Sample records for building system light

  1. Internal heat gain from different light sources in the building lighting systems

    NASA Astrophysics Data System (ADS)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  2. Characterization of hybrid lighting systems of the Electrical Engineering Building in the Industrial University of Santander

    NASA Astrophysics Data System (ADS)

    Galvis, D.; Exposito, C.; Osma, G.; Amado, L.; Ordóñez, G.

    2016-07-01

    This paper presents an analysis of hybrid lighting systems of Electrical Engineering Building in the Industrial University of Santander, which is a pilot of green building for warm- tropical conditions. Analysis of lighting performance of inner spaces is based on lighting curves obtained from characterization of daylighting systems of these spaces. A computation tool was made in Excel-Visual Basic to simulate the behaviour of artificial lighting system considering artificial control system, user behaviour and solar condition. Also, this tool allows to estimate the electrical energy consumption of the lighting system for a day, a month and a year.

  3. Remote monitoring of LED lighting system performance

    NASA Astrophysics Data System (ADS)

    Thotagamuwa, Dinusha R.; Perera, Indika U.; Narendran, Nadarajah

    2016-09-01

    The concept of connected lighting systems using LED lighting for the creation of intelligent buildings is becoming attractive to building owners and managers. In this application, the two most important parameters include power demand and the remaining useful life of the LED fixtures. The first enables energy-efficient buildings and the second helps building managers schedule maintenance services. The failure of an LED lighting system can be parametric (such as lumen depreciation) or catastrophic (such as complete cessation of light). Catastrophic failures in LED lighting systems can create serious consequences in safety critical and emergency applications. Therefore, both failure mechanisms must be considered and the shorter of the two must be used as the failure time. Furthermore, because of significant variation between the useful lives of similar products, it is difficult to accurately predict the life of LED systems. Real-time data gathering and analysis of key operating parameters of LED systems can enable the accurate estimation of the useful life of a lighting system. This paper demonstrates the use of a data-driven method (Euclidean distance) to monitor the performance of an LED lighting system and predict its time to failure.

  4. Lighting recommendations for the Social Security Administration Frank Hagel Federal Building in Richmond CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, Francis M.

    Specific recommendations are made to improve the lighting quality and energy efficiency of the lighting system at the Social Security Administration Frank Hagel Building in Richmond, CA. The main recommendation is to replace the recessed fluorescent lighting system in the general office area with indirect lighting. Indirect lighting will improve lighting quality, will provide an energy efficient solution and will be about the same cost as the direct lighting system originally proposed.

  5. Problems of natural lighting for deepened buildings and underground premises under screen effect of high-rise construction

    NASA Astrophysics Data System (ADS)

    Larionova, Kira; Stetsky, Sergey

    2018-03-01

    The main rationale and objective of the submitted research work is to create a quality lighting environment in the premises of deepened buildings and below-ground structures under screen effect of high-rise construction (high-rise buildings). It is noted, that in modern megapolises, a deficiency of vacant urban territories leads to the increased density of urban development with increased amount of high-rise construction and tendency to increase efficiency in the use of underground space. The natural lighting of premises in underground buildings and structures is the most efficient way, but it can be implemented only under use of roof lighting system in the form of roof monitors or skylights. In this case the levels of indoor natural lighting will be affected with serious screening effect of high-rise buildings in surrounding development. Such an situation is not regulated, or even considered by the contemporary building Codes and Regulations on natural lighting of interiors. The authors offered a new formula for a daylight factor calculation with roof lighting system in the described cases. The results of theoretical calculations and experimental studies showed very similar values. This proved the truth of the offered formula and elaborated method of calculation on the basis of an offered hypothesis. It prooves, that it is possible to use some factor and guide points in the daylight factors design under system of side natural lighting in the same design for a system of roof lighting.

  6. Building technolgies program. 1994 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, S.E.

    1995-04-01

    The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effectivemore » solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.« less

  7. Lighting system combining daylight concentrators and an artificial source

    DOEpatents

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  8. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  9. Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction

    NASA Astrophysics Data System (ADS)

    Wen, Yao-Jung

    Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real-life settings. A human subject study conducted in a private office concluded that the research system was competitive with the commercial lighting system with much fewer retrofitting requirements. The system implemented in a shared-space office realized a self-configuring mesh network with wireless photosensors and light actuators, and demonstrated a 50% energy savings and increased performance when harvesting daylight through windows is possible. The cost analysis revealed a reasonable payback period after the system is optimized for commercialization and confirms the marketing feasibility.

  10. An empirical study on energy efficiency improvement through photovoltaic systems and a LED lighting control system

    NASA Astrophysics Data System (ADS)

    Choi, Young Kwan; Lee, Jae Hyeong

    2015-09-01

    In this research, a facility was constructed and its performance was analyzed to improve the energy efficiency of a vertical-type water treatment building. After the design and construction of a fixed tilt Photovoltaic in Building (PVIB) on the rooftop using a crystalline silicon solar cell module and photovoltaic generator integrated with the building by using a Building Integrated Photovoltaic System (BIPV), a thin-film module on the rooftop and outer wall of water treatment building, and the generation efficiency was analyzed. Also, a DC distribution was established for use of a brushless DC (BLDC) pump motor, and the existing lighting-facility-based manual on-off method was turned into a system for energy conservation by controlling light emitting diode (LED) through a wireless motion sensor and dimming control. In addition, a Building Energy Management System (BEMS) for a real-time analysis of the energy efficiency for a vertical0type water treatment building was prepared and tested. The vertical-type water treatment building developed in this study is currently operating the BEMS. The vertical-type water treatment building reported in this paper is expected to reduce energy consumption by about 30% compared to existing water treatment systems.

  11. Renewable energy and conservation measures for non-residential buildings

    NASA Astrophysics Data System (ADS)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  12. Reduction of lighting energy consumption in office buildings through improved daylight design

    NASA Astrophysics Data System (ADS)

    Papadouri, Maria Violeta Prado

    This study aims to investigate the lighting energy consumption in office buildings and the options for its reduction. One way to reduce lighting energy consumption is by improving the daylight design. A better use of daylight in buildings might be an outcome from the effort made in different directions. Like the improvement of a building's fabric and layout, the materials, even the furniture in a space influences the daylight quality considerably. Also very important role in lighting energy consumption has the development of more efficient lighting technology like the electric lighting control systems, such as photo sensors and occupancy sensors. Both systems are responsible so that the electric light is not used without reason. As the focusing area of this study, is to find ways to improve the daylight use in buildings, a consequent question is which are the methods provided in order to achieve this The accuracy of the methodology used is also an important issue in order to achieve reliable results. The methodology applied in this study includes the analysis of a case study by taking field measurements and computer simulations. The first stage included gathering information about the lighting design of the building and monitoring the light levels, both from natural and from the electric lighting. The second stage involved testing with computer simulations, different parameters that were expected to improve the daylight exploitation of the specific area. The results of the field measurements showed that the main problems of the space were the low natural light levels and the poor daylight distribution. The annual electric lighting energy consumption, as it was calculated with the use of computer simulations, represented the annual energy consumption of a typical air-conditioned prestige office building (energy consumption guide 19, for energy use in offices, 2000). After several computer simulations, the results showed that initial design parameters of the building can affect the lighting energy consumption of the space significantly. On the other hand, relatively small changes, like changing the reflectance of the surfaces and the lighting control systems can make even more difference to the light quality of the space and the reduction of lighting energy consumption.

  13. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  14. Conventional and tubular skylights: An evaluation of the daylighting systems at two ACT{sup 2} commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, T.

    1997-12-31

    As part of the ACT{sup 2} project, sponsored by a major northern California utility, two occupied single-story commercial buildings were equipped with similar yet different daylighting systems in an effort to reduce electric lighting loads and provide a better workspace. The daylighting system, at the newly constructed 15,000 sq.ft. California State Automobile Association (CSAA) office building in Antioch, California, incorporates skylights with louvers, perforated blinds on the windows, and dimming ballasts which control T8 fluorescent fixtures. At the 7,500 sq.ft. retrofitted Verifone office building in Auburn, California, the building required a different kind of skylight to provide daylighting. Die tomore » the 10 foot attic space on the single-story building, a tubular-type of skylight was installed. The tubular skylight incorporates a long cylinder with a reflective internal surface to direct available sunlight into the workspace through a white diffuser. In addition, T8 fluorescent fixtures were controlled by dimming ballasts and light level controls. Annual lighting energy consumption at the CSAA building was reduced by 32% with a favorable reaction from the occupants. While the occupant response to the lighting at Verifone was generally good, thee were some problems in calibrating the lighting controls, thereby reducing energy savings.« less

  15. Energy and economic efficiency alternatives for electric lighting in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, C L; Hunter, K C; Carlisle, N

    1985-10-01

    This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categoriesmore » offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.« less

  16. Intelligent building system for airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancevic, M.

    1997-11-01

    The Munich airport uses a state-of-the-art intelligent building management system to control systems such as HVAC, runway lights, baggage handling, etc. Planning the new Munich II international airport provided a unique opportunity to use the latest state-of-the-art technical systems, while integrating their control through a single intelligent building management system. Opened in 1992, the airport is Germany`s second-largest airport after Frankfurt. The airport is staffed by 16,000 employees and can handle 17 million passengers a year. The sprawling site encompasses more than 120 buildings. The airport`s distributed control system is specifically designed to optimize the complex`s unique range of functions,more » while providing a high degree of comfort, convenience and safety for airport visitors. With the capacity to control 200,000 points, this system controls more than 112,000 points and integrates 13 major subsystems from nine different vendors. It provides convenient, accessible control of everything including the complex`s power plant, HVAC Control, the terminal`s people-moving functions, interior lighting controls, runway lights, baggage forwarding systems, elevators, and boarding bridges. The airport was named 1993 intelligent building of the year by the Intelligent Buildings Institute Foundation. Its building management system is a striking example of the degree to which a building complex`s functions can be integrated for greater operational control and efficiency.« less

  17. Cost-benefit analysis and emission reduction of energy efficient lighting at the Universiti Tenaga Nasional.

    PubMed

    Ganandran, G S B; Mahlia, T M I; Ong, Hwai Chyuan; Rismanchi, B; Chong, W T

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.

  18. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional

    PubMed Central

    Ganandran, G. S. B.; Mahlia, T. M. I.; Ong, Hwai Chyuan; Rismanchi, B.; Chong, W. T.

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment. PMID:25133258

  19. Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linhart, Friedrich; Scartezzini, Jean-Louis

    2010-04-15

    Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of lessmore » than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)« less

  20. Modeling of lighting behaviour of a hybrid lighting system in inner spaces of Building of Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Amado, L.; Osma, G.; Villamizar, R.

    2016-07-01

    This paper presents the modelling of lighting behaviour of a hybrid lighting system - HLS in inner spaces for tropical climate. HLS aims to mitigate the problem of high electricity consumption used by artificial lighting in buildings. These systems integrate intelligently the daylight and artificial light through control strategies. However, selection of these strategies usually depends on expertise of designer and of available budget. In order to improve the selection process of the control strategies, this paper analyses the Electrical Engineering Building (EEB) case, initially modelling of lighting behaviour is established for the HLS of a classroom and an office. This allows estimating the illuminance level of the mixed lighting in the space, and energy consumption by artificial light according to different lighting control techniques, a control strategy based on occupancy and a combination of them. The model considers the concept of Daylight Factor (DF) for the estimating of daylight illuminance on the work plane for tropical climatic conditions. The validation of the model was carried out by comparing the measured and model-estimated indoor illuminances.

  1. Development of Design Guidance for K-12 Schools from 30% to 50% Energy Savings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Torcellini, P.; Long, N.

    2008-07-01

    This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating.

  2. Cyber Security for Lighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Fact sheet discusses cyber threats unique to lighting control systems in buildings and helps facility managers identify the types of lighting control systems that could introduce cybersecurity risks. Download the fact sheet.

  3. Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, H.N.

    The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive pathmore » is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.« less

  4. Literature Review of the Effects of Natural Light on Building Occupants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, L.; Torcellini, P.

    This paper presents summary findings from a literature search of the term ''daylighting''-using natural light in a building to offset or replace electric lighting. According to the Department of Energy's Office of Building Technology, State and Community Programs 2000 BTS Core Databook, in 1998, commercial buildings consumed 32% of the total electricity in the United States, of which more than one-third went to lighting. Using daylighting systems and turning off the lights will help reduce this energy load. Electrical lighting adds to both the electrical and cooling loads in a commercial building. Utility costs can be decreased when daylighting ismore » properly designed to replace electrical lighting. Along with the importance of energy savings, studies have demonstrated the non-energy-related benefits of daylighting. We compiled the data from books, periodicals, Internet articles, and interviews. The books, periodicals, and Internet articles provided the background information used to identify the main subjects of the paper. The interviews provided us with details related to specific buildings and companies that have integrated daylighting into their buildings.« less

  5. Energy Signal Tool for Decision Support in Building Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use.more » As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.« less

  6. Low concentration solar louvres for building integration

    NASA Astrophysics Data System (ADS)

    Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L.

    2013-09-01

    The building integration of CPV modules offers several advantages over the integration of flat panel systems, but the decreasing price trend of standard modules observed in the last years has hampered the market expansion of CPV systems, which still don't rely on a low-cost mass production supply chain. To overcome this contingent issue and to foster the diffusion of innovative PV systems we developed a low concentration BIPV module with added functionalities, such as sunlight shading and building illumination. The electrical performances, retrieved under outdoor conditions, and the lighting performances of the Solar F-Light are shown. The latter indicate that it is suitable for ambient lighting, with a very limited power draw.

  7. New Carrollton Federal Building Lighting Retrofit Captures Cool Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-01

    Case study describes how the U.S. General Services Administration cut a $291,000 annual lighting electric bill to an estimated $53,500 by upgrading their fluorescent lighting to a new LED troffer lighting and controls system in the New Carrollton Federal Building in Lanham, Maryland. The lighting project yielded an 82% reduction in energy use and earned GSA two awards for exemplary performance from the Interior Lighting Campaign in 2016.

  8. High Performance Building Mockup in FLEXLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeil, Andrew; Kohler, Christian; Lee, Eleanor S.

    Genentech has ambitious energy and indoor environmental quality performance goals for Building 35 (B35) being constructed by Webcor at the South San Francisco campus. Genentech and Webcor contracted with the Lawrence Berkeley National Laboratory (LBNL) to test building systems including lighting, lighting controls, shade fabric, and automated shading controls in LBNL’s new FLEXLAB facility. The goal of the testing is to ensure that the systems installed in the new office building will function in a way that reduces energy consumption and provides a comfortable work environment for employees.

  9. The Control of Lighting Heat

    ERIC Educational Resources Information Center

    Modern Schools, 1973

    1973-01-01

    The trend toward increased lighting has accelerated the acceptance of heat recovery systems. A heating-lighting-cooling system is a responsible and efficient use of energy for future school buildings. (Author/MLF)

  10. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea M.; Donohue, Amy; Davis, Robert G.

    The article discusses trends in classroom design and then transitions to a discussion of the future of the classroom and how the lighting industry needs to be preparing to meet the needs of the future classroom. The OSU Classroom building as an example throughout, first discussing how trends in classroom design were incorporated into the Classroom Building and then discussing how future lighting systems could enhance the Classroom Building, which is a clear departure from the actual lighting design and current technology.

  12. A sensor-less LED dimming system based on daylight harvesting with BIPV systems.

    PubMed

    Yoo, Seunghwan; Kim, Jonghun; Jang, Cheol-Yong; Jeong, Hakgeun

    2014-01-13

    Artificial lighting in office buildings typically requires 30% of the total energy consumption of the building, providing a substantial opportunity for energy savings. To reduce the energy consumed by indoor lighting, we propose a sensor-less light-emitting diode (LED) dimming system using daylight harvesting. In this study, we used light simulation software to quantify and visualize daylight, and analyzed the correlation between photovoltaic (PV) power generation and indoor illumination in an office with an integrated PV system. In addition, we calculated the distribution of daylight illumination into the office and dimming ratios for the individual control of LED lights. Also, we were able directly to use the electric power generated by PV system. As a result, power consumption for electric lighting was reduced by 40 - 70% depending on the season and the weather conditions. Thus, the dimming system proposed in this study can be used to control electric lighting to reduce energy use cost-effectively and simply.

  13. Office worker response to an automated venetian blind and electric lighting system: A pilot study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.; Lee, E.; Clear, R.

    1998-03-01

    A prototype integrated, dynamic building envelope and lighting system designed to optimize daylight admission and solar heat gain rejection on a real-time basis in a commercial office building is evaluated. Office worker response to the system and occupant-based modifications to the control system are investigated to determine if the design and operation of the prototype system can be improved. Key findings from the study are: (1) the prototype integrated envelope and lighting system is ready for field testing, (2) most office workers (N=14) were satisfied with the system, and (3) there were few complaints. Additional studies are needed to explainmore » how illuminance distribution, lighting quality, and room design can affect workplans illuminance preferences.« less

  14. Influence of light intensity on surface free energy and dentin bond strength of core build-up resins.

    PubMed

    Shimizu, Y; Tsujimoto, A; Furuichi, T; Suzuki, T; Tsubota, K; Miyazaki, M; Platt, J A

    2015-01-01

    We examined the influence of light intensity on surface free energy characteristics and dentin bond strength of dual-cure direct core build-up resin systems. Two commercially available dual-cure direct core build-up resin systems, Clearfil DC Core Automix with Clearfil Bond SE One and UniFil Core EM with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in acrylic resin and the facial dentin surfaces were wet ground on 600-grit silicon carbide paper. Adhesives were applied to dentin surfaces and cured with light intensities of 0 (no irradiation), 200, 400, and 600 mW/cm(2). The surface free energy of the adhesives (five samples per group) was determined by measuring the contact angles of three test liquids placed on the cured adhesives. To determine the strength of the dentin bond, the core build-up resin pastes were condensed into the mold on the adhesive-treated dentin surfaces according to the methods described for the surface free energy measurement. The resin pastes were cured with the same light intensities as those used for the adhesives. Ten specimens per group were stored in water maintained at 37°C for 24 hours, after which they were shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. Two-way analysis of variance (ANOVA) and a Tukey-Kramer test were performed, with the significance level set at 0.05. The surface free energies of the adhesive-treated dentin surfaces decreased with an increase in the light intensity of the curing unit. Two-way ANOVA revealed that the type of core build-up system and the light intensity significantly influence the bond strength, although there was no significant interaction between the two factors. The highest bond strengths were achieved when the resin pastes were cured with the strongest light intensity for all the core build-up systems. When polymerized with a light intensity of 200 mW/cm(2) or less, significantly lower bond strengths were observed. CONClUSIONS: The data suggest that the dentin bond strength of core build-up systems are still affected by the light intensity of the curing unit, which is based on the surface free energy of the adhesives. On the basis of the results and limitations of the test conditions used in this study, it appears that a light intensity of >400 mW/cm(2) may be required for achieving the optimal dentin bond strength.

  15. The integration of daylighting with artificial lighting to enhance building energy performance

    NASA Astrophysics Data System (ADS)

    Al-Ashwal, Najib Taher; Hassan, Ahmad Sanusi

    2017-10-01

    In sustainable building designs, daylight is considered as an alternative source of light to artificial lighting. Daylight is an energy-free and efficient-cost lighting source. Natural light is the best source for light due to its good quality, which matches the visual response of the human eyes. Daylight positively affects people by providing a sense of liveliness and brightness in the living space. The positive impact of daylight on the building occupants' visual comfort, health and performance is well recognized. However, daylight is not widely utilized to supplement artificial lighting, because there is a lack of information and tools to evaluate daylighting and potentials for energy savings. The efficient utilization of natural lighting will not only affect the interior environment and the occupants' health and performance but also has a direct impact on the building energy performance. Therefore, this paper reviews and discusses the effects of daylighting on the building energy performance mainly in schools and office buildings. This includes lighting energy performance, total energy consumption, cooling load. The methods, which are used to estimate the possible reduction in total energy consumption, are also reviewed in this research paper. Previous studies revealed that a clear reduction can be obtained in the energy consumed by electric lighting, as well as in the total energy end-use when a suitable lighting control system is applied to utilize the available natural light.

  16. Optimal integration of daylighting and electric lighting systems using non-imaging optics

    NASA Astrophysics Data System (ADS)

    Scartezzini, J.-L.; Linhart, F.; Kaegi-Kolisnychenko, E.

    2007-09-01

    Electric lighting is responsible for a significant fraction of electricity consumption within non-residential buildings. Making daylight more available in office and commercial buildings can lead as a consequence to important electricity savings, as well as to the improvement of occupants' visual performance and wellbeing. Over the last decades, daylighting technologies have been developed for that purpose, some of them having proven to be highly efficient such as anidolic daylighting systems. Based on non-imaging optics these optical devices were designed to achieve an efficient collection and redistribution of daylight within deep office rooms. However in order to benefit from the substantial daylight provision obtained through these systems and convert it into effective electricity savings, novel electric lighting strategies are required. An optimal integration of high efficacy light sources and efficient luminaries based on non-imaging optics with anidolic daylighting systems can lead to such novel strategies. Starting from the experience gained through the development of an Anidolic Integrated Ceiling (AIC), this paper presents an optimal integrated daylighting and electric lighting system. Computer simulations based on ray-tracing techniques were used to achieve the integration of 36W fluorescent tubes and non-imaging reflectors with an advanced daylighting system. Lighting power densities lower than 4 W/m2 can be achieved in this way within the corresponding office room. On-site monitoring of an integrated daylighting and electric lighting system carried out on a solar experimental building confirmed the energy and visual performance of such a system: it showed that low lighting power densities can be achieved by combining an anidolic daylighting system with very efficient electric light sources and luminaries.

  17. Optimizing lighting, thermal performance, and energy production of building facades by using automated blinds and PV cells

    NASA Astrophysics Data System (ADS)

    Alzoubi, Hussain Hendi

    Energy consumption in buildings has recently become a major concern for environmental designers. Within this field, daylighting and solar energy design are attractive strategies for saving energy. This study seeks the integrity and the optimality of building envelopes' performance. It focuses on the transparent parts of building facades, specifically, the windows and their shading devices. It suggests a new automated method of utilizing solar energy while keeping optimal solutions for indoor daylighting. The method utilizes a statistical approach to produce mathematical equations based on physical experimentation. A full-scale mock-up representing an actual office was built. Heat gain and lighting levels were measured empirically and correlated with blind angles. Computational methods were used to estimate the power production from photovoltaic cells. Mathematical formulas were derived from the results of the experiments; these formulas were utilized to construct curves as well as mathematical equations for the purpose of optimization. The mathematical equations resulting from the optimization process were coded using Java programming language to enable future users to deal with generic locations of buildings with a broader context of various climatic conditions. For the purpose of optimization by automation under different climatic conditions, a blind control system was developed based on the findings of this study. This system calibrates the blind angles instantaneously based upon the sun position, the indoor daylight, and the power production from the photovoltaic cells. The functions of this system guarantee full control of the projected solar energy on buildings' facades for indoor lighting and heat gain. In winter, the system automatically blows heat into the space, whereas it expels heat from the space during the summer season. The study showed that the optimality of building facades' performance is achievable for integrated thermal, energy, and lighting models in buildings. There are blind angles that produce maximum energy from the photovoltaic cells while keeping indoor light within the acceptable limits that prevent undesired heat gain in summer.

  18. Illuminating the Way.

    ERIC Educational Resources Information Center

    Murphy, Peter

    1997-01-01

    Details the dramatic changes in school lighting. Describes how lighting will be more closely integrated into the "smart" school building of tomorrow and how lighting systems will evolve with schools as technology changes. Claims that direct/indirect lighting systems will serve computer users as well as reduce energy and maintenance costs. (RJM)

  19. Chamber study of PCBemissions from caulking materials and light ballasts

    EPA Science Inventory

    The emissions of polychlorinated biphenyl (PCB) congeners from 13 caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 di...

  20. Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-01-01

    Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.

  1. Trends in Public Library Buildings.

    ERIC Educational Resources Information Center

    Holt, Raymond M.

    1987-01-01

    Review of trends in public library buildings covers cycles in building activity; financial support; site selection; expansion, remodeling, or conversion of existing buildings; size of buildings; and such architectural concerns as flexible space, lighting, power, accommodation of computer systems, heat and ventilation, fire protection, security,…

  2. 26. BUILDING PLANS FOR MENTONE POWER HOUSE, PACIFIC LIGHT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. BUILDING PLANS FOR MENTONE POWER HOUSE, PACIFIC LIGHT AND POWER CO., OCT. 7, 1903. R.S. MASSON, CONSULTING ELECTRICAL ENGINEER, SAN FRANCISCO AND LOS ANGELES. SCE drawing no. 52306. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  3. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  4. Lighting: Green Light.

    ERIC Educational Resources Information Center

    Maniccia, Dorine

    2003-01-01

    Explains that by using sustainable (green) building practices, schools and universities can make their lighting systems more efficient, noting that embracing green design principles can help schools attract students. Discusses lighting-control technologies (occupancy sensing technology, daylighting technology, and scheduling based technologies),…

  5. Interior, building 1205, view to west showing roof truss system, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, building 1205, view to west showing roof truss system, 90 mm lens plus electronic flash fill lighting. - Travis Air Force Base, Readiness Maintenance Hangar, W Street, Air Defense Command Readiness Area, Fairfield, Solano County, CA

  6. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... assumed lighting power allowance. 520.5 HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  7. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  8. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  9. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  10. 10 CFR 434.520 - Speculative buildings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... assumed lighting power allowance. 520.5HVAC Systems and Equipment. If the HVAC system is not completely... construction of future HVAC systems and equipment. These assumptions shall be documented so that future HVAC... calculate the Design Energy Consumption must be documented so that the future installed lighting systems may...

  11. Affordable and personalized lighting using inverse modeling and virtual sensors

    NASA Astrophysics Data System (ADS)

    Basu, Chandrayee; Chen, Benjamin; Richards, Jacob; Dhinakaran, Aparna; Agogino, Alice; Martin, Rodney

    2014-03-01

    Wireless sensor networks (WSN) have great potential to enable personalized intelligent lighting systems while reducing building energy use by 50%-70%. As a result WSN systems are being increasingly integrated in state-ofart intelligent lighting systems. In the future these systems will enable participation of lighting loads as ancillary services. However, such systems can be expensive to install and lack the plug-and-play quality necessary for user-friendly commissioning. In this paper we present an integrated system of wireless sensor platforms and modeling software to enable affordable and user-friendly intelligent lighting. It requires ⇠ 60% fewer sensor deployments compared to current commercial systems. Reduction in sensor deployments has been achieved by optimally replacing the actual photo-sensors with real-time discrete predictive inverse models. Spatially sparse and clustered sub-hourly photo-sensor data captured by the WSN platforms are used to develop and validate a piece-wise linear regression of indoor light distribution. This deterministic data-driven model accounts for sky conditions and solar position. The optimal placement of photo-sensors is performed iteratively to achieve the best predictability of the light field desired for indoor lighting control. Using two weeks of daylight and artificial light training data acquired at the Sustainability Base at NASA Ames, the model was able to predict the light level at seven monitored workstations with 80%-95% accuracy. We estimate that 10% adoption of this intelligent wireless sensor system in commercial buildings could save 0.2-0.25 quads BTU of energy nationwide.

  12. Smart Energy Choices Free Up Dollars for Capital Improvements.

    ERIC Educational Resources Information Center

    Ritchey, David

    2003-01-01

    Describes several ways to design or renovate school building to save thousand of dollars of energy costs. Considers site design, energy-efficient building envelope, renewable energy systems, lighting and electrical systems, mechanical and ventilation systems, water conservation, and transportation. Describes how to obtain information about the…

  13. Predicting energy savings attributed to daylighting

    NASA Astrophysics Data System (ADS)

    Robbins, C. L.

    1983-11-01

    A method for estimating a building's energy savings attributable to daylighting by predicting the percentage of the year that the electric lighting system is not in use is described. This method depends upon the particular control stragegy chosen, a standard work year, and the amount of light (as a daylight factor, DF) reaching any given station in the building.

  14. 4. EXTERIOR OF SOUTH END OF BUILDING 104 SHOWING 1LIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EXTERIOR OF SOUTH END OF BUILDING 104 SHOWING 1-LIGHT SIDE EXIT DOOR AND ORIGINAL WOOD-FRAMED SLIDING GLASS KITCHEN WINDOWS AT PHOTO CENTER, AND TALL RUSTIC STYLE CHIMNEY WITH GABLE FRAME ON BACK WALL OF HOUSE. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  15. Shining a Light on Savings.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2000-01-01

    Discusses how schools and universities can save energy and money by evaluating lighting systems and changing behaviors. Retrofitting older buildings with better lighting technology and use of natural light are examined. An example of an energy conservation education program to reduce energy waste is highlighted. (GR)

  16. Lighting retrofits at the Pittsburgh Zoo and Aviary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadowski, E.C.

    The Pittsburgh Zoo occupies approximately 52 acres in the City`s Highland Park. Thirty structures serve as animal holding facilities, public display buildings, classrooms, food service facilities, offices, warehouses, a veterinary hospital, and gift shops. The cost of energy for heating, cooling, lighting, pumping, food service, etc. is approximately $280,000 a year. Of this, about 79 percent, or $220,000, is spent for electricity. About 20 percent ($44,000) of that electricity cost is spent directly on lighting. In mid-1992 a series of retrofits to the lighting systems in the Zoo`s buildings was begun. These were completed in mid-1994. These improvements cost $127,690,more » and they are expected to reduce electricity costs by $24,500 a year. The most interesting projects were carried out in the Tropical Forest Building, the Aqua Zoo, and the Niches of the World Building.« less

  17. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    NASA Astrophysics Data System (ADS)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  18. Effect of a constant-level lighting control system on small offices with windows. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, L.

    To reduce energy consumption stemming from lighting, some of the fixtures in Army office buildings have been delamped and building energy managers have instituted the policy of turning lights off when not in use. Even with these measures, lighting is still one of the largest consumers of electricity. The current problem is to find ways to reduce the energy consumption of lighting systems when they are in use. The objectives of this research was to provide information on the performance and energy savings potential of constant level lighting (CLL) controls. Based on a review of product information, researchers selected themore » Conservolite Plus 20 for testing and installed it in 10 office spaces. After 4 months of operation, a survey of the office occupants revealed that they were satisfied with the CLL system. Although electrical cost savings were realized, the payback period varied greatly, depending on the cost of replacing old or inoperable lamps and ballasts. Before large scale installation of CLL systems, it is recommended that the power factor and harmonic distortion be monitored at a large facility.« less

  19. Evaluation of an LED Retrofit Project at Princeton University's Carl Icahn Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Robert; Murphy, Arthur; Perrin, Tess

    At Princeton University’s Carl Icahn Laboratory, DOE’s Commercial Buildings Integration Program documented the implementation of LED retrofit products for recessed troffers, linear cove lighting, and downlights – as part of Princeton’s first building-wide interior LED project. The conversion to LED enables more extensive use of lighting controls to tailor the lighting to the task and limit the operating hours based on occupancy, and the estimated energy savings including controls is 62% compared to the incumbent system.

  20. Advanced Lighting Controls for Reducing Energy use and Cost in DoD Installations

    DTIC Science & Technology

    2013-05-01

    OccuSwitch Wireless is a room-based lighting control system employing dimmable light sources, occupancy and daylight sensors , wireless interconnection...combination of wireless and wired control solution for building-wide networked system that maximizes the use of daylight while improving visual...architecture of Hybrid ILDC. Architecture: The system features wireless connectivity among sensors and actuators within a zone and exploits wired

  1. Operating and Maintaining Energy Smart Schools Action Plan Template - All Action Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2009-07-01

    EnergySmart Schools action plan templates for benchmarking, lighting, HVAC, water heating, building envelope, transformer, plug loads, kitchen equipment, swimming pool, building automation system, other.

  2. Wisconsin High School Heats Itself through First Winter.

    ERIC Educational Resources Information Center

    Ratai, Walter

    1965-01-01

    Reports on the state of the Kimberly Senior High School "bootstrap" heat pump system. This system draws its heat from the lights and people in the building. Similar heat conservation systems have been operating efficiently for several years in many office and commercial buildings and are now being applied to schools. Several factors are…

  3. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  4. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  5. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  6. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  7. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1 Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  8. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.

  9. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birru, Dagnachew; Wen, Yao-Jung; Rubinstein, Francis M.

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach tomore » determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the developed control technology were evaluated and verified through both simulations and testbed implementations. Simulations coupling a DOE medium office reference building in EnergyPlus building simulation software and a prototype controller in Matlab were performed. During summer time in a mixed-humid climate zone, the simulations revealed reductions of 27% and 42% in electric lighting load and cooling load, respectively, when compared to an advanced base case with daylight dimming and blinds automatically tilted to block direct sun. Two single-room testbeds were established. The testbed at Philips Lighting business building (Rosemont, IL) was designed for quantifying energy performance of integrated controls. This particular implementation achieved 40% and 79% savings on lighting and HVAC energy, respectively, compared to a relatively simple base case operated on predefined schedules. While the resulting energy savings was very encouraging, it should be noted that there may be several caveats associated with it. 1) The test was run during late spring and early summer, and the savings numbers might not be directly used to extrapolate the annual energy savings. 2) Due to the needs for separate control and metering of the small-scale demonstrator within a large building, the HVAC system, hence the corresponding savings, did not represent a typical energy code-compliant design. 3) The light level in the control case was regulated at a particular setpoint, which was lower than then the full-on light level in the base case, and the savings resulted from tuning down the light level to the setpoint was not attributable to the contribution of the developed technology. The testbed at the Lawrence Berkeley National Laboratory (Berkeley, CA) specifically focused on glare control integration, and has demonstrated the feasibility and capability of the glare detection and prevention technique. While the short one-month test in this testbed provided a functional indication of the developed technology, and it would require at least a full solstice-to-solstice cycle to ruinously quantify the performance, which was not possible within the project timeframe. There are certain limitations inherited from the operational assumptions, which could potentially affect the effectiveness and applicability of the developed control technologies. The system takes a typical ceiling-mounting approach for the photosensor locations, and therefore, the control performance relies on proper commissioning or the built-in intelligence of the photosensor for pertinent task light level estimations. For spaces where daylight penetration diminishes significantly deeper into the zone, certain modification to the control algorithms is required to accommodate multiple lighting control subzones and the corresponding sensors for providing a more uniform light level across the entire zone. Integrated control of visual and thermal comfort requires the lighting control zone and thermal control zone to coincide with each other. In other words, the area illuminated by a lighting circuit needs to be the same area served by the thermostat. Thus, the original zoning will potentially constrain the applicability of this technology in retrofitting projects. This project demonstrated the technical feasibility of a zone-based integrated control technology. From the simulation results and testbed implementations, up to 60% lighting energy savings in daylit areas relative to a “no-controls” case can easily be achieved. A 20% reduction of whole building energy consumption is also attainable. In the aspect of occupant comfort, the testbed demonstrated the ability to maintain specified light level on the workplane while promptly mitigate daylight glare 90% of the time. The control system also managed to maintain the thermal environment at a comfortable level 90% of the time. The aspect of system scalability was guaranteed by the system architecture design, based on which the testbeds were instantiated. Analysis on the aspect of economic benefit has yielded an about 6-year payback time for a medium-sized building, including the installation of all hardware and software, such as motorized blinds and LED luminaires. The payback time can be significantly reduced if part of the hardware is already in place for retrofitting projects. It needs to be noted that since the payback analysis was partly based on the testbed performance results, it is constrained by the caveats associated with the testbed implementations. The main uncertainty lies in the contribution from the space conditioning energy savings as it was non-trivial to realistically configure a room-size HVAC system for directly extrapolating whole-building HVAC energy savings. It is recommended to further evaluate the developed technology at a larger scale, where the lighting and HVAC energy consumption can be realistically measured at the building level, to more rigorously quantify the performance potentials.« less

  10. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    NASA Astrophysics Data System (ADS)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  11. Design New Buildings To Save Energy -- and Money

    ERIC Educational Resources Information Center

    Rittelmann, Richard

    1974-01-01

    Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)

  12. Envisioning an Ecologically Sustainable Campus At New England College

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paula Amato; Gregory Palmer

    Appropriation funding for our project Ecologically Sustainable Campus - New England College (NH). 67.09. supported five environmental initiatives: (1) a wood pellet boiler for our Science Building, (2) solar hot water panels and systems for five campus buildings, (3) campus-wide energy lighting efficiency project, (4) new efficiency boiler system in Colby Residence Hall, and (5) energy efficient lighting system for the new artificial athletic turf field. (1) New England College purchased and installed a new wood pellet boiler in the Science Building. This new boiler serves as the primary heating source for this building. Our boiler was purchased through Newmore » England Wood Pellet, LLC, located in Jaffrey, New Hampshire. The boiler selected was a Swebo, P500. 300KW wood pellet boiler. The primary goals, objectives, and outcomes of this initiative include the installation of a wood pellet boiler system that is environmentally friendly, highly efficient, and represents a sustainable and renewable resource for New England College. This project was completed on December 15, 2010. (2) New England College purchased and installed solar hot water panels and systems for the Science Building, the Simon Center (student center), the H. Raymond Danforth Library, Gilmore Dining Hall, and Bridges Gymnasium. The College worked with Granite State Plumbing & Heating, LLC, located in Weare, New Hampshire on this project. The solar panels are manufactured by Heat Transfer; the product is Heat Transfer 30-tube collector panels (Evacuated Tube Type) with stainless steel hardware. The interior equipment includes Super Stor Ultra stainless steel super insulated storage tank, Taco 009 Bronze circulator pump, Solar Relay Control Pack, and a Taco Thermal Expansion Tank. The primary goals, objectives, and outcomes of this initiative will allow the College to utilize the sun as an energy resource. These solar hot water panels and systems will alleviate our dependency on fossil fuel as our primary fuel resource and provide a reliable energy source that supplies the hot water needs for sanitation, dishwashing at our dining facilities, and shower facilities for our athletes. This project initiative was completed on June 30, 2010. (3) New England College has completed energy efficiency lighting projects throughout campus, which included upgrades and new systems throughout our buildings. This project also installed efficiency controls for the Lee Clement Arena and refrigeration equipment in the Gilmore Dining Hall. The College worked with Atlantic Energy Solutions, located in Foxboro, Massachusetts on our 50/50 energy efficiency lighting project and campus-wide audit. The actual implementation of the project was completed by D. Poole Electrical Services, located in Center Barnstead, New Hampshire. The primary goals, objectives, and outcomes of this initiative were to install energy efficient lighting systems throughout our campus buildings, which ultimately will provide New England College with a more efficient way to manage and control its energy use. This project initiative was completed on February 15, 2010. (4) New England College purchased and installed a high efficiency and clean burning system for the Colby Residence Hall, which is the primary housing for our freshman. We purchased and installed two Buderus Boilers, model number G515/10 with two Riello Burners, model number RL 38/2. The College worked with Granite State Plumbing & Heating, LLS, located in Weare, New Hampshire on the installation of this high efficiency and clean burning system for the Colby Residence Hall. The primary goals, objectives, and outcomes for this initiative included the installation of a designed system of two boilers to provide redundancy for backup measures. This new system will provide New England College the flexibility to utilize just one smaller boiler to provide heat and hot water during non-peak periods thus continued reduction in energy use and our carbon footprint. This project initiative was completed on September 18, 2009. (5) New England College purchased and installed energy efficient lighting for our new artificial athletic turf field. The College selected Light-Structure Green lighting systems and worked with Musco Lighting, located in Oskaloosa. Iowa. The primary goals, objectives, and outcomes of this initiative were to install innovative lighting systems that significantly reduce energy costs and provide a high level of efficiency, resulting in overall utility savings to the College. This lighting technology combines the energy efficient equipment along with a focused lighting objective (field playing surface) to reduce the number of lighting heads needed to illuminate the playing surface to NCAA standards while reducing energy consumption by 50%. This project was completed on October 15, 2009.« less

  13. Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darula, Stanislav; Kocifaj, Miroslav; Kittler, Richard

    2010-12-15

    To ensure comfort and healthy conditions in interior spaces the thermal, acoustics and daylight factors of the environment have to be considered in the building design. Due to effective energy performance in buildings the new technology and applications also in daylight engineering are sought such as tubular light guides. These allow the transport of natural light into the building core reducing energy consumption. A lot of installations with various geometrical and optical properties can be applied in real buildings. The simplest set of tubular light guide consists of a transparent cupola, direct tube with high reflected inner surface and amore » ceiling cover or diffuser redistributing light into the interior. Such vertical tubular guide is often used on flat roofs. When the roof construction is inclined a bend in the light guide system has to be installed. In this case the cupola is set on the sloped roof which collects sunlight and skylight from the seen part of the sky hemisphere as well as that reflected from the ground and opposite facades. In comparison with the vertical tube some additional light losses and distortions of the propagated light have to be expected in bended tubular light guides. Recently the theoretical model of light propagation was already published and its applications are presented in this study solving illuminance distributions on the ceiling cover interface and further illuminance distribution on the working plane in the interior. (author)« less

  14. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Dan

    The goal of this project is to upgrade existing building facilities owned by Nunamiut Corporation in Anaktuvuk Pass, AK. The upgrades mentioned will include lighting, heating system, insulation and smart control units designed to increase the energy efficiency of Village Corporation owned buildings.

