    The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.

  4. Software packager user's guide

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.

  5. Modernized build and test infrastructure for control software at ESO: highly flexible building, testing, and automatic quality practices for telescope control software

    NASA Astrophysics Data System (ADS)

    Pellegrin, F.; Jeram, B.; Haucke, J.; Feyrin, S.

    2016-07-01

    The paper describes the introduction of a new automatized build and test infrastructure, based on the open-source software Jenkins1, into the ESO Very Large Telescope control software to replace the preexisting in-house solution. A brief introduction to software quality practices is given, a description of the previous solution, the limitations of it and new upcoming requirements. Modifications required to adapt the new system are described, how these were implemented to current software and the results obtained. An overview on how the new system may be used in future projects is also presented.

  6. Development of Automated Procedures to Generate Reference Building Models for ASHRAE Standard 90.1 and India’s Building Energy Code and Implementation in OpenStudio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Andrew; Haves, Philip; Jegi, Subhash

    This paper describes a software system for automatically generating a reference (baseline) building energy model from the proposed (as-designed) building energy model. This system is built using the OpenStudio Software Development Kit (SDK) and is designed to operate on building energy models in the OpenStudio file format.

  7. Requirements Engineering in Building Climate Science Software

    ERIC Educational Resources Information Center

    Batcheller, Archer L.

    2011-01-01

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…

  8. Software Build and Delivery Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, Robert W.

    2016-07-10

    This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.

  9. From Bridges and Rockets, Lessons for Software Systems

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael

    2004-01-01

    Although differences exist between building software systems and building physical structures such as bridges and rockets, enough similarities exist that software engineers can learn lessons from failures in traditional engineering disciplines. This paper draws lessons from two well-known failures the collapse of the Tacoma Narrows Bridge in 1940 and the destruction of the space shuttle Challenger in 1986 and applies these lessons to software system development. The following specific applications are made: (1) the verification and validation of a software system should not be based on a single method, or a single style of methods; (2) the tendency to embrace the latest fad should be overcome; and (3) the introduction of software control into safety-critical systems should be done cautiously.

  10. Software Management for the NOνAExperiment

    NASA Astrophysics Data System (ADS)

    Davies, G. S.; Davies, J. P.; C Group; Rebel, B.; Sachdev, K.; Zirnstein, J.

    2015-12-01

    The NOvAsoftware (NOνASoft) is written in C++, and built on the Fermilab Computing Division's art framework that uses ROOT analysis software. NOνASoftmakes use of more than 50 external software packages, is developed by more than 50 developers and is used by more than 100 physicists from over 30 universities and laboratories in 3 continents. The software builds are handled by Fermilab's custom version of Software Release Tools (SRT), a UNIX based software management system for large, collaborative projects that is used by several experiments at Fermilab. The system provides software version control with SVN configured in a client-server mode and is based on the code originally developed by the BaBar collaboration. In this paper, we present efforts towards distributing the NOvA software via the CernVM File System distributed file system. We will also describe our recent work to use a CMake build system and Jenkins, the open source continuous integration system, for NOνASoft.

  11. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  12. NASA's Core Trajectory Sub-System Project: Using JBoss Enterprise Middleware for Building Software Systems Used to Support Spacecraft Trajectory Operations

    NASA Technical Reports Server (NTRS)

    Stensrud, Kjell C.; Hamm, Dustin

    2007-01-01

    NASA's Johnson Space Center (JSC) / Flight Design and Dynamics Division (DM) has prototyped the use of Open Source middleware technology for building its next generation spacecraft mission support system. This is part of a larger initiative to use open standards and open source software as building blocks for future mission and safety critical systems. JSC is hoping to leverage standardized enterprise architectures, such as Java EE, so that its internal software development efforts can be focused on the core aspects of their problem domain. This presentation will outline the design and implementation of the Trajectory system and the lessons learned during the exercise.

  13. How Nasa's Independent Verification and Validation (IVandV) Program Builds Reliability into a Space Mission Software System (SMSS)

    NASA Technical Reports Server (NTRS)

    Fisher, Marcus S.; Northey, Jeffrey; Stanton, William

    2014-01-01

    The purpose of this presentation is to outline how the NASA Independent Verification and Validation (IVV) Program helps to build reliability into the Space Mission Software Systems (SMSSs) that its customers develop.

  14. A Scalable Software Architecture Booting and Configuring Nodes in the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    The Whitney project is integrating commodity off-the-shelf PC hardware and software technology to build a parallel supercomputer with hundreds to thousands of nodes. To build such a system, one must have a scalable software model, and the installation and maintenance of the system software must be completely automated. We describe the design of an architecture for booting, installing, and configuring nodes in such a system with particular consideration given to scalability and ease of maintenance. This system has been implemented on a 40-node prototype of Whitney and is to be used on the 500 processor Whitney system to be built in 1998.

  15. CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 4, July/August 2010

    DTIC Science & Technology

    2010-08-01

    Anita Carleton, Del Kellogg, and Jeff Schwalb Building Critical Systems as a Cyborg As outrageous as it may seem, adapting cybernetics to defense...software is a real possibility in building complex software systems. Ball discusses the history of cybernetics, what a “ cyborg ” really is, and how...What Is a Cyborg ? We want both kinds of the behavior that I’ve talked about, with predictable systems that follow established rules and proce- dures

  16. Averting Denver Airports on a Chip

    NASA Technical Reports Server (NTRS)

    Sullivan, Kevin J.

    1995-01-01

    As a result of recent advances in software engineering capabilities, we are now in a more stable environment. De-facto hardware and software standards are emerging. Work on software architecture and design patterns signals a consensus on the importance of early system-level design decisions, and agreements on the uses of certain paradigmatic software structures. We now routinely build systems that would have been risky or infeasible a few years ago. Unfortunately, technological developments threaten to destabilize software design again. Systems designed around novel computing and peripheral devices will spark ambitious new projects that will stress current software design and engineering capabilities. Micro-electro-mechanical systems (MEMS) and related technologies provide the physical basis for new systems with the potential to produce this kind of destabilizing effect. One important response to anticipated software engineering and design difficulties is carefully directed engineering-scientific research. Two specific problems meriting substantial research attention are: A lack of sufficient means to build software systems by generating, extending, specializing, and integrating large-scale reusable components; and a lack of adequate computational and analytic tools to extend and aid engineers in maintaining intellectual control over complex software designs.

  17. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  18. Early experiences building a software quality prediction model

    NASA Technical Reports Server (NTRS)

    Agresti, W. W.; Evanco, W. M.; Smith, M. C.

    1990-01-01

    Early experiences building a software quality prediction model are discussed. The overall research objective is to establish a capability to project a software system's quality from an analysis of its design. The technical approach is to build multivariate models for estimating reliability and maintainability. Data from 21 Ada subsystems were analyzed to test hypotheses about various design structures leading to failure-prone or unmaintainable systems. Current design variables highlight the interconnectivity and visibility of compilation units. Other model variables provide for the effects of reusability and software changes. Reported results are preliminary because additional project data is being obtained and new hypotheses are being developed and tested. Current multivariate regression models are encouraging, explaining 60 to 80 percent of the variation in error density of the subsystems.

  19. Project based, Collaborative, Algorithmic Robotics for High School Students: Programming Self Driving Race Cars at MIT

    DTIC Science & Technology

    2017-02-19

    software systems: the students design and build robotics software towards real-world applications, without being distracted by hardware issues; (ii) it...high school students require the students to focus on building and integrating the hardware that make up the robot, at the expense of designing and...robotics programs focus on the mechanics; as a result, they do not have room for students to design and implement relatively complex software systems, as

  20. Software Solution Builds Project Consensus.

    ERIC Educational Resources Information Center

    Graue, David

    2003-01-01

    Describes the use of Autodesk Revit, a computer software system for design and documentation of buildings, in the planning of the University Center of Chicago, a large residence hall involving the cooperation of DePaul University, Columbia College, and Roosevelt University. (EV)

  1. S-Cube: Enabling the Next Generation of Software Services

    NASA Astrophysics Data System (ADS)

    Metzger, Andreas; Pohl, Klaus

    The Service Oriented Architecture (SOA) paradigm is increasingly adopted by industry for building distributed software systems. However, when designing, developing and operating innovative software services and servicebased systems, several challenges exist. Those challenges include how to manage the complexity of those systems, how to establish, monitor and enforce Quality of Service (QoS) and Service Level Agreements (SLAs), as well as how to build those systems such that they can proactively adapt to dynamically changing requirements and context conditions. Developing foundational solutions for those challenges requires joint efforts of different research communities such as Business Process Management, Grid Computing, Service Oriented Computing and Software Engineering. This paper provides an overview of S-Cube, the European Network of Excellence on Software Services and Systems. S-Cube brings together researchers from leading research institutions across Europe, who join their competences to develop foundations, theories as well as methods and tools for future service-based systems.

  2. Economic and Environmental Assessment of a 1 MW Grid Connected Rooftop Solar PV System for Energy Efficient Building in Bangladesh

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sanjib; Hosain, Rubayet; Rahman, Toufiqur; Rabbi, Ahmead Fazle

    This paper evaluates the potentiality of a 1 MW grid connected rooftop solar PV system for an Energy Efficient Building in Bangladesh, which was estimated by utilizing NASA SSE solar radiation data, PVsyst simulation software and RETScreen simulation software. Economic and environmental viability for a ten-storied building with roof area of 6,500 m2 in the Capital City of Bangladesh, Dhaka was assessed by using the RETScreen simulation software. The yearly electricity production of the proposed system was 1,581 MWh estimated by PVsyst where the technical prospective of gird-connected solar PV in Bangladesh was calculated as about 50,174 MW. The economic assessments were determined the simple payback in such a way that the generated electricity first fulfills the demand of the building, and then the rest of the energy is supplied to the grid. The result indicates that the roof top solar PV system for an Energy efficient building in Dhaka city has a favorable condition for development both in economic and environmental point of view.

  3. Software Tools for Development on the Peregrine System | High-Performance

    Science.gov Websites

    Computing | NREL Software Tools for Development on the Peregrine System Software Tools for and manage software at the source code level. Cross-Platform Make and SCons The "Cross-Platform Make" (CMake) package is from Kitware, and SCons is a modern software build tool based on Python

  4. Rapid Deployment of Optimal Control for Building HVAC Systems Using Innovative Software Tools and a Hybrid Heuristic/Model Based Control Approach

    DTIC Science & Technology

    2017-03-21

    for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT ESTCP project EW-201409 aimed at demonstrating the benefits ...of innovative software technology for building HV AC systems. These benefits included reduced system energy use and cost as wetl as improved...Control Approach March 2017 This document has been cleared for public release; Distribution Statement A

  5. Direct-coupled microcomputer-based building emulator for building energy management and control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, H.N.

    1999-07-01

    In this paper, the development and implementation of a direct-coupled building emulator for a building energy management and control system (EMCS) is presented. The building emulator consists of a microcomputer and a computer model of an air-conditioning system implemented in a modular dynamic simulation software package for direct-coupling to an EMCS, without using analog-to-digital and digital-to-analog converters. The building emulator can be used to simulate in real time the behavior of the air-conditioning system under a given operating environment and subject to a given usage pattern. Software modules for data communication, graphical display, dynamic data exchange, and synchronization of simulationmore » outputs with real time have been developed to achieve direct digital data transfer between the building emulator and a commercial EMCS. Based on the tests conducted, the validity of the building emulator has been established and the proportional-plus-integral control function of the EMCS assessed.« less

  6. Feasibility of Close-Range Photogrammetric Models for Geographic Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Luke; /Rice U.

    2011-06-22

    The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model wasmore » not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.« less

  7. Building the Core Architecture of a Multiagent System Product Line: With an example from a future NASA Mission

    NASA Technical Reports Server (NTRS)

    Pena, Joaquin; Hinchey, Michael G.; Ruiz-Cortes, Antonio

    2006-01-01

    The field of Software Product Lines (SPL) emphasizes building a core architecture for a family of software products from which concrete products can be derived rapidly. This helps to reduce time-to-market, costs, etc., and can result in improved software quality and safety. Current AOSE methodologies are concerned with developing a single Multiagent System. We propose an initial approach to developing the core architecture of a Multiagent Systems Product Line (MAS-PL), exemplifying our approach with reference to a concept NASA mission based on multiagent technology.

  8. Software-engineering challenges of building and deploying reusable problem solvers.

    PubMed

    O'Connor, Martin J; Nyulas, Csongor; Tu, Samson; Buckeridge, David L; Okhmatovskaia, Anna; Musen, Mark A

    2009-11-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task-method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach.

  9. Software-engineering challenges of building and deploying reusable problem solvers

    PubMed Central

    O’CONNOR, MARTIN J.; NYULAS, CSONGOR; TU, SAMSON; BUCKERIDGE, DAVID L.; OKHMATOVSKAIA, ANNA; MUSEN, MARK A.

    2012-01-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task–method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach. PMID:23565031

  10. Key ingredients needed when building large data processing systems for scientists

    NASA Technical Reports Server (NTRS)

    Miller, K. C.

    2002-01-01

    Why is building a large science software system so painful? Weren't teams of software engineers supposed to make life easier for scientists? Does it sometimes feel as if it would be easier to write the million lines of code in Fortran 77 yourself? The cause of this dissatisfaction is that many of the needs of the science customer remain hidden in discussions with software engineers until after a system has already been built. In fact, many of the hidden needs of the science customer conflict with stated needs and are therefore very difficult to meet unless they are addressed from the outset in a system's architectural requirements. What's missing is the consideration of a small set of key software properties in initial agreements about the requirements, the design and the cost of the system.

  11. Third-Party Software's Trust Quagmire.

    PubMed

    Voas, J; Hurlburt, G

    2015-12-01

    Current software development has trended toward the idea of integrating independent software sub-functions to create more complete software systems. Software sub-functions are often not homegrown - instead they are developed by unknown 3 rd party organizations and reside in software marketplaces owned or controlled by others. Such software sub-functions carry plausible concern in terms of quality, origins, functionality, security, interoperability, to name a few. This article surveys key technical difficulties in confidently building systems from acquired software sub-functions by calling out the principle software supply chain actors.

  12. Integrating and Managing Bim in GIS, Software Review

    NASA Astrophysics Data System (ADS)

    El Meouche, R.; Rezoug, M.; Hijazi, I.

    2013-08-01

    Since the advent of Computer-Aided Design (CAD) and Geographical Information System (GIS) tools, project participants have been increasingly leveraging these tools throughout the different phases of a civil infrastructure project. In recent years the number of GIS software that provides tools to enable the integration of Building information in geo context has risen sharply. More and more GIS software are added tools for this purposes and other software projects are regularly extending these tools. However, each software has its different strength and weakness and its purpose of use. This paper provides a thorough review to investigate the software capabilities and clarify its purpose. For this study, Autodesk Revit 2012 i.e. BIM editor software was used to create BIMs. In the first step, three building models were created, the resulted models were converted to BIM format and then the software was used to integrate it. For the evaluation of the software, general characteristics was studied such as the user interface, what formats are supported (import/export), and the way building information are imported.

  13. Programming Makes Software; Support Makes Users

    NASA Astrophysics Data System (ADS)

    Batcheller, A. L.

    2010-12-01

    Skilled software engineers may build fantastic software for climate modeling, yet fail to achieve their project’s objectives. Software support and related activities are just as critical as writing software. This study followed three different software projects in the climate sciences, using interviews, observation, and document analysis to examine the value added by support work. Supporting the project and interacting with users was a key task for software developers, who often spent 50% of their time on it. Such support work most often involved replying to questions on an email list, but also included talking to users on teleconference calls and in person. Software support increased adoption by building the software’s reputation and showing individuals how the software can meet their needs. In the process of providing support, developers often learned new of requirements as users reported features they desire and bugs they found. As software matures and gains widespread use, support work often increases. In fact, such increases can be one signal that the software has achieved broad acceptance. Maturing projects also find demand for instructional classes, online tutorials and detailed examples of how to use the software. The importance of support highlights the fact that building software systems involves both social and technical aspects. Yes, we need to build the software, but we also need to “build” the users and practices that can take advantage of it.

  14. RETScreen Plus Software Tutorial

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene D.; Stackhouse, Paul W., Jr.; DeYoung, Russell J.

    2014-01-01

    Greater emphasis is being placed on reducing both the carbon footprint and energy cost of buildings. A building's energy usage depends upon many factors one of the most important is the local weather and climate conditions to which it's electrical, heating and air conditioning systems must respond. Incorporating renewable energy systems, including solar systems, to supplement energy supplies and increase energy efficiency is important to saving costs and reducing emissions. Also retrofitting technologies to buildings requires knowledge of building performance in its current state, potential future climate state, projection of potential savings with capital investment, and then monitoring the performance once the improvements are made. RETScreen Plus is a performance analysis software module that supplies the needed functions of monitoring current building performance, targeting projected energy efficiency improvements and verifying improvements once completed. This tutorial defines the functions of RETScreen Plus as well as outlines the general procedure for monitoring and reporting building energy performance.

  15. HashDist: Reproducible, Relocatable, Customizable, Cross-Platform Software Stacks for Open Hydrological Science

    NASA Astrophysics Data System (ADS)

    Ahmadia, A. J.; Kees, C. E.

    2014-12-01

    Developing scientific software is a continuous balance between not reinventing the wheel and getting fragile codes to interoperate with one another. Binary software distributions such as Anaconda provide a robust starting point for many scientific software packages, but this solution alone is insufficient for many scientific software developers. HashDist provides a critical component of the development workflow, enabling highly customizable, source-driven, and reproducible builds for scientific software stacks, available from both the IPython Notebook and the command line. To address these issues, the Coastal and Hydraulics Laboratory at the US Army Engineer Research and Development Center has funded the development of HashDist in collaboration with Simula Research Laboratories and the University of Texas at Austin. HashDist is motivated by a functional approach to package build management, and features intelligent caching of sources and builds, parametrized build specifications, and the ability to interoperate with system compilers and packages. HashDist enables the easy specification of "software stacks", which allow both the novice user to install a default environment and the advanced user to configure every aspect of their build in a modular fashion. As an advanced feature, HashDist builds can be made relocatable, allowing the easy redistribution of binaries on all three major operating systems as well as cloud, and supercomputing platforms. As a final benefit, all HashDist builds are reproducible, with a build hash specifying exactly how each component of the software stack was installed. This talk discusses the role of HashDist in the hydrological sciences, including its use by the Coastal and Hydraulics Laboratory in the development and deployment of the Proteus Toolkit as well as the Rapid Operational Access and Maneuver Support project. We demonstrate HashDist in action, and show how it can effectively support development, deployment, teaching, and reproducibility for scientists working in the hydrological sciences. The HashDist documentation is available from: http://hashdist.readthedocs.org/en/latest/ HashDist is currently hosted at: https://github.com/hashdist/hashdist

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foucar, James G.; Salinger, Andrew G.; Deakin, Michael

    CIME is the software infrastructure for configuring, building, running, and testing an Earth system model. It can be developed and tested as stand-alone software, but its main role is to be integrating into the CESM and ACME Earth system models.

  17. A Lossless Network for Data Acquisition

    NASA Astrophysics Data System (ADS)

    Jereczek, Grzegorz; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw

    2017-06-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial off-the-shelf servers, using the ATLAS experiment as a case study. In this paper, we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion on typical Ethernet switches to a commodity server acting as a switch. Our results indicate that software switches with large buffers perform significantly better. Next, we evaluate the scalability of the system when building a larger topology of interconnected software switches, exploiting the integration with software-defined networking technologies. We build an IP-only leaf-spine network consisting of eight software switches running on distinct physical servers as a demonstrator.

  18. Methods and Software for Building Bibliographic Data Bases.

    ERIC Educational Resources Information Center

    Daehn, Ralph M.

    1985-01-01

    This in-depth look at database management systems (DBMS) for microcomputers covers data entry, information retrieval, security, DBMS software and design, and downloading of literature search results. The advantages of in-house systems versus online search vendors are discussed, and specifications of three software packages and 14 sources are…

  19. The software architecture to control the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and trace requirements to deliverables (source code, documentation, etc.), and permits the implementation of a flexible use-case driven software development approach thanks to the traceability from use cases to the logical software elements. The Alma Common Software (ACS) container/component framework, used for the control of the Atacama Large Millimeter/submillimeter Array (ALMA) is the basis for the ACTL software and as such it is considered as an integral part of the software architecture.

  20. A Roadmap to Continuous Integration for ATLAS Software Development

    NASA Astrophysics Data System (ADS)

    Elmsheuser, J.; Krasznahorkay, A.; Obreshkov, E.; Undrus, A.; ATLAS Collaboration

    2017-10-01

    The ATLAS software infrastructure facilitates efforts of more than 1000 developers working on the code base of 2200 packages with 4 million lines of C++ and 1.4 million lines of python code. The ATLAS offline code management system is the powerful, flexible framework for processing new package versions requests, probing code changes in the Nightly Build System, migration to new platforms and compilers, deployment of production releases for worldwide access and supporting physicists with tools and interfaces for efficient software use. It maintains multi-stream, parallel development environment with about 70 multi-platform branches of nightly releases and provides vast opportunities for testing new packages, for verifying patches to existing software and for migrating to new platforms and compilers. The system evolution is currently aimed on the adoption of modern continuous integration (CI) practices focused on building nightly releases early and often, with rigorous unit and integration testing. This paper describes the CI incorporation program for the ATLAS software infrastructure. It brings modern open source tools such as Jenkins and GitLab into the ATLAS Nightly System, rationalizes hardware resource allocation and administrative operations, provides improved feedback and means to fix broken builds promptly for developers. Once adopted, ATLAS CI practices will improve and accelerate innovation cycles and result in increased confidence in new software deployments. The paper reports the status of Jenkins integration with the ATLAS Nightly System as well as short and long term plans for the incorporation of CI practices.

  1. Managing a Real-Time Embedded Linux Platform with Buildroot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, J.; Martin, K.

    2015-01-01

    Developers of real-time embedded software often need to build the operating system, kernel, tools and supporting applications from source to work with the differences in their hardware configuration. The first attempts to introduce Linux-based real-time embedded systems into the Fermilab accelerator controls system used this approach but it was found to be time-consuming, difficult to maintain and difficult to adapt to different hardware configurations. Buildroot is an open source build system with a menu-driven configuration tool (similar to the Linux kernel build system) that automates this process. A customized Buildroot [1] system has been developed for use in the Fermilabmore » accelerator controls system that includes several hardware configuration profiles (including Intel, ARM and PowerPC) and packages for Fermilab support software. A bootable image file is produced containing the Linux kernel, shell and supporting software suite that varies from 3 to 20 megabytes large – ideal for network booting. The result is a platform that is easier to maintain and deploy in diverse hardware configurations« less

  2. Object-oriented software design in semiautomatic building extraction

    NASA Astrophysics Data System (ADS)

    Guelch, Eberhard; Mueller, Hardo

    1997-08-01

    Developing a system for semiautomatic building acquisition is a complex process, that requires constant integration and updating of software modules and user interfaces. To facilitate these processes we apply an object-oriented design not only for the data but also for the software involved. We use the unified modeling language (UML) to describe the object-oriented modeling of the system in different levels of detail. We can distinguish between use cases from the users point of view, that represent a sequence of actions, yielding in an observable result and the use cases for the programmers, who can use the system as a class library to integrate the acquisition modules in their own software. The structure of the system is based on the model-view-controller (MVC) design pattern. An example from the integration of automated texture extraction for the visualization of results demonstrate the feasibility of this approach.

  3. LHCb Build and Deployment Infrastructure for run 2

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Couturier, B.

    2015-12-01

    After the successful run 1 of the LHC, the LHCb Core software team has taken advantage of the long shutdown to consolidate and improve its build and deployment infrastructure. Several of the related projects have already been presented like the build system using Jenkins, as well as the LHCb Performance and Regression testing infrastructure. Some components are completely new, like the Software Configuration Database (using the Graph DB Neo4j), or the new packaging installation using RPM packages. Furthermore all those parts are integrated to allow easier and quicker releases of the LHCb Software stack, therefore reducing the risk of operational errors. Integration and Regression tests are also now easier to implement, allowing to improve further the software checks.

  4. A General Water Resources Regulation Software System in China

    NASA Astrophysics Data System (ADS)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  5. WinHPC System Programming | High-Performance Computing | NREL

    Science.gov Websites

    Programming WinHPC System Programming Learn how to build and run an MPI (message passing interface (mpi.h) and library (msmpi.lib) are. To build from the command line, run... Start > Intel Software Development Tools > Intel C++ Compiler Professional... > C++ Build Environment for applications running

  6. Software augmented buildings: Exploiting existing infrastructure to improve energy efficiency and comfort in commercial buildings

    NASA Astrophysics Data System (ADS)

    Balaji, Bharathan

    Commercial buildings consume 19% of energy in the US as of 2010, and traditionally, their energy use has been optimized through improved equipment efficiency and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous potential in reducing energy use through better monitoring and operation. We present several applications that we developed and deployed to support our thesis that building energy use can be reduced through sensing, monitoring and optimization software that modulates use of building subsystems including HVAC. We focus on HVAC systems as these constitute 48-55% of building energy use. Specifically, in case of sensing, we describe an energy apportionment system that enables us to estimate real-time zonal HVAC power consumption by analyzing existing sensor information. With this energy breakdown, we can measure effectiveness of optimization solutions and identify inefficiencies. Central to energy efficiency improvement is determination of human occupancy in buildings. But this information is often unavailable or expensive to obtain using wide scale sensor deployment. We present our system that infers room level occupancy inexpensively by leveraging existing WiFi infrastructure. Occupancy information can be used not only to directly control HVAC but also to infer state of the building for predictive control. Building energy use is strongly influenced by human behaviors, and timely feedback mechanisms can encourage energy saving behavior. Occupants interact with HVAC using thermostats which has shown to be inadequate for thermal comfort. Building managers are responsible for incorporating energy efficiency measures, but our interviews reveal that they struggle to maintain efficiency due to lack of analytical tools and contextual information. We present our software services that provide energy feedback to occupants and building managers, improves comfort with personalized control and identifies energy wasting faults. For wide scale deployment of such energy saving software, they need to be portable across multiple buildings. However, buildings consist of heterogeneous equipment and use inconsistent naming schema, and developers need extensive domain knowledge to map sensor information to a standard format. To enable portability, we present an active learning algorithm that automates mapping building sensor metadata to a standard naming schema.

  7. Simulation-based Testing of Control Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozgur; Nutaro, James J.; Sanyal, Jibonananda

    It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulatormore » can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.« less

  8. Building Interactive Simulations in Web Pages without Programming.

    PubMed

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  9. Validation of highly reliable, real-time knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1988-01-01

    Knowledge-based systems have the potential to greatly increase the capabilities of future aircraft and spacecraft and to significantly reduce support manpower needed for the space station and other space missions. However, a credible validation methodology must be developed before knowledge-based systems can be used for life- or mission-critical applications. Experience with conventional software has shown that the use of good software engineering techniques and static analysis tools can greatly reduce the time needed for testing and simulation of a system. Since exhaustive testing is infeasible, reliability must be built into the software during the design and implementation phases. Unfortunately, many of the software engineering techniques and tools used for conventional software are of little use in the development of knowledge-based systems. Therefore, research at Langley is focused on developing a set of guidelines, methods, and prototype validation tools for building highly reliable, knowledge-based systems. The use of a comprehensive methodology for building highly reliable, knowledge-based systems should significantly decrease the time needed for testing and simulation. A proven record of delivering reliable systems at the beginning of the highly visible testing and simulation phases is crucial to the acceptance of knowledge-based systems in critical applications.

  10. ATLAS software configuration and build tool optimisation

    NASA Astrophysics Data System (ADS)

    Rybkin, Grigory; Atlas Collaboration

    2014-06-01

    ATLAS software code base is over 6 million lines organised in about 2000 packages. It makes use of some 100 external software packages, is developed by more than 400 developers and used by more than 2500 physicists from over 200 universities and laboratories in 6 continents. To meet the challenge of configuration and building of this software, the Configuration Management Tool (CMT) is used. CMT expects each package to describe its build targets, build and environment setup parameters, dependencies on other packages in a text file called requirements, and each project (group of packages) to describe its policies and dependencies on other projects in a text project file. Based on the effective set of configuration parameters read from the requirements files of dependent packages and project files, CMT commands build the packages, generate the environment for their use, or query the packages. The main focus was on build time performance that was optimised within several approaches: reduction of the number of reads of requirements files that are now read once per package by a CMT build command that generates cached requirements files for subsequent CMT build commands; introduction of more fine-grained build parallelism at package task level, i.e., dependent applications and libraries are compiled in parallel; code optimisation of CMT commands used for build; introduction of package level build parallelism, i. e., parallelise the build of independent packages. By default, CMT launches NUMBER-OF-PROCESSORS build commands in parallel. The other focus was on CMT commands optimisation in general that made them approximately 2 times faster. CMT can generate a cached requirements file for the environment setup command, which is especially useful for deployment on distributed file systems like AFS or CERN VMFS. The use of parallelism, caching and code optimisation significantly-by several times-reduced software build time, environment setup time, increased the efficiency of multi-core computing resources utilisation, and considerably improved software developer and user experience.

  11. LCG/AA build infrastructure

    NASA Astrophysics Data System (ADS)

    Hodgkins, Alex Liam; Diez, Victor; Hegner, Benedikt

    2012-12-01

    The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  12. Modular modeling system for building distributed hydrologic models with a user-friendly software package

    NASA Astrophysics Data System (ADS)

    Wi, S.; Ray, P. A.; Brown, C.

    2015-12-01

    A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Zhang, Jianshun; Pelken, Michael

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation toolsmore » as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus on evaluating thermal performance, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via the internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predicts the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium-sized, five story office building that received LEED Platinum Certification from USGBC.« less

  14. Acceptance test procedure bldg. 271-U remote monitoring of project W-059 B-Plant canyon exhaust system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-09-01

    The test procedure provides for verifying indications and alarms The test procedure provides for verifying indications and alarms associated with the B Plant Canyon Ventilation System as they are being displayed on a remote monitoring workstation located in building 271-U. The system application software was installed by PLCS Plus under contract from B&W Hanford Company. The application software was installed on an existing operator workstation in building 271U which is owned and operated by Bechtel Hanford Inc.

  15. Safe Software for Space Applications: Building on the DO-178 Experience

    NASA Astrophysics Data System (ADS)

    Dorsey, Cheryl A.; Dorsey, Timothy A.

    2013-09-01

    DO-178, Software Considerations in Airborne Systems and Equipment Certification, is the well-known international standard dealing with the assurance of software used in airborne systems [1,2]. Insights into the DO-178 experiences, strengths and weaknesses can benefit the international space community. As DO-178 is an excellent standard for safe software development when used appropriately, this paper provides lessons learned and suggestions for using it effectively.

  16. Reliability Engineering for Service Oriented Architectures

    DTIC Science & Technology

    2013-02-01

    Common Object Request Broker Architecture Ecosystem In software , an ecosystem is a set of applications and/or services that grad- ually build up over time...Enterprise Service Bus Foreign In an SOA context: Any SOA, service or software which the owners of the calling software do not have control of, either...SOA Service Oriented Architecture SRE Software Reliability Engineering System Mode Many systems exhibit different modes of operation. E.g. the cockpit

  17. A support architecture for reliable distributed computing systems

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1988-01-01

    The Clouds project is well underway to its goal of building a unified distributed operating system supporting the object model. The operating system design uses the object concept of structuring software at all levels of the system. The basic operating system was developed and work is under progress to build a usable system.

  18. Knowledge-intensive software design systems: Can too much knowledge be a burden?

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    While acknowledging the considerable benefits of domain-specific, knowledge-intensive approaches to automated software engineering, it is prudent to carefully examine the costs of such approaches, as well. In adding domain knowledge to a system, a developer makes a commitment to understanding, representing, maintaining, and communicating that knowledge. This substantial overhead is not generally associated with domain-independent approaches. In this paper, I examine the downside of incorporating additional knowledge, and illustrate with examples based on our experience in building the SIGMA system. I also offer some guidelines for developers building domain-specific systems.

  19. Knowledge-intensive software design systems: Can too much knowledge be a burden?

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    While acknowledging the considerable benefits of domain-specific, knowledge-intensive approaches to automated software engineering, it is prudent to carefully examine the costs of such approaches, as well. In adding domain knowledge to a system, a developer makes a commitment to understanding, representing, maintaining, and communicating that knowledge. This substantial overhead is not generally associated with domain-independent approaches. In this paper, I examine the downside of incorporating additional knowledge, and illustrate with examples based on our experiences building the SIGMA system. I also offer some guidelines for developers building domain-specific systems.

  20. Automating the design of scientific computing software

    NASA Technical Reports Server (NTRS)

    Kant, Elaine

    1992-01-01

    SINAPSE is a domain-specific software design system that generates code from specifications of equations and algorithm methods. This paper describes the system's design techniques (planning in a space of knowledge-based refinement and optimization rules), user interaction style (user has option to control decision making), and representation of knowledge (rules and objects). It also summarizes how the system knowledge has evolved over time and suggests some issues in building software design systems to facilitate reuse.

  1. Requirements Engineering in Building Climate Science Software

    NASA Astrophysics Data System (ADS)

    Batcheller, Archer L.

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the software team or users have control and responsibility for making changes in response to new scientific ideas. Thick infrastructure provides more functionality for users, but gives them less control of it. The stability of infrastructure trades off against the responsiveness that the infrastructure can have to user needs.

  2. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.

    PubMed

    Sochat, Vanessa V; Prybol, Cameron J; Kurtzer, Gregory M

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.

  3. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers

    PubMed Central

    Prybol, Cameron J.; Kurtzer, Gregory M.

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub’s primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers. PMID:29186161

  4. Four Pillars for Improving the Quality of Safety-Critical Software-Reliant Systems

    DTIC Science & Technology

    2013-04-01

    Studies of safety-critical software-reliant systems developed using the current practices of build-then-test show that requirements and architecture ... design defects make up approximately 70% of all defects, many system level related to operational quality attributes, and 80% of these defects are

  5. Assessment Environment for Complex Systems Software Guide

    NASA Technical Reports Server (NTRS)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  6. Teaching Model Building to High School Students: Theory and Reality.

    ERIC Educational Resources Information Center

    Roberts, Nancy; Barclay, Tim

    1988-01-01

    Builds on a National Science Foundation (NSF) microcomputer based laboratory project to introduce system dynamics into the precollege setting. Focuses on providing students with powerful and investigatory theory building tools. Discusses developed hardware, software, and curriculum materials used to introduce model building and simulations into…

  7. Sensor Suitcase Tablet Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Retrocommissioning Sensor Suitcase is targeted for use in small commercial buildings of less than 50,000 square feet of floor space that regularly receive basic services such as maintenance and repair, but don't have in-house energy management staff or buildings experts. The Suitcase is designed to be easy-to-use by building maintenance staff, or other professionals such as telecom and alarm technicians. The software in the hand-held is designed to guide the staff to input the building and system information, deploy the sensors in proper location, configure the sensor hardware, and start the data collection.

  8. Implementation of AN Unmanned Aerial Vehicle System for Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Mah, S. B.; Cryderman, C. S.

    2015-08-01

    Unmanned Aerial Vehicles (UAVs), digital cameras, powerful personal computers, and software have made it possible for geomatics professionals to capture aerial photographs and generate digital terrain models and orthophotographs without using full scale aircraft or hiring mapping professionals. This has been made possible by the availability of miniaturized computers and sensors, and software which has been driven, in part, by the demand for this technology in consumer items such as smartphones. The other force that is in play is the increasing number of Do-It-Yourself (DIY) people who are building UAVs as a hobby or for professional use. Building a UAV system for mapping is an alternative to purchasing a turnkey system. This paper describes factors to be considered when building a UAV mapping system, the choices made, and the test results of a project using this completed system.

