Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina.
Imhoff, Silvia; da Silva, Alvaro Pires; Ghiberto, Pablo J; Tormena, Cássio A; Pilatti, Miguel A; Libardi, Paulo L
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina
Pires da Silva, Alvaro; Ghiberto, Pablo J.; Tormena, Cássio A.; Pilatti, Miguel A.; Libardi, Paulo L.
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied. PMID:27099925
Effect of Alkali Concentration on Fly Ash Geopolymers
NASA Astrophysics Data System (ADS)
Fatimah Azzahran Abdullah, Siti; Yun-Ming, Liew; Bakri, Mohd Mustafa Al; Cheng-Yong, Heah; Zulkifly, Khairunnisa; Hussin, Kamarudin
2018-03-01
This paper presents the effect of NaOH concentration on fly ash geopolymers with compressive up to 56 MPa at 12M. The physical and mechanical on fly ash geopolymer are investigated. Test results show that the compressive strength result complied with bulk density result whereby the higher the bulk density, the higher the strength. Thus, the lower water absorption and porosity due to the increasing of NaOH concentration.
Compressibility of the protein-water interface
NASA Astrophysics Data System (ADS)
Persson, Filip; Halle, Bertil
2018-06-01
The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (˜0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ˜45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in bulk water, whereas its self part is 15%-20% lower. These large reductions are caused mainly by the proximity to the more rigid protein and are not a consequence of the perturbed water structure.
Compressibility of the protein-water interface.
Persson, Filip; Halle, Bertil
2018-06-07
The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (∼0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ∼45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in bulk water, whereas its self part is 15%-20% lower. These large reductions are caused mainly by the proximity to the more rigid protein and are not a consequence of the perturbed water structure.
Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.
2009-08-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility duemore » to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.« less
Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab
2010-01-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.
Preparation and characterization of starch-based loose-fill packaging foams
NASA Astrophysics Data System (ADS)
Fang, Qi
Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant difference existed in water absorption characteristics between foams made of regular and waxy starches. Empirical models were developed to correlate foam water absorption characteristics with relative humidity and polymer content. The developed models fit the data well with relatively small standard errors and uniformly scattered residual plots. Foams with higher polymer content had better abrasion resistance than did foams with lower polymer content.
Compression-sensitive magnetic resonance elastography
NASA Astrophysics Data System (ADS)
Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf
2013-08-01
Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.
Planetary Interiors: Parametric Modeling of Global Geophysical Properties
NASA Astrophysics Data System (ADS)
Montgomery, W.; Jeanloz, R.
2004-12-01
Taking into account a realistic form of equation of state, we parameterize the degree to which bulk geophysical properties of planets are sensitive to gravitational self-compression. For example, the normalized moment of mass of a uniform-composition planet is C/Ma2 = 0.40 only in the limit of zero planetary size or incompressible material, and decreases toward 0.32 for finite compressibility as the planetary radius increases toward a = 104 km (M is planetary mass). Central density correspondingly increases from ρ 0, the surface density, toward 10 * ρ 0. Our calculations, based on the Eulerian finite-strain equation of state, make it possible to distinguish the effects of self-compression from the effects of non-uniformity (due either to changes in bulk composition or in phase with depth) as these influence planetary mass and moment of inertia relative to size. As observations of extra-solar planets can provide estimates of their mass and diameter (hence mean density), our formulation can account for the effects of compression in modeling the internal constitution and evolution of these objects. The effects of compression are especially important for giant and super-giant planets, such as the majority that have been observed to date.
Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H
2013-06-01
Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.
Ferreiro-Rangel, Carlos A; Gelb, Lev D
2013-06-13
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading
Koohbor, Behrad; Mallon, Silas; Kidane, Addis; ...
2015-04-07
The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less
NASA Astrophysics Data System (ADS)
Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri
2017-09-01
An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70°C for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallow, Anne M; Abdelaziz, Omar; Graham, Samuel
The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latentmore » heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.« less
Accessing Forbidden Glass Regimes through High-Pressure Sub-Tg Annealing
Svenson, Mouritz N.; Mauro, John C.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.
2017-01-01
Density and hardness of glasses are known to increase upon both compression at the glass transition temperature (Tg) and ambient pressure sub-Tg annealing. However, a serial combination of the two methods does not result in higher density and hardness, since the effect of compression is countered by subsequent annealing and vice versa. In this study, we circumvent this by introducing a novel treatment protocol that enables the preparation of high-density, high-hardness bulk aluminosilicate glasses. This is done by first compressing a sodium-magnesium aluminosilicate glass at 1 GPa at Tg, followed by sub-Tg annealing in-situ at 1 GPa. Through density, hardness, and heat capacity measurements, we demonstrate that the effects of hot compression and sub-Tg annealing can be combined to access a “forbidden glass” regime that is inaccessible through thermal history or pressure history variation alone. We also study the relaxation behavior of the densified samples during subsequent ambient pressure sub-Tg annealing. Density and hardness are found to relax and approach their ambient condition values upon annealing, but the difference in relaxation time of density and hardness, which is usually observed for hot compressed glasses, vanishes for samples previously subjected to high-pressure sub-Tg annealing. This confirms the unique configurational state of these glasses. PMID:28418017
NASA Astrophysics Data System (ADS)
Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling
2017-08-01
Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.
Chen, Li-Hua; Yue, Guo-Chao; Guan, Yong-Mei; Yang, Ming; Zhu, Wei-Feng
2014-01-01
To investigate such physical indexes as hygroscopicity, angle of repose, bulk density, fillibility of compression of mixed powder of directly compressed auxiliary materials and fermented cordyceps powder by using micromeritic study methods. The results showed that spray-dried lactose Flowlac100 and microcrystalline cellulose Avicel PH102 had better effect in liquidity and compressibility on fermented cordyceps powder than pregelatinized starch. The study on the impact of directly compressed auxiliary materials on the powder property of fermented cordyceps powder had guiding significant to the research of fermented cordyceps powder tablets, and could provide basis for the development of fermented cordyceps powder tablets.
Highly compressible 3D periodic graphene aerogel microlattices
Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.
2015-01-01
Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277
NASA Astrophysics Data System (ADS)
Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri
2017-09-01
An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.
Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei
2012-02-01
This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 degrees C 0.5 hr and a sintering temperature of 850 degrees C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates'surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.
Thermal charging study of compressed expanded natural graphite/phase change material composites
Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel
2016-08-12
The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm 2 and 1.55 W/cm 2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energymore » storage performance was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m 3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.« less
First Observation of Bright Solitons in Bulk Superfluid ^{4}He.
Ancilotto, Francesco; Levy, David; Pimentel, Jessica; Eloranta, Jussi
2018-01-19
The existence of bright solitons in bulk superfluid ^{4}He is demonstrated by time-resolved shadowgraph imaging experiments and density functional theory (DFT) calculations. The initial liquid compression that leads to the creation of nonlinear waves is produced by rapidly expanding plasma from laser ablation. After the leading dissipative period, these waves transform into bright solitons, which exhibit three characteristic features: dispersionless propagation, negligible interaction in a two-wave collision, and direct dependence between soliton amplitude and the propagation velocity. The experimental observations are supported by DFT calculations, which show rapid evolution of the initially compressed liquid into bright solitons. At high amplitudes, solitons become unstable and break down into dispersive shock waves.
Callcut, S; Knowles, J C
2002-05-01
Glass-reinforced hydroxyapatite (HA) foams were produced using reticulated foam technology using a polyurethane template with two different pore size distributions. The mechanical properties were evaluated and the structure analyzed through density measurements, image analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). For the mechanical properties, the use of a glass significantly improved the ultimate compressive strength (UCS) as did the use of a second coating. All the samples tested showed the classic three regions characteristic of an elastic brittle foam. From the density measurements, after application of a correction to compensate for the closed porosity, the bulk and apparent density showed a 1 : 1 correlation. When relative bulk density was plotted against UCS, a non-linear relationship was found characteristic of an isotropic open celled material. It was found by image analysis that the pore size distribution did not change and there was no degradation of the macrostructure when replicating the ceramic from the initial polyurethane template during processing. However, the pore size distributions did shift to a lower size by about 0.5 mm due to the firing process. The ceramic foams were found to exhibit mechanical properties typical of isotropic open cellular foams.
Three-dimensional carbon nanotubes for high capacity lithium-ion batteries
NASA Astrophysics Data System (ADS)
Kang, Chiwon; Patel, Mumukshu; Rangasamy, Baskaran; Jung, Kyu-Nam; Xia, Changlei; Shi, Sheldon; Choi, Wonbong
2015-12-01
Carbon nanotubes (CNTs) have been considered as a potential anode material for next generation Lithium-ion batteries (LIBs) due to their high conductivity, flexibility, surface area, and lithium-ion insertion ability. However, the low mass loading and bulk density of carbon nanomaterials hinder their use in large-scale energy storage because their high specific capacity may not scale up linearly with the thickness of the electrode. To address this issue, a novel three-dimensional (3D) architecture is rationally designed by stacking layers of free-standing CNTs with the increased areal density to 34.9 mg cm-2, which is around three-times higher than that of the state-of-the-art graphitic anodes. Furthermore, a thermal compression process renders the bulk density of the multi-stacked 3D CNTs to be increased by 1.85 g cm-3, which yields an excellent volumetric capacity of 465 mAh cm-3 at 0.5C. Our proposed strategy involving the stacking of 3D CNT based layers and post-thermal compression provides a powerful platform for the utilization of carbon nanomaterials in the advanced LIB technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesz, Sabina, E-mail: sabina.lesz@polsl.pl
The experiments demonstrate that ductility of the samples of bulk metallic glass (BMG) with the same chemical composition increased with decreasing sample size. It is shown that microhardness and density increases with decreasing the cooling rate. The fracture morphology of rods after compressive fracture were different on the cross section. Two characteristic features of the compressive fracture morphologies of metallic glasses (MGs) were observed in samples: smooth region and the vein pattern. Many parallel shear bands were observed on the deformed specimen with ϕ = 2 mm in diameter. The results provide more understanding on the relationship among the coolingmore » rate, structure and micro-indentation behavior of the Fe-Co-based BMGs. - Highlights: •Fracture morphology and micro-indentation behavior is studied. •The smaller BMG sample exhibits the larger plasticity. •Microhardness and density increase with decreasing the cooling rate. •Formation of shear bands has been reported in deformed specimens. •Structure and mechanical properties of BMGs can be controlled by the cooling rate.« less
Structural and thermodynamic properties of WB at high pressure and high temperature
NASA Astrophysics Data System (ADS)
Chen, Hai-Hua; Bi, Yan; Cheng, Yan; Ji, Guangfu; Peng, Fang; Hu, Yan-Fei
2012-12-01
The structure parameters and electronic structures of tungsten boride (WB) have been investigated by using the density functional theory (DFT). Our calculating results display the bulk modulus of WB are 352±2 GPa (K‧0=4.29) and 322±3 GPa (K‧0=4.21) by LDA and GGA methods, respectively. We have analyzed the probable reason of the discrepancy from the bulk modulus between theoretical and experimental results. The compression behavior of the unit cell axes is anisotropic, with the c-axis being more compressible than the a-axis. By analyzing the bond lengths information, it also demonstrated that WB has a lower compressibility at high pressure. From the partial densities of states (PDOS) of WB, we found that the Fermi lever is mostly contributed by the d states of W atom and p states of B atom and that the contributions from the s, p states of W atom and s states of B atom are small. Moreover, using the Gibbs 2 program, the thermodynamic properties of WB are obtained in a wide temperature range at high pressure for the first time in this work.
The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence
NASA Astrophysics Data System (ADS)
Johnsen, Eric; Pan, Shaowu
2016-11-01
The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.
Autoclaved Sand-Lime Products with a Polypropylene Mesh
NASA Astrophysics Data System (ADS)
Kostrzewa, Paulina; Stępień, Anna
2017-10-01
The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.
Highly compressible 3D periodic graphene aerogel microlattices
Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; ...
2015-04-22
Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less
Co-melting technology in resource recycling of sludge derived from stone processing.
Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei
2012-12-01
Stone processing sludge (SPS) is a by-product of stone-processing wastewater treatment; it is suitable for use as a raw material for making artificial lightweight aggregates (ALWAs). In this study, boric acid was utilized as a flux to lower sintering temperature. The formation of the viscous glassy phase was observed by DTA curve and changes in XRD patterns. Experiments were conducted to find the optimal combination of sintering temperature, sintering time, and boric acid dosage to produce an ALWA of favorable characteristics in terms of water absorption, bulk density, apparent porosity, compressive strength and weight loss to satisfy Taiwan's regulatory requirements for construction and insulation materials. Optimal results gave a sintering temperature of 850 degrees C for 15 min at a boric acid dosage of 15% by weight of SPS. Results for ALWA favorable characteristics were: 0.21% (water absorption), 0.35% (apparent porosity), 1.67 g/cm3 (bulk density), 66.94 MPa (compressive strength), and less than 0.1% (weight loss).
Co-melting technology in resource recycling of sludge derived from stone processing.
Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei
2012-12-01
Stone processing sludge (SPS) is a by-product of stone-processing wastewater treatment; it is suitable for use as a raw material for making artificial lightweight aggregates (ALWAs). In this study, boric acid was utilized as a flux to lower sintering temperature. The formation of the viscous glassy phase was observed by DTA curve and changes in XRD patterns. Experiments were conducted to find the optimal combination of sintering temperature, sintering time, and boric acid dosage to produce an ALWA of favorable characteristics in terms of water absorption, bulk density, apparent porosity, compressive strength and weight loss to satisfy Taiwan's regulatory requirements for construction and insulation materials. Optimal results gave a sintering temperature of 850 °C for 15 min at a boric acid dosage of 15 % by weight of SPS. Results for ALWA favorable characteristics were: 0.21 % (water absorption), 0.35 %(apparent porosity), 1.67 g/cm3 (bulk density), 66.94 MPa (compressive strength), and less than 0.1% (weight loss). [Box: see text].
Spray-dried chitosan as a direct compression tableting excipient.
Chinta, Dakshinamurthy Devanga; Graves, Richard A; Pamujula, Sarala; Praetorius, Natalie; Bostanian, Levon A; Mandal, Tarun K
2009-01-01
The objective of this study was to prepare and evaluate a novel spray-dried tableting excipient using a mixture of chitosan and lactose. Three different grades of chitosan (low-, medium-, and high-molecular-weight) were used for this study. Propranolol hydrochloride was used as a model drug. A specific amount of chitosan (1, 1.9, and 2.5 g, respectively) was dissolved in 50 mL of an aqueous solution of citric acid (1%) and later mixed with 50 mL of an aqueous solution containing lactose (20, 19.1, and 18.5 g, respectively) and propanolol (2.2 g). The resultant solution was sprayed through a laboratory spray drier at 1.4 mL/min. The granules were evaluated for bulk density, tap density, Carr index, particle size distribution, surface morphology, thermal properties, and tableting properties. Bulk density of the granules decreased from 0.16 to 0.13 g/mL when the granules were prepared using medium- or high-molecular-weight chitosan compared with the low-molecular-weight chitosan. The relative proportion of chitosan also showed a significant effect on the bulk density. The granules prepared with 1 g of low-molecular-weight chitosan showed the minimum Carr index (11.1%) indicating the best flow properties among all five formulations. All three granules prepared with 1 g chitosan, irrespective of their molecular weight, showed excellent flow properties. Floating tablets prepared by direct compression of these granules with sodium bicarbonate showed 50% drug release between 30 and 35 min. In conclusion, the spray-dried granules prepared with chitosan and lactose showed excellent flow properties and were suitable for tableting.
NASA Astrophysics Data System (ADS)
Lin, Yangzheng; Zhao, Zhisheng; Strobel, Timothy A.; Cohen, R. E.
2016-12-01
We investigated the stability and mechanical and electronic properties of 15 metastable mixed s p2-s p3 carbon allotropes in the family of interpenetrating graphene networks (IGNs) using density functional theory (DFT). IGN allotropes exhibit nonmonotonic bulk and linear compressibilities before their structures irreversibly transform into new configurations under large hydrostatic compression. The maximum bulk compressibilities vary widely between structures and range from 3.6 to 306 TPa-1. We find all the IGN allotropes have negative linear compressibilities with maximum values varying from -0.74 to -133 TPa-1. The maximal negative linear compressibility of Z33 (-133 TPa-1 at 3.4 GPa) exceeds previously reported values at pressures higher than 1.0 GPa. IGN allotropes can be classified as either armchair or zigzag type, and these two types of IGNs exhibit different electronic properties. Zigzag-type IGNs are node-line semimetals, while armchair-type IGNs are either semiconductors or node-loop or node-line semimetals. Experimental synthesis of these IGN allotropes might be realized since their formation enthalpies relative to graphite are only 0.1-0.5 eV/atom (that of C60 fullerene is about 0.4 eV/atom), and energetically feasible binary compound pathways are possible.
Self-consistent calculation of the nuclear composition in hot and dense stellar matter
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Mishustin, Igor
2017-03-01
We investigate the mass fractions and in-medium properties of heavy nuclei in stellar matter at characteristic densities and temperatures for supernova (SN) explosions. The individual nuclei are described within the compressible liquid-drop model taking into account modifications of bulk, surface, and Coulomb energies. The equilibrium properties of nuclei and the full ensemble of heavy nuclei are calculated self-consistently. It is found that heavy nuclei in the ensemble are either compressed or decompressed depending on the isospin asymmetry of the system. The compression or decompression has a little influence on the binding energies, total mass fractions, and average mass numbers of heavy nuclei, although the equilibrium densities of individual nuclei themselves are changed appreciably above one-hundredth of normal nuclear density. We find that nuclear structure in the single-nucleus approximation deviates from the actual one obtained in the multinucleus description, since the density of free nucleons is different between these two descriptions. This study indicates that a multinucleus description is required to realistically account for in-medium effects on the nuclear structure in supernova matter.
Yadav, Jayprakash A; Khomane, Kailas S; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Nagaraja, C M; Kumar, Navin; Bansal, Arvind K
2017-03-06
Febuxostat exhibits unprecedented solid forms with a total of 40 polymorphs and pseudopolymorphs reported. Polymorphs differ in molecular arrangement and conformation, intermolecular interactions, and various physicochemical properties, including mechanical properties. Febuxostat Form Q (FXT Q) and Form H1 (FXT H1) were investigated for crystal structure, nanomechanical parameters, and bulk deformation behavior. FXT Q showed greater compressibility, densification, and plastic deformation as compared to FXT H1 at a given compaction pressure. Lower mechanical hardness of FXT Q (0.214 GPa) as compared to FXT H1 (0.310 GPa) was found to be consistent with greater compressibility and lower mean yield pressure (38 MPa) of FXT Q. Superior compaction behavior of FXT Q was attributed to the presence of active slip systems in crystals which offered greater plastic deformation. By virtue of greater compressibility and densification, FXT Q showed higher tabletability over FXT H1. Significant correlation was found with anticipation that the preferred orientation of molecular planes into a crystal lattice translated nanomechanical parameters to a bulk compaction process. Moreover, prediction of compactibility of materials based on true density or molecular packing should be carefully evaluated, as slip-planes may cause deviation in the structure-property relationship. This study supported how molecular level crystal structure confers a bridge between particle level nanomechanical parameters and bulk level deformation behavior.
Implications of the observed Pluto-Charon density contrast
NASA Astrophysics Data System (ADS)
Bierson, C. J.; Nimmo, F.; McKinnon, W. B.
2018-07-01
Observations by the New Horizons spacecraft have determined that Pluto has a larger bulk density than Charon by 153 ± 44 kg m-3 (2σ uncertainty). We use a thermal model of Pluto and Charon to determine if this density contrast could be due to porosity variations alone, with Pluto and Charon having the same bulk composition. We find that Charon can preserve a larger porous ice layer than Pluto due to its lower gravity and lower heat flux but that the density contrast can only be explained if the initial ice porosity is ≳ 30%, extends to ≳100 km depth and Pluto retains a subsurface ocean today. We also find that other processes such as a modern ocean on Pluto, self-compression, water-rock interactions, and volatile (e.g., CO) loss cannot, even in combination, explain this difference in density. Although an initially high porosity cannot be completely ruled out, we conclude that it is more probable that Pluto and Charon have different bulk compositions. This difference could arise either from forming Charon via a giant impact, or via preferential loss of H2O on Pluto due to heating during rapid accretion.
Sadat, T; Hocini, A; Lilensten, L; Faurie, D; Tingaud, D; Dirras, G
2016-06-01
Bulk Ni-W alloys having composite-like microstructures are processed by spark plasma sintering (SPS) route of Ni and W powder blends as reported in a recent study of Sadat et al. (2016) (DOI of original article: doi:10.1016/j.matdes.2015.10.083) [1]. The present dataset deals with determination of mass density and evaluation of room temperature compressive mechanical properties as function of the amount of W (%wt. basis). The presented data concern: (i) measurement of the mass of each investigated Ni-W alloy which is subsequently used to compute the mass density of the alloy and (ii) the raw (stress (MPa) and strain ([Formula: see text])) data, which can be subsequently used for stress/ strain plots.
Sadat, T.; Hocini, A.; Lilensten, L.; Faurie, D.; Tingaud, D.; Dirras, G.
2016-01-01
Bulk Ni–W alloys having composite-like microstructures are processed by spark plasma sintering (SPS) route of Ni and W powder blends as reported in a recent study of Sadat et al. (2016) (DOI of original article: doi:10.1016/j.matdes.2015.10.083) [1]. The present dataset deals with determination of mass density and evaluation of room temperature compressive mechanical properties as function of the amount of W (%wt. basis). The presented data concern: (i) measurement of the mass of each investigated Ni–W alloy which is subsequently used to compute the mass density of the alloy and (ii) the raw (stress (MPa) and strain (ΔLL0)) data, which can be subsequently used for stress/ strain plots. PMID:27158658
Treatability Study Report for In SITU Lead Immobilization Using Phosphate-Based Binders
2008-05-01
include lead, zinc, copper, cadmium, nickel, uranium, barium, cesium, strontium, plutonium, thorium, and other lanthanide and actinide metals. There...Density Bulk density is the measure of the mass per unit volume of the whole soil specimen. American Society for Testing and Materials (ASTM) D 698...Where: m = mass of the soil (grams) V = Volume of sample (cm3) 4.2.2.1.3 Unconfined Compressive Strength (UCS) The UCS test was used to
Performance of journal bearings with semi-compressible fluids
NASA Technical Reports Server (NTRS)
Carpino, M.; Peng, J.-P.