  16. 4. EXTERIOR OF SOUTH END OF BUILDING 103 SHOWING 1LIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EXTERIOR OF SOUTH END OF BUILDING 103 SHOWING 1-LIGHT SIDE EXIT DOOR AND ORIGINAL WOOD-FRAMED SLIDING GLASS KITCHEN WINDOWS AT PHOTO LEFT, CRISS-CROSS WOOD BALUSTRADE AROUND FRONT PORCH WITH OPEN DOOWAY TO BASEMENT BENEATH, AND STONE FACING ALONG ORIGINAL PORTION OF HOUSE FRONT AT PHOTO RIGHT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  17. Building-integrated photovoltaics: A case study

    NASA Astrophysics Data System (ADS)

    Kiss, G.; Kinkead, J.; Raman, M.

    1995-03-01

    In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it's nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. The roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.

  18. New Whole-House Solutions Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-02-10

    A zero energy ready home was recently completed that features an innovative wall system. This highly insulated (high-R) light-frame wall system, called the extended plate and beam, is for use above grade in residential buildings. The Building America research team Home Innovation Research Labs featured this system in a new construction test house.

  19. Final Technical Report: Commercial Advanced Lighting Control (ALC) Demonstration and Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Gabe

    This three-year demonstration and deployment project sought to address market barriers to accelerating the adoption of Advanced Lighting Controls (ALCs), an underutilized technology with low market penetration. ALCs are defined as networked, addressable lighting control systems that utilize software or intelligent controllers to combine multiple energy-saving lighting control strategies in a single space (e.g., smart-time scheduling, daylight harvesting, task tuning, occupancy control, personal control, variable load-shedding, and plug-load control). The networked intelligent aspect of these systems allows applicable lighting control strategies to be combined in a single space, layered over one another, maximizing overall energy-savings. The project included five realmore » building demonstrations of ALCs across the Northeast US region. The demonstrations provided valuable data and experience to support deployment tasks that are necessary to overcome market barriers. These deployment tasks included development of training resources for building designers, installers, and trades, as well as development of new energy efficiency rebates for the technology from Efficiency Forward’s utility partners. Educating designers, installers, and trades on ALCs is a critical task for reducing the cost of the technology that is currently inflated due to perceived complexity and unfamiliarity with how to design and install the systems. Further, utility and non-utility energy efficiency programs continue to relegate the technology to custom or ill-suited prescriptive program designs that do not effectively deploy the technology at scale. This project developed new, scalable rebate approaches for the technology. Efficiency Forward utilized their DesignLights Consortium® (DLC) brand and network of 81 DLC member utilities to develop and deploy the results of the project. The outputs of the project have included five published case studies, a six-hour ALC technology training curriculum that has already been deployed in five US states, and new rebates offered for the technology that have been deployed by a dozen utilities across the US. Widespread adoption of ALC technology in commercial buildings would provide tremendous benefits. The current market penetration of ALC systems is estimated at <0.1% in commercial buildings. If ALC systems were installed in all commercial buildings, approximately 1,051 TBtu of energy could be saved. This would translate into customer cost savings of approximately $10.7 billion annually.« less

  20. Developing Flexible Networked Lighting Control Systems

    Science.gov Websites

    , Bluetooth, ZigBee and others are increasingly used for building control purposes. Low-cost computation : Bundling digital intelligence at the sensors and lights adds virtually no incremental cost. Coupled with cost. Research Goals and Objectives This project "Developing Flexible, Networked Lighting Control

  1. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  2. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  3. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...); (6) Individual unit smoke detectors; (7) Building alarm systems; (8) Highrise criteria; (b) Light and...) Design live loads; (2) Design dead loads; (3) Snow loads; (4) Wind loads. (5) Earthquake loads (in...

  4. Public-Facilities Locator For The Blind

    NASA Technical Reports Server (NTRS)

    Moore, Kevin D.

    1988-01-01

    Proposed optoelectronic system guides blind people to important locations in public buildings, With system, sightless person easily determines directions and distances of restrooms, water fountains, stairways, emergency exits, and elevators. Circuitry uncomplicated and inexpensive, in both transmitter and receiver. Readily-available light-emitting diodes, photodiodes, and integrated-circuit chips used to build locator aid for the blind.

  5. Interior, building 1205, view to southeast showing roof truss system, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, building 1205, view to southeast showing roof truss system, sliding main doors, and roll up door at center to allow clearance for aircraft tail assembly, 90 mm lens plus electronic flash fill lighting. - Travis Air Force Base, Readiness Maintenance Hangar, W Street, Air Defense Command Readiness Area, Fairfield, Solano County, CA

  6. Large Area Projection Microstereolithography: Characterization and Optimization of 3D Printing Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Melissa R.; Moran, Bryan; Bekker, Logan

    2016-08-12

    Large Area Projection Microstereolithography (LAPμSL) is a new technology that allows the additive manufacture of parts that have feature sizes spanning from centimeters to tens of microns. Knowing the accuracy of builds from a system like this is a crucial step in development. This project explored the capabilities of the second and newest LAPμSL system that was built by comparing the features of actual builds to the desired structures. The system was then characterized in order to achieve the best results. The photo polymeric resins that were used were Autodesk PR48 and HDDA. Build parameters for Autodesk PR48 were foundmore » that allowed the prints to progress while using the full capacity of the system to print quality parts in a relatively short amount of time. One of the larger prints in particular had a print time that was nearly eighteen times faster than it would have been had printed in the first LAPμSL system. The characterization of HDDA resin helped the understanding that the flux of the light projected into the resin also affected the quality of the builds, rather than just the dose of light given. Future work for this project includes exploring the use of other resins in the LAPμSL systems, exploring the use of Raman Spectroscopy to analyze builds, and completing the characterization of the LAPμSL system.« less

  7. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    NASA Astrophysics Data System (ADS)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  8. Potential energy savings with exterior shades in large office buildings and the impact of discomfort glare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Sabine; Lee, Eleanor

    Exterior shades are highly efficient for reducing solar load in commercial buildings. Their impact on net energy use depends on the annual energy balance of heating, cooling, fan and lighting energy. This paper discusses the overall energy use intensity of various external shading systems for a prototypical large office building split into the different types of energy use and for different orientations and window sizes. Lighting energy was calculated for a constant lighting power as well as for dimmed lighting fixtures (daylighting control). In Section 3, slat angles and solar cut-off angles were varied for fixed exterior slat shading systems.more » While the most light-blocking shades performed best for the case without daylighting controls, the optimum cut-off angle with daylighting controls was found to be 30 deg for the office building prototype used in Chicago and Houston. For large window-to-wall (WWR) ratios, window related annual energy use could be reduced by at least 70 % without daylighting control and by a minimum of 86 % with daylighting control in average over all orientations. The occurrence of discomfort glare was is considered in Section 4 of the paper, which looks at the performance of commercially available exterior shading systems when an interior shade is used in addition to the exterior shade during hours when occupants would experience discomfort glare. Glare control impacts overall energy use intensity significantly for exterior shades with high transmittance, especially when daylighting controls are used. In these cases, exterior shades are only beneficial for window-to-wall areas ≥ 45% in the hot Houston climate. For smaller windows and in a heating/cooling climate like Chicago, exterior shades can increase energy consumption« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, B.M.

    A daylight office building built for Lockheed Martin near San Francisco has saved half a million dollars on energy bills and several times more due to reduced absenteeism and improved employee productivity. The building design incorporates soft daylight throughout the interior of the building. This article discusses the following topics in relationship to the building design: design for the climate; deep daylighting; integrated electric lighting; mechanical system; energy performance; the productivity story.

  10. Dual-Drive Production Prototype Project

    DOT National Transportation Integrated Search

    2009-06-01

    This project was an initiative to engineer, develop and build a plug-in hybrid-electric vehicle using the Dual-Drive system. The project aimed to build a plug-in hybrid utilitarian vehicle on a light commercial vehicle platform. The hybrid vehicle wi...

  11. The effect of building façade on natural lighting (Case study: Building of phinisi tower UNM)

    NASA Astrophysics Data System (ADS)

    Jamala, Nurul

    2017-04-01

    Utilization of natural lighting is one factor to lower the energy consumption of a building. Model building facade effect on natural light sources that can be absorbed into the building. UNM Phinisi Tower Building is a metaphor for the display of boats phinisi using Hiperbolic paraboloid facade which is futuristic sophistication of the application of science and technology, so that this object that is the focus of research on the effects on the building facade natural lighting. A quantitative research methods using Autodesk Echotech program to determine the value of the building into the natural lighting illuminance, either by using the facade and do not. The aim of research is to determine the percentage utilization of natural light into the building using a building facade. The study concluded the decline percentage in the value of the illuminance after the building using the building facade is 49% -74% and a mean value of 60.3%, so it can be concluded that the building facade effects on the natural lighting.

  12. Building-integrated photovoltaics: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, G.; Kinkead, J.; Raman, M.

    1995-03-01

    In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it`s nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. Themore » roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.« less

  13. Adaptive driving beam headlights : visibility, glare and measurement considerations.

    DOT National Transportation Integrated Search

    2016-06-01

    Recent developments in solid-state lighting, sensor and control technologies are making new : configurations for vehicle forward lighting feasible. Building on systems that automatically switch from : high- to low-beam headlights in the presence of o...

  14. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.; Gartland, L.

    The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand andmore » annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.« less

  15. Chapter 5: Connections Connections in cross-laminated timber buildings

    Treesearch

    Mohammad Mohammad; Bradford Douglas; Douglas Rammer; Steven E. Pryor

    2013-01-01

    The light weight of cross-laminated timber (CLT) products combined with the high level of prefabrication involved, in addition to the need to provide wood-based alternative products and systems to steel land concrete, have significantly contributed to the development of CLT products and systems, especially in mid-rise buildings (5 to 9 stories). While this product is...

  16. Use of wood in buildings and bridges

    Treesearch

    James P. Wacker

    2010-01-01

    In this chapter, the features of various types of building systems are described. Emphasis is placed on how these systems have adapted to the use of modern materials and techniques. For example, where floor, wall, and roof sheathing for light-frame construction were once commonly made from wood boards, sheathing is now commonly made from structural panel products, such...

  17. A light weight multichannel analyser and γ -ray spectroscopy system: Application to estimate ^{40}K content in some potassium salts and building materials

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Ajith kumar, B. P.; Kurup, Kiran K.; Varier, K. M.

    2018-01-01

    A γ -ray spectroscopy system based on a 1^' ' }× 1^' ' } NaI(Tl) detector and 1.5^' ' } photomultiplier tube has been developed at IUAC for teaching laboratory applications involving radioactive sources. Following along the lines of the Phoenix and Expeyes hardware developed in the laboratory earlier, a low-cost, light weight multichannel analyser also has been developed. Here the details about the same are presented. The detector-analyser system has been used as a part of the postgraduate curriculum for measuring ^{40}K content in some potassium salts and common building materials like brick, cement, concrete and sand.

  18. 43 CFR 12.830 - Buy American Act-Construction materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... articles, materials or supplies. However, emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, which are discrete systems incorporated into a public building or...

  19. 43 CFR 12.830 - Buy American Act-Construction materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... articles, materials or supplies. However, emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, which are discrete systems incorporated into a public building or...

  20. 43 CFR 12.830 - Buy American Act-Construction materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... articles, materials or supplies. However, emergency life safety systems, such as emergency lighting, fire alarm, and audio evacuation systems, which are discrete systems incorporated into a public building or...

  1. EEAP lighting survey study at the Red River Army Depot, Texarkana, Texas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify specific Energy Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to building interior lighting and it`s effects on the heating, ventilating and air conditioning (HVAC) systems. This survey was conducted with the assistance of many individuals at the facility.

  2. Bibliography on School Buildings.

    ERIC Educational Resources Information Center

    Nomani, M. S.; Srivastava, R. D.

    This bibliography comprises 153 references with abstracts on school building publications published during the period of 1960-1966. The references have been grouped under seven headings--(1) air conditioning and ventilation, (2) bibliography and research reports, (3) construction systems, (4) design development, (5) furniture, (6) lighting, and…

  3. Towards a comprehensive city emission function (CCEF)

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav

    2018-01-01

    The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.

  4. Solar space heating system at the Seeley G. Mudd Education Building, Pacific School of Religion, 1798 Scenic Avenue, Berkeley California 94708. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Large areas of south facing glass allow winter sunlight to penetrate the building, while overhangs provide summer shading. High ceilings allow deep penetration of this light for space heating and natural lighting. Massive construction stores solar radiation for evening warmth and provides a buffer from extreme temperature fluctuations. Natural ventilation will provide cooling. The system consists of 720 square feet of roof-mounted, liquid, flat plate solar collectors and three 350 gallon fiberglass storage tanks. The acceptance and performance tests are discussed. Also discusseed are: collector selection, construction contract, costs, and economics.

  5. Human-centered sensor-based Bayesian control: Increased energy efficiency and user satisfaction in commercial lighting

    NASA Astrophysics Data System (ADS)

    Granderson, Jessica Ann

    2007-12-01

    The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general model of a daylighted environment was designed, and a practical means of user preference identification was defined. Further, a set of general procedures were identified for the design of human-centered sensor-based decision-analytic systems, and for the identification of the allowable uncertainty in nodes of interest. To confirm generality, a vehicle health monitoring problem was defined and solved using these two procedures. 1'Daylighting' systems use sensors to determine room occupancy and available sunlight, and automatically dim the lights in response.

  6. Exterior building details of Building C, east façade: historic six ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, east façade: historic six light entry double door with three light transom, historic six light door with a one light transom, arch brick lintels and quoins, scored cement plaster finished brick walls; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  7. Skylight energy performance and design optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arasteh, D.; Johnson, R.; Selkowitz, S.

    1984-02-01

    Proper skylight utilization can significantly lower energy requirements and peak electrical loads for space conditioning and lighting in commercial buildings. In this study we systematically explore the energy effects of skylight systems in a prototypical office building and examine the savings from daylighting. The DOE-2.1B energy analysis computer program with its newly incorporated daylighting algorithms was used to generate more than 2000 parametric simulations for seven US climates. The parameters varied include skylight-to-roof ratio, shading coefficient, visible transmittance, skylight well light loss, electric lighting power density, roof heat transfer coefficient, and type of electric lighting control. For specific climates wemore » identify roof/skylight characteristics that minimize total energy or peak electrical load requirements.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Case study describes how the Byron G. Rogers Federal Building replaced existing T12 and T8 luminaires with LED dedicated troffers with advanced controls. Together these measures cut lighting energy use by nearly 60% in the 18-story, 791,000-square-foot facility. The new lighting control system provides automated dimming of lights down to 0% output when daylight provides adequate light levels. The project earned GSA an award for exemplary performance from the Interior Lighting Campaign in 2016.

  9. Image processing occupancy sensor

    DOEpatents

    Brackney, Larry J.

    2016-09-27

    A system and method of detecting occupants in a building automation system environment using image based occupancy detection and position determinations. In one example, the system includes an image processing occupancy sensor that detects the number and position of occupants within a space that has controllable building elements such as lighting and ventilation diffusers. Based on the position and location of the occupants, the system can finely control the elements to optimize conditions for the occupants, optimize energy usage, among other advantages.

  10. Lighting in Commercial Buildings

    EIA Publications

    2009-01-01

    Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings.

  11. A cascadable circular concentrator with parallel compressed structure for increasing the energy density

    NASA Astrophysics Data System (ADS)

    Ku, Nai-Lun; Chen, Yi-Yung; Hsieh, Wei-Che; Whang, Allen Jong-Woei

    2012-02-01

    Due to the energy crisis, the principle of green energy gains popularity. This leads the increasing interest in renewable energy such as solar energy. Thus, how to collect the sunlight for indoor illumination becomes our ultimate target. With the environmental awareness increasing, we use the nature light as the light source. Then we start to devote the development of solar collecting system. The Natural Light Guiding System includes three parts, collecting, transmitting and lighting part. The idea of our solar collecting system design is a concept for combining the buildings with a combination of collecting modules. Therefore, we can use it anyplace where the sunlight can directly impinges on buildings with collecting elements. In the meantime, while collecting the sunlight with high efficiency, we can transmit the sunlight into indoor through shorter distance zone by light pipe where we needs the light. We proposed a novel design including disk-type collective lens module. With the design, we can let the incident light and exit light be parallel and compressed. By the parallel and compressed design, we make every output light become compressed in the proposed optical structure. In this way, we can increase the ratio about light compression, get the better efficiency and let the energy distribution more uniform for indoor illumination. By the definition of "KPI" as an performance index about light density as following: lm/(mm)2, the simulation results show that the proposed Concentrator is 40,000,000 KPI much better than the 800,000 KPI measured from the traditional ones.

  12. Center for Building Science: Annual report, FY 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairns, E.J.; Rosenfeld, A.H.

    1987-05-01

    The Center for Building Science consists of four programs in the Applied Science Division: energy analysis, buildings energy systems, windows and lighting, and indoor environment. It was established to provide an umbrella so that goups in different programs but with similar interests could combine to perform joint research, develop new research areas, share resources, and produce joint publications. As detailed below, potential savings for the U.S. society from energy efficient buildings are enormous. But these savings can only be realized through an expanding federal RandD program that develops expertise in this new area. The Center for Building Science develops efficientmore » new building componenets, computer models, data and information systems, and trains needed builidng scientists. 135 refs., 72 figs., 18 tabs.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, R.A.

    This paper reports that properly applied, light sources and lighting systems not only enhance a building's attractiveness and usability, they also create a secure environment. An effectively lighted area can minimize pedestrian hazards and auto accidents. Good security lighting also eliminates the darkness that vandals, thieves, and felons thrive on. Unfortunately, lighting quality has sometimes been sacrificed for the sake of energy efficiency, and resulting savings offset by poor aesthetics and user dissatisfaction. However, trade-offs in quality and efficiency are not necessary, thanks to recent developments in light source technology.

  14. Interior building details of Building B, Room B003: enact eight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building B, Room B-003: enact eight light window over four window light door, six window over double three light window and painted west brick wall; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  15. Design of an energy conservation building

    NASA Astrophysics Data System (ADS)

    Jensen, R. N.

    1981-11-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  16. Design of an energy conservation building

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  17. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  18. A service platform architecture design towards a light integration of heterogeneous systems in the wellbeing domain.

    PubMed

    Yang, Yaojin; Ahtinen, Aino; Lahteenmaki, Jaakko; Nyman, Petri; Paajanen, Henrik; Peltoniemi, Teijo; Quiroz, Carlos

    2007-01-01

    System integration is one of the major challenges for building wellbeing or healthcare related information systems. In this paper, we are going to share our experiences on how to design a service platform called Nuadu service platform, for providing integrated services in occupational health promotion and health risk management through two heterogeneous systems. Our design aims for a light integration covering the layers, from data through service up to presentation, while maintaining the integrity of the underlying systems.

  19. Exterior building details of Building A; west façade: white painted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building A; west façade: white painted brick wall of road and second level, road level: paired four-light casement window and a small single-light wood casement window; second level: four-over-four wood double-hung window and a six-light horizontal pivot over a three-light fixed window; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  20. Tour Your Schools with This Energy Checklist in Hand.

    ERIC Educational Resources Information Center

    Barnett, Mark R.

    1991-01-01

    Provides a checklist for administrators to use while looking for signs of wasted energy and examining lighting, building construction, heating and ventilation systems, and plumbing and refrigeration. After completing the checklist for a single building or every school in the district, administrators should prioritize physical changes needed for…

  1. Homeostasis control of building environment using sensor agent robot

    NASA Astrophysics Data System (ADS)

    Nagahama, Eri; Mita, Akira

    2012-04-01

    A human centered system for building is demanded to meet variety of needs due to the diversification and maturation of society. Smart buildings and smart houses have been studied to satisfy this demand. However, it is difficult for such systems to respond flexibly to unexpected events and needs that are caused by aging and complicate emotion changes. With this regards, we suggest "Biofied Buildings". The goal for this research is to realize buildings that are safer, more comfortable and more energy-efficient by embedding adaptive functions of life into buildings. In this paper, we propose a new control system for building environments, focused on physiological adaptation, particularly homeostasis, endocrine system and immune system. Residents are used as living sensors and controllers in the control loop. A sensor agent robot is used to acquire resident's discomfort feeling, and to output hormone-like signals to activate devices to control the environments. The proposed system could control many devices without establishing complicated scenarios. Results obtained from some simulations and the demonstration experiments using an LED lighting system showed that the proposed system were able to achieve robust and stable control of environments without complicated scenarios.

  2. Experimental verification of an energy consumption signal tool for operational decision support in an office building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlak, Gregory S.; Henze, Gregor P.; Hirsch, Adam I.

    This paper demonstrates an energy signal tool to assess the system-level and whole-building energy use of an office building in downtown Denver, Colorado. The energy signal tool uses a traffic light visualization to alert a building operator to energy use which is substantially different from expected. The tool selects which light to display for a given energy end-use by comparing measured energy use to expected energy use, accounting for uncertainty. A red light is only displayed when a fault is likely enough, and abnormal operation costly enough, that taking action will yield the lowest cost result. While the theoretical advancesmore » and tool development were reported previously, it has only been tested using a basic building model and has not, until now, been experimentally verified. Expected energy use for the field demonstration is provided by a compact reduced-order representation of the Alliance Center, generated from a detailed DOE-2.2 energy model. Actual building energy consumption data is taken from the summer of 2014 for the office building immediately after a significant renovation project. The purpose of this paper is to demonstrate a first look at the building following its major renovation compared to the design intent. The tool indicated strong under-consumption in lighting and plug loads and strong over-consumption in HVAC energy consumption, which prompted several focused actions for follow-up investigation. In addition, this paper illustrates the application of Bayesian inference to the estimation of posterior parameter probability distributions to measured data. Practical discussion of the application is provided, along with additional findings from further investigating the significant difference between expected and actual energy consumption.« less

  3. 400 South corridor assessment.

    DOT National Transportation Integrated Search

    2017-03-01

    Local transportation agencies in the Salt Lake City (SLC) Metropolitan Area spent more than a decade : working toward building a sustainable regional transportation system. Light Rail Transit (LRT) is an : integral part of that system. Currently, thr...

  4. Research and Development Needs for Building-Integrated Solar Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  5. Data management for biofied building

    NASA Astrophysics Data System (ADS)

    Matsuura, Kohta; Mita, Akira

    2015-03-01

    Recently, Smart houses have been studied by many researchers to satisfy individual demands of residents. However, they are not feasible yet as they are very costly and require many sensors to be embedded into houses. Therefore, we suggest "Biofied Building". In Biofied Building, sensor agent robots conduct sensing, actuation, and control in their house. The robots monitor many parameters of human lives such as walking postures and emotion continuously. In this paper, a prototype network system and a data model for practical application for Biofied Building is pro-posed. In the system, functions of robots and servers are divided according to service flows in Biofield Buildings. The data model is designed to accumulate both the building data and the residents' data. Data sent from the robots and data analyzed in the servers are automatically registered into the database. Lastly, feasibility of this system is verified through lighting control simulation performed in an office space.

  6. Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology?

    PubMed

    Osman, Reham B; Alharbi, Nawal; Wismeijer, Daniel

    The aim of this study was to evaluate the effect of the build orientation/build angle on the dimensional accuracy of full-coverage dental restorations manufactured using digital light-processing technology (DLP-AM). A full dental crown was digitally designed and 3D-printed using DLP-AM. Nine build angles were used: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. The specimens were digitally scanned using a high-resolution optical surface scanner (IScan D104i, Imetric). Dimensional accuracy was evaluated using the digital subtraction technique. The 3D digital files of the scanned printed crowns (test model) were exported in standard tessellation language (STL) format and superimposed on the STL file of the designed crown [reference model] using Geomagic Studio 2014 (3D Systems). The root mean square estimate (RMSE) values were evaluated, and the deviation patterns on the color maps were further assessed. The build angle influenced the dimensional accuracy of 3D-printed restorations. The lowest RMSE was recorded for the 135-degree and 210-degree build angles. However, the overall deviation pattern on the color map was more favorable with the 135-degree build angle in contrast with the 210-degree build angle where the deviation was observed around the critical marginal area. Within the limitations of this study, the recommended build angle using the current DLP system was 135 degrees. Among the selected build angles, it offers the highest dimensional accuracy and the most favorable deviation pattern. It also offers a self-supporting crown geometry throughout the building process.

  7. Possibilities of Architectural Lighting to Create New Style

    NASA Astrophysics Data System (ADS)

    Chudinova, V. G.; Bokova, O. R.

    2017-11-01

    The article presents the argumentation of the provision on the style-forming potential of the lighting design the sphere of which is interpreted in a wide range of genres. The area of the intersection of form-building technological and artistic aspects lies in the field of ecology which includes not only energy saving, but also the well-being of the human and the society. The theory and practice of designing the night-time image of architectural ensembles, buildings and landscapes develops much slower than the implementation of light solutions in the advertising industry. In most cases, the possibilities of lighting design are used only in the field of decorative lighting despite their huge aesthetic potential and rapidly improving technologies. The request for innovation and uniqueness usually arises on the basis of image and political ambitions of large corporations or for the positioning of powerful brands. The success of such projects becomes a driver for both creation and promotion of innovative solutions. However, in a broader scientific sense, not only the design of artificial light systems but also the optimization of the daylight usage falls into the sphere lighting design. The need for the new methods of architectural shaping is dictated by the need to introduce in the building of resource-saving lighting technologies, ecological infrastructure including alternative energy sources. The article gives the examples of different lighting design genres supplemented with illustrations. The conclusions concern the prospective directions and tasks of scientific research in the field of lighting design.

  8. The Effects of Primary Light Sources on Worker Performance and Alertness

    NASA Technical Reports Server (NTRS)

    Wong, Lily; Caddick, Zachary; Kuriyagawa, Yukiyo; Flynn-Evans, Erin

    2017-01-01

    Traditional office buildings use a variety of primary light sources (e.g., LED/fluorescent lights). As interest in LEED certified office buildings increase and research has shown that enhanced lighting design improves human performance and alertness (Viola et al., 2008; Juslén & Tenner, 2005; Edwards & Torcellini, 2002), more office buildings are incorporating a daylighting design. We investigated the differences between employee performance and alertness in two different building types (daylight vs. artificial light). We hypothesized that employee performance and sleep duration would be improved in a building designed to increase exposure to natural daylight compared to traditional office settings.

  9. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  10. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-08-07

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  11. Reimagining Building Sensing and Control (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polese, L.

    2014-06-01

    Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that openmore » the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.« less

  12. The Architect's Guide to Mechanical Systems.

    ERIC Educational Resources Information Center

    Andrews, F. T.

    The principles and problems of designing new building mechanical systems are discussed in this reference source in the light of data on the functions and operation of mechanical systems. As a practical guide to understanding mechanical systems it describes system types, functions, space requirements, weights, installation, maintenance and…

  13. Energy Savings by Treating Buildings as Systems

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  14. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; Dave Watson

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less

  15. Commercial Building Energy Asset Score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This software (Asset Scoring Tool) is designed to help building owners and managers to gain insight into the as-built efficiency of their buildings. It is a web tool where users can enter their building information and obtain an asset score report. The asset score report consists of modeled building energy use (by end use and by fuel type), building systems (envelope, lighting, heating, cooling, service hot water) evaluations, and recommended energy efficiency measures. The intended users are building owners and operators who have limited knowledge of building energy efficiency. The scoring tool collects minimum building data (~20 data entries) frommore » users and build a full-scale energy model using the inference functionalities from Facility Energy Decision System (FEDS). The scoring tool runs real-time building energy simulation using EnergyPlus and performs life-cycle cost analysis using FEDS. An API is also under development to allow the third-party applications to exchange data with the web service of the scoring tool.« less

  16. Theoretical solution for light transmission of a bended hollow light guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocifaj, Miroslav; Darula, Stanislav; Kittler, Richard

    2010-08-15

    Hollow light guides with very high reflective inner surfaces are novel daylight systems that collect sunlight and skylight available on the roof of buildings transporting it into deep or windowless interiors in building cores. Thus the better utilization of daylight can result in energy savings and wellbeing in these enclosed indoor spaces. An analytical complex solution of a straight tube system was solved in the HOLIGILM method with a user-friendly tool available on the http://www.holigilm.info. An even more difficult light flow transport is to be determined in bended tubes usually placed on sloped roofs where a bend is necessary tomore » adjust the vertical pass through the ceilings. This paper presents the theoretical derivation of the model with its graphical representation and coordinate system respecting backward ray-tracing bend distortions. To imagine the resulting illuminance on the horizontal plane element in the interior, the virtual ray (i.e. luminance in an elementary solid angle) has to pass the ceiling diffuser interface, the inner mirror like tube with a bend, through a roof cupola attachment to the element of the sky and sun light source. Due to this complexity and the lengthy derivation and explanations more practical applications will be published later in a separate contribution. (author)« less

  17. Light redirecting system using sine-wave based panels for dense urban areas

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed W. N.; Mashaly, Islam A.; Mohamed, Osama N.; El-Henawy, Sally I.; Galal, Ola; Taha, Iman; Nassar, Khaled; Safwat, Amr M. E.

    2014-09-01

    Cities and towns around the world are becoming more condensed due to the shrinking amount of buildable areas, which significantly reduces the amount of light that occupants have access to. This lack of natural lighting results in health, safety and quality of life degradation. This paper presents a new technique of transmitting sunlight downward into narrow alleys and streets, by using a daylighting guiding acrylic panel that is capable of changing the direction and distribution of the incident light. The core of the proposed daylight guidance system is made up of light transmission panels with high quality. The corrugations have sine wave shaped cross-section so that the panel functions as an optical diffuser perpendicular to the direction of sunlight propagation. The day lighting system consists of the corrugated panels and a lattice frame, which supports the panel. The proposed system is to be mounted on the building roof facing the sun so as to redirect the incident sunlight downward into the narrow alleys or streets. Since building sizes and orientations are different the frame is arranged such that substantially deep light penetration and high luminance level can be achieved. Simulation results show that the proposed panel improves the illuminance values by more than 200% and 400% in autumn and winter, respectively, provides fan-out angle that exceeds 80° for certain solar altitudes and the transmitted power percentage varies from 40% to 90% as the solar altitude varies from 10° to 80°. Experimental results are in a good agreement with the simulations.

  18. 128. VIEW OF NORTHWEST CORNER OF TRANSFORMER ROOM (112), BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. VIEW OF NORTHWEST CORNER OF TRANSFORMER ROOM (112), BUILDING 751. JEFFRIES COMPANY TRANSFORMER FOR LIGHTING SYSTEMS ON NORTH WALL, FACING SOUTH; POWER PANEL A1 ON EAST WALL, FACING WEST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Development of Design Guidance for K-12 Schools: From 30% to 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Torcellini, P.; Long, N.

    2008-01-01

    This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 Schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (1999 and 2004 versions). Exhaustive simulations were run to create packages of energy design solutions available over a wide range of K-12 schools and climates. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating. We document and discuss the energy modeling performed to demonstrate that themore » recommendations will result in at least 30% energy savings over ASHRAE 90.1-1999 and ASHRAE 90.1-2004. Recommendations are evaluated based on the availability of daylighting for the school and by the type of HVAC system. Compared to the ASHRAE 90.1-1999 baseline, the recommendations result in more than 30% savings in all climate zones for both daylit and nondaylit elementary, middle, and high schools with a range of HVAC system types. These recommendations have been included in the Advanced Energy Design Guide for K-12 School Buildings. Compared to the more stringent ASHRAE 90.1-2004 baseline, the recommendations result in more than 30% savings in all climate zones, for only the daylit elementary, middle, and high schools, with a range of HVAC system types. To inform the future development of recommendations for higher level of energy savings, we analyzed a subset of recommendations to understand which energy efficiency technologies would be needed to achieve 50% energy savings.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peffer, Therese; Blumstein, Carl; Culler, David

    The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. Themore » user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.« less

  1. Wireless control system for two-axis linear oscillating motion applying CBR technology

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-03-01

    The paper presents the aspects of elaborating a movement control system. The system is to implement determination of movement characteristics of the object controlled, which performs an oscillating linear motion in a two-axis direction. The system has an electronic-optical principle of action: light receivers are attached to a controlled object, and a laser light emitter is attached to a static construction. While the object performs movement along the construction, the light emitter signal is registered by light receivers, based on which determination of the object position and characteristic of its movement are performed. An algorithm of system implementation is elaborated. Signal processing is performed on the basis of the case-based reasoning method. The system is to be used in machine-building industry in controlling relative displacement of the dynamic object or its assembly.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andrena

    The Ida H. Goode Gymnasium was constructed in 1964 to serve as a focal point for academics, student recreation, and health and wellness activities. This 38,000 SF building contains a gymnasium with a stage, swimming pool, eight classrooms, a weight room, six offices and auxiliary spaces for the athletic programs. The gym is located on a 4-acre greenfield, which is slated for improvement and enhancement to future athletics program at Bennett College. The available funding for this project was used to weatherize the envelope of the gymnasium, installation of a new energy-efficient mechanical system, and a retrofit of the existingmore » lighting systems in the building’s interior. The envelope weatherization was completed without disturbing the building’s historic preservation eligibility. The existing heating system was replaced with a new high efficiency condensing system. The new heating system also includes a new Building Automation System which provides additional monitoring. Proper usage of this system will provide additional energy savings. Most of the existing interior lighting fixtures and bulbs were replaced with new LED and high efficiency T-8 bulbs and fixtures. Occupancy sensors were installed in applicable areas. The Ida Goode Gymnasium should experience high electricity and natural gas savings as well as operational/maintenance efficiency increases. The aesthetics of the building was maintained and the overall safety was improved.« less

  3. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; David S. Watson

    Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor,more » and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.« less

  4. Demonstration of a light-redirecting skylight system at the Palm Springs Chamber of Commerce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.S.; Beltran, L.O.; Selkowitz, S.E.