  9. Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M. (Editor); Barstow, David; Lowry, Michael R.; Tong, Christopher H.

    1992-01-01

    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface.

  10. Addressing failures in exascale computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, andmore » academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.« less

  11. Addressing Failures in Exascale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, andmore » academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.« less

  12. Reuse Metrics for Object Oriented Software

    NASA Technical Reports Server (NTRS)

    Bieman, James M.

    1998-01-01

    One way to increase the quality of software products and the productivity of software development is to reuse existing software components when building new software systems. In order to monitor improvements in reuse, the level of reuse must be measured. In this NASA supported project we (1) derived a suite of metrics which quantify reuse attributes for object oriented, object based, and procedural software, (2) designed prototype tools to take these measurements in Ada, C++, Java, and C software, (3) evaluated the reuse in available software, (4) analyzed the relationship between coupling, cohesion, inheritance, and reuse, (5) collected object oriented software systems for our empirical analyses, and (6) developed quantitative criteria and methods for restructuring software to improve reusability.

  13. Ontology for Life-Cycle Modeling of Electrical Distribution Systems: Model View Definition

    DTIC Science & Technology

    2013-06-01

    building information models ( BIM ) at the coordinated design stage of building construction. 1.3 Approach To...standard for exchanging Building Information Modeling ( BIM ) data, which defines hundreds of classes for common use in software, currently supported by...specifications, Construction Operations Building in- formation exchange (COBie), Building Information Modeling ( BIM ) 16. SECURITY CLASSIFICATION OF:

  14. Investigating the Acquisition of Software Systems that Rely on Open Architecture and Open Source Software

    DTIC Science & Technology

    2010-03-01

    associated with certain software systems [Breaux and Anton 2008]. With this basis to build on, it is now possible to analyze the alignment of...Kazman, R., (2003). Software Architecture in Practice, 2nd Edition, Addison-Wesley Pro- fessional, New York.. Breaux, T.D. and Anton , A.I. (2008... calculus for license rights and obligations in license and context models. Using them, we calculate rights and obligations for specific sys- tems, identify

  15. Re-Writing the Construction History of Boughton House (northamptonshire, Uk) with the Help of DOCU-TOOLS®

    NASA Astrophysics Data System (ADS)

    Schuster, J. C.

    2017-08-01

    The tablet-based software docu-tools digitize the documentation of buildings, simplifies construction and facility management and the data analysis in building and construction-history research. As a plan-based software, `pins' can be set to record data (images, audio, text etc.), each data point containing a time and date stamp. Once a pin is set and information recorded, it can never be deleted from the system, creating clear contentious-free documentation. Reports to any/all data recorded can immediately be generated through various templates in order to share, document, analyze and archive the information gathered. The software both digitizes building condition assessment, as well as simplifies the fully documented management and solving of problems and monitoring of a building. Used both in the construction industry and for documenting and analyzing historic buildings, docu-tools is a versatile and flexible tool that has become integral to my work as a building historian working on the conservation and curating of the historic built environment in Europe. I used the software at Boughton House, Northamptonshire, UK, during a one-year research project into the construction history of the building. The details of how docu-tools was used during this project will be discussed in this paper.

  16. Teaching and Assessment of Mathematical Principles for Software Correctness Using a Reasoning Concept Inventory

    ERIC Educational Resources Information Center

    Drachova-Strang, Svetlana V.

    2013-01-01

    As computing becomes ubiquitous, software correctness has a fundamental role in ensuring the safety and security of the systems we build. To design and develop software correctly according to their formal contracts, CS students, the future software practitioners, need to learn a critical set of skills that are necessary and sufficient for…

  17. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they aremore » not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.« less

  18. Efficient and Robust Optimization for Building Energy Simulation

    PubMed Central

    Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda

    2016-01-01

    Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell’s Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell’s method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell’s Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell’s Hybrid method presently used in HVACSIM+. PMID:27325907

  19. Efficient and Robust Optimization for Building Energy Simulation.

    PubMed

    Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda

    2016-06-15

    Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell's Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell's method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell's Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell's Hybrid method presently used in HVACSIM+.

  20. ControlShell: A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo

    1994-01-01

    The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.

  1. User systems guidelines for software projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, L.

    1986-04-01

    This manual presents guidelines for software standards which were developed so that software project-development teams and management involved in approving the software could have a generalized view of all phases in the software production procedure and the steps involved in completing each phase. Guidelines are presented for six phases of software development: project definition, building a user interface, designing software, writing code, testing code, and preparing software documentation. The discussions for each phase include examples illustrating the recommended guidelines. 45 refs. (DWL)

  2. Moving Secure Software Assurance into Higher Education: A Roadmap for Change

    DTIC Science & Technology

    2011-06-02

    Summarized: The Issue: 6/2/20118 Software defects are currently a fact of life Software defects are avenues of security vulnerabilities that cyber ... criminals , terrorists, or hostile nations can exploit. We (THE ENTIRE INDUSTY) need to change the way we build systems Decrease the number of defects

  3. Defense Facility Condition: Revised Guidance Needed to Improve Oversight of Assessments and Ratings

    DTIC Science & Technology

    2016-06-01

    are to implement the standardized process in part by assessing the condition of buildings, pavement , and rail using the same set of software tools...facility to current standards; costs for labor, equipment, materials, and currency exchange rates overseas; costs for project planning and design ...example, the services are to assess the condition of buildings, pavement , and rail using Sustainment Management System software tools developed by the

  4. Study of fault tolerant software technology for dynamic systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Zacharias, G. L.

    1985-01-01

    The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.

  5. Systems Engineering Building Advances Power Grid Research

    ScienceCinema

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2018-01-16

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  6. Organization of functional interaction of corporate information systems

    NASA Astrophysics Data System (ADS)

    Safronov, V. V.; Barabanov, V. F.; Podvalniy, S. L.; Nuzhnyy, A. M.

    2018-03-01

    In this article the methods of specialized software systems integration are analyzed and the concept of seamless integration of production decisions is offered. In view of this concept developed structural and functional schemes of the specialized software are shown. The proposed schemes and models are improved for a machine-building enterprise.

  7. Secure Video Surveillance System Acquisition Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-12-04

    The SVSS Acquisition Software collects and displays video images from two cameras through a VPN, and store the images onto a collection controller. The software is configured to allow a user to enter a time window to display up to 2 1/2, hours of video review. The software collects images from the cameras at a rate of 1 image per second and automatically deletes images older than 3 hours. The software code operates in a linux environment and can be run in a virtual machine on Windows XP. The Sandia software integrates the different COTS software together to build themore » video review system.« less

  8. SCIL Executive Summaries.

    ERIC Educational Resources Information Center

    Samuels, Alan R.; And Others

    1987-01-01

    These five papers by speakers at the Small Computers in Libraries 1987 conference include: "Acquiring and Using Shareware in Building Small Scale Automated Information systems" (Samuels); "A Software Lending Collection" (Talab); "Providing Subject Access to Microcomputer Software" (Mitchell); "Interfacing Vendor…

  9. Fault Tree Analysis Application for Safety and Reliability

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.

  10. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  11. Home | Simulation Research

    Science.gov Websites

    Group specializes in the research, development and deployment of software that support the design and controls design, the Spawn of EnergyPlus next-generation simulation engine, for building and control energy systems tools for OpenBuildingControl to support control design, deployment and verification of building

  12. Machine learning research 1989-90

    NASA Technical Reports Server (NTRS)

    Porter, Bruce W.; Souther, Arthur

    1990-01-01

    Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base.

  13. Building Safer Systems With SpecTRM

    NASA Technical Reports Server (NTRS)

    2003-01-01

    System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.

  14. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  15. Software on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    . Development Tools View list of tools for build automation, version control, and high-level or specialized scripting. Toolchains Learn about the available toolchains to build applications from source code

  16. Managing computer-controlled operations

    NASA Technical Reports Server (NTRS)

    Plowden, J. B.

    1985-01-01

    A detailed discussion of Launch Processing System Ground Software Production is presented to establish the interrelationships of firing room resource utilization, configuration control, system build operations, and Shuttle data bank management. The production of a test configuration identifier is traced from requirement generation to program development. The challenge of the operational era is to implement fully automated utilities to interface with a resident system build requirements document to eliminate all manual intervention in the system build operations. Automatic update/processing of Shuttle data tapes will enhance operations during multi-flow processing.

  17. A Proven Methodology for Developing Secure Software and Applying It to Ground Systems

    NASA Technical Reports Server (NTRS)

    Bailey, Brandon

    2016-01-01

    Part Two expands upon Part One in an attempt to translate the methodology for ground system personnel. The goal is to build upon the methodology presented in Part One by showing examples and details on how to implement the methodology. Section 1: Ground Systems Overview; Section 2: Secure Software Development; Section 3: Defense in Depth for Ground Systems; Section 4: What Now?

  18. Building Diagnostic Market Deployment - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, S.; Gayeski, N.

    2012-04-30

    Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, andmore » boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL also provided validation data sets and the WBE software tool to validate the KGS implementation. OAE diagnostician automatically detects and diagnoses problems with outdoor air ventilation and economizer operation for air handling units (AHUs) in commercial buildings using data available from building automation systems (BASs). As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite. PNNL also provided validation data sets and the OAE software tool to validate the KGS implementation. Finally, as part of this CRADA project, PNNL developed new processes to automate parts of the re-tuning process and transfer those process to KGS for integration into their software product. The transfer of DOE-funded technologies will transform the commercial buildings sector by making buildings more energy efficient and also reducing the carbon footprint from the buildings. As part of the CRADA with PNNL, KGS implemented the whole building energy diagnostician, a portion of outdoor air economizer diagnostician and a number of measures that automate the identification of re-tuning measures.« less

  19. Concept of software interface for BCI systems

    NASA Astrophysics Data System (ADS)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  20. Defect measurement and analysis of JPL ground software: a case study

    NASA Technical Reports Server (NTRS)

    Powell, John D.; Spagnuolo, John N., Jr.

    2004-01-01

    Ground software systems at JPL must meet high assurance standards while remaining on schedule due to relatively immovable launch dates for spacecraft that will be controlled by such systems. Toward this end, the Software Quality Improvement (SQI) project's Measurement and Benchmarking (M&B) team is collecting and analyzing defect data of JPL ground system software projects to build software defect prediction models. The aim of these models is to improve predictability with regard to software quality activities. Predictive models will quantitatively define typical trends for JPL ground systems as well as Critical Discriminators (CDs) to provide explanations for atypical deviations from the norm at JPL. CDs are software characteristics that can be estimated or foreseen early in a software project's planning. Thus, these CDs will assist in planning for the predicted degree to which software quality activities for a project are likely to deviation from the normal JPL ground system based on pasted experience across the lab.

  1. Vision Based Localization in Urban Environments

    NASA Technical Reports Server (NTRS)

    McHenry, Michael; Cheng, Yang; Matthies, Larry

    2005-01-01

    As part of DARPA's MARS2020 program, the Jet Propulsion Laboratory developed a vision-based system for localization in urban environments that requires neither GPS nor active sensors. System hardware consists of a pair of small FireWire cameras and a standard Pentium-based computer. The inputs to the software system consist of: 1) a crude grid-based map describing the positions of buildings, 2) an initial estimate of robot location and 3) the video streams produced by each camera. At each step during the traverse the system: captures new image data, finds image features hypothesized to lie on the outside of a building, computes the range to those features, determines an estimate of the robot's motion since the previous step and combines that data with the map to update a probabilistic representation of the robot's location. This probabilistic representation allows the system to simultaneously represent multiple possible locations, For our testing, we have derived the a priori map manually using non-orthorectified overhead imagery, although this process could be automated. The software system consists of two primary components. The first is the vision system which uses binocular stereo ranging together with a set of heuristics to identify features likely to be part of building exteriors and to compute an estimate of the robot's motion since the previous step. The resulting visual features and the associated range measurements are software component, a particle-filter based localization system. This system uses the map and the then fed to the second primary most recent results from the vision system to update the estimate of the robot's location. This report summarizes the design of both the hardware and software and will include the results of applying the system to the global localization of a robot over an approximately half-kilometer traverse across JPL'S Pasadena campus.

  2. PNNL’s Building Operations Control Center

    ScienceCinema

    Belew, Shan

    2018-01-16

    PNNL's Building Operations Control Center (BOCC) video provides an overview of the center, its capabilities, and its objectives. The BOCC was relocated to PNNL's new 3820 Systems Engineering Building in 2015. Although a key focus of the BOCC is on monitoring and improving the operations of PNNL buildings, the center's state-of-the-art computational, software and visualization resources also have provided a platform for PNNL buildings-related research projects.

  3. Development of Efficient Authoring Software for e-Learning Contents

    NASA Astrophysics Data System (ADS)

    Kozono, Kazutake; Teramoto, Akemi; Akiyama, Hidenori

    The contents creation in e-Learning system becomes an important problem. The contents of e-Learning should include figure and voice media for a high-level educational effect. However, the use of figure and voice complicates the operation of authoring software considerably. A new authoring software, which can build e-Learning contents efficiently, has been developed to solve this problem. This paper reports development results of the authoring software.

  4. Automated software configuration in the MONSOON system

    NASA Astrophysics Data System (ADS)

    Daly, Philip N.; Buchholz, Nick C.; Moore, Peter C.

    2004-09-01

    MONSOON is the next generation OUV-IR controller project being developed at NOAO. The design is flexible, emphasizing code re-use, maintainability and scalability as key factors. The software needs to support widely divergent detector systems ranging from multi-chip mosaics (for LSST, QUOTA, ODI and NEWFIRM) down to large single or multi-detector laboratory development systems. In order for this flexibility to be effective and safe, the software must be able to configure itself to the requirements of the attached detector system at startup. The basic building block of all MONSOON systems is the PAN-DHE pair which make up a single data acquisition node. In this paper we discuss the software solutions used in the automatic PAN configuration system.

  5. Measurements of the LHCb software stack on the ARM architecture

    NASA Astrophysics Data System (ADS)

    Vijay Kartik, S.; Couturier, Ben; Clemencic, Marco; Neufeld, Niko

    2014-06-01

    The ARM architecture is a power-efficient design that is used in most processors in mobile devices all around the world today since they provide reasonable compute performance per watt. The current LHCb software stack is designed (and thus expected) to build and run on machines with the x86/x86_64 architecture. This paper outlines the process of measuring the performance of the LHCb software stack on the ARM architecture - specifically, the ARMv7 architecture on Cortex-A9 processors from NVIDIA and on full-fledged ARM servers with chipsets from Calxeda - and makes comparisons with the performance on x86_64 architectures on the Intel Xeon L5520/X5650 and AMD Opteron 6272. The paper emphasises the aspects of performance per core with respect to the power drawn by the compute nodes for the given performance - this ensures a fair real-world comparison with much more 'powerful' Intel/AMD processors. The comparisons of these real workloads in the context of LHCb are also complemented with the standard synthetic benchmarks HEPSPEC and Coremark. The pitfalls and solutions for the non-trivial task of porting the source code to build for the ARMv7 instruction set are presented. The specific changes in the build process needed for ARM-specific portions of the software stack are described, to serve as pointers for further attempts taken up by other groups in this direction. Cases where architecture-specific tweaks at the assembler lever (both in ROOT and the LHCb software stack) were needed for a successful compile are detailed - these cases are good indicators of where/how the software stack as well as the build system can be made more portable and multi-arch friendly. The experience gained from the tasks described in this paper are intended to i) assist in making an informed choice about ARM-based server solutions as a feasible low-power alternative to the current compute nodes, and ii) revisit the software design and build system for portability and generic improvements.

  6. Building a Snow Data Management System using Open Source Software (and IDL)

    NASA Astrophysics Data System (ADS)

    Goodale, C. E.; Mattmann, C. A.; Ramirez, P.; Hart, A. F.; Painter, T.; Zimdars, P. A.; Bryant, A.; Brodzik, M.; Skiles, M.; Seidel, F. C.; Rittger, K. E.

    2012-12-01

    At NASA's Jet Propulsion Laboratory free and open source software is used everyday to support a wide range of projects, from planetary to climate to research and development. In this abstract I will discuss the key role that open source software has played in building a robust science data processing pipeline for snow hydrology research, and how the system is also able to leverage programs written in IDL, making JPL's Snow Data System a hybrid of open source and proprietary software. Main Points: - The Design of the Snow Data System (illustrate how the collection of sub-systems are combined to create a complete data processing pipeline) - Discuss the Challenges of moving from a single algorithm on a laptop, to running 100's of parallel algorithms on a cluster of servers (lesson's learned) - Code changes - Software license related challenges - Storage Requirements - System Evolution (from data archiving, to data processing, to data on a map, to near-real-time products and maps) - Road map for the next 6 months (including how easily we re-used the snowDS code base to support the Airborne Snow Observatory Mission) Software in Use and their Software Licenses: IDL - Used for pre and post processing of data. Licensed under a proprietary software license held by Excelis. Apache OODT - Used for data management and workflow processing. Licensed under the Apache License Version 2. GDAL - Geospatial Data processing library used for data re-projection currently. Licensed under the X/MIT license. GeoServer - WMS Server. Licensed under the General Public License Version 2.0 Leaflet.js - Javascript web mapping library. Licensed under the Berkeley Software Distribution License. Python - Glue code and miscellaneous data processing support. Licensed under the Python Software Foundation License. Perl - Script wrapper for running the SCAG algorithm. Licensed under the General Public License Version 3. PHP - Front-end web application programming. Licensed under the PHP License Version 3.01

  7. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  8. Systemic Vulnerabilities

    DTIC Science & Technology

    2014-10-01

    CRm CAL FA~WR£S Q I • Software Engineering Institute I Ccamt>gw l\\~llon Lniwndty 34 Basic attack tree Destroy Building Generate Sufficient...by computer-security company marketing literature that touts 11hacker proof software,11 11triple-DES security,11 and the like. In truth, unbreakable

  9. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    NASA Astrophysics Data System (ADS)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  10. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  11. Evolution of the ATLAS Nightly Build System

    NASA Astrophysics Data System (ADS)

    Undrus, A.

    2012-12-01

    The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.

  12. Cradle-to-Gate Life-Cycle Inventory of Hardboard and Engineered Wood Siding and Trim Produced in North America

    Treesearch

    Richard D. Bergman

    2015-01-01

    Developing wood product LCI data helps construct product LCAs that are then incorporated into developing whole building LCAs in environmental footprint software such as the Athena Impact Estimator for Buildings (ASMI 2015). Conducting whole building LCAs provide for points that go toward green building certification in rating systems such as LEED v4, Green Globes, and...

  13. The relationships between software publications and software systems

    NASA Astrophysics Data System (ADS)

    Hogg, David W.

    2017-01-01

    When we build software systems or software tools for astronomy, we sometimes do and sometimes don't also write and publish standard scientific papers about those software systems. I will discuss the pros and cons of writing such publications. There are impacts of writing such papers immediately (they can affect the design and structure of the software project itself), in the short term (they can promote adoption and legitimize the software), in the medium term (they can provide a platform for all the literature's mechanisms for citation, criticism, and reuse), and in the long term (they can preserve ideas that are embodied in the software, possibly on timescales much longer than the lifetime of any software context). I will argue that as important as pure software contributions are to astronomy—and I am both a preacher and a practitioner—software contributions are even more valuable when they are associated with traditional scientific publications. There are exceptions and complexities of course, which I will discuss.

  14. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  15. LEGOS: Object-based software components for mission-critical systems. Final report, June 1, 1995--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-08-01

    An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enablemore » rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed object operating system, lack of a standard Computer-Aided Software Environment (CASE) tool notation and lack of a standard CASE tool repository has limited the realization of component software. The approach to fulfilling this need is the software component factory innovation. The factory approach takes advantage of emerging standards such as UML, CORBA, Java and the Internet. The key technical innovation of the software component factory is the ability to assemble and test new system configurations as well as assemble new tools on demand from existing tools and architecture design repositories.« less

  16. Browndye: A Software Package for Brownian Dynamics

    PubMed Central

    McCammon, J. Andrew

    2010-01-01

    A new software package, Browndye, is presented for simulating the diffusional encounter of two large biological molecules. It can be used to estimate second-order rate constants and encounter probabilities, and to explore reaction trajectories. Browndye builds upon previous knowledge and algorithms from software packages such as UHBD, SDA, and Macrodox, while implementing algorithms that scale to larger systems. PMID:21132109

  17. A Buyer Behaviour Framework for the Development and Design of Software Agents in E-Commerce.

    ERIC Educational Resources Information Center

    Sproule, Susan; Archer, Norm

    2000-01-01

    Software agents are computer programs that run in the background and perform tasks autonomously as delegated by the user. This paper blends models from marketing research and findings from the field of decision support systems to build a framework for the design of software agents to support in e-commerce buying applications. (Contains 35…

  18. Design Automation in Synthetic Biology.

    PubMed

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Gowri, Krishnan; Hernandez, George

    This paper describes one such reference process that can be deployed to provide continuous automated conditioned-based maintenance management for buildings that have BIM, a building automation system (BAS) and a computerized maintenance management software (CMMS) systems. The process can be deployed using an open source transactional network platform, VOLTTRON™, designed for distributed sensing and controls and supports both energy efficiency and grid services.

  20. Swarming Robot Design, Construction and Software Implementation

    NASA Technical Reports Server (NTRS)

    Stolleis, Karl A.

    2014-01-01

    In this paper is presented an overview of the hardware design, construction overview, software design and software implementation for a small, low-cost robot to be used for swarming robot development. In addition to the work done on the robot, a full simulation of the robotic system was developed using Robot Operating System (ROS) and its associated simulation. The eventual use of the robots will be exploration of evolving behaviors via genetic algorithms and builds on the work done at the University of New Mexico Biological Computation Lab.

  1. A Decision Support System for Planning, Control and Auditing of DoD Software Cost Estimation.

    DTIC Science & Technology

    1986-03-01

    is frequently used in U. S. Air Force software cost estimates. Barry Boehm’s Constructive Cost Estimation Model (COCOMO) was recently selected for use...are considered basic to the proper development of software. Pressman , [Ref. 11], addresses these basic elements in a manner which attempts to integrate...H., Jr., and Carlson, Eric D., Building E fective Decision SUDDOrt Systems, Prentice-Hal, EnglewoodNJ, 1982 11. Pressman , Roger S., o A Practioner’s A

  2. Managing Variation in Services in a Software Product Line Context

    DTIC Science & Technology

    2010-05-01

    Oriented Domain Analysis ( FODA ) Feasibility Study (CMU/SEI-90-TR-021, ADA235785). Software Engineering Institute, Carnegie Mellon University, 1990...the systems in the product line, and a plan for building the systems. Product line scope and product line analysis define the boundaries and...systems, as well as expected ways in which they may vary. Product line analysis applies established modeling techniques to engineer the common and

  3. Space Shuttle Usage of z/OS

    NASA Technical Reports Server (NTRS)

    Green, Jan

    2009-01-01

    This viewgraph presentation gives a detailed description of the avionics associated with the Space Shuttle's data processing system and its usage of z/OS. The contents include: 1) Mission, Products, and Customers; 2) Facility Overview; 3) Shuttle Data Processing System; 4) Languages and Compilers; 5) Application Tools; 6) Shuttle Flight Software Simulator; 7) Software Development and Build Tools; and 8) Fun Facts and Acronyms.

  4. Adopting Open-Source Software Applications in U. S. Higher Education: A Cross-Disciplinary Review of the Literature

    ERIC Educational Resources Information Center

    van Rooij, Shahron Williams

    2009-01-01

    Higher Education institutions in the United States are considering Open Source software applications such as the Moodle and Sakai course management systems and the Kuali financial system to build integrated learning environments that serve both academic and administrative needs. Open Source is presumed to be more flexible and less costly than…

  5. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    NASA Astrophysics Data System (ADS)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  6. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1991-01-01

    We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.

  7. Descriptions of Free and Freeware Software in the Mathematics Teaching

    NASA Astrophysics Data System (ADS)

    Antunes de Macedo, Josue; Neves de Almeida, Samara; Voelzke, Marcos Rincon

    2016-05-01

    This paper presents the analysis and the cataloging of free and freeware mathematical software available on the internet, a brief explanation of them, and types of licenses for use in teaching and learning. The methodology is based on the qualitative research. Among the different types of software found, it stands out in algebra, the Winmat, that works with linear algebra, matrices and linear systems. In geometry, the GeoGebra, which can be used in the study of functions, plan and spatial geometry, algebra and calculus. For graphing, can quote the Graph and Graphequation. With Graphmatica software, it is possible to build various graphs of mathematical equations on the same screen, representing cartesian equations, inequalities, parametric among other functions. The Winplot allows the user to build graphics in two and three dimensions functions and mathematical equations. Thus, this work aims to present the teachers some free math software able to be used in the classroom.

  8. Integrated Building Management System (IBMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anita Lewis

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment withoutmore » interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.« less

  9. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  10. User-Driven Quality Certification of Workplace Software, the UsersAward Experience

    DTIC Science & Technology

    2004-06-01

    the set of criteria and the chosen level of approval was sufficiently balanced . Furthermore, the fact that both software providers experienced... Worklife - Building Social Capacity - European Approaches, Edition sigma Berlin. Lind, T. (2002). IT-kartan, användare och IT-system i svenskt

  11. Integrating open-source software applications to build molecular dynamics systems.

    PubMed

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  12. SUNREL Energy Simulation Software | Buildings | NREL

    Science.gov Websites

    SUNREL Energy Simulation Software SUNREL Energy Simulation Software SUNREL® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are

  13. Towards Archetypes-Based Software Development

    NASA Astrophysics Data System (ADS)

    Piho, Gunnar; Roost, Mart; Perkins, David; Tepandi, Jaak

    We present a framework for the archetypes based engineering of domains, requirements and software (Archetypes-Based Software Development, ABD). An archetype is defined as a primordial object that occurs consistently and universally in business domains and in business software systems. An archetype pattern is a collaboration of archetypes. Archetypes and archetype patterns are used to capture conceptual information into domain specific models that are utilized by ABD. The focus of ABD is on software factories - family-based development artefacts (domain specific languages, patterns, frameworks, tools, micro processes, and others) that can be used to build the family members. We demonstrate the usage of ABD for developing laboratory information management system (LIMS) software for the Clinical and Biomedical Proteomics Group, at the Leeds Institute of Molecular Medicine, University of Leeds.

  14. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution: A Position Paper.

    PubMed

    Luo, Gang

    2017-12-01

    For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic.

  15. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution: A Position Paper

    PubMed Central

    Luo, Gang

    2017-01-01

    For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic. PMID:29177022

  16. Application of the Software as a Service Model to the Control of Complex Building Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, Michael; Donadee, Jonathan; Marnay, Chris

    2011-03-17

    In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building.more » The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analysed.« less

  17. Application of the Software as a Service Model to the Control of Complex Building Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, Michael; Donadee, Jon; Marnay, Chris

    2011-03-18

    In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building.more » The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analyzed.« less

  18. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

  19. Tips for Ensuring Successful Software Implementation

    ERIC Educational Resources Information Center

    Weathers, Robert

    2013-01-01

    Implementing an enterprise-level, mission-critical software system is an infrastructure project akin to other sizable projects, such as building a school. It's costly and complex, takes a year or more to complete, requires the collaboration of many different parties, involves uncertainties, results in a long-lived asset requiring ongoing…

  20. Building Databases for Education. ERIC Digest.

    ERIC Educational Resources Information Center

    Klausmeier, Jane A.

    This digest provides a brief explanation of what a database is; explains how a database can be used; identifies important factors that should be considered when choosing database management system software; and provides citations to sources for finding reviews and evaluations of database management software. The digest is concerned primarily with…

  1. Constraint-Driven Software Design: An Escape from the Waterfall Model.

    ERIC Educational Resources Information Center

    de Hoog, Robert; And Others

    1994-01-01

    Presents the principles of a development methodology for software design based on a nonlinear, product-driven approach that integrates quality aspects. Two examples are given to show that the flexibility needed for building high quality systems leads to integrated development environments in which methodology, product, and tools are closely…

  2. Expert system verification and validation study: ES V/V Workshop

    NASA Technical Reports Server (NTRS)

    French, Scott; Hamilton, David

    1992-01-01

    The primary purpose of this document is to build a foundation for applying principles of verification and validation (V&V) of expert systems. To achieve this, some V&V as applied to conventionally implemented software is required. Part one will discuss the background of V&V from the perspective of (1) what is V&V of software and (2) V&V's role in developing software. Part one will also overview some common analysis techniques that are applied when performing V&V of software. All of these materials will be presented based on the assumption that the reader has little or no background in V&V or in developing procedural software. The primary purpose of part two is to explain the major techniques that have been developed for V&V of expert systems.

  3. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  4. Mitigating shear lag in tall buildings

    NASA Astrophysics Data System (ADS)

    Gaur, Himanshu; Goliya, Ravindra K.

    2015-09-01

    As the height of building increases, effect of shear lag also becomes considerable in the design of high-rise buildings. In this paper, shear lag effect in tall buildings of heights, i.e., 120, 96, 72, 48 and 36 stories of which aspect ratio ranges from 3 to 10 is studied. Tube-in-tube structural system with façade bracing is used for designing the building of height 120 story. It is found that bracing system considerably reduces the shear lag effect and hence increases the building stiffness to withstand lateral loads. Different geometric patterns of bracing system are considered. The best effective geometric configuration of bracing system is concluded in this study. Lateral force, as wind load is applied on the buildings as it is the most dominating lateral force for such heights. Wind load is set as per Indian standard code of practice IS 875 Part-3. For analysis purpose SAP 2000 software program is used.

  5. The Web Resource Collaboration Center

    ERIC Educational Resources Information Center

    Dunlap, Joanna C.

    2004-01-01

    The Web Resource Collaboration Center (WRCC) is a web-based tool developed to help software engineers build their own web-based learning and performance support systems. Designed using various online communication and collaboration technologies, the WRCC enables people to: (1) build a learning and professional development resource that provides…

  6. Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-02-01

    New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility billmore » calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.« less

  7. Scrutinizing UML Activity Diagrams

    NASA Astrophysics Data System (ADS)

    Al-Fedaghi, Sabah

    Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.

  8. ControlShell - A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Ullman, Marc A.; Chen, Vincent W.

    1991-01-01

    ControlShell is designed to enable modular design and impplementation of real-time software. It is an object-oriented tool-set for real-time software system programming. It provides a series of execution and data interchange mechansims that form a framework for building real-time applications. These mechanisms allow a component-based approach to real-time software generation and mangement. By defining a set of interface specifications for intermodule interaction, ControlShell provides a common platform that is the basis for real-time code development and exchange.

  9. A freely available real-time operating system well suited for astronomy and the physical sciences

    NASA Astrophysics Data System (ADS)

    Pedretti, Ettore; Monnier, John D.; Thureau, Nathalie D.; Berger, David H.

    2006-06-01

    This paper wants to be a practical example in building a real-time data-acquisition and control system from scratch using relatively non-expensive PC hardware and open-source software. The practical example of building the control system for the Michigan Infrared Combiner (MIRC) at the CHARA interferometer will be used to give the reader a 'hands-on' experience in installing and configuring the RTAI-Fusion real-time operating system and developing a complete control system with it.

  10. Scheduling System Assessment, and Development and Enhancement of Re-engineered Version of GPSS

    NASA Technical Reports Server (NTRS)

    Loganantharaj, Rasiah; Thomas, Bushrod; Passonno, Nicole

    1996-01-01

    The objective of this project is two-fold. First to provide an evaluation of a commercially developed version of the ground processing scheduling system (GPSS) for its applicability to the Kennedy Space Center (KSC) ground processing problem. Second, to work with the KSC GPSS development team and provide enhancement to the existing software. Systems reengineering is required to provide a sustainable system for the users and the software maintenance group. Using the LISP profile prototype code developed by the GPSS reverse reengineering groups as a building block, we have implemented the resource deconfliction portion of GPSS in common LISP using its object oriented features. The prototype corrects and extends some of the deficiencies of the current production version, plus it uses and builds on the classes from the development team's profile prototype.

  11. Department of Defense’s Waiver of Competitive Prototyping Requirement for Enhanced Polar System Program

    DTIC Science & Technology

    2012-08-23

    objectives. Finally, the CAPS acquisition strategy anticipates the use of a cost- reimbursement contract for designing and building the system...The CAPS acquisition strategy anticipates the use of a cost- reimbursement contract for designing and building the system; however, it may be... reimbursement contract was chosen for the basic CAPS contract because of the nature of the design work, which includes software design and development

  12. Forcing Interoperability: An Intentionally Fractured Approach

    NASA Astrophysics Data System (ADS)

    Gallaher, D. W.; Brodzik, M.; Scambos, T.; Stroeve, J.

    2008-12-01

    The NSIDC is attempting to rebuild a significant portion of its public-facing cyberinfrastructure to better meet the needs expressed by the cryospheric community. The project initially addresses a specific science need - understanding Greenland's contribution to global sea level rise through comparison and analysis of variables such as temperature, albedo, melt, ice velocity and surface elevation. This project will ultimately be expanded to cover most of NSIDC's cryospheric data. Like many organizations, we need to provide users with data discovery interfaces, collaboration tools and mapping services. Complicating this effort is the need to reduce the volume of raw data delivered to the user. Data growth, especially with time-series data, will overwhelm our software, processors and network like never before. We need to provide the users the ability to perform first level analysis directly on our site. In order to accomplish this, the users should be free to modify the behavior of these tools as well as incorporate their own tools and analysis to meet their needs. Rather than building one monolithic project to build this system, we have chosen to build three semi-independent systems. One team is building a data discovery and web based distribution system, the second is building an advanced analysis and workflow system and the third is building a customized web mapping service. These systems will use the same underlying data structures and services but will employ different technologies and teams to build their objectives, schedules and user interfaces. Obviously, we are adding complexity and risk to the overall project however this may be the best method to achieve interoperability because the development teams will be required to build off each others work. The teams will be forced to design with other users in mind as opposed to building interoperability as an afterthought, which a tendency in monolithic systems. All three teams will take advantage of preexisting software and standards whenever possible. We present this topic to stimulate discussion within the development, operational and research communities on how best to proceed.

  13. Occupy Hard Drives: Making your work more valuable by giving it away

    NASA Astrophysics Data System (ADS)

    Weiner, Benjamin J.

    2014-01-01

    Astronomy is more than ever reliant on scientist-built software, but our systems of supporting research and giving credit for research work have failed to evolve with this reality. Both the perception of short term advantage, and an artificial distinction between "tools" and "science," lead to software and data remaining proprietary or unpublished. The lack of incentives to build and maintain software leads to both a decay of the software infrastructure, and a potential for growing class inequality, a pundit-technician divide. Top-down efforts to direct the field such as the recent US decadal survey have not adequately addressed this future. I argue that writing, freely releasing, and publishing your software is currently not adequately funded, rewarded, or credited, and that you should do it anyway. Writing your software as if you plan to release it is better for you and for the code. Releasing software can get credit from the rest of the community beyond your circle of collaborators or letter-writers, and it can benefit you and everyone else by making astronomy a better place to work. Building a culture of cooperation will be a more effective approach to reforming the system of credit than waiting for leadership from above or outside, but requires that each of us consciously encourage process, values, and behavior that support such a change.

  14. PUS Services Software Building Block Automatic Generation for Space Missions

    NASA Astrophysics Data System (ADS)

    Candia, S.; Sgaramella, F.; Mele, G.