1991-01-01
Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.
NASA Astrophysics Data System (ADS)
Rasky, Daniel J.; Milstein, Frederick
1986-02-01
Milstein and Hill previously derived formulas for computing the bulk and shear moduli, κ, μ, and μ', at arbitrary pressures, for cubic crystals in which interatomic interaction energies are modeled by pairwise functions, and they carried out the moduli computations using the complete family of Morse functions. The present study extends their work to a pseudopotential description of atomic binding. Specifically: (1) General formulas are derived for determining these moduli under hydrostatic loading within the framework of a pseudopotential model. (2) A two-parameter pseudopotential model is used to describe atomic binding of the alkali metals, and the two parameters are determined from experimental data (the model employs the Heine-Abarenkov potential with the Taylor dielectric function). (3) For each alkali metal (Li, Na, K, Rb, and Cs), the model is used to compute the pressure-versus-volume behavior and, at zero pressure, the binding energy, the density, and the elastic moduli and their pressure derivatives; the theoretical behavior is found to be in excellent agreement with experiment. (4) Calculations are made of κ, μ, and μ' of the bcc alkali metals over wide ranges of hydrostatic compression and expansion. (5) The pseudopotential results are compared with those of arbitrary-central-force models (wherein κ-(2/3)μ=μ'+2P) and with the specific Morse-function results. The pressures, bulk moduli, and zero-pressure shear moduli (as determined for the Morse and pseudopotential models) are in excellent agreement, but important differences appear in the shear moduli under high compressions. The computations in the present paper are for the bcc metals; a subsequent paper will extend this work to include both the bcc and fcc structures, at compressions and expansions where elastic stability or lattice cohesion is, in practice, lost.
Experimental Compressibility of Molten Hedenbergite at High Pressure
NASA Astrophysics Data System (ADS)
Agee, C. B.; Barnett, R. G.; Guo, X.; Lange, R. A.; Waller, C.; Asimow, P. D.
2010-12-01
Experiments using the sink/float method have bracketed the density of molten hedenbergite (CaFeSi2O6) at high pressures and temperatures. The experiments are the first of their kind to determine the compressibility of molten hedenbergite at high pressure and are part of a collaborative effort to establish a new database for an array of silicate melt compositions, which will contribute to the development of an empirically based predictive model that will allow calculation of silicate liquid density and compressibility over a wide range of P-T-X conditions where melting could occur in the Earth. Each melt composition will be measured using: (i) double-bob Archimedean method for melt density and thermal expansion at ambient pressure, (ii) sound speed measurements on liquids to constrain melt compressibility at ambient pressure, (iii) sink/float technique to measure melt density to 15 GPa, and (iv) shock wave measurements of P-V-E equation of state and temperature between 10 and 150 GPa. Companion abstracts on molten fayalite (Waller et al., 2010) and liquid mixes of hedenbergite-diopside and anorthite-hedenbergite-diopside (Guo and Lange, 2010) are also presented at this meeting. In the present study, the hedenbergite starting material was synthesized at the Experimental Petrology Lab, University of Michigan, where melt density, thermal expansion, and sound speed measurements were also carried out. The starting material has also been loaded into targets at the Caltech Shockwave Lab, and experiments there are currently underway. We report here preliminary results from static compression measurement performed at the Department of Petrology, Vrije Universiteit, Amsterdam, and the High Pressure Lab, Institute of Meteoritics, University of New Mexico. Experiments were carried out in Quick Press piston-cylinder devices and a Walker-style multi-anvil device. Sink/float marker spheres implemented were gem quality synthetic forsterite (Fo100), San Carlos olivine (Fo90), and natural pyropic garnet(Pyr74 Alm13.5 Gro12.5). We bracketed the density of molten hedenbergite with Fo100 to be 3.09 g cm-3 at 1.1 GPa and 1450°C, and with Fo90 to be 3.27 g cm-3 at 3.0 GPa and 1450-1550°C. These sink-float values represent an increase in isothermal density from reference ambient pressure of 6% and 12% respectively, or linear compressions of 0.16 and 0.12 g cm-3 GPa-1. The density-with-pressure increases in our static compression experiments are in good agreement with the Michigan ambient pressure sound speed measurements that yield an isentropic bulk modulus of KS=18.77 GPa. Currently we are performing higher pressure sink/float experiments in the range 7-8 GPa with pyrope garnet marker spheres to better constrain values for the isothermal bulk modulus (KT) and its pressure derivative K'. As a by-product of our sink/float experiments we are also determining the melting curve of hedenbergite well beyond the published pressure extent of approximately 1.5 GPa (Lindsley, 1967). Our early data show the hedenbergite liquidus to be 1450°C at 3 GPa and approximately 1750°C at 7 GPa.
NASA Astrophysics Data System (ADS)
Vikram, Ajit; Chowdhury, Prabudhya Roy; Phillips, Ryan K.; Hoorfar, Mina
2016-07-01
This paper describes a measurement technique developed for the determination of the effective electrical bulk resistance of the gas diffusion layer (GDL) and the contact resistance distribution at the interface of the GDL and the bipolar plate (BPP). The novelty of this study is the measurement and separation of the bulk and contact resistance under inhomogeneous compression, occurring in an actual fuel cell assembly due to the presence of the channels and ribs on the bipolar plates. The measurement of the electrical contact resistance, contributing to nearly two-third of the ohmic losses in the fuel cell assembly, shows a non-linear distribution along the GDL/BPP interface. The effective bulk resistance of the GDL under inhomogeneous compression showed a decrease of nearly 40% compared to that estimated for homogeneous compression at different compression pressures. Such a decrease in the effective bulk resistance under inhomogeneous compression could be due to the non-uniform distribution of pressure under the ribs and the channels. This measurement technique can be used to identify optimum GDL, BPP and channel-rib structures based on minimum bulk and contact resistances measured under inhomogeneous compression.
NASA Astrophysics Data System (ADS)
Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard
2014-03-01
The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.
Swelling, Structure, and Phase Stability of Soft, Compressible Microgels
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Urich, Matthew
Microgels are soft colloidal particles that swell when dispersed in a solvent. The equilibrium particle size is governed by a delicate balance of osmotic pressures, which can be tuned by varying single-particle properties and externally controlled conditions, such as temperature, pH, ionic strength, and concentration. Because of their tunable size and ability to encapsulate dye or drug molecules, microgels have practical relevance for biosensing, drug delivery, carbon capture, and filtration. Using Monte Carlo simulation, we model suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial size changes governed by the Flory-Rehner free energy of cross-linked polymer gels. We analyze the influence of particle compressibility and size fluctuations on bulk structural and thermal properties by computing swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities. With increasing density, microgels progressively deswell and their intrinsic polydispersity broadens, while compressibility acts to forestall crystallization. This work was supported by the National Science Foundation under Grant No. DMR- 1106331.
Performance of ZnO based piezo-generators under controlled compression
NASA Astrophysics Data System (ADS)
Tao, Ran; Parmar, Mitesh; Ardila, Gustavo; Oliveira, Paulo; Marques, Daniel; Montès, Laurent; Mouis, Mireille
2017-06-01
This paper reports on the fabrication and characterization of ZnO based vertically integrated nanogenerator (VING) devices under controlled compression. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix (PMMA). A specific characterization set-up has been developed to control the applied compression and the perpendicularity of the applied force on the devices. The role of different fabrication parameters has been evaluated experimentally and compared with previously reported theoretical models, including the thickness of the top PMMA layer and the density of the NWs array in the matrix. Finally, the performance of the VING structure has been evaluated experimentally for different resistive loads obtaining a power density of 85 μW cm-3 considering only the active layer of the device. This has been compared to the performance of a commercial bulk layer of PZT (25 μW cm-3) under the same applied force of 5 N.
Kumar, Vijay; Taylor, Michael K; Mehrotra, Amit; Stagner, William C
2013-06-01
Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation-drying-milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of <0.0001 and R(2) of 0.886. A central composite response surface statistical design was used to evaluate the effect of granulator screw speed and Comil® impeller speed on the length-weighted chord length distribution (CLD) and particle size distribution (PSD) determined by FBRM and nested sieve analysis, respectively. The effect of granulator speed and mill speed on bulk density, tapped density, Compressibility Index, and Flowability Index were also investigated. An inline FBRM probe placed below the Comil-generated chord lengths and CLD data at designated times. The collection of the milled samples for sieve analysis and PSD evaluation were coordinated with the timing of the FBRM determinations. Both FBRM and sieve analysis resulted in similar bimodal distributions for all ten manufactured batches studied. Within the experimental space studied, the granulator screw speed (650-850 rpm) and Comil® impeller speed (1,000-2,000 rpm) did not have a significant effect on CLD, PSD, bulk density, tapped density, Compressibility Index, and Flowability Index (p value > 0.05).
Sreenivasan, D; Watson, M; Callon, K; Dray, M; Das, R; Grey, A; Cornish, J; Fernandez, J
2013-12-01
In this study we evaluate the influence of low-dose fluoride treatment on 23 patient biopsies. Computational finite element (FE) models of each biopsy were subjected to a range of loads including compression, shear and torsion. The modelling framework was validated against three 3D printed models with known material properties subjected to compression till failure using an Instron machine. The primary outcomes from this study were that mechanical strength was not significantly correlated to low-dose (<10 mg/day) of fluoride levels (one-way ANOVA, P-values of 0.78, 0.69 and 0.62 for compression, shear and torsion, respectively). However, when bulk bone material properties were derived from DXA bone mineral density (BMD) from each patient's proximal femur a non-significant linear decline in mechanical strength with increase in fluoride was predicted. When the same material property was used for all bones (to evaluate bone architecture influence) then mechanical strength showed a characteristic concave upwards trend, consistent with the variation of micro CT derived percentage bone volume (BV/TV). The secondary outcomes from this study were that in compression, BV/TV was observed to be a strong surrogate measure for mechanical strength (R(2) = 0.83), while bone surface density (R(2)=0.6), trabecular thickness (R(2) = 0.5) and intersection surface (R(2) = 0.6) also explained the variation of mechanical strength well. However, trabecular separation and trabecular number were mildly correlated with mechanical strength (R(2) of 0.31 and 0.35, respectively). Compression was the loading mode most strongly correlated to micro CT indices. Material properties adapted from the proximal femur reduced the CT index correlations by up to 58% indicating that bulk density from a near proximity is a poor representation of specific localised density. Substituting the 3D micro CT indices with 2D histomorphometric data decreased correlations by at least 33% indicating that structural identification on a plane is not representative of the full 3D architecture necessary for a complete bone strength analysis. The presented computational framework may be used to assess the roles that bone architecture and loading modes play in bone quality, and which micro CT indices are good surrogate measures for mechanical strength. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kluge, Thomas
2015-11-01
Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
NASA Astrophysics Data System (ADS)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.
2016-08-01
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca
2016-08-15
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better thanmore » the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel
The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm 2 and 1.55 W/cm 2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energymore » storage performance was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m 3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.« less
NASA Astrophysics Data System (ADS)
Ain Jaya, Nur; Yun-Ming, Liew; Bakri Abdullah, Mohd Mustafa Al; Cheng-Yong, Heah; Hussin, Kamarudin
2018-03-01
In the present work, the effect of different sodium hydroxide (NaOH) molarity (6M, 8M, 10M, 12M and 14M) on the physical, mechanical and thermal conductivity of metakaolin geopolymers (MkGPs) was investigated. Geopolymers were prepared by activating the metakaolin with a mixture of NaOH with sodium silicate (Na2SiO3). The products obtained were characterized after 28 days of curing. The density, porosity, compressive strength and thermal conductivity (TC) were determined. In general, the NaOH molarity has a significant effect on the compressive strength of the MkGPs. The highest compressive strength was 14.6 MPa achieved with 10M of NaOH solution. The thermal conductivity of MkGPs measured in this work was low in the range between 0.71-0.97 W/mK. NaOH molarity had a significant effect on compressive strength but a marginal effect on thermal conductivity of MkGPs. The thermal conductivity was mainly affected by the bulk density and thus the total porosity. The results showed that the geopolymer can be considered to be used as the thermal insulating material.
Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process
Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana
2012-01-01
The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors. PMID:22919295
NASA Astrophysics Data System (ADS)
McWilliams, R. S.
2013-12-01
Laboratory studies of volatiles at high pressure are constantly challenged to achieve conditions directly relevant to planets. While dynamic compression experiments are confined to adiabatic pathways that frequently exceed relevant temperatures due to the low densities and bulk moduli of volatile samples, static compression experiments are often complicated by sample reactivity and mobility before reaching relevant temperatures. By combining the speed of dynamic compression with the flexibility of experimental path afforded by static compression, optical spectroscopy measurements in volatiles such as H, N, and Ar have been demonstrated at previously-unexplored planetary temperature (up to 11,000 K) and pressure (up to 150 GPa). These optical data characterize the electronic properties of extreme states and have implications for bonding, transport, and mixing behavior in volatiles within planets. This work was conducted in collaboration with D.A. Dalton and A.F. Goncharov (Carnegie Institution of Washington) and M.F. Mahmood (Howard University).
Enhanced densification under shock compression in porous silicon
NASA Astrophysics Data System (ADS)
Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.
2014-10-01
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.
Microscopic Approach to the Nonlinear Elasticity of Compressed Emulsions
NASA Astrophysics Data System (ADS)
Jorjadze, Ivane; Pontani, Lea-Laetitia; Brujic, Jasna
2013-01-01
Using confocal microscopy, we measure the packing geometry and interdroplet forces as a function of the osmotic pressure in a 3D emulsion system. We assume a harmonic interaction potential over a wide range of volume fractions and attribute the observed nonlinear elastic response of the pressure with density to the first corrections to the scaling laws of the microstructure away from the critical point. The bulk modulus depends on the excess contacts created under compression, which leads to the correction exponent α=1.5. Microscopically, the nonlinearities manifest themselves as a narrowing of the distribution of the pressure per particle as a function of the global pressure.
Pulse Compression Techniques for Laser Generated Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, R. F.; Madaras, E. I.
1999-01-01
Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.
Improvement of flow and bulk density of pharmaceutical powders using surface modification.
Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N
2012-02-28
Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.
Numerical estimation of deformation energy of selected bulk oilseeds in compression loading
NASA Astrophysics Data System (ADS)
Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.
2017-09-01
This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.
Ahn, WonSool; Lee, Joon-Man
2015-11-01
The effects of MWCNT on the cell sizes, cell uniformities, thermal conductivities, bulk densities, foaming kinetics, and compressive mechanical properties of the rigid PUFs were investigated. To obtain the better uniform dispersed state of MWCNT, grease-type master batch of MWCNT/surfactant was prepared by three-roll mill. Average cell size of the PUF samples decreased from 185.1 for the neat PUF to 162.9 μm for the sample of 0.01 phr of MWCNT concentration. Cell uniformity was also enhanced showing the standard cell-size deviation of 61.7 and 35.2, respectively. While the thermal conductivity of the neat PUF was 0.0222 W/m(o)K, that of the sample with 0.01 phr of MWCNT showed 0.0204 W/m(o)K, resulting 8.2% reduction of the thermal conductivity. Bulk density of the PUF samples was observed as nearly the same values as 30.0 ± 1.0 g/cm3 regardless of MWCNT. Temperature profiles during foaming process showed that an indirect indication of the nucleation effect of MWCNT for the PUF foaming system, showing faster and higher temperature rising with time. The compressive yield stress is nearly the same as 0.030 x 10(5) Pa regardless of MWCNT.
NASA Astrophysics Data System (ADS)
Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert
2016-06-01
Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.
Effect of lightweight aggregates prepared from fly ash on lightweight concrete performances
NASA Astrophysics Data System (ADS)
Punlert, S.; Laoratanakul, P.; Kongdee, R.; Suntako, R.
2017-09-01
Lightweight aggregates were prepared from fly ash of by-products from the paper industry. The influence of the ratio of clay to fly ash and processing conditions on lightweight aggregates properties were investigated. It was found that the amount of fly ash directly affected to porosity of lightweight aggregates. Lightweight aggregates with the ratio of clay to fly ash at 80:20 wt% using the sintering temperature at 1210°C exhibits bulk density of 1.66 g cm-3, compressive strength of 25 MPa and water absorption of 0.55%. The replacement of coarse aggregates with lightweight aggregates at 100 wt% for concrete production showed the ultimate properties of concrete with density of 1780 g cm-3, water absorption of 3.55%, compressive strength of 40.94 MPa and thermal conductivity of 0.77 W m-1K-1. The concrete had more than 25% weight reduction while keeping a similar compressive strength to an ordinary concrete. This is revealed that lightweight aggregates could be applied into structural concrete because it was able to reduce work load and increase safety factor of construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.1 Applicability. This part applies to the... bulk liquid, liquefied gas, or compressed gas cargo that is not— (1) Listed in Table 1 of this part; (2...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.1 Applicability. This part applies to the... bulk liquid, liquefied gas, or compressed gas cargo that is not— (1) Listed in Table 1 of this part; (2...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.1 Applicability. This part applies to the... bulk liquid, liquefied gas, or compressed gas cargo that is not— (1) Listed in Table 1 of this part; (2...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.1 Applicability. This part applies to the... bulk liquid, liquefied gas, or compressed gas cargo that is not— (1) Listed in Table 1 of this part; (2...
Sutcu, Mucahit; Ozturk, Savas; Yalamac, Emre; Gencel, Osman
2016-10-01
Production of porous clay bricks lightened by adding olive mill waste as a pore making additive was investigated. Factors influencing the brick manufacturing process were analyzed by an experimental design, Taguchi method, to find out the most favorable conditions for the production of bricks. The optimum process conditions for brick preparation were investigated by studying the effects of mixture ratios (0, 5 and 10 wt%) and firing temperatures (850, 950 and 1050 °C) on the physical, thermal and mechanical properties of the bricks. Apparent density, bulk density, apparent porosity, water absorption, compressive strength, thermal conductivity, microstructure and crystalline phase formations of the fired brick samples were measured. It was found that the use of 10% waste addition reduced the bulk density of the samples up to 1.45 g/cm(3). As the porosities increased from 30.8 to 47.0%, the compressive strengths decreased from 36.9 to 10.26 MPa at firing temperature of 950 °C. The thermal conductivities of samples fired at the same temperature showed a decrease of 31% from 0.638 to 0.436 W/mK, which is hopeful for heat insulation in the buildings. Increasing of the firing temperature also affected their mechanical and physical properties. This study showed that the olive mill waste could be used as a pore maker in brick production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.; ...
2014-09-27
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
Fu, Jingjing; Wang, Siqun; He, Chunxia; Lu, Zexiang; Huang, Jingda; Chen, Zhilin
2016-08-20
Monolithic cellulose nanofibrils (CNF)-silica composite aerogels were successfully prepared by immersing CNF aerogels into a silica solution in a two-step sol-gel process (initial hydrolysis of tetraethyl orthosilicate (TEOS) followed by condensation of silica particles). Aerogels were characterized by SEM, BET surface area test, bulk density and silica content analysis, FTIR spectroscopy, and compression test. The form of SiO2 existing in the composite aerogel was the spherical individual particles coated on CNF fibrils. The pH value of condensation solution was found to have great influence on the properties of the composite aerogels. By varying the pH value of condensation atmosphere from 8 to 12, the bulk densities of composite aerogels were able to be linearly increased from 0.059gcm(-3) to 0.29gcm(-3),and the silica content in the matrix sharply jumped from 3wt% to 79wt%. The porosities of the aerogels remained very high, between 85 and 96%, and the surface area of the composite aerogel reached up to 700.1m(2)g(-1). The compression properties of the composite aerogel improved greatly compared with those of the silica aerogel, about 8-30 times higher. Moreover, the compressive strength of the composite aerogel prepared in this work greatly exceeded the conventional insulation materials found in the recent commercial market, and without substantial increases in thermal conductivity. Hence, the findings of this research offer a promising application for composite aerogels and give a theoretical basis for developing new advanced materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural and electronic properties of GaAs and GaP semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Anita; Kumar, Ranjan
2015-05-15
The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.
Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V
2015-06-01
The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.
Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruszkiewicz, Miroslaw S.; Rother, Gernot; Wesolowski, David J.
2012-02-27
The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 °C and 97 °C) and supercritical carbon dioxide (between 32 C and 50°C) saturating hydrophobic silica aerogel (0.2 g/cm 3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercriticalmore » CO 2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.« less
Strength and compressibility of returned lunar soil.
NASA Technical Reports Server (NTRS)
Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.
1972-01-01
Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.
Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S
2016-03-01
In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.
Rudén, Jonas; Frenning, Göran; Bramer, Tobias; Thalberg, Kyrre; Alderborn, Göran
2018-04-25
The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
Volume shift and charge instability of simple-metal clusters
NASA Astrophysics Data System (ADS)
Brajczewska, M.; Vieira, A.; Fiolhais, C.; Perdew, J. P.
1996-12-01
Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn - Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging.
Structural evolution of gypsum under high pressure: single-crystal X-ray experiments revisited
NASA Astrophysics Data System (ADS)
Li, Tsung-Lung; Lee, Pei-Lun
2018-05-01
The structures of gypsum at pressures up to approximately 4 GPa are studied with density functional theory (DFT) and thoroughly compared with single-crystal X-ray diffraction experiments reported in the literature [Comodi et al. in (Am Miner 93:1530-1537, 2008)]. It is found that the exchange-correlation density functional revPBE (revised Perdew-Burke-Ernzerhof) in conjunction with a nonlocal van der Waals (vdW) correction is capable of modeling the lattice constants, axial compressibility, and bulk modulus with good accuracy, suggesting that the inclusion of the vdW functional is crucially important for understanding the structure of hydrous minerals. To gain further physical insights, the geometric parameters associated with the constituting components of gypsum (water molecules, SO4 tetrahedra, and CaO8 polyhedra) are analyzed and compared with the experimental values. DFT simulations show that, under pressure, the polyhedral layers remain as nearly planar sheets of interconnecting SO4 tetrahedra and CaO8 polyhedra without further crinkling. DFT analysis on the layer compressibility along the major crystal axis reveals that, in contrast to experimental reports, the hydrous interlayer is less compressible than the polyhedral layer. Squeezed by the lateral pressure, the water molecules in the hydrous interlayer become better affixed along the major axis, making the interlayer harder to compress along this axis.