    1996-05-01

    As part of a demonstration project to provide a comprehensive energy upgrade to a 294 m{sup 2} (3168 ft{sup 2}) commercial building, an advanced skylight design was developed using optical light control materials and geometry to provide daylight to two adjoining offices. The skylight system was developed using outdoor physical model tests and simulation tools Limited on-site measurements and occupant polls were conducted. Market issues were addressed. The skylight systems were found to improve lighting quality and to control excessive daylight illuminance levels compared to a conventional diffusing bubble skylight. Daylighting principles developed in earlier work for vertical glazing systemsmore » (light shelves and light pipes) were shown to be applicable in skylight designs at full-scale.« less

  5. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis ismore » based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.« less

  6. Development of a High Output Fluorescent Light Module for the Commercial Plant Biotechnology Facility

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)

    2000-01-01

    To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.

  7. Jackson Park Hospital Green Building Medical Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Dorsey; Nelson Vasquez

    2010-03-31

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital inmore » attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.« less

  8. Use of T12 lighting systems in retrofit applications within New York Office of Mental Health Facilities - A case history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, C.P.; Marsh, E.J.

    1997-06-01

    In 1990, the Governor of New York State issued Executive Order No. 132, directing all state agencies to reduce energy consumption by 20% from the base year of 1988/89 by the year 2000. To assist in meeting this goal, the New York State Office of Mental Health (OMH) established the Lighting Revitalization Program in 1992. State facilities are divided into five regions, each served by existing Environmental Revitalization Teams. OMH supplemented these teams with lighting technicians in this new program. The program`s goal was to rehabilitate outdated, inefficient lighting systems throughout 28 OMH facilities, totaling 28 million square feet inmore » area. OMH requested the former Facility Development Corporation (FDC), now the Dormitory Authority of the State of New York (DASNY), to contract with Novus Engineering to evaluate the relative efficiency of T8 and T12 ballasts. Novus contracted an independent laboratory, Eastern Testing Laboratories (ETL), for performance testing. ETL tested four ballast/lamp configurations for light Output and input power, and Novus analyzed the results for relative efficiency and also calculated 25-year life cycle costs. The test results indicated that the efficiencies of the T12/34W and T8/32W ballast/lamp technologies were nearly identical. The input power and light output of these systems were similar. The lumens per Watt ratings for the two systems were nearly equal, with the T8 technology being only about two percent more efficient, generating more light with similar input power. The life cycle costs for the two systems were nearly identical, with the T12 system providing a slightly lower life cycle cost. Given the above considerations, the agency has been installing T12 electronic ballasts and 34W lamps in buildings where fluorescent fixtures warranted upgrading. This type of retrofit goes against current trends, but the use of T8 system could not be justified in buildings undergoing minor retrofitting.« less

  9. 20. View from northeast to southwest side of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View from northeast to southwest side of scanner building 104 showing two waveguide termination faces (fiberglass light bands on left of photograph). - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in additionmore » to heating water that is consumed by fixtures and appliances.« less

  11. Robust excitons inhabit soft supramolecular nanotubes

    PubMed Central

    Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.

    2014-01-01

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336

  12. Multimodal inspection in power engineering and building industries: new challenges and solutions

    NASA Astrophysics Data System (ADS)

    Kujawińska, Małgorzata; Malesa, Marcin; Malowany, Krzysztof

    2013-09-01

    Recently the demand and number of applications of full-field, optical measurement methods based on noncoherent light sources increased significantly. They include traditional image processing, thermovision, digital image correlation (DIC) and structured light methods. However, there are still numerous challenges connected with implementation of these methods to in-situ, long-term monitoring in industrial, civil engineering and cultural heritage applications, multimodal measurements of a variety of object features or simply adopting instruments to work in hard environmental conditions. In this paper we focus on 3D DIC method and present its enhancements concerning software modifications (new visualization methods and a method for automatic merging of data distributed in time) and hardware improvements. The modified 3D DIC system combined with infrared camera system is applied in many interesting cases: measurements of boiler drum during annealing and of pipelines in heat power stations and monitoring of different building steel struts at construction site and validation of numerical models of large building structures constructed of graded metal plate arches.

  13. A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-VLLC integration

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua

    2016-04-01

    A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks.

  14. Combining shearography and interferometric fringe projection in a single device for complete control of industrial applications

    NASA Astrophysics Data System (ADS)

    Blain, Pascal; Michel, Fabrice; Piron, Pierre; Renotte, Yvon; Habraken, Serge

    2013-08-01

    Noncontact optical measurement methods are essential tools in many industrial and research domains. A family of new noncontact optical measurement methods based on the polarization states splitting technique and monochromatic light projection as a way to overcome ambient lighting for in-situ measurement has been developed. Recent works on a birefringent element, a Savart plate, allow one to build a more flexible and robust interferometer. This interferometer is a multipurpose metrological device. On one hand the interferometer can be set in front of a charge-coupled device (CCD) camera. This optical measurement system is called a shearography interferometer and allows one to measure microdisplacements between two states of the studied object under coherent lighting. On the other hand, by producing and shifting multiple sinusoidal Young's interference patterns with this interferometer, and using a CCD camera, it is possible to build a three-dimensional structured light profilometer.

  15. LSU Slashes Energy Use

    ERIC Educational Resources Information Center

    Collier, Herbert I.

    1978-01-01

    Energy conservation programs at Louisiana State University reduced energy use 23 percent. The programs involved computer controlled power management systems, adjustment of building temperatures and lighting levels to prescribed standards, consolidation of night classes, centralization of chilled water systems, and manual monitoring of heating and…

  16. Research and design of intelligent distributed traffic signal light control system based on CAN bus

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    2007-12-01

    Intelligent distributed traffic signal light control system was designed based on technologies of infrared, CAN bus, single chip microprocessor (SCM), etc. The traffic flow signal is processed with the core of SCM AT89C51. At the same time, the SCM controls the CAN bus controller SJA1000/transceiver PCA82C250 to build a CAN bus communication system to transmit data. Moreover, up PC realizes to connect and communicate with SCM through USBCAN chip PDIUSBD12. The distributed traffic signal light control system with three control styles of Vehicle flux, remote and PC is designed. This paper introduces the system composition method and parts of hardware/software design in detail.

  17. Indoor Lighting Facilities

    NASA Astrophysics Data System (ADS)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high efficiency, long life, and excellent color rendering properties. In the field of lodging, restaurants, and services, suitable atmospheres for the locations were produced by devices for controlling the light distribution of 12 V tungsten halogen equipment and by the use of indirect illumination in up-scale restaurants. In the field of residence, as was the case in the previous year, lighting distribution plans corresponding to diverse activities, such as island kitchens and home theaters, were adopted in horizontally or vertically arranged floor plans. Also, light sources, appliances, and controls with excellent efficiency were adopted for common spaces in order to correspond to the energy saving law.

  18. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  19. Natural Ventilation of Buildings through Light Shafts. Design-Based Solution Proposals

    NASA Astrophysics Data System (ADS)

    Ángel Padilla-Marcos, Miguel; Meiss, Alberto; Feijó-Muñoz, Jesús

    2017-10-01

    This work analyses how the built environment affects the quality of the air to be introduced into buildings from light shafts. Several factors such as urban environment and building design intervene in the ability of the light shaft to produce its air change process. Urban areas continuously pollute the air in cities which affects the human health and the environment sustainability. Poor air quality outside buildings supposes a big energy waste to promote an acceptable air quality inside buildings. That requires a large flow rate to maintain the indoor air quality which is translated to an energy efficiency term. The main objective focuses on the impact of standardized architecture design in the quality of the indoor air dependent on the air change in the light shaft. The air change capacity of the outdoor space is numbered analysed using the concept of air change efficiency (ACE). ACE is determined by the built environment, the wind conditions and the design of the building containing light shafts. This concept is comparatively evaluated inside a control domain virtually defined to obtain the mean age of the air for a known air volume. The longer the light shaft in the wind direction is, the better the ACE is compared with other options. Light shafts up to 12 metres high are the most suitable in order to obtain acceptable efficiency results. Other studied cases verify that assumption. Different simplified tools for the technicians to evaluate the design of buildings containing light shafts are proposed. Some strategies of architectural design of buildings with light shafts to be used for ventilation are presented.

  20. Enabling VOLTTRON: Energy Management of Commercial Buildings at the University of Maryland

    NASA Astrophysics Data System (ADS)

    Ebhojiaye, Itohan Omisi

    Buildings waste approximately 30% of energy they consume due to inefficient HVAC and lighting operation. Building Automation Systems (BAS) can aid in reducing such wasted energy, but 90% of U.S. commercial buildings lack a BAS due to their high capital costs. This thesis demonstrates how VOLTTRON, an open source operating system developed by Pacific Northwest National Laboratory, was used to disable the mechanical cooling of a rooftop unit (RTU) during unoccupied hours, on a building without a BAS. With cooling off, the RTU's electricity dropped from 18 kW to 7kW. These results indicate 450 to 550 can be saved on the monthly electric bill of the building during the summer, compared to when the RTU operated in cooling mode continuously. The installation cost of the equipment that enabled the RTU to be controlled via VOLTTRON was $6,400, thus the project has a payback period of 13 months.

  1. Dissipative and Autonomous Square-Wave Self-Oscillation of a Macroscopic Hybrid Self-Assembly under Continuous Light Irradiation.

    PubMed

    Ikegami, Tomonori; Kageyama, Yoshiyuki; Obara, Kazuma; Takeda, Sadamu

    2016-07-11

    Building a bottom-up supramolecular system to perform continuously autonomous motions will pave the way for the next generation of biomimetic mechanical systems. In biological systems, hierarchical molecular synchronization underlies the generation of spatio-temporal patterns with dissipative structures. However, it remains difficult to build such self-organized working objects via artificial techniques. Herein, we show the first example of a square-wave limit-cycle self-oscillatory motion of a noncovalent assembly of oleic acid and an azobenzene derivative. The assembly steadily flips under continuous blue-light irradiation. Mechanical self-oscillation is established by successively alternating photoisomerization processes and multi-stable phase transitions. These results offer a fundamental strategy for creating a supramolecular motor that works progressively under the operation of molecule-based machines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tips for daylighting with windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alastair; Selkowitz, Stephen

    2013-10-01

    These guidelines provide an integrated approach to the cost-effective design of perimeter zones in new commercial buildings and existing building retrofits. They function as a quick reference for building designers, through a set of easy steps and rules-of-thumb, emphasizing “how-to” practical details. References are given to more detailed sources of information, should the reader wish to go further. The design method used in this document emphasizes that building decisions should be made within the context of the whole building as a single functioning system rather than as an assembly of distinct parts. This integrated design approach looks at the ramificationsmore » of each individual system decision on the whole building. For example, the decision on glazing selection will have an effect on lighting, mechanical systems, and interior design. Therefore, the entire design team should participate and influence this glazing decision—which typically rests with the architect alone. The benefit of an integrated design approach is a greater chance of success towards long-term comfort and sustained energy savings in the building.« less

  3. Building integration of photovoltaic systems in cold climates

    NASA Astrophysics Data System (ADS)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  4. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less

  5. 77 FR 27737 - Procurement List Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ..., pictures, wall art, artificial plants, light fixtures, globes/lenses, trophies/display cases, drapes... Forces Medical Examiner System, Building 115, 115 Purple Heart Drive, Dover AFB, DE. NPA: The Chimes, Inc...

  6. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings.

    PubMed

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-05-28

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building.

  7. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings

    PubMed Central

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-01-01

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building. PMID:27240379

  8. Research on the Implementation of Technological Measures for Controlling Indoor Environmental Quality in Green Residential Buildings

    NASA Astrophysics Data System (ADS)

    Wang, Ruozhu; Liu, Pengda; Qian, Yongmei

    2018-02-01

    This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.

  9. Energy Conservation Investment Program (ECIP), FY93 limited energy study, Milan Army Ammunition Plant, Milan, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-11-11

    In May 1994, Affiliated Engineers SE, Inc. (AESE) was retained by the Mobile District US Army Corps of Engineers to perform a Limited Energy Study for Milan Army Ammunition Plant, Tennessee. The field survey of existing conditions was completed in June 1994. The results of this field survey were subsequently tabulated and used to generate single line building drawings on Autocad. Several alternative lighting models were examined to determine if a more efficient lighting system could be installed that would produce the same or better lumen levels at these facilities while reducing the buildings` electrical lighting energy consumption. This reportmore » summarizes the results obtained from this field investigation and the analysis of various alternative Energy Conservation Opportunities (ECO`s). To develop the field data into various alternative ECO concepts or models, we utilized an `Excel` spreadsheet to tabulate and compare energy consumption, light output, installation and operating costs for various ECO`s at these buildings. These ECO`s were then analyzed for suitability for the Energy Conservation lnvestment Program (ECIP) using the govemmenrs software package called Life Cycle Cost in Design (LCCID).« less

  10. Energy conservation investment program FY93 limited energy study Milan Army Ammunition Plant Milan, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-11-11

    In May 1994, Affiliated Engineers SE, Inc. (AESE) was retained by the Mobile District U.S. Army Corps of Engineers to perform a Limited Energy Study for Milan Army Ammunition Plant, Tennessee. The field survey of existing conditions was completed in June 1994. The results of this field survey were subsequently tabulated and used to generate single line building drawings on Autocad. Several alternative lighting models were examined to determine if a more efficient lighting system could be installed that would produce the same or better lumen levels at these facilities while reducing the buildings` electrical lighting energy consumption. This reportmore » summarizes the results obtained from this field investigation and the analysis of various alternative Energy Conservation Opportunities (ECO`s). To develop the field data into various alternative ECO concepts or models, we utilized an `Excel` spreadsheet to tabulate and compare energy consumption, light output, installation and operating costs for various ECO`s at these buildings. These ECO`s were then analyzed for suitability for the Energy Conservation Investment Program (ECIP) using the government`s software package called Life Cycle Cost in Design (LCCID).« less

  11. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Kinzey, Bruce R.; Curry, Ku'uipo

    2011-05-06

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along themore » building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs. However, when the life-cycle costs from energy and maintenance were factored into the scenario, the LED system had lower costs at the end of a 10-year analysis period. The LED system had a 6.1 year payback compared to the 1000W PMH system and a 7.5 year payback versus the 400W PMH system. The costs reflect high initial cost for the LED luminaire, plus more luminaires and (subsequently) more poles for the LED system. The other major issue affecting cost effectiveness was that Leavenworth, Kansas has very low electricity costs. The melded rate for this site was $0.056 per kWh for electricity. However, if the national electricity rate of $0.1022/kWh was used the payback would change to between four and five years for the LED system. This demonstration met the GATEWAY requirements of saving energy, matching or improving illumination, and being cost effective. The project also demonstrated that the Commercial Building Energy Alliance (CBEA) specification works in practice. Walmart appreciated having an entire site lighted by LEDs to gain more experience with the technology. Walmart is reviewing the results of the demonstration as they consider their entire real estate portfolio.« less

  12. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity andmore » solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.« less

  13. Holographic diffractive structures for daylighting, phase 1

    NASA Astrophysics Data System (ADS)

    1985-10-01

    Advanced Environmental Research Group (AERG) has researched and developed a proprietary device which will passively track the Sun throughout a wide range of latitudes, hours of the day and seasons of the year. The Holographic Diffractive Structure (HDS), consists of novel holographic diffraction grating designs applied to a substrate suitable for mounting or incorporated into window glazings. The HDS installations will be a low cost system for the controlled management of sunlight in buildings for energy savings and an enhanced lighting environment. The HDSs act to intercept sunlight and redirect it away from the immediate window area towards the darker regions at the rear of the room, or (via light guides) to interior spaces without windows, or (used on the facade of a building) to redirect sunlight into dark urban canyons or onto the facades of other nearby buildings.

  14. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.

    PubMed

    Song, Junyeob; Zhou, Wei

    2018-06-27

    Optical nanoantennas can concentrate light and enhance light-matter interactions in subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional optical nanoantennas operating at a single wavelength band are not suitable for multiband applications. Here, we propose and exploit an out-of-plane plasmonic engineering strategy to design and create composite optical nanoantennas that can support multiple nanolocalized modes at different resonant wavelengths. These multiresonant composite nanoantennas are composed of vertically stacked building blocks of metal-insulator-metal loop nanoantennas. Studies of multiresonant composite nanoantennas demonstrate that the number of supported modes depends on the number of vertically stacked building blocks and the resonant wavelengths of individual modes are tunable by controlling the out-of-plane geometries of their building blocks. In addition, numerical studies show that the resonant wavelengths of individual modes in composite nanoantennas can deviate from the optical response of building blocks due to hybridization of magnetic modes in neighboring building blocks. Using Au nanohole arrays as deposition masks to fabricate arrays of multilayered composite nanoantennas, we experimentally demonstrate their multiresonant optical properties in good agreement with theory predictions. These studies show that out-of-plane engineered multiresonant composite nanoantennas can provide new opportunities for fundamental nanophotonics research and practical applications involving optical multiband operations, such as multiphoton process, broadband solar energy conversion, and wavelength-multiplexed optical system.

  15. Predicting energy savings attributed to daylighting

    NASA Astrophysics Data System (ADS)

    Robbins, C. L.

    1982-08-01

    A method is described for estimating a building's energy savings attributed to daylighting by predicting the percentage of the year that the electric lighting system is not in use. This depends on the particular control strategy chosen, a standard work year, and the amount of light (as a daylight factor) reaching on daylight and sunlight availability for selected cities in the United States.

  16. Dormitory renovation project reduces energy use by 69%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokayko, M.J.

    1997-06-01

    Baldwin Hall is a three-story, 46,000 ft{sup 2} (4,273 m{sup 1}) dormitory on the campus of Allegheny College in Meadville, Pa. The building was originally built in the 1950s; an additional wing was added in the 1970s so that it has about 37,000 ft{sup 2} (3,437 m{sup 2}). The building contains approximately 100 double-occupancy student rooms; three common bathroom groups per floor; central study, lounge, and computer areas; and a laundry. Design for the renovation started in the winter of 1993; construction took place in the summer of 1994. The major goals of the renovation were: (1) to replace themore » entire building heating system (central boiler plant, distribution piping, and room heating terminals); (2) add a ventilation system within the building; (3) upgrade the building electrical system; (4) provide computer data cabling and cable TV wiring to each room; and, (5) improve room and hallway lighting and finishes.« less

  17. Building a System of Autonomous Institutions: Coordination and Collaboration in British Columbia's Community College, University College, and Institute System.

    ERIC Educational Resources Information Center

    Gaber, Devron A.

    2003-01-01

    Explores the historical development of British Columbia's community college, university college, and institute system with the focus on voluntary collaboration in relation to provincial coordination and on swings between centralization and decentralization. Study examines development in BC's post secondary system in light of broader global…

  18. Description of photovoltaic village power systems in the United States and Africa

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Bifano, W. J.

    1979-01-01

    Photovoltaic power systems in remote villages in the United States and Africa are described. These projects were undertaken to demonstrate that existing photovoltaic system technology is capable of providing electrical power for basic domestic services for the millions of small, remote communities in both developed and developing countries. One system is located in the Papago Indian Village of Schuchuli in southwest Arizona (U. S.) and became operational 16 December 1978. The other system is located in Tangaye, a rural village in Upper Volta, Africa. It became operational 1 March 1979. The Schuchuli system has a 3.5 kW (peak) solar array which provides electric power for village water pumping, a refrigerator for each family, lights in the village buildings, and a community washing machine and sewing machine. The 1.8 kW (peak) Tangaye system provides power for community water pumping, flour milling and lights in the milling building. These are both stand-alone systems (i.e., no back-up power source) which are being operated and maintained by local personnel. Both systems are instrumented. Systems operations are being monitored by NASA to measure design adequacy and to refine designs for future systems.

  19. Behavior of tunnel form buildings under quasi-static cyclic lateral loading

    USGS Publications Warehouse

    Yuksel, S.B.; Kalkan, E.

    2007-01-01

    In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

  20. Algae façade as green building method: application of algae as a method to meet the green building regulation

    NASA Astrophysics Data System (ADS)

    Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan

    2017-12-01

    The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.

  1. New Whole-House Solutions Case Study: Testing Ductless Heat Pumps in High-Performance Affordable Housing, the Woods at Golden Given - Tacoma, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-06-01

    The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and othermore » sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.« less

  2. Lighting retrofits at the Pittsburgh Zoo and Aviary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadowski, E.C.

    Energy bills for the Pittsburgh Zoo typically total $280,000 a year, of which about $220,000 are spent on electricity. Until recently, lighting accounted for 20 percent of this electricity use. This translated into an annual cost of $44,000. Recent advances in lighting technology have made it possible to perform lighting retrofits in Zoo facilities that reduce energy costs while also providing improved light quality and better lit and more natural looking exhibits and animal holding areas. Through an investment of $127,690 in these projects from mid-1992 through mid-1994, the Zoo expects to realize an annual savings in electricity costs ofmore » $24,500 and further savings from a reduction in maintenance and plant replacement costs. Retrofits to the lighting systems in the Tropical Forest Building, the Aquarium, and the Niches of the World Building were the most interesting and are described in detail. Providing a sufficient amount of ultraviolet light to maintain the health of reptiles was a particular challenge in the Niches of the World Building. Lack of separate meters and additions to the Zoo have made the determination of the actual performance of these retrofit projects impossible. A similar retrofit project at the Pittsburgh Aviary (now the National Aviary) in 1989 through 1990 provides savings figures that should be comparable to those expected at the Zoo, however. This project cost $100,000 and saved $21,008 in electricity costs during the first year of operation. Maintenance costs were reduced by approximately $5000 a year.« less

  3. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  4. Design and construction evaluation of a photovoltaic DC LED lighting system

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Jyotsna

    2008-08-01

    The market demand for commercialization of Photovoltaic (PV) systems depends a lot on the reliability, efficiency and performance of various components within the system. PV panels produce DC power when exposed to sunlight, and an inverter converts this to AC power in a typical solar powered building. Though, PV lighting has existed for a long time it hasn't been very effective, as incandescent light sources were commonly used which are inefficient. Today fluorescent fixtures are mostly used with PV's due to its high efficacy. Light-emitting diodes present a new vision to energy efficiency in lighting design with their low energy consumption. Current research predicts improved efficiencies of LED light fixtures and their commercial use is a few years away. LEDs which operate on DC voltages when coupled with photovoltaics can be a simple PV lighting application and a sustainable solution with potential for payback. This research evaluates the design and construction of a photovoltaic DC LED lighting system for a solar house at Pennsylvania State University. A detailed cost and payback analysis of a PV DC LED lighting system is presented in this research. PV output simulations for the solar house are presented. Results presented in this research indicate that the Solid state lighting market is evolving rapidly and that LED's are a choice in stand-alone photovoltaic DC lighting systems. The efficiency and the cost-effectiveness of such systems would however improve in the coming years with research and development now focused on PV systems and on Solid state lighting technologies.

  5. Homeostasis lighting control based on relationship between lighting environment and human behavior

    NASA Astrophysics Data System (ADS)

    Ueda, Risa; Mita, Akira

    2015-03-01

    Although each person has own preferences, living spaces which can respond to various preferences and needs have not become reality. Focusing on the lighting environments which influence on the impression of living spaces, this research aims to offer comfortable lighting environments for each resident by a flexible control. This research examines the relationship between lighting environments and human behaviors considering colored lights. In accord with the relationship, this research proposes an illuminance-color control system which flexibly changes spatial environments responding to human conditions. Firstly, the psychological evaluation was conducted in order to build human models for various environments. As a result, preferred lighting environments for each examinee were determined for particular behaviors. Moreover, satisfaction levels of lighting environments were calculated by using seven types of impression of the environments as parameters. The results were summarized as human models. Secondly, this research proposed "Homeostasis Lighting Control System", which employs the human models. Homeostasis lighting control system embodies the algorithm of homeostasis, which is one of the functions of the physiological adaptation. Human discomfort feelings are obtained automatically by the sensor agent robot. The system can offer comfortable lighting environments without controlling environments by residents autonomously based on the information from the robot. This research takes into accounts both illuminance and color. The robot communicates with the server which contains human models, then the system corresponds to individuals. Combining these three systems, the proposed system can effectively control the lighting environment. At last, the feasibility of the proposed system was verified by simulation experiments.

  6. Life of LED-Based White Light Sources

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Gu, Yimin

    2005-09-01

    Even though light-emitting diodes (LEDs) may have a very long life, poorly designed LED lighting systems can experience a short life. Because heat at the p-n-junction is one of the main factors that affect the life of the LED, by knowing the relationship between life and heat, LED system manufacturers can design and build long-lasting systems. In this study, several white LEDs from the same manufacturer were subjected to life tests at different ambient temperatures. The exponential decay of light output as a function of time provided a convenient method to rapidly estimate life by data extrapolation. The life of these LEDs decreases in an exponential manner with increasing temperature. In a second experiment,several high-power white LEDs from different manufacturers were life-tested under similar conditions. Results show that the different products have significantly different life values.

  7. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    PubMed

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli . Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  8. Solar optics-based active panel for solar energy storage and disinfection of greywater

    PubMed Central

    Lee, W.; Song, J.; Son, J. H.; Gutierrez, M. P.; Kang, T.; Kim, D.; Lee, L. P.

    2016-01-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli. Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems. PMID:27822328

  9. Light Emitting Diode (LED) circular traffic signal lifetime management system.

    DOT National Transportation Integrated Search

    2011-02-01

    The objective of this research is to build lifetime curves for red, yellow, and green LED circular traffic signals through 20,000-hr. accelerated stress testing of samples operating under Louisianas environmental conditions.

  10. Exterior building details of Building B, west façade: two paintedwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building B, west façade: two painted-wood single-light casements over two-light casements with concrete sill and arch brick lintel, over infilled brick patch with arch brick lintel, brick lintel above windows and brick infilled oval; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  11. Lite-therm Design Manual. Second Edition.

    ERIC Educational Resources Information Center

    Environmental Systems Corp., Atlanta, GA.

    Occupant comfort in glass facade buildings is the problem for which a solution is suggested. Optimum comfort is obtained by intercepting radiant heat before it enters the room. Through a combination of luminaires, induction boxes, and louvers, a "Lite-Therm System" is presented which integrates lighting, heating, and cooling systems into the…

  12. Methods and costs associated with outfitting light aircraft for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Rhodes, O. L.; Zetka, E. F.

    1973-01-01

    This document was designed to provide the potential user of a light aircraft remote sensor platform/data gathering system with general information on aircraft definition, implementation complexity, costs, scheduling and operational factors involved in this type of activity. Most of the subject material was developed from actual situations and problem areas encountered during the build-up cycle and early phases of flight operations.

  13. 10 CFR 434.514 - Lighting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Lighting. 434.514 Section 434.514 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.514 Lighting. 514.1Interior Lighting Power...

  14. 10 CFR 434.514 - Lighting.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Lighting. 434.514 Section 434.514 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.514 Lighting. 514.1Interior Lighting Power...

  15. 10 CFR 434.514 - Lighting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Lighting. 434.514 Section 434.514 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.514 Lighting. 514.1Interior Lighting Power...

  16. 10 CFR 434.514 - Lighting.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Lighting. 434.514 Section 434.514 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.514 Lighting. 514.1 Interior Lighting Power...

  17. 10 CFR 434.514 - Lighting.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Lighting. 434.514 Section 434.514 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.514 Lighting. 514.1Interior Lighting Power...

  18. Highlighting High Performance: Michael E. Capuano Early Childhood Center; Somerville, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2006-03-01

    This brochure describes the key high-performance building features of the Michael E. Capuano Early Childhood Center. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  19. 1. Keeper's house, oil house, light tower and storage building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house, oil house, light tower and storage building, view northeast, south or southwest sides - Petit Manan Light Station, 2.5 miles south of Petit Manan Point, Milbridge, Washington County, ME

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs,more » Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)« less

  1. Third of three panoramic views of North Base as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Third of three panoramic views of North Base as seen from top of Building 4500, Control Tower. View looks west (268°) at ancillary structures surrounding Building 4505. In immediate foreground is Building 4499 Loading Ramp. To the far upper left is Building 4497 Guard House, adjacent to Building 4496 Security Facility. At the extreme right of the view is the chimney and western corner of Building 4505 to which is attached a large light-colored wing used as offices and workspaces; to the immediate southwest of this wing stands Building 4498 Supply Warehouse. In the background, just above Building 4498 in view, stands Building 4494 Cafeteria. The round drum to the right of Building 4494 is Building 4503, a 500,000 gallon water tank which supplies the firefighting system; to the immediate right of the tank is Building 4504 Deluge Water Pumping Station which contains large pumps for firefighting. Just visible above the water tank is Building 4493 Gymnasium. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA

  2. Validation and Improvement of Reliability Methods for Air Force Building Systems

    DTIC Science & Technology

    focusing primarily on HVAC systems . This research used contingency analysis to assess the performance of each model for HVAC systems at six Air Force...probabilistic model produced inflated reliability calculations for HVAC systems . In light of these findings, this research employed a stochastic method, a...Nonhomogeneous Poisson Process (NHPP), in an attempt to produce accurate HVAC system reliability calculations. This effort ultimately concluded that

  3. A beam splitter of natural light guiding system based on dichroic prism for ecological illumination

    NASA Astrophysics Data System (ADS)

    Li, Yu-Chi; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2009-08-01

    In thremmatology, many researches focus on ecological illumination for improving the growing speed of animal or plant. According to the Trichromatic theory, any specific color can be made up of red, green, and blue light. Sunlight has full spectrum so it is the most applicable source. A Natural Light Guiding System includes collecting, transmitting, and lighting parts. In our research, we would like to design a beam splitter in the transmitting part to separate the sunlight into red, green, and blue light for ecological illumination. We use high pass and low pass dichroic coatings in a prism, called dichroic prism, to be the beam splitter to separate the wavelength. For measuring the spectra of the exit beams, we build a space with the Natural Light Guiding System. In the space, the spectra of sunlight outside and inside the space and the exit beams of the beam splitter are measured. Finally, we use prismatic structure to design the beam splitter, and optimize the surface of the element with aspheric surface and Fresnel surface to reduce the beam angle of exit light.

  4. Analysis of off-axis holographic system based on improved Jamin interferometer

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Dong, Hang; Chen, Lijuan; Zhong, Qi

    2018-02-01

    In this paper, an improved Interferometer was introduced which based on traditional Jamin Interferometer to solve the twin image where appear in on-axis holographic. Adjust the angle of reference light and object light that projected onto the CCD by change the reflector of the system to separate the zero order of diffraction, the virtual image and the real image, so that could eliminate the influence of the twin image. The result of analysis shows that the system could be realized in theory. After actually building the system, the hologram of the calibration plate is reconstructed and the result is shown to be feasible.

  5. Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conte, Emilia, E-mail: conte@poliba.it; Monno, Valeria, E-mail: vmonno@poliba.it

    2012-04-15

    The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability ofmore » a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.« less

  6. Laser Communication--An Ideal Student Project.

    ERIC Educational Resources Information Center

    Leung, W. P.; And Others

    1980-01-01

    Describes a project on the application of the laser which aims to stimulate the interest of undergraduate students in applied physics and to demonstrate the interaction between light and ultrasonic waves by building a simple laser communication system. (SK)

  7. Environmental Standards for Storage of Books and Manuscripts

    ERIC Educational Resources Information Center

    Banks, Paul N.

    1974-01-01

    Deals with those factors included in building planning that can influence preservation, deterioration, or destruction of books--temperature, humidity, light, air cleanness, ventilation, exhibition, shelving and transportation, storage of microfilm, disaster control, and monitoring systems. (CH)

  8. Lighting Automation Flying an Earthlike Habitat

    NASA Technical Reports Server (NTRS)

    Clark, Toni A.; Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and potentially earthlike habitat.

  9. Lighting Automation - Flying an Earthlike Habitat

    NASA Technical Reports Server (NTRS)

    Clark, Tori A. (Principal Investigator); Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and potentially earthlike habitat.

  10. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Whole-House Solutions for Existing Homes (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-10-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative tomore » pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.« less

  11. Analysis of energy conservation alternatives for standard Army building. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hittle, D.C.; O'Brien, R.E.; Percivall, G.S.

    1983-03-01

    This report describes energy conservation alternatives for five standard Army building designs. By surveying maps of major Army installations and using the Integrated Facilities System, the most popular designs were determined to be a two-company, rolling-pin-shaped barracks for enlisted personnel; a Type 64 barracks; a motor repair shop; a battalion headquarters and classroom building; and an enlisted personnel mess hall. The Building Loads Analysis and System Thermodynamics (BLAST) energy-analysis computer program was used to develop baseline energy consumption for each design based on the building descriptions and calibrated by comparison with the measured energy usage of similar buildings. Once themore » baseline was established, the BLAST program was used to study energy conservation alternatives (ECAs) which could be retrofit to the existing buildings. The ECAs included closing off air-handling units, adding storm windows, adding 2 in. (0.051 m) of exterior insulation to the walls, partially blocking the windows, adding roof insulation, putting up south overhangs, installing programmable thermostats, recovering heat from exhaust fans, installing temperature economizers, replacing lights, and installing partitions between areas of differing temperature.« less

  12. Energy Engineering Analysis Program (EEAP), Limited Energy Study-Lighting Fort Campbell, Kentucky: Volume 1-Sections 1-5

    DTIC Science & Technology

    1994-09-23

    Buildings, and Blanchfield Hospital buildings B and C. The energy conservation opportunities (ECOs) evaluated were high efficiency interior and exterior lighting, and indoor lighting controls . Cost estimates were prepared.

  13. Magnetic fields of green.

    PubMed

    Branton, Scott; Lile, Lawrence

    2011-01-01

    By incorporating even the basic elements of a more environmentally friendly, "green"construction and design in an MRI setting can create a safer, more pleasant space for the patients and staff, better images, and operational cost savings. Using building systems that have reduced amounts of steel can decrease construction time, increase thermal insulation, and reduce the weight of the structure meaning less energy required to transport and install. HVAC systems and lighting design can also play a major role in creating a "green"MRI suite. LEED certification places a focus on quality of the built environment, life cycle cost, and a productive indoor environment, as well as impact on the exterior environment. An LEED certified building considers costs and benefits for the lifetime of the building.

  14. Large Prefabricated Concrete Panels Collective Dwellings from the 1970s: Context and Improvements

    NASA Astrophysics Data System (ADS)

    Muntean, Daniel M.; Ungureanu, Viorel; Petran, Ioan; Georgescu, Mircea

    2017-10-01

    The period between 1960s and 1970s had a significant impact in Romania on the urban development of major cities. Because the vast expansion of the industry, the urban population has massively increased, due the large number of workers coming from the rural areas. This intense process has led to a shortage of homes on the housing market. In order to rapidly build new homes, standard residential project types were erected using large prefabricated concrete panels. By using repetitive patterns, such buildings were built in a short amount of time through the entire country. Nowadays, these buildings represent 1.8% of the built environment and accommodate more than half of a city’s population. Even though these units have reached only half their intended life span, they fail to satisfy present living standards and consume huge amounts of energy for heating, cooling, ventilation and lighting. Due to the fact that these building are based on standardised projects and were built in such a large scale, the creation of a system that brings them to current standards will not only benefit the building but also it will significantly improve the quality of life within. With the transition of the existing power grids to a “smart grid” such units can become micro power plants in future electricity networks thus contributing to micro-generation and energy storage. If one is to consider the EU 20-20-20 commitments, to find ideas for alternative and innovative strategies for further improving these building through locally adapted measures can be seen as one of the most addressed issues of today. This research offers a possible retrofitting scenario of these buildings towards a sustainable future. The building envelope is upgraded using a modular insulation system with integrated solar cells. Renewable energy systems for cooling and ventilation are integrated in order to provide flexibility of the indoor climate. Due to their small floor area, the space within the apartments is redesigned for a more efficient use of space and an improved natural lighting. Active core modules are placed on top of the unused attics and a solar panel array is introduced. Furthermore accessibility issues are addressed by facilitating access for disabled people and implementing an elevator system that currently these building do not have.

  15. Concerning the sound insulation of building elements made up of light concretes. [acoustic absorption efficiency calculations

    NASA Technical Reports Server (NTRS)

    Giurgiu, I. I.

    1974-01-01

    The sound insulating capacity of building elements made up of light concretes is considered. Analyzing differentially the behavior of light concrete building elements under the influence of incident acoustic energy and on the basis of experimental measurements, coefficients of correction are introduced into the basic formulas for calculating the sound insulating capacity for the 100-3,2000 Hz frequency band.

  16. Bay Ridge Gardens - Mixed-Humid Affordable Multifamily Housing Deep Energy Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, J.; Moore, M.; Thompson, M.