    2008-08-01

    The Packet Utilization Standard (PUS) has been specified by the European Committee for Space Standardization (ECSS) and issued as ECSS-E-70-41A to define the application-level interface between Ground Segments and Space Segments. The ECSS-E- 70-41A complements the ECSS-E-50 and the Consultative Committee for Space Data Systems (CCSDS) recommendations for packet telemetry and telecommand. The ECSS-E-70-41A characterizes the identified PUS Services from a functional point of view and the ECSS-E-70-31 standard specifies the rules for their mission-specific tailoring. The current on-board software design for a space mission implies the production of several PUS terminals, each providing a specific tailoring of the PUS services. The associated on-board software building blocks are developed independently, leading to very different design choices and implementations even when the mission tailoring requires very similar services (from the Ground operative perspective). In this scenario, the automatic production of the PUS services building blocks for a mission would be a way to optimize the overall mission economy and improve the robusteness and reliability of the on-board software and of the Ground-Space interactions. This paper presents the Space Software Italia (SSI) activities for the development of an integrated environment to support: the PUS services tailoring activity for a specific mission. the mission-specific PUS services configuration. the generation the UML model of the software building block implementing the mission-specific PUS services and the related source code, support documentation (software requirements, software architecture, test plans/procedures, operational manuals), and the TM/TC database. The paper deals with: (a) the project objectives, (b) the tailoring, configuration, and generation process, (c) the description of the environments supporting the process phases, (d) the characterization of the meta-model used for the generation, (e) the characterization of the reference avionics architecture and of the reference on- board software high-level architecture.

  15. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO 2 -based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system.

  16. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO2-based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system. PMID:27099405

  17. Protyping machine vision software on the World Wide Web

    NASA Astrophysics Data System (ADS)

    Karantalis, George; Batchelor, Bruce G.

    1998-10-01

    Interactive image processing is a proven technique for analyzing industrial vision applications and building prototype systems. Several of the previous implementations have used dedicated hardware to perform the image processing, with a top layer of software providing a convenient user interface. More recently, self-contained software packages have been devised and these run on a standard computer. The advent of the Java programming language has made it possible to write platform-independent software, operating over the Internet, or a company-wide Intranet. Thus, there arises the possibility of designing at least some shop-floor inspection/control systems, without the vision engineer ever entering the factories where they will be used. It successful, this project will have a major impact on the productivity of vision systems designers.

  18. pyam: Python Implementation of YaM

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    pyam is a software development framework with tools for facilitating the rapid development of software in a concurrent software development environment. pyam provides solutions for development challenges associated with software reuse, managing multiple software configurations, developing software product lines, and multiple platform development and build management. pyam uses release-early, release-often development cycles to allow developers to integrate their changes incrementally into the system on a continual basis. It facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. It uses modules and packages to organize and share software across multiple software products, and uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One sidebenefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability, and software reuse. pyam is written in Python and is organized as a set of utilities on top of the open source SVN software version control package. All development software is organized into a collection of modules. pyam packages are defined as sub-collections of the available modules. Developers can set up private sandboxes for module/package development. All module/package development takes place on private SVN branches. High-level pyam commands support the setup, update, and release of modules and packages. Released and pre-built versions of modules are available to developers. Developers can tailor the source/link module mix for their sandboxes so that new sandboxes (even large ones) can be built up easily and quickly by pointing to pre-existing module releases. All inter-module interfaces are publicly exported via links. A minimal, but uniform, convention is used for building modules.

  19. The effect of earthquake on architecture geometry with non-parallel system irregularity configuration

    NASA Astrophysics Data System (ADS)

    Teddy, Livian; Hardiman, Gagoek; Nuroji; Tudjono, Sri

    2017-12-01

    Indonesia is an area prone to earthquake that may cause casualties and damage to buildings. The fatalities or the injured are not largely caused by the earthquake, but by building collapse. The collapse of the building is resulted from the building behaviour against the earthquake, and it depends on many factors, such as architectural design, geometry configuration of structural elements in horizontal and vertical plans, earthquake zone, geographical location (distance to earthquake center), soil type, material quality, and construction quality. One of the geometry configurations that may lead to the collapse of the building is irregular configuration of non-parallel system. In accordance with FEMA-451B, irregular configuration in non-parallel system is defined to have existed if the vertical lateral force-retaining elements are neither parallel nor symmetric with main orthogonal axes of the earthquake-retaining axis system. Such configuration may lead to torque, diagonal translation and local damage to buildings. It does not mean that non-parallel irregular configuration should not be formed on architectural design; however the designer must know the consequence of earthquake behaviour against buildings with irregular configuration of non-parallel system. The present research has the objective to identify earthquake behaviour in architectural geometry with irregular configuration of non-parallel system. The present research was quantitative with simulation experimental method. It consisted of 5 models, where architectural data and model structure data were inputted and analyzed using the software SAP2000 in order to find out its performance, and ETAB2015 to determine the eccentricity occurred. The output of the software analysis was tabulated, graphed, compared and analyzed with relevant theories. For areas of strong earthquake zones, avoid designing buildings which wholly form irregular configuration of non-parallel system. If it is inevitable to design a building with building parts containing irregular configuration of non-parallel system, make it more rigid by forming a triangle module, and use the formula.A good collaboration is needed between architects and structural experts in creating earthquake architecture.

  20. The MDE Diploma: First International Postgraduate Specialization in Model-Driven Engineering

    ERIC Educational Resources Information Center

    Cabot, Jordi; Tisi, Massimo

    2011-01-01

    Model-Driven Engineering (MDE) is changing the way we build, operate, and maintain our software-intensive systems. Several projects using MDE practices are reporting significant improvements in quality and performance but, to be able to handle these projects, software engineers need a set of technical and interpersonal skills that are currently…

  1. Real-time seismic monitoring needs of a building owner - And the solution: A cooperative effort

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.; Sinclair, M.; Gallant, S.; Radulescu, D.

    2004-01-01

    A recently implemented advanced seismic monitoring system for a 24-story building facilitates recording of accelerations and computing displacements and drift ratios in near-real time to measure the earthquake performance of the building. The drift ratio is related to the damage condition of the specific building. This system meets the owner's needs for rapid quantitative input to assessments and decisions on post-earthquake occupancy. The system is now successfully working and, in absence of strong shaking to date, is producing low-amplitude data in real time for routine analyses and assessment. Studies of such data to date indicate that the configured monitoring system with its building specific software can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can be used for health monitoring of a building, for assessing performance-based design and analyses procedures, for long-term assessment of structural characteristics, and for long-term damage detection.

  2. pcircle - A Suite of Scalable Parallel File System Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG, FEIYI

    2015-10-01

    Most of the software related to file system are written for conventional local file system, they are serialized and can't take advantage of the benefit of a large scale parallel file system. "pcircle" software builds on top of ubiquitous MPI in cluster computing environment and "work-stealing" pattern to provide a scalable, high-performance suite of file system tools. In particular - it implemented parallel data copy and parallel data checksumming, with advanced features such as async progress report, checkpoint and restart, as well as integrity checking.

  3. SUNREL Related Links | Buildings | NREL

    Science.gov Websites

    SUNREL Related Links SUNREL Related Links DOE Simulation Software Tools Directory a directory of 301 building software tools for evaluation of energy efficiency, renewable energy, and sustainability in buildings. TREAT Software Program a computer program that uses SUNREL and is designed to provide

  4. Enhancing requirements engineering for patient registry software systems with evidence-based components.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2017-07-01

    Patient registries are instrumental for medical research. Often their structures are complex and their implementations use composite software systems to meet the wide spectrum of challenges. Commercial and open-source systems are available for registry implementation, but many research groups develop their own systems. Methodological approaches in the selection of software as well as the construction of proprietary systems are needed. We propose an evidence-based checklist, summarizing essential items for patient registry software systems (CIPROS), to accelerate the requirements engineering process. Requirements engineering activities for software systems follow traditional software requirements elicitation methods, general software requirements specification (SRS) templates, and standards. We performed a multistep procedure to develop a specific evidence-based CIPROS checklist: (1) A systematic literature review to build a comprehensive collection of technical concepts, (2) a qualitative content analysis to define a catalogue of relevant criteria, and (3) a checklist to construct a minimal appraisal standard. CIPROS is based on 64 publications and covers twelve sections with a total of 72 items. CIPROS also defines software requirements. Comparing CIPROS with traditional software requirements elicitation methods, SRS templates and standards show a broad consensus but differences in issues regarding registry-specific aspects. Using an evidence-based approach to requirements engineering for registry software adds aspects to the traditional methods and accelerates the software engineering process for registry software. The method we used to construct CIPROS serves as a potential template for creating evidence-based checklists in other fields. The CIPROS list supports developers in assessing requirements for existing systems and formulating requirements for their own systems, while strengthening the reporting of patient registry software system descriptions. It may be a first step to create standards for patient registry software system assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  6. SUPERVISORY CONTROL FOR PEAK REDUCTION IN COMMERCIAL BUILDINGS WHILE MAINTAINING COMFORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro, James J; Olama, Mohammed M; Kuruganti, Teja

    2016-01-01

    This paper describes a supervisory control strategy for limiting peak power demand by small and medium commercial buildings while still meeting the business needs of the occupants. This control strategy has two features that make it relevant to new and existing buildings. First, it is designed to operate with building equipment, such as air conditioning and refrigeration systems, as they are presently installed in most small and medium commercial buildings. Because of this, the supervisory control could be realized as a software-only retrofit to existing building management systems. Second, the proposed control acts as a supervisory management layer over existingmore » control systems, rather than replacing them outright. The primary idea of this approach is that the controls for individual building equipment request energy resources for a control action and the supervisory control examines the requests and decides which control actions to allow while satisfying a limit on peak power demand.« less

  7. Open Energy Information System version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OpenEIS was created to provide standard methods for authoring, sharing, testing, using, and improving algorithms for operational building energy efficiency with building managers and building owners. OpenEIS is designed as a no-cost/low-cost solution that will propagate the fault detection and diagnostic (FDD) solutions into the marketplace by providing state- of- the-art analytical and diagnostic algorithms. As OpenEIS penetrates the market, demand by control system manufacturers and integrators serving small and medium commercial customers will help push these types of commercial software tool offerings into the broader marketplace.

  8. Draco,Version 6.x.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Kelly; Budge, Kent; Lowrie, Rob

    2016-03-03

    Draco is an object-oriented component library geared towards numerically intensive, radiation (particle) transport applications built for parallel computing hardware. It consists of semi-independent packages and a robust build system. The packages in Draco provide a set of components that can be used by multiple clients to build transport codes. The build system can also be extracted for use in clients. Software includes smart pointers, Design-by-Contract assertions, unit test framework, wrapped MPI functions, a file parser, unstructured mesh data structures, a random number generator, root finders and an angular quadrature component.

  9. Ontology for Life-Cycle Modeling of Water Distribution Systems: Model View Definition

    DTIC Science & Technology

    2013-06-01

    Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the...Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains...developed experimental BIM models us- ing commercial off-the-shelf (COTS) software. Those models represent three types of typical low-rise Army

  10. Using EMIS to Identify Top Opportunities for Commercial Building Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guanjing; Singla, Rupam; Granderson, Jessica

    Energy Management and Information Systems (EMIS) comprise a broad family of tools and services to manage commercial building energy use. These technologies offer a mix of capabilities to store, display, and analyze energy use and system data, and in some cases, provide control. EMIS technologies enable 10–20 percent site energy savings in best practice implementations. Energy Information System (EIS) and Fault Detection and Diagnosis (FDD) systems are two key technologies in the EMIS family. Energy Information Systems are broadly defined as the web-based software, data acquisition hardware, and communication systems used to analyze and display building energy performance. At amore » minimum, an EIS provides daily, hourly or sub-hourly interval meter data at the whole-building level, with graphical and analytical capability. Fault Detection and Diagnosis systems automatically identify heating, ventilation, and air-conditioning (HVAC) system or equipment-level performances issues, and in some cases are able to isolate the root causes of the problem. They use computer algorithms to continuously analyze system-level operational data to detect faults and diagnose their causes. Many FDD tools integrate the trend log data from a Building Automation System (BAS) but otherwise are stand-alone software packages; other types of FDD tools are implemented as “on-board” equipment-embedded diagnostics. (This document focuses on the former.) Analysis approaches adopted in FDD technologies span a variety of techniques from rule-based methods to process history-based approaches. FDD tools automate investigations that can be conducted via manual data inspection by someone with expert knowledge, thereby expanding accessibility and breath of analysis opportunity, and also reducing complexity.« less

  11. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    NASA Astrophysics Data System (ADS)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  12. Building Real World Domain-Specific Social Network Websites as a Capstone Project

    ERIC Educational Resources Information Center

    Yue, Kwok-Bun; De Silva, Dilhar; Kim, Dan; Aktepe, Mirac; Nagle, Stewart; Boerger, Chris; Jain, Anubha; Verma, Sunny

    2009-01-01

    This paper describes our experience of using Content Management Software (CMS), specifically Joomla, to build a real world domain-specific social network site (SNS) as a capstone project for graduate information systems and computer science students. As Web 2.0 technologies become increasingly important in driving business application development,…

  13. Safeguarding Databases Basic Concepts Revisited.

    ERIC Educational Resources Information Center

    Cardinali, Richard

    1995-01-01

    Discusses issues of database security and integrity, including computer crime and vandalism, human error, computer viruses, employee and user access, and personnel policies. Suggests some precautions to minimize system vulnerability such as careful personnel screening, audit systems, passwords, and building and software security systems. (JKP)

  14. Building an Integrated Environment for Multimedia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Multimedia courseware on the solar system and earth science suitable for use in elementary, middle, and high schools was developed under this grant. The courseware runs on Silicon Graphics, Incorporated (SGI) workstations and personal computers (PCs). There is also a version of the courseware accessible via the World Wide Web. Accompanying multimedia database systems were also developed to enhance the multimedia courseware. The database systems accompanying the PC software are based on the relational model, while the database systems accompanying the SGI software are based on the object-oriented model.

  15. A Computational Workflow for the Automated Generation of Models of Genetic Designs.

    PubMed

    Misirli, Göksel; Nguyen, Tramy; McLaughlin, James Alastair; Vaidyanathan, Prashant; Jones, Timothy S; Densmore, Douglas; Myers, Chris; Wipat, Anil

    2018-06-05

    Computational models are essential to engineer predictable biological systems and to scale up this process for complex systems. Computational modeling often requires expert knowledge and data to build models. Clearly, manual creation of models is not scalable for large designs. Despite several automated model construction approaches, computational methodologies to bridge knowledge in design repositories and the process of creating computational models have still not been established. This paper describes a workflow for automatic generation of computational models of genetic circuits from data stored in design repositories using existing standards. This workflow leverages the software tool SBOLDesigner to build structural models that are then enriched by the Virtual Parts Repository API using Systems Biology Open Language (SBOL) data fetched from the SynBioHub design repository. The iBioSim software tool is then utilized to convert this SBOL description into a computational model encoded using the Systems Biology Markup Language (SBML). Finally, this SBML model can be simulated using a variety of methods. This workflow provides synthetic biologists with easy to use tools to create predictable biological systems, hiding away the complexity of building computational models. This approach can further be incorporated into other computational workflows for design automation.

  16. Developing interpretable models with optimized set reduction for identifying high risk software components

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Basili, Victor R.; Hetmanski, Christopher J.

    1993-01-01

    Applying equal testing and verification effort to all parts of a software system is not very efficient, especially when resources are limited and scheduling is tight. Therefore, one needs to be able to differentiate low/high fault frequency components so that testing/verification effort can be concentrated where needed. Such a strategy is expected to detect more faults and thus improve the resulting reliability of the overall system. This paper presents the Optimized Set Reduction approach for constructing such models, intended to fulfill specific software engineering needs. Our approach to classification is to measure the software system and build multivariate stochastic models for predicting high risk system components. We present experimental results obtained by classifying Ada components into two classes: is or is not likely to generate faults during system and acceptance test. Also, we evaluate the accuracy of the model and the insights it provides into the error making process.

  17. Prototype software model for designing intruder detection systems with simulation

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey S.; Peters, Brett A.; Curry, James C.; Gupta, Dinesh

    1998-08-01

    This article explores using discrete-event simulation for the design and control of defence oriented fixed-sensor- based detection system in a facility housing items of significant interest to enemy forces. The key issues discussed include software development, simulation-based optimization within a modeling framework, and the expansion of the framework to create real-time control tools and training simulations. The software discussed in this article is a flexible simulation environment where the data for the simulation are stored in an external database and the simulation logic is being implemented using a commercial simulation package. The simulation assesses the overall security level of a building against various intruder scenarios. A series of simulation runs with different inputs can determine the change in security level with changes in the sensor configuration, building layout, and intruder/guard strategies. In addition, the simulation model developed for the design stage of the project can be modified to produce a control tool for the testing, training, and real-time control of systems with humans and sensor hardware in the loop.

  18. Software Tools For Building Decision-support Models For Flood Emergency Situations

    NASA Astrophysics Data System (ADS)

    Garrote, L.; Molina, M.; Ruiz, J. M.; Mosquera, J. C.

    The SAIDA decision-support system was developed by the Spanish Ministry of the Environment to provide assistance to decision-makers during flood situations. SAIDA has been tentatively implemented in two test basins: Jucar and Guadalhorce, and the Ministry is currently planning to have it implemented in all major Spanish basins in a few years' time. During the development cycle of SAIDA, the need for providing as- sistance to end-users in model definition and calibration was clearly identified. System developers usually emphasise abstraction and generality with the goal of providing a versatile software environment. End users, on the other hand, require concretion and specificity to adapt the general model to their local basins. As decision-support models become more complex, the gap between model developers and users gets wider: Who takes care of model definition, calibration and validation?. Initially, model developers perform these tasks, but the scope is usually limited to a few small test basins. Before the model enters operational stage, end users must get involved in model construction and calibration, in order to gain confidence in the model recommendations. However, getting the users involved in these activities is a difficult task. The goal of this re- search is to develop representation techniques for simulation and management models in order to define, develop and validate a mechanism, supported by a software envi- ronment, oriented to provide assistance to the end-user in building decision models for the prediction and management of river floods in real time. The system is based on three main building blocks: A library of simulators of the physical system, an editor to assist the user in building simulation models, and a machine learning method to calibrate decision models based on the simulation models provided by the user.

  19. Software architecture and engineering for patient records: current and future.

    PubMed

    Weng, Chunhua; Levine, Betty A; Mun, Seong K

    2009-05-01

    During the "The National Forum on the Future of the Defense Health Information System," a track focusing on "Systems Architecture and Software Engineering" included eight presenters. These presenters identified three key areas of interest in this field, which include the need for open enterprise architecture and a federated database design, net centrality based on service-oriented architecture, and the need for focus on software usability and reusability. The eight panelists provided recommendations related to the suitability of service-oriented architecture and the enabling technologies of grid computing and Web 2.0 for building health services research centers and federated data warehouses to facilitate large-scale collaborative health care and research. Finally, they discussed the need to leverage industry best practices for software engineering to facilitate rapid software development, testing, and deployment.

  20. Applying object-oriented software engineering at the BaBar collaboration

    NASA Astrophysics Data System (ADS)

    Jacobsen, Bob; BaBar Collaboration Reconstruction Software Group

    1997-02-01

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery.

  1. Investigating interoperability of the LSST data management software stack with Astropy

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Bosch, James; Owen, Russell; Parejko, John; Sick, Jonathan; Swinbank, John; de Val-Borro, Miguel; Dubois-Felsmann, Gregory; Lim, K.-T.; Lupton, Robert H.; Schellart, Pim; Krughoff, K. S.; Tollerud, Erik J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) will be an 8.4m optical survey telescope sited in Chile and capable of imaging the entire sky twice a week. The data rate of approximately 15TB per night and the requirements to both issue alerts on transient sources within 60 seconds of observing and create annual data releases means that automated data management systems and data processing pipelines are a key deliverable of the LSST construction project. The LSST data management software has been in development since 2004 and is based on a C++ core with a Python control layer. The software consists of nearly a quarter of a million lines of code covering the system from fundamental WCS and table libraries to pipeline environments and distributed process execution. The Astropy project began in 2011 as an attempt to bring together disparate open source Python projects and build a core standard infrastructure that can be used and built upon by the astronomy community. This project has been phenomenally successful in the years since it has begun and has grown to be the de facto standard for Python software in astronomy. Astropy brings with it considerable expectations from the community on how astronomy Python software should be developed and it is clear that by the time LSST is fully operational in the 2020s many of the prospective users of the LSST software stack will expect it to be fully interoperable with Astropy. In this paper we describe the overlap between the LSST science pipeline software and Astropy software and investigate areas where the LSST software provides new functionality. We also discuss the possibilities of re-engineering the LSST science pipeline software to build upon Astropy, including the option of contributing affliated packages.

  2. New FEDS Software Helps You Design for Maximum Energy Efficiency, Minimum Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.

    2003-01-30

    This article was written for the Partner Update a newsletter put out by Potomac Communications for DOE's Rebuild America program. The article describes the FEDS (Federal Energy Decision System) software, the official analytical tool of the Rebuild America program. This software, developed by PNNL with support from DOE, FEMP and Rebuild, helps government entities and contractors make informed decisions about which energy efficiency improvements are the most cost effective for their facilities. FEDS churns thru literally thousands of calculations accounting for energy uses, costs, and interactions from different types of HVAC systems, lighting types, insulation levels, building types, occupancy levelsmore » and times. FEDS crunchs the numbers so decision makers can get fast reliable answers on which alternatives are the best for their particular building. In this article, we're touting the improvements in the latest upgrade of FEDS, which is available free to Rebuild America partners. We tell partners what FEDS does, how to order it, and even where to get tech support and training.« less

  3. Building Geographic Information System Capacity in Local Health Departments: Lessons From a North Carolina Project

    PubMed Central

    Miranda, Marie Lynn; Silva, Jennifer M.; Overstreet Galeano, M. Alicia; Brown, Jeffrey P.; Campbell, Douglas S.; Coley, Evelyn; Cowan, Christopher S.; Harvell, Dianne; Lassiter, Jenny; Parks, Jerry L.; Sandelé, Wanda

    2005-01-01

    State government, university, and local health department (LHD) partners collaborated to build the geographic information system (GIS) capacity of 5 LHDs in North Carolina. Project elements included procuring hardware and software, conducting individualized and group training, developing data layers, guiding the project development process, coordinating participation in technical conferences, providing ongoing project consultation, and evaluating project milestones. The project provided health department personnel with the skills and resources required to use sophisticated information management systems, particularly those that address spatial dimensions of public health practice. This capacity-building project helped LHDs incorporate GIS technology into daily operations, resulting in improved time and cost efficiency. Keys to success included (1) methods training rooted in problems specific to the LHD, (2) required project identification by LHD staff with associated timelines for development, (3) ongoing technical support as staff returned to home offices after training, (4) subgrants to LHDs to ease hardware and software resource constraints, (5) networks of relationships among LHDs and other professional GIS users, and (6) senior LHD leadership who supported the professional development activities being undertaken by staff. PMID:16257950

  4. Distributed dynamic simulations of networked control and building performance applications.

    PubMed

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  5. Distributed dynamic simulations of networked control and building performance applications

    PubMed Central

    Yahiaoui, Azzedine

    2017-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135

  6. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview

    NASA Technical Reports Server (NTRS)

    Nola, Charles L.; Blue, Lisa

    2008-01-01

    Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.

  7. Introduction of the UNIX International Performance Management Work Group

    NASA Technical Reports Server (NTRS)

    Newman, Henry

    1993-01-01

    In this paper we presented the planned direction of the UNIX International Performance Management Work Group. This group consists of concerned system developers and users who have organized to synthesize recommendations for standard UNIX performance management subsystem interfaces and architectures. The purpose of these recommendations is to provide a core set of performance management functions and these functions can be used to build tools by hardware system developers, vertical application software developers, and performance application software developers.

  8. Software engineering aspects of real-time programming concepts

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  9. Key Questions in Building Defect Prediction Models in Practice

    NASA Astrophysics Data System (ADS)

    Ramler, Rudolf; Wolfmaier, Klaus; Stauder, Erwin; Kossak, Felix; Natschläger, Thomas

    The information about which modules of a future version of a software system are defect-prone is a valuable planning aid for quality managers and testers. Defect prediction promises to indicate these defect-prone modules. However, constructing effective defect prediction models in an industrial setting involves a number of key questions. In this paper we discuss ten key questions identified in context of establishing defect prediction in a large software development project. Seven consecutive versions of the software system have been used to construct and validate defect prediction models for system test planning. Furthermore, the paper presents initial empirical results from the studied project and, by this means, contributes answers to the identified questions.

  10. Development of new data acquisition system for COMPASS experiment

    NASA Astrophysics Data System (ADS)

    Bodlak, M.; Frolov, V.; Jary, V.; Huber, S.; Konorov, I.; Levit, D.; Novy, J.; Salac, R.; Virius, M.

    2016-04-01

    This paper presents development and recent status of the new data acquisiton system of the COMPASS experiment at CERN with up to 50 kHz trigger rate and 36 kB average event size during 10 second period with beam followed by approximately 40 second period without beam. In the original DAQ, the event building is performed by software deployed on switched computer network, moreover the data readout is based on deprecated PCI technology; the new system replaces the event building network with a custom FPGA-based hardware. The custom cards are introduced and advantages of the FPGA technology for DAQ related tasks are discussed. In this paper, we focus on the software part that is mainly responsible for control and monitoring. The most of the system can run as slow control; only readout process has realtime requirements. The design of the software is built on state machines that are implemented using the Qt framework; communication between remote nodes that form the software architecture is based on the DIM library and IPBus technology. Furthermore, PHP and JS languages are used to maintain system configuration; the MySQL database was selected as storage for both configuration of the system and system messages. The system has been design with maximum throughput of 1500 MB/s and large buffering ability used to spread load on readout computers over longer period of time. Great emphasis is put on data latency, data consistency, and even timing checks which are done at each stage of event assembly. System collects results of these checks which together with special data format allows the software to localize origin of problems in data transmission process. A prototype version of the system has already been developed and tested the new system fulfills all given requirements. It is expected that the full-scale version of the system will be finalized in June 2014 and deployed on September provided that tests with cosmic run succeed.

  11. Investigation into the development of computer aided design software for space based sensors

    NASA Technical Reports Server (NTRS)

    Pender, C. W.; Clark, W. L.

    1987-01-01

    The described effort is phase one of the development of a Computer Aided Design (CAD) software to be used to perform radiometric sensor design. The software package will be referred to as SCAD and is directed toward the preliminary phase of the design of space based sensor system. The approach being followed is to develop a modern, graphic intensive, user friendly software package using existing software as building blocks. The emphasis will be directed toward the development of a shell containing menus, smart defaults, and interfaces, which can accommodate a wide variety of existing application software packages. The shell will offer expected utilities such as graphics, tailored menus, and a variety of drivers for I/O devices. Following the development of the shell, the development of SCAD is planned as chiefly selection and integration of appropriate building blocks. The phase one development activities have included: the selection of hardware which will be used with SCAD; the determination of the scope of SCAD; the preliminary evaluation of a number of software packages for applicability to SCAD; determination of a method for achieving required capabilities where voids exist; and then establishing a strategy for binding the software modules into an easy to use tool kit.

  12. USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS

    EPA Science Inventory

    A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...

  13. Reimagining Building Sensing and Control (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polese, L.

    2014-06-01

    Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that openmore » the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.« less

  14. Virtual building environments (VBE) - Applying information modeling to buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazjanac, Vladimir

    2004-06-21

    A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative andmore » the benefits from a couple of early VBE projects.« less

  15. Intelligent tutoring systems for systems engineering methodologies

    NASA Technical Reports Server (NTRS)

    Meyer, Richard J.; Toland, Joel; Decker, Louis

    1991-01-01

    The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype.

  16. Provably trustworthy systems.

    PubMed

    Klein, Gerwin; Andronick, June; Keller, Gabriele; Matichuk, Daniel; Murray, Toby; O'Connor, Liam

    2017-10-13

    We present recent work on building and scaling trustworthy systems with formal, machine-checkable proof from the ground up, including the operating system kernel, at the level of binary machine code. We first give a brief overview of the seL4 microkernel verification and how it can be used to build verified systems. We then show two complementary techniques for scaling these methods to larger systems: proof engineering, to estimate verification effort; and code/proof co-generation, for scalable development of provably trustworthy applications.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Author(s).

  17. Intent Specifications: An Approach to Building Human-Centered Specifications

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G.

    1999-01-01

    This paper examines and proposes an approach to writing software specifications, based on research in systems theory, cognitive psychology, and human-machine interaction. The goal is to provide specifications that support human problem solving and the tasks that humans must perform in software development and evolution. A type of specification, called intent specifications, is constructed upon this underlying foundation.

  18. Porting the Starlink Software Collection to GNU Autotools

    NASA Astrophysics Data System (ADS)

    Gray, N.; Jenness, T.; Allan, A.; Berry, D. S.; Currie, M. J.; Draper, P. W.; Taylor, M. B.; Cavanagh, B.

    2005-12-01

    The Starlink software collection currently runs on three different Unix platforms and contains around 100 separate software items, totaling 2.5 million lines of code, in a mixture of languages. We have changed the build system from a hand-maintained collection of makefiles with hard-wired OS variants to a scheme involving feature-discovery via GNU Autoconf. As a result of this work, we have already ported the collection to Mac OS X and Cygwin. This had some unexpected benefits and costs, and valuable lessons.

  19. The Chandra Source Catalog 2.0: Building The Catalog

    NASA Astrophysics Data System (ADS)

    Grier, John D.; Plummer, David A.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    To build release 2.0 of the Chandra Source Catalog (CSC2), we require scientific software tools and processing pipelines to evaluate and analyze the data. Additionally, software and hardware infrastructure is needed to coordinate and distribute pipeline execution, manage data i/o, and handle data for Quality Assurance (QA) intervention. We also provide data product staging for archive ingestion.Release 2 utilizes a database driven system used for integration and production. Included are four distinct instances of the Automatic Processing (AP) system (Source Detection, Master Match, Source Properties and Convex Hulls) and a high performance computing (HPC) cluster that is managed to provide efficient catalog processing. In this poster we highlight the internal systems developed to meet the CSC2 challenge.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  20. Integrated prototyping environment for programmable automation

    NASA Astrophysics Data System (ADS)

    da Costa, Francis; Hwang, Vincent S. S.; Khosla, Pradeep K.; Lumia, Ronald

    1992-11-01

    We propose a rapid prototyping environment for robotic systems, based on tenets of modularity, reconfigurability and extendibility that may help build robot systems `faster, better, and cheaper.' Given a task specification, (e.g., repair brake assembly), the user browses through a library of building blocks that include both hardware and software components. Software advisors or critics recommend how blocks may be `snapped' together to speedily construct alternative ways to satisfy task requirements. Mechanisms to allow `swapping' competing modules for comparative test and evaluation studies are also included in the prototyping environment. After some iterations, a stable configuration or `wiring diagram' emerges. This customized version of the general prototyping environment still contains all the hooks needed to incorporate future improvements in component technologies and to obviate unplanned obsolescence. The prototyping environment so described is relevant for both interactive robot programming (telerobotics) and iterative robot system development (prototyping).

  1. WIRM: An Open Source Toolkit for Building Biomedical Web Applications

    PubMed Central

    Jakobovits, Rex M.; Rosse, Cornelius; Brinkley, James F.

    2002-01-01

    This article describes an innovative software toolkit that allows the creation of web applications that facilitate the acquisition, integration, and dissemination of multimedia biomedical data over the web, thereby reducing the cost of knowledge sharing. There is a lack of high-level web application development tools suitable for use by researchers, clinicians, and educators who are not skilled programmers. Our Web Interfacing Repository Manager (WIRM) is a software toolkit that reduces the complexity of building custom biomedical web applications. WIRM’s visual modeling tools enable domain experts to describe the structure of their knowledge, from which WIRM automatically generates full-featured, customizable content management systems. PMID:12386108

  2. Commercial Building Energy Asset Score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This software (Asset Scoring Tool) is designed to help building owners and managers to gain insight into the as-built efficiency of their buildings. It is a web tool where users can enter their building information and obtain an asset score report. The asset score report consists of modeled building energy use (by end use and by fuel type), building systems (envelope, lighting, heating, cooling, service hot water) evaluations, and recommended energy efficiency measures. The intended users are building owners and operators who have limited knowledge of building energy efficiency. The scoring tool collects minimum building data (~20 data entries) frommore » users and build a full-scale energy model using the inference functionalities from Facility Energy Decision System (FEDS). The scoring tool runs real-time building energy simulation using EnergyPlus and performs life-cycle cost analysis using FEDS. An API is also under development to allow the third-party applications to exchange data with the web service of the scoring tool.« less

  3. Reconfigurable vision system for real-time applications

    NASA Astrophysics Data System (ADS)

    Torres-Huitzil, Cesar; Arias-Estrada, Miguel

    2002-03-01

    Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.

  4. Advanced Software V&V for Civil Aviation and Autonomy

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume P.

    2017-01-01

    With the advances in high-computing platform (e.g., advanced graphical processing units or multi-core processors), computationally-intensive software techniques such as the ones used in artificial intelligence or formal methods have provided us with an opportunity to further increase safety in the aviation industry. Some of these techniques have facilitated building safety at design time, like in aircraft engines or software verification and validation, and others can introduce safety benefits during operations as long as we adapt our processes. In this talk, I will present how NASA is taking advantage of these new software techniques to build in safety at design time through advanced software verification and validation, which can be applied earlier and earlier in the design life cycle and thus help also reduce the cost of aviation assurance. I will then show how run-time techniques (such as runtime assurance or data analytics) offer us a chance to catch even more complex problems, even in the face of changing and unpredictable environments. These new techniques will be extremely useful as our aviation systems become more complex and more autonomous.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, William Eugene

    These slides describe different strategies for installing Python software. Although I am a big fan of Python software development, robust strategies for software installation remains a challenge. This talk describes several different installation scenarios. The Good: the user has administrative privileges - Installing on Windows with an installer executable, Installing with Linux application utility, Installing a Python package from the PyPI repository, and Installing a Python package from source. The Bad: the user does not have administrative privileges - Using a virtual environment to isolate package installations, and Using an installer executable on Windows with a virtual environment. The Ugly:more » the user needs to install an extension package from source - Installing a Python extension package from source, and PyCoinInstall - Managing builds for Python extension packages. The last item referring to PyCoinInstall describes a utility being developed for the COIN-OR software, which is used within the operations research community. COIN-OR includes a variety of Python and C++ software packages, and this script uses a simple plug-in system to support the management of package builds and installation.« less

  6. ATLAS software stack on ARM64

    NASA Astrophysics Data System (ADS)

    Smith, Joshua Wyatt; Stewart, Graeme A.; Seuster, Rolf; Quadt, Arnulf; ATLAS Collaboration

    2017-10-01

    This paper reports on the port of the ATLAS software stack onto new prototype ARM64 servers. This included building the “external” packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adjustments. A few additional modifications were needed to account for the different operating system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive benchmarks using ATLAS specific environment and infrastructure have been performed, with a particular emphasis on the performance vs. energy consumption.

  7. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peffer, Therese; Blumstein, Carl; Culler, David

    The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. Themore » user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.« less

  9. Framework for Small-Scale Experiments in Software Engineering: Guidance and Control Software Project: Software Engineering Case Study

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1998-01-01

    Software is becoming increasingly significant in today's critical avionics systems. To achieve safe, reliable software, government regulatory agencies such as the Federal Aviation Administration (FAA) and the Department of Defense mandate the use of certain software development methods. However, little scientific evidence exists to show a correlation between software development methods and product quality. Given this lack of evidence, a series of experiments has been conducted to understand why and how software fails. The Guidance and Control Software (GCS) project is the latest in this series. The GCS project is a case study of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, Software Considerations in Airborne Systems and Equipment Certification. All civil transport airframe and equipment vendors are expected to comply with these guidelines in building systems to be certified by the FAA for use in commercial aircraft. For the case study, two implementations of a guidance and control application were developed to comply with the DO-178B guidelines for Level A (critical) software. The development included the requirements, design, coding, verification, configuration management, and quality assurance processes. This paper discusses the details of the GCS project and presents the results of the case study.