Eshraghi, Shaun; Das, Suman
2012-01-01
Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129
Eshraghi, Shaun; Das, Suman
2012-08-01
Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mechanisms of anomalous compressibility of vitreous silica
NASA Astrophysics Data System (ADS)
Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; Sen, Sabyasachi
2014-11-01
The anomalous compressibility of vitreous silica has been known for nearly a century, but the mechanisms responsible for it remain poorly understood. Using GHz-ultrasonic interferometry, we measured longitudinal and transverse acoustic wave travel times at pressures up to 5 GPa in vitreous silica with fictive temperatures (Tf) ranging between 985 °C and 1500 °C. The maximum in ultrasonic wave travel times-corresponding to a minimum in acoustic velocities-shifts to higher pressure with increasing Tf for both acoustic waves, with complete reversibility below 5 GPa. These relationships reflect polyamorphism in the supercooled liquid, which results in a glassy state possessing different proportions of domains of high- and low-density amorphous phases (HDA and LDA, respectively). The relative proportion of HDA and LDA is set at Tf and remains fixed on compression below the permanent densification pressure. The bulk material exhibits compression behavior systematically dependent on synthesis conditions that arise from the presence of floppy modes in a mixture of HDA and LDA domains.
Equation of state of pyrite to 80 GPa and 2400 K
Thompson, Elizabeth C.; Chidester, Bethany A.; Fischer, Rebecca A.; ...
2016-05-02
The high-cosmic abundance of sulfur is not reflected in the terrestrial crust, implying it is either sequestered in the Earth’s interior or was volatilized during accretion. As it has widely been suggested that sulfur could be one of the contributing light elements leading to the density deficit of Earth’s core, a robust thermal equation of state of iron sulfide is useful for understanding the evolution and properties of Earth’s interior. We performed X-ray diffraction measurements on FeS 2 achieving pressures from 15 to 80 GPa and temperatures up to 2400 K using laser-heated diamond-anvil cells. No phase transitions were observedmore » in the pyrite structure over the pressure and temperature ranges investigated. Combining our new P-V-T data with previously published room-temperature compression and thermochemical data, we fit a Debye temperature of 624(14) K and determined a Mie-Grüneisen equation of state for pyrite having bulk modulus K T = 141.2(18) GPa, pressure derivative K' T = 5.56(24), Grüneisen parameter γ 0 = 1.41, anharmonic coefficient A 2 = 2.53(27) × 10 –3 J/(K 2·mol), and q = 2.06(27). These findings are compared to previously published equation of state parameters for pyrite from static compression, shock compression, and ab initio studies. This revised equation of state for pyrite is consistent with an outer core density deficit satisfied by 11.4(10) wt% sulfur, yet matching the bulk sound speed of PREM requires an outer core composition of 4.8(19) wt% S. Here, this discrepancy suggests that sulfur alone cannot satisfy both seismological constraints simultaneously and cannot be the only light element within Earth’s core, and so the sulfur content needed to satisfy density constraints using our FeS 2 equation of state should be considered an upper bound for sulfur in the Earth’s core.« less
Ahmad, Mohammad Zaki; Akhter, Sohail; Dhiman, Ishita; Sharma, Poonam; Verma, Reena
2013-02-01
The mechanical properties and compaction characteristics of different varieties of Assam Bora rice flours (ABRFs) were evaluated and compared with those of official Starch 1500®. The material properties and compression characteristics of Assam Bora rice flours were studied by Heckel and Kawakita analysis. The influences of physical and geometrical properties of ABRFs were evaluated with regard to their compression properties. The mechanical properties, such as toughness and Young's modulus of ABRFs were also compared with that of Starch 1500®. The novel ABRFs reflect better physical characteristics such as higher bulk and tap densities, less porosity, better powder packing ability, large surface area, and improved flowability. ABRFs were the least sensitive material to magnesium stearate, and blending time did not affect its compactibility. Their onset of plastic deformation and strain rate sensitivity as compared to that of Starch 1500® demonstrate its potential use as a directly compressible vehicle for tablet. The experimental ABRFs showed superior properties to official Starch 1500® in many cases and could serve as suitable alternatives for particular purposes.
Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss
NASA Astrophysics Data System (ADS)
Golubev, V.; Whittington, P.
2018-04-01
Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.
NASA Astrophysics Data System (ADS)
Roy Chowdhury, Prabudhya; Vikram, Ajit; Phillips, Ryan K.; Hoorfar, Mina
2016-07-01
The gas diffusion layer (GDL) is a thin porous layer sandwiched between a bipolar plate (BPP) and a catalyst coated membrane in a fuel cell. Besides providing passage for water and gas transport from and to the catalyst layer, it is responsible for electron and heat transfer from and to the BPP. In this paper, a method has been developed to measure the GDL bulk thermal conductivity and the contact resistance at the GDL/BPP interface under inhomogeneous compression occurring in an actual fuel cell assembly. Toray carbon paper GDL TGP-H-060 was tested under a range of compression pressure of 0.34 to 1.71 MPa. The results showed that the thermal contact resistance decreases non-linearly (from 3.8 × 10-4 to 1.17 × 10-4 Km2 W-1) with increasing pressure due to increase in microscopic contact area between the GDL and BPP; while the effective bulk thermal conductivity increases (from 0.56 to 1.42 Wm-1 K-1) with increasing the compression pressure. The thermal contact resistance was found to be greater (by a factor of 1.6-2.8) than the effective bulk thermal resistance for all compression pressure ranges applied here. This measurement technique can be used to identify optimum GDL based on minimum bulk and contact resistances measured under inhomogeneous compression.
NASA Astrophysics Data System (ADS)
Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C.; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P.; Elias, Ana L.; Feng, Simin; Kim, Seon Jeong; Narayanan, N. T.; Ajayan, Pulickel M.; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H.; Chen, Yongsheng
2015-01-01
It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson’s ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson’s ratio.
Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P; Elias, Ana L; Feng, Simin; Kim, Seon Jeong; Narayanan, N T; Ajayan, Pulickel M; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H; Chen, Yongsheng
2015-01-20
It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.
Enhanced densification under shock compression in porous silicon
Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy
2014-10-27
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less
Soil mechanics results of Luna 16 and Lunokhod 1: A preliminary report
NASA Technical Reports Server (NTRS)
Johnson, S. W.; Carrier, W. D., III
1971-01-01
The physical and mechanical properties of the lunar soil, as determined by Luna 16 and Lunokhod 1 experiments, are discussed. Data are included for interactions between vehicle wheels and the lunar soil, compressibility, resistance to penetration, and friction characteristics of the soil. The shear strength of the returned lunar soil for various bulk densities is also examined. Several potential spacecraft materials were tested in contact with lunar soil to determine their friction and wear characteristics.
Anderson, I. E.; Kassen, A. G.; White, E. M. H.; ...
2015-04-13
Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less
Development and evaluation of novel antihypertensive orodispersible tablets.
Khan, Hafeez Ullah; Hanif, Muhammad; Sarfraz, Rai M; Maheen, Safirah; Afzal, Samina; Sher, Muhammad; Afzal, Khurram; Mahmood, Asif; Shamim, Ayesha
2017-09-01
Objective of present study was to enhance patient compliance in pediatrics and geriatrics patients of Hypertension. To achieve this target, innovative orodispersible tablets of atenolol and atorvastatin was developed to produce instant action by rapidly disintegrating into oral cavity. Three different techniques like direct compression, effervescent and sublimation methods were used to prepare these tablets (Five batches of tablets by each method) by using two superdisintegrants like Sodium starch glycolate and pregelatinized starch alone and in combination. Pre-formulation studies including rheological analysis (Bulk density, tapped density, Angle of repose, Carr's compressibility index, Hausner's ratio), compatibility studies such as Fourier transform infrared spectrophotometry (FTIR) and Differential scanning colorimetry (DSC), Post-compression and stability studies were also performed. Finally, results were statistically evaluated by the applying one way ANOVA test and mean. It was concluded that the formulation F8 containing Sodium starch glycolate 2% and pregelatinized starch 6% found best regarding disintegration time, wetting volume, wetting time, release studies etc. The order in which drug release was quicker is Pregelatinized starch plus Sodium starch glycolate > Pregelatinized starch > Sodium starch glycolate (primojel). It was concluded that sublimation method was the best among three methods used for orodispersible tablets formulations.
Production of lightweight aggregates from washing aggregate sludge and fly ash
NASA Astrophysics Data System (ADS)
González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena
2010-05-01
Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs manufactured with 75%:25% and 50%:50% proportions of washing aggregate sludge:fly ash, heated at different temperatures and dwell times, were expanded LWAs (BI > 0). They showed the lowest loose bulk density, the lowest dry and apparent particle density, the lowest water absorption and the highest compressive strength. The possible applications of sintered pellets, taking into consideration compressive strength and water absorption values, could be similar to those of Arlita G3 (insulation, geotechnical applications, gardening and/or horticulture) and/or Arlita F3 (prefabricated lightweight structures and insulation lightweight concretes), two varieties of the most widely marketed LWAs in Spain. References - Benbow, J., September 1987. Mineral in fire protection construction support market. Industrial Minerals, 61-73. - Bethanis, S., Cheeseman, C.R., Sollars, C.J., 2004. Effect of sintering temperature on the properties and leaching of incinerator bottom ash. Waste Management and Research 22 (4), 255-264. - De' Gennaro, R., Cappelletti, P., Cerri, G., De' Gennaro, M., Dondi, M., Langella, A., 2004. Zeolitic tuffs as raw materials for lightweight aggregates. Applied Clay Science 25 (1-2), 71-81. - Fakhfakh, E., Hajjaji, W., Medhioub, M., Rocha, F., López-Galindo, A., Setti, M.,Kooli, F., Zargouni, F., Jamoussi, F., 2007. Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science 35, 228-237. - UNE-EN-13055-1, 2003. Lightweight aggregates - lightweight aggregates for concrete, mortar and grout. - Yasuda, Y., 1991. Sewage-sludge utilization in Tokyo. Water Science and Technology 23 (10-12), 1743-1752.
Ultralight anisotropic foams from layered aligned carbon nanotube sheets
NASA Astrophysics Data System (ADS)
Faraji, Shaghayegh; L. Stano, Kelly; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D.
2015-10-01
In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03899e
NASA Astrophysics Data System (ADS)
Skelton, Richard; Walker, Andrew M.
2018-03-01
The material properties of the common phosphate mineral apatite are influenced by the identity of the channel anion, which is usually F-, Cl-, or (OH)-. Density functional theory calculations have been used to determine the effect of channel anion identity on the compressibility and structure of apatite. Hydroxyapatite and fluorapatite are found to have similar zero pressure bulk moduli, of 79.2 and 82.1 GPa, respectively, while chlorapatite is considerably more compressible, with K 0 = 55.0 GPa. While the space groups of hydroxyapatite and fluorapatite do not change between 0 and 25 GPa, symmetrization of the Cl- site in chlorapatite at 7.5 GPa causes the space group to change from P2 1 /b to P6 3 /m. Examination of the valence electron density distribution in chlorapatite reveals that this symmetry change is associated with a change in the coordination of the Cl- anion from threefold to sixfold coordinated by Ca. We also calculate the pressure at which apatite decomposes to form tuite, a calcium orthophosphate mineral, and find that the transition pressure is sensitive to the identity of the channel anion, being lowest for fluorapatite (13.8 GPa) and highest for chlorapatite (26.9 GPa). Calculations are also performed within the DFT-D2 framework to investigate the influence of dispersion forces on the compressibility of apatite minerals.
Takeda, Hayami; Hashimoto, Shinobu; Yokoyama, Hiroaki; Honda, Sawao; Iwamoto, Yuji
2013-01-01
Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite). The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials. PMID:28809241
Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František
2016-01-01
In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514
Equation of state of molten fayalite (Fe2SiO4)
NASA Astrophysics Data System (ADS)
Waller, C.; Liu, Q.; Agee, C. B.; Asimow, P. D.; Lange, R. A.
2010-12-01
We have conducted new equation of state measurements on liquid fayalite (Fe2SiO4) in a collaborative, multi-technique study. Using a shared bulk starting material, we have measured the liquid density, the bulk modulus (K), and its pressure derivative (K’) from 1 atm to 163 GPa using 1-atm double-bob Archimedean and ultrasonic, sink/float, and shock wave techniques to form a coherent, internally consistent equation of state. Previous shock studies of liquid fayalite were conducted up to pressures of 40 GPa1; we extended this data set with two additional pre-heated, molten (1573 K) fayalite shock compression experiments at 121 and 163 GPa. Linear fitting of this data in shock velocity (US)-particle velocity (up) space defines a Hugoniot with an unconstrained zero-pressure intercept that crosses within error at the bulk sound speed (Co) determined by ultrasonic techniques. Fixing the intercept at this ultrasonic value reduces the error on the linear fit and yields the relation: US =1.65(0.02)up+ 2.4377(0.006) km/s. This relationship indicates that the behavior of the liquid is relaxed during shock compression and demonstrates consistency across experimental methods. Likewise, results from new static compression sink/float experiments conducted in piston-cylinder and multi-anvil devices are in agreement with shock wave and ultrasonic data, consistent with an isothermal K=19.4 and K’=5.57 at 1500°C. In solid materials, the Grüneisen parameter (γ) generally decreases upon compression. However, preliminary calculations for γ of this liquid using additional initially solid shock data from Chen et al.(2002) indicate that γ increases upon compression. Using the functional form γ = γo(ρo/ρ)q at a density of 7.65 Mg/m3 yields a q value of -1.77 (γo = 0.41 is known from low-pressure data), which is similar to the reported q values of forsterite2, enstatite3, and anorthite-diopside liquids4. This result shows that iron-bearing mafic to ultramafic silicate liquids follow the same general behavior as iron-free liquids such that -2.0 ≤ q ≤ -1.5 for the compression range 1 ≥ ρo/ρ ≥ 0.50. We will be performing an additional shock wave experiment on initially solid (300 K) fayalite to confirm this result. We will be continuing collaborative equation of state measurements on additional iron-bearing silicate liquids, working to further clarify the properties of melts and their importance to understanding the dynamics of the early magma ocean and of melt migration within the mantle. In particular, understanding the properties of iron-rich silicates and their melts will constrain hypotheses of melting and of iron enrichment for explaining the occurrence and characteristics of ultra-low velocity zones near the CMB.
Liu, Li-Jie; Li, Jin-Hong; Wang, Xiang; Qian, Ting-Ting; Li, Xiao-Hui
2015-01-01
High-porosity magnesia phosphate paste (HPMPP) was prepared via the pre-foaming method. In the pre-foaming method, sintering treatment was not required. The bulk density and maximum compressive strength of the HPMPP prepared according to the ratio of water to solids (W/So) of 0.32 reached 464.00 ± 5.00 Kg/m3 and 0.30 ± 0.05 MPa, respectively. The compressive strength increased with the increases in the addition amounts of sodium silicate and polypropylene fibers. The bulk density of HPMPP increased with the increase in the addition of sodium silicate and decreased with the increase in the addition of polypropylene fibers. Besides, the porosity of the magnesia phosphate paste increased from 79.85% to 81.27% and from 80.31% to 83.75% after the addition of sodium silicate and polypropylene fibers respectively. The highest porosity (83.75%) of the prepared HPMPP was realized under the addition proportion (sodium silicate: polypropylene fibers: solids = 0.06:0.0025:1). The average pore size of the prepared HPMPP is about 180 μm and the pore distribution range is relatively narrow. The hydration product (struvite) is combined with MgO particle one by one and then coated on the surface of bubbles. With the decrease of the water content, after breaking bubbles, the porous structure can be achieved. PMID:26268675
GEOMETRIC CROSS SECTIONS OF DUST AGGREGATES AND A COMPRESSION MODEL FOR AGGREGATE COLLISIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suyama, Toru; Wada, Koji; Tanaka, Hidekazu
2012-07-10
Geometric cross sections of dust aggregates determine their coupling with disk gas, which governs their motions in protoplanetary disks. Collisional outcomes also depend on geometric cross sections of initial aggregates. In a previous paper, we performed three-dimensional N-body simulations of sequential collisions of aggregates composed of a number of sub-micron-sized icy particles and examined radii of gyration (and bulk densities) of the obtained aggregates. We showed that collisional compression of aggregates is not efficient and that aggregates remain fluffy. In the present study, we examine geometric cross sections of the aggregates. Their cross sections decrease due to compression as wellmore » as to their gyration radii. It is found that a relation between the cross section and the gyration radius proposed by Okuzumi et al. is valid for the compressed aggregates. We also refine the compression model proposed in our previous paper. The refined model enables us to calculate the evolution of both gyration radii and cross sections of growing aggregates and reproduces well our numerical results of sequential aggregate collisions. The refined model can describe non-equal-mass collisions as well as equal-mass cases. Although we do not take into account oblique collisions in the present study, oblique collisions would further hinder compression of aggregates.« less
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.
2018-02-01
The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.
Curvature and bow of bulk GaN substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foronda, Humberto M.; Young, Erin C.; Robertson, Christian A.
2016-07-21
We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substratesmore » as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.« less
Thermal transport properties of bulk and monolayer MoS2: an ab-initio approach
NASA Astrophysics Data System (ADS)
Bano, Amreen; Khare, Preeti; Gaur, N. K.
2017-05-01
The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials accurately. The quasi harmonic thermal properties of bulk and monolayer of MoS2 has been computed with ab initio periodic simulations based of density functional theory (DFT). The temperature dependence of bulk modulus, specific heat, thermal expansion and gruneisen parameter have been calculated in our work within the temperature range of 0K to 900K with projected augmented wave (PAW) method using generalized gradient approximation (GGA). Our results show that the optimized lattice parameters are in good agreement with the earlier reported works and also for thermoelastic parameter, i.e. isothermal bulk modulus (B) at 0K indicates that monolayer MoS2 (48.5 GPa)is more compressible than the bulk structure (159.23 GPa). The thermal expansion of monolayer structure is slightly less than the bulk. Similarly, other parameters like heat capacity and gruneisen parameter shows different nature which is due to the confinement of 3 dimensional structure to 2 dimension (2D) for improving its transport characteristics.
Zhao, Zhisheng; Wang, Erik F; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin
2015-02-04
Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young's moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson's ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications.
NASA Astrophysics Data System (ADS)
Zhao, Zhisheng; Wang, Erik F.; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin
2015-02-01
Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young’s moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson’s ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications.
Tissue Acoustoelectric Effect Modeling From Solid Mechanics Theory.
Song, Xizi; Qin, Yexian; Xu, Yanbin; Ingram, Pier; Witte, Russell S; Dong, Feng
2017-10-01
The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10 -3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.
Single-crystal X-ray diffraction study of Fe 2SiO 4 fayalite up to 31 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jin S.; Hu, Yi; Shelton, Hannah
2016-10-03
Olivine is widely believed to be the most abundant mineral in the Earth’s upper mantle. Here, we report structural refinement results for the Fe-end-member olivine, Fe 2SiO 4 fayalite, up to 31 GPa in diamond-anvil cell, using single-crystal synchrotron X-ray diffraction. Unit-cell parameters a, b, c and V, average Si–O Fe–O bond lengths, as well as Si–O Fe–O polyhedral volumes continuously decrease with increasing pressure. The pressure derivative of isothermal bulk modulus K' T0 is determined to be 4.0 (2) using third-order Birch–Murnaghan equation of state with ambient isothermal bulk modulus fixed to 135 GPa on the basis of previousmore » Brillouin measurements. The Si–O tetrahedron is stiffer than the Fe–O octahedra, and the compression mechanism is dominated by Fe–O bond and Fe–O octahedral compression. Densities of olivine along 1600 and 900 K adiabats are calculated based on this study. The existence of metastable olivine inside the cold subduction slab could cause large positive buoyancy force against subduction, slow down the subduction and possibly affect the slab geometry.« less
Johnson, Daniel J.; Sigmundsson, F.; Delaney, P.T.
2000-01-01
In volcanoes that store a significant quantity of magma within a subsurface summit reservoir, such as Kilauea, bulk compression of stored magma is an important mode of deformation. Accumulation of magma is also accompanied by crustal deformation, usually manifested at the surface as uplift. These two modes of deformation - bulk compression of resident magma and deformation of the volcanic edifice - act in concert to accommodate the volume of newly added magma. During deflation, the processes reverse and reservoir magma undergoes bulk decompression, the chamber contracts, and the ground surface subsides. Because magma compression plays a role in creating subsurface volume of accommodate magma, magma budget estimates that are derived from surface uplift observations without consideration of magma compression will underestimate actual magma volume changes.
Measuring the properties of shock released Quartz and Parylene-N
NASA Astrophysics Data System (ADS)
Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim
2016-10-01
The high pressure and temperature properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies the single shock Hugoniot. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography.
Li, Xiang-Guo; Lv, Yang; Ma, Bao-Guo; Jian, Shou-Wei; Tan, Hong-Bo
2011-11-01
The influence of sintering temperature on the physico-mechanical characteristics (such as water absorption, apparent porosity, bulk density, weight loss on ignition, firing shrinkage, and compressive strength), leachability, and microstructure of shale brick containing oil well-derived drilling waste (DW) was investigated. The experiments were conducted at a temperature ranging from 950°C to 1,050°C with 30% DW addition. The results indicate that increasing the sintering temperature decreases the water absorption and apparent porosity and increases the shrinkage, density, and compressive strength of sintered specimens. Moreover, the physico-mechanical properties of samples sintered at 1,050°C meet the requirements of the MU20 according to GB/T 5101-2003 (in China). The heavy metal concentrations of the leachate are much lower than the current regulatory limits according to GB16889-2008. The results from XRD and SEM show that increasing sintering temperature results in an increase of the high temperature liquid phase, which may have a significant effect on the densification process of the samples.
Investigations of static properties of two-dimensional bulk polymer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, M.; Ceperley, D.; Frisch, H.L.