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a 'base scope' retrofit which was estimated to achieve a 30%+ savings (relative tomore » pre-retrofit) on 186 apartments, and a 'DER scope' which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.« less

  17. Luminescent Solar Concentrator Daylighting

    NASA Astrophysics Data System (ADS)

    Bornstein, Jonathan G.

    1984-11-01

    Various systems that offer potential solutions to the problem of interior daylighting have been discussed in the literature. Virtually all of these systems rely on some method of tracking the sun along its azimuth and elevation, i.e., direct imaging of the solar disk. A simpler approach, however, involves a nontracking nonimaging device that effectively eliminates moving parts and accepts both the diffuse and direct components of solar radiation. Such an approach is based on a system that combines in a common luminaire the light emitted by luminescent solar concentrators (LSC), of the three primary colors, with a highly efficient artificial point source (HID metal halide) that automatically compensates for fluctuations in the LSC array via a daylight sensor and dimming ballast. A preliminary analysis suggests that this system could supply 90% of the lighting requirement, over the course of an 8 hour day, strictly from the daylight component under typical insolation con-ditions in the Southwest United States. In office buildings alone, the total aggregate energy savings may approach a half a quad annually. This indicates a very good potential for the realization of substantial savings in building electric energy consumption.

  18. 4. Storage building, outhouse, oil house, keeper's house and light ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Storage building, outhouse, oil house, keeper's house and light tower, view southwest, northeast sides (southeast and northeast sides of keeper's house) - Petit Manan Light Station, 2.5 miles south of Petit Manan Point, Milbridge, Washington County, ME

  19. A walk through the planned CS building. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Khorramabadi, Delnaz

    1991-01-01

    Using the architectural plan views of our future computer science building as test objects, we have completed the first stage of a Building walkthrough system. The inputs to our system are AutoCAD files. An AutoCAD converter translates the geometrical information in these files into a format suitable for 3D rendering. Major model errors, such as incorrect polygon intersections and random face orientations, are detected and fixed automatically. Interactive viewing and editing tools are provided to view the results, to modify and clean the model and to change surface attributes. Our display system provides a simple-to-use user interface for interactive exploration of buildings. Using only the mouse buttons, the user can move inside and outside the building and change floors. Several viewing and rendering options are provided, such as restricting the viewing frustum, avoiding wall collisions, and selecting different rendering algorithms. A plan view of the current floor, with the position of the eye point and viewing direction on it, is displayed at all times. The scene illumination can be manipulated, by interactively controlling intensity values for 5 light sources.

  20. Preserving Envelope Efficiency in Performance Based Code Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringentmore » than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.« less

  1. Creating Library Interiors: Planning and Design Considerations.

    ERIC Educational Resources Information Center

    Jones, Plummer Alston, Jr.; Barton, Phillip K.

    1997-01-01

    Examines design considerations for public library interiors: access; acoustical treatment; assignable and nonassignable space; building interiors: ceilings, clocks, color, control, drinking fountains; exhibit space: slotwall display, floor coverings, floor loading, furniture, lighting, mechanical systems, public address, copying machines,…

  2. Segregation of colloidal swimmers by their activity

    NASA Astrophysics Data System (ADS)

    Ferrari, Melissa; Youssef, Mena; Driscoll, Michelle; Sacanna, Stefano; Pine, David; Chaikin, Paul

    We study a system of micron sized self-propelled colloidal swimmers whose activity can be switched on or off with the flick of a light switch. We have designed a system where an external LED source reflects light off of an array with hundreds of thousands of independently controlled tiny mirrors, through an optical microscope, and onto the plane of the swimmers. By exposing a collection of particles to a spatial or dynamic light field, we have the ability to control the speed of a particle based on its position, and therefore the density of the collection of particles in space. Theoreticians in the field have been building a framework that describes systems which are out-of-equilibrium and we will show how our system can be useful tool in mapping these theories to experiment. Center for Bio-inspired Energy Science.

  3. Lawrence Berkeley Laboratory/University of California lighting program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, S.

    1981-12-01

    The objective of the Lighting Program is to assist and work in concert with the lighting community (composed of manufacturers, designers, and users) to achieve a more efficient lighting economy. To implement its objectives, the Lighting Program has been divided into three major categories: technical engineering, buildings applications, and human impacts (impacts on health and vision). The technical program aims to undertake research and development projects that are both long-range and high-risk and which the lighting industry has little interest in pursuing on its own, but from which significant benefits could accrue to both the public and the industry. Themore » building applications program studies the effects that introducing daylighting in commercial buildings has on lighting and cooling electrical energy requirements as well as on peak demand. This program also examines optimization strategies for integrating energy-efficient design, lighting hardware, daylighting, and overall building energy requirements. The impacts program examines relationships between the user and the physical lighting environment, in particular how new energy-efficient technologies relate to human productivity and health. These efforts are interdisciplinary, involving engineering, optometry, and medicine. The program facilities are described and the personnel in the program is identified.« less

  4. The World Trade Center bombing: injury prevention strategies for high-rise building fires.

    PubMed

    Quenemoen, L E; Davis, Y M; Malilay, J; Sinks, T; Noji, E K; Klitzman, S

    1996-06-01

    The WTC disaster provided an opportunity to look for ways to prevent morbidity among occupants of high-rise buildings during fires. This paper first describes the overall morbidity resulting from the explosion and fire, and second, presents the results of a case-control study carried out to identify risk factors for smoke-related morbidity. The main ones include: increased age, presence of a pre-existing cardio-pulmonary condition, entrapment in a lift and prolonged evacuation time. Study results point to the importance of the following safety systems during high-rise building fires: smoke-control systems with separate emergency power sources; lift-cars, lift-car position-monitoring systems, and lift-car communication systems with separate emergency power sources; two-way emergency communication systems on all floors and in stairwells; stairwells with emergency lighting and designed for the rapid egress of crowds; evacuation systems/equipment to assist in the evacuation of vulnerable people (elderly, infirm). Also important are evacuation plans that include regularly scheduled safety training and evacuation drills.

  5. View of skylight from mezzanine of American Railway Express Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of skylight from mezzanine of American Railway Express Building to interior light well on second floor. Skylight lights interior hallway leading to mezzanine rooms - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  6. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-28

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a gridmore » of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.« less

  7. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.

    PubMed

    Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang

    2018-02-01

    A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.

  8. Plasmonic nanofocusing of light in an integrated silicon photonics platform.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2011-07-04

    The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.

  9. A comparative study of fluorescent and LED lighting in industrial facilities

    NASA Astrophysics Data System (ADS)

    Perdahci PhD, C.; Akin BSc, H. C.; Cekic Msc, O.

    2018-05-01

    Industrial facilities have always been in search for reducing outgoings and minimizing energy consumption. Rapid developments in lighting technology require more energy efficient solutions not only for industries but also for many sectors and for households. Addition of solid-state technology has brought LED lamps into play and with LED lamp usage, efficacy level has reached its current values. Lighting systems which uses fluorescent and LED lamps have become the prior choice for many industrial facilities. This paper presents a comparative study about fluorescent and LED based indoor lighting systems for a warehouse building in an industrial facility in terms of lighting distribution values, colour rendering, power consumption, energy efficiency and visual comfort. Both scenarios have been modelled and simulated by using Relux and photometric data for the luminaires have been gathered by conducting tests and measurements in an accredited laboratory.

  10. Design of energy efficient building with radiant slab cooling

    NASA Astrophysics Data System (ADS)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The analysis showed that integrated architectural and mechanical design is required to achieve the potential benefits of radiant slab cooling, including: (1) reduction of peak solar gain via windows through (a) avoiding large window-to-wall ratios and/or (b) exterior shading of windows, (2) use of low-quality cooling sources such as cooling towers and ground water, especially in cold, dry climates, and (3) coordination of system control to avoid simultaneous heating and cooling.

  11. Effective Light Directed Assembly of Building Blocks with Microscale Control.

    PubMed

    Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung

    2017-06-01

    Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Printed photodetectors

    NASA Astrophysics Data System (ADS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  13. Description of photovoltaic village power systems in the United States and Africa

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Bifano, W. J.

    1979-01-01

    The paper describes the designs, hardware, and installations of NASA photovoltaic power systems in the village of Schuchuli in Arizona and Tangaye in Upper Volta, Africa. The projects were designed to demonstrate that current photovoltaic system technology can provide electrical power for domestic services for small, remote communities. The Schuchuli system has a 3.5 kW peak solar array which provides power for water pumping, a refrigerator for each family, lights, and community washing and sewing machines. The 1.8 kW Tangaye system provides power for pumping, flour milling, and lights in the milling building. Both are stand-alone systems operated by local personnel, and they are monitored by NASA to measure design adequacy and refine future designs.

  14. Remediation System Evaluation, SMS Instruments Superfund Site

    EPA Pesticide Factsheets

    The SMS Instruments Superfund Site is located at 120 Marcus Boulevard in Deer Park, Suffolk County,New York. The site consists of a 34,000 square foot building located on a 1.5-acre lot that is surroundedby other light industrial facilities.

  15. ARC-2006-ACD06-0213-013

    NASA Image and Video Library

    2006-09-25

    Ames and Moffett Field (MFA) historical sites and memorials Entry of building N-210 Ames Flight System Research Laboratory architectural detail. Eastside showing NACA brass inset wing over front doors, light fixtures flanking the doors and glass brick window wall above the doors

  16. ARC-2006-ACD06-0213-014

    NASA Image and Video Library

    2006-09-25

    Ames and Moffett Field (MFA) historical sites and memorials Entry of building N-210 Ames Flight System Research Laboratory architectural detail. Eastside showing NACA brass inset wing over front doors, light fixtures flanking the doors and glass brick window wall above the doors

  17. 3D Virtual Environment Used to Support Lighting System Management in a Building

    NASA Astrophysics Data System (ADS)

    Sampaio, A. Z.; Ferreira, M. M.; Rosário, D. P.

    The main aim of the research project, which is in progress at the UTL, is to develop a virtual interactive model as a tool to support decision-making in the planning of construction maintenance and facilities management. The virtual model gives the capacity to allow the user to transmit, visually and interactively, information related to the components of a building, defined as a function of the time variable. In addition, the analysis of solutions for repair work/substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The first component of the virtual prototype concerns the management of lamps in a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in 3D and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.

  18. Nanooptics for high efficient photon managment

    NASA Astrophysics Data System (ADS)

    Wyrowski, Frank; Schimmel, Hagen

    2005-09-01

    Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.

  19. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  20. Development and Application of a ZigBee-Based Building Energy Monitoring and Control System

    PubMed Central

    Peng, Changhai

    2014-01-01

    Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS), which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus's main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications. PMID:25254249

  1. Development and application of a ZigBee-based building energy monitoring and control system.

    PubMed

    Peng, Changhai; Qian, Kun

    2014-01-01

    Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS), which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus's main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications.

  2. The design and evaluation of three advanced daylighting systems: Light shelves, light pipes and skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltran, L.O.; Lee, E.S.; Papmichael, K.M.

    1994-03-01

    We present results from the design and evaluation of three advanced daylighting systems: a light shelf, a light pipe, and a skylight. These systems use optical films and an optimized geometry to passively intercept and redirect sunlight further into the building. The objectives of these designs are to increase daylighting illuminance levels at distances of 4.6-9.1 m (15--30 ft) from the window, and to improve the uniformity of the daylight distribution and the luminance gradient across the room under variable sun and sky conditions throughout the year. The designs were developed through a series of computer-assisted ray-tracing studies, photometric measurements,more » and observations using physical scale models. Comprehensive sets of laboratory measurements in combination with analytical routines were then used to simulate daylight performance for any solar position. Results show increased daylight levels and an improved luminance gradient throughout the year -- indicating that lighting energy consumption and cooling energy due of lighting can be substantially reduced with improvements to visual comfort. Future development of the designs may further improve the daylighting performance of these systems.« less

  3. Exterior building details of Building B, east façade: embedded wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building B, east façade: embedded wood beams and interrupted dentil course cornice resulting from the removal of the third floor tuberculosis ward, yard level paneled Dutch door, second level two a typical six-light wood casement windows over a single-panel wood door with four light exits to fire escape; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  4. Lighting Automation - Flying an Earthlike Habit Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Howard, Ricky; Culbert, Christopher; Clark, Toni Anne; Kolomenski, Andrei

    2017-01-01

    Our proposal will enable the development of automated spacecraft habitats for long duration missions. Majority of spacecraft lighting systems employ lamps or zone specific switches and dimmers. Automation is not in the "picture". If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. To transform how spacecraft lighting environments are automated, we will provide performance data on a standard lighting communication protocol. We will investigate utilization and application of an industry accepted lighting control protocol, DMX512. We will demonstrate how lighting automation can conserve power, assist with lighting countermeasures, and utilize spatial body tracking. By using DMX512 we will prove the "wheel" does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and potentially earthlike habitat.

  5. Development of an Ultra-Light Multipurpose Drill and Tooling for the Transportable Array in Alaska

    NASA Astrophysics Data System (ADS)

    Coyle, B. J.; Lundgren, M.; Busby, R. W.

    2014-12-01

    Over the next four years the EarthScope Transportable Array (TA) will install approximately 250 to 275 broadband seismic stations in Alaska and Western Canada. The station plans build on recent developments in posthole broadband seismometer design and call for sensors to be installed in boreholes 7 inches diameter, from 1 to 5 meters deep. These boreholes will be lined with PVC or steel casing, grouted in place. The proposed station locations are in a grid-like pattern with a nominal spacing of 85 km. Since most of these locations will only be accessible by helicopter, it was necessary to develop an ultra-light drilling system that could be transported to site in one sling load by a high performance light helicopter (i.e. AS350B2 or Bell 407) and still be able to drill the variety of ground conditions we expect to encounter. In the past year we have developed a working prototype, gasoline-hydraulic drill rig that can be configured to run auger, diamond core or DTH tools, and weighs <1,300 lbs, including tooling. We have successfully drilled over 30 boreholes with this drill, including 12 for TA installations in Alaska and 13 at the Piñon Flat Observatory for testing sensor performance and placement techniques. Our drilling solution comprises: - Hydraulic system using a variable flow pump with on-demand load sensing valves to reduce the engine size needed and to cut down on heat build-up; - Rotation head mounting system on the travelling block to enable quick change of drilling tools; - Low speed, high torque rotation head for the auger, and an anchoring system that enables us to apply up to 5,000 lbs downforce for augering in permafrost; - Custom DTH that can run on low air pressure and air flow, yet is still robust enough to drill a 7 inch hole 2.5 meters through solid rock; - One-trip casing advance drilling with the DTH, steel casing is loaded at the start of drilling and follows the drill bit down; - Grout-through bottom caps for sealing the borehole casing and cementing it in place. Our next step is to build a dedicated DTH drilling system that will be light enough to mobilize to sites in one helicopter sling, including an air compressor. This rig is currently on the drawing board and we expect to build it this winter for field testing in the spring.

  6. Occupant comfort and health in green and conventional university buildings.

    PubMed

    Hedge, A; Miller, L; Dorsey, J A

    2014-01-01

    Green building standards are significantly impacting modern construction practices. The resulting structures are more energy efficient, but their impact on occupant health has not been widely studied. To investigate a range of indoor environment and ergonomic issues in green buildings. Retrospective post-occupancy evaluation survey of 319 occupants in two Leadership in Energy and Environmental Design (LEED) certified buildings and one conventional building on a Canadian University campus. Results show that working in the LEED buildings was a generally positive experience for their health, performance, and satisfaction. However, the LEED buildings did not always receive the highest ratings for environmental conditions or for health and productivity. Respondents indicated a range of concerns with thermal conditions, office lighting, noise and their overall workstation designs and these were not always better in the green buildings. These results highlight the need for better integration of ergonomic design into green buildings and into the LEED rating system, and these implications are discussed.

  7. Retrofitting solutions for two different occupancy levels of educational buildings in tropics

    NASA Astrophysics Data System (ADS)

    Yang, Junjing; Pantazaras, Alexandros; Lee, Siew Eang; Santamouris, Mattheos

    2018-01-01

    Within the multi-functionality of educational buildings, the energy conservation potential can be very different. In addition, among different retrofitting solutions investigated involving interventions on the building envelope, ventilation strategies, artificial lighting systems as well as equipment upgrading, different saving potential would come from different aspects. The opportunities for energy saving potential from the overall point of view and from the detailed aspect view of different retrofitting solutions would be very useful and important for building renovation decision making. This study presents a detailed retrofitting study of two different educational buildings. One represents a building with average occupancy variation and containing mainly offices and labs. The other one represents a building with high occupancy variation and containing mainly lecture rooms and studios. This comparison of the results gives an idea of the different energy saving potential for different types of educational buildings. Principal component analysis is also adopted to investigate the detailed performance of one of the buildings which is influenced stronger by these retrofitting solutions.

  8. Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls

    Treesearch

    T. Ho; T. Dao; S. Aaleti; J. van de Lindt; Douglas Rammer

    2016-01-01

    Cross-laminated timber (CLT) is a relatively new type of massive timber system that has shown to possess excellent mechanical properties and structural behavior in building construction. When post-tensioned with high-strength tendons, CLT panels perform well under cyclic loadings because of two key characteristics: their rocking behavior and self-centering capacity....

  9. An Institutional Mechanism to Reduce Internal Competition? A Hypothesis about the Diffusion of Satellite Universities in Italy

    ERIC Educational Resources Information Center

    Goglio, Valentina; Parigi, Paolo

    2016-01-01

    This paper sheds light on the development of a peculiar organizational form in the Italian higher education system: satellite campuses. In comparison with other European countries, the Italian system shows peculiarities in terms of differentiation and power distribution among institutional actors. Building on the idea that the opening of a…

  10. Lighting Control Systems

    DTIC Science & Technology

    2004-02-26

    Shorter payback periods After 19 Cost Benefit of Powerlink Rule of Thumb for Powerlink: Powerlink becomes more cost effective beyond 16 controlled...web enabled control (and management software) Increase in level of integration between building systems Increase in new features, functions, benefits ...focus on reducing run-time via Scheduling, Sensing, Switching Growing focus on payback Direct energy cost (with demand) Additional maintenance benefits

  11. Natural light illumination system.

    PubMed

    Whang, Allen Jong-Woei; Chen, Yi-Yung; Yang, Shu-Hua; Pan, Po-Hsuan; Chou, Kao-Hsu; Lee, Yu-Chi; Lee, Zong-Yi; Chen, Chi-An; Chen, Cheng-Nan

    2010-12-10

    In recent years, green energy has undergone a lot of development and has been the subject of many applications. Many research studies have focused on illumination with sunlight as a means of saving energy and creating healthy lighting. Natural light illumination systems have collecting, transmitting, and lighting elements. Today, most daylight collectors use dynamic concentrators; these include Sun tracking systems. However, this design is too expensive to be cost effective. To create a low-cost collector that can be easily installed on a large building, we have designed a static concentrator, which is prismatic and cascadable, to collect sunlight for indoor illumination. The transmission component uses a large number of optical fibers. Because optical fibers are expensive, this means that most of the cost for the system will be related to transmission. In this paper, we also use a prismatic structure to design an optical coupler for coupling n to 1. With the n-to-1 coupler, the number of optical fibers necessary can be greatly reduced. Although this new natural light illumination system can effectively guide collected sunlight and send it to the basement or to other indoor places for healthy lighting, previously there has been no way to manage the collected sunlight when lighting was not desired. To solve this problem, we have designed an optical switch and a beam splitter to control and separate the transmitted light. When replacing traditional sources, the lighting should have similar characteristics, such as intensity distribution and geometric parameters, to those of traditional artificial sources. We have designed, simulated, and optimized an illumination lightpipe with a dot pattern to redistribute the collected sunlight from the natural light illumination system such that it equals the qualities of a traditional lighting system. We also provide an active lighting module that provides lighting from the natural light illumination system or LED auxiliary sources, depending on circumstances. The system is controlled by a light detector. We used optical simulation tools to design and simulate the efficiency of the active module. Finally, we used the natural light illumination system to provide natural illumination for a traffic tunnel. This system will provide a great number of benefits for the people who use it.

  12. Improved Emergency Egress Lighting System for the ISS

    NASA Technical Reports Server (NTRS)

    Eaton, Leslie L.; Barr, Don A.

    2005-01-01

    Emergency lights provide illumination in corridors, stairwells, ramps, escalators, aisles, and exit passageways during power failures. Safety and visibility are critical during a power outage. If emergency lights fail to operate properly, the building occupants can become disoriented. Four documents in a collection discuss different topics relating to a proposed improved emergency egress lighting system (EELS) for the International Space Station (ISS). While the present EELS is designed around rows of green-light-emitting diodes, the proposed system contains strips of electroluminescent tape using different colors for each egress path. The proposed EELS can be powered by the same battery currently used by the present EELS, but would require an inverter because electroluminescent devices require AC. Electroluminescent devices also require significantly less current and, depending on the color, would emit 3 to 8 times the light of the present EELS. In addition, they could operate for up to 75 hours (versus .20 minutes for the present system). The first document contains a one-page summary of the proposal and an evaluation of technical merit. The second document summarizes the motivation for, and the design of, the proposed EELS. The third document addresses relevant aspects of the measurement of spectral sensitivity and the psychophysics of perception of light. The fourth document presents additional background information and technical specifications for the electroluminescent tapes.

  13. 23 CFR 750.153 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...

  14. 23 CFR 750.153 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...

  15. 23 CFR 750.153 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...

  16. 23 CFR 750.153 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...

  17. 23 CFR 750.153 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve

    Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demandmore » response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.« less

  19. 5. Historic American Buildings Survey Photocopy of elevation drawing dated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Photocopy of elevation drawing dated 1888 in office of First Coast Guard District, J. F. Kennedy Federal Building, Government Center, Boston, Mass. 02203 LIGHT-TOWER AT BOON ISLAND, MAINE SHOWING WROUGHT IRON WORK PROPOSED FOR ARRESTING VIBRATION OF LANTERN - Boon Island Light Tower, Cape Neddick, York County, ME

  20. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability.

    PubMed

    Suárez Salazar, Juan Carlos; Ngo Bieng, Marie Ange; Melgarejo, Luz Marina; Di Rienzo, Julio A; Casanoves, Fernando

    2018-01-01

    We present a typology of cacao agroforest systems in Colombian Amazonia. These systems had yet to be described in the literature, especially their potential in terms of biodiversity conservation. The systems studied are located in a post-conflict area, and a deforestation front in Colombian Amazonia. Cacao cropping systems are of key importance in Colombia: cacao plays a prime role in post conflict resolution, as cacao is a legal crop to replace illegal crops; cacao agroforests are expected to be a sustainable practice, promoting forest-friendly land use. We worked in 50 x 2000 m2 agroforest plots, in Colombian Amazonia. A cluster analysis was used to build a typology based on 28 variables characterised in each plot, and related to diversity, composition, spatial structure and light availability for the cacao trees. We included variables related to light availability to evaluate the amount of transmitted radiation to the cacao trees in each type, and its suitability for cacao ecophysiological development. We identified 4 types of cacao agroforests based on differences concerning tree species diversity and the impact of canopy spatial structure on light availability for the cacao trees in the understorey. We found 127 tree species in the dataset, with some exclusive species in each type. We also found that 3 out of the 4 types identified displayed an erosion of tree species diversity. This reduction in shade tree species may have been linked to the desire to reduce shade, but we also found that all the types described were compatible with good ecophysiological development of the cacao trees. Cacao agroforest systems may actually be achieving biodiversity conservation goals in Colombian Amazonia. One challenging prospect will be to monitor and encourage the conservation of tree species diversity in cacao agroforest systems during the development of these cropping systems, as a form of forest-friendly management enhancing sustainable peace building in Colombia.

  1. A study on feasibility of super adobe technology –an energy efficient building system using natural resources in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kamal, Razia; Saifur Rahman, Md.

    2018-04-01

    The inspiration and concept for the Superadobe system originates not from the modern architecture design experience, but from the influence of traditional rural buildings and landscape, together with a 13th century Persian poet named Jala Ad-Din Muhammad Balkhi, Rumi. The poetry sprit of Rumi, connects and enlightens the architectural theme of Nader Khalili with natural resources that anybody in the world should be able to build a home for his or her family with the simplest of elements: Earth, Water, Air and Fire. Therefore, to build a human shelter that will give maximum safety with low financial budget and minimum environmental impact with natural disaster resilient a Superadobe Technology has been adopted. The Superadobe, a form of earth bag construction using sandbag and barbed wire technology, is an economical, time efficient, energy efficient and ecologically friendly system developed by Iranian-born architect “Nader Khalili”. The system connects the natural materials and rural traditions to create a new way to use natural materials such as mud, water, air and fire which can be finished in a short time without any large construction equipment. The goal of this study is to introduce the building system, analyse the ventilation, lighting and insulation of the prototype of Superadobe system replacing the contextual earth house in Bangladesh.

  2. Fort Hood Building Occupant Survey. Volume 2 - Survey Results.

    DTIC Science & Technology

    1993-06-01

    occupant energy awareness. The survey was designed to provide insights into the work area characteristics preferred by building occupants, and to...help in designing programs that reduce energy expenditures without the negative impacts on quality of fife, productivity, and comfort that are sometimes...ventilation system and/or air conditioner noise 1 2 3 4 5 (q4_lf) Fluorescent lighting buzz 1 2 3 4 5 (q4_lo) Other noise in my work area 1 2 3 4 5 (q4_lop

  3. Significance of beating observed in earthquake responses of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet; Ghahari, S. F.; Taciroglu, E.

    2016-01-01

    The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking.

  4. Assessing Capabilities of the High Energy Liquid Laser Area Defense System through Combat Simulations

    DTIC Science & Technology

    2008-03-01

    it to strike targets with minimal collateral damage from a range of 15 kilometers. This stand -off type attack, made capable by the ATL, enables...levels they release a photon or quantum of light. This process continues until the light waves ’ strength builds and passes through the medium...mission level model. Lastly these models are classified by durability as standing models, or legacy models. Standing models are legacy models which have

  5. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    PubMed

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  6. Energy Audit . . . Here's How.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    After establishing building use patterns and complaints, a consulting engineer's walkthrough energy audit begins with the exterior. Then heating/cooling system efficiency is checked with a flue gases kit. Efficient use of water heaters, lighting, teacher lounges, and food preparation and eating areas saves energy. Most effective conservation…

  7. Smart Homes and Buildings Research at the Energy Systems Integration

    Science.gov Websites

    be as flexible as possible. Bryan Hannegan: It's one of the aspects that really makes ESIF unique. In though I as a homeowner will have one refrigerator, and one air conditioner, and one lighting control

  8. Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; McNeil, Andrew; Wetter, Michael

    2013-05-23

    Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach wasmore » evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.« less

  9. Statistical Analysis of Japanese Structural Damage Data

    DTIC Science & Technology

    1977-01-01

    buildings and no ready correlation between I-beam and lattice work columns could be established. The complete listing of the buildings contained in the final...subclassification efforts in this structure class. Of the 90 buildings in the data base, two have such light lattice work steel columns that they would...more properly be clas- sified as Very Light Steel Frame Buildings; six have concrete panel walls; two have lattice steel columns that are filled with

  10. Reasonable use of artificial lighting in building energy saving

    NASA Astrophysics Data System (ADS)

    Hou, Yuhan

    2018-06-01

    The architectural light environment is a crucial part of the built environment. Appropriate lighting can not only meet the needs of people's production and life, but also have a positive impact on people's mental state and feelings. Architectural lighting occupies a vital part of building energy consumption. At present, China's lighting electricity consumption has accounted for 12% of the total electricity generated in the country. Promoting lighting energy conservation can play an important role in alleviating energy shortages. This article mainly discusses how to make reasonable use of artificial lighting and choose suitable light sources to reduce the energy consumed by lighting under the condition of satisfying a good architectural light environment.

  11. Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (2) - light dynamics and light-matter entanglement -

    NASA Astrophysics Data System (ADS)

    Sagastizabal, R.; Langford, N. K.; Kounalakis, M.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.

    Light-matter interaction can lead to large photon build-up and hybrid atom-photon entanglement in the ultrastrong coupling (USC) regime, where the coupling strength becomes comparable to the eigenenergies of the system. Accessing the cavity degree of freedom, however, is an outstanding challenge in natural USC systems. In this talk, we directly probe light field dynamics in the USC regime using a digital simulation of the quantum Rabi model in a planar circuit QED chip with a transmon moderately coupled to a resonator. We produce high-accuracy USC light-matter dynamics, using second-order Trotterisation and up to 90 Trotter steps. We probe the average photon number, photon parity and perform Wigner tomography of the simulated field. Finally, we combine tomography of the resonator with qubit measurements to evidence the Schrödinger-cat-like atom-photon entanglement which is a key signature of light-matter dynamics in the USC regime. Funding from the EU FP7 Project ScaleQIT, the ERC Synergy Grant QC-lab, the Netherlands Organization of Scientic Research (NWO), and Microsoft Research.

  12. Massive Multi-Agent Systems Control

    NASA Technical Reports Server (NTRS)

    Campagne, Jean-Charles; Gardon, Alain; Collomb, Etienne; Nishida, Toyoaki

    2004-01-01

    In order to build massive multi-agent systems, considered as complex and dynamic systems, one needs a method to analyze and control the system. We suggest an approach using morphology to represent and control the state of large organizations composed of a great number of light software agents. Morphology is understood as representing the state of the multi-agent system as shapes in an abstract geometrical space, this notion is close to the notion of phase space in physics.

  13. Streetlight Control System Based on Wireless Communication over DALI Protocol

    PubMed Central

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-01-01

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923

  14. Development Problems With Component Construction. Proceedings of Conference of the Building Research Institute, Division of Engineering and Industrial Research (Fall 1959).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Publication of conference papers includes--(1) an overview of the ceiling system complex by a lighting manufacturer, (2) review of problems influencing the development of roofing systems, (3) description of cooperative research within the cement industry, and (4) description of joint research development of structural ceramic panels. Included…

  15. Building America Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House, Mount Joy, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less

  16. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, Michael; Field-Macumber, Kristin

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); andmore » service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.« less

  17. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less

  18. Data on European non-residential buildings.

    PubMed

    D'Agostino, Delia; Cuniberti, Barbara; Bertoldi, Paolo

    2017-10-01

    This data article relates to the research paper Energy consumption and efficiency technology measures in European non-residential buildings (D'Agostino et al., 2017) [1]. The reported data have been collected in the framework of the Green Building Programme that ran from 2006 to 2014. The project has encouraged the adoption of efficiency measures to boost energy savings in European non-residential buildings. Data focus on the one-thousand buildings that joined the Programme allowing to save around 985 GWh/year. The main requirement to join the Programme was the reduction of at least 25% primary energy consumption in a new or retrofitted building. Energy consumption before and after the renovation are provided for retrofitted buildings while, in new constructions, a building had to be designed using at least 25% less energy than requested by the country's building codes. The following data are linked within this article: energy consumption, absolute and relative savings related to primary energy, saving percentages, implemented efficiency measures and renewables. Further information is given about each building in relation to geometry, envelope, materials, lighting and systems.

  19. Mandating better buildings: a global review of building codes and prospects for improvement in the United States

    DOE PAGES

    Sun, Xiaojing; Brown, Marilyn A.; Cox, Matt; ...

    2015-03-11

    This paper provides a global overview of the design, implementation, and evolution of building energy codes. Reflecting alternative policy goals, building energy codes differ significantly across the United States, the European Union, and China. This review uncovers numerous innovative practices including greenhouse gas emissions caps per square meter of building space, energy performance certificates with retrofit recommendations, and inclusion of renewable energy to achieve “nearly zero-energy buildings”. These innovations motivated an assessment of an aggressive commercial building code applied to all US states, requiring both new construction and buildings with major modifications to comply with the latest version of themore » ASHRAE 90.1 Standards. Using the National Energy Modeling System (NEMS), we estimate that by 2035, such building codes in the United States could reduce energy for space heating, cooling, water heating and lighting in commercial buildings by 16%, 15%, 20% and 5%, respectively. Impacts on different fuels and building types, energy rates and bills as well as pollution emission reductions are also examined.« less

  20. Design of a tubular skylight system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, B.L.

    1996-10-01

    Since its introduction to the US market in 1991, tubular skylight provides a solution to the problem of lighting up dark corners in a house. Over the years, design of similar products has emphasized on quantity alone and attention to a range of other equally important issues: efficient collecting system, selection of higher specular reflectance material, seals, distribution and quality of light, was not noted. In this paper, the fundamental design concept of an efficient tubular skylight and the possibility of collimating diffuse light is reviewed. The importance of specular reflectance of the tube material on the performance of tubularmore » skylight is demonstrated. Visual appearance (quality) of transmitted light down the tube is related in part to the yellowness index of various materials. Discussion of adequacy of current building and energy code requirements on tubular skylights is briefly touched on and energy simulation results based on a numerical code are presented.« less

  1. 27 CFR 19.281 - Security.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... tanks containing spirits, denatured spirits, or wine shall be individually locked or locked within an... wines or the rooms or buildings in which they are housed, shall be equipped so that they may be secured... lights, alarm systems, guard services) or changes in construction, arrangement, or equipment shall be...

  2. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in some states. Data from this study provides insight of impacts from applying energy efficiency design strategies in buildings with grid-connected PV systems. With the current transition from traditional electric grids to future smart grids, this information plus large database of various building conditions allow possible investigations needed by governments or utilities in large scale communities for implementing various measures and policies.

  3. CAL--ERDA program manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, B. D.; Diamond, S. C.; Bennett, G. A.

    1977-10-01

    A set of computer programs, called Cal-ERDA, is described that is capable of rapid and detailed analysis of energy consumption in buildings. A new user-oriented input language, named the Building Design Language (BDL), has been written to allow simplified manipulation of the many variables used to describe a building and its operation. This manual provides the user with information necessary to understand in detail the Cal-ERDA set of computer programs. The new computer programs described include: an EXECUTIVE Processor to create computer system control commands; a BDL Processor to analyze input instructions, execute computer system control commands, perform assignments andmore » data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; a LOADS analysis program that calculates peak (design) zone and hourly loads and the effect of the ambient weather conditions, the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; a Heating, Ventilating, and Air-Conditioning (HVAC) SYSTEMS analysis program capable of modeling the operation of HVAC components including fans, coils, economizers, humidifiers, etc.; 16 standard configurations and operated according to various temperature and humidity control schedules. A plant equipment program models the operation of boilers, chillers, electrical generation equipment (diesel or turbines), heat storage apparatus (chilled or heated water), and solar heating and/or cooling systems. An ECONOMIC analysis program calculates life-cycle costs. A REPORT program produces tables of user-selected variables and arranges them according to user-specified formats. A set of WEATHER ANALYSIS programs manipulates, summarizes and plots weather data. Libraries of weather data, schedule data, and building data were prepared.« less

  4. 81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY WEST OF THOSE IN CA-133-1-A-80. COMPLEX SAFETY WARNING LIGHTS FOR SLC-3E (PAD 2) AND BLDG. 763 (LOB) LOCATED ABOVE MONITOR 3; GREEN LIGHTS ON BOTTOM OF EACH STACK ILLUMINATED. LEFT TO RIGHT BELOW MONITORS: ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  6. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te

    2016-10-01

    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.

  7. Dynamic environmental control mechanisms for pneumatic foil constructions

    NASA Astrophysics Data System (ADS)

    Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John

    2017-11-01

    Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.

  8. Solar buildings program contract summary, calendar year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-06-07

    The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries andmore » by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.« less

  9. Lifelog-based lighting design for biofied building

    NASA Astrophysics Data System (ADS)

    Kake, Fumika; Mita, Akira

    2016-04-01

    A design tool is proposed for lighting control system that reflects histories of residents' past life using a genetic mechanism. There are many previous researches which show the preference of lighting design differs depending on people and their behaviors. And recently, due to the appearance of LED which can change light color easily, the number of lighting scenes have drastically increased. It is difficult for residents to grasp all patterns of lighting and understand what pattern of lighting design fits for their behaviors. So if we can extract lighting preferences and demands of each resident from histories of past life and reflect these information in next lighting control, it's possible to make living space more comfortable. An evolutionally adaptation mechanism learnt from living organisms is proposed in this research to extract the information from lifelog, especially focusing on methylation and mutation. Methylation is one of the epigenetic algorithms making a difference in phenotype without changing DNA sequence. Mutation is one of the genetic algorithms making a difference in phenotype by changing DNA sequence. Those two mechanisms are applied in the system. First, the lifelog of residents and using hysteresis of lighting equipment are collected. Then the lifelog is converted into the genetic information and stored. When the lifelog is stored enough, the superior genes will be picked up from the stored genetic information to be reflected in lighting control in next generation. Simulations to verify the versatility of the system were conducted.

  10. 34. SECOND FLOOR WEST SIDE APARTMENT KITCHEN INTERIOR. DOORWAY AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SECOND FLOOR WEST SIDE APARTMENT KITCHEN INTERIOR. DOORWAY AT PHOTO LEFT LEADS TO PANTRY. GROUP OF THREE 6-LIGHT WOOD-FRAME CASEMENT WINDOWS OPEN TO WALKWAY AT REAR OF BUILDING. VIEW TO SOUTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  11. Is Your Center Burglar/Vandal Proofed? Guidelines for Protecting Your Center.