  10. A streamlined build system foundation for developing HPC software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Chris; Harrison, Cyrus; Hornung, Richard

    2017-02-09

    BLT bundles custom CMake macros, unit testing frameworks for C++ and Fortran, and a set of smoke tests for common HPC dependencies. The combination of these three provides a foundation for quickly bootstrapping a CMale-based system for developing HPC softward.

  11. Analysis of Software Development Methodologies to Build Safety Software Applications for the SATEX-II: A Mexican Experimental Satellite

    NASA Astrophysics Data System (ADS)

    Aguilar Cisneros, Jorge; Vargas Martinez, Hector; Pedroza Melendez, Alejandro; Alonso Arevalo, Miguel

    2013-09-01

    Mexico is a country where the experience to build software for satellite applications is beginning. This is a delicate situation because in the near future we will need to develop software for the SATEX-II (Mexican Experimental Satellite). SATEX- II is a SOMECyTA's project (the Mexican Society of Aerospace Science and Technology). We have experienced applying software development methodologies, like TSP (Team Software Process) and SCRUM in other areas. Then, we analyzed these methodologies and we concluded: these can be applied to develop software for the SATEX-II, also, we supported these methodologies with SSP-05-0 Standard in particular with ESA PSS-05-11. Our analysis was focusing on main characteristics of each methodology and how these methodologies could be used with the ESA PSS 05-0 Standards. Our outcomes, in general, may be used by teams who need to build small satellites, but, in particular, these are going to be used when we will build the on board software applications for the SATEX-II.

  12. Evaluation of the free, open source software WordPress as electronic portfolio system in undergraduate medical education.

    PubMed

    Avila, Javier; Sostmann, Kai; Breckwoldt, Jan; Peters, Harm

    2016-06-03

    Electronic portfolios (ePortfolios) are used to document and support learning activities. E-portfolios with mobile capabilities allow even more flexibility. However, the development or acquisition of ePortfolio software is often costly, and at the same time, commercially available systems may not sufficiently fit the institution's needs. The aim of this study was to design and evaluate an ePortfolio system with mobile capabilities using a commercially free and open source software solution. We created an online ePortfolio environment using the blogging software WordPress based on reported capability features of such software by a qualitative weight and sum method. Technical implementation and usability were evaluated by 25 medical students during their clinical training by quantitative and qualitative means using online questionnaires and focus groups. The WordPress ePortfolio environment allowed students a broad spectrum of activities - often documented via mobile devices - like collection of multimedia evidences, posting reflections, messaging, web publishing, ePortfolio searches, collaborative learning, knowledge management in a content management system including a wiki and RSS feeds, and the use of aid tools for studying. The students' experience with WordPress revealed a few technical problems, and this report provides workarounds. The WordPress ePortfolio was rated positively by the students as a content management system (67 % of the students), for exchange with other students (74 %), as a note pad for reflections (53 %) and for its potential as an information source for assessment (48 %) and exchange with a mentor (68 %). On the negative side, 74 % of the students in this pilot study did not find it easy to get started with the system, and 63 % rated the ePortfolio as not being user-friendly. Qualitative analysis indicated a need for more introductory information and training. It is possible to build an advanced ePortfolio system with mobile capabilities with the free and open source software WordPress. This allows institutions without proprietary software to build a sophisticated ePortfolio system adapted to their needs with relatively few resources. The implementation of WordPress should be accompanied by introductory courses in the use of the software and its apps in order to facilitate its usability.

  13. Representing System Behaviors and Expert Behaviors for Intelligent Tutoring. Technical Report No. 108.

    ERIC Educational Resources Information Center

    Towne, Douglas M.; And Others

    Simulation-based software tools that can infer system behaviors from a deep model of the system have the potential for automatically building the semantic representations required to support intelligent tutoring in fault diagnosis. The Intelligent Maintenance Training System (IMTS) is such a resource, designed for use in training troubleshooting…

  14. Accuracy Assessment of a Complex Building 3d Model Reconstructed from Images Acquired with a Low-Cost Uas

    NASA Astrophysics Data System (ADS)

    Oniga, E.; Chirilă, C.; Stătescu, F.

    2017-02-01

    Nowadays, Unmanned Aerial Systems (UASs) are a wide used technique for acquisition in order to create buildings 3D models, providing the acquisition of a high number of images at very high resolution or video sequences, in a very short time. Since low-cost UASs are preferred, the accuracy of a building 3D model created using this platforms must be evaluated. To achieve results, the dean's office building from the Faculty of "Hydrotechnical Engineering, Geodesy and Environmental Engineering" of Iasi, Romania, has been chosen, which is a complex shape building with the roof formed of two hyperbolic paraboloids. Seven points were placed on the ground around the building, three of them being used as GCPs, while the remaining four as Check points (CPs) for accuracy assessment. Additionally, the coordinates of 10 natural CPs representing the building characteristic points were measured with a Leica TCR 405 total station. The building 3D model was created as a point cloud which was automatically generated based on digital images acquired with the low-cost UASs, using the image matching algorithm and different software like 3DF Zephyr, Visual SfM, PhotoModeler Scanner and Drone2Map for ArcGIS. Except for the PhotoModeler Scanner software, the interior and exterior orientation parameters were determined simultaneously by solving a self-calibrating bundle adjustment. Based on the UAS point clouds, automatically generated by using the above mentioned software and GNSS data respectively, the parameters of the east side hyperbolic paraboloid were calculated using the least squares method and a statistical blunder detection. Then, in order to assess the accuracy of the building 3D model, several comparisons were made for the facades and the roof with reference data, considered with minimum errors: TLS mesh for the facades and GNSS mesh for the roof. Finally, the front facade of the building was created in 3D based on its characteristic points using the PhotoModeler Scanner software, resulting a CAD (Computer Aided Design) model. The results showed the high potential of using low-cost UASs for building 3D model creation and if the building 3D model is created based on its characteristic points the accuracy is significantly improved.

  15. A software architecture for automating operations processes

    NASA Technical Reports Server (NTRS)

    Miller, Kevin J.

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed a software architecture based on an integrated toolkit approach for simplifying and automating mission operations tasks. The toolkit approach is based on building adaptable, reusable graphical tools that are integrated through a combination of libraries, scripts, and system-level user interface shells. The graphical interface shells are designed to integrate and visually guide a user through the complex steps in an operations process. They provide a user with an integrated system-level picture of an overall process, defining the required inputs and possible output through interactive on-screen graphics. The OEL has developed the software for building these process-oriented graphical user interface (GUI) shells. The OEL Shell development system (OEL Shell) is an extension of JPL's Widget Creation Library (WCL). The OEL Shell system can be used to easily build user interfaces for running complex processes, applications with extensive command-line interfaces, and tool-integration tasks. The interface shells display a logical process flow using arrows and box graphics. They also allow a user to select which output products are desired and which input sources are needed, eliminating the need to know which program and its associated command-line parameters must be executed in each case. The shells have also proved valuable for use as operations training tools because of the OEL Shell hypertext help environment. The OEL toolkit approach is guided by several principles, including the use of ASCII text file interfaces with a multimission format, Perl scripts for mission-specific adaptation code, and programs that include a simple command-line interface for batch mode processing. Projects can adapt the interface shells by simple changes to the resources configuration file. This approach has allowed the development of sophisticated, automated software systems that are easy, cheap, and fast to build. This paper will discuss our toolkit approach and the OEL Shell interface builder in the context of a real operations process example. The paper will discuss the design and implementation of a Ulysses toolkit for generating the mission sequence of events. The Sequence of Events Generation (SEG) system provides an adaptable multimission toolkit for producing a time-ordered listing and timeline display of spacecraft commands, state changes, and required ground activities.

  16. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    ERIC Educational Resources Information Center

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  17. To Build on Appleworks and the Apple II, or Not--Seven Points to Guide Your Decision.

    ERIC Educational Resources Information Center

    Chesebrough, David E.

    1993-01-01

    Discusses seven factors to consider in deciding whether or not to build on AppleWorks and Apple II technology now that Apple Computer is developing little new software for the system. Factors include the impact of change on users and the existence of mail-order support services, which are listed in a sidebar. (KRN)

  18. Joint and Coalition Tactical Networking: There’s an App for That! Improving Affordability and Accelerating Innovation in Tactical Networking Using the Joint Tactical Radio System Enterprise Business Model

    DTIC Science & Technology

    2012-04-30

    to the Secretary of the Army. He served as commander of the Software Engineering Center-Belvoir (SEC-B). He was then assigned as the project manager ... Science in systems management from the Naval Postgraduate School, and a PhD in business administration from Madison University. He also has graduate...Configuration Management System (Warehouse) • Markings Scan • Metrics Scan • Standards Scan • Static Assessment • Build Audit / Build • Quick

  19. Leveraging Modeling Approaches: Reaction Networks and Rules

    PubMed Central

    Blinov, Michael L.; Moraru, Ion I.

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349

  20. Leveraging modeling approaches: reaction networks and rules.

    PubMed

    Blinov, Michael L; Moraru, Ion I

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.

  1. An Experiment With RTEMS

    DTIC Science & Technology

    2015-02-01

    instructions on how to build and use RTEMS in two different operating environments. 15. SUBJECT TERMS RTEMS, SPARC simulator, Raspberry Pi . 16. SECURITY...system .............................................. 15 3. Hardware requirements for the Raspberry Pi console ................................ 16 4...requirements for the Raspberry Pi console ................................... 16 8. Software requirements for the Windows system

  2. Health IT for Patient Safety and Improving the Safety of Health IT.

    PubMed

    Magrabi, Farah; Ong, Mei-Sing; Coiera, Enrico

    2016-01-01

    Alongside their benefits health IT applications can pose new risks to patient safety. Problems with IT have been linked to many different types of clinical errors including prescribing and administration of medications; as well as wrong-patient, wrong-site errors, and delays in procedures. There is also growing concern about the risks of data breach and cyber-security. IT-related clinical errors have their origins in processes undertaken to design, build, implement and use software systems in a broader sociotechnical context. Safety can be improved with greater standardization of clinical software and by improving the quality of processes at different points in the technology life cycle, spanning design, build, implementation and use in clinical settings. Oversight processes can be set up at a regional or national level to ensure that clinical software systems meet specific standards. Certification and regulation are two mechanisms to improve oversight. In the absence of clear standards, guidelines are useful to promote safe design and implementation practices. Processes to identify and mitigate hazards can be formalised via a safety management system. Minimizing new patient safety risks is critical to realizing the benefits of IT.

  3. Knowledge Base Editor (SharpKBE)

    NASA Technical Reports Server (NTRS)

    Tikidjian, Raffi; James, Mark; Mackey, Ryan

    2007-01-01

    The SharpKBE software provides a graphical user interface environment for domain experts to build and manage knowledge base systems. Knowledge bases can be exported/translated to various target languages automatically, including customizable target languages.

  4. EPRI and Schneider Electric Demonstrate Distributed Resource Communications

    Science.gov Websites

    Electric Power Research Institute (EPRI) is designing, building, and testing a flexible, open-source Schneider Electric ADMS, open software platforms, an open-platform home energy management system

  5. Software reuse in spacecraft planning and scheduling systems

    NASA Technical Reports Server (NTRS)

    Mclean, David; Tuchman, Alan; Broseghini, Todd; Yen, Wen; Page, Brenda; Johnson, Jay; Bogovich, Lynn; Burkhardt, Chris; Mcintyre, James; Klein, Scott

    1993-01-01

    The use of a software toolkit and development methodology that supports software reuse is described. The toolkit includes source-code-level library modules and stand-alone tools which support such tasks as data reformatting and report generation, simple relational database applications, user interfaces, tactical planning, strategic planning and documentation. The current toolkit is written in C and supports applications that run on IBM-PC's under DOS and UNlX-based workstations under OpenLook and Motif. The toolkit is fully integrated for building scheduling systems that reuse AI knowledge base technology. A typical scheduling scenario and three examples of applications that utilize the reuse toolkit will be briefly described. In addition to the tools themselves, a description of the software evolution and reuse methodology that was used is presented.

  6. Providing an empirical basis for optimizing the verification and testing phases of software development

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Basili, Victor R.; Hetmanski, Christopher J.

    1992-01-01

    Applying equal testing and verification effort to all parts of a software system is not very efficient, especially when resources are limited and scheduling is tight. Therefore, one needs to be able to differentiate low/high fault density components so that the testing/verification effort can be concentrated where needed. Such a strategy is expected to detect more faults and thus improve the resulting reliability of the overall system. This paper presents an alternative approach for constructing such models that is intended to fulfill specific software engineering needs (i.e. dealing with partial/incomplete information and creating models that are easy to interpret). Our approach to classification is as follows: (1) to measure the software system to be considered; and (2) to build multivariate stochastic models for prediction. We present experimental results obtained by classifying FORTRAN components developed at the NASA/GSFC into two fault density classes: low and high. Also we evaluate the accuracy of the model and the insights it provides into the software process.

  7. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Bonvini, Marco; Piette, Mary Ann

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and buildingmore » behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.« less

  8. A first-generation software product line for data acquisition systems in astronomy

    NASA Astrophysics Data System (ADS)

    López-Ruiz, J. C.; Heradio, Rubén; Cerrada Somolinos, José Antonio; Coz Fernandez, José Ramón; López Ramos, Pablo

    2008-07-01

    This article presents a case study on developing a software product line for data acquisition systems in astronomy based on the Exemplar Driven Development methodology and the Exemplar Flexibilization Language tool. The main strategies to build the software product line are based on the domain commonality and variability, the incremental scope and the use of existing artifacts. It consists on a lean methodology with little impact on the organization, suitable for small projects, which reduces product line start-up time. Software Product Lines focuses on creating a family of products instead of individual products. This approach has spectacular benefits on reducing the time to market, maintaining the know-how, reducing the development costs and increasing the quality of new products. The maintenance of the products is also enhanced since all the data acquisition systems share the same product line architecture.

  9. Modeling and Analysis of Space Based Transceivers

    NASA Technical Reports Server (NTRS)

    Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.

    2005-01-01

    This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.

  10. Safety Characteristics in System Application of Software for Human Rated Exploration Missions for the 8th IAASS Conference

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development. The GFAS system integrates the flight software packages of the Orion and SLS with the ground systems and launch countdown sequencers through the 'agile' software development process. A unique approach is needed to develop the GFAS project capabilities within this agile process. NASA has defined the software development process through a set of standards. The standards were written during the infancy of the so-called industry 'agile development' movement and must be tailored to adapt to the highly integrated environment of human exploration systems. Safety of the space systems and the eventual crew on board is paramount during the preparation of the exploration flight systems. A series of software safety characteristics have been incorporated into the development and certification efforts to ensure readiness for use and compatibility with the space systems. Three underlining factors in the exploration architecture require the GFAS system to be unique in its approach to ensure safety for the space systems, both the flight as well as the ground systems. The first are the missions themselves, which are exploration in nature, and go far beyond the comfort of low Earth orbit operations. The second is the current exploration system will launch only one mission per year even less during its developmental phases. Finally, the third is the partnered approach through the use of many different prime contractors, including commercial and international partners, to design and build the exploration systems. These three factors make the challenges to meet the mission preparations and the safety expectations extremely difficult to implement. As NASA leads a team of partners in the exploration beyond earth's influence, it is a safety imperative that the application software used to test, checkout, prepare and launch the exploration systems put safety of the hardware and mission first. Software safety characteristics are built into the design and development process to enable the human rated systems to begin their missions safely and successfully. Exploration missions beyond Earth are inherently risky, however, with solid safety approaches in both hardware and software, the boldness of these missions can be realized for all on the home planet.

  11. Engineering monitoring expert system's developer

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1991-01-01

    This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.

  12. Impact of external conditions on energy consumption in industrial halls

    NASA Astrophysics Data System (ADS)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  13. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  14. Semantic Service Matchmaking in the ATM Domain Considering Infrastructure Capability Constraints

    NASA Astrophysics Data System (ADS)

    Moser, Thomas; Mordinyi, Richard; Sunindyo, Wikan Danar; Biffl, Stefan

    In a service-oriented environment business processes flexibly build on software services provided by systems in a network. A key design challenge is the semantic matchmaking of business processes and software services in two steps: 1. Find for one business process the software services that meet or exceed the BP requirements; 2. Find for all business processes the software services that can be implemented within the capability constraints of the underlying network, which poses a major problem since even for small scenarios the solution space is typically very large. In this chapter we analyze requirements from mission-critical business processes in the Air Traffic Management (ATM) domain and introduce an approach for semi-automatic semantic matchmaking for software services, the “System-Wide Information Sharing” (SWIS) business process integration framework. A tool-supported semantic matchmaking process like SWIS can provide system designers and integrators with a set of promising software service candidates and therefore strongly reduces the human matching effort by focusing on a much smaller space of matchmaking candidates. We evaluate the feasibility of the SWIS approach in an industry use case from the ATM domain.

  15. System integration report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Korein, J. D.; Meyer, C.; Manoochehri, K.; Rovins, J.; Beale, J.; Barr, B.

    1985-01-01

    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment.

  16. Property Specification Patterns for intelligence building software

    NASA Astrophysics Data System (ADS)

    Chun, Seungsu

    2018-03-01

    In this paper, through the property specification pattern research for Modal MU(μ) logical aspects present a single framework based on the pattern of intelligence building software. In this study, broken down by state property specification pattern classification of Dwyer (S) and action (A) and was subdivided into it again strong (A) and weaknesses (E). Through these means based on a hierarchical pattern classification of the property specification pattern analysis of logical aspects Mu(μ) was applied to the pattern classification of the examples used in the actual model checker. As a result, not only can a more accurate classification than the existing classification systems were easy to create and understand the attributes specified.

  17. SAFARI: An Environment for Creating Tutoring Systems in Industrial Training.

    ERIC Educational Resources Information Center

    Gecsei, J.; Frasson, C.

    Safari is a cooperative project involving four Quebec universities, two industrial partners (Virtual Prototypes, Inc., providing the VAPS software package, and Novasys, Inc., a consulting firm specializing in artificial intelligence and training), and government. VAPS (Virtual Applications Prototyping System) is a commercial interface-building and…

  18. Behavior Analysis and the Quest for Machine Intelligence.

    ERIC Educational Resources Information Center

    Stephens, Kenneth R.; Hutchison, William R.

    1993-01-01

    Discusses three approaches to building intelligent systems: artificial intelligence, neural networks, and behavior analysis. BANKET, an object-oriented software system, is explained; a commercial application of BANKET is described; and a collaborative effort between the academic and business communities for the use of BANKET is discussed.…

  19. An automatic speech recognition system with speaker-independent identification support

    NASA Astrophysics Data System (ADS)

    Caranica, Alexandru; Burileanu, Corneliu

    2015-02-01

    The novelty of this work relies on the application of an open source research software toolkit (CMU Sphinx) to train, build and evaluate a speech recognition system, with speaker-independent support, for voice-controlled hardware applications. Moreover, we propose to use the trained acoustic model to successfully decode offline voice commands on embedded hardware, such as an ARMv6 low-cost SoC, Raspberry PI. This type of single-board computer, mainly used for educational and research activities, can serve as a proof-of-concept software and hardware stack for low cost voice automation systems.

  20. Ontological Model of Business Process Management Systems

    NASA Astrophysics Data System (ADS)

    Manoilov, G.; Deliiska, B.

    2008-10-01

    The activities which constitute business process management (BPM) can be grouped into five categories: design, modeling, execution, monitoring and optimization. Dedicated software packets for business process management system (BPMS) are available on the market. But the efficiency of its exploitation depends on used ontological model in the development time and run time of the system. In the article an ontological model of BPMS in area of software industry is investigated. The model building is preceded by conceptualization of the domain and taxonomy of BPMS development. On the base of the taxonomy an simple online thesaurus is created.

  1. Enhancements to the EPANET-RTX (Real-Time Analytics) ...

    EPA Pesticide Factsheets

    Technical brief and software The U.S. Environmental Protection Agency (EPA) developed EPANET-RTX as a collection of object-oriented software libraries comprising the core data access, data transformation, and data synthesis (real-time analytics) components of a real-time hydraulic and water quality modeling system. While EPANET-RTX uses the hydraulic and water quality solvers of EPANET, the object libraries are a self-contained set of building blocks for software developers. “Real-time EPANET” promises to change the way water utilities, commercial vendors, engineers, and the water community think about modeling.

  2. Spatial Dmbs Architecture for a Free and Open Source Bim

    NASA Astrophysics Data System (ADS)

    Logothetis, S.; Valari, E.; Karachaliou, E.; Stylianidis, E.

    2017-08-01

    Recent research on the field of Building Information Modelling (BIM) technology, revealed that except of a few, accessible and free BIM viewers there is a lack of Free & Open Source Software (FOSS) BIM software for the complete BIM process. With this in mind and considering BIM as the technological advancement of Computer-Aided Design (CAD) systems, the current work proposes the use of a FOSS CAD software in order to extend its capabilities and transform it gradually into a FOSS BIM platform. Towards this undertaking, a first approach on developing a spatial Database Management System (DBMS) able to store, organize and manage the overall amount of information within a single application, is presented.

  3. Agile Acceptance Test–Driven Development of Clinical Decision Support Advisories: Feasibility of Using Open Source Software

    PubMed Central

    Baldwin, Krystal L; Kannan, Vaishnavi; Flahaven, Emily L; Parks, Cassandra J; Ott, Jason M; Willett, Duwayne L

    2018-01-01

    Background Moving to electronic health records (EHRs) confers substantial benefits but risks unintended consequences. Modern EHRs consist of complex software code with extensive local configurability options, which can introduce defects. Defects in clinical decision support (CDS) tools are surprisingly common. Feasible approaches to prevent and detect defects in EHR configuration, including CDS tools, are needed. In complex software systems, use of test–driven development and automated regression testing promotes reliability. Test–driven development encourages modular, testable design and expanding regression test coverage. Automated regression test suites improve software quality, providing a “safety net” for future software modifications. Each automated acceptance test serves multiple purposes, as requirements (prior to build), acceptance testing (on completion of build), regression testing (once live), and “living” design documentation. Rapid-cycle development or “agile” methods are being successfully applied to CDS development. The agile practice of automated test–driven development is not widely adopted, perhaps because most EHR software code is vendor-developed. However, key CDS advisory configuration design decisions and rules stored in the EHR may prove amenable to automated testing as “executable requirements.” Objective We aimed to establish feasibility of acceptance test–driven development of clinical decision support advisories in a commonly used EHR, using an open source automated acceptance testing framework (FitNesse). Methods Acceptance tests were initially constructed as spreadsheet tables to facilitate clinical review. Each table specified one aspect of the CDS advisory’s expected behavior. Table contents were then imported into a test suite in FitNesse, which queried the EHR database to automate testing. Tests and corresponding CDS configuration were migrated together from the development environment to production, with tests becoming part of the production regression test suite. Results We used test–driven development to construct a new CDS tool advising Emergency Department nurses to perform a swallowing assessment prior to administering oral medication to a patient with suspected stroke. Test tables specified desired behavior for (1) applicable clinical settings, (2) triggering action, (3) rule logic, (4) user interface, and (5) system actions in response to user input. Automated test suite results for the “executable requirements” are shown prior to building the CDS alert, during build, and after successful build. Conclusions Automated acceptance test–driven development and continuous regression testing of CDS configuration in a commercial EHR proves feasible with open source software. Automated test–driven development offers one potential contribution to achieving high-reliability EHR configuration. Vetting acceptance tests with clinicians elicits their input on crucial configuration details early during initial CDS design and iteratively during rapid-cycle optimization. PMID:29653922

  4. Agile Acceptance Test-Driven Development of Clinical Decision Support Advisories: Feasibility of Using Open Source Software.

    PubMed

    Basit, Mujeeb A; Baldwin, Krystal L; Kannan, Vaishnavi; Flahaven, Emily L; Parks, Cassandra J; Ott, Jason M; Willett, Duwayne L

    2018-04-13

    Moving to electronic health records (EHRs) confers substantial benefits but risks unintended consequences. Modern EHRs consist of complex software code with extensive local configurability options, which can introduce defects. Defects in clinical decision support (CDS) tools are surprisingly common. Feasible approaches to prevent and detect defects in EHR configuration, including CDS tools, are needed. In complex software systems, use of test-driven development and automated regression testing promotes reliability. Test-driven development encourages modular, testable design and expanding regression test coverage. Automated regression test suites improve software quality, providing a "safety net" for future software modifications. Each automated acceptance test serves multiple purposes, as requirements (prior to build), acceptance testing (on completion of build), regression testing (once live), and "living" design documentation. Rapid-cycle development or "agile" methods are being successfully applied to CDS development. The agile practice of automated test-driven development is not widely adopted, perhaps because most EHR software code is vendor-developed. However, key CDS advisory configuration design decisions and rules stored in the EHR may prove amenable to automated testing as "executable requirements." We aimed to establish feasibility of acceptance test-driven development of clinical decision support advisories in a commonly used EHR, using an open source automated acceptance testing framework (FitNesse). Acceptance tests were initially constructed as spreadsheet tables to facilitate clinical review. Each table specified one aspect of the CDS advisory's expected behavior. Table contents were then imported into a test suite in FitNesse, which queried the EHR database to automate testing. Tests and corresponding CDS configuration were migrated together from the development environment to production, with tests becoming part of the production regression test suite. We used test-driven development to construct a new CDS tool advising Emergency Department nurses to perform a swallowing assessment prior to administering oral medication to a patient with suspected stroke. Test tables specified desired behavior for (1) applicable clinical settings, (2) triggering action, (3) rule logic, (4) user interface, and (5) system actions in response to user input. Automated test suite results for the "executable requirements" are shown prior to building the CDS alert, during build, and after successful build. Automated acceptance test-driven development and continuous regression testing of CDS configuration in a commercial EHR proves feasible with open source software. Automated test-driven development offers one potential contribution to achieving high-reliability EHR configuration. Vetting acceptance tests with clinicians elicits their input on crucial configuration details early during initial CDS design and iteratively during rapid-cycle optimization. ©Mujeeb A Basit, Krystal L Baldwin, Vaishnavi Kannan, Emily L Flahaven, Cassandra J Parks, Jason M Ott, Duwayne L Willett. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018.

  5. Software-codec-based full motion video conferencing on the PC using visual pattern image sequence coding

    NASA Astrophysics Data System (ADS)

    Barnett, Barry S.; Bovik, Alan C.

    1995-04-01

    This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.

  6. DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology

    PubMed Central

    Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng

    2015-01-01

    Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, we present software implementing a three ‘tier’ design process: a high-level visual programming language is used to describe systems, a molecular compiler builds a DNA implementation and nucleotide sequences are generated and optimized. Additionally, our software includes tools for analysing and ‘debugging’ the designs in silico, and for importing/exporting designs to other commonly used software systems. The software we present is built on many existing pieces of software, but is integrated into a single package—accessible using a Web-based interface at http://molecular-systems.net/workbench. We hope that the deep integration between tools and the flexibility of this design process will lead to better experimental results, fewer experimental design iterations and the development of more complex DNA nanosystems. PMID:26423437

  7. Building a Trusted Path for Applications Using COTS Components

    DTIC Science & Technology

    2004-11-01

    against attacks by malicious software. Trojan horse programs, i.e., programs with additional hidden, often malicious, functions, are more and more...cannot be imitated by untrusted software." Wiseman et al. (1988) propose a user interface for the SMITE system to prevent Trojan horses from...input, two of which can also be used for the hologram service. 7.0 CONCLUSION Trojan horse programs, i.e., programs with additional hidden, often

  8. Sequence System Building Blocks: Using a Component Architecture for Sequencing Software

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; O'Reilly, Taifun

    2005-01-01

    Over the last few years software engineering has made significant strides in making more flexible architectures and designs possible. However, at the same time, spacecraft have become more complex and flight software has become more sophisticated. Typically spacecraft are often one-of-a-kind entities that have different hardware designs, different capabilities, different instruments, etc. Ground software has become more complex and operations teams have had to learn a myriad of tools that all have different user interfaces and represent data in different ways. At Jet Propulsion Laboratory (JPL) these themes have collided to require an new approach to producing ground system software. Two different groups have been looking at tackling this particular problem. One group is working for the JPL Mars Technology Program in the Mars Science Laboratory (MSL) Focused Technology area. The other group is the JPL Multi-Mission Planning and Sequencing Group . The major concept driving these two approaches on a similar path is to provide software that can be a more cohesive flexible system that provides a act of planning and sequencing system of services. This paper describes the efforts that have been made to date to create a unified approach from these disparate groups.

  9. Sequencing System Building Blocks: Using a Component Architecture for Sequencing Software

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; O'Reilly, Taifun

    2006-01-01

    Over the last few years software engineering has made significant strides in making more flexible architectures and designs possible. However, at the same time, spacecraft have become more complex and flight software has become more sophisticated. Typically spacecraft are often one-of-a-kind entities that have different hardware designs, different capabilities, different instruments, etc. Ground software has become more complex and operations teams have had to learn a myriad of tools that all have different user interfaces and represent data in different ways. At Jet Propulsion Laboratory (JPL) these themes have collided to require a new approach to producing ground system software. Two different groups have been looking at tackling this particular problem. One group is working for the JPL Mars Technology Program in the Mars Science Laboratory (MSL) Focused Technology area. The other group is the JPL Multi-Mission Planning and Sequencing Group. The major concept driving these two approaches on a similar path is to provide software that can be a more cohesive flexible system that provides a set of planning and sequencing system of services. This paper describes the efforts that have been made to date to create a unified approach from these disparate groups.

  10. Simulator for concurrent processing data flow architectures

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.

    1992-01-01

    A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.

  11. Flight Experiment Demonstration System (FEDS) functional description and interface document

    NASA Technical Reports Server (NTRS)

    Belcher, R. C.; Shank, D. E.

    1984-01-01

    This document presents a functional description of the Flight Experiment Demonstration System (FEDS) and of interfaces between FEDS and external hardware and software. FEDS is a modification of the Automated Orbit Determination System (AODS). FEDS has been developed to support a ground demonstration of microprocessor-based onboard orbit determination. This document provides an overview of the structure and logic of FEDS and details the various operational procedures to build and execute FEDS. It also documents a microprocessor interface between FEDS and a TDRSS user transponder and describes a software simulator of the interface used in the development and system testing of FEDS.

  12. Hierarchical Ada robot programming system (HARPS)- A complete and working telerobot control system based on the NASREM model

    NASA Technical Reports Server (NTRS)

    Leake, Stephen; Green, Tom; Cofer, Sue; Sauerwein, Tim

    1989-01-01

    HARPS is a telerobot control system that can perform some simple but useful tasks. This capability is demonstrated by performing the ORU exchange demonstration. HARPS is based on NASREM (NASA Standard Reference Model). All software is developed in Ada, and the project incorporates a number of different CASE (computer-aided software engineering) tools. NASREM was found to be a valid and useful model for building a telerobot control system. Its hierarchical and distributed structure creates a natural and logical flow for implementing large complex robust control systems. The ability of Ada to create and enforce abstraction enhanced the implementation of such control systems.

  13. Safety Characteristics in System Application Software for Human Rated Exploration

    NASA Technical Reports Server (NTRS)

    Mango, E. J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development.

  14. Gas flow calculation method of a ramjet engine

    NASA Astrophysics Data System (ADS)

    Kostyushin, Kirill; Kagenov, Anuar; Eremin, Ivan; Zhiltsov, Konstantin; Shuvarikov, Vladimir

    2017-11-01

    At the present study calculation methodology of gas dynamics equations in ramjet engine is presented. The algorithm is based on Godunov`s scheme. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows using the computational meshes with arbitrary number of cell faces. The algorithm of building a block-structured grid is given. Calculation algorithm in the software package "FlashFlow" is implemented. Software package is verified on the calculations of simple configurations of air intakes and scramjet models.

  15. A Linguistic Model in Component Oriented Programming

    NASA Astrophysics Data System (ADS)

    Crăciunean, Daniel Cristian; Crăciunean, Vasile

    2016-12-01

    It is a fact that the component-oriented programming, well organized, can bring a large increase in efficiency in the development of large software systems. This paper proposes a model for building software systems by assembling components that can operate independently of each other. The model is based on a computing environment that runs parallel and distributed applications. This paper introduces concepts as: abstract aggregation scheme and aggregation application. Basically, an aggregation application is an application that is obtained by combining corresponding components. In our model an aggregation application is a word in a language.

  16. U.S. Geological Survey Groundwater Modeling Software: Making Sense of a Complex Natural Resource

    USGS Publications Warehouse

    Provost, Alden M.; Reilly, Thomas E.; Harbaugh, Arlen W.; Pollock, David W.

    2009-01-01

    Computer models of groundwater systems simulate the flow of groundwater, including water levels, and the transport of chemical constituents and thermal energy. Groundwater models afford hydrologists a framework on which to organize their knowledge and understanding of groundwater systems, and they provide insights water-resources managers need to plan effectively for future water demands. Building on decades of experience, the U.S. Geological Survey (USGS) continues to lead in the development and application of computer software that allows groundwater models to address scientific and management questions of increasing complexity.

  17. Tcl as a Software Environment for a TCS

    NASA Astrophysics Data System (ADS)

    Terrett, David L.

    2002-12-01

    This paper describes how the Tcl scripting language and C API has been used as the software environment for a telescope pointing kernel so that new pointing algorithms and software architectures can be developed and tested without needing a real-time operating system or real-time software environment. It has enabled development to continue outside the framework of a specific telescope project while continuing to build a system that is sufficiently complete to be capable of controlling real hardware but expending minimum effort on replacing the services that would normally by provided by a real-time software environment. Tcl is used as a scripting language for configuring the system at startup and then as the command interface for controlling the running system; the Tcl C language API is used to provided a system independent interface to file and socket I/O and other operating system services. The pointing algorithms themselves are implemented as a set of C++ objects calling C library functions that implement the algorithms described in [2]. Although originally designed as a test and development environment, the system, running as a soft real-time process on Linux, has been used to test the SOAR mount control system and will be used as the pointing kernel of the SOAR telescope control system

  18. Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation.

    PubMed

    Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C

    2017-10-01

    This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).

  19. Flight dynamics software in a distributed network environment

    NASA Technical Reports Server (NTRS)

    Jeletic, J.; Weidow, D.; Boland, D.

    1995-01-01

    As with all NASA facilities, the announcement of reduced budgets, reduced staffing, and the desire to implement smaller/quicker/cheaper missions has required the Agency's organizations to become more efficient in what they do. To accomplish these objectives, the FDD has initiated the development of the Flight Dynamics Distributed System (FDDS). The underlying philosophy of FDDS is to build an integrated system that breaks down the traditional barriers of attitude, mission planning, and navigation support software to provide a uniform approach to flight dynamics applications. Through the application of open systems concepts and state-of-the-art technologies, including object-oriented specification concepts, object-oriented software, and common user interface, communications, data management, and executive services, the FDD will reengineer most of its six million lines of code.

  20. A Team Building Model for Software Engineering Courses Term Projects

    ERIC Educational Resources Information Center

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  1. BioSPICE: access to the most current computational tools for biologists.

    PubMed

    Garvey, Thomas D; Lincoln, Patrick; Pedersen, Charles John; Martin, David; Johnson, Mark

    2003-01-01

    The goal of the BioSPICE program is to create a framework that provides biologists access to the most current computational tools. At the program midpoint, the BioSPICE member community has produced a software system that comprises contributions from approximately 20 participating laboratories integrated under the BioSPICE Dashboard and a methodology for continued software integration. These contributed software modules are the BioSPICE Dashboard, a graphical environment that combines Open Agent Architecture and NetBeans software technologies in a coherent, biologist-friendly user interface. The current Dashboard permits data sources, models, simulation engines, and output displays provided by different investigators and running on different machines to work together across a distributed, heterogeneous network. Among several other features, the Dashboard enables users to create graphical workflows by configuring and connecting available BioSPICE components. Anticipated future enhancements to BioSPICE include a notebook capability that will permit researchers to browse and compile data to support model building, a biological model repository, and tools to support the development, control, and data reduction of wet-lab experiments. In addition to the BioSPICE software products, a project website supports information exchange and community building.