1981-12-01
The static properties of two dimensional excluded volume continuum multichain systems are investigated by a ''reptation'' Monte Carlo algorithm. All beads interact via a repulsive (shifted) Lennard-Jones potential. In addition, nearest neighbors along chains are linked by a quasiharmonic potential which permits limited pair extensions. Chain lengths of 5, 10, 20, 32, 50, and 70 beads have been studied. Studies at densities of 0.1, 0.3, and 0.5 demonstrate that chain dimensions are compressed as the concentration is increased. Both the mean square end-to-end distance , and the mean square radius of gyration have a power law dependence upon l-1,more » the number of bonds, with exponent approximately 1.44 for rho = 0.1, 1.33 for rho = 0.3, and 1.20 for rho = 0.5. The asphericity ratios indicate the extent of compression as the density is increased. In addition, nonexcluded volume chains are studied via straightforward Monte Carlo integration. and have a power law dependence upon l-1 with exponent 1.00.« less
NASA Technical Reports Server (NTRS)
Augustynowicz, Stanislaw D. (Inventor); Fesmire, James E. (Inventor)
2005-01-01
Thermal insulation systems and with methods of their production. The thermal insulation systems incorporate at least one reflection layer and at least one spacer layer in an alternating pattern. Each spacer layer includes a fill layer and a carrier layer. The fill layer may be separate from the carrier layer, or it may be a part of the carrier layer, i.e., mechanically injected into the carrier layer or chemically formed in the carrier layer. Fill layers contain a powder having a high surface area and low bulk density. Movement of powder within a fill layer is restricted by electrostatic effects with the reflection layer combined with the presence of a carrier layer, or by containing the powder in the carrier layer. The powder in the spacer layer may be compressed from its bulk density. The thermal insulation systems may further contain an outer casing. Thermal insulation systems may further include strips and seams to form a matrix of sections. Such sections serve to limit loss of powder from a fill layer to a single section and reduce heat losses along the reflection layer.
Thermoelasticity and anomalies in the pressure dependence of phonon velocities in niobium
NASA Astrophysics Data System (ADS)
Zou, Yongtao; Li, Ying; Chen, Haiyan; Welch, David; Zhao, Yusheng; Li, Baosheng
2018-01-01
Compressional and shear wave velocities of polycrystalline niobium have been measured at simultaneously high pressures and temperatures up to 5.8 GPa and 1073 K, respectively, using ultrasonic interferometry in conjunction with synchrotron x-ray techniques. An anomalous pressure-induced softening behavior in the phonon velocities, probably owing to the topological change in the Fermi surface, has been observed at ˜4.8 GPa during cold compression, which is supported by the elasticity data from our first-principles calculations. In contrast, both the bulk (BS) and shear (G) moduli increase with pressures but decrease with temperatures upon compression at extreme P-T up to 5.8 GPa and 1073 K. Using finite strain equation-of-state approaches, the elasticity of bulk and shear moduli and their pressure and temperature dependences are derived from the directly measured velocities and densities, yielding BS0 = 174.9(3.2) GPa, G0 = 37.1(3) GPa, ∂BS/∂P = 3.97(9), ∂G/∂P = 0.83(5), ∂BS/∂T = -0.064(7) GPa/K, and ∂G/∂T = -0.012(3) GPa/K. On the basis of the current thermoelasticity data, Debye temperature and the high-pressure melting curve of Nb are derived. The origin of the anomalies in shear behavior at high pressure might be attributed to the progressive s-d electron-transfer-induced topological changes of the Fermi surface upon compression.
Halaçoğlu, Mekin Doğa; Uğurlu, Timuçin
2015-01-01
The objective of this study was to investigate the effects of conventional lubricants including a new candidate lubricant "hexagonal boron nitride (HBN)" on direct compression powders. Lubricants such as magnesium stearate (MGST), glyceryl behenate, stearic acid, talc and polyethylene glycol6000 were studied and tablets were manufactured on a single station instrumented tablet press. This study comprised the continuation of our previous one, so mixture of microcrystalline cellulose and modified starch was used as a master formula to evaluate effects of lubricants on pharmaceutical excipients that undergo complete plastic deformation without any fragmentation under compression pressure. Bulk and tapped densities, and Carr's index parameters were calculated for powders. Tensile strength, cohesion index, lower punch ejection force and lubricant effectiveness values were investigated for tablets. The deformation mechanisms of tablets were studied during compression from the Heckel plots with or without lubricant. MGST was found to be the most effective lubricant and HBN was found very close to it. HBN did not show a significant negative effect on the crushing strength and disintegration time of the tablets when we compared with MGST. Based on the Heckel plots at the level of 1%, formulation prepared with HBN showed the most pronounced plastic character.
Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves
NASA Astrophysics Data System (ADS)
Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.
2001-12-01
The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.
Soloviev, A; Burdonov, K; Chen, S N; Eremeev, A; Korzhimanov, A; Pokrovskiy, G V; Pikuz, T A; Revet, G; Sladkov, A; Ginzburg, V; Khazanov, E; Kuzmin, A; Osmanov, R; Shaikin, I; Shaykin, A; Yakovlev, I; Pikuz, S; Starodubtsev, M; Fuchs, J
2017-09-22
Heating efficiently solid-density, or even compressed, matter has been a long-sought goal in order to allow investigation of the properties of such state of matter of interest for various domains, e.g. astrophysics. High-power lasers, pinches, and more recently Free-Electron-Lasers (FELs) have been used in this respect. Here we show that by using the high-power, high-contrast "PEARL" laser (Institute of Applied Physics-Russian Academy of Science, Nizhny Novgorod, Russia) delivering 7.5 J in a 60 fs laser pulse, such coupling can be efficiently obtained, resulting in heating of a slab of solid-density Al of 0.8 µm thickness at a temperature of 300 eV, and with minimal density gradients. The characterization of the target heating is achieved combining X-ray spectrometry and measurement of the protons accelerated from the Al slab. The measured heating conditions are consistent with a three-temperatures model that simulates resistive and collisional heating of the bulk induced by the hot electrons. Such effective laser energy deposition is achieved owing to the intrinsic high contrast of the laser which results from the Optical Parametric Chirped Pulse Amplification technology it is based on, allowing to attain high target temperatures in a very compact manner, e.g. in comparison with large-scale FEL facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in
With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{submore » 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.« less
Iverson, Richard M.; Chaojun Ouyang,
2015-01-01
Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Robertson, G. A.; Hawk, C. W.; Turner, M. W.; Koelfgen, S.; Litchford, Ron J. (Technical Monitor)
2001-01-01
This technical publication (TP) examines performance and design issues associated with magnetic flux compression reactor concepts for nuclear/chemical pulse propulsion and power. Assuming that low-yield microfusion detonations or chemical detonations using high-energy density matter can eventually be realized in practice, various magnetic flux compression concepts are conceivable. In particular, reactors in which a magnetic field would be compressed between an expanding detonation-driven plasma cloud and a stationary structure formed from a high-temperature superconductor are envisioned. Primary interest is accomplishing two important functions: (1) Collimation and reflection of a hot diamagnetic plasma for direct thrust production, and (2) electric power generation for fusion standoff drivers and/or dense plasma formation. In this TP, performance potential is examined, major technical uncertainties related to this concept accessed, and a simple performance model for a radial-mode reactor developed. Flux trapping effectiveness is analyzed using a skin layer methodology, which accounts for magnetic diffusion losses into the plasma armature and the stationary stator. The results of laboratory-scale experiments on magnetic diffusion in bulk-processed type II superconductors are also presented.
Predicting the shock compression response of heterogeneous powder mixtures
NASA Astrophysics Data System (ADS)
Fredenburg, D. A.; Thadhani, N. N.
2013-06-01
A model framework for predicting the dynamic shock-compression response of heterogeneous powder mixtures using readily obtained measurements from quasi-static tests is presented. Low-strain-rate compression data are first analyzed to determine the region of the bulk response over which particle rearrangement does not contribute to compaction. This region is then fit to determine the densification modulus of the mixture, σD, an newly defined parameter describing the resistance of the mixture to yielding. The measured densification modulus, reflective of the diverse yielding phenomena that occur at the meso-scale, is implemented into a rate-independent formulation of the P-α model, which is combined with an isobaric equation of state to predict the low and high stress dynamic compression response of heterogeneous powder mixtures. The framework is applied to two metal + metal-oxide (thermite) powder mixtures, and good agreement between the model and experiment is obtained for all mixtures at stresses near and above those required to reach full density. At lower stresses, rate-dependencies of the constituents, and specifically those of the matrix constituent, determine the ability of the model to predict the measured response in the incomplete compaction regime.
NASA Astrophysics Data System (ADS)
Shimoyama, Yuta; Terasaki, Hidenori; Ohtani, Eiji; Urakawa, Satoru; Takubo, Yusaku; Nishida, Keisuke; Suzuki, Akio; Katayama, Yoshinori
2013-11-01
Carbon is a plausible light element candidate in the Earth’s outer core. We measured the density of liquid Fe-3.5 wt% C up to 6.8 GPa and 2200 K using an X-ray absorption method. The compression curve of liquid Fe-C was fitted using the third-order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are K0,1500K = 55.3 ± 2.5 GPa and (dK0/dP)T = 5.2 ± 1.5, and the thermal expansion coefficient is α = 0.86 ± 0.04 × 10-4 K-1. The Fe-C density abruptly increases at pressures between 4.3 and 5.5 GPa in the range of present temperatures. Compared with the results of previous density measurements of liquid Fe-C, the effect of carbon on the density of liquid Fe shows a nonideal mixing behavior. The abrupt density increase and nonideal mixing behavior are important factors in determining the light element content in the Earth’s core.
Batman, Richard; Gujrati, P D
2008-03-28
We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse star (species A) and linear (species B) polymers with a third monomeric species C, which may represent free volume. The mixture is next to a hard, infinite plate whose interactions with A and C can be attractive, repulsive, or neutral. These two interactions are the only parameters necessary to specify the effect of the surface on all three components. We numerically study monomer density profiles using the method of Gujrati and Chhajer that has already been previously applied to study polydisperse and monodisperse linear-linear blends next to surfaces. The resulting density profiles always show an enrichment of linear polymers in the immediate vicinity of the surface due to entropic repulsion of the star core. However, the integrated surface excess of star monomers is sometimes positive, indicating an overall enrichment of stars. This excess increases with the number of star arms only up to a certain critical number and decreases thereafter. The critical arm number increases with compressibility (bulk concentration of C). The method of Gujrati and Chhajer is computationally ultrafast and can be carried out on a personal computer (PC), even in the incompressible case, when simulations are unfeasible. Calculations of density profiles usually take less than 20 min on PCs.
Equilibrium nuclear ensembles taking into account vaporization of hot nuclei in dense stellar matter
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Mishustin, Igor
2018-02-01
We investigate the high-temperature effect on the nuclear matter that consists of mixture of nucleons and all nuclei in the dense and hot stellar environment. The individual nuclei are described within the compressible-liquid-drop model that is based on Skyrme interactions for bulk energies and that takes into account modifications of the surface and Coulomb energies at finite temperatures and densities. The free-energy density is minimized with respect to the individual equilibrium densities of all heavy nuclei and the nuclear composition. We find that their optimized equilibrium densities become smaller and smaller at high temperatures because of the increase in thermal contributions to bulk free energies and the reduction of surface energies. The neutron-rich nuclei become unstable and disappear one after another at given temperatures. The calculations are performed for two sets of model parameters leading to different values of the slope parameter in the nuclear-symmetry energy. It is found that the larger slope parameter reduces the equilibrium densities and the melting temperatures. We also compare the proposed model with some other approaches and find that the mass fractions of heavy nuclei in the previous calculations that omit vaporization are underestimated at T ≲10 MeV and overestimated at T ≳10 MeV. The further sophistication of calculations of nuclear vaporization and of light clusters would be required to construct the equation of state for explosive astrophysical phenomena.
Crystal Chemical Controls on Equation of State
NASA Astrophysics Data System (ADS)
Thompson, R. M.; McCarthy, A. C.; Downs, R. T.
2007-12-01
Minerals are known to compress through a number of mechanisms, ranging from polyhedral distortion to electronic transitions. Two mechanisms which can produce significant volume decreases are angle-bending and bond compression. The crystal chemical effects of these two mechanisms have been studied and documented for years. With more recent advances in theory and software enabling the accurate determination of bonding topologies, M-O bonding to bridging oxygens has been shown to modify compressibility by changing angle-bending force constants. Minerals that compress mainly through angle-bending tend be soft. Good examples are quartz and cristobalite, minerals composed solely of corner-sharing silicate tetrahedra with bulk moduli of 37 and 12 GPa, respectively. Rock salt structured oxides must compress strictly by bond compression, and are much stiffer - lime and periclase have bulk moduli of 111 and 156 GPa, respectively. Feldspars have bulk moduli intermediate to the above examples. Based solely on the presence of Al-O-Si angles, theoretically softer than Si-O-Si angles, feldspars should be softer than quartz or cristobalite, but the T-O-T angles are stiffened by bonds to interstitial cations. The number and nature of these bonds affects compressibility sufficiently to create exceptions to Bridgman's law, which correlates bulk modulus with ambient unit cell volume in isostructural materials. In this paper, we present new high-pressure refinements of the crystal structures of jadeite, aegirine, and NaGa- clinopyroxene. Bulk moduli of these pyroxenes and all other end-member clinopyroxenes we could find in the literature (19 total) are plotted vs. unit cell volumes to test Bridgman's law. The data fall along two trends, each of which is separately consistent with Bridgman's law. Pyroxenes in one trend are dramatically stiffer than those in the other trend, with bulk moduli that differ by approximately 40 GPa. The only difference between the topologies of the structures in the two trends is in the bonding around M2. Structures in the less compressible trend have M2-O3 bonds that oppose Si-O-Si angle-bending in the tetrahedral chains. This angle-bending is an important compression mechanism in pyroxenes. McCarthy et al. (in press) term these bonds "antipathetic". Pyroxenes in the more compressible trend lack these bonds. There are other M2-O3 bonds that visual inspection suggests might tend to encourage angle-bending, but do not appear to have an effect. McCarthy et al. term these bonds "apathetic," and suggest the term "sympathetic" for M-O bonds that actually soften angles. Other examples from the literature will be presented including one from the feldspars that may be a truly sympathetic bond. McCarthy, A.C., Downs, R.T., and Thompson, R.M. (in press) Compressibility trends of the clinopyroxenes, and in- situ high-pressure single-crystal X-ray diffraction study of jadeite. American Mineralogist.
46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...
46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...
46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...
46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...
46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...
Ultralight anisotropic foams from layered aligned carbon nanotube sheets.
Faraji, Shaghayegh; Stano, Kelly L; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D
2015-10-28
In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm(-3), the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.
NASA Astrophysics Data System (ADS)
Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds; University of California, Los Angeles Collaboration; Lawrence livermore national laboratory Collaboration
2015-03-01
Bulk molybdenum disulfide (MoS2) is a good electrode material candidate for energy storage applications, such as lithium ion batteries and supercapacitors due to its high theoretical energy and power density. First-principles density-functional theory (DFT) calculations combined with cluster expansion are an effective method to study thermodynamic and kinetic properties of electrode materials. In order to construct accurate models for cluster expansion, it is important to effectively choose clusters with significant contributions. In this work, we employ a compressive sensing based technique to select relevant clusters in order to build an accurate Hamiltonian for cluster expansion, enabling the study of Li intercalation in MoS2. We find that the 2H MoS2 structure is only stable at low Li content while 1T MoS2 is the preferred phase at high Li content. The results show that the 2H MoS2 phase transforms into the disordered 1T phase and the disordered 1T structure remains after the first Li insertion/deinsertion cycle suggesting that disordered 1T MoS2 is stable even at dilute Li content. This work also highlights that cluster expansion treated with compressive sensing is an effective and powerful tool for model construction and can be applied to advanced battery and supercapacitor electrode materials.
NASA Astrophysics Data System (ADS)
Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D. S.; Manjula, M.; Krishnaveni, S.
2017-09-01
First principles calculations are carried out in order to analyze the structural, electronic, mechanical, thermal and optical properties of BP and BAs compounds by ternary alloying with nitrogen namely B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys at ambient condition. Thereby we report the mechanical and thermal properties of B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys namely bulk modulus, shear modulus, Young's modulus, hardness, ductile-brittle nature, elastic wave velocity, Debye temperature, melting point, etc.; optical properties of B(P)1-xNx (x = 0.25, 0.5, 0.75) and B(As)1-xNx (x = 0.25, 0.75) alloys namely the dielectric function of real and imaginary part, refractive index, extinction coefficient and reflectivity and the hardness profile of the parent compounds BP and BAs under compression. The charge density plot, density of states histograms and band structures are plotted and discussed for all the ternary alloys of the present study. The calculated results agree very well with the available literature. Analysis of the present study reveals that the ternary alloy combinations namely BP.25N.75 and BAs.25N.75 could be superhard materials; hardness of BP and BAs increases with compression.
Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing.
Yang, Qian; Li, Jian; Xu, Heng; Long, Shijun; Li, Xuefeng
2017-04-01
A rapid prototyping technology, formed by three-dimensional (3-D) printing and then crosslinked by spraying Ca 2+ solution, is developed to fabricate a sodium alginate (SA) hydrogel scaffold. The porosity, swelling ratio, and compression modulus of the scaffold are investigated. A friction mechanism is developed by studying the reproducible friction behavior. Our results show that the scaffold can have 3-D structure with a porosity of 52%. The degree of swelling of the SA hydrogel scaffold is 8.5, which is nearly the same as bulk SA hydrogel. SA hydrogel exhibits better compressive resilience than bulk hydrogel despite its lower compressive modulus compared to bulk hydrogel. The SA hydrogel scaffold exhibits a higher frictional force at low sliding velocity (10 -6 to 10 -3 m/s) compared to bulk SA hydrogel, and they are equal at high sliding velocity (10 -2 to 1 m/s). For a small pressure (0.3 kPa), the SA hydrogel scaffold shows good friction reproducibility. In contrast, bulk SA hydrogel shows poor reproducibility with respect to friction behavior. The differences in friction behaviors between the SA hydrogel scaffold and bulk SA hydrogel are related to the structure of the scaffold, which can keep a stable hydrated lubrication layer.
Oral Disintegration Tablets of Stavudine for HIV Management: A New Technological Approach
Sankar, V.; Ramakrishna, B.; Devi, P. Shalini; Karthik, S.
2012-01-01
Stavudine oral disintegration tablets were formulated to minimize the bitter taste and to reduce the first-pass hepatic metabolism. The various precompression parameters like the angle of repose, bulk density, compressibility index and Hausner's ratio were determined for the powder blend. In this study, 14 formulations of stavudine oral disintegration tablet were prepared by direct compression method. The tablets were evaluated for weight variation, percentage friability, disintegration time, hardness, wetting time and water absorption ratio. The in vitro dissolution study results of the batch S1 (stavudine+crospovidone+sodium starch glycollate) are encouraging as highest dissolution rate (99.2% in 100 min) and lowest time of disintegration (56 s) was achieved. The in vivo drug release studies were carried out in rabbits and the relative bioavailability of formulation S1 was found to be 2.83 times greater than that of conventional tablets. PMID:23798782
Oral Disintegration Tablets of Stavudine for HIV Management: A New Technological Approach.
Sankar, V; Ramakrishna, B; Devi, P Shalini; Karthik, S
2012-11-01
Stavudine oral disintegration tablets were formulated to minimize the bitter taste and to reduce the first-pass hepatic metabolism. The various precompression parameters like the angle of repose, bulk density, compressibility index and Hausner's ratio were determined for the powder blend. In this study, 14 formulations of stavudine oral disintegration tablet were prepared by direct compression method. The tablets were evaluated for weight variation, percentage friability, disintegration time, hardness, wetting time and water absorption ratio. The in vitro dissolution study results of the batch S1 (stavudine+crospovidone+sodium starch glycollate) are encouraging as highest dissolution rate (99.2% in 100 min) and lowest time of disintegration (56 s) was achieved. The in vivo drug release studies were carried out in rabbits and the relative bioavailability of formulation S1 was found to be 2.83 times greater than that of conventional tablets.
Effects of molecular geometry on the properties of compressed diamondoid crystals
Yang, Fan; Lin, Yu; Baldini, Maria; ...
2016-11-01
Diamondoids are an intriguing group of carbon-based nanomaterials, which combine desired properties of inorganic nanomaterials and small hydrocarbon molecules with atomic-level uniformity. In this Letter, we report the first comparative study on the effect of pressure on a series of diamondoid crystals with systematically varying molecular geometries and shapes, including zero-dimensional (0D) adamantane; one-dimensional (1D) diamantane, [121]tetramantane, [123]tetramantane, and [1212]pentamantane; two-dimensional (2D) [12312]hexamantane; and three-dimensional (3D) triamantane and [1(2,3)4]pentamantane. We find the bulk moduli of these diamondoid crystals are strongly dependent on the diamondoids’ molecular geometry with 3D [1(2,3)4]pentamantane being the least compressible and 0D adamantane being the most compressible.more » These diamondoid crystals possess excellent structural rigidity and are able to sustain large volume deformation without structural failure even after repetitive pressure loading cycles. These properties are desirable for constructing cushioning devices. Furthermore, we also demonstrate that lower diamondoids outperform the conventional cushioning materials in both the working pressure range and energy absorption density.« less
Effect of silane dilution on intrinsic stress in glow discharge hydrogenated amorphous silicon films
NASA Astrophysics Data System (ADS)
Harbison, J. P.; Williams, A. J.; Lang, D. V.
1984-02-01
Measurements of the intrinsic stress in hydrogenated amorphous silicon (a-Si : H) films grown by rf glow discharge decomposition of silane diluted to varying degrees in argon are presented. Films are found to grow under exceedingly high compressive stress. Low values of macroscopic film density and low stress values are found to correlate with high growth rate. An abrupt drop in stress occurs between 2 and 3% silane at precisely the point where columnar growth morphology appears. No corresponding abrupt change is noted in density, growth rate, or plasma species concentrations as determined by optical emissioin spectroscopy. Finally a model of diffusive incorporation of hydrogen or some gaseous impurity during growth into the bulk of the film behind the growing interface is proposed to explain the results.
NASA Astrophysics Data System (ADS)
Osada, Mitsumasa; Toyoshima, Katsunori; Mizutani, Takakazu; Minami, Kimitaka; Watanabe, Masaru; Adschiri, Tadafumi; Arai, Kunio
2003-03-01
UV-visible spectra of quinoline was measured in sub- and supercritical water (25 °C
NASA Technical Reports Server (NTRS)
Jeanloz, R.; Ahrens, T. J.