    ERIC Educational Resources Information Center

    Adams, Shawn

    1998-01-01

    Identifies specific steps that child care centers can take to reduce the chances of burglary and vandalism. Differentiates loss prevention, loss control, and risk financing. Includes discussion of layering defenses, perimeter protection, security lighting, building surface security, locks, and alarm systems. Discusses the importance of reducing…

  12. Environmental Assessment Addressing Gate Complex Construction at Scott Air Force Base, Illinois

    DTIC Science & Technology

    2014-04-01

    2014 221,760 No change I3. Construct Aircraft Deicing Pad, which would include an underground storage tank, a drainage system , and permanent lighting...Defense Information System Agency DNL day-night average A-weighted sound level DOD Department of Defense DOPAA Description of the Proposed Action...MWDs); a truck-inspection search office; a cargo-transfer facility; a mobile vehicle and cargo inspection system ; an over watch building; and a

  13. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Yang, Jiamiao; Shen, Yuecheng; Liu, Yan; Hemphill, Ashton S.; Wang, Lihong V.

    2017-11-01

    Optical scattering prevents light from being focused through thick biological tissue at depths greater than ˜1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.

  14. A Pilot Demonstration of Electrochromic and Thermochromic Windows in the Denver Federal Center, Building 41, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Fernandes, Luis L.; Goudey, Chad Howdy

    Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This projectmore » demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.« less

  15. Design description of the Schuchuli Village photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Vasicek, R. W.; Delombard, R.

    1981-01-01

    A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV array, 2380 ampere-hours of battery storage, an electrical equipment building, a 120 V (d.c.) electrical distribution network, and equipment and automatic controls to provide control power for pumping water into an existing water system; operating 15 refrigerators, a clothes washing machine, a sewing machine, and lights for each of the homes and communal buildings. A solar hot water heater supplies hot water for the washing machine and communal laundry. Automatic control systems provide voltage control by limiting the number of PV strings supplying power during system operation and battery charging, and load management for operating high priority at the expense of low priority loads as the main battery becomes depleted.

  16. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans,more » etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.« less

  17. Northwest Energy Efficient Manufactured Housing Program Specification Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-02-01

    The DOE research team Building America Partnership for Improved Residential Construction (BA-PIRC), Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Home Program (NEEM) program administrator, collaborated to research a new specification that would reduce the energy requirements of a NEEM home.This research identified and developed combinations of cost-effective high performance building assemblies and mechanical systems that can readily can be deployed in the manufacturing setting that reduce energy used for space conditioning, water heating and lighting by 50% over the present NEEM specifications.

  18. Light Steel-Timber Frame with Composite and Plaster Bracing Panels

    PubMed Central

    Scotta, Roberto; Trutalli, Davide; Fiorin, Laura; Pozza, Luca; Marchi, Luca; De Stefani, Lorenzo

    2015-01-01

    The proposed light-frame structure comprises steel columns for vertical loads and an innovative bracing system to efficiently resist seismic actions. This seismic force resisting system consists of a light timber frame braced with an Oriented Strand Board (OSB) sheet and an external technoprene plaster-infilled slab. Steel brackets are used as foundation and floor connections. Experimental cyclic-loading tests were conduced to study the seismic response of two shear-wall specimens. A numerical model was calibrated on experimental results and the dynamic non-linear behavior of a case-study building was assessed. Numerical results were then used to estimate the proper behavior factor value, according to European seismic codes. Obtained results demonstrate that this innovative system is suitable for the use in seismic-prone areas thanks to the high ductility and dissipative capacity achieved by the bracing system. This favorable behavior is mainly due to the fasteners and materials used and to the correct application of the capacity design approach. PMID:28793642

  19. Light Steel-Timber Frame with Composite and Plaster Bracing Panels.

    PubMed

    Scotta, Roberto; Trutalli, Davide; Fiorin, Laura; Pozza, Luca; Marchi, Luca; De Stefani, Lorenzo

    2015-11-03

    The proposed light-frame structure comprises steel columns for vertical loads and an innovative bracing system to efficiently resist seismic actions. This seismic force resisting system consists of a light timber frame braced with an Oriented Strand Board (OSB) sheet and an external technoprene plaster-infilled slab. Steel brackets are used as foundation and floor connections. Experimental cyclic-loading tests were conduced to study the seismic response of two shear-wall specimens. A numerical model was calibrated on experimental results and the dynamic non-linear behavior of a case-study building was assessed. Numerical results were then used to estimate the proper behavior factor value, according to European seismic codes. Obtained results demonstrate that this innovative system is suitable for the use in seismic-prone areas thanks to the high ductility and dissipative capacity achieved by the bracing system. This favorable behavior is mainly due to the fasteners and materials used and to the correct application of the capacity design approach.

  20. Semi-transparent solar cells

    NASA Astrophysics Data System (ADS)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  1. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.« less

  2. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this study is to be incorporated in planning of short- and long term maintenance programs of the Swedish Defence. In general the military buildings are expected to have better status than civilian buildings, due to the more rigorous control during the building process, performed by military building authorities.

  3. Forensic imaging tools for law enforcement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMITHPETER,COLIN L.; SANDISON,DAVID R.; VARGO,TIMOTHY D.

    2000-01-01

    Conventional methods of gathering forensic evidence at crime scenes are encumbered by difficulties that limit local law enforcement efforts to apprehend offenders and bring them to justice. Working with a local law-enforcement agency, Sandia National Laboratories has developed a prototype multispectral imaging system that can speed up the investigative search task and provide additional and more accurate evidence. The system, called the Criminalistics Light-imaging Unit (CLU), has demonstrated the capabilities of locating fluorescing evidence at crime scenes under normal lighting conditions and of imaging other types of evidence, such as untreated fingerprints, by direct white-light reflectance. CLU employs state ofmore » the art technology that provides for viewing and recording of the entire search process on videotape. This report describes the work performed by Sandia to design, build, evaluate, and commercialize CLU.« less

  4. Concentrated solar power in the built environment

    NASA Astrophysics Data System (ADS)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  5. High Level Analysis, Design and Validation of Distributed Mobile Systems with CoreASM

    NASA Astrophysics Data System (ADS)

    Farahbod, R.; Glässer, U.; Jackson, P. J.; Vajihollahi, M.

    System design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes (desired requirements and resulting properties) so as to ensure these attributes are properly established prior to actually building a system. We explore here the practical side of using the abstract state machine (ASM) formalism in combination with the CoreASM open source tool environment for high-level design and experimental validation of complex distributed systems. Emphasizing the early phases of the design process, a guiding principle is to support freedom of experimentation by minimizing the need for encoding. CoreASM has been developed and tested building on a broad scope of applications, spanning computational criminology, maritime surveillance and situation analysis. We critically reexamine here the CoreASM project in light of three different application scenarios.

  6. Building a Construction Curriculum for Your School District

    ERIC Educational Resources Information Center

    Ruder, Robert

    2010-01-01

    Embracing the notion of going green, an affluent school district in Pennsylvania spent $83 million as part of the high school's renovation and expansion project. The three-level addition is now equipped with self-dimming lights, energy-efficient windows, a rooftop solar water heater, and a geothermal cooling and heating system. As a bonus for…

  7. Energy and Water: Conservation Suggestions for California's Elementary and Secondary Schools.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This publication contains conservation suggestions for schools in California to save water and energy. Contents include: (1) a list of sources of additional energy education assistance and materials; (2) a discussion of energy conservation in schools including HVAC system operations, lighting and building design; (3) a summary outline of actions…

  8. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability

    PubMed Central

    Suárez Salazar, Juan Carlos; Melgarejo, Luz Marina; Di Rienzo, Julio A.; Casanoves, Fernando

    2018-01-01

    Aim and background We present a typology of cacao agroforest systems in Colombian Amazonia. These systems had yet to be described in the literature, especially their potential in terms of biodiversity conservation. The systems studied are located in a post-conflict area, and a deforestation front in Colombian Amazonia. Cacao cropping systems are of key importance in Colombia: cacao plays a prime role in post conflict resolution, as cacao is a legal crop to replace illegal crops; cacao agroforests are expected to be a sustainable practice, promoting forest-friendly land use. Material and methods We worked in 50 x 2000 m2 agroforest plots, in Colombian Amazonia. A cluster analysis was used to build a typology based on 28 variables characterised in each plot, and related to diversity, composition, spatial structure and light availability for the cacao trees. We included variables related to light availability to evaluate the amount of transmitted radiation to the cacao trees in each type, and its suitability for cacao ecophysiological development. Main results We identified 4 types of cacao agroforests based on differences concerning tree species diversity and the impact of canopy spatial structure on light availability for the cacao trees in the understorey. We found 127 tree species in the dataset, with some exclusive species in each type. We also found that 3 out of the 4 types identified displayed an erosion of tree species diversity. This reduction in shade tree species may have been linked to the desire to reduce shade, but we also found that all the types described were compatible with good ecophysiological development of the cacao trees. Main conclusions and prospects Cacao agroforest systems may actually be achieving biodiversity conservation goals in Colombian Amazonia. One challenging prospect will be to monitor and encourage the conservation of tree species diversity in cacao agroforest systems during the development of these cropping systems, as a form of forest-friendly management enhancing sustainable peace building in Colombia. PMID:29401499

  9. Methodological Framework for Analysis of Buildings-Related Programs with BEAMS, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas B.; Dirks, James A.; Hostick, Donna J.

    The U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) develops official “benefits estimates” for each of its major programs using its Planning, Analysis, and Evaluation (PAE) Team. PAE conducts an annual integrated modeling and analysis effort to produce estimates of the energy, environmental, and financial benefits expected from EERE’s budget request. These estimates are part of EERE’s budget request and are also used in the formulation of EERE’s performance measures. Two of EERE’s major programs are the Building Technologies Program (BT) and the Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports PAEmore » by developing the program characterizations and other market information necessary to provide input to the EERE integrated modeling analysis as part of PAE’s Portfolio Decision Support (PDS) effort. Additionally, PNNL also supports BT by providing line-item estimates for the Program’s internal use. PNNL uses three modeling approaches to perform these analyses. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits using one of those methods: the Building Energy Analysis and Modeling System (BEAMS). BEAMS is a PC-based accounting model that was built in Visual Basic by PNNL specifically for estimating the benefits of buildings-related projects. It allows various types of projects to be characterized including whole-building, envelope, lighting, and equipment projects. This document contains an overview section that describes the estimation process and the models used to estimate energy savings. The body of the document describes the algorithms used within the BEAMS software. This document serves both as stand-alone documentation for BEAMS, and also as a supplemental update of a previous document, Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort, (Elliott et al. 2004b). The areas most changed since the publication of that previous document are those discussing the calculation of lighting and HVAC interactive effects (for both lighting and envelope/whole-building projects). This report does not attempt to convey inputs to BEAMS or the methodology of their derivation.« less

  10. Environment‐Adaptive Coassembly/Self‐Sorting and Stimulus‐Responsiveness Transfer Based on Cholesterol Building Blocks

    PubMed Central

    Xing, Pengyao; Tham, Huijun Phoebe; Li, Peizhou; Chen, Hongzhong; Xiang, Huijing

    2017-01-01

    Abstract Manipulating the property transfer in nanosystems is a challenging task since it requires switchable molecular packing such as separate aggregation (self‐sorting) or synergistic aggregation (coassembly). Herein, a unique manipulation of self‐sorting/coassembly aggregation and the observation of switchable stimulus‐responsiveness transfer in a two component self‐assembly system are reported. Two building blocks bearing the same cholesterol group give versatile topological structures in polar and nonpolar solvents. One building block (cholesterol conjugated cynanostilbene, CCS) consists of cholesterol conjugated with a cynanostilbene unit, and the other one (C10CN) is comprised of cholesterol connected with a naphthalimide group having a flexible long alkyl chain. Their assemblies including gel, crystalline plates, and vesicles are obtained. In gel and crystalline plate phases, the self‐sorting behavior dominates, while synergistic coassembly occurs in vesicle phase. Since CCS having the cyanostilbene group can respond to the light irradiation, it undergoes light‐induced chiral amplification. C10CN is thermally responsive, whereby its supramolecular chirality is inversed upon heating. In coassembled vesicles, it is interestingly observed that their responsiveness can be transferred by each other, i.e., the C10CN segment is sensitive to the light irradiation, while CCS is thermoresponsive. This unprecedented behavior of the property transfer may shine a light to the precise fabrication of smart materials. PMID:29375976

  11. Beyond assemblies: system convergence and multi-materiality.

    PubMed

    Wiscombe, Tom

    2012-03-01

    The architectural construction industry has become increasingly more specialized over the past 50 years, creating a culture of layer thinking over part-to-whole thinking. Building systems and technologies are often cobbled together in conflicting and uncorrelated ways, even when referred to as 'integrated', such as by way of building information modeling. True integration of building systems requires rethinking how systems and architectural morphologies can push and pull on one another, creating not only innovation in technology but in aesthetics. The revolution in composite materials, with unprecedented plasticity and performance features, opens up a huge range of possibilities for achieving this kind of convergence. Composites by nature fuse envelope and structure, but through various types of inflections, they can also be made to conduct air and fluids through cavities and de-laminations, as well as integrate lighting and energy systems. Assembly as we know it moves away from mineral materials and hardware and toward polymers and 'healing'. Further, when projected into the near-future realm of multi-materiality and 3D manufacturing, possibilities for embedding systems and creating gradients of rigidity and opacity open up, pointing to an entirely new realm of architectural thinking.

  12. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    NASA Astrophysics Data System (ADS)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  13. Cen A Optical Capella

    NASA Image and Video Library

    2017-12-08

    NASA release April 1, 2010 The giant elliptical galaxy NGC 5128, show here in visible light, hosts the radio source known as Centaurus A. Located 12 million light-years away, it is one of the closest active galaxies. Credit: Capella Observatory To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  14. Cen A Optical Capella

    NASA Image and Video Library

    2010-04-01

    NASA release April 1, 2010 The giant elliptical galaxy NGC 5128, show here in visible light, hosts the radio source known as Centaurus A. Located 12 million light-years away, it is one of the closest active galaxies. Credit: Capella Observatory To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  15. Daylighting Strategies for U. S. Air Force Office Facilities: Economic Analysis of Building Energy Performance and Life-Cycle Cost Modeling with Monte Carlo Method

    DTIC Science & Technology

    2009-03-26

    annually ( McHugh , et al., 1998). USAF has used daylighting as an energy savings strategy in earlier studies (Holtz, 1990); and is pursuing it to meet...using renewable energy to generate electricity ( McHugh , et al., 1998). For example, traditional utility systems that are straining to meet peak...1998) found that lighting accounts for 40-50% of commercial energy consumption and McHugh , Burns, and Hittle (1998) stated that electric lighting and

  16. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  17. Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers.

    PubMed

    Pace, Giuseppina; Ferri, Violetta; Grave, Christian; Elbing, Mark; von Hänisch, Carsten; Zharnikov, Michael; Mayor, Marcel; Rampi, Maria Anita; Samorì, Paolo

    2007-06-12

    Photochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule. Interestingly, the switching of entire molecular 2D crystalline domains is observed, which is ruled by the interactions between nearest neighbors. This observation of azobenzene-based systems displaying collective switching might be of interest for applications in high-density data storage.

  18. Application of the light emitting diodes (LEDs) in optical measurements

    NASA Astrophysics Data System (ADS)

    Sabinin, Vladimir E.; Savelyev, Sergey K.; Solk, Sergey V.

    2003-06-01

    At current moment the Light Emitting Diodes (LED) have found a great amount of applications in different areas -- for location and communication systems, optical information systems, in architecture light decoration and advertising, traffic signals, etc. In current work we are making attempt to analyze some new possible fields of LED application. Among these may be build in systems of photometry control. Many different optic and optoelectronic systems are in need of such devices, able to operate for a long time in an autonomous regime. LED's and especially optocouples on their base can provide required time stability and spectral characteristics. The main drawback of such elements is the particularity of the emission diagram. In many case it has unpredictable form, but high reliability and very simple design may compensate many of LED's drawbacks. Below are analyzed the optical schemes enabling transformation of the semiconductor crystal in visible and IR ranges into the beams with angular divergence of 2 degrees. From one crystal, having diameter less than 1 mm was gained the axial light power exceeding 1000 cd and it is possible to form the light sources providing light power up to 50 - 100 W/str. If to take into account that LED have narrow spectral band and high stability of this spectral band, their small dimensions, rather high efficiency, a possibility of intensity modulation by supply current it is very promising to apply these devices for system of buid in control. Such possibility was not realized in full up till now.

  19. [Development of human blood glucose noninvasive measurement system based on near infrared spectral technology].

    PubMed

    Li, Qing-bo; Liu, Jie-qiang; Li, Xiang

    2012-03-01

    A small non-invasive measurement system for human blood glucose has been developed, which can achieve fast, real-time and non invasive measurement of human blood glucose. The device is mainly composed of four parts, i. e. fixture, light system, data acquisition and processing systems, and spectrometer. A new scheme of light source driving was proposed, which can meet the requirements of light source under a variety of conditions of spectral acquisition. An integrated fixture design was proposed, which not only simplifies the optical structure of the system, but also improves the reproducibility of measurement conditions. The micro control system mainly achieves control function, dealing with data, data storage and so on. As the most important component, microprocessor DSP TMS320F2812 has many advantages, such as low power, high processing speed, high computing ability and so on. Wavelet denoising is used to pretreat the spectral data, which can decrease the loss of incident light and improve the signal-to-noise ratio. Kernel partial least squares method was adopted to build the mathematical model, which can improve the precision of the system. In the calibration experiment of the system, the standard values were measured by One-Touch. The correlation coefficient between standard blood glucose values and truth values is 0.95. The root mean square error of measurement is 0.6 mmol x L(-1). The system has good reproducibility.

  20. Data-driven forecasting algorithms for building energy consumption

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Rajagopal, Ram

    2013-04-01

    This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Zhang, Jianshun; Pelken, Michael

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation toolsmore » as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus on evaluating thermal performance, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via the internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predicts the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium-sized, five story office building that received LEED Platinum Certification from USGBC.« less

  2. Optical characterization of fritted glass for architectural applications

    NASA Astrophysics Data System (ADS)

    Jonsson, Jacob C.; Rubin, Michael D.; Nilsson, Annica M.; Jonsson, Andreas; Roos, Arne

    2009-04-01

    Fritted glass is commonly used as a light diffusing element in modern buildings. Traditionally it has been used for aesthetic purposes but it can also be used for energy savings by incorporating it in novel daylighting systems? To answer such questions the light scattering properties must be properly characterized. This paper contains measurements of different varieties of fritted glass, ranging from the simplest direct-hemispherical measurements to angle-resolved goniometer measurements. Modeling the light scattering to obtain the full bidirectional scattering distribution function (BSDF) extends the measured data, making it useful in simulation programs such as Window 6 and Radiance. Surface profilometry results and SEM micrographs are included to demonstrate the surface properties of the samples studied.

  3. Trinary Encoder, Decoder, Multiplexer and Demultiplexer Using Savart Plate and Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.; Singha Roy, Souradip; Mandal, Sudipta; Basuray, Amitabha

    Optoelectronic processors have already been developed with the strong potentiality of optics in information and data processing. Encoder, Decoder, Multiplexers and Demultiplexers are the most important components in modern system designs and in communications. We have implemented the same using trinary logic gates with signed magnitude defined as Modified Trinary Number (MTN). The Spatial Light Modulator (SLM) based optoelectronic circuit is suitable for high speed data processing and communications using photon as carrier. We also presented here a possible method of implementing the same using light with photon as carrier of information. The importance of the method is that all the basic gates needed may be fabricated based on basic building block.

  4. Baseline information development for energy smart schools -- applied research, field testing and technology integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tengfang; Piette, Mary Ann

    2004-08-05

    The original scope of work was to obtain and analyze existing and emerging data in four states: California, Florida, New York, and Wisconsin. The goal of this data collection was to deliver a baseline database or recommendations for such a database that could possibly contain window and daylighting features and energy performance characteristics of Kindergarten through 12th grade (K-12) school buildings (or those of classrooms when available). In particular, data analyses were performed based upon the California Commercial End-Use Survey (CEUS) databases to understand school energy use, features of window glazing, and availability of daylighting in California K-12 schools. Themore » outcomes from this baseline task can be used to assist in establishing a database of school energy performance, assessing applications of existing technologies relevant to window and daylighting design, and identifying future R&D needs. These are in line with the overall project goals as outlined in the proposal. Through the review and analysis of this data, it is clear that there are many compounding factors impacting energy use in K-12 school buildings in the U.S., and that there are various challenges in understanding the impact of K-12 classroom energy use associated with design features of window glazing and skylight. First, the energy data in the existing CEUS databases has, at most, provided the aggregated electricity and/or gas usages for the building establishments that include other school facilities on top of the classroom spaces. Although the percentage of classroom floor area in schools is often available from the databases, there is no additional information that can be used to quantitatively segregate the EUI for classroom spaces. In order to quantify the EUI for classrooms, sub-metering of energy usage by classrooms must be obtained. Second, magnitudes of energy use for electricity lighting are not attainable from the existing databases, nor are the lighting levels contributed by artificial lighting or daylight. It is impossible to reasonably estimate the lighting energy consumption for classroom areas in the sample of schools studied in this project. Third, there are many other compounding factors that may as well influence the overall classroom energy use, e.g., ventilation, insulation, system efficiency, occupancy, control, schedules, and weather. Fourth, although we have examined the school EUI grouped by various factors such as climate zones, window and daylighting design features from the California databases, no statistically significant associations can be identified from the sampled California K-12 schools in the current California CEUS. There are opportunities to expand such analyses by developing and including more powerful CEUS databases in the future. Finally, a list of parameters is recommended for future database development and for use of future investigation in K-12 classroom energy use, window and skylight design, and possible relations between them. Some of the key parameters include: (1) Energy end use data for lighting systems, classrooms, and schools; (2) Building design and operation including features for windows and daylighting; and (3) Other key parameters and information that would be available to investigate overall energy uses, building and systems design, their operation, and services provided.« less

  5. Light and Cool

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    When the subject of buildings and daylighting arises, most people's thoughts will turn first to windows. To the uninitiated, it seems a simple formula: more windows, more daylight; fewer windows, less daylight. But designers know that effective use of daylighting in a building design involves more than just letting in light to otherwise darkened…

  6. Solar Cells Light Up Prison Cells on 'The Rock' | News | NREL

    Science.gov Websites

    2 » Solar Cells Light Up Prison Cells on 'The Rock' Solar Cells Light Up Prison Cells on 'The Rock ' July 23, 2012 This photo shows an island in the middle of blue sea water, with industrial buildings taking up a good deal of the island. The 1,300 solar panels on the Cellhouse building are a dark blue

  7. Modernised Portuguese schools - From IAQ and thermal comfort towards energy efficiency plans

    NASA Astrophysics Data System (ADS)

    Pereira, Luisa Maria Dias

    A major rehabilitation and refurbishment programme of secondary school buildings has been carried out in the last few years in Portugal, led by the state-owned company Parque Escolar E.P.E. (PE), known as Secondary School Buildings Modernisation Programme. This programme took into consideration renewable energy systems, mostly solar panels for domestic hot water (DHW) production. Nevertheless, with the introduction of HVAC systems in buildings that were previously naturally ventilated, an increase on energy consumption has been verified. During the first occupancy phase of new and refurbished buildings, energy and indoor climate quality (ICQ) audits are important strategies to improve the buildings’ energy use. In new buildings, the most common errors are due to poor operation and management. Schools energy management programmes often result in a list of energy efficiency measures that do not necessarily reflect occupants’ conditions or satisfaction. They are more directed to management control and comparison with benchmarks of energy use/m2 or cost/student to assess energy efficiency. In all cases, monitoring and consumption patterns are mandatory. In this context, this thesis aims at developing energy efficiency plans (EEP) for modernised Portuguese school buildings. The framework of the thesis starts with the development of an international overview of the recent research and development in the field of energy consumption in schools [searching for statistical benchmarks that could contribute to an accurate school building indicator (SBI)]. Then, based on a database provided by Parque Escolar, an energy consumption assessment of Portuguese school buildings is presented, between the pre and post intervention phases. Drawing on this procedure, eight representative modernised secondary schools were selected, geographically and climatically distributed. After, an energy audit and indoor environment quality (IEQ) monitoring is performed in this schools selection. The continuous monitoring period varied between schools, from a minimum of 48h monitoring up to three weeks, during the mid-season [spring - autumn period (excluding summer vacation) in 2013]. Air exchange rates (AER), more specifically infiltration rates, are quantified aiming at determining the current airtightness condition of the refurbished schools. A subjective IEQ assessment is also performed, focusing on occupants’ feedback, providing insight on the potential linkages between energy use and occupants’ satisfaction and comfort. The thesis builds on the current EEP panorama and practice, which is based only on cost/energy control, extending it to address the equilibrium between IEQ evaluation and occupants’ perceived conditions/preferences. This approach is applied in two schools - selected based on the previous study on energy and IEQ conditions of the eight schools. The EEP methodology starts by deepening the knowledge of each school, mostly focusing on crossing the schools occupancy schedule with systems operation [(mainly those controlled by the building management system (BMS)]. An analysis on recently updated legislation is also performed (in particular fresh air flow rates requirements). It is shown that some potential energy savings can be achieved and that IEQ conditions can be improved at very low or even negligible costs. Other considerations, namely addressing the thermal energy production systems of the schools (e.g., boilers scheduling), the lighting systems (e.g., lighting circuits) and non-controlled plug loads, are also mentioned. Based upon all these findings, a handbook of good practice is drafted for secondary school buildings in Portugal. This EEP is accompanied by a list of Energy Efficiency Measures (EEM). It is proposed that this document is headed by a School - Energy Performance Certificate (S-EPC) based on the billed energy consumption. This document suggests the establishment of the figure of the Energy Manager.

  8. Modelling Complex Fenestration Systems using physical and virtual models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanachareonkit, Anothai; Scartezzini, Jean-Louis

    2010-04-15

    Physical or virtual models are commonly used to visualize the conceptual ideas of architects, lighting designers and researchers; they are also employed to assess the daylighting performance of buildings, particularly in cases where Complex Fenestration Systems (CFS) are considered. Recent studies have however revealed a general tendency of physical models to over-estimate this performance, compared to those of real buildings; these discrepancies can be attributed to several reasons. In order to identify the main error sources, a series of comparisons in-between a real building (a single office room within a test module) and the corresponding physical and virtual models wasmore » undertaken. The physical model was placed in outdoor conditions, which were strictly identical to those of the real building, as well as underneath a scanning sky simulator. The virtual model simulations were carried out by way of the Radiance program using the GenSky function; an alternative evaluation method, named Partial Daylight Factor method (PDF method), was also employed with the physical model together with sky luminance distributions acquired by a digital sky scanner during the monitoring of the real building. The overall daylighting performance of physical and virtual models were assessed and compared. The causes of discrepancies between the daylighting performance of the real building and the models were analysed. The main identified sources of errors are the reproduction of building details, the CFS modelling and the mocking-up of the geometrical and photometrical properties. To study the impact of these errors on daylighting performance assessment, computer simulation models created using the Radiance program were also used to carry out a sensitivity analysis of modelling errors. The study of the models showed that large discrepancies can occur in daylighting performance assessment. In case of improper mocking-up of the glazing for instance, relative divergences of 25-40% can be found in different room locations, suggesting that more light is entering than actually monitored in the real building. All these discrepancies can however be reduced by making an effort to carefully mock up the geometry and photometry of the real building. A synthesis is presented in this article which can be used as guidelines for daylighting designers to avoid or estimate errors during CFS daylighting performance assessment. (author)« less

  9. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    DTIC Science & Technology

    2016-09-18

    ability to control the generation has become more difficult with the increase of renewable energy systems such as solar photovoltaics ( PV ) and wind... PV and Inverter Room Building 6311 Rooftop Solar PV 30kW 232kW STC PV Array B5-PS2T33 Pad Switchboard ZnBr Energy Storage System (ESS) PowerBoxEnergy...Agreement • 1.5 MW of Photovoltaic • PV Parking lot lights • 24 Solar Thermal systems including the Combat Training Tank (Pool) Energy/Water Efficiency

  10. Outdoor Lighting Ordinances

    NASA Astrophysics Data System (ADS)

    Davis, S.

    2004-05-01

    A principal means to prevent poor exterior lighting practices is a lighting control ordinance. It is an enforceable legal restriction on specific lighting practices that are deemed unacceptable by the government body having jurisdiction. Outdoor lighting codes have proven to be effective at reducing polluting and trespassing light. A well written exterior lighting code will permit all forms of necessary illumination at reasonable intensities, but will demand shielding and other measures to prevent trespass and light pollution. A good code will also apply to all forms of outdoor lighting, including streets, highways, and exterior signs, as well as the lighting on dwellings, commercial and industrial buildings and building sites. A good code can make exceptions for special uses, provided it complies with an effective standard. The IDA Model Lighting Ordinance is a response to these requests. It is intended as an aid to communities that are seeking to take control of their outdoor lighting, to "take back the night" that is being lost to careless and excessive use of night lighting.

  11. Measurement and application of bidirectional reflectance distribution function

    NASA Astrophysics Data System (ADS)

    Liao, Fei; Li, Lin; Lu, Chengwen

    2016-10-01

    When a beam of light with certain intensity and distribution reaches the surface of a material, the distribution of the diffused light is related to the incident angle, the receiving angle, the wavelength of the light and the types of the material. Bidirectional Reflectance Distribution Function (BRDF) is a method to describe this distribution. For an optical system, the optical and mechanical materials' BRDF are unique, and if we want to calculate stray light of the system we should know the correct BRDF data of the whole materials. There are fundamental significances in the area of space remote sensor where BRDF is needed in the precise radiation calibration. It is also important in the military field where BRDF can be used in the object identification and target tracking, etc. In this paper, 11 kinds of aerospace materials' BRDF are measured and more than 310,000 groups of BRDF data are achieved , and also a BRDF database is established in China for the first time. With the BRDF data of the database, we can create the detector model, build the stray light radiation surface model in the stray light analysis software. In this way, the stray radiation on the detector can be calculated correctly.

  12. Advanced Suspension and Control Algorithm for U.S. Army Ground Vehicles

    DTIC Science & Technology

    2013-04-01

    Army Materiel Systems Analysis Activity (AMSAA), for his assistance and guidance in building a multibody vehicle dynamics model of a typical light...Mobility Multipurpose Wheeled Vehicle [HMMWV] model) that was developed in collaboration with the U.S. Army Materiel Systems Analysis Activity (5) is...control weight for GPC With Explicit Disturbance was R = 1.0e-7 over the entire speed range. To simplify analysis , the control weights for the other two

  13. Why a Network Energy Monitoring and Control System?

    DTIC Science & Technology

    1985-01-01

    years to complete as they were modified to work with existing, frequently very old, buildings. The benefits derived from those systems that did work were...or groups of workstations, then certain of the occupants could be tasked to turn off their respective lighting. The advantage is the increased...units. Duty Cycle (Strategy J) This strategy takes advantage of the oversizing of the air handling unit. The air handling unit is sized for a peak load

  14. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong Kong. A sample database of 20 existing commercial buildings was established for further analysis of building energy use. Heat gains through building envelopes were reviewed with reference to fundamental theory behind as well as the heat transfer equations presented in the literature. The prevailing methodologies of cooling load estimation and energy calculation were studied. Building energy auditing methods were discussed with reference to the local practice as well as international standards and guides. The common procedures of building energy auditing with three stages were outlined: historical data collection/analysis, preliminary site survey, and detailed energy consumption investigation. A typical commercial building was selected for detailed study of energy use by MVAC systems. (Abstract shortened by UMI.)

  15. High Performance Building Facade Solutions - PIER Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls.more » This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and the US.A collaborative test, monitoring, and reporting protocol was also formulated via the Windows Testbed Facility in collaboration with industry partners, transitioning industry to focus on the importance of expecting measured performance to consistently achieve design performance expectations. The facility enables accurate quantification of energy use, peak demand, and occupant comfort impacts of synergistic facade-lighting-HVAC systems on an apples-to-apples comparative basis and its data can be used to verify results from simulations. Emerging interior and exterior shading technologies were investigated as potential near-term, low-cost solutions with potential broad applicability in both new and retrofit construction. Commercially-available and prototype technologies were developed, tested, and evaluated. Full-scale, monitored field tests were conducted over solstice-to-solstice periods to thoroughly evaluate the technologies, uncover potential risks associated with an unknown, and quantify performance benefits. Exterior shading systems were found to yield net zero energy levels of performance in a sunny climate and significant reductions in summer peak demand. Automated interior shading systems were found to yield significant daylighting and comfort-related benefits.In support of an integrated design process, a PC-based commercial fenestration (COMFEN) software package, based on EnergyPlus, was developed that enables architects and engineers to quickly assess and compare the performance of innovative facade technologies in the early sketch or schematic design phase. This tool is publicly available for free and will continue to improve in terms of features and accuracy. Other work was conducted to develop simulation tools to model the performance of any arbitrary complex fenestration system such as common Venetian blinds, fabric roller shades as well as more exotic innovative facade systems such as optical louver systems.« less

  16. Daytime Cognitive Performance in Response to Sunlight or Fluorescent Light Controlling for Sleep Duration

    NASA Technical Reports Server (NTRS)

    Ramos, Jhanic; Zamos, Adela; Rao, Rohit; Flynn-Evans, Erin

    2015-01-01

    Light is the primary synchronizer of the human circadian rhythm and also has acute alerting effects. Our study involves and comparing the alertness, performance and sleep of participants in the NASA Ames Sustainability Base, which uses sunlight as its primary light source, to in a traditional office building which uses overhead florescent lighting and varying exposure to natural light. The purpose of this study is to determine whether the use of natural lighting as a primary light source improves daytime cognitive function and promotes nighttime sleep. Participants from the Sustainability Base will be matched by gender and age to individuals working in other NASA buildings. In a prior study we found no differences in performance between those working in the Sustainability Base and those working in other buildings. Unexpectedly, we found that the average sleep duration among participants in both buildings was short, which likely obscured our ability to detect a difference the effect of light exposure on alertness. Given that such sleep deprivation has negative effects on cognitive performance, in this iteration of the study we are asking the participants to maintain a regular schedule with eight hours in bed each night in order to control for the effect of self-selected sleep restriction. Over the course of one week, we will ask the participants to wear actiwatches continuously, complete a psychomotor vigilance task (PVT) and digit symbol substitution task (DSST) three times per day, and keep daily sleepwork diaries. We hope that this study will provide data to support the idea that natural lighting and green architectural design are optimal to enhance healthy nighttime sleep patterns and daytime cognitive performance.

  17. Light-induced Self-Assembly and Diffusion of Nanoclusters

    NASA Astrophysics Data System (ADS)

    Lian, Wenxuan

    Novel methods to build multiple types of three-dimensional structures from various nanoscale components are the most exciting and challenging questions in nano-science. The properties of the assembled structures can be potentially and designed, but the development of such approaches is challenging. In order to realize such rational assembly, a tunable interaction medium is often introduced into the system. Soft matter, such as polymers, surfactants and biomolecules are used to modify the surfaces of the nanoscale building blocks. Deoxyribonucleic acid (DNA) strands are known as polynucleotides since they are composed of simpler units called nucleotides. There are unique base pairing rules that are predictable and programmable, which can be used to regulate self-assembly process with high degree of control. Besides controlling static structure, it is important to develop methods for controlling systems in dynamic matter, with chemical stimuli or external fields. For example, here we study the use of azobezene-trimethylammonium bromide (AzoTAB) as a molecular agent that can control self-assembly via light excitation. In this thesis, DNA assisted self-assembly was conducted. The ability of AzoTAB as a light induced surfactant to control DNA assisted self-assembly was confirmed. The mechanism of AzoTAB as a light controlled self-assembly promoter was studied. In the second project, diffusion of nanoclusters was studied. The presence of polymers brings strong entanglement with nanoclusters. This entanglement is more obvious when the nanocluster is a framed structure like the octahedron in the study. The diffusion coefficient of the octahedron becomes larger during traveling. The following up studies are required to elucidate the origin of the observed effect.

  18. Media Literacy Pedagogy: Critical and New/Twenty-First-Century Literacies Instruction

    ERIC Educational Resources Information Center

    Westbrook, Nalova

    2011-01-01

    This article offers a conceptualization of media literacy pedagogy in light of National Education Technology Plan efforts, which name teaching as one of five essential areas to build an education system that can increase as well as sustain the United States' economic growth and prosperity in the global economy. In particular, two distinct…

  19. The effectiveness of Light Rail transit in achieving regional CO2 emissions targets is linked to building energy use: insights from system dynamics modeling

    EPA Science Inventory

    Cities worldwide face the challenges of accommodating a growing population, while reducing emissions to meet climate mitigation targets. Public transit investments are often proposed as a way to curb emissions while maintaining healthy urban economies. However, cities face a syst...

  20. Schools Going Solar: A Guide to Schools Enjoying the Power of Solar Energy.

    ERIC Educational Resources Information Center

    Gibson, Bob; Mayotte, Jenna; Cochran, Jacquie

    Schools today are hosting the solar energy systems that will become commonplace tomorrow in public buildings, homes, and businesses. This publication serves as a guide to how schools are using solar energy, listing scores of schools currently using the sun for lighting, heating, and cooling as well as highlights of innovative programs to expand…

  1. Second-level post-occupancy evaluation (POE) analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, B.; Fisher, W.; Marans, R.W.