  2. Automated Predictive Diagnosis (APD): A 3-tiered shell for building expert systems for automated predictions and decision making

    NASA Technical Reports Server (NTRS)

    Steib, Michael

    1991-01-01

    The APD software features include: On-line help, Three level architecture, (Logic environments, Setup/Application environment, Data environment), Explanation capability, and File handling. The kinds of experimentation and record keeping that leads to effective expert systems is facilitated by: (1) a library of inferencing modules (in the logic environment); (2) an explanation capability which reveals logic strategies to users; (3) automated file naming conventions; (4) an information retrieval system; and (5) on-line help. These aid with effective use of knowledge, debugging and experimentation. Since the APD software anticipates the logical rules becoming complicated, it is embedded in a production system language (CLIPS) to insure the full power of the production system paradigm of CLIPS and availability of the procedural language C. The development is discussed of the APD software and three example applications: toy, experimental, and operational prototype for submarine maintenance predictions.

  3. Rules of thumb to increase the software quality through testing

    NASA Astrophysics Data System (ADS)

    Buttu, M.; Bartolini, M.; Migoni, C.; Orlati, A.; Poppi, S.; Righini, S.

    2016-07-01

    The software maintenance typically requires 40-80% of the overall project costs, and this considerable variability mostly depends on the software internal quality: the more the software is designed and implemented to constantly welcome new changes, the lower will be the maintenance costs. The internal quality is typically enforced through testing, which in turn also affects the development and maintenance costs. This is the reason why testing methodologies have become a major concern for any company that builds - or is involved in building - software. Although there is no testing approach that suits all contexts, we infer some general guidelines learned during the Development of the Italian Single-dish COntrol System (DISCOS), which is a project aimed at producing the control software for the three INAF radio telescopes (the Medicina and Noto dishes, and the newly-built SRT). These guidelines concern both the development and the maintenance phases, and their ultimate goal is to maximize the DISCOS software quality through a Behavior-Driven Development (BDD) workflow beside a continuous delivery pipeline. We consider different topics and patterns; they involve the proper apportion of the tests (from end-to-end to low-level tests), the choice between hardware simulators and mockers, why and how to apply TDD and the dependency injection to increase the test coverage, the emerging technologies available for test isolation, bug fixing, how to protect the system from the external resources changes (firmware updating, hardware substitution, etc.) and, eventually, how to accomplish BDD starting from functional tests and going through integration and unit tests. We discuss pros and cons of each solution and point out the motivations of our choices either as a general rule or narrowed in the context of the DISCOS project.

  4. Science Gateways, Scientific Workflows and Open Community Software

    NASA Astrophysics Data System (ADS)

    Pierce, M. E.; Marru, S.

    2014-12-01

    Science gateways and scientific workflows occupy different ends of the spectrum of user-focused cyberinfrastructure. Gateways, sometimes called science portals, provide a way for enabling large numbers of users to take advantage of advanced computing resources (supercomputers, advanced storage systems, science clouds) by providing Web and desktop interfaces and supporting services. Scientific workflows, at the other end of the spectrum, support advanced usage of cyberinfrastructure that enable "power users" to undertake computational experiments that are not easily done through the usual mechanisms (managing simulations across multiple sites, for example). Despite these different target communities, gateways and workflows share many similarities and can potentially be accommodated by the same software system. For example, pipelines to process InSAR imagery sets or to datamine GPS time series data are workflows. The results and the ability to make downstream products may be made available through a gateway, and power users may want to provide their own custom pipelines. In this abstract, we discuss our efforts to build an open source software system, Apache Airavata, that can accommodate both gateway and workflow use cases. Our approach is general, and we have applied the software to problems in a number of scientific domains. In this talk, we discuss our applications to usage scenarios specific to earth science, focusing on earthquake physics examples drawn from the QuakSim.org and GeoGateway.org efforts. We also examine the role of the Apache Software Foundation's open community model as a way to build up common commmunity codes that do not depend upon a single "owner" to sustain. Pushing beyond open source software, we also see the need to provide gateways and workflow systems as cloud services. These services centralize operations, provide well-defined programming interfaces, scale elastically, and have global-scale fault tolerance. We discuss our work providing Apache Airavata as a hosted service to provide these features.

  5. Scalable Deployment of Advanced Building Energy Management Systems

    DTIC Science & Technology

    2013-05-01

    150  Figure J.5 Sensor Schema...151  Figure J.6 Temperature Sensor Schema...augments an existing BMS with additional sensors /meters and uses a reduced-order model and diagnostic software to make performance deviations visible

  6. Testing expert systems

    NASA Technical Reports Server (NTRS)

    Chang, C. L.; Stachowitz, R. A.

    1988-01-01

    Software quality is of primary concern in all large-scale expert system development efforts. Building appropriate validation and test tools for ensuring software reliability of expert systems is therefore required. The Expert Systems Validation Associate (EVA) is a validation system under development at the Lockheed Artificial Intelligence Center. EVA provides a wide range of validation and test tools to check correctness, consistency, and completeness of an expert system. Testing a major function of EVA. It means executing an expert system with test cases with the intent of finding errors. In this paper, we describe many different types of testing such as function-based testing, structure-based testing, and data-based testing. We describe how appropriate test cases may be selected in order to perform good and thorough testing of an expert system.

  7. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.

    PubMed

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-06-14

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.

  8. Hierarchical analytical and simulation modelling of human-machine systems with interference

    NASA Astrophysics Data System (ADS)

    Braginsky, M. Ya; Tarakanov, D. V.; Tsapko, S. G.; Tsapko, I. V.; Baglaeva, E. A.

    2017-01-01

    The article considers the principles of building the analytical and simulation model of the human operator and the industrial control system hardware and software. E-networks as the extension of Petri nets are used as the mathematical apparatus. This approach allows simulating complex parallel distributed processes in human-machine systems. The structural and hierarchical approach is used as the building method for the mathematical model of the human operator. The upper level of the human operator is represented by the logical dynamic model of decision making based on E-networks. The lower level reflects psychophysiological characteristics of the human-operator.

  9. Teaching Radiology Physics Interactively with Scientific Notebook Software.

    PubMed

    Richardson, Michael L; Amini, Behrang

    2018-06-01

    The goal of this study is to demonstrate how the teaching of radiology physics can be enhanced with the use of interactive scientific notebook software. We used the scientific notebook software known as Project Jupyter, which is free, open-source, and available for the Macintosh, Windows, and Linux operating systems. We have created a scientific notebook that demonstrates multiple interactive teaching modules we have written for our residents using the Jupyter notebook system. Scientific notebook software allows educators to create teaching modules in a form that combines text, graphics, images, data, interactive calculations, and image analysis within a single document. These notebooks can be used to build interactive teaching modules, which can help explain complex topics in imaging physics to residents. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Indoor Navigation by People with Visual Impairment Using a Digital Sign System

    PubMed Central

    Legge, Gordon E.; Beckmann, Paul J.; Tjan, Bosco S.; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan

    2013-01-01

    There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects—blind, low vision, blindfolded sighted, and normally sighted controls—were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156

  11. Overview of the TriBITS Lifecycle Model: Lean/Agile Software Lifecycle Model for Research-based Computational Science and Engineering Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A; Heroux, Dr. Michael A; Willenbring, James

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science & engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process--respecting the competing needs of research vs. production--cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects thatmore » are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  12. Generic Software Architecture for Launchers

    NASA Astrophysics Data System (ADS)

    Carre, Emilien; Gast, Philippe; Hiron, Emmanuel; Leblanc, Alain; Lesens, David; Mescam, Emmanuelle; Moro, Pierre

    2015-09-01

    The definition and reuse of generic software architecture for launchers is not so usual for several reasons: the number of European launcher families is very small (Ariane 5 and Vega for these last decades); the real time constraints (reactivity and determinism needs) are very hard; low levels of versatility are required (implying often an ad hoc development of the launcher mission). In comparison, satellites are often built on a generic platform made up of reusable hardware building blocks (processors, star-trackers, gyroscopes, etc.) and reusable software building blocks (middleware, TM/TC, On Board Control Procedure, etc.). If some of these reasons are still valid (e.g. the limited number of development), the increase of the available CPU power makes today an approach based on a generic time triggered middleware (ensuring the full determinism of the system) and a centralised mission and vehicle management (offering more flexibility in the design and facilitating the long term maintenance) achievable. This paper presents an example of generic software architecture which could be envisaged for future launchers, based on the previously described principles and supported by model driven engineering and automatic code generation.

  13. Energy performance evaluation of AAC

    NASA Astrophysics Data System (ADS)

    Aybek, Hulya

    The U.S. building industry constitutes the largest consumer of energy (i.e., electricity, natural gas, petroleum) in the world. The building sector uses almost 41 percent of the primary energy and approximately 72 percent of the available electricity in the United States. As global energy-generating resources are being depleted at exponential rates, the amount of energy consumed and wasted cannot be ignored. Professionals concerned about the environment have placed a high priority on finding solutions that reduce energy consumption while maintaining occupant comfort. Sustainable design and the judicious combination of building materials comprise one solution to this problem. A future including sustainable energy may result from using energy simulation software to accurately estimate energy consumption and from applying building materials that achieve the potential results derived through simulation analysis. Energy-modeling tools assist professionals with making informed decisions about energy performance during the early planning phases of a design project, such as determining the most advantageous combination of building materials, choosing mechanical systems, and determining building orientation on the site. By implementing energy simulation software to estimate the effect of these factors on the energy consumption of a building, designers can make adjustments to their designs during the design phase when the effect on cost is minimal. The primary objective of this research consisted of identifying a method with which to properly select energy-efficient building materials and involved evaluating the potential of these materials to earn LEED credits when properly applied to a structure. In addition, this objective included establishing a framework that provides suggestions for improvements to currently available simulation software that enhance the viability of the estimates concerning energy efficiency and the achievements of LEED credits. The primary objective was accomplished by using conducting several simulation models to determine the relative energy efficiency of wood-framed, metal-framed, and Aerated Autoclaved Concrete (AAC) wall structures for both commercial and residential buildings.

  14. Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Moorhead, J.; Brauer, D. K.

    2017-12-01

    Evapotranspiration (ET) is a major component of the hydrologic cycle. ET data are used for a variety of water management and research purposes such as irrigation scheduling, water and crop modeling, streamflow, water availability, and many more. Remote sensing products have been widely used to create spatially representative ET data sets which provide important information from field to regional scales. As UAV capabilities increase, remote sensing use is likely to also increase. For that purpose, scientists at the USDA-ARS research laboratory in Bushland, TX developed the Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. The BEARS software is a Java based software that allows users to process remote sensing data to generate ET outputs using predefined models, or enter custom equations and models. The capability to define new equations and build new models expands the applicability of the BEARS software beyond ET mapping to any remote sensing application. The software also includes an image viewing tool that allows users to visualize outputs, as well as draw an area of interest using various shapes. This software is freely available from the USDA-ARS Conservation and Production Research Laboratory website.

  15. Intelligent Agents for the Digital Battlefield

    DTIC Science & Technology

    1998-11-01

    specific outcome of our long term research will be the development of a collaborative agent technology system, CATS , that will provide the underlying...software infrastructure needed to build large, heterogeneous, distributed agent applications. CATS will provide a software environment through which multiple...intelligent agents may interact with other agents, both human and computational. In addition, CATS will contain a number of intelligent agent components that will be useful for a wide variety of applications.

  16. Program Manager: Journal of the Defense Systems Management College, Volume 17, Number 3

    DTIC Science & Technology

    1988-06-01

    34 modernizing plants and processes, We have established a network with What does "quality" mean? First, the streamlining management, pooling trade associations...pant an opportunity to reflect on the - Network building may be the first opportunity for some organizational climate and hierarchical managers to...s devop slom p se result of the soaring cost of soft -Software Performance Testing. 3 ware enhancements. This difference in hardware and software

  17. An Ontology for Software Engineering Education

    ERIC Educational Resources Information Center

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  18. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications.more » (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote monitoring ability with role-based access control. (7) Security – In addition to built-in security features provided by VOLTTRON, BEMOSS provides enhanced security features, including BEMOSS discovery approval process, encrypted core-to-node communication, thermostat anti-tampering feature and many more. (8) Support from the Advisory Committee – BEMOSS was developed in consultation with an advisory committee from the beginning of the project. BEMOSS advisory committee comprises representatives from 22 organizations from government and industry.« less

  19. Dave Roberts | NREL

    Science.gov Websites

    Engineer in Colorado. He has expertise in building science, building energy simulation, and software simulation and software development projects, and served as product manager for the REM/Rate(tm) home energy

  20. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    NASA Astrophysics Data System (ADS)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  1. Implementing Software Safety in the NASA Environment

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha S.; Radley, Charles F.

    1994-01-01

    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to be built. Shortly thereafter, as the system requirements are being defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the systems requirements phase, decisions are made as to what functions of the system will be the responsibility of software. This is the most critical time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and most cost effective means to assure safe software within a safe system.

  2. Improving Data Catalogs with Free and Open Source Software

    NASA Astrophysics Data System (ADS)

    Schweitzer, R.; Hankin, S.; O'Brien, K.

    2013-12-01

    The Global Earth Observation Integrated Data Environment (GEO-IDE) is NOAA's effort to successfully integrate data and information with partners in the national US-Global Earth Observation System (US-GEO) and the international Global Earth Observation System of Systems (GEOSS). As part of the GEO-IDE, the Unified Access Framework (UAF) is working to build momentum towards the goal of increased data integration and interoperability. The UAF project is moving towards this goal with an approach that includes leveraging well known and widely used standards, as well as free and open source software. The UAF project shares the widely held conviction that the use of data standards is a key ingredient necessary to achieve interoperability. Many community-based consensus standards fail, though, due to poor compliance. Compliance problems emerge for many reasons: because the standards evolve through versions, because documentation is ambiguous or because individual data providers find the standard inadequate as-is to meet their special needs. In addition, minimalist use of standards will lead to a compliant service, but one which is of low quality. In this presentation, we will be discussing the UAF effort to build a catalog cleaning tool which is designed to crawl THREDDS catalogs, analyze the data available, and then build a 'clean' catalog of data which is standards compliant and has a uniform set of data access services available. These data services include, among others, OPeNDAP, Web Coverage Service (WCS) and Web Mapping Service (WMS). We will also discuss how we are utilizing free and open source software and services to both crawl, analyze and build the clean data catalog, as well as our efforts to help data providers improve their data catalogs. We'll discuss the use of open source software such as DataNucleus, Thematic Realtime Environmental Distributed Data Services (THREDDS), ncISO and the netCDF Java Common Data Model (CDM). We'll also demonstrate how we are using free services such as Google Charts to create an easily identifiable visual metaphor which describes the quality of data catalogs. Using this rubric, in conjunction with the ncISO metadata quality rubric, will allow data providers to identify non-compliance issues in their data catalogs, thereby improving data availability to their users and to data discovery systems

  3. Changes and challenges in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose

    1994-01-01

    Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics systems. The SEL is composed of three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation. During the past 18 years, the SEL's overall goal has remained the same: to improve the FDD's software products and processes in a measured manner. This requires that each development and maintenance effort be viewed, in part, as a SEL experiment which examines a specific technology or builds a model of interest for use on subsequent efforts. The SEL has undertaken many technology studies while developing operational support systems for numerous NASA spacecraft missions.

  4. Design and implementation of a structural health monitoring and alerting system for hospital buildings in the United States

    USGS Publications Warehouse

    Ulusoy, Hasan S.; Kalkan, Erol; Fletcher, Jon Peter B.; Friberg, Paul; Leith, W. K.; Banga, Krishna

    2012-01-01

    This paper describes the current progress in the development of a structural health monitoring and alerting system to meet the needs of the U.S. Department of Veterans Affairs to monitor hospital buildings instrumented in high and very high seismic hazard regions in the U.S. The system, using the measured vibration data, is primarily designed for post-earthquake condition assessment of the buildings. It has two essential components – sensing and analysis. The sensing component includes all necessary firmware and sensors to measure the response of the building; while the analysis component consists of several data processing modules integrated into an open source software package which compresses a large amount of measured data into useful information to assess the building’s condition before and after an event. The information can be used for a rapid building safety assessment, and to support decisions for necessary repairs, replacements, and other maintenance and rehabilitation measures.

  5. Final Technical Report. Training in Building Audit Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosemer, Kathleen

    In 2011, the Tribe proposed and was awarded the Training in Building Audit Technologies grant from the DOE in the amount of $55,748 to contract for training programs for infrared cameras, blower door technology applications and building systems. The coursework consisted of; Infrared Camera Training: Level I - Thermal Imaging for Energy Audits; Blower Door Analysis and Building-As-A-System Training, Building Performance Institute (BPI) Building Analyst; Building Envelope Training, Building Performance Institute (BPI) Envelope Professional; and Audit/JobFLEX Tablet Software. Competitive procurement of the training contractor resulted in lower costs, allowing the Tribe to request and receive DOE approval to additionally purchasemore » energy audit equipment and contract for residential energy audits of 25 low-income Tribal Housing units. Sault Tribe personnel received field training to supplement the classroom instruction on proper use of the energy audit equipment. Field experience was provided through the second DOE energy audits grant, allowing Sault Tribe personnel to join the contractor, Building Science Academy, in conducting 25 residential energy audits of low-income Tribal Housing units.« less

  6. Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius

    This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2” by 2”, Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers’ sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development,more » the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.« less

  7. A CCD experimental platform for large telescope in Antarctica based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhua; Qi, Yongjun

    2014-07-01

    The CCD , as a detector , is one of the important components of astronomical telescopes. For a large telescope in Antarctica, a set of CCD detector system with large size, high sensitivity and low noise is indispensable. Because of the extremely low temperatures and unattended, system maintenance and software and hardware upgrade become hard problems. This paper introduces a general CCD controller experiment platform, using Field programmable gate array FPGA, which is, in fact, a large-scale field reconfigurable array. Taking the advantage of convenience to modify the system, construction of driving circuit, digital signal processing module, network communication interface, control algorithm validation, and remote reconfigurable module may realize. With the concept of integrated hardware and software, the paper discusses the key technology of building scientific CCD system suitable for the special work environment in Antarctica, focusing on the method of remote reconfiguration for controller via network and then offering a feasible hardware and software solution.

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    -the-loop" (HIL) to connect physical devices to software models, EdgePower is drawing on NREL's are putting their controller into a synthetic environment that is called 'controller in-the-loop controller-in-the-loop platform allows us to observe the dynamics of these buildings as they implement the

  9. Automated CFD Parameter Studies on Distributed Parallel Computers

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Aftosmis, Michael; Pandya, Shishir; Tejnil, Edward; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The objective of the current work is to build a prototype software system which will automated the process of running CFD jobs on Information Power Grid (IPG) resources. This system should remove the need for user monitoring and intervention of every single CFD job. It should enable the use of many different computers to populate a massive run matrix in the shortest time possible. Such a software system has been developed, and is known as the AeroDB script system. The approach taken for the development of AeroDB was to build several discrete modules. These include a database, a job-launcher module, a run-manager module to monitor each individual job, and a web-based user portal for monitoring of the progress of the parameter study. The details of the design of AeroDB are presented in the following section. The following section provides the results of a parameter study which was performed using AeroDB for the analysis of a reusable launch vehicle (RLV). The paper concludes with a section on the lessons learned in this effort, and ideas for future work in this area.

  10. Build and Execute Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Qiang

    At exascale, the challenge becomes to develop applications that run at scale and use exascale platforms reliably, efficiently, and flexibly. Workflows become much more complex because they must seamlessly integrate simulation and data analytics. They must include down-sampling, post-processing, feature extraction, and visualization. Power and data transfer limitations require these analysis tasks to be run in-situ or in-transit. We expect successful workflows will comprise multiple linked simulations along with tens of analysis routines. Users will have limited development time at scale and, therefore, must have rich tools to develop, debug, test, and deploy applications. At this scale, successful workflows willmore » compose linked computations from an assortment of reliable, well-defined computation elements, ones that can come and go as required, based on the needs of the workflow over time. We propose a novel framework that utilizes both virtual machines (VMs) and software containers to create a workflow system that establishes a uniform build and execution environment (BEE) beyond the capabilities of current systems. In this environment, applications will run reliably and repeatably across heterogeneous hardware and software. Containers, both commercial (Docker and Rocket) and open-source (LXC and LXD), define a runtime that isolates all software dependencies from the machine operating system. Workflows may contain multiple containers that run different operating systems, different software, and even different versions of the same software. We will run containers in open-source virtual machines (KVM) and emulators (QEMU) so that workflows run on any machine entirely in user-space. On this platform of containers and virtual machines, we will deliver workflow software that provides services, including repeatable execution, provenance, checkpointing, and future proofing. We will capture provenance about how containers were launched and how they interact to annotate workflows for repeatable and partial re-execution. We will coordinate the physical snapshots of virtual machines with parallel programming constructs, such as barriers, to automate checkpoint and restart. We will also integrate with HPC-specific container runtimes to gain access to accelerators and other specialized hardware to preserve native performance. Containers will link development to continuous integration. When application developers check code in, it will automatically be tested on a suite of different software and hardware architectures.« less

  11. The COMPTEL Processing and Analysis Software system (COMPASS)

    NASA Astrophysics Data System (ADS)

    de Vries, C. P.; COMPTEL Collaboration

    The data analysis system of the gamma-ray Compton Telescope (COMPTEL) onboard the Compton-GRO spacecraft is described. A continous stream of data of the order of 1 kbytes per second is generated by the instrument. The data processing and analysis software is build around a relational database managment system (RDBMS) in order to be able to trace heritage and processing status of all data in the processing pipeline. Four institutes cooperate in this effort requiring procedures to keep local RDBMS contents identical between the sites and swift exchange of data using network facilities. Lately, there has been a gradual move of the system from central processing facilities towards clusters of workstations.

  12. Lessons about Virtual-Environment Software Systems from 20 years of VE building

    PubMed Central

    Taylor, Russell M.; Jerald, Jason; VanderKnyff, Chris; Wendt, Jeremy; Borland, David; Marshburn, David; Sherman, William R.; Whitton, Mary C.

    2010-01-01

    What are desirable and undesirable features of virtual-environment (VE) software architectures? What should be present (and absent) from such systems if they are to be optimally useful? How should they be structured? To help answer these questions we present experience from application designers, toolkit designers, and VE system architects along with examples of useful features from existing systems. Topics are organized under the major headings of: 3D space management, supporting display hardware, interaction, event management, time management, computation, portability, and the observation that less can be better. Lessons learned are presented as discussion of the issues, field experiences, nuggets of knowledge, and case studies. PMID:20567602

  13. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    When the facilities design and construction team at the University of California, San Diego (UCSD) started planning to upgrade and expand their control system, they had several critical goals for the project. They wanted a building automation system (BAS) that could achieve optimum energy savings while maximizing the efficiency of the facilities staff. They needed the new system to link 26 campus buildings--containing a variety of existing systems--to one central location for monitoring and diagnostics. They wanted a single vendor to handle installation, software development, service and support--and they wanted the entire project completed without downtime. At the core ofmore » these technologies is the Metasys{reg_sign} facility management system from Johnson Controls.« less

  15. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  16. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    NASA Astrophysics Data System (ADS)

    Knapik, Maciej

    2018-02-01

    The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  17. Design and implementation of a unified certification management system based on seismic business

    NASA Astrophysics Data System (ADS)

    Tang, Hongliang

    2018-04-01

    Many business software for seismic systems are based on web pages, users can simply open a browser and enter their IP address. However, how to achieve unified management and security management of many IP addresses, this paper introduces the design concept based on seismic business and builds a unified authentication management system using ASP technology.

  18. Design and Evaluation of a DIY Construction System for Educational Robot Kits

    ERIC Educational Resources Information Center

    Vandevelde, Cesar; Wyffels, Francis; Ciocci, Maria-Cristina; Vanderborght, Bram; Saldien, Jelle

    2016-01-01

    Building a robot from scratch in an educational context can be a challenging prospect. While a multitude of projects exist that simplify the electronics and software aspects of a robot, the same cannot be said for construction systems for robotics. In this paper, we present our efforts to create a low-cost do-it-yourself construction system for…

  19. Software Testbed for Developing and Evaluating Integrated Autonomous Systems

    DTIC Science & Technology

    2015-03-01

    EUROPA planning system for plan generation. The adaptive controller executes the new plan, using augmented, hierarchical finite state machines to...using the Internet Communications Engine ( ICE ), an object-oriented toolkit for building distributed applications. TABLE OF CONTENTS 1...ANML model is translated into the New Domain Definition Language (NDDL) and sent to NASA???s EUROPA planning system for plan generation. The adaptive

  20. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings

    PubMed Central

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-01-01

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes. PMID:27314357

  1. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less

  2. Building a virtual ligand screening pipeline using free software: a survey.

    PubMed

    Glaab, Enrico

    2016-03-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. © The Author 2015. Published by Oxford University Press.

  3. Building a virtual ligand screening pipeline using free software: a survey

    PubMed Central

    2016-01-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. PMID:26094053

  4. A software bus for thread objects

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Li, Dehuai

    1995-01-01

    The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.

  5. National Cycle Program (NCP) Common Analysis Tool for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Follen, G.; Naiman, C.; Evans, A.

    1999-01-01

    Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.

  6. Quantum machine learning.

    PubMed

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  7. Quantum machine learning

    NASA Astrophysics Data System (ADS)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-01

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  8. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick O'Neill

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested onmore » two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among all the team members. Fortunately, the project team performed exceptionally well together and was able to work through the various challenges that this presented - for example, when one software tool required a detailed description of the output of a second tool, before that tool had been fully designed.« less

  9. The SEL Adapts to Meet Changing Times

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose S.; Basili, Victor R.

    1997-01-01

    Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. It has done this by developing and refining a continual process improvement approach that allows an organization such as the FDD to fine-tune its process for its particular domain. Experimental software engineering and measurement play a significant role in this approach. The SEL is a partnership of NASA Goddard, its major software contractor, Computer Sciences Corporation (CSC), and the University of Maryland's (LTM) Department of Computer Science. The FDD primarily builds software systems that provide ground-based flight dynamics support for scientific satellites. They fall into two sets: ground systems and simulators. Ground systems are midsize systems that average around 250 thousand source lines of code (KSLOC). Ground system development projects typically last 1 - 2 years. Recent systems have been rehosted to workstations from IBM mainframes, and also contain significant new subsystems written in C and C++. The simulators are smaller systems averaging around 60 KSLOC that provide the test data for the ground systems. Simulator development lasts up to 1 year. Most of the simulators have been built in Ada on workstations. The SEL is responsible for the management and continual improvement of the software engineering processes used on these FDD projects.

  10. Approaches in highly parameterized inversion—PEST++ Version 3, a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental models

    USGS Publications Warehouse

    Welter, David E.; White, Jeremy T.; Hunt, Randall J.; Doherty, John E.

    2015-09-18

    The PEST++ Version 3 software suite can be compiled for Microsoft Windows®4 and Linux®5 operating systems; the source code is available in a Microsoft Visual Studio®6 2013 solution; Linux Makefiles are also provided. PEST++ Version 3 continues to build a foundation for an open-source framework capable of producing robust and efficient parameter estimation tools for large environmental models.

  11. Resident database interfaces to the DAVID system, a heterogeneous distributed database management system

    NASA Technical Reports Server (NTRS)

    Moroh, Marsha

    1988-01-01

    A methodology for building interfaces of resident database management systems to a heterogeneous distributed database management system under development at NASA, the DAVID system, was developed. The feasibility of that methodology was demonstrated by construction of the software necessary to perform the interface task. The interface terminology developed in the course of this research is presented. The work performed and the results are summarized.

  12. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David

    2009-01-01

    NASA Dryden started working towards a single vehicle enhanced flight termination system (EFTS) in January 2008. NASA and AFFTC combined their efforts to work towards final operating capability for multiple vehicle and multiple missions simultaneously, to be completed by the end of 2011. Initially, the system was developed to support one vehicle and one frequency per mission for unmanned aerial vehicles (UAVs) at NASA Dryden. By May 2008 95% of design and hardware builds were completed, however, NASA Dryden's change of software safety scope and requirements caused delays after May 2008. This presentation reviews the initial and final operating capabilities for the Advanced Command Destruct System (ACDS), including command controller and configuration software development. A requirements summary is also provided.

  13. A knowledge based expert system for propellant system monitoring at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Jamieson, J. R.; Delaune, C.; Scarl, E.

    1985-01-01

    The Lox Expert System (LES) is the first attempt to build a realtime expert system capable of simulating the thought processes of NASA system engineers, with regard to fluids systems analysis and troubleshooting. An overview of the hardware and software describes the techniques used, and possible applications to other process control systems. LES is now in the advanced development stage, with a full implementation planned for late 1985.

  14. A Secure and Robust Approach to Software Tamper Resistance

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudeep; Hiser, Jason D.; Davidson, Jack W.

    Software tamper-resistance mechanisms have increasingly assumed significance as a technique to prevent unintended uses of software. Closely related to anti-tampering techniques are obfuscation techniques, which make code difficult to understand or analyze and therefore, challenging to modify meaningfully. This paper describes a secure and robust approach to software tamper resistance and obfuscation using process-level virtualization. The proposed techniques involve novel uses of software check summing guards and encryption to protect an application. In particular, a virtual machine (VM) is assembled with the application at software build time such that the application cannot run without the VM. The VM provides just-in-time decryption of the program and dynamism for the application's code. The application's code is used to protect the VM to ensure a level of circular protection. Finally, to prevent the attacker from obtaining an analyzable snapshot of the code, the VM periodically discards all decrypted code. We describe a prototype implementation of these techniques and evaluate the run-time performance of applications using our system. We also discuss how our system provides stronger protection against tampering attacks than previously described tamper-resistance approaches.

  15. CATS, continuous automated testing of seismological, hydroacoustic, and infrasound (SHI) processing software.

    NASA Astrophysics Data System (ADS)

    Brouwer, Albert; Brown, David; Tomuta, Elena

    2017-04-01

    To detect nuclear explosions, waveform data from over 240 SHI stations world-wide flows into the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), located in Vienna, Austria. A complex pipeline of software applications processes this data in numerous ways to form event hypotheses. The software codebase comprises over 2 million lines of code, reflects decades of development, and is subject to frequent enhancement and revision. Since processing must run continuously and reliably, software changes are subjected to thorough testing before being put into production. To overcome the limitations and cost of manual testing, the Continuous Automated Testing System (CATS) has been created. CATS provides an isolated replica of the IDC processing environment, and is able to build and test different versions of the pipeline software directly from code repositories that are placed under strict configuration control. Test jobs are scheduled automatically when code repository commits are made. Regressions are reported. We present the CATS design choices and test methods. Particular attention is paid to how the system accommodates the individual testing of strongly interacting software components that lack test instrumentation.

  16. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendon, Vrushali V.; Taylor, Zachary T.

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype buildingmore » models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.« less

  17. Lateral Displacement and Shear Lag Effect of Combination of Diagrid-Frame

    NASA Astrophysics Data System (ADS)

    Abd. Samat, Roslida; Chua, Fong Teng; Mustakim, Nur Akmal Hayati Mohd; Saad, Sariffuddin; Abu Bakar, Suhaimi

    2018-03-01

    Diagrid system, which is the portmanteau of diagonal grid member, is an exterior lateral load resisting system for tall building that has gained a wide acceptance in the design of tall buildings. There is abundance of researches that studied the efficiency of diagrid systems, which are constructed from the ground level to the top of the buildings in resisting the lateral load. Nevertheless, no study had been performed on the effectiveness of the diagrid that is constructed above other tall building systems despite the existence of a few buildings in the world that employ such system. The objective of this research is to understand the behavior of the lateral displacement and shear lag effect due to wind load when the diagrid structure is constructed above a frame. Models of 60-story buildings with a footprint of 36m x 36m were analyzed by using Staad.Pro software. The level where the diagrid members started was altered. The lateral displacement was reduced to 60.6 percent and 41 percent of the lateral displacement of a building with full frame system when the combination of frame-diagrid that had the diagrid started at Level 1 and Level 45, respectively were employed. Furthermore, the shear lag ratio was reduced from 1.7 to 1.3 when the level where the diagrid started was increased from Level 1 to Level 45.

  18. Thomas Leps Internship Abstract

    NASA Technical Reports Server (NTRS)

    Leps, Thomas

    2016-01-01

    An optical navigation system is being flown as the backup system to the primary Deep Space Network telemetry for navigation and guidance purposes on Orion. This is required to ensure Orion can recover from a loss of communication, which would simultaneously cause a loss of DSN telemetry. Images taken of the Moon and Earth are used to give range and position information to the navigation computer for trajectory calculations and maneuver execution. To get telemetry data from these images, the size and location of the moon need to be calculated with high accuracy and precision. The reentry envelope for the Orion EM-1 mission requires the centroid and radius of the moon images to be determined within 1/3 of a pixel 3 sigma. In order to ensure this accuracy and precision can be attained, I was tasked with building precise dot grid images for camera calibration as well as building a hardware in the loop test stand for flight software and hardware proofing. To calibrate the Op-Nav camera a dot grid is imaged with the camera, the error between the image dot location and the actual dot location can be used to build a distortion map of the camera and lens system so that images can be fixed to display truth locations. To build the dot grid images I used the Electro Optics Lab optical bench Bright Object Simulator System, and gimbal. The gimbal was slewed to a series of elevations and azimuths. An image of the collimated single point light source was then taken at each position. After a series of 99 images were taken at different locations the single light spots were extracted from each image and added to a composite image containing all 99 points. During the development of these grids it was noticed that an intermittent error in the artificial "star" locations occurred. Prior to the summer this error was attributed to the gimbal having glitches in it's pointing direction and was going to be replaced, however after further examining the issue I determined it to be a software issue. I have since narrowed the likely source of the error down to a Software Development Kit released by the camera supplier PixeLink. I have since developed a workaround in order to build star grids for calibration until the software bug can be isolated and fixed. I was also tasked with building a Hardware in the Loop test stand in order to test the full Op-Nav system. A 4k screen displays simulated Lunar and Terrestrial images from a possible Orion trajectory. These images are then projected through a collimator and then captured with an Op-Nav camera controlled by an Intel NUC computer running flight software. The flight software then analyzes the images to determine attitude and position, this data is then reconstructed into a trajectory and matched to the simulated trajectory in order to determine the accuracy of the attitude and position estimates. In order for the system to work it needs to be precisely and accurately aligned. I developed an alignment procedure that allows the screen, collimator and camera to be squared, centered and collinear with each other within a micron spatially and 5 arcseconds in rotation. I also designed a rigid mount for the screen that was machined on site in Building 10 by another intern. While I was working in the EOL we received a $500k Orion startracker for alignment procedure testing. Due to my prior experience in electronics development, as an ancillary duty, I was tasked with building the cables required to operate and power the startracker. If any errors are made building these cables the startracker would be destroyed, I was honored that the director of the lab entrusted such a critical component with me. This internship has cemented my view on public space exploration. I always preferred public sector to privatization because, as a scientist, the most interesting aspects of space for me are not necessarily the most profitable. I was concerned that the public sector was faltering however, and that in order to improve human space exploration I would be forced into private sector. I now know that, at least at JSC, human spaceflight is still progressing, and exciting work is still being done. I am now actively seeking employment at JSC after I complete my Ph.D and have met with my branch chiefs and mentor to discuss transitioning to a grad Co-op position.