1979-01-01
The shock wave (Hugoniot) data on single crystal and porous anorthite (CaAl2Si208) to pressures of 120 GPa are presented. These data are inverted to yield high pressure values of the Grueneisen parameter, adiabatic bulk modulus, and coefficient of thermal expansion over a broad range of pressures and temperatures which in turn are used to reduce the raw Hugoniot data and construct an experimentally based, high pressure thermal equation of state for anorthite. The hypothesis that higher order anharmonic contributions to the thermal properties decrease more rapidly upon compression than the lowest order anharmonicities is supported. The properties of anorthite corrected to lower mantle conditions show that although the density of anorthite is comparable to that of the lower most mantle, its bulk modulus is considerably less, hence making enrichment in the mantle implausible except perhaps near its base.
Elastic collapse in disordered isostatic networks
NASA Astrophysics Data System (ADS)
Moukarzel, C. F.
2012-02-01
Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order e-bL. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order \\sqrt{p} . For directed networks, elastic moduli are of order e-c/p, indicating the existence of an "isostatic length scale" of order 1/p.
FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAJO, JOHN
2014-06-12
DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materialsmore » would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.« less
46 CFR 153.0 - Availability of materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.0 Availability of... for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk, Resolution MEPC 19...
46 CFR 153.0 - Availability of materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.0 Availability of... for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk, Resolution MEPC 19...
46 CFR 153.0 - Availability of materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.0 Availability of... for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk, Resolution MEPC 19...
46 CFR 153.0 - Availability of materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.0 Availability of... for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk, Resolution MEPC 19...
46 CFR 153.0 - Availability of materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.0 Availability of... for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk, Resolution MEPC 19...
Formulation and Evaluation of Mouth Disintegrating Tablets of Atenolol and Atorvastatin
Sarfraz, R. M.; Khan, H. U.; Mahmood, A.; Ahmad, M.; Maheen, S.; Sher, M.
2015-01-01
In this study, mouth-disintegrating tablets of atenolol and atorvastatin combination were formulated using superdisintegrants to impart fast disintegration. Fifteen formulations were prepared based on different concentrations of two superdisintegrants, croscarmellose sodium and Kyron-T134. Three different techniques such as direct compression, effervescent and sublimation were used to study the effect of manufacturing processes, nature and concentration of superdisintegrants on various features of these tablets. Five formulations were made using each method. Precompression studies like bulk density, tapped density, angle of repose, Carr's compressibility index, Hausner's ratio and compatibility studies such as Fourier transform infrared spectroscopy and differential scanning calorimetry were performed. Various features such as hardness, thickness, diameter, weight variation, friability, disintegration time, dissolution studies, wetting time, wetting volume, water absorption ratio, modified disintegration, uniformity of contents and stability were evaluated. Finally results were statistically analyzed by the application of one way ANOVA test. Formulation F13 containing Kyron-T134 (6%) and croscarmellose sodium (2%) was found to be the best among all fifteen formulations prepared in all aspects evaluated. Sublimation method is found to be the best among three methods of preparation used. PMID:25767322
Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming
2015-04-28
Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.
NASA Astrophysics Data System (ADS)
Asiaee, Alireza; Benjamin, Kenneth M.
2016-08-01
For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0-1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.
46 CFR 153.900 - Certificates and authorization to carry a bulk liquid hazardous material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ship must have a Subchapter D or I Certificate of Inspection that is endorsed to allow the cargo tank... requirements for the bulk liquid cargo; and (2) The ship— (i) Has a Certificate of Inspection, Certificate of...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
Uğurlu, Timuçin; Halaçoğlu, Mekin Doğa
2014-05-01
The objective of this study was to investigate the effects of conventional lubricants including a new candidate lubricant "Hexagonal boron nitride (HBN)" on direct compression powders. Lubricants such as magnesium stearate, glyceryl behenate, stearic acid, talc and polyethylene glycol6000 were studied in this article. Tablets were manufactured on an instrumented tablet press with various lubricant concentrations. Bulk and tapped densities, and Carr's index parameters were calculated for powders. Tensile strength, cohesion index, lower punch ejection force and lubricant effectiveness values were investigated for tablets. The deformation mechanisms of tablets were studied during compression from the Heckel plots with or without lubricants. Powders formulated with MGST and HBN showed better flow properties based on Carr's index. MGST was found to be the most effective lubricant based on lubricant effectiveness for tablets. HBN was found very close to MGST with the same concentrations. Other lubricants showed less effectiveness than that of MGST and HBN. It is observed that an increase in the concentration of HBN leads to decreased tensile strength and cohesion index values because of its surface-covering property. Despite covering property, HBN had no significant effect on disintegration time. Based on the Heckel plots at the level of 1%, HBN showed the most pronounced plastic character.
How water manifests the structural regimes in ionic liquids.
Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib
2017-03-22
Ionic liquids (ILs) are being considered as greener alternatives to the conventional organic solvents. However, highly viscous nature of ILs often limits their applications. Hence studies on IL/water binary mixtures have received tremendous attention. These mixtures exhibit much lower viscosity, but almost similar density, compressibility and other properties as that of the neat ILs, up to certain water content. Hence, determining the IL-water ratio till which the solution behaves like IL and subsequently changes to a state of solute IL dissolved in continuous water phase is of paramount importance. Noting the very different and characteristic behaviours of neat ILs and pure water over a temperature range, herein, we measured the various thermophysical properties of the binary mixtures of tetramethylguanidinium benzoate/water and tetramethylguanidinium salicylate/water with water content varying from 20 wt% to 95 wt% for a temperature range of 298 K to 343 K. The results show that similar to neat ILs, the measured densities and compressibility of these mixtures display a linear change, and viscosity decreases rapidly as temperature is increased for water content up to 50 wt%. At higher water concentrations, the measured density and compressibility exhibit nonlinear behaviour and the decrease in viscosity with increased temperature is minute, mimicking the behaviour of bulk water. MD simulations were carried out to explain the experimental observations. Simulation results show a greater temperature-induced disintegration of IL ion-water interactions in dense systems, explaining the rapid decay of the properties with temperature. The results also exhibit the presence of a neat, IL-like, H-bond mediated expanded structure in concentrated solution versus a collapsed IL structure in dilute solution.
Utilization of sewage sludge in the manufacture of lightweight aggregate.
Franus, Małgorzata; Barnat-Hunek, Danuta; Wdowin, Magdalena
2016-01-01
This paper presents a comprehensive study on the possibility of sewage sludge management in a sintered ceramic material such as a lightweight aggregate. Made from clay and sludge lightweight aggregates were sintered at two temperatures: 1100 °C (name of sample LWA1) and 1150 °C (name of sample LWA2). Physical and mechanical properties indicate that the resulting expanded clay aggregate containing sludge meets the basic requirements for lightweight aggregates. The presence of sludge supports the swelling of the raw material, thereby causing an increase in the porosity of aggregates. The LWA2 has a lower value of bulk particle density (0.414 g/cm(3)), apparent particle density (0.87 g/cm(3)), and dry particle density (2.59 g/cm(3)) than it is in the case of LWA1 where these parameters were as follows: bulk particle density 0.685 g/cm(3), apparent particle density 1.05 g/cm(3), and dry particle density 2.69 g/cm(3). Water absorption and porosity of LWA1 (WA = 14.4 %, P = 60 %) are lower than the LWA2 (WA = 16.2 % and P = 66 %). This is due to the higher heating temperature of granules which make the waste gases, liberating them from the decomposition of organic sewage sludge. The compressive strength of LWA2 aggregate is 4.64 MPa and for LWA1 is 0.79 MPa. Results of leaching tests of heavy metals from examined aggregates have shown that insoluble metal compounds are placed in silicate and aluminosilicate structure of the starting materials (clays and sludges), whereas soluble substances formed crystalline skeleton of the aggregates. The thermal synthesis of lightweight aggregates from clay and sludge mixture is a waste-free method of their development.
Flow rate of some pharmaceutical diluents through die-orifices relevant to mini-tableting.
Kachrimanis, K; Petrides, M; Malamataris, S
2005-10-13
The effects of cylindrical orifice length and diameter on the flow rate of three commonly used pharmaceutical direct compression diluents (lactose, dibasic calcium phosphate dihydrate and pregelatinised starch) were investigated, besides the powder particle characteristics (particle size, aspect ratio, roundness and convexity) and the packing properties (true, bulk and tapped density). Flow rate was determined for three different sieve fractions through a series of miniature tableting dies of different orifice diameter (0.4, 0.3 and 0.2 cm) and thickness (1.5, 1.0 and 0.5 cm). It was found that flow rate decreased with the increase of the orifice length for the small diameter (0.2 cm) but for the large diameter (0.4 cm) was increased with the orifice length (die thickness). Flow rate changes with the orifice length are attributed to the flow regime (transitional arch formation) and possible alterations in the position of the free flowing zone caused by pressure gradients arising from the flow of self-entrained air, both above the entrance in the die orifice and across it. Modelling by the conventional Jones-Pilpel non-linear equation and by two machine learning algorithms (lazy learning, LL, and feed-forward back-propagation, FBP) was applied and predictive performance of the fitted models was compared. It was found that both FBP and LL algorithms have significantly higher predictive performance than the Jones-Pilpel non-linear equation, because they account both dimensions of the cylindrical die opening (diameter and length). The automatic relevance determination for FBP revealed that orifice length is the third most influential variable after the orifice diameter and particle size, followed by the bulk density, the difference between bulk and tapped densities and the particle convexity.
[Physical fingerprint for quality control of traditional Chinese medicine extract powders].
Zhang, Yi; Xu, Bing; Sun, Fei; Wang, Xin; Zhang, Na; Shi, Xin-Yuan; Qiao, Yan-Jiang
2016-06-01
The physical properties of both raw materials and excipients are closely correlated with the quality of traditional Chinese medicine preparations in oral solid dosage forms. In this paper, based on the concept of the chemical fingerprint for quality control of traditional Chinese medicine products, the method of physical fingerprint for quality evaluation of traditional Chinese medicine extract powders was proposed. This novel physical fingerprint was built by the radar map, and consisted of five primary indexes (i.e. stackablity, homogeneity, flowability, compressibility and stability) and 12 secondary indexes (i.e. bulk density, tap density, particle size<50 μm percentage, relative homogeneity index, hausner ratio, angle of repose, powder flow time, inter-particle porosity, Carr index, cohesion index, loss on drying, hygroscopicity). Panax notoginseng saponins (PNS) extract was taken for an example. This paper introduced the application of physical fingerprint in the evaluation of source-to-source and batch-to-batch quality consistence of PNS extract powders. Moreover, the physical fingerprint of PNS was built by calculating the index of parameters, the index of parametric profile and the index of good compressibility, in order to successfully predict the compressibility of the PNS extract powder and relevant formulations containing PNS extract powder and conventional pharmaceutical excipients. The results demonstrated that the proposed method could not only provide new insights into the development and process control of traditional Chinese medicine solid dosage forms. Copyright© by the Chinese Pharmaceutical Association.
Polyamorphism in Yb-based metallic glass induced by pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Liangliang; Luo, Qiang; Li, Renfeng
2017-04-25
The Yb 62.5Zn 15Mg 17.5Cu 5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. Furthermore, this discovery in Yb-based metallic glass, combinedmore » with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.« less
The equation of state of n-pentane in the atomistic model TraPPE-EH
NASA Astrophysics Data System (ADS)
Valeev, B. U.; Pisarev, V. V.
2018-01-01
In this work, we study the vapor-liquid equilibrium in n-pentane. We use the TraPPE-EH (transferable potentials for phase equilibria-explicit hydrogen) forcefield, where each hydrogen and carbon atom is considered as independent center of force. The fluid behavior was investigated with different values of density and temperature by molecular dynamics method. The n-pentane evaporation curve was calculated in the temperature range of 290 to 390 K. The densities of the coexisting phases are also calculated. The compression curve at 370 K was calculated and isothermal bulk modulus was found. The simulated properties of n-pentane are in good agreement with data from a database of the National Institute of Standards and Technology, so the TraPPE-EH model can be recommended for simulations of hydrocarbons.
NASA Astrophysics Data System (ADS)
Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad
2014-10-01
Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.
NASA Astrophysics Data System (ADS)
Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.
2015-10-01
We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .
Critical behavior in trapped strongly interacting Fermi gases
NASA Astrophysics Data System (ADS)
Taylor, E.
2009-08-01
We investigate the width of the Ginzburg critical region and experimental signatures of critical behavior in strongly interacting trapped Fermi gases close to unitarity, where the s -wave scattering length diverges. Despite the fact that the width of the critical region is of the order unity, evidence of critical behavior in the bulk thermodynamics of trapped gases is strongly suppressed by their inhomogeneity. The specific heat of a harmonically confined gas, for instance, is linear in the reduced temperature t=(T-Tc)/Tc above Tc . We also discuss the prospects of observing critical behavior in the local compressibility from measurements of the density profile.
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Vinet, P.
1986-01-01
Two pressure chambers, for compression experiments with liquids from zero to 2.2 GPa pressure, are described. The experimentally measured compressions are then compared to theoretical values given by an isothermal model of equation of state recently introduced for solids. The model describes the pressure and bulk modulus as a function of compression for different types of lubricants with a very high accuracy up to the pressure limit of the high pressure chamber used (2.2 GPa). In addition the influence of temperature on static solidification pressure was found to be a simple function of the thermal expansion of the fluid.
Site preparation effects on soil bulk density and pine seedling growth
John J. Stransky
1981-01-01
Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
46 CFR 153.930 - Cargo antidotes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.930... Accidents Involving Dangerous Goods, published by IMO. ...
46 CFR 153.930 - Cargo antidotes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.930... Accidents Involving Dangerous Goods, published by IMO. ...
46 CFR 153.930 - Cargo antidotes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.930... Accidents Involving Dangerous Goods, published by IMO. ...
46 CFR 153.930 - Cargo antidotes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.930... Accidents Involving Dangerous Goods, published by IMO. ...
46 CFR 153.930 - Cargo antidotes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.930... Accidents Involving Dangerous Goods, published by IMO. ...
NASA Astrophysics Data System (ADS)
Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.
2018-07-01
We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.
Pressure-jump induced rapid solidification of melt: a method of preparing amorphous materials
NASA Astrophysics Data System (ADS)
Liu, Xiuru; Jia, Ru; Zhang, Doudou; Yuan, Chaosheng; Shao, Chunguang; Hong, Shiming
2018-04-01
By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.
Modifying the morphology and properties of aligned CNT foams through secondary CNT growth.
Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S; Bradford, Philip D
2018-07-20
In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam's extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.
Modifying the morphology and properties of aligned CNT foams through secondary CNT growth
NASA Astrophysics Data System (ADS)
Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S.; Bradford, Philip D.
2018-07-01
In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam’s extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.
Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste
NASA Astrophysics Data System (ADS)
Topič, Jaroslav; Prošek, Zdeněk; Plachý, Tomáš
2017-09-01
This paper deals with using fine recycled concrete powder in cement composites as micro-filler and partial cement replacement. Binder properties of recycled concrete powder are given by exposed non-hydrated cement grains, which can hydrate again and in small amount replace cement or improve some mechanical properties. Concrete powder used in the experiments was obtained from old railway sleepers. Infrastructure offer more sources of old concrete and they can be recycled directly on building site and used again. Experimental part of this paper focuses on influence of increasing amount of concrete powder on mechanical properties of cement paste. Bulk density, shrinkage, dynamic Young’s modulus, compression and flexural strength are observed during research. This will help to determine limiting amount of concrete powder when decrease of mechanical properties outweighs the benefits of cement replacement. The shrinkage, dynamic Young’s modulus and flexural strength of samples with 20 to 30 wt. % of concrete powder are comparable with reference cement paste or even better. Negative effect of concrete powder mainly influenced the compression strength. Only a 10 % cement replacement reduced compression strength by about 25 % and further decrease was almost linear.
Proton behaviour, structure and elasticity of serpentine at high-pressure
NASA Astrophysics Data System (ADS)
Mookherjee, Mainak; Stixrude, Lars
2007-03-01
Serpentine occurs in oceanic crust as the alteration product of ultramafic rocks and is a possible candidate for carrying water to the deep earth. The presence of sub-surface serpentine may be manifested by mud volcanoes, high electrical conductivities, and seismic anomalies. Using density functional theory, we predict a phase transition in serpentine near 22 GPa. The phase transition is caused by a re-orientation of the hydroxyl vector coupled with changes in the di-trigonal rings of SiO4 tetrahedra. The symmetry of the crystal-structure remains unaffected. Evidence of pressure-induced hydrogen bonding is absent in serpentine, as evident from the reduction of O-H bond length upon compression. Results of compression for the low-pressure phase is well represented by a fourth order Birch-Murnaghan finite strain expression with KO= 63 GPa, K'O= 10.2 and KOK''O = -120, where K is the bulk modulus, prime indicates pressure derivatives, and O refers to zero pressure. At low pressures, the elastic constant tensor is highly anisotropic with C11^o ˜2.4xC33^o , and becomes more isotropic with compression. We find an elastic instability near 36 GPa that may be related to experimentally observed amorphization.
Wágner, Dorottya S; Ramin, Elham; Szabo, Peter; Dechesne, Arnaud; Plósz, Benedek Gy
2015-07-01
The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling conditions - can be used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Size dependent compressibility of nano-ceria: Minimum near 33 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua
2015-04-20
We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less
Compressibility behaviour of conducting ceramic TiB2
NASA Astrophysics Data System (ADS)
Arpita Aparajita, A. N.; Kumar, N. R. Sanjay; Shekar, N. V. Chandra; Kalavathi, S.
2017-09-01
To address the large spread in the bulk modulus value of TiB2 reported in literature, high pressure compressibility study of a phase pure polycrystalline sample has been carried out using in situ high pressure x-ray diffraction technique (HPXRD) in angle dispersive mode. The study has been done up to 23 GPa at ambient temperature with methanol-ethanol-water (MEW) as pressure transmitting medium. The hexagonal lattice has been found to be stable in the pressure range studied. The isothermal bulk modulus is estimated to be 333(6) GPa by employing 3rd order Birch-Murnaghan equation of state. The obtained high value of bulk modulus is understood in terms of band filling effect, and the nature of bonding between B-B and Ti-B in TiB2. Compressibility along ‘a’ and ‘c’ axis is found to be anisotropic with compressibility values of 0.93(2) TPa-1 and 1.14(2) TPa-1 respectively. From the estimated bond lengths for Ti-B and B-B it is found that B-B bonds are less compressible compared to Ti-B bonds which is in accordance with the respective nature of Ti-B and B-B bonds. A change in the rate of bond contraction was seen around 12 GPa which is due to the bond hardening for both Ti-B and B-B bonds with pressure.
Ensemble Density Functional Approach to the Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Heinonen, O.
1997-03-01
The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas of density n when a strong magnetic field perpendicular to the plane of the electron gas takes on certain strengths B(n). At these magnetic field strengths the system is incompressible, i.e., there is a finite cost in energy for creating charge density fluctuations in the bulk. Even so the boundary of the electron gas supports gapless modes of density waves. The bulk energy gap arises because of the strong electron-electron interactions. There are very good models for infinite homogeneous systems and for the gapless excitations of the boundary of the electron gas. But in order to explain experiments on quantum Hall systems, including Hall bars and quantum dots, new approaches are needed which can accurately describe inhomogeneous systems, including Landau level mixing and the spin degree of freedom. One possibility is an ensemble density functional theory approach that we have developed.(O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75), 4110 (1995)(O. Heinonen, M.I. Lubin, and M.D. Johnson, Int. J. Quant. Chem, December 1996) We have applied this to study edge reconstructions of spin-polarized quantum dots. The results for a six-electron test case are in excellent agreement with numerical diagonalizations. For larger systems, compressible and incompressible strips appear as the magnetic field is increased from the region in which a dot forms a compact so-called maximum density droplet. We have recently included spin degree of freedom to study the stability of a maximum density droplet, and charge-spin textures in inhomogeneous systems. As an example, when the Zeeman coupling is decreased, we find that the maximum density droplet develops a spin-structured edge instability. This implies that the spin degree of freedom may play a significant role in the study of edge modes at low or moderate magnetic fields.
A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film
NASA Astrophysics Data System (ADS)
Tian, Yingwei; Li, Guimiao; Yi, Zhiran; Liu, Jingquan; Yang, Bin
2018-06-01
This paper presents a high performance piezoelectric energy harvester (PEH) with a rectangular hole to work at low-frequency. This PEH used thinned bulk PZT film on flexible phosphor bronze, and its structure included piezoelectric layer, supporting layer and proof mass to reduce the resonant frequency of the device. Here, thinned bulk PZT thick film was used as piezoelectric layer due to its high piezoelectric coefficient. A Phosphor bronze was deployed as supporting layer because it had better flexibility compared to silicon and could work under high acceleration ambient with good durability. The maximum open-circuit voltage of the PEH was 15.7 V at low resonant frequency of 34.3 Hz when the input vibration acceleration was 1.5 g (g = 9.81 m/s2). Moreover, the maximum output power, the output power density and the actually current at the same acceleration were 216.66 μW, 1713.58 μW/cm3 and 170 μA, respectively, when the optimal matched resistance of 60 kΩ was connected. The fabricated PEH scavenged the vibration energy of the vacuum compression pump and generated the maximum output voltage of 1.19 V.
Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch
2016-10-07
Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-01-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
NASA Astrophysics Data System (ADS)
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-05-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R
2016-05-19
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
A Finite Element Study of Micropipette Aspiration of Single Cells: Effect of Compressibility
Jafari Bidhendi, Amirhossein; Korhonen, Rami K.
2012-01-01
Micropipette aspiration (MA) technique has been widely used to measure the viscoelastic properties of different cell types. Cells experience nonlinear large deformations during the aspiration procedure. Neo-Hookean viscohyperelastic (NHVH) incompressible and compressible models were used to simulate the creep behavior of cells in MA, particularly accounting for the effect of compressibility, bulk relaxation, and hardening phenomena under large strain. In order to find optimal material parameters, the models were fitted to the experimental data available for mesenchymal stem cells. Finally, through Neo-Hookean porohyperelastic (NHPH) material model for the cell, the influence of fluid flow on the aspiration length of the cell was studied. Based on the results, we suggest that the compressibility and bulk relaxation/fluid flow play a significant role in the deformation behavior of single cells and should be taken into account in the analysis of the mechanics of cells. PMID:22400045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asiaee, Alireza; Benjamin, Kenneth M., E-mail: kenneth.benjamin@sdsmt.edu
2016-08-28
For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (nomore » SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0–1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.« less
46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator in...