    1989-02-14

    Findings from a detailed analysis of post-occupancy evaluation data, sponsored by LRI, which involved thirteen office buildings typical of current design practice, will be discussed. Analysis of the data indicates that occupant satisfaction can be related to type of lighting system, presence of daylight, and patterns of luminance in the office. 15 refs., 9 figs., 3 tabs.

  2. Semi-classical dynamics of superradiant Rayleigh scattering in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Müller, J. H.; Witthaut, D.; le Targat, R.; Arlt, J. J.; Polzik, E. S.; Hilliard, A. J.

    2016-10-01

    Due to its coherence properties and high optical depth, a Bose-Einstein condensate [BEC] provides an ideal setting to investigate collective atom-light interactions. Superradiant light scattering [SLS] in a BEC is a fascinating example of such an interaction. It is an analogous process to Dicke superradiance, in which an electronically inverted sample decays collectively, leading to the emission of one or more light pulses in a well-defined direction. Through time-resolved measurements of the superradiant light pulses emitted by an end-pumped BEC, we study the close connection of SLS with Dicke superradiance. A 1D model of the system yields good agreement with the experimental data and shows that the dynamics result from the structures that build up in the light and matter-wave fields along the BEC. This paves the way for exploiting the atom-photon correlations generated by the superradiance.

  3. The LSST Dome final design

    NASA Astrophysics Data System (ADS)

    DeVries, J.; Neill, D. R.; Barr, J.; De Lorenzi, Simone; Marchiori, Gianpietro

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile 1. As a result of the Telescope wide field of view, the optical system is unusually susceptible to stray light 2. In addition, balancing the effect of wind induced telescope vibrations with Dome seeing is crucial. The rotating enclosure system (Dome) includes a moving wind screen and light baffle system. All of the Dome vents include hinged light baffles, which provide exceptional Dome flushing, stray light attenuation, and allows for vent maintenance access from inside the Dome. The wind screen also functions as a light screen, and helps define a clear optical aperture for the Telescope. The Dome must operate continuously without rotational travel limits to accommodate the Telescope cadence and travel. Consequently, the Azimuth drives are located on the fixed lower enclosure to accommodate glycol water cooling without the need for a utility cable wrap. An air duct system aligns when the Dome is in its parked position, and this provides air cooling for temperature conditioning of the Dome during the daytime. A bridge crane and a series of ladders, stairs and platforms provide for the inspection, maintenance and repair of all of the Dome mechanical systems. The contract to build the Dome was awarded to European Industrial Engineering in Mestre, Italy in May 2015. In this paper, we present the final design of this telescope and site sub-system.

  4. Interior building details of Building A, Room A002: plastered painted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building A, Room A-002: plastered painted west brick wall, four light double-hung wood window with brick arch lintel, east plastered wall (could be granite), wood ceiling; northerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  5. Exterior building details of Building A; east façade: profiled cement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building A; east façade: profiled cement plaster door surround, black mesh gate protects a two-light transom atop non-original metal door; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  6. GENERAL VIEW OF SOUTH AND WEST FACADES OF PACKING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH AND WEST FACADES OF PACKING AND JOB SHOP; BUILDING TO LEFT IS PRODUCTION FACILITY FOR ALCOA, SMALL BRICK BUILDING AT FAR RIGHT ON HIGHER GROUND IS THE FORMER ELECTRIC LIGHT PLANT FOR ALLEGHENY VALLEY LIGHT COMPANY - Alcoa-New Kensington Works, Packing & Job Shop, New Kensington, Westmoreland County, PA

  7. Energy 101: Daylighting

    ScienceCinema

    None

    2018-02-14

    Daylighting—the use of windows or skylights for natural lighting and temperature regulation—is one building strategy that can save money for homeowners and businesses. Highly efficient, strategically placed windows maximize the use of natural daylight in a building, lowering the need for artificial lighting without causing heating or cooling problems.

  8. Angular selective window systems: Assessment of technical potential for energy savings

    DOE PAGES

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; ...

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less

  9. Perceived Indoor Environment and Occupants' Comfort in European "Modern" Office Buildings: The OFFICAIR Study.

    PubMed

    Sakellaris, Ioannis A; Saraga, Dikaia E; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G; Bluyssen, Philomena M

    2016-04-25

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  10. Turnkey Heating, Ventilating, and Air Conditioning and Lighting Retrofit Solution Combining Energy Efficiency and Demand Response Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebber, Ian; Deru, Michael; Trenbath, Kim

    NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured bymore » Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.« less

  11. Effect of the incidence angle to free space optical communication based on cat-eye modulating retro-reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui; Shan, Cong-miao

    2013-08-01

    Based on the cat-eye effect of optical system, free space optical communication based on cat-eye modulating retro-reflector can build communication link rapidly. Compared to classical free space optical communication system, system based on cat-eye modulating retro-reflector has great advantages such as building communication link more rapidly, a passive terminal is smaller, lighter and lower power consuming. The incident angle is an important factor of cat-eye effect, so it will affect the retro-reflecting communication link. In this paper, the principle and work flow of free space optical communication based on cat-eye modulating retro-reflector were introduced. Then, using the theory of geometric optics, the equivalent model of modulating retro-reflector with incidence angle was presented. The analytical solution of active area and retro-reflected light intensity of cat-eye modulating retro-reflector were given. Noise of PIN photodetector was analyzed, based on which, bit error rate of free space optical communication based on cat-eye modulating retro-reflector was presented. Finally, simulations were done to study the effect of incidence angle to the communication. The simulation results show that the incidence angle has little effect on active area and retro-reflected light intensity when the incidence beam is in the active field angle of cat-eye modulating retro-reflector. With certain system and condition, the communication link can rapidly be built when the incidence light beam is in the field angle, and the bit error rate increases greatly with link range. When link range is smaller than 35Km, the bit error rate is less than 10-16.

  12. Creating high performance buildings: Lower energy, better comfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less

  13. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krebs, Martha

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with amore » focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.« less

  14. PFP Emergency Lighting Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSCH, M.S.

    2000-02-02

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergencymore » Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.« less

  15. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective

    NASA Astrophysics Data System (ADS)

    Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van

    2018-01-01

    The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auslander, David; Culler, David; Wright, Paul

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Responsemore » (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­based DR controller (dubbed the Central Load-­Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­tune the strategies accordingly.« less

  17. Web-building time in a spider: preliminary applications of ultrasonic detection.

    PubMed

    Ramousse, R; Davis, F

    1976-12-01

    Data collection on time and length of building in orb-weaving spiders has suffered from absence of light during construction and inconvenient hours. A simple apparatus is described which permits recording of the spiders' movements as they disturb an ultrasonic field. By varying onset and length of dark periods for two animals at even temperature and by registering the building periods for 127 webs, a definite influence of the light-dark cycle can be identified: there is a strong preference for building webs in the dark; this is superimposed on the circadian rhythm of orb-web construction. One of the spiders always built earlier than the other.

  18. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogut, Serdar

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyesmore » and metal-organic frameworks.« less

  19. Thirty Meter Telescope science instruments: a status report

    NASA Astrophysics Data System (ADS)

    Simard, Luc; Ellerbroek, Brent; Bhatia, Ravinder; Radovan, Matthew; Chisholm, Eric

    2016-08-01

    An overview of the current status of the science instruments for the Thirty Meter Telescope is presented. Three first-light instruments as well as a science calibration unit for AO-assisted instruments are under development. Developing instrument collaborations that can design and build these challenging instruments remains an area of intense activity. In addition to the instruments themselves, a preliminary design for a facility cryogenic cooling system based on gaseous helium turbine expanders has been completed. This system can deliver a total of 2.4 kilowatts of cooling power at 65K to the instruments with essentially no vibrations. Finally, the process for developing future instruments beyond first light has been extensively discussed and will get under way in early 2017.

  20. Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers

    PubMed Central

    Pace, Giuseppina; Ferri, Violetta; Grave, Christian; Elbing, Mark; von Hänisch, Carsten; Zharnikov, Michael; Mayor, Marcel; Rampi, Maria Anita; Samorì, Paolo

    2007-01-01

    Photochromic systems can convert light energy into mechanical energy, thus they can be used as building blocks for the fabrication of prototypes of molecular devices that are based on the photomechanical effect. Hitherto a controlled photochromic switch on surfaces has been achieved either on isolated chromophores or within assemblies of randomly arranged molecules. Here we show by scanning tunneling microscopy imaging the photochemical switching of a new terminally thiolated azobiphenyl rigid rod molecule. Interestingly, the switching of entire molecular 2D crystalline domains is observed, which is ruled by the interactions between nearest neighbors. This observation of azobenzene-based systems displaying collective switching might be of interest for applications in high-density data storage. PMID:17535889

  1. Evaluation of Alternative Field Buses for Lighting ControlApplications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Ed; Rubinstein, Francis

    2005-03-21

    The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include atmore » least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.« less

  2. A New Chief of Staff, a Golden Opportunity: Building the Right Force over the Next Decade

    DTIC Science & Technology

    2013-01-01

    acquire both light attack and light mobility aircraft that would further its efforts in building partnership capacity ( BPC ). In light of the...contributions to the department’s efforts in both BPC and IW. The document refers to this type of warfare as a struggle for legitimacy and influence...are designed to improve the Air Force’s capabilities in IW and BPC . The Gaps Sections of Headquarters Air Force have outlined excellent plans to

  3. Improving Inertial Pedestrian Dead-Reckoning by Detecting Unmodified Switched-on Lamps in Buildings

    PubMed Central

    Jiménez, Antonio R.; Zampella, Francisco; Seco, Fernando

    2014-01-01

    This paper explores how inertial Pedestrian Dead-Reckoning (PDR) location systems can be improved with the use of a light sensor to measure the illumination gradients created when a person walks under ceiling-mounted unmodified indoor lights. The process of updating the inertial PDR estimates with the information provided by light detections is a new concept that we have named Light-matching (LM). The displacement and orientation change of a person obtained by inertial PDR is used by the LM method to accurately propagate the location hypothesis, and vice versa; the LM approach benefits the PDR approach by obtaining an absolute localization and reducing the PDR-alone drift. Even from an initially unknown location and orientation, whenever the person passes below a switched-on light spot, the location likelihood is iteratively updated until it potentially converges to a unimodal probability density function. The time to converge to a unimodal position hypothesis depends on the number of lights detected and the asymmetries/irregularities of the spatial distribution of lights. The proposed LM method does not require any intensity illumination calibration, just the pre-storage of the position and size of all lights in a building, irrespective of their current on/off state. This paper presents a detailed description of the light-matching concept, the implementation details of the LM-assisted PDR fusion scheme using a particle filter, and several simulated and experimental tests, using a light sensor-equipped Galaxy S3 smartphone and an external foot-mounted inertial sensor. The evaluation includes the LM-assisted PDR approach as well as the fusion with other signals of opportunity (WiFi, RFID, Magnetometers or Map-matching) in order to compare their contribution in obtaining high accuracy indoor localization. The integrated solution achieves a localization error lower than 1 m in most of the cases. PMID:24394599

  4. Exterior building details of Building A; west façade: exposed common ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building A; west façade: exposed common bond brick wall, arched brick lintels over a two single-light casement window with brick sills, arched brick lintel over door cornice; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  5. Solar powered dispensary in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S.F.; Rittelmann, P.R.; Kingman, K.

    1995-11-01

    A solar powered dispensary has been designed in Kastel, Tibet. This area is characterized by cold winters and clear skies. Solar energy systems are designed to provide space heating, water heating and electric power. since sources of auxiliary fuel are scarce, the building has been designed to provide heating by the sun only. Innovative use of daylighting is made to reduce the lighting electricity requirements. The design presented provides a good compromise between performance and the cost of the system.

  6. Photonics Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Elizabeth

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV's Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about fivemore » percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home's electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation's energy consumption by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve energy efficiency and lower costs for display and lighting applications (UNLV College of Engineering); (2) advancing green LED technology based on the Indium-Gallium-Nitride system (BU), thus improving conversion efficiencies; (3) employing unique state-of-the-art X-ray, electron and optical spectroscopies with microscopic techniques to learn more about the electronic structure of materials and contacts in LED devices (UNLV College of Science); (4) establishing a UNLV Display Lighting Laboratory staffed with a specialized team of academic researchers, students and industrial partners focused on identifying and implementing engineering solutions for lighting display-related problems; and (5) conducting research, development and demonstration for HSL essential to the resolution of technological barriers to commercialization.« less

  7. Final Report: System Reliability Model for Solid-State Lighting (SSL) Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J. Lynn

    2017-05-31

    The primary objectives of this project was to develop and validate reliability models and accelerated stress testing (AST) methodologies for predicting the lifetime of integrated SSL luminaires. This study examined the likely failure modes for SSL luminaires including abrupt failure, excessive lumen depreciation, unacceptable color shifts, and increased power consumption. Data on the relative distribution of these failure modes were acquired through extensive accelerated stress tests and combined with industry data and other source of information on LED lighting. This data was compiled and utilized to build models of the aging behavior of key luminaire optical and electrical components.

  8. From dark to bright: novel daylighting applications in solid state lighting

    NASA Astrophysics Data System (ADS)

    Adler, Helmar G.

    2011-10-01

    The term "daylighting" is used in various ways, on one hand in a more architectural sense, i.e. using existing daylight to illuminate spaces, and on the other, more recently, for using light sources to replicate daylight. The emergence of solid state lighting (SSL) opens up a large number of new avenues for daylighting. SSL allows innovative controllability of intensity and color for artificial light sources that can be advantageously applied to daylighting. With the assistance of these new technologies the combination of natural and artificial lighting could lead to improvements in energy savings and comfort of living beings. Thus it is imperative to revisit or even improve daylighting research so that building networks of the future with their sensor, energy (e.g. HVAC) and lighting requirements can benefit from the emerging capabilities. This paper will briefly review existing daylighting concepts and technology and discuss new ideas. An example of a tunable multi-color SSL system will be shown.

  9. Measuring phosphate with an inexpensive, easy to build photometer

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Weijs, Steven; Parlange, Marc

    2013-04-01

    In the context of a course for first year students to get hands-on experience with measuring in the environment, a photometric system for measuring phosphate concentration was developed. The system makes use of a single LED as a light source, a Si photodiode-based light to frequency conversion IC and an Arduino electronic card as acquisition system. The instrument is designed as an easy to assemble system and assembling and alignment is part of the exercise. The phosphate measurement is based on the formation of phosphor-molybdate complex which is eventually reduced to a blue component. The absorbance at 710 nm of a phosphate-containing fluid with added indicator is then measured and calibrated with a known solution. The initial test has demonstrated the ability of the instrument to detect phosphates in tap water. Other components as nitrates or chlorophyll could be easily measured with the instrument using LED emitting at the respective wavelengths.

  10. Forgery Detection and Value Identification of Euro Banknotes

    PubMed Central

    Bruna, Arcangelo; Farinella, Giovanni Maria; Guarnera, Giuseppe Claudio; Battiato, Sebastiano

    2013-01-01

    This paper describes both hardware and software components to detect counterfeits of Euro banknotes. The proposed system is also able to recognize the banknote values. Differently than other state-of-the-art methods, the proposed approach makes use of banknote images acquired with a near infrared camera to perform recognition and authentication. This allows one to build a system that can effectively deal with real forgeries, which are usually not detectable with visible light. The hardware does not use any mechanical parts, so the overall system is low-cost. The proposed solution is reliable for ambient light and banknote positioning. Users should simply lean the banknote to be analyzed on a flat glass, and the system detects forgery, as well as recognizes the banknote value. The effectiveness of the proposed solution has been properly tested on a dataset composed by genuine and fake Euro banknotes provided by Italy's central bank. PMID:23429514

  11. Mitigation and control of the overcuring effect in mask projection micro-stereolithography

    NASA Astrophysics Data System (ADS)

    O'Neill, Paul F.; Kent, Nigel; Brabazon, Dermot

    2017-10-01

    Mask Projection micro-Stereolithography (MPμSL) is an additive manufacturing technique capable of producing solid parts with micron-scale resolution from a vat of photocurable liquid polymer resin. Although the physical mechanism remains the same, the process differs from traditional laser-galvanometer based stereolithography (SL) in its use of a dynamic mask UV projector, or digital light processor (DLP), which cures each location within each 3D layer at the same time. One area where MPµSL has garnered considerable attention is in the field of microfluidics and Lab-on-a-Chip, where complex multistep microfabrication techniques adopted from the semiconductor industry are still widely used, and where MPµSL offers the ability to fabricate completely encapsulated fluidic channels in a single step and at low cost [1-3]. However, a significant obstacle exists in the prevention of channel blockage due to overcuring of the polymer resin [4, 5]. Overcuring can be attributed to the so-called `back side effect' [2] which occurs during the build process as light from successive layers penetrates into the resin to a depth greater than the layer thickness. This effect is most prevalent in channels or features oriented horizontally (in a parallel plane to that of the build platform). Currently there are two main approaches in controlling the cure depth; 1. the chemical approach, which involves doping the resin material with a chemical light absorber [6-8]; and 2. by improving the system's hardware and optical elements to improve the homogeneity of the light dosage and control the cure depth [9]. Here we investigate a third approach through modification of the 3D CAD file prior to printing to mitigate for UV light leakage from successive build layers. Although used here in conjunction with the MPμSL technique, this approach can be applied to a range of SL techniques to improve printer resolution and enable production of internal features with higher dimensional accuracy.

  12. Beyond Widgets -- Systems Incentive Programs for Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cindy; Mathew, Paul; Robinson, Alastair

    Utility incentive programs remain one of the most significant means of deploying commercialized, but underutilized building technologies to scale. However, these programs have been largely limited to component-based products (e.g., lamps, RTUs). While some utilities do provide ‘custom’ incentive programs with whole building and system level technical assistance, these programs require deeper levels of analysis, resulting in higher program costs. This results in custom programs being restricted to utilities with greater resources, and are typically applied mainly to large or energy-intensive facilities, leaving much of the market without cost effective access and incentives for these solutions. In addition, with increasinglymore » stringent energy codes, cost effective component-based solutions that achieve significant savings are dwindling. Building systems (e.g., integrated façade, HVAC and/or lighting solutions) can deliver higher savings that translate into large sector-wide savings if deployed at the scale of these programs. However, systems application poses a number of challenges – baseline energy use must be defined and measured; the metrics for energy and performance must be defined and tested against; in addition, system savings must be validated under well understood conditions. This paper presents a sample of findings of a project to develop validated utility incentive program packages for three specific integrated building systems, in collaboration with Xcel Energy (CO, MN), ComEd, and a consortium of California Public Owned Utilities (CA POUs) (Northern California Power Agency(NCPA) and the Southern California Public Power Authority(SCPPA)). Furthermore, these program packages consist of system specifications, system performance, M&V protocols, streamlined assessment methods, market assessment and implementation guidance.« less

  13. Self-assembly of Nano-rods in Photosensitive Phase Separation

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Kuksenok, Olga; Maresov, Egor; Balazs, Anna

    2012-02-01

    Computer simulations reveal how photo-induced chemical reactions in polymeric mixtures can be exploited to create long-range order in materials whose features range from the sub-micron to the nanoscale. The process is initiated by shining a spatially uniform light on a photosensitive AB binary blend, which thereby undergoes both a reversible chemical reaction and phase separation. When a well-collimated, higher intensity light is rastered over the sample, the system forms defect-free, spatially periodic structures. We now build on this approach by introducing nanorods that have a preferential affinity for one the phases in a binary mixture. By rastering over the sample with the higher intensity light, we can create ordered arrays of rods within periodically ordered materials in essentially one processing step.

  14. Evaluation of a High-Performance Solar Home in Loveland, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    2006-01-01

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  15. Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  16. A compact free space quantum key distribution system capable of daylight operation

    NASA Astrophysics Data System (ADS)

    Benton, David M.; Gorman, Phillip M.; Tapster, Paul R.; Taylor, David M.

    2010-06-01

    A free space quantum key distribution system has been demonstrated. Consideration has been given to factors such as field of view and spectral width, to cut down the deleterious effect from background light levels. Suitable optical sources such as lasers and RCLEDs have been investigated as well as optimal wavelength choices, always with a view to building a compact and robust system. The implementation of background reduction measures resulted in a system capable of operating in daylight conditions. An autonomous system was left running and generating shared key material continuously for over 7 days.

  17. Chamber study of PCB emissions from caulking materials and light ballasts.

    PubMed

    Liu, Xiaoyu; Guo, Zhishi; Krebs, Kenneth A; Stinson, Rayford A; Nardin, Joshua A; Pope, Robert H; Roache, Nancy F

    2015-10-01

    The emissions of polychlorinated biphenyl (PCB) congeners from thirteen caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 different models from five manufacturers were tested in 53-L environmental chambers. The rates of PCB congener emissions from caulking materials and light ballasts were determined. Several factors that may have affected the emission rates were evaluated. The experimentally determined emission factors showed that, for a given PCB congener, there is a linear correlation between the emission factor and the concentration of the PCB congener in the source. Furthermore, the test results showed that an excellent log-linear correlation exists between the normalized emission factor and the vapor pressure (coefficient of determination, r(2)⩾0.8846). The PCB congener emissions from ballasts at or near room temperature were relatively low with or without electrical load. However, the PCB congener emission rates increased significantly as the temperature increased. The results of this research provide new data and models for ranking the primary sources of PCBs and supports the development and refinement of exposure assessment models for PCBs. Published by Elsevier Ltd.

  18. Patterned photostimulation with digital micromirror devices to investigate dendritic integration across branch points.

    PubMed

    Liang, Conrad W; Mohammadi, Michael; Santos, M Daniel; Santos, M Danial; Tang, Cha-Min

    2011-03-02

    Light is a versatile and precise means to control neuronal excitability. The recent introduction of light sensitive effectors such as channel-rhodopsin and caged neurotransmitters have led to interests in developing better means to control patterns of light in space and time that are useful for experimental neuroscience. One conventional strategy, employed in confocal and 2-photon microscopy, is to focus light to a diffraction limited spot and then scan that single spot sequentially over the region of interest. This approach becomes problematic if large areas have to be stimulated within a brief time window, a problem more applicable to photostimulation than for imaging. An alternate strategy is to project the complete spatial pattern on the target with the aid of a digital micromirror device (DMD). The DMD approach is appealing because the hardware components are relatively inexpensive and is supported by commercial interests. Because such a system is not available for upright microscopes, we will discuss the critical issues in the construction and operations of such a DMD system. Even though we will be primarily describing the construction of the system for UV photolysis, the modifications for building the much simpler visible light system for optogenetic experiments will also be provided. The UV photolysis system was used to carryout experiments to study a fundamental question in neuroscience, how are spatially distributed inputs integrated across distal dendritic branch points. The results suggest that integration can be non-linear across branch points and the supralinearity is largely mediated by NMDA receptors.

  19. Building blocks for the development of an interface for high-throughput thin layer chromatography/ambient mass spectrometric analysis: a green methodology.

    PubMed

    Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie

    2012-07-17

    Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.

  20. Human-building interaction at work: Findings from an interdisciplinary cross-country survey in Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Oca, Simona; Pisello, Anna Laura; De Simone, Marilena

    This study presents results from an interdisciplinary survey assessing contextual and behavioral factors driving occupants’ interaction with building and systems in offices located across three different Mediterranean climates in Turin (Northern), Perugia (Central), and Rende (Southern) Italy. The survey instrument is grounded in an interdisciplinary framework that bridges the gap between building physics and social science environments on the energy- and comfort-related human-building interaction in the workspace. Outcomes of the survey questionnaire provide insights into four key learning objectives: (1) individual occupant's motivational drivers regarding interaction with shared building environmental controls (such as adjustable thermostats, operable windows, blinds and shades,more » and artificial lighting), (2) group dynamics such as perceived social norms, attitudes, and intention to share controls, (3) occupant perception of the ease of use and knowledge of how to operate control systems, and (4) occupant-perceived comfort, satisfaction, and productivity. The study attempts to identify climatic, cultural, and socio-demographic influencing factors, as well as to establish the validity of the survey instrument and robustness of outcomes for future studies. Also, the paper aims at illustrating why and how social science insights can bring innovative knowledge into the adoption of building technologies in shared contexts, thus enhancing perceived environmental satisfaction and effectiveness of personal indoor climate control in office settings and impacting office workers’ productivity and reduced operational energy costs.« less

  1. Human-building interaction at work: Findings from an interdisciplinary cross-country survey in Italy

    DOE PAGES

    D'Oca, Simona; Pisello, Anna Laura; De Simone, Marilena; ...

    2018-01-31

    This study presents results from an interdisciplinary survey assessing contextual and behavioral factors driving occupants’ interaction with building and systems in offices located across three different Mediterranean climates in Turin (Northern), Perugia (Central), and Rende (Southern) Italy. The survey instrument is grounded in an interdisciplinary framework that bridges the gap between building physics and social science environments on the energy- and comfort-related human-building interaction in the workspace. Outcomes of the survey questionnaire provide insights into four key learning objectives: (1) individual occupant's motivational drivers regarding interaction with shared building environmental controls (such as adjustable thermostats, operable windows, blinds and shades,more » and artificial lighting), (2) group dynamics such as perceived social norms, attitudes, and intention to share controls, (3) occupant perception of the ease of use and knowledge of how to operate control systems, and (4) occupant-perceived comfort, satisfaction, and productivity. The study attempts to identify climatic, cultural, and socio-demographic influencing factors, as well as to establish the validity of the survey instrument and robustness of outcomes for future studies. Also, the paper aims at illustrating why and how social science insights can bring innovative knowledge into the adoption of building technologies in shared contexts, thus enhancing perceived environmental satisfaction and effectiveness of personal indoor climate control in office settings and impacting office workers’ productivity and reduced operational energy costs.« less

  2. Breckinridge Project, initial effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Report V, Volume 4 provides descriptions, data, and drawings pertaining to Instrument and Plant Air Systems (Plant 36), Telecommunication Systems (Plant 37), Inert Gas Systems (Plant 38), Purge and Flush Oil Systems (Plant 39), Site Development and Roads (Plant 40), Buildings (Plant 41), Solid Waste Management (Plant 42), and Landfill (Plant 44). Instrument and Plant Air Systems (Plant 36) includes all equipment and piping necessary to supply instrument and utility air to the process plants and offsite facilities. Telecommunication Systems (Plant 37) includes the equipment and wiring for: communication throughout the facility; communication between plant data processing systems and offsitemore » computing facilities; and communication with transportation carriers. Inert Gas Systems (Plant 38) provides high purity and low purity nitrogen streams for plant startup and normal operation. Purge and Flush Oil Systems (Plant 39) provides purge and flush oils to various plants. Site Development and Roads (Plant 40) provides site leveling, the addition of roads, fencing, and drainage, and the placement of fills, pilings, footings, and foundations for plants. Buildings (Plant 41) provides buildings for equipment and for personnel, including utilities, lighting, sanitary facilities, heating, air conditioning, and ventilation. Solid Waste Management (Plant 42) identifies, characterizes, segregates, and transports the various types of solid wastes to either Landfill (Plant 44) or outside disposal sites. Landfill (Plant 44) provides disposal of both nonhazardous and hazardous solid wastes. Information is included (as applicable) for each of the eight plants described.« less

  3. Building a Morbidostat: An automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition

    PubMed Central

    Toprak, Erdal; Veres, Adrian; Yildiz, Sadik; Pedraza, Juan M.; Chait, Remy; Paulsson, Johan; Kishony, Roy

    2013-01-01

    We present a protocol for building and operating an automated fluidic system for continuous culture that we call the “morbidostat”. The morbidostat is used to follow evolution of microbial drug resistance in real time. Instead of exposing bacteria to predetermined drug environments, the morbidostat constantly measures the growth rates of evolving microbial populations and dynamically adjusts drug concentrations inside culture vials in order to maintain a constant drug induced inhibition. The growth rate measurements are done using an optical detection system that is based on measuring the intensity of back-scattered light from bacterial cells suspended in the liquid culture. The morbidostat can additionally be used as a chemostat or a turbidostat. The whole system can be built from readily available components within two to three weeks, by biologists with some electronics experience or engineers familiar with basic microbiology. PMID:23429717

  4. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaaf, Rebecca E.; Evans, Meredydd

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  5. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  6. Analysis on Zero Energy Consumption Strategy for Office Buildings Lighting in Lianyungang Area

    NASA Astrophysics Data System (ADS)

    Wu, Dongmei

    2018-01-01

    In recent years, the energy-saving environmental protection has aroused the people’s high concern, and set off a new application practice in China. By analyzing the advantages of the illumination condition in Lianyungang area and combining the content and form of office space, the author puts forward a series of ways and means of energy saving in office building lighting, in order to provide a way for reference to the goal of building Zero energy consumption in the office space environment under the background of green architecture.

  7. 9 CFR 354.226 - Lighting and ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION AND CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Buildings and Plant Facilities § 354.226 Lighting and ventilation. There shall be ample light, either natural or artificial or...

  8. Records Reaching Recording Data Technologies

    NASA Astrophysics Data System (ADS)

    Gresik, G. W. L.; Siebe, S.; Drewello, R.

    2013-07-01

    The goal of RECORDS (Reaching Recording Data Technologies) is the digital capturing of buildings and cultural heritage objects in hard-to-reach areas and the combination of data. It is achieved by using a modified crane from film industry, which is able to carry different measuring systems. The low-vibration measurement should be guaranteed by a gyroscopic controlled advice that has been , developed for the project. The data were achieved by using digital photography, UV-fluorescence photography, infrared reflectography, infrared thermography and shearography. Also a terrestrial 3D laser scanner and a light stripe topography scanner have been used The combination of the recorded data should ensure a complementary analysis of monuments and buildings.

  9. Design of Weft Detection System in The Stenter Machine

    NASA Astrophysics Data System (ADS)

    Gu, Minming; Xu, Xianju; Dai, Wenzhan

    2017-12-01

    In order to build an effective automatic weft-straightening system, it is important for the sensing device to detect most the possible fabric styles, designs, colours and structures, an optical sensing system that detects the angular orientation of weft threads in a moving web of a textile has been built. It contains an adjustable light source, two lens systems and photodiode sensor array. The sensor array includes 13 radial pattern of photosensitive areas that each generate an electrical signal proportional to the total intensity of the light incident on the area. The moving shadow of a weft thread passing over the area will modulate the output signal. A signal processed circuit was built to do the I/V conversion, amplifying, hardware filtering. An embed micro control system then deals with the information of these signals, calculates the angle of the weft drew. Finally, the experiments were done, the results showed that the weft detection system can deal with the fabric weft skew up to 30° and has achieved good results in the application.

  10. Development of the IES method for evaluating the color rendition of light sources

    DOE PAGES

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.; ...

    2015-06-08

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score R f is an improved version ofmore » the CIE color rendering index. The color gamut score R g is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).« less

  11. Desert architecture for educational buildings, a case study: A center for training university graduates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeid, M.

    1996-10-01

    A new program for training graduates in desert development is being implemented by the Desert Development Center (DDC) of the American University in Cairo. The facilities consist of fifty bed/sitting rooms for accommodating 100 students. Each unit consists of two rooms and a bathroom for the use of 4 students; a lecture theater which can house 120 students, with adjoining office for trainers as well as necessary facilities; a general cafeteria which can serve 120--150 persons and an adjoining dining room for teaching staff. The cafeteria building also houses the kitchen; a cold storage area; a laundry room, storerooms, sleepingmore » quarters and services for the labor force of the building complex; a system of solar water heaters; and a special sanitary sewage system for treatment of waste water produced by the building`s activities. When designing and implementing this complex, architectural elements and building philosophy based on the concept of integrating with the environment were considered. Elements included orientation heights and building materials suited to the desert environment, thick walls, outer and inner finishing materials, roofs, malkafs, floors, colors, solar heaters, lighting, green areas, windbreaks, terraces, and furniture. The paper includes a general evaluation of this educational building based on the PRA approach (Participatory Rapid Appraisal) involving those living and working in it. As a result of her position with the project, the author was able to evaluate the original designs, recommend modifications, and evaluate their implementation and fulfillment of the original goals of the projects.« less

  12. Therapeutic lighting design for the elderly: a review.

    PubMed

    Shikder, Shariful; Mourshed, Monjur; Price, Andrew

    2012-11-01

    Research suggests that specialised lighting design is essential to cater for the elderly users of a building because of reduced visual performance with increased age. This review aims to document what is known of the physical and psychological aspects of lighting and their role in promoting a healthy and safe environment for the elderly. A methodical review was carried out of published literature on the physical and psychological impacts of light on the elderly. Design standards and guides from professional organizations were evaluated to identify synergies and gaps between the evidence base and current practice. Lighting has been identified as a significant environmental attribute responsible for promoting physical and mental health of the elderly. The evidence related to visual performance was found to be robust. However, guides and standards appeared to have focused mostly on illumination requirements for specific tasks and have lacked detailed guidelines on vertical lighting and luminance design. This review has identified a growing body of evidence on the therapeutic benefits of lighting and its use in treating psychological disorders among the elderly. The experiments using light as a therapy have improved our understanding of the underlying principles, but the integration of therapeutic aspects of lighting in design practice and guidelines is lacking. While design guidelines discuss the physical needs of lighting for the elderly fairly well, they lack incorporation of photobiological impacts. Despite positive outcomes from research, the implementation of therapeutic aspects of lighting in buildings is still debatable due to insufficient relevant investigations and robustness of their findings. Collaborations between designers and physicians can contribute in delivering customised lighting solutions by considering disease types and needs. Further investigation needs to be carried out for translating therapeutic benefits to photometric units to implement them in building lighting design.

  13. Building Security and Personal Safety. SPEC Kit 150.

    ERIC Educational Resources Information Center

    Bingham, Karen Havill

    This report on a survey of Association of Research Libraries (ARL) member libraries on building security and personal safety policies examines three areas in detail: (1) general building security (access to the building, key distribution, patrols or monitors, intrusion prevention, lighting, work environment after dark); (2) problem behavior…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kear, E.

    During the energy crises of the 1970s, commercial/office space lighting was an easy target for energy conservation. The first energy conservation measures consisted of turning off the lights when the building was closed for business, but this was not easy for some since many newer buildings were designed without convenient light switches or, for that matter, any switches. Alternative lighting technologies were quickly placed into service; they provided energy savings but usually at a loss of quality and quantity (such as the low-pressure sodium lamps). When the energy crises were over, lighting energy use rose again, but not to itsmore » pre-crises level: everyone had at least learned to turn out the lights at night. Eventually, improved lighting fixtures and lamps were developed, T-8s for example, which provide increased quality and quantity with decreased energy use, and now generally less energy is used to illuminate office and commercial spaces. So, since less energy is used for lighting, why is energy use in the commercial sector growing? One answer is the current explosion in the application of electronic office equipment technologies. Energy consumption by `information` equipment in the commercial segment, including large computer systems, has tripled in the last 10 years and could easily double in the next 10. While there are no driving crises as in the 1970s, there are still some lessons to be learned from lighting, such as: (1) Teaching everyone to turn off his/her PC when it`s not in use. This won`t ruin the hard drive, but it might make the computer last longer and it will save energy. (2) Encouraging the development of energy saving features, including Energy Star compliance. Fortunately, this is not too difficult, and is consistent with existing trends in the industry. (3) Teaching people to buy and use the energy-saving features. This could be harder than one might think, since some Energy Star-compliant devices still have a few `bugs.`« less

  15. Evaluating white LEDs for outdoor landscape lighting application

    NASA Astrophysics Data System (ADS)

    Shakir, Insiya; Narendran, Nadarajah

    2002-11-01

    A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.

  16. Buy, Build, or Steal: China’s Quest for Advanced Military Aviation Technologies

    DTIC Science & Technology

    2011-12-01

    its systems, resulting in long-term dependence on the seller in order to keep the aircraft flying or to update an older aircraft’s systems. This can...composites gained during the design of its indigenous Tejas Light Combat Aircraft ( LCA ).22 Russia has designed mostly metal aircraft and thus lacks...aircraft as an asset in the Cold War against the West. As a result , the Soviet Union did not fully employ its potential leverage and provided the PLA Air

  17. General Aviation Pilot Advisory and Training System (GAPATS)

    NASA Technical Reports Server (NTRS)

    Painter, John; Ward, Donald T.; Kelly, Wallace; Crump, John W.; Phillips, Ron; Trang, Jeff; Lee, Kris; Branham, Paul A.; Krishnamurthy, Karthik; Alcorn, William P., Jr.; hide

    1997-01-01

    The goal of this project is to achieve a validated General Aviation Pilot Advisor and Training System (GAPATS) engineering prototype, implemented according to commercial software standards and Federal Aviation Administration (FAA) issues of certification. Phase 2 builds on progress during Phase 1, which exceeded proposed objectives. The basic technology has been transferred from previous NASA research (1989 to 1994). We anticipate a commercially licensable prototype, validated by pilots in a flight simulator and in a light twin-engine research aircraft for FAA certification, by January 1998.

  18. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    NASA Astrophysics Data System (ADS)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  19. Endoscopic measurements using a panoramic annular lens

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Matthys, Donald R.

    1992-01-01

    The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.