  19. Web-based, mobile-device friendly, self-report survey system incorporating avatars and gaming console techniques.

    PubMed

    Savel, Craig; Mierzwa, Stan; Gorbach, Pamina; Lally, Michelle; Zimet, Gregory; Meyer, Kristin; Souidi, Samir; Interventions, Aids

    2014-01-01

    We describe building an avatar-based self-report data collection tool to be used for a specific HIV prevention research project that is evaluating the feasibility and acceptability of this novel approach to collect self-reported data among youth. We discuss the gathering of requirements, the process of building a prototype of the envisioned system, and the lessons learned during the development of the solution. Specific knowledge is shared regarding technical experience with software development technologies and possible avenues for changes that could be considered if such a self-report survey system is used again. Examples of other gaming and avatar technology systems are included to provide further background.

  20. Complex Permittivity of Planar Building Materials Measured With an Ultra-Wideband Free-Field Antenna Measurement System.

    PubMed

    Davis, Ben; Grosvenor, Chriss; Johnk, Robert; Novotny, David; Baker-Jarvis, James; Janezic, Michael

    2007-01-01

    Building materials are often incorporated into complex, multilayer macrostructures that are simply not amenable to measurements using coax or waveguide sample holders. In response to this, we developed an ultra-wideband (UWB) free-field measurement system. This measurement system uses a ground-plane-based system and two TEM half-horn antennas to transmit and receive the RF signal. The material samples are placed between the antennas, and reflection and transmission measurements made. Digital signal processing techniques are then applied to minimize environmental and systematic effects. The processed data are compared to a plane-wave model to extract the material properties with optimization software based on genetic algorithms.

  1. Web-based, mobile-device friendly, self-report survey system incorporating avatars and gaming console techniques

    PubMed Central

    Savel, Craig; Mierzwa, Stan; Gorbach, Pamina; Lally, Michelle; Zimet, Gregory; Meyer, Kristin; Souidi, Samir; Interventions, AIDS

    2014-01-01

    We describe building an avatar-based self-report data collection tool to be used for a specific HIV prevention research project that is evaluating the feasibility and acceptability of this novel approach to collect self-reported data among youth. We discuss the gathering of requirements, the process of building a prototype of the envisioned system, and the lessons learned during the development of the solution. Specific knowledge is shared regarding technical experience with software development technologies and possible avenues for changes that could be considered if such a self-report survey system is used again. Examples of other gaming and avatar technology systems are included to provide further background. PMID:25422726

  2. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  3. Ship electric propulsion simulator based on networking technology

    NASA Astrophysics Data System (ADS)

    Zheng, Huayao; Huang, Xuewu; Chen, Jutao; Lu, Binquan

    2006-11-01

    According the new ship building tense, a novel electric propulsion simulator (EPS) had been developed in Marine Simulation Center of SMU. The architecture, software function and FCS network technology of EPS and integrated power system (IPS) were described. In allusion to the POD propeller in ship, a special physical model was built. The POD power was supplied from the simulative 6.6 kV Medium Voltage Main Switchboard, its control could be realized in local or remote mode. Through LAN, the simulated feature information of EPS will pass to the physical POD model, which would reflect the real thruster working status in different sea conditions. The software includes vessel-propeller math module, thruster control system, distribution and emergency integrated management, double closed loop control system, vessel static water resistance and dynamic software; instructor main control software. The monitor and control system is realized by real time data collection system and CAN bus technology. During the construction, most devices such as monitor panels and intelligent meters, are developed in lab which were based on embedded microcomputer system with CAN interface to link the network. They had also successfully used in practice and would be suitable for the future demands of digitalization ship.

  4. Reconfigurable Software for Mission Operations

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2014-01-01

    We developed software that provides flexibility to mission organizations through modularity and composability. Modularity enables removal and addition of functionality through the installation of plug-ins. Composability enables users to assemble software from pre-built reusable objects, thus reducing or eliminating the walls associated with traditional application architectures and enabling unique combinations of functionality. We have used composable objects to reduce display build time, create workflows, and build scenarios to test concepts for lunar roving operations. The software is open source, and may be downloaded from https:github.comnasamct.

  5. Web-Based Tools for Designing and Developing Teaching Materials for Integration of Information Technology into Instruction

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Sung, Yao-Ting; Hou, Huei-Tse

    2006-01-01

    Educational software for teachers is an important, yet usually ignored, link for integrating information technology into classroom instruction. This study builds a web-based teaching material design and development system. The process in the system is divided into four stages, analysis, design, development, and practice. Eight junior high school…

  6. Lighting Control Systems

    DTIC Science & Technology

    2004-02-26

    Shorter payback periods After 19 Cost Benefit of Powerlink Rule of Thumb for Powerlink: Powerlink becomes more cost effective beyond 16 controlled...web enabled control (and management software) Increase in level of integration between building systems Increase in new features, functions, benefits ...focus on reducing run-time via Scheduling, Sensing, Switching Growing focus on payback Direct energy cost (with demand) Additional maintenance benefits

  7. The SOFIA Mission Control System Software

    NASA Astrophysics Data System (ADS)

    Heiligman, G. M.; Brock, D. R.; Culp, S. D.; Decker, P. H.; Estrada, J. C.; Graybeal, J. B.; Nichols, D. M.; Paluzzi, P. R.; Sharer, P. J.; Pampell, R. J.; Papke, B. L.; Salovich, R. D.; Schlappe, S. B.; Spriestersbach, K. K.; Webb, G. L.

    1999-05-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) will be delivered with a computerized mission control system (MCS). The MCS communicates with the aircraft's flight management system and coordinates the operations of the telescope assembly, mission-specific subsystems, and the science instruments. The software for the MCS must be reliable and flexible. It must be easily usable by many teams of observers with widely differing needs, and it must support non-intrusive access for education and public outreach. The technology must be appropriate for SOFIA's 20-year lifetime. The MCS software development process is an object-oriented, use case driven approach. The process is iterative: delivery will be phased over four "builds"; each build will be the result of many iterations; and each iteration will include analysis, design, implementation, and test activities. The team is geographically distributed, coordinating its work via Web pages, teleconferences, T.120 remote collaboration, and CVS (for Internet-enabled configuration management). The MCS software architectural design is derived in part from other observatories' experience. Some important features of the MCS are: * distributed computing over several UNIX and VxWorks computers * fast throughput of time-critical data * use of third-party components, such as the Adaptive Communications Environment (ACE) and the Common Object Request Broker Architecture (CORBA) * extensive configurability via stored, editable configuration files * use of several computer languages so developers have "the right tool for the job". C++, Java, scripting languages, Interactive Data Language (from Research Systems, Int'l.), XML, and HTML will all be used in the final deliverables. This paper reports on work in progress, with the final product scheduled for delivery in 2001. This work was performed for Universities Space Research Association for NASA under contract NAS2-97001.

  8. The role of order in distributed programs

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Marzullo, Keith

    1989-01-01

    The role of order in building distributed systems is discussed. It is the belief that a principle of event ordering underlies the wide range of operating systems mechanisms that were put forward for building robust distributed software. Stated concisely, this principle achieves correct distributed behavior by ordering classes of distributed events that conflict with one another. By focusing on order, simplified descriptions can be obtained and convincingly correct solutions to problems that might otherwise have looked extremely complex. Moreover, it is observed that there are a limited number of ways to obtain order, and that the choice made impacts greatly on performance.

  9. Development of a prototype multi-processing interactive software invocation system

    NASA Technical Reports Server (NTRS)

    Berman, W. J.

    1983-01-01

    The Interactive Software Invocation System (NASA-ISIS) was first transported to the M68000 microcomputer, and then rewritten in the programming language Path Pascal. Path Pascal is a significantly enhanced derivative of Pascal, allowing concurrent algorithms to be expressed using the simple and elegant concept of Path Expressions. The primary results of this contract was to verify the viability of Path Pascal as a system's development language. The NASA-ISIS implementation using Path Pascal is a prototype of a large, interactive system in Path Pascal. As such, it is an excellent demonstration of the feasibility of using Path Pascal to write even more extensive systems. It is hoped that future efforts will build upon this research and, ultimately, that a full Path Pascal/ISIS Operating System (PPIOS) might be developed.

  10. Bim and Gis: when Parametric Modeling Meets Geospatial Data

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Banfi, F.

    2017-12-01

    Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.

  11. Continuation of research into language concepts for the mission support environment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A concept for a more intuitive and graphically based Computation (Comp) Builder was developed. The Graphical Comp Builder Prototype was developed, which is an X Window based graphical tool that allows the user to build Comps using graphical symbols. Investigation was conducted to determine the availability and suitability of the Ada programming language for the development of future control center type software. The Space Station Freedom Project identified Ada as the desirable programming language for the development of Space Station Control Center software systems.

  12. The MyHealthService approach for chronic disease management based on free open source software and low cost components.

    PubMed

    Vognild, Lars K; Burkow, Tatjana M; Luque, Luis Fernandez

    2009-01-01

    In this paper we present an approach to building personal health services, supporting following-up, physical exercising, health education, and psychosocial support for the chronically ill, based on free open source software and low-cost computers, mobile devices, and consumer health and fitness devices. We argue that this will lower the cost of the systems, which is important given the increasing number of people with chronicle diseases and limited healthcare budgets.

  13. Volttron version 5.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VOLTTRON is an agent execution platform providing services to its agents that allow them to easily communicate with physical devices and other resources. VOLTTRON delivers an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions. VOLTTRON can independently manage a wide range of applications, such as HVAC systems, electric vehicles, distributed energy or entire building loads, leading to improved operational efficiency.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, La Tonya Nicole; Malczynski, Leonard A.

    DYNAMO is a computer program for building and running 'continuous' simulation models. It was developed by the Industrial Dynamics Group at the Massachusetts Institute of Technology for simulating dynamic feedback models of business, economic, and social systems. The history of the system dynamics method since 1957 includes many classic models built in DYANMO. It was not until the late 1980s that software was built to take advantage of the rise of personal computers and graphical user interfaces that DYNAMO was supplanted. There is much learning and insight to be gained from examining the DYANMO models and their accompanying research papers.more » We believe that it is a worthwhile exercise to convert DYNAMO models to more recent software packages. We have made an attempt to make it easier to turn these models into a more current system dynamics software language, Powersim © Studio produced by Powersim AS 2 of Bergen, Norway. This guide shows how to convert DYNAMO syntax into Studio syntax.« less

  15. Simplifying the construction of domain-specific automatic programming systems: The NASA automated software development workstation project

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.; Holtzman, Peter L.

    1987-01-01

    An overview is presented of the Automated Software Development Workstation Project, an effort to explore knowledge-based approaches to increasing software productivity. The project focuses on applying the concept of domain specific automatic programming systems (D-SAPSs) to application domains at NASA's Johnson Space Center. A version of a D-SAPS developed in Phase 1 of the project for the domain of space station momentum management is described. How problems encountered during its implementation led researchers to concentrate on simplifying the process of building and extending such systems is discussed. Researchers propose to do this by attacking three observed bottlenecks in the D-SAPS development process through the increased automation of the acquisition of programming knowledge and the use of an object oriented development methodology at all stages of the program design. How these ideas are being implemented in the Bauhaus, a prototype workstation for D-SAPS development is discussed.

  16. Simplifying the construction of domain-specific automatic programming systems: The NASA automated software development workstation project

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.; Holtzman, Peter L.

    1988-01-01

    An overview is presented of the Automated Software Development Workstation Project, an effort to explore knowledge-based approaches to increasing software productivity. The project focuses on applying the concept of domain specific automatic programming systems (D-SAPSs) to application domains at NASA's Johnson Space Flight Center. A version of a D-SAPS developed in Phase 1 of the project for the domain of space station momentum management is described. How problems encountered during its implementation led researchers to concentrate on simplifying the process of building and extending such systems is discussed. Researchers propose to do this by attacking three observed bottlenecks in the D-SAPS development process through the increased automation of the acquisition of programming knowledge and the use of an object oriented development methodology at all stages of the program design. How these ideas are being implemented in the Bauhaus, a prototype workstation for D-SAPS development is discussed.

  17. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  18. Ndarts

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2011-01-01

    Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.

  19. A Study of the Use of Ontologies for Building Computer-Aided Control Engineering Self-Learning Educational Software

    ERIC Educational Resources Information Center

    García, Isaías; Benavides, Carmen; Alaiz, Héctor; Alonso, Angel

    2013-01-01

    This paper describes research on the use of knowledge models (ontologies) for building computer-aided educational software in the field of control engineering. Ontologies are able to represent in the computer a very rich conceptual model of a given domain. This model can be used later for a number of purposes in different software applications. In…

  20. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  1. The necessity of HVAC system for the registered architectural cultural heritage building

    NASA Astrophysics Data System (ADS)

    Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian

    2018-02-01

    This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.

  2. Composable Framework Support for Software-FMEA Through Model Execution

    NASA Astrophysics Data System (ADS)

    Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco

    2016-08-01

    Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.

  3. Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, R.; Neymark, J.; Polly, B.

    2011-12-01

    This presentation discusses the goals of NREL Analysis Accuracy R&D; BESTEST-EX goals; what BESTEST-EX is; how it works; 'Building Physics' cases; 'Building Physics' reference results; 'utility bill calibration' cases; limitations and potential future work. Goals of NREL Analysis Accuracy R&D are: (1) Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods; (2) Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades; and (3) Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments. BESTEST-EX Goals are: (1) Test software predictions of retrofitmore » energy savings in existing homes; (2) Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard; and (3) Quantify impact of uncertainties in input audit data and occupant behavior. BESTEST-EX is a repeatable procedure that tests how well audit software predictions compare to the current state of the art in building energy simulation. There is no direct truth standard. However, reference software have been subjected to validation testing, including comparisons with empirical data.« less

  4. BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudge, Trevor

    This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience,more » and energy efficiency in Exascale systems. Capacity and energy are the key drivers.« less

  5. Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report

    NASA Technical Reports Server (NTRS)

    Ossenfort, John

    2008-01-01

    As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and development through health management and maintenance. TEAMS-Designer is the model-building and testability analysis software in that suite.

  6. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  7. The Computational Infrastructure for Geodynamics as a Community of Practice

    NASA Astrophysics Data System (ADS)

    Hwang, L.; Kellogg, L. H.

    2016-12-01

    Computational Infrastructure for Geodynamics (CIG), geodynamics.org, originated in 2005 out of community recognition that the efforts of individual or small groups of researchers to develop scientifically-sound software is impossible to sustain, duplicates effort, and makes it difficult for scientists to adopt state-of-the art computational methods that promote new discovery. As a community of practice, participants in CIG share an interest in computational modeling in geodynamics and work together on open source software to build the capacity to support complex, extensible, scalable, interoperable, reliable, and reusable software in an effort to increase the return on investment in scientific software development and increase the quality of the resulting software. The group interacts regularly to learn from each other and better their practices formally through webinar series, workshops, and tutorials and informally through listservs and hackathons. Over the past decade, we have learned that successful scientific software development requires at a minimum: collaboration between domain-expert researchers, software developers and computational scientists; clearly identified and committed lead developer(s); well-defined scientific and computational goals that are regularly evaluated and updated; well-defined benchmarks and testing throughout development; attention throughout development to usability and extensibility; understanding and evaluation of the complexity of dependent libraries; and managed user expectations through education, training, and support. CIG's code donation standards provide the basis for recently formalized best practices in software development (geodynamics.org/cig/dev/best-practices/). Best practices include use of version control; widely used, open source software libraries; extensive test suites; portable configuration and build systems; extensive documentation internal and external to the code; and structured, human readable input formats.

  8. Building a DAM To Last: Archiving Digital Assets.

    ERIC Educational Resources Information Center

    Zeichick, Alan

    2003-01-01

    Discusses archiving digital information and the need for organizations to develop policies regarding digital asset management (DAM) and storage. Topics include determining the value of digital assets; formats of digital information; use of stored information; and system architecture, including hardware and asset management software. (LRW)

  9. Using Archives for Education.

    ERIC Educational Resources Information Center

    MacKenzie, Douglas

    1996-01-01

    Discusses the use of computer systems for archival applications based on experiences at the Demarco European Arts Foundation (Scotland) and the TAMH Project, an attempt to build a virtual museum of Tay Valley maritime history. Highlights include hardware; development software; data representation, including storage space versus quality;…

  10. Chargemaster maintenance: think 'spring cleaning' all year round.

    PubMed

    Barton, Shawn; Lancaster, Dani; Bieker, Mike

    2008-11-01

    Steps toward maintaining a standardized chargemaster include: Building a corporate chargemaster maintenance team. Developing a core research function. Designating hospital liaisons. Publishing timely reports on facility compliance. Using system codes to identify charges. Selecting chargemaster maintenance software. Developing a standard chargemaster data repository. Educating staff.

  11. Mobile Agents Applications.

    ERIC Educational Resources Information Center

    Martins, Rosane Maria; Chaves, Magali Ribeiro; Pirmez, Luci; Rust da Costa Carmo, Luiz Fernando

    2001-01-01

    Discussion of the need to filter and retrieval relevant information from the Internet focuses on the use of mobile agents, specific software components which are based on distributed artificial intelligence and integrated systems. Surveys agent technology and discusses the agent building package used to develop two applications using IBM's Aglet…

  12. Analysis of the impact of simulation model simplifications on the quality of low-energy buildings simulation results

    NASA Astrophysics Data System (ADS)

    Klimczak, Marcin; Bojarski, Jacek; Ziembicki, Piotr; Kęskiewicz, Piotr

    2017-11-01

    The requirements concerning energy performance of buildings and their internal installations, particularly HVAC systems, have been growing continuously in Poland and all over the world. The existing, traditional calculation methods following from the static heat exchange model are frequently not sufficient for a reasonable heating design of a building. Both in Poland and elsewhere in the world, methods and software are employed which allow a detailed simulation of the heating and moisture conditions in a building, and also an analysis of the performance of HVAC systems within a building. However, these systems are usually difficult in use and complex. In addition, the development of a simulation model that is sufficiently adequate to the real building requires considerable time involvement of a designer, is time-consuming and laborious. A simplification of the simulation model of a building renders it possible to reduce the costs of computer simulations. The paper analyses in detail the effect of introducing a number of different variants of the simulation model developed in Design Builder on the quality of final results obtained. The objective of this analysis is to find simplifications which allow obtaining simulation results which have an acceptable level of deviations from the detailed model, thus facilitating a quick energy performance analysis of a given building.

  13. Integrating new Storage Technologies into EOS

    NASA Astrophysics Data System (ADS)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul

    2015-12-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  14. Structure and software tools of AIDA.

    PubMed

    Duisterhout, J S; Franken, B; Witte, F

    1987-01-01

    AIDA consists of a set of software tools to allow for fast development and easy-to-maintain Medical Information Systems. AIDA supports all aspects of such a system both during development and operation. It contains tools to build and maintain forms for interactive data entry and on-line input validation, a database management system including a data dictionary and a set of run-time routines for database access, and routines for querying the database and output formatting. Unlike an application generator, the user of AIDA may select parts of the tools to fulfill his needs and program other subsystems not developed with AIDA. The AIDA software uses as host language the ANSI-standard programming language MUMPS, an interpreted language embedded in an integrated database and programming environment. This greatly facilitates the portability of AIDA applications. The database facilities supported by AIDA are based on a relational data model. This data model is built on top of the MUMPS database, the so-called global structure. This relational model overcomes the restrictions of the global structure regarding string length. The global structure is especially powerful for sorting purposes. Using MUMPS as a host language allows the user an easy interface between user-defined data validation checks or other user-defined code and the AIDA tools. AIDA has been designed primarily for prototyping and for the construction of Medical Information Systems in a research environment which requires a flexible approach. The prototyping facility of AIDA operates terminal independent and is even to a great extent multi-lingual. Most of these features are table-driven; this allows on-line changes in the use of terminal type and language, but also causes overhead. AIDA has a set of optimizing tools by which it is possible to build a faster, but (of course) less flexible code from these table definitions. By separating the AIDA software in a source and a run-time version, one is able to write implementation-specific code which can be selected and loaded by a special source loader, being part of the AIDA software. This feature is also accessible for maintaining software on different sites and on different installations.

  15. Seismic performance for vertical geometric irregularity frame structures

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Mahmud, N. A.; Ishak, I. S.

    2018-04-01

    This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.

  16. NASA Docking System (NDS) Technical Integration Meeting

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2010-01-01

    This slide presentation reviews the NASA Docking System (NDS) as NASA's implementation of the International Docking System Standard (IDSS). The goals of the NDS, is to build on proven technologies previously demonstrated in flight and to advance the state of the art of docking systems by incorporating Low Impact Docking System (LIDS) technology into the NDS. A Hardware Demonstration was included in the meeting, and there was discussion about software, NDS major system interfaces, integration information, schedule, and future upgrades.

  17. Scalable geocomputation: evolving an environmental model building platform from single-core to supercomputers

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek

    2017-04-01

    There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using the new Fern library (https://github.com/geoneric/fern/), an independent generic raster processing library. Fern is a highly generic software library and its algorithms can be configured according to the configuration of a modelling framework. With manageable programming effort (e.g. matching data types between programming and domain language) we created a binding between Fern and PCRaster. The resulting PCRaster Python multicore module can be used to execute existing PCRaster models without having to make any changes to the model code. We show initial results on synthetic and geoscientific models indicating significant runtime improvements provided by parallel local and focal operations. We further outline challenges in improving remaining algorithms such as flow operations over digital elevation maps and further potential improvements like enhancing disk I/O.

  18. Design and Realization of Controllable Ultrasonic Fault Detector Automatic Verification System

    NASA Astrophysics Data System (ADS)

    Sun, Jing-Feng; Liu, Hui-Ying; Guo, Hui-Juan; Shu, Rong; Wei, Kai-Li

    The ultrasonic flaw detection equipment with remote control interface is researched and the automatic verification system is developed. According to use extensible markup language, the building of agreement instruction set and data analysis method database in the system software realizes the controllable designing and solves the diversification of unreleased device interfaces and agreements. By using the signal generator and a fixed attenuator cascading together, a dynamic error compensation method is proposed, completes what the fixed attenuator does in traditional verification and improves the accuracy of verification results. The automatic verification system operating results confirms that the feasibility of the system hardware and software architecture design and the correctness of the analysis method, while changes the status of traditional verification process cumbersome operations, and reduces labor intensity test personnel.

  19. The Chandra X-ray Center data system: supporting the mission of the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Ian; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Hall, Diane; Plummer, David; Zografou, Panagoula

    2006-06-01

    The Chandra X-ray Center Data System provides end-to-end scientific software support for Chandra X-ray Observatory mission operations. The data system includes the following components: (1) observers' science proposal planning tools; (2) science mission planning tools; (3) science data processing, monitoring, and trending pipelines and tools; and (4) data archive and database management. A subset of the science data processing component is ported to multiple platforms and distributed to end-users as a portable data analysis package. Web-based user tools are also available for data archive search and retrieval. We describe the overall architecture of the data system and its component pieces, and consider the design choices and their impacts on maintainability. We discuss the many challenges involved in maintaining a large, mission-critical software system with limited resources. These challenges include managing continually changing software requirements and ensuring the integrity of the data system and resulting data products while being highly responsive to the needs of the project. We describe our use of COTS and OTS software at the subsystem and component levels, our methods for managing multiple release builds, and adapting a large code base to new hardware and software platforms. We review our experiences during the life of the mission so-far, and our approaches for keeping a small, but highly talented, development team engaged during the maintenance phase of a mission.

  20. Experiences with a generator tool for building clinical application modules.

    PubMed

    Kuhn, K A; Lenz, R; Elstner, T; Siegele, H; Moll, R

    2003-01-01

    To elaborate main system characteristics and relevant deployment experiences for the health information system (HIS) Orbis/OpenMed, which is in widespread use in Germany, Austria, and Switzerland. In a deployment phase of 3 years in a 1.200 bed university hospital, where the system underwent significant improvements, the system's functionality and its software design have been analyzed in detail. We focus on an integrated CASE tool for generating embedded clinical applications and for incremental system evolution. We present a participatory and iterative software engineering process developed for efficient utilization of such a tool. The system's functionality is comparable to other commercial products' functionality; its components are embedded in a vendor-specific application framework, and standard interfaces are being used for connecting subsystems. The integrated generator tool is a remarkable feature; it became a key factor of our project. Tool generated applications are workflow enabled and embedded into the overall data base schema. Rapid prototyping and iterative refinement are supported, so application modules can be adapted to the users' work practice. We consider tools supporting an iterative and participatory software engineering process highly relevant for health information system architects. The potential of a system to continuously evolve and to be effectively adapted to changing needs may be more important than sophisticated but hard-coded HIS functionality. More work will focus on HIS software design and on software engineering. Methods and tools are needed for quick and robust adaptation of systems to health care processes and changing requirements.

  1. Autonomous software: Myth or magic?

    NASA Astrophysics Data System (ADS)

    Allan, A.; Naylor, T.; Saunders, E. S.

    2008-03-01

    We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.

  2. [Extraction of buildings three-dimensional information from high-resolution satellite imagery based on Barista software].

    PubMed

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi

    2010-05-01

    The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.

  3. BIM cost analysis of transport infrastructure projects

    NASA Astrophysics Data System (ADS)

    Volkov, Andrey; Chelyshkov, Pavel; Grossman, Y.; Khromenkova, A.

    2017-10-01

    The article describes the method of analysis of the energy costs of transport infrastructure objects using BIM software. The paper consideres several options of orientation of a building using SketchUp and IES VE software programs. These options allow to choose the best direction of the building facades. Particular attention is given to a distribution of a temperature field in a cross-section of the wall according to the calculation made in the ELCUT software. The issues related to calculation of solar radiation penetration into a building and selection of translucent structures are considered in the paper. The article presents data on building codes relating to the transport sector, on the basis of which the calculations were made. The author emphasizes that BIM-programs should be implemented and used in order to optimize a thermal behavior of a building and increase its energy efficiency using climatic data.

  4. Integration of a CAS/DGS as a CAD system in the mathematics curriculum for architecture students

    NASA Astrophysics Data System (ADS)

    Falcón, R. M.

    2011-09-01

    Students of Architecture and Building Engineering Degrees work with Computer Aided Design systems daily in order to design and model architectonic constructions. Since this kind of software is based on the creation and transformation of geometrical objects, it seems to be a useful tool in Maths classes in order to capture the attention of the students. However, users of these systems cannot display the set of formulas and equations which constitute the basis of their studio. Moreover, if they want to represent curves or surfaces starting from its corresponding equations, they have to define specific macros which require the knowledge of some computer language or they have to create a table of points in order to convert a set of nodes into polylines, polysolids or splines. More specific concepts, like, for instance, those related to differential geometry, are not implemented in this kind of software, although they are taught in our Maths classes. In a very similar virtual environment, Computer Algebra and Dynamic Geometry Systems offer the possibility of implementing several concepts which can be found in the usual mathematics curriculum for Building Engineering: curves, surfaces and calculus. Specifically, the use of sliders related to the Euler's angles and the generation of tools which project 3D into 2D, facilitate the design and model of curves and rigid objects in space, by starting from their parametric equations. In this article, we show the experience carried out in an experimental and control group in the context of the Maths classes of the Building Engineering Degree of the University of Seville, where students have created their own building models by understanding and testing the usefulness of the mathematical concepts.

  5. Integration of a CAS/DGS as a CAD System in the Mathematics Curriculum for Architecture Students

    ERIC Educational Resources Information Center

    Falcon, R. M.

    2011-01-01

    Students of Architecture and Building Engineering Degrees work with Computer Aided Design systems daily in order to design and model architectonic constructions. Since this kind of software is based on the creation and transformation of geometrical objects, it seems to be a useful tool in Maths classes in order to capture the attention of the…

  6. How Reuse Influences Productivity in Object-Oriented Systems

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Briand, Lionel C.; Melo, Walcelio L.

    1997-01-01

    Although reuse is assumed to be especially valuable in building high quality software as well as in Object Oriented (OO) development, limited empirical evidence connects reuse with productivity and quality gains. The author's eight system study begins to define such benefits in an OO framework, most notably in terms of reduce defect density and rework as well as in increased productivity.

  7. Parallel Execution of Functional Mock-up Units in Buildings Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozgur; Nutaro, James J.; New, Joshua Ryan

    2016-06-30

    A Functional Mock-up Interface (FMI) defines a standardized interface to be used in computer simulations to develop complex cyber-physical systems. FMI implementation by a software modeling tool enables the creation of a simulation model that can be interconnected, or the creation of a software library called a Functional Mock-up Unit (FMU). This report describes an FMU wrapper implementation that imports FMUs into a C++ environment and uses an Euler solver that executes FMUs in parallel using Open Multi-Processing (OpenMP). The purpose of this report is to elucidate the runtime performance of the solver when a multi-component system is imported asmore » a single FMU (for the whole system) or as multiple FMUs (for different groups of components as sub-systems). This performance comparison is conducted using two test cases: (1) a simple, multi-tank problem; and (2) a more realistic use case based on the Modelica Buildings Library. In both test cases, the performance gains are promising when each FMU consists of a large number of states and state events that are wrapped in a single FMU. Load balancing is demonstrated to be a critical factor in speeding up parallel execution of multiple FMUs.« less

  8. A Generic Evaluation Model for Semantic Web Services

    NASA Astrophysics Data System (ADS)

    Shafiq, Omair

    Semantic Web Services research has gained momentum over the last few Years and by now several realizations exist. They are being used in a number of industrial use-cases. Soon software developers will be expected to use this infrastructure to build their B2B applications requiring dynamic integration. However, there is still a lack of guidelines for the evaluation of tools developed to realize Semantic Web Services and applications built on top of them. In normal software engineering practice such guidelines can already be found for traditional component-based systems. Also some efforts are being made to build performance models for servicebased systems. Drawing on these related efforts in component-oriented and servicebased systems, we identified the need for a generic evaluation model for Semantic Web Services applicable to any realization. The generic evaluation model will help users and customers to orient their systems and solutions towards using Semantic Web Services. In this chapter, we have presented the requirements for the generic evaluation model for Semantic Web Services and further discussed the initial steps that we took to sketch such a model. Finally, we discuss related activities for evaluating semantic technologies.

  9. Ringling School of Art and Design Builds a CASTLE.

    ERIC Educational Resources Information Center

    Morse, Yvonne; Davis, Wendy

    1984-01-01

    Describes the development and installation of the Computer Automated Software for the Total Library Environment System (CASTLE), which uses a microcomputer to automate operations of small academic library in six main areas: circulation, online catalog, inventory and file maintenance, audiovisual equipment, accounting, and information and…

  10. Climbing the Mountain: The Americans with Disabilities Act and Libraries.

    ERIC Educational Resources Information Center

    Lenn, Katy

    1993-01-01

    Provides suggestions for academic libraries to comply with the Americans with Disabilities Act. Topics addressed are planning, including patron surveys; physical access to buildings; signage; library security systems; furniture; library services; staff development; telephone access; library acquisitions; and equipment and software. A sidebar lists…

  11. Climate Ocean Modeling on a Beowulf Class System

    NASA Technical Reports Server (NTRS)

    Cheng, B. N.; Chao, Y.; Wang, P.; Bondarenko, M.

    2000-01-01

    With the growing power and shrinking cost of personal computers. the availability of fast ethernet interconnections, and public domain software packages, it is now possible to combine them to build desktop parallel computers (named Beowulf or PC clusters) at a fraction of what it would cost to buy systems of comparable power front supercomputer companies. This led as to build and assemble our own sys tem. specifically for climate ocean modeling. In this article, we present our experience with such a system, discuss its network performance, and provide some performance comparison data with both HP SPP2000 and Cray T3E for an ocean Model used in present-day oceanographic research.

  12. Building a robust vehicle detection and classification module

    NASA Astrophysics Data System (ADS)

    Grigoryev, Anton; Khanipov, Timur; Koptelov, Ivan; Bocharov, Dmitry; Postnikov, Vassily; Nikolaev, Dmitry

    2015-12-01

    The growing adoption of intelligent transportation systems (ITS) and autonomous driving requires robust real-time solutions for various event and object detection problems. Most of real-world systems still cannot rely on computer vision algorithms and employ a wide range of costly additional hardware like LIDARs. In this paper we explore engineering challenges encountered in building a highly robust visual vehicle detection and classification module that works under broad range of environmental and road conditions. The resulting technology is competitive to traditional non-visual means of traffic monitoring. The main focus of the paper is on software and hardware architecture, algorithm selection and domain-specific heuristics that help the computer vision system avoid implausible answers.

  13. [Dynamic changes of urban architecture landscape based on Barista: a case study in Tiexi District of Shenyang City].

    PubMed

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi; Xiong, Zai-ping; Liu, Miao

    2010-12-01

    In this paper, three-dimensional building information was extracted from high resolution satellite image based on Barista software. Combined with ArcGIS software, the dynamic changes of the building landscape in Tiexi District of Shenyang City during urban renewal process were analyzed from the conversion contribution rate, building density, average building height, and built-up area rate. It was found that during this urban renewal process, four dominant landscape types (vacant lot, residential building, industrial building, and road) were the main parts of the landscape changes. The areas of vacant lot, residential building, commercial building, and road increased, while that of industrial building decreased. The building density decreased, while the average building height increased. There was an obvious regional variation in building landscape. The building density in industrial district was higher than that in residential district, while the average building height was in adverse. The further from the city center, the lower the building density and building average height.

  14. Development of a software safety process and a case study of its use

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1993-01-01

    The goal of this research is to continue the development of a comprehensive approach to software safety and to evaluate the approach with a case study. The case study is a major part of the project, and it involves the analysis of a specific safety-critical system from the medical equipment domain. The particular application being used was selected because of the availability of a suitable candidate system. We consider the results to be generally applicable and in no way particularly limited by the domain. The research is concentrating on issues raised by the specification and verification phases of the software lifecycle since they are central to our previously-developed rigorous definitions of software safety. The theoretical research is based on our framework of definitions for software safety. In the area of specification, the main topics being investigated are the development of techniques for building system fault trees that correctly incorporate software issues and the development of rigorous techniques for the preparation of software safety specifications. The research results are documented. Another area of theoretical investigation is the development of verification methods tailored to the characteristics of safety requirements. Verification of the correct implementation of the safety specification is central to the goal of establishing safe software. The empirical component of this research is focusing on a case study in order to provide detailed characterizations of the issues as they appear in practice, and to provide a testbed for the evaluation of various existing and new theoretical results, tools, and techniques. The Magnetic Stereotaxis System is summarized.

  15. Renewable energy and conservation measures for non-residential buildings

    NASA Astrophysics Data System (ADS)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  16. Static and Dynamic Analysis in Design of Exoskeleton Structure

    NASA Astrophysics Data System (ADS)

    Ivánkova, Ol'ga; Méri, Dávid; Vojteková, Eva

    2017-10-01

    This paper introduces a numerical experiment of creating the load bearing system of a high rise building. When designing the high-rise building, it is always an important task to find the right proportion between the height of the building and its perceptive width from the various angles of street view. Investigated high rise building in this article was designed according to these criteria. The load bearing structure of the analysed object consists of a reinforced core, plates and steel tubes of an exoskeleton. Eight models of the building were created using the spatial variant of FEM in Scia Engineer Software. Individual models varied in number and dimensions of diagrids in the exoskeleton. In the models, loadings due to the own weight, weight of external glass cladding, and due to the wind according to the Standard, have been considered. The building was loaded by wind load from all four main directions with respect to its shape. Wind load was calculated using the 3D wind generator, which is a part of the Scia Engineer Software. For each model the static analysis was performed. Its most important criterion was the maximum or minimum horizontal displacement (rotation) of the highest point of the building. This displacement was compared with the limit values of the displacement of the analysed high-rise building. By step-by-step adding diagrids and optimizing their dimensions the building model was obtained that complied with the criteria of the Limit Serviceability State. The last model building was assessed also for the Ultimate Limit State. This model was loaded also by seismic loads for comparison with the load due to the wind.