46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator in...
46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator in...
46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator in...
A theory of local and global processes which affect solar wind electrons. 2: Experimental support
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Olbert, S.
1979-01-01
The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E kT sub c; the transthermals with kT sub c E 7 kT sub c and the extrathermals E 7 kT sub c. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal "temperature" should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU.
Crystal structure of the Chevrel phase Sn Mo6 S8 at high pressure
NASA Astrophysics Data System (ADS)
Ehm, L.; Dera, P.; Knorr, K.; Winkler, B.; Krimmel, A.; Bouvier, P.
2005-07-01
The high-pressure behavior of the Chevrel phase SnMo6S8 was investigated by angular dispersive synchrotron powder diffraction. The experiments were accompanied by first principles calculations at the density functional theory level. The fit of a Birch-Murnaghan equation-of-state gave the volume at zero pressure V0=277(1)Å3 , the bulk modulus at zero pressure B0=84(3)GPa , and the pressure derivative of the bulk modulus B'=3.0(4) for the experimental data and V0=281.6(3)Å3 , B0=76(1)GPa , and B'=4.7(1) for the calculated data. The analysis of the bond distances and the bond population reveals the formation of new bonds and changes of the bond characteristics in the structure under pressure. The compression mechanism is analysed by means of the distortion of the Mo6S8 cluster and the rotation of the cluster with respect to the unit cell edges.
An Experimental Study of Briquetting Process of Torrefied Rubber Seed Kernel and Palm Oil Shell.
Hamid, M Fadzli; Idroas, M Yusof; Ishak, M Zulfikar; Zainal Alauddin, Z Alimuddin; Miskam, M Azman; Abdullah, M Khalil
2016-01-01
Torrefaction process of biomass material is essential in converting them into biofuel with improved calorific value and physical strength. However, the production of torrefied biomass is loose, powdery, and nonuniform. One method of upgrading this material to improve their handling and combustion properties is by densification into briquettes of higher density than the original bulk density of the material. The effects of critical parameters of briquetting process that includes the type of biomass material used for torrefaction and briquetting, densification temperature, and composition of binder for torrefied biomass are studied and characterized. Starch is used as a binder in the study. The results showed that the briquette of torrefied rubber seed kernel (RSK) is better than torrefied palm oil shell (POS) in both calorific value and compressive strength. The best quality of briquettes is yielded from torrefied RSK at the ambient temperature of briquetting process with the composition of 60% water and 5% binder. The maximum compressive load for the briquettes of torrefied RSK is 141 N and the calorific value is 16 MJ/kg. Based on the economic evaluation analysis, the return of investment (ROI) for the mass production of both RSK and POS briquettes is estimated in 2-year period and the annual profit after payback was approximately 107,428.6 USD.
Understanding turbulence in compressing plasmas and its exploitation or prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidovits, Seth
Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulencemore » need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a lower bound on the growth of turbulence in molecular clouds. This bound raises questions about the level of dissipation in existing molecular cloud models. Finally, the observations originally motivating the thesis, Z-pinch measurements suggesting dominant turbulent energy, are reexamined by self-consistently accounting for the impact of the turbulence on the spectroscopic analysis. This is found to strengthen the evidence that the multiple observations describe a highly turbulent plasma state.« less
Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention
NASA Astrophysics Data System (ADS)
Davidovits, Seth
Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a lower bound on the growth of turbulence in molecular clouds. This bound raises questions about the level of dissipation in existing molecular cloud models. Finally, the observations originally motivating the thesis, Z-pinch measurements suggesting dominant turbulent energy, are reexamined by self-consistently accounting for the impact of the turbulence on the spectroscopic analysis. This is found to strengthen the evidence that the multiple observations describe a highly turbulent plasma state.
Soil bulk density changes caused by mechanized harvesting: A case study in central Appalachia
Jingxin Wang; Chris B. LeDoux; Pam Edwards; Mark Jones; Mark Jones
2005-01-01
A mechanized harvesting system consisting of a feller-buncher and a grapple skidder was examined to quantify soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge pre-harvest and post-harvest systematically across the harvest unit and on transects across skid trails. Bulk density also was measured...
Lin, Tianquan; Liu, Fengxin; Xu, Feng; Bi, Hui; Du, Yahui; Tang, Yufeng; Huang, Fuqiang
2015-11-18
Flexible/stretchable devices for energy storage are essential for future wearable and flexible electronics. Electrochemical capacitors (ECs) are an important technology for supplement batteries in the energy storage and harvesting field, but they are limited by relatively low energy density. Herein, we report a superelastic foam consisting of few-layer carbon nanowalls made from natural cotton as a good scaffold to growth conductive polymer polyaniline for stretchable, lightweight, and flexible all-solid-state ECs. As-prepared superelastic bulk tubular carbon foam (surface area ∼950 m(2)/g) can withstand >90% repeated compression cycling and support >45,000 times its own weight but no damage. The flexible device has a high specific capacitance of 510 F g(-1), a specific energy of 25.5 Wh kg(-1) and a power density of 28.5 kW kg(-1) in weight of the total electrode materials and withstands 5,000 charging/discharging cycles.
Barnat-Hunek, Danuta; Widomski, Marcin K; Szafraniec, Małgorzata; Łagód, Grzegorz
2018-03-01
The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate.
Barnat-Hunek, Danuta; Widomski, Marcin K.; Szafraniec, Małgorzata; Łagód, Grzegorz
2018-01-01
The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate. PMID:29494525
Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei
2015-11-11
Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.
Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality.
Si, Yang; Yu, Jianyong; Tang, Xiaomin; Ge, Jianlong; Ding, Bin
2014-12-16
Three-dimensional nanofibrous aerogels (NFAs) that are both highly compressible and resilient would have broad technological implications for areas ranging from electrical devices and bioengineering to damping materials; however, creating such NFAs has proven extremely challenging. Here we report a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique. Our approach causes the intrinsically lamellar deposited electrospun nanofibres to assemble into elastic bulk aerogels with tunable densities and desirable shapes on a large scale. The resulting FIBER NFAs exhibit densities of >0.12 mg cm(-3), rapid recovery from deformation, efficient energy absorption and multifunctionality in terms of the combination of thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional NFAs for various applications.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.; Johnson, Mary L.
1994-01-01
Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.
Lin, Kae-Long; Huang, Long-Sheng; Shie, Je-Lueng; Cheng, Ching-Jung; Lee, Ching-Hwa; Chang, Tien-Chin
2013-01-01
This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization. The results indicate that increasing the amount of solar panel waste glass resulted in a decrease in the water absorption rate and an increase in the compressive strength of the solar panel waste glass bricks. The 24-h absorption rate and compressive strength of the solar panel waste glass brick made from samples containing 30% solar panel waste glass sintered at 1000 degrees C all met the Chinese National Standard (CNS) building requirements for first-class brick (compressive strengths and water absorption of the bricks were 300 kg cm(-2) and 10% of the brick, respectively). The addition of solar panel waste glass to the mixture reduced the degree of firing shrinkage. The salt crystallization test and wet-dry tests showed that the addition of solar panel waste glass had highly beneficial effects in that it increased the durability of the bricks. This indicates that solar panel waste glass is indeed suitable for the partial replacement of clay in bricks.
Han, Xi; Ghoroi, Chinmay; Davé, Rajesh
2013-02-14
Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.
Kogbara, Reginald B
2017-01-28
Relationships among selected performance properties have been established using experimental data from a cement-stabilized mixed contaminated soil. The sandy soil was spiked with 3,000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel. It was then treated with 5%, 10%, 15%, and 20% dosages of Portland cement. Different water contents were considered for lower dosage mixes. Selected geotechnical and leaching properties were determined on 28-day old samples. These include unconfined compressive strength (UCS), bulk density, porosity, hydraulic conductivity, leachate pH and granular leachability of contaminants. Interrelationships among these properties were deduced using the most reasonable best fits determined by specialized curve fitting software. Strong quadratic and log-linear relationships exist between hydraulic conductivity and UCS, with increasing binder and water contents, respectively. However, the strength of interrelationships between hydraulic conductivity and porosity, UCS and porosity, and UCS and bulk density varies with binder and water contents. Leachate pH and granular leachability of contaminants are best related to UCS and hydraulic conductivity by a power law and an exponential function, respectively. These results suggest how the accuracy of not-easily-measurable performance properties may be constrained from simpler ones. Comparisons with some published performance properties data support this.
Using the Opposition Effect in Remotely Sensed Data to Assist in the Retrieval of Bulk Density
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.
Bulk density is an important geophysical property that impacts the mobility of military vehicles and personnel. Accurate retrieval of bulk density from remotely sensed data is, therefore, needed to estimate the mobility on "off-road" terrain. For a particulate surface, the functional form of the opposition effect can provide valuable information about composition and structure. In this research, we examine the relationship between bulk density and angular width of the opposition effect for a controlled set of laboratory experiments. Given a sample with a known bulk density, we collect reflectance measurements on a spherical grid for various illumination and view geometries -- increasing the amount of reflectance measurements collected at small phase angles near the opposition direction. Bulk densities are varied using a custom-made pluviation device, samples are measured using the Goniometer of the Rochester Institute of Technology-Two (GRIT-T), and observations are fit to the Hapke model using a grid-search method. The method that is selected allows for the direct estimation of five parameters: the single-scattering albedo, the amplitude of the opposition effect, the angular width of the opposition effect, and the two parameters that describe the single-particle phase function. As a test of the Hapke model, the retrieved bulk densities are compared to the known bulk densities. Results show that with an increase in the availability of multi-angular reflectance measurements, the prospects for retrieving the spatial distribution of bulk density from satellite and airborne sensors are imminent.
Metal-Insulator Transitions in Epitaxial LaVO(3) and LaTiO(3) Films
2012-08-01
epitaxial films of LaVO3 and LaTiO3 can exhibit metallicity though their bulk counterparts are Mott insulators. When LaTiO3 films are compressively...secondarily to interface electronic reconstruction at the LaTiO3 /SrTiO3 interface. However, when LaVO3 films are compressively strained on SrTiO3...ABSTRACT We have demonstrated that epitaxial films of LaVO3 and LaTiO3 can exhibit metallicity though their bulk counterparts are Mott insulators. When
33 CFR 401.69 - Hazardous cargo vessels.
Code of Federal Regulations, 2013 CFR
2013-07-01
... had a flashpoint below 61 °C; (b) A tanker carrying compressed liquefied gases, bulk acids or..., cuttings, or shavings in bulk having a temperature on loading or in transit in excess of 65.5 °C, and (9...
33 CFR 401.69 - Hazardous cargo vessels.
Code of Federal Regulations, 2012 CFR
2012-07-01
... had a flashpoint below 61 °C; (b) A tanker carrying compressed liquefied gases, bulk acids or..., cuttings, or shavings in bulk having a temperature on loading or in transit in excess of 65.5 °C, and (9...
33 CFR 401.69 - Hazardous cargo vessels.
Code of Federal Regulations, 2014 CFR
2014-07-01
... had a flashpoint below 61 °C; (b) A tanker carrying compressed liquefied gases, bulk acids or..., cuttings, or shavings in bulk having a temperature on loading or in transit in excess of 65.5 °C, and (9...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.15 Conditions under which the Coast Guard...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.15 Conditions under which the Coast Guard...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.15 Conditions under which the Coast Guard...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.15 Conditions under which the Coast Guard...
Chakraborty, Mousumi; Ridgway, Cathy; Bawuah, Prince; Markl, Daniel; Gane, Patrick A C; Ketolainen, Jarkko; Zeitler, J Axel; Peiponen, Kai-Erik
2017-06-15
The objective of this study is to propose a novel optical compressibility parameter for porous pharmaceutical tablets. This parameter is defined with the aid of the effective refractive index of a tablet that is obtained from non-destructive and contactless terahertz (THz) time-delay transmission measurement. The optical compressibility parameter of two training sets of pharmaceutical tablets with a priori known porosity and mass fraction of a drug was investigated. Both pharmaceutical sets were compressed with one of the most commonly used excipients, namely microcrystalline cellulose (MCC) and drug Indomethacin. The optical compressibility clearly correlates with the skeletal bulk modulus determined by mercury porosimetry and the recently proposed terahertz lumped structural parameter calculated from terahertz measurements. This lumped structural parameter can be used to analyse the pattern of arrangement of excipient and drug particles in porous pharmaceutical tablets. Therefore, we propose that the optical compressibility can serve as a quality parameter of a pharmaceutical tablet corresponding with the skeletal bulk modulus of the porous tablet, which is related to structural arrangement of the powder particles in the tablet. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari-Wahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my; Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar; Ginta, Turnad Lenggo
2014-10-24
Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics ismore » excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.« less
46 CFR 153.1102 - Handling and disposal of NLS residue: Categories A, B, C, and D.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... Clean Air Act (42 U.S.C. 7401 et seq) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1102 - Handling and disposal of NLS residue: Categories A, B, C, and D.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... Clean Air Act (42 U.S.C. 7401 et seq) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1102 - Handling and disposal of NLS residue: Cateqories A, B, C, and D.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... Clean Air Act (42 U.S.C. 7401 et seq) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1102 - Handling and disposal of NLS residue: Categories A, B, C, and D.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... Clean Air Act (42 U.S.C. 7401 et seq) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1102 - Handling and disposal of NLS residue: Cateqories A, B, C, and D.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... Clean Air Act (42 U.S.C. 7401 et seq) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1010 - Alkylene oxides.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... another containment system; (3) Alkylene oxide is discharged only by an intank cargo pump or inert gas...
46 CFR 153.1040 - Carbon disulfide.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... carbon disulfide unless: (1) The containment system has a gas free certificate issued under the standards...
46 CFR 153.1010 - Alkylene oxides.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... another containment system; (3) Alkylene oxide is discharged only by an intank cargo pump or inert gas...
46 CFR 153.1010 - Alkylene oxides.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... another containment system; (3) Alkylene oxide is discharged only by an intank cargo pump or inert gas...
46 CFR 153.1010 - Alkylene oxides.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... another containment system; (3) Alkylene oxide is discharged only by an intank cargo pump or inert gas...
Effect of water on nanomechanics of bone is different between tension and compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel, Jitin; Park, Jun-Sang; Almer, Jonathan
Water, an important constituent in bone, resides in different compartments in bone matrix and may impose significant effects on its bulk mechanical properties. However, a clear understanding of the mechanistic role of water in toughening bone is yet to emerge. To address this issue, this study used a progressive loading protocol, coupled with measurements of in situ mineral and collagen fibril deformations using synchrotron X-ray diffraction techniques. Using this unique approach, the contribution of water to the ultrastructural behavior of bone was examined by testing bone specimens in different loading modes (tension and compression) and hydration states (wet and dehydrated).more » The results indicated that the effect of water on the mechanical behavior of mineral and collagen phases at the ultrastructural level was loading mode dependent and correlated with the bulk behavior of bone. Tensile loading elicited a transitional drop followed by an increase in load bearing by the mineral phase at the ultrastructural level, which was correlated with a strain hardening behavior of bone at the bulk level. Compression loading caused a continuous loss of load bearing by the mineral phase, which was reflected at the bulk level as a strain softening behavior. In addition, viscous strain relaxation and pre-strain reduction were observed in the mineral phase in the presence of water. Taken together, the results of this study suggest that water dictates the bulk behavior of bone by altering the interaction between mineral crystals and their surrounding matrix.« less
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering
NASA Astrophysics Data System (ADS)
Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C.
2014-03-01
Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 °C to 200 °C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young's modulus of 1.32-2.97 MPa, ultimate tensile strength of 3.51-7.65 MPa, compressive modulus of 117.8-186.9 MPa and ultimate compressive strength of 28.4-51.7 GPa in a range up to 40% strain and hardness of 44-54 ShA.
Oil point and mechanical behaviour of oil palm kernels in linear compression
NASA Astrophysics Data System (ADS)
Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi
2017-07-01
The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.
The effect of artificial bulk viscosity in simulations of forced compressible turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, A.; Morgan, B.
The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less
The effect of artificial bulk viscosity in simulations of forced compressible turbulence
Campos, A.; Morgan, B.
2018-05-17
The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less
46 CFR 153.1114 - Conditions under which a prewash may be omitted: Categories A, B, and C.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS... Clean Air Act (42 U.S.C. 7401 et seq.) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1114 - Conditions under which a prewash may be omitted: Categories A, B, and C.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS... Clean Air Act (42 U.S.C. 7401 et seq.) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1114 - Conditions under which a prewash may be omitted: Categories A, B, and C.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS... Clean Air Act (42 U.S.C. 7401 et seq.) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1114 - Conditions under which a prewash may be omitted: Categories A, B, and C.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS... Clean Air Act (42 U.S.C. 7401 et seq.) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.1114 - Conditions under which a prewash may be omitted: Categories A, B, and C.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS... Clean Air Act (42 U.S.C. 7401 et seq.) allows states to regulate emissions from tank ventilation. There...
46 CFR 153.983 - Termination procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Termination procedures. 153.983 Section 153.983 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.1045 - Inorganic acids.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.7 Ships built before December 27, 1977 and...
46 CFR 153.1020 - Unusually toxic cargoes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Unusually toxic cargoes. 153.1020 Section 153.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
46 CFR 153.1045 - Inorganic acids.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures...
46 CFR 153.1045 - Inorganic acids.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Inorganic acids. 153.1045 Section 153.1045 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.7 Ships built before December 27, 1977 and...
46 CFR 153.975 - Preparation for cargo transfer.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer... facility is made before the cargo transfer piping is joined. (c) Any supplemental inert gas supply...
46 CFR 153.975 - Preparation for cargo transfer.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer... facility is made before the cargo transfer piping is joined. (c) Any supplemental inert gas supply...
46 CFR 153.1020 - Unusually toxic cargoes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Unusually toxic cargoes. 153.1020 Section 153.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.7 Ships built before December 27, 1977 and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.7 Ships built before December 27, 1977 and...
46 CFR 153.968 - Cargo transfer conference.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo transfer conference. 153.968 Section 153.968 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.1065 - Sodium chlorate solutions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Sodium chlorate solutions. 153.1065 Section 153.1065 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
46 CFR 153.1020 - Unusually toxic cargoes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Unusually toxic cargoes. 153.1020 Section 153.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
46 CFR 153.983 - Termination procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Termination procedures. 153.983 Section 153.983 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.968 - Cargo transfer conference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo transfer conference. 153.968 Section 153.968 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.983 - Termination procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Termination procedures. 153.983 Section 153.983 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.975 - Preparation for cargo transfer.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer... facility is made before the cargo transfer piping is joined. (c) Any supplemental inert gas supply...
46 CFR 153.975 - Preparation for cargo transfer.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer... facility is made before the cargo transfer piping is joined. (c) Any supplemental inert gas supply...
46 CFR 153.983 - Termination procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Termination procedures. 153.983 Section 153.983 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.1020 - Unusually toxic cargoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Unusually toxic cargoes. 153.1020 Section 153.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
46 CFR 153.1065 - Sodium chlorate solutions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Sodium chlorate solutions. 153.1065 Section 153.1065 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
46 CFR 153.968 - Cargo transfer conference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo transfer conference. 153.968 Section 153.968 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.1020 - Unusually toxic cargoes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Unusually toxic cargoes. 153.1020 Section 153.1020 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo...
46 CFR 153.968 - Cargo transfer conference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo transfer conference. 153.968 Section 153.968 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.983 - Termination procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Termination procedures. 153.983 Section 153.983 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael
2005-11-01
This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.
Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS₂.
Bhattacharyya, Swastibrata; Pandey, Tribhuwan; Singh, Abhishek K
2014-11-21
The sensitive dependence of the electronic and thermoelectric properties of MoS₂ on applied strain opens up a variety of applications in the emerging area of straintronics. Using first-principles-based density functional theory calculations, we show that the band gap of a few layers of MoS₂ can be tuned by applying normal compressive (NC) strain, biaxial compressive (BC) strain, and biaxial tensile (BT) strain. A reversible semiconductor-to-metal transition (S-M transition) is observed under all three types of strain. In the case of NC strain, the threshold strain at which the S-M transition occurs increases when the number of layers increase and becomes maximum for the bulk. On the other hand, the threshold strain for the S-M transition in both BC and BT strains decreases when the number of layers increase. The difference in the mechanisms for the S-M transition is explained for different types of applied strain. Furthermore, the effect of both strain type and the number of layers on the transport properties are also studied using Botzmann transport theory. We optimize the transport properties as a function of the number of layers and the applied strain. 3L- and 2L-MoS₂ emerge as the most efficient thermoelectric materials under NC and BT strain, respectively. The calculated thermopower is large and comparable to some of the best thermoelectric materials. A comparison among the feasibility of these three types of strain is also discussed.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2). Therefore, this work indicates that the dynamical classification of a meteoroid is a better indicator of the density than the strength proxy, a somewhat surprising result.
Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.
2015-01-01
Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...
46 CFR 153.1004 - Inhibited and stabilized cargoes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.970 - Cargo transfer piping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo transfer piping. 153.970 Section 153.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.1502 - Fixed ballast relocation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Fixed ballast relocation. 153.1502 Section 153.1502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR 153.964 - Discharge by gas pressurization.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Discharge by gas pressurization. 153.964 Section 153.964 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.972 - Connecting a cargo hose.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.970 - Cargo transfer piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo transfer piping. 153.970 Section 153.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.1502 - Fixed ballast relocation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Fixed ballast relocation. 153.1502 Section 153.1502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR 153.931 - Obstruction of pumproom ladderways.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Obstruction of pumproom ladderways. 153.931 Section 153.931 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.1502 - Fixed ballast relocation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Fixed ballast relocation. 153.1502 Section 153.1502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR 153.972 - Connecting a cargo hose.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.1025 - Motor fuel antiknock compounds.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Motor fuel antiknock compounds. 153.1025 Section 153.1025 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.1046 - Sulfuric acid.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153...