  20. Daylight characterization through vision-based sensing of lighting conditions in buildings

    NASA Astrophysics Data System (ADS)

    di Dio, Joseph, III

    A new method for describing daylight under unknown weather conditions, as captured in images of a room, is proposed. This method considers pixel brightness information to be a linear combination of diffuse and directional light components, as received by a web cam from the walls and ceiling of an occupied office. The nature of these components in each image is determined by building orientation, room geometry, neighboring structures and the position of the sun. Considering daylight in this manner also allows for an estimation of the sky conditions at a given instant to be made, and presents a means to uncover seasonal trends in the behavior of light simply by monitoring the brightness variations of points on the walls and ceiling. Significantly, this daylight characterization method also allows for an estimation of the illumination level on a target surface to be made from image data. Currently, illumination at a target surface is estimated through the use of a ceiling-mounted photosensor, as part of a lighting control system, in the hopes of achieving a suitable balance between daylight and electrical lighting in a space. Improving the ability of a sensor to estimate the illumination is of great importance to those who wish to minimize unnecessary energy consumption, as a significant percentage of all U.S. electricity is currently consumed by light fixtures. A photosensor detects light that falls on its location, which does not necessarily correspond in a fixed manner to the light level on the target areas that the photosensor is meant to monitor. Additionally, a photosensor cannot discern variations in light distribution across a room, which often occur with daylight. By considering pixel brightness information to be a linear combination of diffuse and directional light components at selected pixels in an image, information about the light reaching these pixels can be extracted from observed patterns of brightness, under different light conditions. In this manner, each pixel provides information about the light field at its corresponding point in the room, and thus each pixel can be considered to behave as if it were a remote photosensor. By using multiple pixel readings in lieu of a single photosensor reading of a given light condition, an improved assessment of the illumination level on a target surface can been achieved. It is shown that on average, the camera-based method was approximately 25% more accurate in estimating illuminance in the test room than was a simulated ceiling-mounted photosensor. It is hoped that the methodology detailed here will aid in the eventual development of a camera-based daylight characterization sensor for use in lighting control systems, so that the potential for enhanced energy savings can be realized.

  1. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority over related methods.

  2. A field demonstration of energy conservation using occupancy sensor lighting control in equipment rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, J.E.

    1992-09-01

    The Pacific Northwest Laboratory identified energy savings potential of automatic equipment-room lighting controls, which was demonstrated by the field experiment described in this report. Occupancy sensor applications have gained popularity in recent years due to improved technology that enhances reliability and reduces cost. Automatic lighting control using occupancy sensors has been accepted as an energy-conservation measure because it reduces wasted lighting. This study focused on lighting control for equipment rooms, which have inherent conditions ideal for automatic lighting control, i.e., an area which is seldom occupied, multiple users of the area who would not know if others are in themore » room when they leave, and high lighting energy intensity in the area. Two rooms were selected for this study: a small equipment room in the basement of the 337 Building, and a large equipment area in the upper level of the 329 Building. The rooms were selected to demonstrate the various degrees of complexity which may be encountered in equipment rooms throughout the Hanford Site. The 337 Building equipment-room test case demonstrated a 97% reduction in lighting energy consumption, with an annual energy savings of $184. Including lamp-replacement savings, a total savings of $306 per year is offset by an initial installation cost of $1,100. The installation demonstrates a positive net present value of $2,858 when the lamp-replacement costs are included in a life-cycle analysis. This also corresponds to a 4.0-year payback period. The 329 Building equipment-room installation resulted in a 92% reduction in lighting energy consumption. This corresponds to annual energy savings of $1,372, and a total annual savings of $2,104 per year including lamp-replacement savings. The life-cycle cost analysis shows a net present value of $15,855, with a 5.8-year payback period.« less

  3. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.

    PubMed

    Thio, Si Kuan; Jiang, Dongyue; Park, Sung-Yong

    2018-06-12

    Optofluidics is an emerging research field that combines the two disciplines of microfluidics and optics. By using microfluidic technologies for light control, optofluidic devices can offer several advantages over solid-type optical components, including optical-grade smoothness at the fluidic interface and a high degree of optical tunability without bulky and complex mechanical moving parts. These features have made optofluidic devices more versatile and reconfigurable to improve their optical performances. In this paper, we present a novel optofluidic sunlight manipulation technology for solar indoor lighting using the electrowetting principle. Rooftop sunlight is collected by a solar concentrator and guided to individual rooms along an optical fiber (waveguide) on the bottom of which tunable liquid prisms are linearly integrated. In the light-off mode, electrowetting controls the apex angle of the prisms to be φ = 0°. Under this condition, incoming sunlight experiences total internal reflection and thus keeps propagating along the optical fiber without leaking to the prism bottom for indoor lighting. In contrast, when liquid prisms are controlled to have the angle at φ > 0°, incoming sunlight is partially transmitted to the bottom surface of the arrayed prisms to contribute to interior illumination. Simulation studies validate that our electrowetting-driven solar indoor lighting (e-SIL) system is capable of variably tuning the lighting power from 0% to 98.6% of the input solar power by controlling the prism angle and varying the refractive index of prism materials. For experimental studies, we fabricated an array of 5 prisms filled with silicone oil and water. Using a fiber illuminator as a white light source that includes visible light with various incident angles, we have demonstrated two important lighting functions, (1) light on/off and (2) illumination power control. Lighting performance can be further enhanced by lowering the aspect ratio of the prism as well as increasing the number of prisms. The e-SIL technology based on tunable liquid prisms offers a new approach towards sustainable buildings that are able to reduce their electricity usage as well as provide a healthy and comfortable indoor environment under illumination of natural sunlight.

  4. Energy efficiency evaluation of hospital building office

    NASA Astrophysics Data System (ADS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  5. All-optical routing and switching for three-dimensional photonic circuitry

    PubMed Central

    Keil, Robert; Heinrich, Matthias; Dreisow, Felix; Pertsch, Thomas; Tünnermann, Andreas; Nolte, Stefan; Christodoulides, Demetrios N.; Szameit, Alexander

    2011-01-01

    The ability to efficiently transmit and rapidly process huge amounts of data has become almost indispensable to our daily lives. It turned out that all-optical networks provide a very promising platform to deal with this task. Within such networks opto-optical switches, where light is directed by light, are a crucial building block for an effective operation. In this article, we present an experimental analysis of the routing and switching behaviour of light in two-dimensional evanescently coupled waveguide arrays of Y- and T-junction geometries directly inscribed into fused silica using ultrashort laser pulses. These systems have the fundamental advantage of supporting three-dimensional network topologies, thereby breaking the limitations on complexity associated with planar structures while maintaining a high dirigibility of the light. Our results show how such arrays can be used to control the flow of optical signals within integrated photonic circuits. PMID:22355612

  6. Investigation of hydrophobic interactions mediating the self-assembly of supramolecular host/guest polymer complexes utilizing Simultaneous Multiple Sample Light Scattering (SMSLS)

    NASA Astrophysics Data System (ADS)

    Payne, Molly; Jarand, Curtis; Grayson, Scott; Reed, Wayne

    While living systems spontaneously heal injuries, most man made materials cannot recover from damage. Incorporating self-healing properties into synthetic polymers could significantly extend product lifetime, safety, and applications. Most reported approaches to incorporate healing into synthetic materials, however, require external stimuli such as chemical additives, heat, and light exposure. Although dynamic bonds have been explored, particularly using a hydrogen bond motif, this has not been fully investigated in an aqueous environment. To address this, hosts and guests that dynamically associate in water have been investigated to build aqueous self-healing materials. These association values were probed for various host/guest complexes using Simultaneous Multiple Sample Light Scattering (SMSLS), a technique that measures the size of aggregates via light scattering while varying concentration and other environmental factors. NSF EPSCoR IIA1430280.

  7. Building Twilight "Light Sensors" to Study the Effects of Light Pollution on Fireflies

    ERIC Educational Resources Information Center

    Thancharoen, Anchana; Branham, Marc A.; Lloyd, James E.

    2008-01-01

    Light pollution negatively affects many nocturnal organisms. We outline two experiments that can be conducted by students to examine the effects of light pollution on firefly behavior. Inexpensive electronic light sensors, which are easy to construct and calibrate, are used to sample light levels along transects in spaces where fireflies are…

  8. An Analysis of Electrical Consumption at Representative Army Installations.

    DTIC Science & Technology

    1980-05-01

    can be done by analyzing and optimizing HVAC system and building operation. For example, if the minimum hourly usage (demand) of a typical bachelor...equipment. (Major candidates for scheduling are air-handler motors, chillers , air compressors, exhaust fans, exterior lights, hot water heaters, and hot...location: Thermostats Setpoint Measured Limiters Setback Area Temperature Temperature Yes No Yes No Are night setback thermostats recommended? Yes _ No

  9. Energy Savings and Persistence from an Energy Services Performance Contract at an Army Base

    DTIC Science & Technology

    2011-10-01

    control system upgrades, lighting retrofits, vending machine controls, and cooling tower variable frequency drivers (VFDs). To accomplish the...controls were installed in the vending machines , and for the 87018 thermal plant, cooling tower VFDs were implemented. To develop baseline models...identify the reasons of improved or deteriorated energy performance of the buildings. For example, periodic submetering of the vending machines

  10. From a philanthropic idea to building of civic hospital in Split in light of new archival evidence.

    PubMed

    Brisky, Livia; Fatović-Ferencić, Stella

    2006-02-01

    We investigated the circumstances of building of the Civic Hospital in Split in the light of new archival evidence. The study necessitated a thorough review of the older historiography and previously unpublished archival sources kept in the State Archives in Venice and Zadar. The findings showed that construction of the hospital building finished in 1797, ie, five years later than officially cited. The topographical plan and the original project of the Split Civic Hospital were found, as well as the name of the project's author and the building supervisor. The data on the earliest efforts of Ergovac brothers to acquire land and building permission were corrected. The study revealed a recognizable pattern in the attitude of the authorities toward the establishment of a hospital at the end of 18th century.

  11. Tracking-integrated systems for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo

    2016-04-01

    Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.

  12. 3. DETAIL VIEW OF THE MAIN ENTRY OF BUILDING 13, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL VIEW OF THE MAIN ENTRY OF BUILDING 13, SHOWING THE ORIGINAL LIGHT FIXTURES AND THE EGYPTIAN MOTIF DECORATION; LOOKING SSW. (Ryan) - Veterans Administration Medical Center, Building No. 13, Old State Route 13 West, Marion, Williamson County, IL

  13. High-Rising Rec Centers.

    ERIC Educational Resources Information Center

    Whitney, Tim

    2000-01-01

    Examines how tight urban sites can yield sports spaces that favorably compare to their more rural campus counterparts. Potential areas of concern when recreation centers are reconfigured into high-rise structures are highlighted, including building codes, building access, noise control, building costs, and lighting. (GR)

  14. Unsupervised building detection from irregularly spaced LiDAR and aerial imagery

    NASA Astrophysics Data System (ADS)

    Shorter, Nicholas Sven

    As more data sources containing 3-D information are becoming available, an increased interest in 3-D imaging has emerged. Among these is the 3-D reconstruction of buildings and other man-made structures. A necessary preprocessing step is the detection and isolation of individual buildings that subsequently can be reconstructed in 3-D using various methodologies. Applications for both building detection and reconstruction have commercial use for urban planning, network planning for mobile communication (cell phone tower placement), spatial analysis of air pollution and noise nuisances, microclimate investigations, geographical information systems, security services and change detection from areas affected by natural disasters. Building detection and reconstruction are also used in the military for automatic target recognition and in entertainment for virtual tourism. Previously proposed building detection and reconstruction algorithms solely utilized aerial imagery. With the advent of Light Detection and Ranging (LiDAR) systems providing elevation data, current algorithms explore using captured LiDAR data as an additional feasible source of information. Additional sources of information can lead to automating techniques (alleviating their need for manual user intervention) as well as increasing their capabilities and accuracy. Several building detection approaches surveyed in the open literature have fundamental weaknesses that hinder their use; such as requiring multiple data sets from different sensors, mandating certain operations to be carried out manually, and limited functionality to only being able to detect certain types of buildings. In this work, a building detection system is proposed and implemented which strives to overcome the limitations seen in existing techniques. The developed framework is flexible in that it can perform building detection from just LiDAR data (first or last return), or just nadir, color aerial imagery. If data from both LiDAR and aerial imagery are available, then the algorithm will use them both for improved accuracy. Additionally, the proposed approach does not employ severely limiting assumptions thus enabling the end user to apply the approach to a wider variety of different building types. The proposed approach is extensively tested using real data sets and it is also compared with other existing techniques. Experimental results are presented.

  15. Traffic light detection and intersection crossing using mobile computer vision

    NASA Astrophysics Data System (ADS)

    Grewei, Lynne; Lagali, Christopher

    2017-05-01

    The solution for Intersection Detection and Crossing to support the development of blindBike an assisted biking system for the visually impaired is discussed. Traffic light detection and intersection crossing are key needs in the task of biking. These problems are tackled through the use of mobile computer vision, in the form of a mobile application on an Android phone. This research builds on previous Traffic Light detection algorithms with a focus on efficiency and compatibility on a resource-limited platform. Light detection is achieved through blob detection algorithms utilizing training data to detect patterns of Red, Green and Yellow in complex real world scenarios where multiple lights may be present. Also, issues of obscurity and scale are addressed. Safe Intersection crossing in blindBike is also discussed. This module takes a conservative "assistive" technology approach. To achieve this blindBike use's not only the Android device but, an external bike cadence Bluetooth/Ant enabled sensor. Real world testing results are given and future work is discussed.

  16. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score R f is an improved version ofmore » the CIE color rendering index. The color gamut score R g is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).« less

  18. Global positioning method based on polarized light compass system

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong

    2018-05-01

    This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.

  19. Evaluation of historical museum interior lighting system using fully immersive virtual luminous environment

    NASA Astrophysics Data System (ADS)

    Navvab, Mojtaba; Bisegna, Fabio; Gugliermetti, Franco

    2013-05-01

    Saint Rocco Museum, a historical building in Venice, Italy is used as a case study to explore the performance of its' lighting system and visible light impact on viewing the large size art works. The transition from threedimensional architectural rendering to the three-dimensional virtual luminance mapping and visualization within a virtual environment is described as an integrated optical method for its application toward preservation of the cultural heritage of the space. Lighting simulation programs represent color as RGB triplets in a devicedependent color space such as ITU-R BT709. Prerequisite for this is a 3D-model which can be created within this computer aided virtual environment. The onsite measured surface luminance, chromaticity and spectral data were used as input to an established real-time indirect illumination and a physically based algorithms to produce the best approximation for RGB to be used as an input to generate the image of the objects. Conversion of RGB to and from spectra has been a major undertaking in order to match the infinite number of spectra to create the same colors that were defined by RGB in the program. The ability to simulate light intensity, candle power and spectral power distributions provide opportunity to examine the impact of color inter-reflections on historical paintings. VR offers an effective technique to quantify the visible light impact on human visual performance under precisely controlled representation of light spectrum that could be experienced in 3D format in a virtual environment as well as historical visual archives. The system can easily be expanded to include other measurements and stimuli.

  20. Chamber study of PCBemissions from caulking materials and ...

    EPA Pesticide Factsheets

    The emissions of polychlorinated biphenyl (PCB) congeners from 13 caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 different models from five manufacturers were tested in 53-liter environmental chambers. The rates of PCB congener emissions from caulking materials and light ballasts were determined. Several factors that may have affected the emission rates were evaluated. The experimentally determined emission factors showed that, for a given PCB congener, there is a linear correlation between the emission factor and the concentration of the PCB congener in the source. Furthermore, the test results showed that an excellent log-linear correlation exists between the normalized emission factor and the vapor pressure (coefficient of determination, r2 ≥0.8846). The PCB congener emissions from ballasts at or near room temperature were relatively low with or without electrical load. However, the PCB congener emission rates increased significantly as the temperature increased. The results of this research provide new data and models for ranking the primary sources of PCBs and supports the development and refinement of exposure assessment models for PCBs. This study supplemented and complemented the field measurements in buildings conducted by U.S. EPA National Exposure Research Laboratory by providing a bette

  1. Neutrino Telescopes

    NASA Astrophysics Data System (ADS)

    de Marzo, C. N.

    2002-06-01

    Neutrino astronomy is one of the frontier of the high energy astrophysics. I discuss how to build a neutrino telescope and which requirements such a detector must fulfil. A measurable flux of astrophysical neutrinos is predicted by several models for a detector at the cubic kilometer scale. The way pursued until now in building such huge apparatuses is Cherenkov light detection in water or in ice. There have been attempts to build neutrino telescopes and also some projects are yet under construction or under way to start. This situation is reviewed and also techniques alternatives to the Cherenkov light detection are mentioned.

  2. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    NASA Astrophysics Data System (ADS)

    Major, Maciej; Kosiń, Mariusz

    2017-12-01

    The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study). Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  3. a Light-Weight Laser Scanner for Uav Applications

    NASA Astrophysics Data System (ADS)

    Tommaselli, A. M. G.; Torres, F. M.

    2016-06-01

    Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  4. Development of an antimicrobial blended white LED system containing pulsed 405nm LEDs for decontamination applications

    NASA Astrophysics Data System (ADS)

    Gillespie, Jonathan B.; Maclean, Michelle; Wilson, Mark P.; Given, Martin J.; MacGregor, Scott J.

    2017-03-01

    This study details the design, build and testing of a prototype antimicrobial blended white light unit containing pulsed red, yellow, green and 405nm LEDs. With a push for alternative methods of disinfection, optical methods have become a topic of interest. Ultra-violet (UV) light is widely known for its antimicrobial properties however; 405nm light has demonstrated significant antimicrobial properties against many common hospital acquired pathogens. In this study, a pulsed, blended, white-light prototype with a high content of 405 nm antimicrobial light, was designed, built and tested. Antimicrobial efficacy testing of the prototype was conducted using Staphylococcus aureus and Pseudomonas. aeruginosa, two bacteria which are common causes of hospital acquired infections. These were exposure to 3 different light outputs from the prototype and the surviving bacteria enumerated. Results showed that the mixed light output provided a much better CRI and light output under which to work. Also, the light output containing 405 nm light provided an antimicrobial effect, with decontamination of 103 CFUml-1 populations of both bacterial species. The other light content (red, yellow, green) had no beneficial or adverse effects on the antimicrobial properties of the 405nm light. The results suggest that with further development, it could be possible to produce an antimicrobial blended white light containing pulsed 405nm light that could supplement or even replace standard white lighting in certain environments.

  5. Conceptual design of a stray light facility for Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.

    2017-11-01

    With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.

  6. Patterned Photostimulation with Digital Micromirror Devices to Investigate Dendritic Integration Across Branch Points

    PubMed Central

    Santos, M. Daniel; Tang, Cha-Min

    2011-01-01

    Light is a versatile and precise means to control neuronal excitability. The recent introduction of light sensitive effectors such as channel-rhodopsin and caged neurotransmitters have led to interests in developing better means to control patterns of light in space and time that are useful for experimental neuroscience. One conventional strategy, employed in confocal and 2-photon microscopy, is to focus light to a diffraction limited spot and then scan that single spot sequentially over the region of interest. This approach becomes problematic if large areas have to be stimulated within a brief time window, a problem more applicable to photostimulation than for imaging. An alternate strategy is to project the complete spatial pattern on the target with the aid of a digital micromirror device (DMD). The DMD approach is appealing because the hardware components are relatively inexpensive and is supported by commercial interests. Because such a system is not available for upright microscopes, we will discuss the critical issues in the construction and operations of such a DMD system. Even though we will be primarily describing the construction of the system for UV photolysis, the modifications for building the much simpler visible light system for optogenetic experiments will also be provided. The UV photolysis system was used to carryout experiments to study a fundamental question in neuroscience, how are spatially distributed inputs integrated across distal dendritic branch points. The results suggest that integration can be non-linear across branch points and the supralinearity is largely mediated by NMDA receptors. PMID:21403635

  7. 3. DETAIL VIEW OF S ENTRY DOOR TO BUILDING 8, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL VIEW OF S ENTRY DOOR TO BUILDING 8, SHOWING ONE OF THE ORIGINAL LIGHT FIXTURES AND THE EGYPTIAN MOTIF DECORATION; LOOKING N (Ryan) - Veterans Administration Medical Center, Building No. 8, Old State Route 13 West, Marion, Williamson County, IL

  8. Central Control Room in the Engine Research Building

    NASA Image and Video Library

    1968-11-21

    Operators in the Engine Research Building’s Central Control Room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. The panels on the wall contain schematics with indicator lights and instrumentation for the atmospheric exhaust, altitude exhaust, refrigerated air, and process air systems. The process air equipment included twelve exhausters, four compressors, refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.

  9. Correlation of classroom typologies to lighting energy performance of academic building in warm-humid climate (case study: ITS Campus Sukolilo Surabaya)

    NASA Astrophysics Data System (ADS)

    Ekasiwi, S. N. N.; Antaryama, I. G. N.; Krisdianto, J.; Ulum, M. S.

    2018-03-01

    Classrooms in educational buildings require certain lighting requirements to serve teaching and learning activities during daytime. The most typical design is double sided opening in order to get good daylight distribution in the classroom. Using artificial light is essential to contribute the worse daylight condition. A short observation indicates that during the lecture time the light turned on, even in the daytime. That might result in wasting electrical energy. The aim of the study is to examine the type of classroom, which perform comfortable lighting environment as well as saving energy. This paper reports preliminary results of the study obtained from field observation and measurements. The use of energy and usage pattern of artificial lighting during the lecture is recorded and then the data evaluated to see the suitability of existing energy use to building energy standards. The daylighting design aspects have to be the first consideration. However, the similarity in WWR of the classroom, the Daylight Factor (DF) may differ. It depends on the room depth. The similarity of the increase of WWR and Ratio of openings to floor area do not directly correspond to the increase of DF. The outdoor condition of larger daylight access and the room depth are the influencing factors. Despite the similarity of physical type, usage pattern of the classroom imply the use of electrical energy for lighting. The results indicate the factors influencing lighting energy performance in correlation to their typologies

  10. A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    DOE PAGES

    Billings, Jay Jay; Deyton, Jordan H.; Forest Hull, S.; ...

    2015-07-17

    Building new fission reactors in the United States presents many technical and regulatory challenges. Chief among the technical challenges is the need to share and present results from new high- fidelity, high- performance simulations in an easily consumable way. In light of the modern multi-scale, multi-physics simulations can generate petabytes of data, this will require the development of new techniques and methods to reduce the data to familiar quantities of interest with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately availablemore » in the community and need to be developed. Our paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It enables easy qualitative and quantitative comparisons between simulation results with a graphical user interface and cross-platform, multi-language input- output libraries for use by developers to work with the data. One example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented along with a detailed discussion of the system s requirements and design.« less

  11. Electronic Escape Trails for Firefighters

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Schipper, John; Betts, Bradley

    2008-01-01

    A proposed wireless-communication and data-processing system would exploit recent advances in radio-frequency identification devices (RFIDs) and software to establish information lifelines between firefighters in a burning building and a fire chief at a control station near but outside the building. The system would enable identification of trails that firefighters and others could follow to escape from the building, including identification of new trails should previously established trails become blocked. The system would include a transceiver unit and a computer at the control station, portable transceiver units carried by the firefighters in the building, and RFID tags that the firefighters would place at multiple locations as they move into and through the building (see figure). Each RFID tag, having a size of the order of a few centimeters, would include at least standard RFID circuitry and possibly sensors for measuring such other relevant environmental parameters as temperature, levels of light and sound, concentration of oxygen, concentrations of hazardous chemicals in smoke, and/or levels of nuclear radiation. The RFID tags would be activated and interrogated by the firefighters and control-station transceivers. Preferably, RFID tags would be configured to communicate with each other and with the firefighters units and the control station in an ordered sequence, with built-in redundancy. In a typical scenario, as firefighters moved through a building, they would scatter many RFID tags into smoke-obscured areas by use of a compressed-air gun. Alternatively or in addition, they would mark escape trails by dropping RFID tags at such points of interest as mantraps, hot spots, and trail waypoints. The RFID tags could be of different types, operating at different frequencies to identify their functions, and possibly responding by emitting audible beeps when activated by signals transmitted by transceiver units carried by nearby firefighters.

  12. Achieving Energy Savings in Municipal Construction in Long Beach, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, Kristen; Regnier, Cindy

    Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program.3 The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAEmore » baseline by about 45%. The new 15,000-square foot (ft2) LBGO office building has two stories and houses private offices, open-plan cubicle offices, and a conference room and call center on the second floor. The building’s modular nature allowed LBGO to realize the cost benefits of fasttracked construction while saving substantial energy and reducing operational costs. The project was funded by the utility’s ratepayer revenue, which imposed a tight budget limit. The design process was a collaborative effort involving LBGO and its design-build team, Lawrence Berkeley National Laboratory (Berkeley Lab), and subcontractors Stantec (formerly Burt Hill) and LHB Inc. The team proposed efficiency measures based on computer modeling of the building in full compliance with ASHRAE 90.1-2007; in the modeled building, the lighting and cooling systems were the largest energy users, so increasing the efficiency of these systems was a top priority. Promising measures were modeled to estimate their energy performance, and each measure was evaluated for its feasibility within the budget.« less

  13. A comprehensive framework to assess, model, and enhance the human role in conserving energy in commercial buildings

    NASA Astrophysics Data System (ADS)

    Azar, Elie

    Energy conservation and sustainability are subjects of great interest today, especially in the commercial building sector which is witnessing a very high and growing demand for energy. Traditionally, efforts to reduce energy consumption in this sector consisted of researching and developing energy efficient building technologies and systems. On the other hand, recent studies indicate that human actions are major determinants of building energy performance and can lead to excessive energy use even in advanced low-energy buildings. As a result, it is essential to determine if the approach to future energy reduction initiatives should remain solely technology-focused, or if a human-focused approach is also needed to complement advancements in technology and improve building operation and performance. In practice, while technology-focused solutions have been extensively researched, promoted, and adopted in commercial buildings, research efforts on the role of human actions and energy use behaviors in energy conservation remain very limited. This study fills the missing gap in literature by presenting a comprehensive framework to (1) understand and quantify the influence of human actions on building energy performance, (2) model building occupants' energy use behaviors and account for potential changes in these behaviors over time, and (3) test and optimize different human-focused energy reduction interventions to increase their adoption in commercial buildings. Results are significant and prove that human actions have a major role to play in reducing the energy intensity of the commercial building sector. This sheds the light on the need for a shift in how people currently use and control different buildings systems, as this is crucial to ensure efficient building operation and to maximize the return on investment in energy-efficient technologies. Furthermore, this study proposes methods and tools that can be applied on any individual or groups of commercial buildings to evaluate the human impact on their energy performance. This is expected to boost research on the topic and promote the integration of human-focused interventions in large-scale energy reduction initiatives and policies. Finally, this dissertation presents a roadmap for the future challenges to energy conservation and the steps to take towards a more sustainable building sector and society.

  14. A modular assembling platform for manufacturing of microsystems by optical tweezers

    NASA Astrophysics Data System (ADS)

    Ksouri, Sarah Isabelle; Aumann, Andreas; Ghadiri, Reza; Prüfer, Michael; Baer, Sebastian; Ostendorf, Andreas

    2013-09-01

    Due to the increased complexity in terms of materials and geometries for microsystems new assembling techniques are required. Assembling techniques from the semiconductor industry are often very specific and cannot fulfill all specifications in more complex microsystems. Therefore, holographic optical tweezers are applied to manipulate structures in micrometer range with highest flexibility and precision. As is well known non-spherical assemblies can be trapped and controlled by laser light and assembled with an additional light modulator application, where the incident laser beam is rearranged into flexible light patterns in order to generate multiple spots. The complementary building blocks are generated by a two-photon-polymerization process. The possibilities of manufacturing arbitrary microstructures and the potential of optical tweezers lead to the idea of combining manufacturing techniques with manipulation processes to "microrobotic" processes. This work presents the manipulation of generated complex microstructures with optical tools as well as a storage solution for 2PP assemblies. A sample holder has been developed for the manual feeding of 2PP building blocks. Furthermore, a modular assembling platform has been constructed for an `all-in-one' 2PP manufacturing process as a dedicated storage system. The long-term objective is the automation process of feeding and storage of several different 2PP micro-assemblies to realize an automated assembly process.

  15. Polychlorinated Biphenyl Sources, Emissions, and Environmental Levels in School Buildings

    EPA Science Inventory

    Building materials and components containing polychlorinated biphenyls (PCBs) were used in some U.S. school buildings until the late 1970s and may be present today. PCB emission rates from caulk and fluorescent light ballasts were measured in laboratory chambers. PCB concentrat...

  16. 40 CFR Appendix III to Subpart S... - As-Received Inspection

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... Reading 7. Build Date 8. MIL light on/off status 9. Readiness code status 10. Stored OBD codes 11.Any...

  17. Modeling of digital information optical encryption system with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bondareva, Alyona P.; Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.

    2015-10-01

    State of the art micromirror DMD spatial light modulators (SLM) offer unprecedented framerate up to 30000 frames per second. This, in conjunction with high speed digital camera, should allow to build high speed optical encryption system. Results of modeling of digital information optical encryption system with spatially incoherent illumination are presented. Input information is displayed with first SLM, encryption element - with second SLM. Factors taken into account are: resolution of SLMs and camera, holograms reconstruction noise, camera noise and signal sampling. Results of numerical simulation demonstrate high speed (several gigabytes per second), low bit error rate and high crypto-strength.

  18. A BIM-based system for demolition and renovation waste estimation and planning.

    PubMed

    Cheng, Jack C P; Ma, Lauren Y H

    2013-06-01

    Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. SeeStar: an open-source, low-cost imaging system for subsea observations

    NASA Astrophysics Data System (ADS)

    Cazenave, F.; Kecy, C. D.; Haddock, S.

    2016-02-01

    Scientists and engineers at the Monterey Bay Aquarium Research Institute (MBARI) have collaborated to develop SeeStar, a modular, light weight, self-contained, low-cost subsea imaging system for short- to long-term monitoring of marine ecosystems. SeeStar is composed of separate camera, battery, and LED lighting modules. Two versions of the system exist: one rated to 300 meters depth, the other rated to 1500 meters. Users can download plans and instructions from an online repository and build the system using low-cost off-the-shelf components. The system utilizes an easily programmable Arduino based controller, and the widely distributed GoPro camera. The system can be deployed in a variety of scenarios taking still images and video and can be operated either autonomously or tethered on a range of platforms, including ROVs, AUVs, landers, piers, and moorings. Several Seestar systems have been built and used for scientific studies and engineering tests. The long-term goal of this project is to have a widely distributed marine imaging network across thousands of locations, to develop baselines of biological information.

  20. Characterization of instrumented sites for the onsite fuel-cell field-test project. Volume 4. Topical report, 1983-1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racine, W.C.; Campillo, C.J.

    During the site-selection phase of the Onsite Fuel-Cell Field Test, nearly one hundred sites throughout the U.S. were each instrumented with a standard data-acquisition system (DAS) to collect hourly electrical and thermal data for one year. Seventy of those sites are included in the report. Each site's electrical and thermal systems were instrumented including ambient temperature, electrical demands, building gas usage, and other parameters necessary to calculate building thermal loads. Multifamily residential, commercial, and light industrial sites were instrumented. Approximately twenty market sectors were represented including restaurants, hospitals, hotels, apartments, health clubs, nursing homes, and food-processing plants. The primary usemore » of the data was to determine site compatibility for the installation of 40-kW fuel-cell power plants. However, the collected energy data and site-specific information summarized in this comprehensive report may also be useful for other applications such as market characterization and simulation of new or improved energy-utilization equipment in actual sites. This volume covers metal-plating facilities, nurseries, nursing homes, office buildings and other industrial applications.« less

  1. KSC-04pd0955

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - KSC employees stop at display tables set up in a tent near the Operations and Checkout Building for KSC’s annual Environmental and Energy Awareness Week, held April 20-22. The slogan for this year’s event was “Today's Conservation Defines Tomorrow's Future.” Presentations included Chemistry Safety, Cost-Effective Solar Applications, Non-Native Invasive Plant Identification and Control, Energy Efficient Lighting Systems, and Historical Changes in KSC’s Ecosystems.

  2. KSC-04pd0958

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - KSC employees stop at display tables set up in a tent near the Operations and Checkout Building for KSC’s annual Environmental and Energy Awareness Week, held April 20-22. The slogan for this year’s event was “Today's Conservation Defines Tomorrow's Future.” Presentations included Chemistry Safety, Cost-Effective Solar Applications, Non-Native Invasive Plant Identification and Control, Energy Efficient Lighting Systems, and Historical Changes in KSC’s Ecosystems.

  3. Development of high power UV irradiance meter calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Yin, Dejin; Li, Tiecheng

    2016-09-01

    With the rapid development of China's economy, many industries have more requirements for UV light applications, such as machinery manufacturing, aircraft manufacturing using high power UV light for detection, IT industry using high power UV light for curing component assembly, building materials, ink, paint and other industries using high power UV light for material aging test etc. In these industries, there are many measuring instruments for high power UV irradiance which are need to traceability. But these instruments are mostly imported instruments, these imported UV radiation meter are large range, wide wavelength range and high accuracy. They have exceeded our existing calibration capability. Expand the measuring range and improve the measurement accuracy of UV irradiance calibration device is a pressing matter of the moment. The newly developed high power UV irradiance calibration device is mainly composed of high power UV light, UV filter, condenser, UV light guide, optical alignment system, standard cavity absolute radiometer. The calibration device is using optical alignment system to form uniform light radiation field. The standard is standard cavity absolute radiometer, which can through the electrical substitution method, by means of adjusting and measuring the applied DC electric power at the receiver on a heating wire, which is equivalent to the thermo-electromotive force generated by the light radiation power, to achieve absolute optical radiation measurement. This method is the commonly used effective method for accurate measurement of light irradiation. The measuring range of calibration device is (0.2 200) mW/cm2, and the uncertainty of measurement results can reached 2.5% (k=2).

  4. Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor.

    PubMed

    Hoang, Toan Minh; Baek, Na Rae; Cho, Se Woon; Kim, Ki Wan; Park, Kang Ryoung

    2017-10-28

    Recently, autonomous vehicles, particularly self-driving cars, have received significant attention owing to rapid advancements in sensor and computation technologies. In addition to traffic sign recognition, road lane detection is one of the most important factors used in lane departure warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal and external factors such as road quality, occlusion (traffic on the road), weather conditions, and illumination (shadows from objects such as cars, trees, and buildings). Obtaining clear road lane markings for recognition processing is a difficult challenge. Therefore, we propose a method to overcome various illumination problems, particularly severe shadows, by using fuzzy system and line segment detector algorithms to obtain better results for detecting road lanes by a visible light camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes dataset (SLD), and Road Marking dataset, showed that our method outperformed conventional lane detection methods.

  5. A Distant Solar System Artist Concept

    NASA Image and Video Library

    2004-12-09

    This artist concept depicts a distant hypothetical solar system, similar in age to our own. Looking inward from the system outer fringes, a ring of dusty debris can be seen, and within it, planets circling a star the size of our Sun. This debris is all that remains of the planet-forming disk from which the planets evolved. Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains. These outer debris disks are too faint to be imaged by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own. http://photojournal.jpl.nasa.gov/catalog/PIA07096

  6. On-off keying transmitter design for navigation by visible light communication

    NASA Astrophysics Data System (ADS)

    Louro, P.; Vieira, M.; Costa, J.; Vieira, M. A.

    2018-02-01

    White LEDS revolutionized the field of illumination technology mainly due to the energy saving effects. Besides lighting purposes LEDs can also be used in wireless communication systems when integrated in Visible Light Communication (VLC) systems. Indoor positioning for navigation in large buildings is currently under research to overcome the difficulties associated with the use of GPS in such environments. The motivation for this application is also supported by the possibility of taking advantage of an existing lighting and WiFi infrastructure. In this work it is proposed an indoor navigation system based on the use of VLC technology. The proposed system includes trichromatic white LEDs with the red and blue chips modulated at different frequencies and a pinpin photodetector with selective spectral sensitivity. Optoelectronic features of both optical sources and photodetector device are analyzed. The photodetector device consists two pin structures based on a-SiC:H and a-Si:H with geometrical configuration optimized for the detection of short and large wavelengths in the visible range. Its sensitivity is externally tuned by steady state optical bias. The localization algorithm makes use of the Fourier transform to identify the frequencies present in the photocurrent signal and the wavelength filtering properties of the sensor under front and back optical bias to detect the existing red and blue signals. The viability of the system was demonstrated through the implementation of an automatic algorithm to infer the photodetector cardinal direction. A capacitive optoelectronic model supports the experimental results and explains the device operation.

  7. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  8. Seeing the Supplier Light.

    ERIC Educational Resources Information Center

    May, Abigail, Ed.

    1998-01-01

    Discusses buying building products from vendors and how to make the job more productive and beneficial for the facilities manager. Examines building/vendor relationships, establishing product knowledge, and using effective communication. (GR)

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMar, P.

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency.more » Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.« less

  10. Country Report on Building Energy Codes in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  11. Passivhaus: indoor comfort and energy dynamic analysis.