  17. Automated Simulation For Analysis And Design

    NASA Technical Reports Server (NTRS)

    Cantwell, E.; Shenk, Tim; Robinson, Peter; Upadhye, R.

    1992-01-01

    Design Assistant Workstation (DAWN) software being developed to facilitate simulation of qualitative and quantitative aspects of behavior of life-support system in spacecraft, chemical-processing plant, heating and cooling system of large building, or any of variety of systems including interacting process streams and processes. Used to analyze alternative design scenarios or specific designs of such systems. Expert system will automate part of design analysis: reason independently by simulating design scenarios and return to designer with overall evaluations and recommendations.

  18. Massive Multi-Agent Systems Control

    NASA Technical Reports Server (NTRS)

    Campagne, Jean-Charles; Gardon, Alain; Collomb, Etienne; Nishida, Toyoaki

    2004-01-01

    In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.

  19. A microkernel design for component-based parallel numerical software systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.

    1999-01-13

    What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objectsmore » share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.« less

  20. Extreme Mapping: Looking for Water on the Moon

    NASA Technical Reports Server (NTRS)

    Cohen, Tamar

    2016-01-01

    There are many challenges when exploring extreme environments. Gathering accurate data to build maps about places that you cannot go is incredibly complex. NASA supports scientists by remotely operating robotic rovers to explore uncharted territories. One potential upcoming mission is to look for water near a lunar pole (the Resource Prospector mission). Learn about the technical hurdles and research steps that NASA takes before the mission. NASA practices on Earth with Mission Analogs which simulate the proposed mission. This includes going to lunar-type landscapes, building field networks, testing out rovers, instruments and operational procedures. NASA sets up remote science back rooms just as there are for actual missions. NASA develops custom Ground Data Systems software to support scientific mission planning and monitoring over variable time delays, and separate commanding software and infrastructure to operate the rovers.

  1. Modular Analytical Multicomponent Analysis in Gas Sensor Aarrays

    PubMed Central

    Chaiyboun, Ali; Traute, Rüdiger; Kiesewetter, Olaf; Ahlers, Simon; Müller, Gerhard; Doll, Theodor

    2006-01-01

    A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line.

  2. Big Software for SmallSats: Adapting cFS to CubeSat Missions

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan P.; Crum, Gary Alex; Sheikh, Salman; Marshall, James

    2015-01-01

    Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS.

  3. Ruby on Rails Issue Tracker

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan Jared

    2014-01-01

    The purpose of this report is to detail the tasks accomplished as a NASA NIFS intern for the summer 2014 session. This internship opportunity is to develop an issue tracker Ruby on Rails web application to improve the communication of developmental anomalies between the Support Software Computer Software Configuration Item (CSCI) teams, System Build and Information Architecture. As many may know software development is an arduous, time consuming, collaborative effort. It involves nearly as much work designing, planning, collaborating, discussing, and resolving issues as effort expended in actual development. This internship opportunity was put in place to help alleviate the amount of time spent discussing issues such as bugs, missing tests, new requirements, and usability concerns that arise during development and throughout the life cycle of software applications once in production.

  4. Desiderata for product labeling of medical expert systems.

    PubMed

    Geissbühler, A; Miller, R A

    1997-12-01

    The proliferation and increasing complexity of medical expert systems raise ethical and legal concerns about the ability of practitioners to protect their patients from defective or misused software. Appropriate product labeling of expert systems can help clinical users to understand software indications and limitations. Mechanisms of action and knowledge representation schema should be explained in layperson's terminology. User qualifications and resources available for acquiring the skills necessary to understand and critique the system output should be listed. The processes used for building and maintaining the system's knowledge base are key determinants of the product's quality, and should be carefully documented. To meet these desiderata, a printed label is insufficient. The authors suggest a new, more active, model of product labeling for medical expert systems that involves embedding 'knowledge of the knowledge base', creating user-specific data, and sharing global information using the Internet.

  5. Taking advantage of ground data systems attributes to achieve quality results in testing software

    NASA Technical Reports Server (NTRS)

    Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.

    1994-01-01

    During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.

  6. Army technology development. IBIS query. Software to support the Image Based Information System (IBIS) expansion for mapping, charting and geodesy

    NASA Technical Reports Server (NTRS)

    Friedman, S. Z.; Walker, R. E.; Aitken, R. B.

    1986-01-01

    The Image Based Information System (IBIS) has been under development at the Jet Propulsion Laboratory (JPL) since 1975. It is a collection of more than 90 programs that enable processing of image, graphical, tabular data for spatial analysis. IBIS can be utilized to create comprehensive geographic data bases. From these data, an analyst can study various attributes describing characteristics of a given study area. Even complex combinations of disparate data types can be synthesized to obtain a new perspective on spatial phenomena. In 1984, new query software was developed enabling direct Boolean queries of IBIS data bases through the submission of easily understood expressions. An improved syntax methodology, a data dictionary, and display software simplified the analysts' tasks associated with building, executing, and subsequently displaying the results of a query. The primary purpose of this report is to describe the features and capabilities of the new query software. A secondary purpose of this report is to compare this new query software to the query software developed previously (Friedman, 1982). With respect to this topic, the relative merits and drawbacks of both approaches are covered.

  7. Applying Evolutionary Prototyping In Developing LMIS: A Spatial Web-Based System For Land Management

    NASA Astrophysics Data System (ADS)

    Agustiono, W.

    2018-01-01

    Software development project is a difficult task. Especially for software designed to comply with regulations that are constantly being introduced or changed, it is almost impossible to make just one change during the development process. Even if it is possible, nonetheless, the developers may take bulk of works to fix the design to meet specified needs. This iterative work also means that it takes additional time and potentially leads to failing to meet the original schedule and budget. In such inevitable changes, it is essential for developers to carefully consider and use an appropriate method which will help them carry out software project development. This research aims to examine the implementation of a software development method called evolutionary prototyping for developing software for complying regulation. It investigates the development of Land Management Information System (pseudonym), initiated by the Australian government, for use by farmers to meet regulatory demand requested by Soil and Land Conservation Act. By doing so, it sought to provide understanding the efficacy of evolutionary prototyping in helping developers address frequent changing requirements and iterative works but still within schedule. The findings also offer useful practical insights for other developers who seek to build similar regulatory compliance software.

  8. Cobalt: A GPU-based correlator and beamformer for LOFAR

    NASA Astrophysics Data System (ADS)

    Broekema, P. Chris; Mol, J. Jan David; Nijboer, R.; van Amesfoort, A. S.; Brentjens, M. A.; Loose, G. Marcel; Klijn, W. F. A.; Romein, J. W.

    2018-04-01

    For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a new-generation radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper, we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system show the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.

  9. Optics derotator servo control system for SONG Telescope

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Ren, Changzhi; Ye, Yu

    2012-09-01

    The Stellar Oscillations Network Group (SONG) is an initiative which aims at designing and building a groundbased network of 1m telescopes dedicated to the study of phenomena occurring in the time domain. Chinese standard node of SONG is an Alt-Az Telescope of F/37 with 1m diameter. Optics derotator control system of SONG telescope adopts the development model of "Industrial Computer + UMAC Motion Controller + Servo Motor".1 Industrial computer is the core processing part of the motion control, motion control card(UMAC) is in charge of the details on the motion control, Servo amplifier accepts the control commands from UMAC, and drives the servo motor. The position feedback information comes from the encoder, to form a closed loop control system. This paper describes in detail hardware design and software design for the optics derotator servo control system. In terms of hardware design, the principle, structure, and control algorithm of servo system based on optics derotator are analyzed and explored. In terms of software design, the paper proposes the architecture of the system software based on Object-Oriented Programming.

  10. NREL's OpenStudio Helps Design More Efficient Buildings (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-07-01

    The National Renewable Energy Laboratory (NREL) has created the OpenStudio software platform that makes it easier for architects and engineers to evaluate building energy efficiency measures throughout the design process. OpenStudio makes energy modeling more accessible and affordable, helping professionals to design structures with lower utility bills and less carbon emissions, resulting in a healthier environment. OpenStudio includes a user-friendly application suite that makes the U.S. Department of Energy's EnergyPlus and Radiance simulation engines easier to use for whole building energy and daylighting performance analysis. OpenStudio is freely available and runs on Windows, Mac, and Linux operating systems.

  11. Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective

    ERIC Educational Resources Information Center

    Hadjerrouit, Said

    2005-01-01

    In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…

  12. Investigating the Application of Moving Target Defenses to Network Security

    DTIC Science & Technology

    2013-08-01

    developing an MTD testbed using OpenStack [14] to show that our MTD design can actually work. Building an MTD system in a cloud infrastructure will be...Information Intelli- gence Research. New York, USA: ACM, 2013. [14] Openstack , “ Openstack : The folsom release,” http://www.openstack.org/software

  13. Building software tools to help contextualize and interpret monitoring data

    USDA-ARS?s Scientific Manuscript database

    Even modest monitoring efforts at landscape scales produce large volumes of data.These are most useful if they can be interpreted relative to land potential or other similar sites. However, for many ecological systems reference conditions may not be defined or are poorly described, which hinders und...

  14. Eric Kozubal | NREL

    Science.gov Websites

    researches new methods and technologies for energy-efficient air conditioning systems. He has tested more -6155 Eric joined NREL in 2002 and is a member of the Commercial Buildings Research Group. Eric recommendations. He uses tools such as CAD, Matlab, Engineer Equation Solver, Excel, and statistical software to

  15. WorldWide Web: Hypertext from CERN.

    ERIC Educational Resources Information Center

    Nickerson, Gord

    1992-01-01

    Discussion of software tools for accessing information on the Internet focuses on the WorldWideWeb (WWW) system, which was developed at the European Particle Physics Laboratory (CERN) in Switzerland to build a worldwide network of hypertext links using available networking technology. Its potential for use with multimedia documents is also…

  16. [Quality assurance of the renal applications software].

    PubMed

    del Real Núñez, R; Contreras Puertas, P I; Moreno Ortega, E; Mena Bares, L M; Maza Muret, F R; Latre Romero, J M

    2007-01-01

    The need for quality assurance of all technical aspects of nuclear medicine studies is widely recognised. However, little attention has been paid to the quality assurance of the applications software. Our work reported here aims at verifying the analysis software for processing of renal nuclear medicine studies (renograms). The software tools were used to build a synthetic dynamic model of renal system. The model consists of two phases: perfusion and function. The organs of interest (kidneys, bladder and aortic artery) were simple geometric forms. The uptake of the renal structures was described by mathematic functions. Curves corresponding to normal or pathological conditions were simulated for kidneys, bladder and aortic artery by appropriate selection of parameters. There was no difference between the parameters of the mathematic curves and the quantitative data produced by the renal analysis program. Our test procedure is simple to apply, reliable, reproducible and rapid to verify the renal applications software.

  17. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery.

    PubMed

    Mueller, Shane T; Piper, Brian J

    2014-01-30

    We briefly describe the Psychology Experiment Building Language (PEBL), an open source software system for designing and running psychological experiments. We describe the PEBL Test Battery, a set of approximately 70 behavioral tests which can be freely used, shared, and modified. Included is a comprehensive set of past research upon which tests in the battery are based. We report the results of benchmark tests that establish the timing precision of PEBL. We consider alternatives to the PEBL system and battery tests. We conclude with a discussion of the ethical factors involved in the open source testing movement. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery

    PubMed Central

    Mueller, Shane T.; Piper, Brian J.

    2014-01-01

    Background We briefly describe the Psychology Experiment Building Language (PEBL), an open source software system for designing and running psychological experiments. New Method We describe the PEBL test battery, a set of approximately 70 behavioral tests which can be freely used, shared, and modified. Included is a comprehensive set of past research upon which tests in the battery are based. Results We report the results of benchmark tests that establish the timing precision of PEBL. Comparison with Existing Method We consider alternatives to the PEBL system and battery tests. Conclusions We conclude with a discussion of the ethical factors involved in the open source testing movement. PMID:24269254

  19. Integrative structure modeling with the Integrative Modeling Platform.

    PubMed

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  20. Deductive Glue Code Synthesis for Embedded Software Systems Based on Code Patterns

    NASA Technical Reports Server (NTRS)

    Liu, Jian; Fu, Jicheng; Zhang, Yansheng; Bastani, Farokh; Yen, I-Ling; Tai, Ann; Chau, Savio N.

    2006-01-01

    Automated code synthesis is a constructive process that can be used to generate programs from specifications. It can, thus, greatly reduce the software development cost and time. The use of formal code synthesis approach for software generation further increases the dependability of the system. Though code synthesis has many potential benefits, the synthesis techniques are still limited. Meanwhile, components are widely used in embedded system development. Applying code synthesis to component based software development (CBSD) process can greatly enhance the capability of code synthesis while reducing the component composition efforts. In this paper, we discuss the issues and techniques for applying deductive code synthesis techniques to CBSD. For deductive synthesis in CBSD, a rule base is the key for inferring appropriate component composition. We use the code patterns to guide the development of rules. Code patterns have been proposed to capture the typical usages of the components. Several general composition operations have been identified to facilitate systematic composition. We present the technique for rule development and automated generation of new patterns from existing code patterns. A case study of using this method in building a real-time control system is also presented.

  1. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  2. Open Source Next Generation Visualization Software for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  3. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1992-01-01

    The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.

  4. Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, B.

    2011-09-01

    This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.

  5. A Robust Compositional Architecture for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara

    2006-01-01

    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.

  6. Building Geospatial Web Services for Ecological Monitoring and Forecasting

    NASA Astrophysics Data System (ADS)

    Hiatt, S. H.; Hashimoto, H.; Melton, F. S.; Michaelis, A. R.; Milesi, C.; Nemani, R. R.; Wang, W.

    2008-12-01

    The Terrestrial Observation and Prediction System (TOPS) at NASA Ames Research Center is a modeling system that generates a suite of gridded data products in near real-time that are designed to enhance management decisions related to floods, droughts, forest fires, human health, as well as crop, range, and forest production. While these data products introduce great possibilities for assisting management decisions and informing further research, realization of their full potential is complicated by their shear volume and by the need for a necessary infrastructure for remotely browsing, visualizing, and analyzing the data. In order to address these difficulties we have built an OGC-compliant WMS and WCS server based on an open source software stack that provides standardized access to our archive of data. This server is built using the open source Java library GeoTools which achieves efficient I/O and image rendering through Java Advanced Imaging. We developed spatio-temporal raster management capabilities using the PostGrid raster indexation engine. We provide visualization and browsing capabilities through a customized Ajax web interface derived from the kaMap project. This interface allows resource managers to quickly assess ecosystem conditions and identify significant trends and anomalies from within their web browser without the need to download source data or install special software. Our standardized web services also expose TOPS data to a range of potential clients, from web mapping applications to virtual globes and desktop GIS packages. However, support for managing the temporal dimension of our data is currently limited in existing software systems. Future work will attempt to overcome this shortcoming by building time-series visualization and analysis tools that can be integrated with existing geospatial software.

  7. Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.

  8. Linking Primary Care Information Systems and Public Health Vertical Programs in the Philippines: An Open-source Experience

    PubMed Central

    Tolentino, Herman; Marcelo, Alvin; Marcelo, Portia; Maramba, Inocencio

    2005-01-01

    Community-based primary care information systems are one of the building blocks for national health information systems. In the Philippines, after the devolution of health care to local governments, we observed “health information system islands” connected to national vertical programs being implemented in devolved health units. These structures lead to a huge amount of “information work” in the transformation of health information at the community level. This paper describes work done to develop and implement the open-source Community Based Health Information Tracking System (CHITS) Project, which was implemented to address this information management problem and its outcomes. Several lessons learned from the field as well as software development strategies are highlighted in building community level information systems that link to national level health information systems. PMID:16779052

  9. Collaborative data model and data base development for paleoenvironmental and archaeological domain using Semantic MediaWiki

    NASA Astrophysics Data System (ADS)

    Willmes, C.

    2017-12-01

    In the frame of the Collaborative Research Centre 806 (CRC 806) an interdisciplinary research project, that needs to manage data, information and knowledge from heterogeneous domains, such as archeology, cultural sciences, and the geosciences, a collaborative internal knowledge base system was developed. The system is based on the open source MediaWiki software, that is well known as the software that enables Wikipedia, for its facilitation of a web based collaborative knowledge and information management platform. This software is additionally enhanced with the Semantic MediaWiki (SMW) extension, that allows to store and manage structural data within the Wiki platform, as well as it facilitates complex query and API interfaces to the structured data stored in the SMW data base. Using an additional open source software called mobo, it is possible to improve the data model development process, as well as automated data imports, from small spreadsheets to large relational databases. Mobo is a command line tool that helps building and deploying SMW structure in an agile, Schema-Driven Development way, and allows to manage and collaboratively develop the data model formalizations, that are formalized in JSON-Schema format, using version control systems like git. The combination of a well equipped collaborative web platform facilitated by Mediawiki, the possibility to store and query structured data in this collaborative database provided by SMW, as well as the possibility for automated data import and data model development enabled by mobo, result in a powerful but flexible system to build and develop a collaborative knowledge base system. Furthermore, SMW allows the application of Semantic Web technology, the structured data can be exported into RDF, thus it is possible to set a triple-store including a SPARQL endpoint on top of the database. The JSON-Schema based data models, can be enhanced into JSON-LD, to facilitate and profit from the possibilities of Linked Data technology.

  10. Rapid Deployment of Optimal Control for Building HVAC Systems using Innovative Software Tools and a Hybrid Heuristic/Model Based Control Approach

    DTIC Science & Technology

    2017-03-21

    Energy and Water Projects March 21, 2017 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of...included reduced system energy use and cost as well as improved performance driven by autonomous commissioning and optimized system control. In the end...improve system performance and reduce energy use and cost. However, implementing these solutions into the extremely heterogeneous and often

  11. Estimating Software-Development Costs With Greater Accuracy

    NASA Technical Reports Server (NTRS)

    Baker, Dan; Hihn, Jairus; Lum, Karen

    2008-01-01

    COCOMOST is a computer program for use in estimating software development costs. The goal in the development of COCOMOST was to increase estimation accuracy in three ways: (1) develop a set of sensitivity software tools that return not only estimates of costs but also the estimation error; (2) using the sensitivity software tools, precisely define the quantities of data needed to adequately tune cost estimation models; and (3) build a repository of software-cost-estimation information that NASA managers can retrieve to improve the estimates of costs of developing software for their project. COCOMOST implements a methodology, called '2cee', in which a unique combination of well-known pre-existing data-mining and software-development- effort-estimation techniques are used to increase the accuracy of estimates. COCOMOST utilizes multiple models to analyze historical data pertaining to software-development projects and performs an exhaustive data-mining search over the space of model parameters to improve the performances of effort-estimation models. Thus, it is possible to both calibrate and generate estimates at the same time. COCOMOST is written in the C language for execution in the UNIX operating system.

  12. Federating Cyber and Physical Models for Event-Driven Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Eric G.; Pawlowski, Ronald A.; Sridhar, Siddharth

    The purpose of this paper is to describe a novel method to improve electric power system monitoring and control software application interoperability. This method employs the concept of federation, which is defined as the use of existing models that represent aspects of a system in specific domains (such as physical and cyber security domains) and building interface to link all of domain models.

  13. Northwest Manufacturing Initiative

    DTIC Science & Technology

    2013-08-31

    to automobiles and wind turbine blades [1-4]. The difficulty with incorporating composites lies in joining material sections together. Composite...marine and wind turbine structures [1, 23]. All the material systems consist of [M/90/0] lamina, which are a combination of one layer of chopped...completely new control system (including software interfaces) were developed and used to build both 2 wheel and 4 wheel driven mobile, wireless robots

  14. Building Complex Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Mike

    2006-01-01

    The explosion of capabilities and new products within ICT (Information and Communication Technology) has fostered widespread, overly optimistic opinions regarding the industry, based on common but unjustified assumptions of quality and correctness of software. These assumptions are encouraged by software producers and vendors, who have not succeeded in finding a way to overcome the lack of an automated, mathematically sound way to develop correct systems from requirements. NASA faces this dilemma as it envisages advanced mission concepts in future exploration missions, which may well be the most ambitious computer-based systems ever developed. Such missions entail levels of complexity that beg for new methods for system development. NASA-led research in such areas as sensor networks, formal methods, autonomic computing, and requirements-based programming (to name but a few) will offer some innovative approaches to achieving correctness in complex system development.

  15. Understanding Patterns for System-of-Systems Integration

    DTIC Science & Technology

    2013-12-01

    would be completely newly constructed. 2. Brownfield : there exists something, but we can (in principle) modify the realization of it. Here access to...systems (SoS constitu- ents). If we consider again the enterprise software infrastructure introduced above, a Brownfield scenario occurs in a SoS...context if the company did initially build its own SoS that now must be modified (e.g., by introducing an ESB5 backbone). A Brownfield scenario also

  16. [Research & development on computer expert system for forensic bones estimation].

    PubMed

    Zhao, Jun-ji; Zhang, Jan-zheng; Liu, Nin-guo

    2005-08-01

    To build an expert system for forensic bones estimation. By using the object oriented method, employing statistical data of forensic anthropology, combining the statistical data frame knowledge representation with productions and also using the fuzzy matching and DS evidence theory method. Software for forensic estimation of sex, age and height with opened knowledge base was designed. This system is reliable and effective, and it would be a good assistant of the forensic technician.

  17. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  18. Automated Deployment of Advanced Controls and Analytics in Buildings

    NASA Astrophysics Data System (ADS)

    Pritoni, Marco

    Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.

  19. The Role of Free/Libre and Open Source Software in Learning Health Systems.

    PubMed

    Paton, C; Karopka, T

    2017-08-01

    Objective: To give an overview of the role of Free/Libre and Open Source Software (FLOSS) in the context of secondary use of patient data to enable Learning Health Systems (LHSs). Methods: We conducted an environmental scan of the academic and grey literature utilising the MedFLOSS database of open source systems in healthcare to inform a discussion of the role of open source in developing LHSs that reuse patient data for research and quality improvement. Results: A wide range of FLOSS is identified that contributes to the information technology (IT) infrastructure of LHSs including operating systems, databases, frameworks, interoperability software, and mobile and web apps. The recent literature around the development and use of key clinical data management tools is also reviewed. Conclusions: FLOSS already plays a critical role in modern health IT infrastructure for the collection, storage, and analysis of patient data. The nature of FLOSS systems to be collaborative, modular, and modifiable may make open source approaches appropriate for building the digital infrastructure for a LHS. Georg Thieme Verlag KG Stuttgart.

  20. Auto-Generated Semantic Processing Services

    NASA Technical Reports Server (NTRS)

    Davis, Rodney; Hupf, Greg

    2009-01-01

    Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.

  1. Comparison of Actual Costs to Integrate Commercial Buildings with the Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piette, Mary Ann; Black, Doug; Yin, Rongxin

    During the past decade, the technology to automate demand response (DR) in buildings and industrial facilities has advanced significantly. Automation allows rapid, repeatable, reliable operation. This study focuses on costs for DR automation in commercial buildings with some discussion on residential buildings and industrial facilities. DR automation technology relies on numerous components, including communication systems, hardware and software gateways, standards-based messaging protocols, controls and integration platforms, and measurement and telemetry systems. This paper discusses the impact factors that contribute to the costs of automated DR systems, with a focus on OpenADR 1.0 and 2.0 systems. In addition, this report comparesmore » cost data from several DR automation programs and pilot projects, evaluates trends in the cost per unit of DR and kilowatts (kW) available from automated systems, and applies a standard naming convention and classification or taxonomy for system elements. In summary, median costs for the 56 installed automated DR systems studied here are about $200/kW. The deviation around this median is large with costs in some cases being an order of magnitude greater or less than median. Costs to automate fast DR systems for ancillary services are not fully analyzed in this report because additional research is needed to determine the total such costs.« less

  2. Demonstration of a Safety Analysis on a Complex System

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey; hide

    1997-01-01

    For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.

  3. Software and Hardware System for Fast Processes Study When Preparing Foundation Beds of Oil and Gas Facilities

    NASA Astrophysics Data System (ADS)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2018-04-01

    Analysis of existing technologies for preparing foundation beds of oil and gas buildings and structures has revealed the lack of reasoned recommendations on the selection of rational technical and technological parameters of compaction. To study the nature of the dynamics of fast processes during compaction of foundation beds of oil and gas facilities, a specialized software and hardware system was developed. The method of calculating the basic technical parameters of the equipment for recording fast processes is presented, as well as the algorithm for processing the experimental data. The performed preliminary studies confirmed the accuracy of the decisions made and the calculations performed.

  4. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for manymore » CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  5. Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey

    2015-01-01

    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.

  6. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  7. Report of AAPM Task Group 162: Software for planar image quality metrology.

    PubMed

    Samei, Ehsan; Ikejimba, Lynda C; Harrawood, Brian P; Rong, John; Cunningham, Ian A; Flynn, Michael J

    2018-02-01

    The AAPM Task Group 162 aimed to provide a standardized approach for the assessment of image quality in planar imaging systems. This report offers a description of the approach as well as the details of the resultant software bundle to measure detective quantum efficiency (DQE) as well as its basis components and derivatives. The methodology and the associated software include the characterization of the noise power spectrum (NPS) from planar images acquired under specific acquisition conditions, modulation transfer function (MTF) using an edge test object, the DQE, and effective DQE (eDQE). First, a methodological framework is provided to highlight the theoretical basis of the work. Then, a step-by-step guide is included to assist in proper execution of each component of the code. Lastly, an evaluation of the method is included to validate its accuracy against model-based and experimental data. The code was built using a Macintosh OSX operating system. The software package contains all the source codes to permit an experienced user to build the suite on a Linux or other *nix type system. The package further includes manuals and sample images and scripts to demonstrate use of the software for new users. The results of the code are in close alignment with theoretical expectations and published results of experimental data. The methodology and the software package offered in AAPM TG162 can be used as baseline for characterization of inherent image quality attributes of planar imaging systems. © 2017 American Association of Physicists in Medicine.

  8. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  9. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  10. Guidelines for testing and release procedures

    NASA Technical Reports Server (NTRS)

    Molari, R.; Conway, M.

    1984-01-01

    Guidelines and procedures are recommended for the testing and release of the types of computer software efforts commonly performed at NASA/Ames Research Center. All recommendations are based on the premise that testing and release activities must be specifically selected for the environment, size, and purpose of each individual software project. Guidelines are presented for building a Test Plan and using formal Test Plan and Test Care Inspections on it. Frequent references are made to NASA/Ames Guidelines for Software Inspections. Guidelines are presented for selecting an Overall Test Approach and for each of the four main phases of testing: (1) Unit Testing of Components, (2) Integration Testing of Components, (3) System Integration Testing, and (4) Acceptance Testing. Tools used for testing are listed, including those available from operating systems used at Ames, specialized tools which can be developed, unit test drivers, stub module generators, and the use of format test reporting schemes.

  11. Quality Improvement With Discrete Event Simulation: A Primer for Radiologists.

    PubMed

    Booker, Michael T; O'Connell, Ryan J; Desai, Bhushan; Duddalwar, Vinay A

    2016-04-01

    The application of simulation software in health care has transformed quality and process improvement. Specifically, software based on discrete-event simulation (DES) has shown the ability to improve radiology workflows and systems. Nevertheless, despite the successful application of DES in the medical literature, the power and value of simulation remains underutilized. For this reason, the basics of DES modeling are introduced, with specific attention to medical imaging. In an effort to provide readers with the tools necessary to begin their own DES analyses, the practical steps of choosing a software package and building a basic radiology model are discussed. In addition, three radiology system examples are presented, with accompanying DES models that assist in analysis and decision making. Through these simulations, we provide readers with an understanding of the theory, requirements, and benefits of implementing DES in their own radiology practices. Copyright © 2016 American College of Radiology. All rights reserved.

  12. Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics

    PubMed Central

    Parker, David; Bryant, Zev; Delp, Scott L.

    2010-01-01

    Experimental and computational approaches are needed to uncover the mechanisms by which molecular motors convert chemical energy into mechanical work. In this article, we describe methods and software to generate structurally realistic models of molecular motor conformations compatible with experimental data from different sources. Coarse-grained models of molecular structures are constructed by combining groups of atoms into a system of rigid bodies connected by joints. Contacts between rigid bodies enforce excluded volume constraints, and spring potentials model system elasticity. This simplified representation allows the conformations of complex molecular motors to be simulated interactively, providing a tool for hypothesis building and quantitative comparisons between models and experiments. In an example calculation, we have used the software to construct atomically detailed models of the myosin V molecular motor bound to its actin track. The software is available at www.simtk.org. PMID:20428469

  13. Using C to build a satellite scheduling expert system: Examples from the Explorer Platform planning system

    NASA Technical Reports Server (NTRS)

    Mclean, David R.; Tuchman, Alan; Potter, William J.

    1991-01-01

    A C-based artificial intelligence (AI) development effort which is based on a software tools approach is discussed with emphasis on reusability and maintainability of code. The discussion starts with simple examples of how list processing can easily be implemented in C and then proceeds to the implementations of frames and objects which use dynamic memory allocation. The implementation of procedures which use depth first search, constraint propagation, context switching, and blackboard-like simulation environment are described. Techniques for managing the complexity of C-based AI software are noted, especially the object-oriented techniques of data encapsulation and incremental development. Finally, all these concepts are put together by describing the components of planning software called the Planning And Resource Reasoning (PARR) Shell. This shell was successfully utilized for scheduling services of the Tracking and Data Relay Satellite System for the Earth Radiation Budget Satellite since May of 1987 and will be used for operations scheduling of the Explorer Platform in Nov. of 1991.

  14. OpenSim: open-source software to create and analyze dynamic simulations of movement.

    PubMed

    Delp, Scott L; Anderson, Frank C; Arnold, Allison S; Loan, Peter; Habib, Ayman; John, Chand T; Guendelman, Eran; Thelen, Darryl G

    2007-11-01

    Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.

  15. Hospital information system: reusability, designing, modelling, recommendations for implementing.

    PubMed

    Huet, B

    1998-01-01

    The aims of this paper are to precise some essential conditions for building reuse models for hospital information systems (HIS) and to present an application for hospital clinical laboratories. Reusability is a general trend in software, however reuse can involve a more or less part of design, classes, programs; consequently, a project involving reusability must be precisely defined. In the introduction it is seen trends in software, the stakes of reuse models for HIS and the special use case constituted with a HIS. The main three parts of this paper are: 1) Designing a reuse model (which objects are common to several information systems?) 2) A reuse model for hospital clinical laboratories (a genspec object model is presented for all laboratories: biochemistry, bacteriology, parasitology, pharmacology, ...) 3) Recommendations for generating plug-compatible software components (a reuse model can be implemented as a framework, concrete factors that increase reusability are presented). In conclusion reusability is a subtle exercise of which project must be previously and carefully defined.

  16. Supporting Building Portfolio Investment and Policy Decision Making through an Integrated Building Utility Data Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Azizan; Lasternas, Bertrand; Alschuler, Elena

    The American Recovery and Reinvestment Act stimulus funding of 2009 for smart grid projects resulted in the tripling of smart meters deployment. In 2012, the Green Button initiative provided utility customers with access to their real-time1 energy usage. The availability of finely granular data provides an enormous potential for energy data analytics and energy benchmarking. The sheer volume of time-series utility data from a large number of buildings also poses challenges in data collection, quality control, and database management for rigorous and meaningful analyses. In this paper, we will describe a building portfolio-level data analytics tool for operational optimization, businessmore » investment and policy assessment using 15-minute to monthly intervals utility data. The analytics tool is developed on top of the U.S. Department of Energy’s Standard Energy Efficiency Data (SEED) platform, an open source software application that manages energy performance data of large groups of buildings. To support the significantly large volume of granular interval data, we integrated a parallel time-series database to the existing relational database. The time-series database improves on the current utility data input, focusing on real-time data collection, storage, analytics and data quality control. The fully integrated data platform supports APIs for utility apps development by third party software developers. These apps will provide actionable intelligence for building owners and facilities managers. Unlike a commercial system, this platform is an open source platform funded by the U.S. Government, accessible to the public, researchers and other developers, to support initiatives in reducing building energy consumption.« less

  17. Simulink/PARS Integration Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacaliuc, B.; Nakhaee, N.

    2013-12-18

    The state of the art for signal processor hardware has far out-paced the development tools for placing applications on that hardware. In addition, signal processors are available in a variety of architectures, each uniquely capable of handling specific types of signal processing efficiently. With these processors becoming smaller and demanding less power, it has become possible to group multiple processors, a heterogeneous set of processors, into single systems. Different portions of the desired problem set can be assigned to different processor types as appropriate. As software development tools do not keep pace with these processors, especially when multiple processors ofmore » different types are used, a method is needed to enable software code portability among multiple processors and multiple types of processors along with their respective software environments. Sundance DSP, Inc. has developed a software toolkit called “PARS”, whose objective is to provide a framework that uses suites of tools provided by different vendors, along with modeling tools and a real time operating system, to build an application that spans different processor types. The software language used to express the behavior of the system is a very high level modeling language, “Simulink”, a MathWorks product. ORNL has used this toolkit to effectively implement several deliverables. This CRADA describes this collaboration between ORNL and Sundance DSP, Inc.« less

  18. Specializing architectures for the type 2 diabetes mellitus care use cases with a focus on process management.

    PubMed

    Uribe, Gustavo A; Blobel, Bernd; López, Diego M; Ruiz, Alonso A

    2015-01-01

    The development of software supporting inter-disciplinary systems like the type 2 diabetes mellitus care requires the deployment of methodologies designed for this type of interoperability. The GCM framework allows the architectural description of such systems and the development of software solutions based on it. A first step of the GCM methodology is the definition of a generic architecture, followed by its specialization for specific use cases. This paper describes the specialization of the generic architecture of a system, supporting Type 2 diabetes mellitus glycemic control, for a pharmacotherapy use case. It focuses on the behavioral aspect of the system, i.e. the policy domain and the definition of the rules governing the system. The design of this architecture reflects the inter-disciplinary feature of the methodology. Finally, the resulting architecture allows building adaptive, intelligent and complete systems.

  19. Polyglot Programming in Applications Used for Genetic Data Analysis

    PubMed Central

    Nowak, Robert M.

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633

  20. Polyglot programming in applications used for genetic data analysis.

    PubMed

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.

  1. The Business Education Lab and Local Area Networking for Curriculum Improvement.

    ERIC Educational Resources Information Center

    Seals, Georgina; And Others

    This guide explains how to incorporate a local area network (LAN) into the business education curriculum. The first section defines LAN, a communications system that links computers and other peripherals within an office or throughout nearby buildings and shares multiuser software and send and/or receive information. Curriculum planning…

  2. Building Social-Aware Software Applications for the Interactive Learning Age

    ERIC Educational Resources Information Center

    Capuruco, Renato A. C.; Capretz, Luiz F.

    2009-01-01

    There have been a number of frameworks and models developed to support different aspects of interactive learning. Some were developed to deal with course design through the application of authoring tools, whereas others such as conversational, advisory, and ontology-based systems were used in virtual classrooms to improve and support collaborative…

  3. Cybersecurity Education: Bridging the Gap between Hardware and Software Domains

    ERIC Educational Resources Information Center

    Lukowiak, Marcin; Radziszowski, Stanislaw; Vallino, James; Wood, Christopher

    2014-01-01

    With the continuous growth of cyberinfrastructure throughout modern society, the need for secure computing and communication is more important than ever before. As a result, there is also an increasing need for entry-level developers who are capable of designing and building practical solutions for systems with stringent security requirements.…

  4. Keyless Entry: Building a Text Database Using OCR Technology.

    ERIC Educational Resources Information Center

    Grotophorst, Clyde W.