46 CFR 153.972 - Connecting a cargo hose.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.931 - Obstruction of pumproom ladderways.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Obstruction of pumproom ladderways. 153.931 Section 153.931 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.1004 - Inhibited and stabilized cargoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.953 - Signals during cargo transfer.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Signals during cargo transfer. 153.953 Section 153.953 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.1004 - Inhibited and stabilized cargoes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.931 - Obstruction of pumproom ladderways.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Obstruction of pumproom ladderways. 153.931 Section 153.931 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.972 - Connecting a cargo hose.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.964 - Discharge by gas pressurization.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Discharge by gas pressurization. 153.964 Section 153.964 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.931 - Obstruction of pumproom ladderways.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Obstruction of pumproom ladderways. 153.931 Section 153.931 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.1004 - Inhibited and stabilized cargoes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.1502 - Fixed ballast relocation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Fixed ballast relocation. 153.1502 Section 153.1502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR 153.964 - Discharge by gas pressurization.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Discharge by gas pressurization. 153.964 Section 153.964 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.970 - Cargo transfer piping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo transfer piping. 153.970 Section 153.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.931 - Obstruction of pumproom ladderways.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Obstruction of pumproom ladderways. 153.931 Section 153.931 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.1046 - Sulfuric acid.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153...
46 CFR 153.1025 - Motor fuel antiknock compounds.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Motor fuel antiknock compounds. 153.1025 Section 153.1025 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.964 - Discharge by gas pressurization.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Discharge by gas pressurization. 153.964 Section 153.964 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.970 - Cargo transfer piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo transfer piping. 153.970 Section 153.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.1004 - Inhibited and stabilized cargoes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Inhibited and stabilized cargoes. 153.1004 Section 153.1004 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.1046 - Sulfuric acid.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153...
46 CFR 153.1502 - Fixed ballast relocation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Fixed ballast relocation. 153.1502 Section 153.1502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR 153.970 - Cargo transfer piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo transfer piping. 153.970 Section 153.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures...
46 CFR 153.972 - Connecting a cargo hose.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Connecting a cargo hose. 153.972 Section 153.972 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.964 - Discharge by gas pressurization.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Discharge by gas pressurization. 153.964 Section 153.964 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
Passive margins getting squeezed in the mantle convection vice
NASA Astrophysics Data System (ADS)
Husson, Laurent; Yamato, Philippe; Becker, Thorsten; Pedoja, Kevin
2013-04-01
Quaternary coastal geomorphology reveals that passive margins underwent wholesale uplift at least during the glacial cycle. In addition, these not-so-passive margins often exhibit long term exhumation and tectonic inversion, which suggest that compression and tectonic shortening could be the mechanism that triggers their overall uplift. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. The many mountain belts at active margins that accompany this event readily witness this increase. Less clear is how that compression increase affects passive margins. In order to address this issue, we design minimalist 2D viscous models to quantify the impact of plate collision on the stress regime. In these models, a sluggish plate is disposed on a less viscous mantle. It is driven by a "mantle conveyor belt" alternatively excited by lateral shear stresses that represent a downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, respectively representing the cases of free convergence and collision. In practice, it dramatically changes the upper boundary condition for mantle circulation and subsequently, for the stress field. The flow pattern transiently evolves almost between two end-members, starting from a situation close to a Couette flow to a pattern that looks like a Poiseuille flow with an almost null velocity at the surface (though in the models, the horizontal velocity at the surface is not strictly null, as the lithosphere deforms). In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins if upwellings are active because they push plates towards the collision. Conversely, if only downwellings are activated, compression occurs on one half of the plate and extension on the other half, because only the downwelling is pulling the plate. Thus, active upwellings underneath oceanic plates are required to explain compression at passive margins. This conclusion is corroborated by "real-Earth" 3D spherical models, wherein the flow is alternatively driven by density anomalies inferred from seismic tomography -and therefore include both downwellings at subduction zones and upwellings above the superswells- and density anomalies that correspond to subducting slabs only. While the second scenario mostly compresses the active margins of upper plates and leave other areas at rest, the first scenario efficiently compresses passive margins where the geological record reveals their uplift, exhumation, and tectonic inversion.
Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V
2014-12-07
From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure effects rather than the volume ones.
Soil Bulk Density by Soil Type, Land Use and Data Source: Putting the Error in SOC Estimates
NASA Astrophysics Data System (ADS)
Wills, S. A.; Rossi, A.; Loecke, T.; Ramcharan, A. M.; Roecker, S.; Mishra, U.; Waltman, S.; Nave, L. E.; Williams, C. O.; Beaudette, D.; Libohova, Z.; Vasilas, L.
2017-12-01
An important part of SOC stock and pool assessment is the assessment, estimation, and application of bulk density estimates. The concept of bulk density is relatively simple (the mass of soil in a given volume), the specifics Bulk density can be difficult to measure in soils due to logistical and methodological constraints. While many estimates of SOC pools use legacy data in their estimates, few concerted efforts have been made to assess the process used to convert laboratory carbon concentration measurements and bulk density collection into volumetrically based SOC estimates. The methodologies used are particularly sensitive in wetlands and organic soils with high amounts of carbon and very low bulk densities. We will present an analysis across four database measurements: NCSS - the National Cooperative Soil Survey Characterization dataset, RaCA - the Rapid Carbon Assessment sample dataset, NWCA - the National Wetland Condition Assessment, and ISCN - the International soil Carbon Network. The relationship between bulk density and soil organic carbon will be evaluated by dataset and land use/land cover information. Prediction methods (both regression and machine learning) will be compared and contrasted across datasets and available input information. The assessment and application of bulk density, including modeling, aggregation and error propagation will be evaluated. Finally, recommendations will be made about both the use of new data in soil survey products (such as SSURGO) and the use of that information as legacy data in SOC pool estimates.
Hrnjez, Bruce J; Sultan, Samuel T; Natanov, Georgiy R; Kastner, David B; Rosman, Michael R
2005-11-17
We introduce a method that addresses the elusive local density at the solute in the highly compressible regime of a supercritical fluid. Experimentally, the red shift of the pyrazine n-pi electronic transition was measured at infinite dilution in supercritical ethane as a function of pressure from 0 to about 3000 psia at two temperatures, one close (35.0 degrees C) to the critical temperature and the other remote (55.0 degrees C). Computationally, stationary points were located on the potential surfaces for pyrazine and one, two, three, and four ethanes at the MP2/6-311++G(d,p) level. The vertical n-pi ((1)B(3u)) transition energies were computed for each of these geometries with a TDDFT/B3LYP/6-311++G(d,p) method. The combination of experiment and computation allows prediction of supercritical ethane bulk densities at which the pyrazine primary solvation shell contains an average of one, two, three, and four ethane molecules. These density predictions were achieved by graphical superposition of calculated shifts on the experimental shift versus density curves for 35.0 and 55.0 degrees C. Predicted densities are 0.0635, 0.0875, and 0.0915 g cm(-3) for average pyrazine primary solvation shell occupancy by one, two, and three ethanes at both 35.0 and 55.0 degrees C. Predicted densities are 0.129 and 0.150 g cm(-3) for occupancy by four ethanes at 35.0 and 55.0 degrees C, respectively. An alternative approach, designed to "average out" geometry specific shifts, is based on the relationship Deltanu = -23.9n cm(-1), where n = ethane number. Graphical treatment gives alternative predicted densities of 0.0490, 0.0844, and 0.120 g cm(-3) for average pyrazine primary solvation shell occupancy by one, two, and three ethanes at both 35.0 and 55.0 degrees C, and densities of 0.148 and 0.174 g cm(-3) for occupancy by four ethanes at 35.0 and 55.0 degrees C, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.
Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less
High-pressure polymorphism of Pb F 2 to 75 GPa
Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; ...
2016-07-06
Lead fluoride, PbF 2, was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c. Theoretical calculations of valence electron densities at 22 GPa showed that α-PbFmore » 2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite Co 2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a/c and (a+c)/b, which are used to distinguish among cotunnite-, Co 2Si-, and Ni 2In-type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K 0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V 0, of 182(2)Å 3, and K 0=81(4)GPa for the Co 2Si-type phase when fixing the pressure derivative of the bulk modulus, K 0'=4. Upon heating above 1200 K at pressures at or above 25.9 GPa, PbF 2 partially transformed to the hexagonal Ni 2In-type phase but wholly or partially reverted back to Co 2Si-type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the Ni 2In-type PbF 2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of PbF 2 is distinct from that of the alkaline earth fluorides with similar ionic radii. These results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.« less
High-pressure polymorphism of Pb F2 to 75 GPa
NASA Astrophysics Data System (ADS)
Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; Prakapenka, Vitali; Duffy, Thomas S.
2016-07-01
Lead fluoride, Pb F2 , was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c . Theoretical calculations of valence electron densities at 22 GPa showed that α -Pb F2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite C o2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a /c and (a +c )/b , which are used to distinguish among cotunnite-, C o2Si -, and N i2In -type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V0, of 182 (2 ) Å3 , and K0=81 (4 ) GPa for the C o2Si -type phase when fixing the pressure derivative of the bulk modulus, K0 '=4 . Upon heating above 1200 K at pressures at or above 25.9 GPa, Pb F2 partially transformed to the hexagonal N i2In -type phase but wholly or partially reverted back to C o2Si -type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the N i2In -type Pb F2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of Pb F2 is distinct from that of the alkaline earth fluorides with similar ionic radii. Our results also have relevance to understanding the behavior of lanthanide and actinide dioxides, which have been predicted theoretically to exhibit similar isosymmetric transitions at Mbar pressures.
Valence and spin states of iron are invisible in Earth’s lower mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiachao; Dorfman, Susannah M.; Zhu, Feng
Heterogeneity in Earth’s mantle is a record of chemical and dynamic processes over Earth’s history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg 0.46Fe 3+0.53)(Si 0.49Fe 3+ 0.51)O 3 Bdg that Fe 3+ in the octahedral site undergoes a spin transition betweenmore » 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.« less
Density of jadeite melts under high pressure and high temperature conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
SAKAMAKI, Tatsuya
2017-01-01
The density of the jadeite (NaAlSi2O6) melt has been measured up to 6.5 GPa and 2273 K using the X–ray absorption technique at beamline 13–BM–D of the Advanced Photon Source. A fit of the pressure–density–temperature data to the high temperature Birch–Murnaghan equation of state yielded the following thermoelastic parameters: density, ρ0 = 2.36 g/cm3, isothermal bulk modulus, KT0 = 21.5 ± 0.8 GPa, its pressure derivative, K0' = 8.9 ± 1.2, and the temperature derivative (∂KT/∂T)P = -0.0021 ± 0.0011 GPa/K at a reference temperature T0 = 1473 K. The densification of jadeite melt at low pressures is primarily dominatedmore » by topological changes in the structure, including a decrease in T–O–T angle and breaking and reforming of the T–O bond (T = Si4+, Al3+). Compressibilities of jadeite, albite, diopside, phonolite and peridotite melts display a systematic trend: the K0–K0' plot of these silicate melts exhibits an inverse linear relation.« less
NASA Astrophysics Data System (ADS)
Li, Mei; Jia, Huiling; Li, Xueyan; Liu, Xuejie
2016-01-01
The elastic constants (Cij), bulk modulus (B), shear modulus (G) and elastic modulus (E) of cubic fluorite CeO2 under high pressure have been studied using the plane-wave pseudopotential method based on density functional theory. The calculated results show that the mechanical properties (Cij, B, G and E) of CeO2 increase with increasing pressure, and the phase transition of CeO2 occurs beyond the pressure of 130 GPa. From the calculated phonon spectrum using Parlinsk-Li-Kawasoe method, we found that CeO2 appears imaginary frequency at 140 GPa, which indicates phase transition. The energy band, density of states and charge density of CeO2 under high pressure are calculated using GGA+U method. It is found that the high pressure makes the electron delocalization and Ce-O covalent bonding enhanced. As pressure increases, the band gap between O2p and Ce4f states near the Fermi level increases, and CeO2 nonmetallic nature promotes. The present research results in a better understanding of how CeO2 responds to compression.
Valence and spin states of iron are invisible in Earth’s lower mantle
Liu, Jiachao; Dorfman, Susannah M.; Zhu, Feng; ...
2018-03-29
Heterogeneity in Earth’s mantle is a record of chemical and dynamic processes over Earth’s history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg 0.46Fe 3+0.53)(Si 0.49Fe 3+ 0.51)O 3 Bdg that Fe 3+ in the octahedral site undergoes a spin transition betweenmore » 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.« less
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang
2017-11-30
Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.
NASA Astrophysics Data System (ADS)
Liu, Xi; Fleet, Michael E.; Shieh, Sean R.; He, Qiang
2011-05-01
Lead bromapatite [Pb10(PO4)6Br2] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO4 tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from that of lead fluorapatite. The pressure-volume data of lead bromapatite ( P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus ( K T ) of 49.8(16) GPa and first pressure derivative ( KT^' } ) of 10.1(10). If KT^' } is fixed at 4, the derived K T is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about two times the relative difference of the bulk moduli (~5%) of the calcium apatites fluorapatite [Ca10(PO4)6F2], chlorapatite [Ca10(PO4)6Cl2] and hydroxylapatite [Ca10(PO4)6(OH)2]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite.
Synthesis and viscoelastic characterization of microstructurally aligned Silk fibroin sponges.
Panda, Debojyoti; Konar, Subhajit; Bajpai, Saumendra K; Arockiarajan, A
2017-07-01
Silk fibroin (SF) is a model candidate for use in tissue engineering and regenerative medicine owing to its bio-compatible mechanochemical properties. Despite numerous advances made in the fabrication of various biomimetic substrates using SF, relatively few clinical applications have been designed, primarily due to the lack of complete understanding of its constitutive properties. Here we fabricate microstructurally aligned SF sponge using the unidirectional freezing technique wherein a novel solvent-processing technique involving Acetic acid is employed, which obviates the post-treatment of the sponges to induce their water-stability. Subsequently, we quantify the anisotropic, viscoelastic response of the bulk SF sponge samples by performing a series of mechanical tests under uniaxial compression over a wide range of strain rates. Results for these uniaxial compression tests in the finite strain regime through ramp strain and ramp-relaxation loading histories applied over two orders of strain rate magnitude show that microstructural anisotropy is directly manifested in the bulk viscoelastic solid-like response. Furthermore, the experiments reveal a high degree of volume compressibility of the sponges during deformation, and also evince for their remarkable strain recovery capacity under large compressive strains during strain recovery tests. Finally, in order to predict the bulk viscoelastic material properties of the fabricated and pre-characterized SF sponges, a finite strain kinematics-based, nonlinear, continuum model developed within a thermodynamically-consistent framework in a parallel investigation, was successfully employed to capture the viscoelastic solid-like, transversely isotropic, and compressible response of the sponges macroscopically. Copyright © 2017 Elsevier Ltd. All rights reserved.
46 CFR 153.336 - Special cargo pump or pumproom requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 153.336 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... low pressure breathing quality air supply system for use with the breathing apparatus in the pumproom...
46 CFR 153.336 - Special cargo pump or pumproom requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 153.336 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... low pressure breathing quality air supply system for use with the breathing apparatus in the pumproom...
46 CFR 153.336 - Special cargo pump or pumproom requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 153.336 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... low pressure breathing quality air supply system for use with the breathing apparatus in the pumproom...
46 CFR 153.336 - Special cargo pump or pumproom requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 153.336 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... low pressure breathing quality air supply system for use with the breathing apparatus in the pumproom...
46 CFR 153.1500 - Venting system rupture disks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Venting system rupture disks. 153.1500 Section 153.1500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR Appendix I to Part 153 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...
46 CFR 153.30 - Special area endorsement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Special area endorsement. 153.30 Section 153.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.30 Special area...
46 CFR 153.4 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Incorporation by reference. 153.4 Section 153.4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.4 Incorporation by...
46 CFR 153.30 - Special area endorsement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Special area endorsement. 153.30 Section 153.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.30 Special area...
46 CFR 153.980 - Isolation of automatic closing valves.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Isolation of automatic closing valves. 153.980 Section 153.980 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.980 - Isolation of automatic closing valves.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Isolation of automatic closing valves. 153.980 Section 153.980 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.1003 - Prohibited carriage in deck tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Prohibited carriage in deck tanks. 153.1003 Section 153.1003 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.1500 - Venting system rupture disks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Venting system rupture disks. 153.1500 Section 153.1500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR 153.979 - Gauging with a sounding tube.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Gauging with a sounding tube. 153.979 Section 153.979 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.1500 - Venting system rupture disks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Venting system rupture disks. 153.1500 Section 153.1500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR Appendix I to Part 153 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...
46 CFR 153.979 - Gauging with a sounding tube.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Gauging with a sounding tube. 153.979 Section 153.979 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.979 - Gauging with a sounding tube.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Gauging with a sounding tube. 153.979 Section 153.979 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.30 - Special area endorsement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Special area endorsement. 153.30 Section 153.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.30 Special area...
46 CFR 153.4 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Incorporation by reference. 153.4 Section 153.4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.4 Incorporation by...
46 CFR 153.1003 - Prohibited carriage in deck tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Prohibited carriage in deck tanks. 153.1003 Section 153.1003 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.1500 - Venting system rupture disks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Venting system rupture disks. 153.1500 Section 153.1500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR 153.4 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Incorporation by reference. 153.4 Section 153.4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.4 Incorporation by...
46 CFR 153.30 - Special area endorsement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Special area endorsement. 153.30 Section 153.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.30 Special area...
46 CFR 153.1003 - Prohibited carriage in deck tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Prohibited carriage in deck tanks. 153.1003 Section 153.1003 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR Appendix I to Part 153 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...
46 CFR Appendix I to Part 153 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...
46 CFR 153.979 - Gauging with a sounding tube.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Gauging with a sounding tube. 153.979 Section 153.979 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.979 - Gauging with a sounding tube.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Gauging with a sounding tube. 153.979 Section 153.979 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer...
46 CFR 153.980 - Isolation of automatic closing valves.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Isolation of automatic closing valves. 153.980 Section 153.980 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.980 - Isolation of automatic closing valves.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Isolation of automatic closing valves. 153.980 Section 153.980 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.4 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Incorporation by reference. 153.4 Section 153.4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.4 Incorporation by...
46 CFR Appendix I to Part 153 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false [Reserved] I Appendix I to Part 153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Appendix I to Part 153 [Reserved] ...
46 CFR 153.1003 - Prohibited carriage in deck tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Prohibited carriage in deck tanks. 153.1003 Section 153.1003 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
46 CFR 153.980 - Isolation of automatic closing valves.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Isolation of automatic closing valves. 153.980 Section 153.980 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.4 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Incorporation by reference. 153.4 Section 153.4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.4 Incorporation by...
46 CFR 153.1500 - Venting system rupture disks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Venting system rupture disks. 153.1500 Section 153.1500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153...
46 CFR 153.1003 - Prohibited carriage in deck tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Prohibited carriage in deck tanks. 153.1003 Section 153.1003 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special...
Cordell, Jacqueline M; Vogl, Michelle L; Wagoner Johnson, Amy J
2009-10-01
While recognized as a promising bone substitute material, hydroxyapatite (HA) has had limited use in clinical settings because of its inherent brittle behavior. It is well established that macropores ( approximately 100 microm) in a HA implant, or scaffold, are required for bone ingrowth, but recent research has shown that ingrowth is enhanced when scaffolds also contain microporosity. HA is sensitive to synthesis and processing parameters and therefore characterization for specific applications is necessary for transition to the clinic. To that end, the mechanical behavior of bulk microporous HA and HA scaffolds with multi-scale porosity (macropores between rods in the range of 250-350 microm and micropores within the rods with average size of either 5.96 microm or 16.2 microm) was investigated in order to determine how strength and reliability were affected by micropore size (5.96 microm versus 16.2 microm). For the bulk microporous HA, strength increased with decreasing micropore size in both bending (19 MPa to 22 MPa) and compression (71 MPa to 110 MPa). To determine strength reliability, the Weibull moduli for the bulk microporous HA were determined. The Weibull moduli for bending increased (became more reliable) with decreasing pore size (7 to 10) while the Weibull moduli for compression decreased (became less reliable) with decreasing pore size (9 to 6). Furthermore, the elastic properties of the bulk microporous HA (elastic modulus of 30 GPa) and the compressive strengths of the HA scaffolds with multi-scale porosity (8 MPa) did not vary with pore size. The mechanisms responsible for the trends observed were discussed.
Temporal soil bulk density following tillage
USDA-ARS?s Scientific Manuscript database
Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
Ricci, A; Jullien, A; Forget, N; Crozatier, V; Tournois, P; Lopez-Martens, R
2012-04-01
We demonstrate compression of amplified carrier-envelope phase (CEP)-stable laser pulses using paired transmission gratings and high-index prisms, or grisms, with chromatic dispersion matching that of a bulk material pulse stretcher. Grisms enable the use of larger bulk stretching factors and thereby higher energy pulses with lower B-integral in a compact amplifier design suitable for long-term CEP control.
Equilibrium properties of simple metal thin films in the self-compressed stabilized jellium model.
Mahmoodi, T; Payami, M
2009-07-01
In this work, we have applied the self-compressed stabilized jellium model to predict the equilibrium properties of isolated thin Al, Na and Cs slabs. To make a direct correspondence to atomic slabs, we have considered only those L values that correspond to n-layered atomic slabs with 2≤n≤20, for surface indices (100), (110), and (111). The calculations are based on the density functional theory and self-consistent solution of the Kohn-Sham equations in the local density approximation. Our results show that firstly, the quantum size effects are significant for slabs with sizes smaller than or near to the Fermi wavelength of the valence electrons λ(F), and secondly, some slabs expand while others contract with respect to the bulk spacings. Based on the results, we propose a criterion for realization of significant quantum size effects that lead to expansion of some thin slabs. For more justification of the criterion, we have tested it on Li slabs for 2≤n≤6. We have compared our Al results with those obtained from using all-electron or pseudo-potential first-principles calculations. This comparison shows excellent agreements for Al(100) work functions, and qualitatively good agreements for the other work functions and surface energies. These agreements justify the way we have used the self-compressed stabilized jellium model for the correct description of the properties of simple metal slab systems. On the other hand, our results for the work functions and surface energies of large- n slabs are in good agreement with those obtained from applying the stabilized jellium model for semi-infinite systems. In addition, we have performed the slab calculations in the presence of surface corrugation for selected Al slabs and have shown that the results are worsened.