    NASA Astrophysics Data System (ADS)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca

    2013-04-01

    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous-state analysis" (that provides the only energy performance of the structure) and considering the "building-equipments" as a system (which provides the overall performance of the "building system"). The first analysis shows as the absence of thermal mass and the envelope super-heating prevent to incoming heat to exit, overheating the indoor environment. The analysis of the overall performance of the "building system" highlights, instead, as the thermal load is much greater during the summer than in winter; this means that, using a low inertia envelopes, the energy saved in the winter can be used to satisfy the thermal performance in the summer. This is further demonstrated by comparing the performance of indoor temperatures and the relative energy consumption of a similar building with greater thermal inertia. Further analysis involved a critical comparison between the "semisteady-state analysis" ("CasaClima" methodology) and the analysis in dynamic conditions (using "Energy Plus" software).

  12. School Buildings for the 21st Century -- Some Features of New School Buildings in Iceland

    ERIC Educational Resources Information Center

    Sigurðardóttir, Anna Kristín; Hjartarson, Torfi

    2011-01-01

    The aim of this study is to identify features of change in the recent design of school buildings in Iceland, and how they might affect teaching practices. Environmental and architectonic features characterising school buildings designed and built at the beginning of the 21st century are examined in light of challenges involving architecture,…

  13. Variable area light reflecting assembly

    DOEpatents

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  14. Variable area light reflecting assembly

    DOEpatents

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  15. OPINION: Safe exponential manufacturing

    NASA Astrophysics Data System (ADS)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  16. Eeap-lighting survey study at the Red River Army Depot Texarkana, Texas. Final report, 17 October 1994-14 April 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, C.A.; Luckett, T.

    This energy conservation study was performed by Huitt-Zollars Inc, for the U.S. Army Engineer District (USAED), Fort Worth, under contract number DACAC63-94-D-00l5. The study was conducted at Red River Army Depot (RRAD) in Texarkana, Texas, between October 17, 1994 and April 14, 1995. The site survey and data collection were performed by C.A. Pieper, P.E. and Tom Luckett, Lighting Designer. The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to buildingmore » interior lighting and it`s effects on the heating, ventilating and air conditioning (HVAC) systems.« less

  17. [LIGHT POLLUTION AS THE HYGIENIC PROBLEM].

    PubMed

    Kaptsov, V A; Gerasev, V F; Deynego, V N

    2015-01-01

    Mass introduction of lighting devices according to the concept of "maximum coverage area" and multistoried buildings of cities gave rise to light pollution, which became a problem for astronomers, ecologists and hygienists. Analysis of modern lighting devices and installations has shown that about 30-45% of the luminous flux becomes the light pollution. Night lighting of cities causes both direct and indirect damage to the environment, leads to unnecessary energy wastes. So in the USA due to excessive light there is wasted about 2 million barrels of oil per day. Light pollution affects the human hormonal system, causing various health disorders, such as insomnia and depression as a consequence. The light pollution through the ganglion cells of the retina affects the synthesis of melatonin by the pineal gland (epiphysis) and contributes to its calcification, which greatly affects the human psyche. At present, many countries have been paying much state attention to this problem via delivery of national documents and change of the concept of the designing of lighting devices and installations. The essence of this concept--to shine with a preset quality of light only in the right place at the specified time interval. This reduces the light pollution, saves energy and increases the environmental safety of lighting. There is presented an example of a technical solution to reduce the light pollution in the application of the light panel in the form of the gradient of the light guide generator project development.

  18. Lightning Protection System for HE Facilities at LLNL - Certification Template

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, T J; Ong, M M; Brown, C G

    2005-12-08

    This document is meant as a template to assist in the development of your own lighting certification process. Aside from this introduction and the mock representative name of the building (Building A), this document is nearly identical to a lightning certification report issued by the Engineering Directorate at Lawrence Livermore National Laboratory. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facilities. In Chapters 1 and 2 respectively, we address the need and methods of lightning certification for HE processing and storage facilities at LLNL. We present the preferredmore » method of lightning protection in Chapter 3, as well as the likely building modifications that are needed to comply with this method. In Chapter 4, we present the threat assessment and resulting safe work areas within a cell. After certification, there may be changes to operations during a lightning alert, and this is discussed in Chapter 5. Chapter 6 lists the maintenance requirements for the continuation of lighting certification status. Appendices of this document are meant as an aid in developing your own certification process, and they include a bonding list, an inventory of measurement equipment, surge suppressors in use at LLNL, an Integrated Work and Safety form (IWS), and a template certification sign-off sheet. The lightning certification process involves more that what is spelled out in this document. The first steps involve considerable planning, the securing of funds, and management and explosives safety buy-in. Permits must be obtained, measurement equipment must be assembled and tested, and engineers and technicians must be trained in their use. Cursory building inspections are also recommended, and surge suppression for power systems must be addressed. Upon completion of a certification report and its sign-off by management, additional work is required. Training will be needed in order to educate workers and facility managers of the requirements of lightning certification. Operating procedures will need to be generated and/or modified with additional controls. Engineering controls may also be implemented requiring the modification of cells. Careful planning should bring most of these issues to light, making it clear where this document is helpful and were additional assistance may be necessary.« less

  19. LED Lighting in a Performing Arts Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. J.; Kaye, S. M.; Coleman, P. M.

    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  20. Innovative design of parabolic reflector light guiding structure

    NASA Astrophysics Data System (ADS)

    Whang, Allen J.; Tso, Chun-Hsien; Chen, Yi-Yung

    2008-02-01

    Due to the idea of everlasting green architecture, it is of increasing importance to guild natural light into indoors. The advantages are multifold - to have better color rendering index, excellent energy savings from environments viewpoints and make humans more healthy, etc. Our search is to design an innovative structure, to convert outdoor sun light impinges on larger surfaces, into near linear light beam sources, later convert this light beam into near point sources which enters the indoor spaces then can be used as lighting sources indoors. We are not involved with the opto-electrical transformation, to the guild light into to the building, to perform the illumination, as well as the imaging function. Because non-imaging optics, well known for apply to the solar concentrators, that can use non-imaging structures to fulfill our needs, which can also be used as energy collectors in solar energy devices. Here, we have designed a pair of large and small parabolic reflector, which can be used to collect daylight and change area from large to small. Then we make a light-guide system that is been designed by us use of this parabolic reflector to guide the collection light, can pick up the performance for large surface source change to near linear source and a larger collection area.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jack C.P., E-mail: cejcheng@ust.hk; Ma, Lauren Y.H., E-mail: yingzi@ust.hk

    Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R wastemore » disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D and R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control.« less

  2. 8. Historic view of the building: 'Warren Street from State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic view of the building: 'Warren Street from State Street' ca. 1890. Courtesy of the Trenton Free Public Library. This shows the building before the True American's renovations of 1893. It is the three-story buildings, flanked by lower ones in the middle of the block. At the time of the photograph, the brick exterior was painted a light color and dark-colored louvered shutters flanked all the upper story windows. - 14 North Warren Street (Commercial Building), True American Building, Trenton, Mercer County, NJ

  3. Smart Buildings: An Introduction to the Library of the Future.

    PubMed

    Hoy, Matthew B

    2016-01-01

    Advances in building technologies are combining energy efficiency, networked sensors, and data recording in exciting ways. Modern facilities can adjust lighting, heating, and cooling outputs to maximize efficiency, provide better physical security, improve wayfinding for occupants, and provide detailed reports of building use. This column will briefly explore the idea of "smart buildings," describe some of the technologies that are being developed for these buildings, and explore their implications for libraries. A brief listing of selected smart building technologies is also provided.

  4. Single-snapshot 2D color measurement by plenoptic imaging system

    NASA Astrophysics Data System (ADS)

    Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana

    2014-03-01

    Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.

  5. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.; Wu, Chris K.; Lin, Y. H.

    1991-01-01

    A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.

  6. Low Mass Printable Devices for Energy Capture, Storage, and Use

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Singer, Christopher E.; Rogers, Jan R.; Schramm, Harry F.; Fabisinski, Leo L.; Lowenthal, Mark; Ray, William J.; Fuller, Kirk A.

    2010-01-01

    The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between NthDegree Technologies Worldwide, Inc., and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC). The work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications. Device development involves three projects that relate to energy generation and consumption: (1) a low-mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; (2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and (3) a new approach to building super-capacitors. These three technologies, energy capture, storage, and usage (e.g., lighting), represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies, appropriately replacing lighting with lightweight power generation, will be useful for enabling inner planetary missions using smaller launch vehicles and to facilitate surface operations during lunar and planetary surface missions. The PV device model is a two sphere, light trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. For lighting applications, all three technology components are printable in-line by printing sequential layers on a standard screen or flexographic direct impact press using the three-dimensional printing technique (3DFM) patented by NthDegree. One primary contribution to this work in the near term by the MSFC is to test the robustness of prototype devices in the harsh environments that prevail in space and on the lunar surface. It is anticipated that this composite device, of which the lighting component has passed off-gassing testing, will function appropriately in such environments consistent with NASA s exploration missions. Advanced technologies such as this show promise for both space flight and terrestrial applications.

  7. Esprit de Place: Maintaining and Designing Library Buildings To Provide Transcendent Spaces.

    ERIC Educational Resources Information Center

    Demas, Sam; Scherer, Jeffrey A.

    2002-01-01

    Discusses library buildings and their role in building community. Reviews current design trends, including reading and study spaces; collaborative workspaces; technology-free zones; archives and special collections; cultural events spaces; age-specific spaces; shared spaces; natural light and landscapes; and interior design trends. (LRW)

  8. 6. Historic American Buildings Survey Photocopy of plan and profile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic American Buildings Survey Photocopy of plan and profile dated 1850 and signed by Gridley Bryant, in Records of U. S. Coast Guard, Record Group 26, National Archives, Washington, D. C. 20408 EARLIER BUILDINGS ON THE SITE - Boon Island Light Tower, Cape Neddick, York County, ME

  9. Celestial dynamics and astrometry in expanding universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei

    2012-08-01

    Post - Newtonian theory of motion of celestial bodies and propagation of light was instrumental in conducting the critical experimental tests of general relativity and in building the astronomical ephemerides of celestial bodies in the solar system with an unparalleled precision. The cornerstone of the theory is the postulate that the solar system is gravitationally isolated from the rest of the universe and the background spacetime is asymptotically flat. The present talk abolishes this postulate and lays down the principles of celestial dynamics of particles and light moving in gravitational field of a localized astronomical system embedded to the expanding universe. We formulate the precise mathematical concept of the Newtonian limit of Einstein ’s field equations in the conformally - flat spacetime and analyse the geodesic equations of motion o f particles and light in this limit. We demonstrate that the equations of motion of particles and light can be reduced to their Newtonian counterparts by doing conformal transformations of time and space coordinates. However, the Newtonian equations for particles and light differ by terms of the first order in the Hubble constant. This leads to the important conclusion that the equations of motion used currently by Space Navigation Centres and Astronomical Observatories for calculating orbits of celestial bodies, are incomplete and missing some terms of cosmological origin. We explicitly identify the missing terms and demonstrate that they bring about a noticeable discrepancy between the observed and calculated astronomical ephemerides. We argue that a number of observed celestial anomalies in the solar system can be explained as caused by the Hubble expansion of the universe.

  10. Vernacular Architecture of Northern Nigeria in the Light of Sustainability

    NASA Astrophysics Data System (ADS)

    Danja, Isa Ibrahim; Li, Xue; Dalibi, S. G.

    2017-05-01

    Nigeria, a country located in the Western part of Africa has been the site of numerous kingdoms and tribal states over the millennia and is divided in to Northern and Southern parts with the Hausa-Fulani’s, a diverse but culturally homogeneous people living in the northern part of Nigeria. The vernacular architecture of the Northern Nigeria (VANN) is perhaps one of the least known but most beautiful of the medieval age, over the centuries a tradition of fine architecture has flourished in the area, the variety and quality of buildings are bound to generate much delight and enthusiasm in anyone who is interested in buildings. Many of their early buildings such as mosques and palaces are bright and colorful. This architectural style is known as Tubali which means the traditional architecture in the Hausa language and globally known as Vernacular Architecture (VA). VANN has many unique features which distinguish it from any other architecture. All buildings, be it modern or old has an impact on the environment; hence the need for sustainable measures and practices regarding such buildings. The aim of this research paper is to examine the features of VANN in the light of sustainability. Reviewed literatures were used to identify the various features of the Vernacular Architecture in the Northern Nigeria which were critically examined in the light of sustainability and its concept. The result showcased the various features of VANN in the light of sustainability and also discussed the factors hindering the sustainable endeavors of VANN with respect to such features.

  11. Way Beyond Widgets: Delivering Integrated Lighting Design in Actionable Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Richman, Eric E.; Jones, Carol C.

    2008-08-17

    Previously, energy-efficiency strategies for commercial spaces have focused on using efficient equipment without providing specific detailed instructions. Designs by experts in their fields are an energy-efficiency product in its own right. A new national program has developed interactive application-specific lighting designs for widespread use in four major commercial sectors. This paper will describe the technical basis for the solutions, energy efficiency and cost-savings methodology, and installations and measurement/verification to-date. Lighting designs have been developed for five types of retail stores (big box, small box, grocery, specialty market, and pharmacy) and are planned for the office, healthcare, and education sectors asmore » well. Nationally known sustainable lighting designers developed the designs using high-performance commercially available products, daylighting, and lighting controls. Input and peer review was received by stakeholders, including manufacturers, architects, utilities, energy-efficiency program sponsors (EEPS), and end-users (i.e., retailers). An interactive web tool delivers the lighting solutions and analyzes anticipated energy savings using project-specific inputs. The lighting solutions were analyzed against a reference building using the space-by-space method as allowed in the Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004) co-sponsored by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the Illuminating Engineering Society of North America (IESNA). The results showed that the design vignettes ranged from a 9% to 28% reduction in the allowed lighting power density. Detailed control strategies are offered to further reduce the actual kilowatt-hour power consumption. When used together, the lighting design vignettes and control strategies show a modeled decrease in energy consumption (kWh) by 33% to 50% below the baseline design.« less

  12. Pegasus ICON Starboard Black Light Inspection

    NASA Image and Video Library

    2018-05-22

    A technician begins a black light inspection of the Orbital ATK Pegasus starboard on May 22, 2018, prior to mating NASA's Ionospheric Connection Explorer (ICON) to Pegasus inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  13. Structured light: theory and practice and practice and practice...

    NASA Astrophysics Data System (ADS)

    Keizer, Richard L.; Jun, Heesung; Dunn, Stanley M.

    1991-04-01

    We have developed a structured light system for noncontact 3-D measurement of human body surface areas and volumes. We illustrate the image processing steps and algorithms used to recover range data from a single camera image, reconstruct a complete surface from one or more sets of range data, and measure areas and volumes. The development of a working system required the solution to a number of practical problems in image processing and grid labeling (the stereo correspondence problem for structured light). In many instances we found that the standard cookbook techniques for image processing failed. This was due in part to the domain (human body), the restrictive assumptions of the models underlying the cookbook techniques, and the inability to consistently predict the outcome of the image processing operations. In this paper, we will discuss some of our successes and failures in two key steps in acquiring range data using structured light: First, the problem of detecting intersections in the structured light grid, and secondly, the problem of establishing correspondence between projected and detected intersections. We will outline the problems and solutions we have arrived at after several years of trial and error. We can now measure range data with an r.m.s. relative error of 0.3% and measure areas on the human body surface within 3% and volumes within 10%. We have found that the solution to building a working vision system requires the right combination of theory and experimental verification.

  14. Solar Living House Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Bradley

    The Solar Living House is a high-performance solar-powered dwelling designed by a team of faculty and students from the University of Florida, in collaboration with Santa Fe College, the National University of Singapore, and Alachua Habitat for Humanity. The project was designed in accordance with the Solar Decathlon 2015, a research, design, education, and outreach program developed by the U.S. Department of Energy (DOE). The Solar Living House is fundamentally a house for living, centered on people and the activities of daily life while quietly introducing advanced design, construction, and engineering technologies. The 993 square-foot two-bedroom one-bath home was designedmore » to embrace and frame an exterior courtyard space. This courtyard acts as an extension of the interior living spaces, maximizing the spatial potentials of a modest building footprint and introducing natural light into the primary living spaces of the house. Research Outcomes: The Solar Living House advances work on high-performance buildings through three principal technological innovations: wet/dry modular construction, a building automation system, and solar dehumidification systems. Wet / Dry Modular Construction: The house is designed as a series of five modules, including one that is designated as the “wet core.” The wet core consolidates the mechanical systems and bathroom into a single module to reduce plumbing runs, efficiency losses, and on-site construction time. The other four modules are designed to eliminate interior load bearing walls to allow for maximum flexibility in the reconfiguring of the space over time. The modules are designed to meet the structural challenges of both Florida’s hurricanes and California’s earthquakes. Building Automation System: The house is equipped with an integrated building automation system, allowing the houses environmental systems, lights, security systems, and smoke detectors to be programmed, monitored, and controlled through any mobile or computing device. These systems allow for more precise calibrations of temperature/humidity/lighting to correspond with user needs and preferences, minimizing energy losses with economical night- or day-time setbacks. Solar Dehumidification System: The most significant technological innovation in the Solar Living House is the solar thermal dehumidification system. This system generates hot water through two rooftop-mounted evacuated tube solar thermal collectors. The hot water is used to continually dry a regenerative solid desiccant material, typically white silica gel. The solid desiccant is used to adsorb moisture and humidity from the air without additional mechanical cooling. This strategy allows humidity to be modulated independently of air temperature, providing greater thermal comfort and reducing the opportunity for the growth of mold spores within the house while also reducing the overall energy consumption of the HVAC system. Economic Feasibility: The team set aggressive goals for affordability, targeting a construction cost of $138,710. An independent professional cost estimator determined the overall project costs, as designed, would be $333,799, or $336.15 per square foot of finished floor area. This is more than 2.4 times the target construction cost. By comparison, the average construction cost for a home in the United States in 2015 was $289,415, or $103.29 per square foot of finished floor area. Following work on the Solar Living House, team leaders incorporated many of its objectives into a net-zero energy home on a site in Gainesville, Florida. This site-built home avoided many of the constraints and complications of modular construction necessitated by the Solar Decathlon, allowing it to be built for a much more modest budget. This two-bedroom two bath 1,800 square foot home was constructed for $135.39 per square foot, including active photovoltaic solar systems, careful attention to continuous air barriers, increased insulation levels, and permanent site constructions. This project suggest that high-performance buildings can be realized for more modest budgets. Public Benefits: Work on the Solar Living House and Solar Decathlon 2015 offered our student team unparalleled learning opportunities. Because of the duration of the project, a number of students participated at different points in their education, from first year undergraduates all the way through to advanced graduate students. The opportunity for collaboration with students and faculty from the National University of Singapore was also extraordinary, allowing for a sharing of technical knowledge and cultural exchange. The wider public has benefited from this work as its findings have been shared through public presentations and publications. It serves as a useful stepping stone along the path towards affordable, high-performance buildings.« less

  15. 9. Historic American Buildings Survey, David Aronow, Photographer circa 1924, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic American Buildings Survey, David Aronow, Photographer circa 1924, LIVING ROOM SHOWING LIGHTING FIXTURES OF TIFFANY'S DESIGN. - Laurelton Hall, Laurel Hollow & Ridge Roads, Oyster Bay, Nassau County, NY

  16. Exposure and vulnerability assessment of buildings extracted from lidar derived datasets in Bucao River floodplains, Zambales, Philippines

    NASA Astrophysics Data System (ADS)

    Paz-Alberto, Annie Melinda; Ramos, Gloria N.; Espiritu, Jo Adrianne; Mapanao, Kathrina M.; Lao, Ranilo B.

    2017-09-01

    The Philippines has a geographic and geological setting that make it prone to various hazards including weather and climate-related. It is usually strongly affected by monsoon and typhoon occurrences that cause floods due to torrential rains that causes great risks in man's life and properties, resulting in a significant national loss. Strategies for disaster prevention to protect human lives, properties and social infrastructure is therefore necessary. Different important parameters in disaster risk management such as earth observations, Light Detection and Ranging and Geographic Information System were integrated and utilized in this study. This study dealt with mapping and assessment of buildings that might possibly be exposed and vulnerable to flooding based on the simulated flood maps at different rainfall scenarios in Bucao River Basin. The assessment was done through GIS overlay analysis of the CLSU PHIL-LiDAR 1 Project outputs, the 3D building GIS database and flood hazard maps. Results of this study were series of maps with statistics at different rainfall scenarios. From 23,097 building features extracted, 10,118 buildings, 4,258 buildings and 7,433 buildings were the identified highest number of buildings exposed to flooding and a total of 2,427 buildings, 3,914 buildings and 7,204 buildings from the exposed were identified that had high vulnerabilities in terms of height at low, medium and high hazards of 100 year return period, respectively. Through these maps, it is easier to disseminate information that is more realistic to the residents about the hazardous areas and to help them act on warning and evacuating measures.

  17. Multimodal sensing strategies for detecting transparent barriers indoors from a mobile platform

    NASA Astrophysics Data System (ADS)

    Acevedo, Isaiah; Kleine, R. Kaleb; Kraus, Dustan; Mascareñas, David

    2015-04-01

    There is currently an interest in developing mobile sensing platforms that fly indoors. The primary goal for these platforms is to be able to successfully navigate a building under various lighting and environmental conditions. There are numerous research challenges associated with this goal, one of which is the platform's ability to detect and identify the presence of transparent barriers. Transparent barriers could include windows, glass partitions, or skylights. For example, in order to successfully navigate inside of a structure, these platforms will need to sense if a space contains a transparent barrier and whether or not this space can be traversed. This project's focus has been developing a multimodal sensing system that can successfully identify such transparent barriers under various lighting conditions while aboard a mobile platform. Along with detecting transparent barriers, this sensing platform is capable of distinguishing between reflective, opaque, and transparent barriers. It will be critical for this system to be able to identify transparent barriers in real-time in order for the navigation system to maneuver accordingly. The properties associated with the interaction between various frequencies of light and transparent materials were one of the techniques leveraged to solve this problem.

  18. Current status of the laser guide star adaptive optics system for Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Hayano, Yutaka; Takami, Hideki; Guyon, Olivier; Oya, Shin; Hattori, Masayuki; Saito, Yoshihiko; Watanabe, Makoto; Murakami, Naoshi; Minowa, Yosuke; Ito, Meguru; Colley, Stephen; Eldred, Michael; Golota, Taras; Dinkins, Matthew; Kashikawa, Nobunari; Iye, Masanori

    2008-07-01

    The current status and recent results, since last SPIE conference at Orlando in 2006, for the laser guide star adaptive optics system for Subaru Telescope is presented. We had a first light using natural guide star and succeed to launch the sodium laser beam in October 2006. The achieved Strehl ratio on the 10th magnitude star was around 0.5 at K band. We confirmed that the full-width-half-maximum of the stellar point spread function is smaller than 0.1 arcsec even at the 0.9 micrometer wavelehgth. The size of the artificial guide star by the laser beam tuned at the wavelength of 589 nm was estimated to be 10 arcsec. The obtained blurred artificial guide star is caused by the wavefront error on the laser launching telescope. After the first light and first launch, we found that we need to modify and to fix the components, which are temporarily finished. Also components, which were postponed to fabricate after the first light, are required to build newly. All components used by the natural guide star adaptive optics system are finalized recently and we are ready to go on the sky. Next engineering observation is scheduled in August, 2008.

  19. The time light signals of New Zealand: yet another way of communicating time in the pre-wireless era

    NASA Astrophysics Data System (ADS)

    Kinns, Roger

    2017-08-01

    The signalling of exact time using an array of lights appears to have been unique to New Zealand. It was a simple and effective solution for calibration of marine chronometers when transmission of time signals by wireless was in its infancy. Three lights, coloured green, red and white, were arranged in a vertical array. They were switched on in a defined sequence during the evening and then extinguished together to signal exact time. Time lights were first operated at the Dominion Observatory in Wellington during February 1912 and on the Ferry Building in Auckland during October 1915. The Wellington lights were immediately adjacent to the observatory buildings, but those in Auckland were operated using telegraph signals from Wellington. The timings varied over the years, but the same physical arrangement was retained at each location. The time light service was withdrawn during 1937, when wireless signals had become almost universally available for civil and navigation purposes.

  20. Refining atmosphere light to improve the dark channel prior algorithm

    NASA Astrophysics Data System (ADS)

    Gan, Ling; Li, Dagang; Zhou, Can

    2017-05-01

    The defogging image gotten through dark channel prior algorithm has some shortcomings, such like color distortion, dimmer light and detail-loss near the observer. The main reasons are that the atmosphere light is estimated as one value and its change in different scene depth is not considered. So we modeled the atmosphere, one parameter of the defogging model. Firstly, we scatter the atmosphere light into equivalent point and build discrete model of the light. Secondly, we build some rough and possible models through analyzing the relationship between the atmosphere light and the medium transmission. Finally, by analyzing the results of many experiments qualitatively and quantitatively, we get the selected and optimized model. Although using this method causes the time-consuming to increase slightly, the evaluations, histogram correlation coefficient and peak signal-to-noise ratio are improved significantly and the defogging result is more conformed to human visual. And the color and the details near the observer in the defogging image are better than that achieved by the primal method.

  1. Advanced Lighting Controls for Reducing Energy Use and Cost in DoD Installations

    DTIC Science & Technology

    2013-03-01

    of advanced lighting control strategies including occupancy sensing, light tuning, daylight harvesting and proper lighting design is an effective way...details of this project and the results obtained. 15. SUBJECT TERMS Integrated lighting controls, occupancy sensing, daylight harvesting , personalized...provide energy savings through occupancy sensing, dimming and daylight harvesting . II. Dynalite is a distributed control-based, wired networked building

  2. Joint Light Tactical Vehicle (JLTV): Background and Issues for Congress

    DTIC Science & Technology

    2017-01-10

    Development (TD) Phase to three industry teams: (1) BAE Systems, (2) the team of Lockheed Martin and General Tactical Vehicle, and (3) AM General and...Lockheed Martin Corporation (Grand Prairie, TX); and Oshkosh Corporation (Oshkosh, WI). On September 3, 2013, the Army began JLTV testing at Aberdeen...who were picked in 2012 to build prototypes—Oshkosh, Lockheed Martin , and AM General—submitted their bids for the LRIP contract by the February 10

  3. Photosymbiotic giant clams are transformers of solar flux.

    PubMed

    Holt, Amanda L; Vahidinia, Sanaz; Gagnon, Yakir Luc; Morse, Daniel E; Sweeney, Alison M

    2014-12-06

    'Giant' tridacnid clams have evolved a three-dimensional, spatially efficient, photodamage-preventing system for photosymbiosis. We discovered that the mantle tissue of giant clams, which harbours symbiotic nutrition-providing microalgae, contains a layer of iridescent cells called iridocytes that serve to distribute photosynthetically productive wavelengths by lateral and forward-scattering of light into the tissue while back-reflecting non-productive wavelengths with a Bragg mirror. The wavelength- and angle-dependent scattering from the iridocytes is geometrically coupled to the vertically pillared microalgae, resulting in an even re-distribution of the incoming light along the sides of the pillars, thus enabling photosynthesis deep in the tissue. There is a physical analogy between the evolved function of the clam system and an electric transformer, which changes energy flux per area in a system while conserving total energy. At incident light levels found on shallow coral reefs, this arrangement may allow algae within the clam system to both efficiently use all incident solar energy and avoid the photodamage and efficiency losses due to non-photochemical quenching that occur in the reef-building coral photosymbiosis. Both intra-tissue radiometry and multiscale optical modelling support our interpretation of the system's photophysics. This highly evolved 'three-dimensional' biophotonic system suggests a strategy for more efficient, damage-resistant photovoltaic materials and more spatially efficient solar production of algal biofuels, foods and chemicals.

  4. Electric Lighting and Daylighting in Schools. IssueTrak: A CEFPI Brief on Educational Facility Issues.

    ERIC Educational Resources Information Center

    Grocoff, Paul N.

    This report examines both electric lighting and daylighting, listing criteria to determine the correct equipment for a school renovation or building project. Specific topics examine use of prismatic lenses; parabolic louvers; and indirect lighting, including the cost savings of using indirect lighting. The report indicates there is no clear answer…

  5. Fenestration obscuration techniques

    NASA Astrophysics Data System (ADS)

    Smalley, Michael

    2007-10-01

    There are situations where it is advantageous to visually obscure through glass, to an external observer, the movement of people within a well lit room. It may be that the building use has changed or existing measures which had provided obscuration such as 'Bomb-blast' curtains have been discontinued. Recognising that implemented solutions must create the minimum disruption to outward visibility and involve the least procedural effort (be simple to use), the Centre for Protection of National Infrastructure, CPNI, commissioned this study, defining key requirements including: (a) Automatic or simple manual operation (b) Obscuration of movement within the building from outside (c) Varying levels of obscuration depending on the difference in internal and external light levels. (d) Minimum disruption to outward visibility (e) Acceptable for use on heritage and iconic sites (f) Easy to retrofit (g) Low cost This report reviews earlier work carried out into the protection of Guardrooms by the use of lighting techniques coupled with the use of reflective and screen printed films. Other innovative solutions including Electrochromatic controllable glazing which may prove more appropriate to office and commercial buildings are also considered. It is seen that some measures, (window films or blinds), are cost effective and unsophisticated while more complex automatic systems using reactive glazing can offer critical design advantages. It must be noted however that some of the key requirements are mutually exclusive and any solution chosen will always be a compromise based on client needs and circumstances.

  6. The house of the future

    ScienceCinema

    None

    2017-12-09

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  7. The house of the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house tomore » use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.« less

  8. Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, R.G.; Williamson, M.A.; Richman, E.E.

    1990-07-01

    The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoringmore » of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.« less

  9. Light Irradiation as Key to Shape and Function of Nano-Assemblies in Solution

    NASA Astrophysics Data System (ADS)

    Groehn, Franziska

    Developing strategies to exploit solar energy become more and more important. Inspired by natural systems it is highly promising to self-assemble functional species into effective tailored supramolecular units. Here we report self-assembled polymer structures in solution, taking advantage of optical properties of hybrid structures and light responsiveness. A new type of photocatalytically active self-assembled polymer structure in aqueous solution consists of supramolecular nano-objects obtained from macroions and multivalent inorganic ``counterions'' such as nanoparticles or clusters. These can exhibit expressed selectivity or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, polyelectrolyte-porphyrin nanoscale assemblies exhibit tunable optical properties including strong fluorescence and an up to 20-fold higher photocatalytic activity than without polymeric template. A different approach is to transfer light energy into mechanical energy. Here, light energy is converted into nanoscale shape changes. This route for the conversion of light is highly promising for applications in drug delivery, nanosensors and solar energy conversion. Membership of DPG, Germany ID 153159-.

  10. Use of wood in buildings and bridges

    Treesearch

    Russell C. Moody; Anton TenWolde

    1999-01-01

    In North America, most housing and commercial structures built prior to the 20th century used wood as the major structural material. The abundant wood resource formed the basic structure for most houses, commercial buildings, bridges, and utility poles. Today, houses and many light commercial and industrial buildings are made using modern wood structural materials....

  11. High-School Buildings and Grounds. Bulletin, 1922, No. 23

    ERIC Educational Resources Information Center

    Bureau of Education, Department of the Interior, 1922

    1922-01-01

    The success of any high school depends largely upon the planning of its building. The wise planning of a high-school building requires familiarity with school needs and processes, knowledge of the best approved methods of safety, lighting, sanitation, and ventilation, and ability to solve the educational, structural, and architectural problems…

  12. 75 FR 63404 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... [Docket No. EERE-2010-BT-STD-0031] RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for... of fossil fuel-generated energy consumption in new Federal buildings and Federal buildings undergoing... full fossil fuel-generated energy consumption reduction level is technically impracticable in light of...

  13. International Institute for Capacity Building in Africa Newsletter. Volume 7, Number 2

    ERIC Educational Resources Information Center

    UNESCO International Institute for Capacity Building in Africa, 2005

    2005-01-01

    This issue of the International Institute for Capacity Building in Africa (IICBA) Newsletter, published bi-annually in English and French, sheds light on the needs of teachers and teacher training in emergency situations with practical approaches and strategies provided on capacity building in the area of teacher education. Furthermore, it…

  14. Building Regional Capacity: Lessons from Leadership South West

    ERIC Educational Resources Information Center

    Bolden, Richard; Bagnall, Jackie

    2009-01-01

    Purpose: The purpose of this paper is to present experiences and insights from an higher education-led initiative to build leadership capacity within the South West of England in order to the shed light onto the processes and mechanisms of regional capacity building. Design/methodology/approach: The approach was one of participative action…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert G.

    This report describes how the intelligent load control (ILC) algorithm can be implemented to achieve peak demand reduction while minimizing impacts on occupant comfort. The algorithm was designed to minimize the additional sensors and minimum configuration requirements to enable a scalable and cost-effective implementation for both large and small-/medium-sized commercial buildings. The ILC algorithm uses an analytic hierarchy process (AHP) to dynamically prioritize the available curtailable loads based on both quantitative (deviation of zone conditions from set point) and qualitative rules (types of zone). Although the ILC algorithm described in this report was highly tailored to work with rooftop units,more » it can be generalized for application to other building loads such as variable-air-volume (VAV) boxes and lighting systems.« less

  16. Lights, Camera, Action ... and Cooling - The case for centralized low carbon energy at Fox Studios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alastair; Regnier, Cindy

    Fox Studios partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit two production stages and one of its central cooling plants, to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program. Although this case study reports expected savings arising from proposed design recommendations for a unique building type and the unusual load characteristics associated with its use, the EEMs implemented for the central plant are applicable to any large campus, office and higher education facility. The intent is that by making the energy-efficiency measures (EEMs) set thatmore » were assessed as cost-effective from this project applicable to a larger number of buildings on the campus Fox Studios will be able to implement an integrated campus-wide energy strategy for the long term. The significant challenges for this project in the design phase included identifying how to assess and analyze multiple system types, develop a coherent strategy for assessment and analysis, implement the measurement and verification activities to collect the appropriate data (in terms of capturing ‘normal’ operating characteristics and granularity) and determine the best approach to providing cooling to the site buildings based on the nature of existing systems and the expected improvement in energy performance of the central cooling plant. The analytical framework adopted provides a blueprint for similar projects at other large commercial building campuses.« less

  17. (Sn)DICE: A Calibration System Designed for Wide Field Imagers

    NASA Astrophysics Data System (ADS)

    Regnault, N.; Barrelet, E.; Guyonnet, A.; Juramy, C.; Rocci, P.-F.; Le Guillou, L.; Schahmanèche, K.; Villa, F.

    2016-05-01

    Dark Energy studies with type Ia supernovae set very tight constraints on the photometric calibration of the imagers used to detect the supernovae and follow up their flux variations. Among the key challenges is the measurement of the shape and normalization of the instrumental throughput. The DICE system was developed by members of the Supernova Legacy Survey (SNLS) , building upon the lessons learnt working with the MegaCam imager. It consists in a very stable light source, placed in the telescope enclosure, and generating compact, conical beams, yielding an almost flat illumination of the imager focal plane. The calibration light is generated by narrow spectrum LEDs selected to cover the entire wavelength range of the imager. It is monitored in real time using control photodiodes. A first DICE demonstrator, SnDICE has been installed at CFHT. A second generation instrument (SkyDICE) has been installed in the enclosure of the SkyMapper telescope. We present the main goals of the project. We discuss the main difficulties encoutered when trying to calibrate a wide field imager, such as MegaCam (or SkyMapper) using such a calibrated light source.

  18. KSC-2009-6453

    NASA Image and Video Library

    2009-11-19

    CAPE CANAVERAL, Fla. – A ceremonial "flipping of the switch" officially begins operation of NASA's first large-scale solar power generation facility at NASA's Kennedy Space Center in Florida. Flipping the four-foot-tall light switch in unison are, from left, Bob Cabana, Kennedy center director; Roderick Roche, senior manager, Project Management Office of North America, SunPower Corporation; and Eric Silagy, Florida Power & Light Company vice president and chief development officer. Representatives from NASA, Florida Power & Light Company, or FPL, and SunPower Corporation formally commissioned the one-megawatt facility and announced plans to pursue a new research, development and demonstration project at Kennedy to advance America's use of renewable energy. The facility is the first element of a major renewable energy project currently under construction at Kennedy. The completed system features a fixed-tilt, ground-mounted solar power system designed and built by SunPower, along with SunPower solar panels. A 10-megawatt solar farm, which SunPower is building on nearby Kennedy property, will supply power to FPL's customers when it is completed in April 2010. Photo credit: NASA/Jim Grossmann

  19. Wavelength calibration of an imaging spectrometer based on Savart interferometer

    NASA Astrophysics Data System (ADS)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun

    2017-09-01

    The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.

  20. Analysis on design and performance of a solar rotary house

    NASA Astrophysics Data System (ADS)

    Fan, Xuhong; Zhang, Zhaochang; Yang, Fan; Cao, Lilin; Xu, Jing; Yuan, Mingyang

    2017-04-01

    A solar rotary house is designed, composed of rotating main structure, fixed cylinder, rotating drive system, solar photovoltaic system and so on, to achieve 360° rotation. Thus it can change the dark and humid situation of the traditional fixed house shade. Its bearing capacity, driving force and safety are analyzed. Rotary driving force and living energy are provided by solar photovoltaic system on roofs and walls. The Phonenics, Ecotect simulation analysis conclude that the rotating house indoor has better natural ventilation effect, more uniform lighting, better the sunshine time compared with traditional houses, becoming a green, energy-saving, comfortable building model.

Top