    1989-01-01

    Discusses the use of optical character recognition (OCR) technology to produce an ASCII text database. A tutorial on digital scanning and OCR is provided, and a systems integration project which used the Calera CDP-3000XF scanner and text retrieval software to construct a database of dissertations at George Mason University is described. (four…

  5. The Power of Portals: Personalizing the Web To Build Community.

    ERIC Educational Resources Information Center

    Page, Dan

    2001-01-01

    Describes how the director of information systems for the computing and communications department and a team of software developers embarked on the task of creating and refining portal technology for a broad community of users with various relationships to the University of Washington. Discusses focus on individual needs; authentication, the…

  6. An Experiment in the Use of Computer-Based Education to Teach Energy Considerations in Architectural Design.

    ERIC Educational Resources Information Center

    Arumi, Francisco N.

    Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…

  7. Safeguarding Your Technology: Practical Guidelines for Electronic Education Information Security.

    ERIC Educational Resources Information Center

    Szuba, Tom

    This guide was developed specifically for educational administrators at the building, campus, district, system, and state levels, and is meant to serve as a framework to help them better understand why and how to effectively secure their organization's information, software, and computer and networking equipment. This document is organized into 10…

  8. Proceedings of the International Academy for Information Management (IAIM) Annual Conference (13th, Helsinki, Finland, December 11-13, 1998).

    ERIC Educational Resources Information Center

    Rogers, Camille, Ed.

    The conference paper topics include: business and information technology (IT) education; knowledge management; teaching software applications; development of multimedia teaching materials; technology job skills in demand; IT management for executives; self-directed teams in information systems courses; a team building exercise to software…

  9. The EMIR experience in the use of software control simulators to speed up the time to telescope

    NASA Astrophysics Data System (ADS)

    Lopez Ramos, Pablo; López-Ruiz, J. C.; Moreno Arce, Heidy; Rosich, Josefina; Perez Menor, José Maria

    2012-09-01

    One of the main problems facing development teams working on instrument control systems consists on the need to access mechanisms which are not available until well into the integration phase. The need to work with real hardware creates additional problems like, among others: certain faults cannot be tested due to the possibility of hardware damage, taking the system to the limit may shorten its operational lifespan and the full system may not be available during some periods due to maintenance and/or testing of individual components. These problems can be treated with the use of simulators and by applying software/hardware standards. Since information on the construction and performance of electro-mechanical systems is available at relatively early stages of the project, simulators are developed in advance (before the existence of the mechanism) or, if conventions and standards have been correctly followed, a previously developed simulator might be used. This article describes our experience in building software simulators and the main advantages we have identified, which are: the control software can be developed even in the absence of real hardware, critical tests can be prepared using the simulated systems, test system behavior for hardware failure situations that represent a risk of the real system, and the speed up of in house integration of the entire instrument. The use of simulators allows us to reduce development, testing and integration time.

  10. Wireless Sensor Networks for Developmental and Flight Instrumentation

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments. Test results from our prototype WSN running the Mobitrum software system are summarized and the implications to the scalability and reliability for DFI applications are discussed. Our demonstration system, incorporating sensors for life support system and structural health monitoring is described along with test results obtained by running the demonstration prototype in relevant environments such as the Wireless Habitat Testbed at Johnson Space Center in Houston. An operations concept for improved sensor process flow from design to flight test is outlined specific to the areas of Environmental Control and Life Support System performance characterization and structural health monitoring of human-rated spacecraft. This operations concept will be used to highlight the areas where WSN technology, particularly plug-and-play software based on IEEE 1451, can improve the current process, resulting in significant reductions in the technical effort, overall cost and schedule for providing DFI capability for future spacecraft. RELEASED -

  11. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro Kalyan Perumalla, James Joseph

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flow data, and sample models of discrete sensors and controllers.

  12. Building Construction Progress Monitoring Using Unmanned Aerial System (uas), Low-Cost Photogrammetry, and Geographic Information System (gis)

    NASA Astrophysics Data System (ADS)

    Bognot, J. R.; Candido, C. G.; Blanco, A. C.; Montelibano, J. R. Y.

    2018-05-01

    Monitoring the progress of building's construction is critical in construction management. However, measuring the building construction's progress are still manual, time consuming, error prone, and impose tedious process of analysis leading to delays, additional costings and effort. The main goal of this research is to develop a methodology for building construction progress monitoring based on 3D as-built model of the building from unmanned aerial system (UAS) images, 4D as-planned model (with construction schedule integrated) and, GIS analysis. Monitoring was done by capturing videos of the building with a camera-equipped UAS. Still images were extracted, filtered, bundle-adjusted, and 3D as-built model was generated using open source photogrammetric software. The as-planned model was generated from digitized CAD drawings using GIS. The 3D as-built model was aligned with the 4D as-planned model of building formed from extrusion of building elements, and integration of the construction's planned schedule. The construction progress is visualized via color-coding the building elements in the 3D model. The developed methodology was conducted and applied from the data obtained from an actual construction site. Accuracy in detecting `built' or `not built' building elements ranges from 82-84 % and precision of 50-72 %. Quantified progress in terms of the number of building elements are 21.31% (November 2016), 26.84 % (January 2017) and 44.19 % (March 2017). The results can be used as an input for progress monitoring performance of construction projects and improving related decision-making process.

  13. A method for the complete analysis of NORM building materials by γ-ray spectrometry using HPGe detectors.

    PubMed

    Quintana, B; Pedrosa, M C; Vázquez-Canelas, L; Santamaría, R; Sanjuán, M A; Puertas, F

    2018-04-01

    A methodology including software tools for analysing NORM building materials and residues by low-level gamma-ray spectrometry has been developed. It comprises deconvolution of gamma-ray spectra using the software GALEA with focus on the natural radionuclides and Monte Carlo simulations for efficiency and true coincidence summing corrections. The methodology has been tested on a range of building materials and validated against reference materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Teaching and assessment of mathematical principles for software correctness using a reasoning concept inventory

    NASA Astrophysics Data System (ADS)

    Drachova-Strang, Svetlana V.

    As computing becomes ubiquitous, software correctness has a fundamental role in ensuring the safety and security of the systems we build. To design and develop software correctly according to their formal contracts, CS students, the future software practitioners, need to learn a critical set of skills that are necessary and sufficient for reasoning about software correctness. This dissertation presents a systematic approach to both introducing these reasoning skills into the curriculum, and assessing how well the students have learned them. Specifically, it introduces a comprehensive Reasoning Concept Inventory (RCI) that captures the fine details of basic reasoning skills that are ideally learned across the undergraduate curriculum to reason about software correctness, to develop high quality software, and to understand why software works as specified. The RCI forms the basis for developing learning outcomes that help educators to assess the adequacy of current techniques and pinpoint necessary improvements. This dissertation contains results from experimentation and assessment over the past few years in multiple CS courses. The results show that the finer principles of mathematical reasoning of software correctness can be taught effectively and continuously improved with the help of the RCI using suitable teaching practices, and supporting methods and tools.

  15. FTDD973: A multimedia knowledge-based system and methodology for operator training and diagnostics

    NASA Technical Reports Server (NTRS)

    Hekmatpour, Amir; Brown, Gary; Brault, Randy; Bowen, Greg

    1993-01-01

    FTDD973 (973 Fabricator Training, Documentation, and Diagnostics) is an interactive multimedia knowledge based system and methodology for computer-aided training and certification of operators, as well as tool and process diagnostics in IBM's CMOS SGP fabrication line (building 973). FTDD973 is an example of what can be achieved with modern multimedia workstations. Knowledge-based systems, hypertext, hypergraphics, high resolution images, audio, motion video, and animation are technologies that in synergy can be far more useful than each by itself. FTDD973's modular and object-oriented architecture is also an example of how improvements in software engineering are finally making it possible to combine many software modules into one application. FTDD973 is developed in ExperMedia/2; and OS/2 multimedia expert system shell for domain experts.

  16. Ground Systems Development Environment (GSDE) interface requirements and prototyping plan

    NASA Technical Reports Server (NTRS)

    Church, Victor E.; Philips, John; Bassman, Mitchell; Williams, C.

    1990-01-01

    This report describes the data collection and requirements analysis effort of the Ground System Development Environment (GSDE) Interface Requirements study. It identifies potential problems in the interfaces among applications and processors in the heterogeneous systems that comprises the GSDE. It describes possible strategies for addressing those problems. It also identifies areas for further research and prototyping to demonstrate the capabilities and feasibility of those strategies and defines a plan for building the necessary software prototypes.

  17. Surviving OR computerization.

    PubMed

    Beach, Myra Jo; Sions, Jacqueline A

    2011-02-01

    In 2007, a steering committee at West Virginia University Hospitals, Morgantown, began a three-year, accelerated design, computer implementation project to institute an automated perioperative record. The process included budgeting, selecting a vendor, designing and building the system, educating perioperative staff members, implementing the system, and re-evaluating the system for upgrades. Important steps in designing and building the system included mapping patient care and documentation processes, assessing software and hardware needs, and creating a new preference card system and surgical scheduling system. Staff members were educated to use the new computer applications via contests, inservice programs, hands-on learning modules, and a preimplementation rehearsal. Role-based security ensures that staff members are granted access to the computer applications they need to perform the work defined by their scope of practice. Planning ensures that the computer system will be maintained and enhanced over time. Copyright © 2011 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  18. NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available formore » model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.« less

  19. Modeling and managing risk early in software development

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Thomas, William M.; Hetmanski, Christopher J.

    1993-01-01

    In order to improve the quality of the software development process, we need to be able to build empirical multivariate models based on data collectable early in the software process. These models need to be both useful for prediction and easy to interpret, so that remedial actions may be taken in order to control and optimize the development process. We present an automated modeling technique which can be used as an alternative to regression techniques. We show how it can be used to facilitate the identification and aid the interpretation of the significant trends which characterize 'high risk' components in several Ada systems. Finally, we evaluate the effectiveness of our technique based on a comparison with logistic regression based models.

  20. Using McIDAS-V data analysis and visualization software as an educational tool for understanding the atmosphere

    NASA Astrophysics Data System (ADS)

    Achtor, T. H.; Rink, T.

    2010-12-01

    The University of Wisconsin’s Space Science and Engineering Center (SSEC) has been at the forefront in developing data analysis and visualization tools for environmental satellites and other geophysical data. The fifth generation of the Man-computer Interactive Data Access System (McIDAS-V) is Java-based, open-source, freely available software that operates on Linux, Macintosh and Windows systems. The software tools provide powerful new data manipulation and visualization capabilities that work with geophysical data in research, operational and educational environments. McIDAS-V provides unique capabilities to support innovative techniques for evaluating research results, teaching and training. McIDAS-V is based on three powerful software elements. VisAD is a Java library for building interactive, collaborative, 4 dimensional visualization and analysis tools. The Integrated Data Viewer (IDV) is a reference application based on the VisAD system and developed by the Unidata program that demonstrates the flexibility that is needed in this evolving environment, using a modern, object-oriented software design approach. The third tool, HYDRA, allows users to build, display and interrogate multi and hyperspectral environmental satellite data in powerful ways. The McIDAS-V software is being used for training and education in several settings. The McIDAS User Group provides training workshops at its annual meeting. Numerous online tutorials with training data sets have been developed to aid users in learning simple and more complex operations in McIDAS-V, all are available online. In a University of Wisconsin-Madison undergraduate course in Radar and Satellite Meteorology, McIDAS-V is used to create and deliver laboratory exercises using case study and real time data. At the high school level, McIDAS-V is used in several exercises in our annual Summer Workshop in Earth and Atmospheric Sciences to provide young scientists the opportunity to examine data with friendly and powerful tools. This presentation will describe the McIDAS-V software and demonstrate some of the capabilities of McIDAS-V to analyze and display many types of global data. The presentation will also focus on describing how McIDAS-V can be used as an educational window to examine global geophysical data. Consecutive polar orbiting passes of NASA MODIS and CALIPSO observations

  1. Student Computer Attitudes, Experience and Perceptions about the Use of Two Software Applications in Building Engineering

    ERIC Educational Resources Information Center

    Chiner, Esther; Garcia-Vera, Victoria E.

    2017-01-01

    The purpose of this study was to examine students' computer attitudes and experience, as well as students' perceptions about the use of two specific software applications (Google Drive Spreadsheets and Arquimedes) in the Building Engineering context. The relationships among these variables were also examined. Ninety-two students took part in this…

  2. Building oceanographic and atmospheric observation networks by composition: unmanned vehicles, communication networks, and planning and execution control frameworks

    NASA Astrophysics Data System (ADS)

    Sousa, J. T.; Pinto, J.; Martins, R.; Costa, M.; Ferreira, F.; Gomes, R.

    2014-12-01

    The problem of developing mobile oceanographic and atmospheric observation networks (MOAO) with coordinated air and ocean vehicles is discussed in the framework of the communications and control software tool chain developed at Underwater Systems and Technologies Laboratory (LSTS) from Porto University. This is done with reference to field experiments to illustrate key capabilities and to assess future MOAO operations. First, the motivation for building MOAO by "composition" of air and ocean vehicles, communication networks, and planning and execution control frameworks is discussed - in networked vehicle systems information and commands are exchanged among multiple vehicles and operators, and the roles, relative positions, and dependencies of these vehicles and operators change during operations. Second, the planning and execution control framework developed at LSTS for multi-vehicle systems is discussed with reference to key concepts such as autonomy, mixed-initiative interactions, and layered organization. Third, the LSTS tool software tool chain is presented to show how to develop MOAO by composition. The tool chain comprises the Neptus command and control framework for mixed initiative interactions, the underlying IMC messaging protocol, and the DUNE on-board software. Fourth, selected LSTS operational deployments illustrate MOAO capability building. In 2012 we demonstrated the use of UAS to "ferry" data from UUVs located beyond line of sight (BLOS). In 2013 we demonstrated coordinated observations of coastal fronts with small UAS and UUVs, "bent" BLOS through the use of UAS as communication relays, and UAS tracking of juvenile hammer-head sharks. In 2014 we demonstrated UUV adaptive sampling with the closed loop controller of the UUV residing on a UAS; this was done with the help of a Wave Glider ASV with a communications gateway. The results from these experiments provide a background for assessing potential future UAS operations in a compositional MOAO.

  3. Charting a Path to Location Intelligence for STD Control.

    PubMed

    Gerber, Todd M; Du, Ping; Armstrong-Brown, Janelle; McNutt, Louise-Anne; Coles, F Bruce

    2009-01-01

    This article describes the New York State Department of Health's GeoDatabase project, which developed new methods and techniques for designing and building a geocoding and mapping data repository for sexually transmitted disease (STD) control. The GeoDatabase development was supported through the Centers for Disease Control and Prevention's Outcome Assessment through Systems of Integrated Surveillance workgroup. The design and operation of the GeoDatabase relied upon commercial-off-the-shelf tools that other public health programs may also use for disease-control systems. This article provides a blueprint of the structure and software used to build the GeoDatabase and integrate location data from multiple data sources into the everyday activities of STD control programs.

  4. A META-COMPOSITE SOFTWARE DEVELOPMENT APPROACH FOR TRANSLATIONAL RESEARCH

    PubMed Central

    Sadasivam, Rajani S.; Tanik, Murat M.

    2013-01-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users’ needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements. PMID:23504436

  5. A meta-composite software development approach for translational research.

    PubMed

    Sadasivam, Rajani S; Tanik, Murat M

    2013-06-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users' needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements.

  6. A formal approach to validation and verification for knowledge-based control systems

    NASA Technical Reports Server (NTRS)

    Castore, Glen

    1987-01-01

    As control systems become more complex in response to desires for greater system flexibility, performance and reliability, the promise is held out that artificial intelligence might provide the means for building such systems. An obstacle to the use of symbolic processing constructs in this domain is the need for verification and validation (V and V) of the systems. Techniques currently in use do not seem appropriate for knowledge-based software. An outline of a formal approach to V and V for knowledge-based control systems is presented.

  7. DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR HYBRID SOLAR-GEOTHERMAL HEAT PUMP SYSTEMS IN HEATING- AND COOLING-DOMINATED BUILDINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavuzturk, C. C.; Chiasson, A. D.; Filburn, T. P.

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance themore » ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is provided that is based on mathematically robust, validated models. An automated optimization tool is used to balance ground loads and incorporated into the simulation engine. With knowledge of the building loads, thermal properties of the ground, the borehole heat exchanger configuration, the heat pump peak hourly and seasonal COP for heating and cooling, the critical heat pump design entering fluid temperature, and the thermal performance of a solar collector, the total GHX length can be calculated along with the area of a supplemental solar collector array and the corresponding reduced GHX length. An economic analysis module allows for the calculation of the lowest capital cost combination of solar collector area and GHX length. ACKNOWLEDGMENTS This project was funded by the United States Department of Energy DOE-DE-FOA-0000116, Recovery Act Geothermal Technologies Program: Ground Source Heat Pumps. The lead contractor, The University of Hartford, was supported by The University of Dayton, and the Oak Ridge National Laboratories. All funding and support for this project as well as contributions of graduate and undergraduate students from the contributing institutions are gratefully acknowledged.« less

  8. Improvement of open and semi-open core wall system in tall buildings by closing of the core section in the last story

    NASA Astrophysics Data System (ADS)

    Kheyroddin, A.; Abdollahzadeh, D.; Mastali, M.

    2014-09-01

    Increasing number of tall buildings in urban population caused development of tall building structures. One of the main lateral load resistant systems is core wall system in high-rise buildings. Core wall system has two important behavioral aspects where the first aspect is related to reduce the lateral displacement by the core bending resistance and the second is governed by increasing of the torsional resistance and core warping of buildings. In this study, the effects of closed section core in the last story have been considered on the behavior of models. Regarding this, all analyses were performed by ETABS 9.2.v software (Wilson and Habibullah). Considering (a) drift and rotation of the core over height of buildings, (b) total and warping stress in the core body, (c) shear in beams due to warping stress, (d) effect of closing last story on period of models in various modes, (e) relative displacement between walls in the core system and (f) site effects in far and near field of fault by UBC97 spectra on base shear coefficient showed that the bimoment in open core is negative in the last quarter of building and it is similar to wall-frame structures. Furthermore, analytical results revealed that closed section core in the last story improves behavior of the last quarter of structure height, since closing of core section in the last story does not have significant effect on reducing base shear value in near and far field of active faults.

  9. OpenEIS. Developer Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutes, Robert G.; Neubauer, Casey C.; Haack, Jereme N.

    2015-03-31

    The Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of an open-source software tool for analyzing building energy and operational data: OpenEIS (open energy information system). This tool addresses the problems of both owners of building data and developers of tools to analyze this data. Building owners and managers have data but lack the tools to analyze it while tool developers lack data in a common format to ease development of reusable data analysis tools. This document is intended for developers of applications and explains the mechanisms for building analysis applications, accessing data, and displaying datamore » using a visualization from the included library. A brief introduction to the visualizations can be used as a jumping off point for developers familiar with JavaScript to produce their own. Several example applications are included which can be used along with this document to implement algorithms for performing energy data analysis.« less

  10. RoBlock: a prototype autonomous manufacturing cell

    NASA Astrophysics Data System (ADS)

    Baekdal, Lars K.; Balslev, Ivar; Eriksen, Rene D.; Jensen, Soren P.; Jorgensen, Bo N.; Kirstein, Brian; Kristensen, Bent B.; Olsen, Martin M.; Perram, John W.; Petersen, Henrik G.; Petersen, Morten L.; Ruhoff, Peter T.; Skjolstrup, Carl E.; Sorensen, Anders S.; Wagenaar, Jeroen M.

    2000-10-01

    RoBlock is the first phase of an internally financed project at the Institute aimed at building a system in which two industrial robots suspended from a gantry, as shown below, cooperate to perform a task specified by an external user, in this case, assembling an unstructured collection of colored wooden blocks into a specified 3D pattern. The blocks are identified and localized using computer vision and grasped with a suction cup mechanism. Future phases of the project will involve other processes such as grasping and lifting, as well as other types of robot such as autonomous vehicles or variable geometry trusses. Innovative features of the control software system include: The use of an advanced trajectory planning system which ensures collision avoidance based on a generalization of the method of artificial potential fields, the use of a generic model-based controller which learns the values of parameters, including static and kinetic friction, of a detailed mechanical model of itself by comparing actual with planned movements, the use of fast, flexible, and robust pattern recognition and 3D-interpretation strategies, integration of trajectory planning and control with the sensor systems in a distributed Java application running on a network of PC's attached to the individual physical components. In designing this first stage, the aim was to build in the minimum complexity necessary to make the system non-trivially autonomous and to minimize the technological risks. The aims of this project, which is planned to be operational during 2000, are as follows: To provide a platform for carrying out experimental research in multi-agent systems and autonomous manufacturing systems, to test the interdisciplinary cooperation architecture of the Maersk Institute, in which researchers in the fields of applied mathematics (modeling the physical world), software engineering (modeling the system) and sensor/actuator technology (relating the virtual and real worlds) could collaborate with systems integrators to construct intelligent, autonomous systems, and to provide a showpiece demonstrator in the entrance hall of the Institute's new building.

  11. Systems biology driven software design for the research enterprise.

    PubMed

    Boyle, John; Cavnor, Christopher; Killcoyne, Sarah; Shmulevich, Ilya

    2008-06-25

    In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools. We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model. By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data.

  12. FLEX: A Modular Software Architecture for Flight License Exam

    NASA Astrophysics Data System (ADS)

    Arsan, Taner; Saka, Hamit Emre; Sahin, Ceyhun

    This paper is about the design and implementation of an examination system based on World Wide Web. It is called FLEX-Flight License Exam Software. We designed and implemented flexible and modular software architecture. The implemented system has basic specifications such as appending questions in system, building exams with these appended questions and making students to take these exams. There are three different types of users with different authorizations. These are system administrator, operators and students. System administrator operates and maintains the system, and also audits the system integrity. The system administrator can not be able to change the result of exams and can not take an exam. Operator module includes instructors. Operators have some privileges such as preparing exams, entering questions, changing the existing questions and etc. Students can log on the system and can be accessed to exams by a certain URL. The other characteristic of our system is that operators and system administrator are not able to delete questions due to the security problems. Exam questions can be inserted on their topics and lectures in the database. Thus; operators and system administrator can easily choose questions. When all these are taken into consideration, FLEX software provides opportunities to many students to take exams at the same time in safe, reliable and user friendly conditions. It is also reliable examination system for the authorized aviation administration companies. Web development platform - LAMP; Linux, Apache web server, MySQL, Object-oriented scripting Language - PHP are used for developing the system and page structures are developed by Content Management System - CMS.

  13. Methodology for object-oriented real-time systems analysis and design: Software engineering

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1991-01-01

    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects.

  14. The methodology of multi-viewpoint clustering analysis

    NASA Technical Reports Server (NTRS)

    Mehrotra, Mala; Wild, Chris

    1993-01-01

    One of the greatest challenges facing the software engineering community is the ability to produce large and complex computer systems, such as ground support systems for unmanned scientific missions, that are reliable and cost effective. In order to build and maintain these systems, it is important that the knowledge in the system be suitably abstracted, structured, and otherwise clustered in a manner which facilitates its understanding, manipulation, testing, and utilization. Development of complex mission-critical systems will require the ability to abstract overall concepts in the system at various levels of detail and to consider the system from different points of view. Multi-ViewPoint - Clustering Analysis MVP-CA methodology has been developed to provide multiple views of large, complicated systems. MVP-CA provides an ability to discover significant structures by providing an automated mechanism to structure both hierarchically (from detail to abstract) and orthogonally (from different perspectives). We propose to integrate MVP/CA into an overall software engineering life cycle to support the development and evolution of complex mission critical systems.

  15. Assessment of Literature Related to Combustion Appliance Venting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, V. H.; Less, B. D.; Singer, B. C.

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents theirmore » technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.« less

  16. GIS-Based Noise Simulation Open Source Software: N-GNOIS

    NASA Astrophysics Data System (ADS)

    Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh

    2015-12-01

    Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.

  17. Integrated platform for optimized solar PV system design and engineering plan set generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyemo, Samuel

    2015-12-30

    The Aurora team has developed software that allows users to quickly generate a three-dimensional model for a building, with a corresponding irradiance map, from any two-dimensional image with associated geo-coordinates. The purpose of this project is to build upon that technology by developing and distributing to solar installers a software platform that automatically retrieves engineering, financial and geographic data for a specific site, and quickly generates an optimal customer proposal and corresponding engineering plans for that site. At the end of the project, Aurora’s optimization platform would have been used to make at least one thousand proposals from at leastmore » ten unique solar installation companies, two of whom would sign economically viable contracts to use the software. Furthermore, Aurora’s algorithms would be tested to show that in at least seventy percent of cases, Aurora automatically generated a design equivalent to or better than what a human could have done manually. A ‘better’ design is one that generates more energy for the same cost, or that generates a higher return on investment, while complying with all site-specific aesthetic, electrical and spatial requirements.« less

  18. System diagnostic builder

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Burke, Roger

    1992-01-01

    The System Diagnostic Builder (SDB) is an automated software verification and validation tool using state-of-the-art Artificial Intelligence (AI) technologies. The SDB is used extensively by project BURKE at NASA-JSC as one component of a software re-engineering toolkit. The SDB is applicable to any government or commercial organization which performs verification and validation tasks. The SDB has an X-window interface, which allows the user to 'train' a set of rules for use in a rule-based evaluator. The interface has a window that allows the user to plot up to five data parameters (attributes) at a time. Using these plots and a mouse, the user can identify and classify a particular behavior of the subject software. Once the user has identified the general behavior patterns of the software, he can train a set of rules to represent his knowledge of that behavior. The training process builds rules and fuzzy sets to use in the evaluator. The fuzzy sets classify those data points not clearly identified as a particular classification. Once an initial set of rules is trained, each additional data set given to the SDB will be used by a machine learning mechanism to refine the rules and fuzzy sets. This is a passive process and, therefore, it does not require any additional operator time. The evaluation component of the SDB can be used to validate a single software system using some number of different data sets, such as a simulator. Moreover, it can be used to validate software systems which have been re-engineered from one language and design methodology to a totally new implementation.

  19. Understanding and Predicting the Process of Software Maintenance Releases

    NASA Technical Reports Server (NTRS)

    Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.

    1996-01-01

    One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.

  20. 78 FR 31916 - Increasing Market and Planning Efficiency Through Improved Software; Supplemental Agenda Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Market and Planning Efficiency Through Improved Software; Supplemental Agenda Notice Take notice that... for increasing real-time and day-ahead market efficiency through improved software. A detailed agenda..., the software industry, government, research centers and academia and is intended to build on the...

  1. An approach to optimised control of HVAC systems in indoor swimming pools

    NASA Astrophysics Data System (ADS)

    Ribeiro, Eliseu M. A.; Jorge, Humberto M. M.; Quintela, Divo A. A.

    2016-04-01

    Indoor swimming pools are recognised as having a high level of energy consumption and present a great potential for energy saving. The energy is spent in several ways such as evaporation heat loss from the pool, high rates of ventilation required to guarantee the indoor air quality, and ambient temperatures with expressive values (typically 28-30°C) required to maintain conditions of comfort. This paper presents an approach to optimising control of heat ventilation and air conditioning systems that could be implemented in a building energy management system. It is easily adapted to any kind of pool and results in significant energy consumption reduction. The development and validation of the control model were carried out with a building thermal simulation software. The use of this control model in the case study building could reduce the energy efficiency index by 7.14 points (7.4% of total) which adds up to an energy cost saving of 15,609€ (7.5% of total).

  2. The Heinz Electronic Library Interactive Online System (HELIOS): Building a Digital Archive Using Imaging, OCR, and Natural Language Processing Technologies.

    ERIC Educational Resources Information Center

    Galloway, Edward A.; Michalek, Gabrielle V.

    1995-01-01

    Discusses the conversion project of the congressional papers of Senator John Heinz into digital format and the provision of electronic access to these papers by Carnegie Mellon University. Topics include collection background, project team structure, document processing, scanning, use of optical character recognition software, verification…

  3. Agile Preparation within a Traditional Project Management Course

    ERIC Educational Resources Information Center

    Landry, Jeffrey P.; McDaniel, Rachel

    2016-01-01

    Agile software approaches have seen a steady rise over a decade and a half, but agile's place in the information systems (IS) undergraduate curriculum is far from settled. While agile concepts may arguably be taught in multiple places in the IS curriculum, this paper argues for its inclusion in a project management course. This paper builds on…

  4. Sensor Agent Processing Software (SAPS)

    DTIC Science & Technology

    2004-05-01

    buildings, sewers, and tunnels. The time scale governs many aspects of tactical sensing. In high intensity combat situations forces move within...21 Figure 9-2 BAE Systems Sitex00 High Bandwidth...float) Subscribers Subscribers Preprocessor Channel 1 xout[256] Data File in Memory xout[256] S w i t c h High Pass Filter (IIR) xin[256] xout[256

  5. Using Audience Response Systems during Interactive Lectures to Promote Active Learning and Conceptual Understanding of Stoichiometry

    ERIC Educational Resources Information Center

    Cotes, Sandra; Cotuá, José

    2014-01-01

    This article describes a method of instruction using an active learning strategy for teaching stoichiometry through a process of gradual knowledge building. Students identify their misconceptions and progress through a sequence of questions based on the same chemical equation. An infrared device and software registered as the TurningPoint Audience…

  6. Test-driven programming

    NASA Astrophysics Data System (ADS)

    Georgiev, Bozhidar; Georgieva, Adriana

    2013-12-01

    In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.

  7. Extreme Programming: Maestro Style

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme-programming practices. The single most influential of these factors is that continuous interaction between customers and programmers is not feasible.

  8. An Automated System for the Maintenance of Multiform Documentation

    NASA Astrophysics Data System (ADS)

    Rousseau, Bertrand; Ruggier, Mario; Smith, Matthiew

    Software documentation for the user often exists in several forms including paper, electronic, on-line help, etc. We have build a system to help with the writing and maintenance of such kinds of documentation which relies on the FrameMaker product. As an example, we show how it is used to maintain the ADAMO documentation, delivered in 4 incarnations on paper, WWW hypertext, KUIP and running examples. The use of the system results in both time saving and quality improvements.

  9. [Design and realization of the communication system for the mobile medical terminal].

    PubMed

    Ji, Lei; Guo, Xu; Shi, Huayu

    2013-01-01

    Realizing wireless communication based on handset devices for medical staff; providing an instant messaging method. Constructing a set of communication protocols and standards; developing software both on server and client. Building an instant messaging system which follows the customized specification; based on Android the client provides functions like address book, message, voice service etc. As an independent module of the mobile medical terminal, the system can provide convenient communication for medical service with other mobile business.

  10. Requirements for a geometry programming language for CFD applications

    NASA Technical Reports Server (NTRS)

    Gentry, Arvel E.

    1992-01-01

    A number of typical problems faced by the aerodynamicist in using computational fluid dynamics are presented to illustrate the need for a geometry programming language. The overall requirements for such a language are illustrated by examples from the Boeing Aero Grid and Paneling System (AGPS). Some of the problems in building such a system are also reviewed along with suggestions as to what to look for when evaluating new software problems.

  11. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor - System-on-a-Chip

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm Broadwell U-series processor System-on-a-Chip (SoC) for total dose are presented, along with first-look exploratory results from trials at a medical proton facility. Test method builds upon previous efforts by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  12. The Use of High Performance Computing (HPC) to Strengthen the Development of Army Systems

    DTIC Science & Technology

    2011-11-01

    accurately predicting the supersonic magus effect about spinning cones, ogive- cylinders , and boat-tailed afterbodies. This work led to the successful...successful computer model of the proposed product or system, one can then build prototypes on the computer and study the effects on the performance of...needed. The NRC report discusses the requirements for effective use of such computing power. One needs “models, algorithms, software, hardware

  13. The Human-Robot Interaction Operating System

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  14. Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data

    NASA Technical Reports Server (NTRS)

    Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.; hide

    2013-01-01

    Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data

  15. Building Change Detection from Harvey using Unmanned Aerial System (UAS)

    NASA Astrophysics Data System (ADS)

    Chang, A.; Yeom, J.; Jung, J.; Choi, I.

    2017-12-01

    Unmanned Aerial System (UAS) is getting to be the most important technique in recent days since the fine spatial and high temporal resolution data previously unobtainable from traditional remote sensing platforms. Advanced UAS data can provide a great opportunity for disaster monitoring. Especially, building change detection is the one of the most important topics for damage assessment and recovery from disasters. This study is proposing a method to monitor building change with UAS data for Holiday Beach in Texas, where was directly hit by Harvey on 25 August 2017. This study adopted 3D change detection to monitor building damage and recovery levels with building height as well as natural color information. We used a rotorcraft UAS to collect RGB data twice on 9 September and 18 October 2017 after the hurricane. The UAS data was processed using Agisoft Photoscan Pro Software to generate super high resolution dataset including orthomosaic, DSM (Digital Surface Model), and 3D point cloud. We compared the processed dataset with an airborne image considerable as before-hurricane data, which was acquired on January 2016. Building damage and recovery levels were determined by height and color change. The result will show that UAS data is useful to assess building damage and recovery for affected area by the natural disaster such as Harvey.

  16. Enabling New Operations Concepts for Lunar and Mars Exploration

    NASA Astrophysics Data System (ADS)

    Jaap, John; Maxwell, Theresa

    2005-02-01

    The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the ``operations concept'' that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a ``job jar'' of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space Flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically; and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.

  17. Enabling New Operations Concepts for Lunar and Mars Exploration

    NASA Technical Reports Server (NTRS)

    Jaap, John; Maxwell, Theresa

    2005-01-01

    The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the operations concept that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a job jar of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically, and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.

  18. Surface CHEMKIN (Version 4. 0): A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface---gas-phase interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coltrin, M.E.; Kee, R.J.; Rupley, F.M.

    1991-07-01

    Heterogeneous reaction at the interface between a solid surface and adjacent gas is central to many chemical processes. Our purpose for developing the software package SURFACE CHEMKIN was motivated by our need to understand the complex surface chemistry in chemical vapor deposition systems involving silicon, silicon nitride, and gallium arsenide. However, we have developed the approach and implemented the software in a general setting. Thus, we expect it will find use in such diverse applications as chemical vapor deposition, chemical etching, combustion of solids, and catalytic processes, and for a wide range of chemical systems. We believe that it providesmore » a powerful capability to help model, understand, and optimize important industrial and research chemical processes. The SURFACE CHEMKIN software is designed to work in conjunction with the CHEMKIN-2 software, which handles the chemical kinetics in the gas phase. It may also be used in conjunction with the Transport Property Package, which provides information about molecular diffusion. Thus, these three packages provide a foundation on which a user can build applications software to analyze gas-phase and heterogeneous chemistry in flowing systems. These packages should not be considered programs'' in the ordinary sense. That is, they are not designed to accept input, solve a particular problem, and report the answer. Instead, they are software tools intended to help a user work efficiently with large systems of chemical reactions and develop Fortran representations of systems of equations that define a particular problem. It is up the user to solve the problem and interpret the answer. 11 refs., 15 figs., 5 tabs.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  20. On Roles of Models in Information Systems

    NASA Astrophysics Data System (ADS)

    Sølvberg, Arne

    The increasing penetration of computers into all aspects of human activity makes it desirable that the interplay among software, data and the domains where computers are applied is made more transparent. An approach to this end is to explicitly relate the modeling concepts of the domains, e.g., natural science, technology and business, to the modeling concepts of software and data. This may make it simpler to build comprehensible integrated models of the interactions between computers and non-computers, e.g., interaction among computers, people, physical processes, biological processes, and administrative processes. This chapter contains an analysis of various facets of the modeling environment for information systems engineering. The lack of satisfactory conceptual modeling tools seems to be central to the unsatisfactory state-of-the-art in establishing information systems. The chapter contains a proposal for defining a concept of information that is relevant to information systems engineering.

Top