A High Strain-Rate Investigation of a Zr-Based Bulk Metallic Glass and an HTPB Polymer Composite
2011-03-01
95 8. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791-796. 9...Letters 45, 615-616. 59. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste
Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less
Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste; ...
2017-09-27
Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less
High-linearity piezoresistive response of mechanically strong graphene-based elastomer
NASA Astrophysics Data System (ADS)
Yuanzheng, Luo; Buyin, Li; Xiaoqi
2017-05-01
Traditional additive-free graphene bulk materials based on mono- three dimensional(3D) graphene networks type are fragile in most cases, which is unfavorable for their potential applications. Here we present compressible graphene foams (CGF) with superior properties endowed by the hierarchical porous structure, which taking graphene sheets as an inorganic embedding material and polyurethane sponge (PUS) as a polymer open-framework. The preparation process utilized a dip-coating method associated with directional freezing followed by lyophilization. The as-synthesized CGF not only possess a combination of ultralow density and excellent electrical conductivity, but it also can withstand large strains (>99%) without permanent deformation or fracture. We believe that these sponge/graphene embeddable multifunctional nanocomposites will expand practical applications of graphene monolith in the future.
The use of shale ash in dry mix construction materials
NASA Astrophysics Data System (ADS)
Gulbe, L.; Setina, J.; Juhnevica, I.
2017-10-01
The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.
2013-01-01
Background A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed). Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity. Results In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques. Conclusion The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum. PMID:23289739
Valorization of lignite combustion residues and ferroalumina in the production of aggregates.
Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C
2010-02-15
The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength.
Thermal Equation of State of Iron: Constraint on the Density Deficit of Earth's Core
NASA Astrophysics Data System (ADS)
Fei, Y.; Murphy, C. A.; Shibazaki, Y.; Huang, H.
2013-12-01
The seismically inferred densities of Earth's solid inner core and the liquid outer core are smaller than the measured densities of solid hcp-iron and liquid iron, respectively. The inner core density deficit is significantly smaller than the outer core density deficit, implying different amounts and/or identities of light-elements incorporated in the inner and outer cores. Accurate measurements of the thermal equation-of-state of iron over a wide pressure and temperature range are required to precisely quantify the core density deficits, which are essential for developing a quantitative composition model for the core. The challenge has been evaluating the experimental uncertainties related to the choice of pressure scales and the sample environment, such as hydrostaticity at multi-megabar pressures and extreme temperatures. We have conducted high-pressure experiments on iron in MgO, NaCl, and Ne pressure media and obtained in-situ X-ray diffraction data up to 200 GPa at room temperature. Using inter-calibrated pressure scales including the MgO, NaCl, Ne, and Pt scales, we have produced a consistent compression curve of hcp-Fe at room temperature. We have also performed laser-heated diamond-anvil cell experiments on both Fe and Pt in a Ne pressure medium. The experiment was designed to quantitatively compare the thermal expansion of Fe and Pt in the same sample environment using Ne as the pressure medium. The thermal expansion data of hcp-Fe at high pressure were derived based on the thermal equation of state of Pt. Using the 300-K isothermal compression curve of iron derived from our static experiments as a constraint, we have developed a thermal equation of state of hcp-Fe that is consistent with the static P-V-T data of iron and also reproduces the shock wave Hugoniot data for pure iron. The thermodynamic model, based on both static and dynamic data, is further used to calculate the density and bulk sound velocity of liquid iron. Our results define the solid inner core and liquid outer core density deficits, which can serve as the basis for any core composition models.
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound
Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph
2012-01-01
Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803
Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound
NASA Astrophysics Data System (ADS)
Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph
2013-11-01
Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.
High velocity collisions of nanoparticles
NASA Astrophysics Data System (ADS)
Johnson, Donald F.; Mattson, William D.
2017-01-01
Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.
Fabrication and Characterization of Porous MgAl₂O₄ Ceramics via a Novel Aqueous Gel-Casting Process.
Yuan, Lei; Liu, Zongquan; Liu, Zhenli; He, Xiao; Ma, Beiyue; Zhu, Qiang; Yu, Jingkun
2017-11-30
A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl₂O₄ ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl₂O₄ ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl₂O₄ ceramics had a high apparent porosity (52.5-65.8%), a small average pore size structure (around 1-3 μm) and a relatively high compressive strength (12-28 MPa). The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al₂O₃-based porous ceramics.
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se; Wikfeldt, K. Thor
We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collectivemore » character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.« less
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.
Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
NASA Astrophysics Data System (ADS)
Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders; Pettersson, Lars G. M.
2016-08-01
We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ˜13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ˜20 K.
The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water
Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; ...
2016-08-25
Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... force the liquid out of the tank, compressed air, or other nonreactive gas, may be used to secure the desired rate of discharge, provided the air or gas is oil-free and thoroughly dried by passing it over... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK...
Code of Federal Regulations, 2012 CFR
2012-10-01
... force the liquid out of the tank, compressed air, or other nonreactive gas, may be used to secure the desired rate of discharge, provided the air or gas is oil-free and thoroughly dried by passing it over... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK...
Code of Federal Regulations, 2013 CFR
2013-10-01
... force the liquid out of the tank, compressed air, or other nonreactive gas, may be used to secure the desired rate of discharge, provided the air or gas is oil-free and thoroughly dried by passing it over... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK...
46 CFR 153.1504 - Inspection of personnel emergency and safety equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Inspection of personnel emergency and safety equipment... BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Maintenance § 153.1504 Inspection of personnel emergency and safety equipment. The master shall...
46 CFR 153.3 - Right of appeal.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Right of appeal. 153.3 Section 153.3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.3 Right of appeal. Any person...
46 CFR 153.1040 - Carbon disulfide.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1040 Carbon disulfide. (a) No person may...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.1602 - Test procedure for determining the strippinq quantity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... piping system on the ship's side of the cargo transfer manifold valve into containers, and add this water... BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... ship shall proceed as follows: (1) Make arrangements with the Officer in Charge, Marine Inspection, for...
46 CFR 153.1602 - Test procedure for determining the strippinq quantity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... piping system on the ship's side of the cargo transfer manifold valve into containers, and add this water... BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... ship shall proceed as follows: (1) Make arrangements with the Officer in Charge, Marine Inspection, for...
46 CFR 153.1602 - Test procedure for determining the stripping quantity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... piping system on the ship's side of the cargo transfer manifold valve into containers, and add this water... BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... ship shall proceed as follows: (1) Make arrangements with the Officer in Charge, Marine Inspection, for...
46 CFR 153.1602 - Test procedure for determining the strippinq quantity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... piping system on the ship's side of the cargo transfer manifold valve into containers, and add this water... BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... ship shall proceed as follows: (1) Make arrangements with the Officer in Charge, Marine Inspection, for...
46 CFR 153.1602 - Test procedure for determining the strippinq quantity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... piping system on the ship's side of the cargo transfer manifold valve into containers, and add this water... BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... ship shall proceed as follows: (1) Make arrangements with the Officer in Charge, Marine Inspection, for...
46 CFR 153.1052 - Carriage of other cargoes in acid tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Carriage of other cargoes in acid tanks. 153.1052 Section 153.1052 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations...
46 CFR 153.10 - Procedures for requesting alternatives and waivers; termination of waivers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Procedures for requesting alternatives and waivers; termination of waivers. 153.10 Section 153.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
46 CFR 153.976 - Transfer of packaged cargo or ship's stores.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Transfer of packaged cargo or ship's stores. 153.976 Section 153.976 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.1504 - Inspection of personnel emergency and safety equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Inspection of personnel emergency and safety equipment. 153.1504 Section 153.1504 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.3 - Right of appeal.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Right of appeal. 153.3 Section 153.3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.3 Right of appeal. Any person...
46 CFR 153.10 - Procedures for requesting alternatives and waivers; termination of waivers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Procedures for requesting alternatives and waivers; termination of waivers. 153.10 Section 153.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
46 CFR 153.1504 - Inspection of personnel emergency and safety equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Inspection of personnel emergency and safety equipment. 153.1504 Section 153.1504 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.959 - Approval to begin transfer operations required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Approval to begin transfer operations required. 153.959 Section 153.959 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.959 - Approval to begin transfer operations required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Approval to begin transfer operations required. 153.959 Section 153.959 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.16 - Requirements for foreign flag vessel permits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Requirements for foreign flag vessel permits. 153.16 Section 153.16 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.16...
46 CFR 153.8 - Procedures for requesting an endorsed Certificate of Inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Procedures for requesting an endorsed Certificate of Inspection. 153.8 Section 153.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.10 - Procedures for requesting alternatives and waivers; termination of waivers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Procedures for requesting alternatives and waivers; termination of waivers. 153.10 Section 153.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
46 CFR 153.1000 - Special operating requirements for cargoes reactive with water.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Special operating requirements for cargoes reactive with water. 153.1000 Section 153.1000 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
46 CFR 153.16 - Requirements for foreign flag vessel permits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Requirements for foreign flag vessel permits. 153.16 Section 153.16 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.16...
46 CFR 153.40 - Determination of materials that are hazardous.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...
46 CFR 153.976 - Transfer of packaged cargo or ship's stores.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Transfer of packaged cargo or ship's stores. 153.976 Section 153.976 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.976 - Transfer of packaged cargo or ship's stores.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Transfer of packaged cargo or ship's stores. 153.976 Section 153.976 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.3 - Right of appeal.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Right of appeal. 153.3 Section 153.3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.3 Right of appeal. Any person...
46 CFR 153.1052 - Carriage of other cargoes in acid tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Carriage of other cargoes in acid tanks. 153.1052 Section 153.1052 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.981 - Leaving room in tank for cargo expansion.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Leaving room in tank for cargo expansion. 153.981 Section 153.981 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.40 - Determination of materials that are hazardous.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...
46 CFR 153.981 - Leaving room in tank for cargo expansion.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Leaving room in tank for cargo expansion. 153.981 Section 153.981 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.3 - Right of appeal.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Right of appeal. 153.3 Section 153.3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.3 Right of appeal. Any person...
46 CFR 153.976 - Transfer of packaged cargo or ship's stores.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Transfer of packaged cargo or ship's stores. 153.976 Section 153.976 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.1504 - Inspection of personnel emergency and safety equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Inspection of personnel emergency and safety equipment. 153.1504 Section 153.1504 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.959 - Approval to begin transfer operations required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Approval to begin transfer operations required. 153.959 Section 153.959 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.8 - Procedures for requesting an endorsed Certificate of Inspection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Procedures for requesting an endorsed Certificate of Inspection. 153.8 Section 153.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.40 - Determination of materials that are hazardous.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.8 - Procedures for requesting an endorsed Certificate of Inspection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Procedures for requesting an endorsed Certificate of Inspection. 153.8 Section 153.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.8 - Procedures for requesting an endorsed Certificate of Inspection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Procedures for requesting an endorsed Certificate of Inspection. 153.8 Section 153.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.981 - Leaving room in tank for cargo expansion.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Leaving room in tank for cargo expansion. 153.981 Section 153.981 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.1052 - Carriage of other cargoes in acid tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Carriage of other cargoes in acid tanks. 153.1052 Section 153.1052 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations...
46 CFR 153.981 - Leaving room in tank for cargo expansion.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Leaving room in tank for cargo expansion. 153.981 Section 153.981 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.1000 - Special operating requirements for cargoes reactive with water.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Special operating requirements for cargoes reactive with water. 153.1000 Section 153.1000 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
46 CFR 153.981 - Leaving room in tank for cargo expansion.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Leaving room in tank for cargo expansion. 153.981 Section 153.981 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.1052 - Carriage of other cargoes in acid tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Carriage of other cargoes in acid tanks. 153.1052 Section 153.1052 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations...
46 CFR 153.959 - Approval to begin transfer operations required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Approval to begin transfer operations required. 153.959 Section 153.959 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.40 - Determination of materials that are hazardous.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.40 - Determination of materials that are hazardous.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...
46 CFR 153.16 - Requirements for foreign flag vessel permits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Requirements for foreign flag vessel permits. 153.16 Section 153.16 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.16...
46 CFR 153.16 - Requirements for foreign flag vessel permits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Requirements for foreign flag vessel permits. 153.16 Section 153.16 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.16...
46 CFR 153.10 - Procedures for requesting alternatives and waivers; termination of waivers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Procedures for requesting alternatives and waivers; termination of waivers. 153.10 Section 153.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
46 CFR 153.10 - Procedures for requesting alternatives and waivers; termination of waivers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Procedures for requesting alternatives and waivers; termination of waivers. 153.10 Section 153.10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
46 CFR 153.3 - Right of appeal.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Right of appeal. 153.3 Section 153.3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.3 Right of appeal. Any person...
46 CFR 153.959 - Approval to begin transfer operations required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Approval to begin transfer operations required. 153.959 Section 153.959 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo...
46 CFR 153.1504 - Inspection of personnel emergency and safety equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Inspection of personnel emergency and safety equipment. 153.1504 Section 153.1504 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.1052 - Carriage of other cargoes in acid tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Carriage of other cargoes in acid tanks. 153.1052 Section 153.1052 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations...
46 CFR 153.1000 - Special operating requirements for cargoes reactive with water.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Special operating requirements for cargoes reactive with water. 153.1000 Section 153.1000 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS...
46 CFR 153.16 - Requirements for foreign flag vessel permits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Requirements for foreign flag vessel permits. 153.16 Section 153.16 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.16...
Compression of a mixed antiproton and electron non-neutral plasma to high densities
NASA Astrophysics Data System (ADS)
Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano
2018-04-01
We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.
Knudson, M D; Hanson, D L; Bailey, J E; Hall, C A; Asay, J R
2003-01-24
A novel approach was developed to probe density compression of liquid deuterium (L-D2) along the principal Hugoniot. Relative transit times of shock waves reverberating within the sample are shown to be sensitive to the compression due to the first shock. This technique has proven to be more sensitive than the conventional method of inferring density from the shock and mass velocity, at least in this high-pressure regime. Results in the range of 22-75 GPa indicate an approximately fourfold density compression, and provide data to differentiate between proposed theories for hydrogen and its isotopes.
Importance of uniaxial compression for the appearance of superconductivity in NdO1-xFxBiS2
NASA Astrophysics Data System (ADS)
A, Omachi; T, Hiroi; J, Kajitani; O, Miura; Y, Mizuguchi
2014-05-01
We have investigated the crystal structure and superconducting properties of the new layered superconductor NdO1-xFxBiS2. Bulk superconductivity with a Tc above 4.5 K was observed. It was found that the Tc depended on both F concentration and crystal structure. Uniaxial compression along the c axis upon F substitution seemed to be linked with the appearance of bulk superconductivity. Furthermore, we considered that a higher Tc can be achieved when the c/a parameter was optimized in the NdO1-xFxBiS2 system.
Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa
NASA Astrophysics Data System (ADS)
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.
2017-06-01
Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the particles results in the decreasing compressibility at the onset of electron excitation and ionization. In the P-ρ -T contour with the experiments and the calculations, our multiple compression states from insulating to semiconducting fluid (from transparent to opaque fluid) are illustrated. Our results give an elaborate validation of EOS models and have applications for planetary and stellar opaque atmospheres.
Hydrostatic compression of Fe(1-x)O wuestite
NASA Technical Reports Server (NTRS)
Jeanloz, R.; Sato-Sorensen, Y.
1986-01-01
Hydrostatic compression measurements on Fe(0.95)O wuestite up to 12 GPa yield a room temperature value for the isothermal bulk modulus of K(ot) = 157 (+ or - 10) GPa at zero pressure. This result is in accord with previous hydrostatic and nonhydrostatic measurements of K(ot) for wuestites of composition: 0.89 = Fe/O 0.95. Dynamic measurements of the bulk modulus by ultrasonic, shock-wave and neutron-scattering experiments tend to yield a larger value: K(ot) approximately 180 GPa. The discrepancy between static and dynamic values cannot be explained by the variation of K(ot) with composition, as has been proposed. This conclusion is based on high-precision compression data and on theoretical models of the effects of defects on elastic constants. Barring serious errors in the published measurements, the available data suggest that wuestite exhibits a volume relaxation under pressure.
The compression mechanism of garnets based on in situ observations
NASA Astrophysics Data System (ADS)
Dymshits, Anna; Sharygin, Igor; Litasov, Konstantin; Shatskiy, Anton
2014-05-01
Previously it was showed that the bulk modulus of garnet is strongly affected by the bulk modulus of the dodecahedra, while compressibility of other individual polyhedra displays no correlation with the compressibility of the structure as a whole (Milman et al., 2001). If so, Na-majorite (Na-maj) would have the smallest bulk modulus of all silicate garnets, as a phase with a predicted dodecahedral bulk modulus of approximately 70 GPa (Hazen et al., 1994). In fact Na-maj has the largest bulk modulus among the silicate garnets. This behavior must reflect the all-mineral framework of Na-maj with very small cell volume and silicon in the octahedral position. Thus, we conclude that not only the dodecahedral sites, but also the behavior of the garnet framework and relative sizes of the 8- and 6-coordinated cations, control garnet compression. The octahedral site in Na-maj is quite small (1.79 Å) and contains only silicon in comparison to the pyrope (1.85 Å) or majorite (1.88 Å). The small and highly charged octahedra shares four edges with the dodecahedra and thus restrict the volume of the large and low charged dodecahedra. In spite Na-maj has a large average X-cation radius (RNa = 1.07 Å) its dodecahedral volume is relatively small (V = 21.23 and 21.26 Å3). Pacalo et al. (1992) suggested that XO8 polyhedra act as braces and controls the amount of rotation between tetrahedra and octahedra within the corner-linked chains. In case of pyrope XO8 cite is not filled up and polyhedra within the corner-linked chains can rotate freely to accommodate applied stress. In case of Na-maj the dodecahedral site is filled up and rotational freedom is minimized. The dodecahedral site in knorringite (Knr) contains cation with a small radius (Mg-O = 2.22 and 2.34 Å), so XO8 polyhedra is not filled up and can rotate freely to accommodate applied stress. In case of uvarovite not only octahedral but the dodecahedral site is also large (Ca-O = 2.35 and 2.51 Å), so the rotational freedom is minimized and such relations between the XO8 and YO6 sites provide evidence for comparatively more rigid structure. In case of uvarovite the bulk modulus is 162 GPa (Leger et al., 1990), while for Knr we obtain 154 GPa. Such relations between the XO8 and YO6 sites provide evidence for comparatively more rigid structure. As a result, Na-maj with all octahedral sites occupied by silicon has the largest value of the bulk modulus among garnets. It would be interesting to study compressibility of Li-majorite expressed by Yang et al. (2009). That phase has smaller cell volume (1430 Å3) and X-O distance (2.26 Å) but the same YO6 polyhedra fully occupied by silicon. The study was supported by Ministry of Education and Science of Russian Federation, project Nos 14.B25.31.0032, MK-265.2014.5, Russian Foundation for Basic Research No 14-05-00957-a. Hazen, R.M., Downs, R.T., Conrad, P.G., Finger, L.W., Gasparik, T. Comparative compressibilities of majorite-type garnets // Physics and Chemistry of Minerals, 1994, v.21, p.344-349. Leger, J., Redon, A., Chateau, C. Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa // Physics and Chemistry of Minerals, 1990, v.17, p.161-167. Milman, V., Akhmatskaya, E., Nobes, R., Winkler, B., Pickard, C., White, J. Systematic ab initio study of the compressibility of silicate garnets // Acta Crystallographica Section B: Structural Science, 2001, v.57, p.163-177. Yang, H., Konzett, J., Frost, D.J., Downs, R.T. X-ray diffraction and Raman spectroscopic study of clinopyroxenes with six-coordinated Si in the Na(Mg0.5Si0.5)Si2O6-NaAlSi2O6 system // American Mineralogist, 2009, v.94, p.942-949.
Xylan from corn cobs, a promising polymer for drug delivery: production and characterization.
Oliveira, Elquio Eleamen; Silva, Acarília Eduardo; Júnior, Toshiyuki Nagashima; Gomes, Monique Christine Salgado; Aguiar, Larissa Muratori; Marcelino, Henrique Rodrigues; Araújo, Ivonete Batista; Bayer, Marc P; Ricardo, Nágila M P S; Oliveira, Anselmo Gomes; Egito, Eryvaldo Sócrates Tabosa
2010-07-01
Although many authors have reported several beneficial effects ascribed to xylan, such as inhibitory action on mutagenicity activity, antiphlogistic effects, and mitogenic and comitogenic activities, few papers have investigated a systematic study on the technological properties of this polymer. The aim of the present work was to evaluate xylan as a promise raw material for the pharmaceutical industry. The water-insoluble xylan samples were extracted from corn cobs following several steps. The obtained powered sample was analyzed by infrared and RMN spectroscopy, and characterized regarding their particle size, bulk and tap densities, compressibility index, compactability, Hausner ratio, and angle of repose. According to the results, infrared and RMN spectroscopy were shown to be able to evaluate the xylan structural conformation and composition, respectively. In addition, rheological data demonstrated that xylan powder obtained from corn cobs may be characterized as a material with low density and very cohesive flow properties. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Measurements of the Shock Release Of Quartz and Paralyene-N
NASA Astrophysics Data System (ADS)
Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim
2017-06-01
The shock and release properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies single shock or multiple shock conditions. The challenge with measuring release properties is unlike shocks which have a single interface from which to measure the properties, the release establishes gradients in the sample. The streaked x-ray imaging capability of the NIKE laser allow the interface between quartz and CH to be measured during the release, giving measurements of the interface velocity and CH density. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography Work supported by DOE/NNSA.
NASA Astrophysics Data System (ADS)
Ozbay, N.; Yargic, A. S.
2017-02-01
Carbon foam is sponge like carbonaceous material with low density, high conductivity and high strength; which is used in various applications such as catalyst supports, membrane separations, high thermally conductive heat sinks, energy absorption materials, high temperature thermal insulation. Coal or fossil oils are conventionally used to fabricate pitch, phenolic resin and polyurethane as carbon foam precursor. Biomass liquefaction is a developing technique to convert biomass resources into the industrial chemicals. In this study, oak tree bark was liquefied under mild conditions with different mass ratio of biomass/phenol; and the liquefaction product was used as polyol to produce porous resin foams. Obtained resin foams were carbonized at 400 °C, and then activated at 800 °C under nitrogen atmosphere. Structure evaluation of resin foams, carbonized foams and activated carbon foams from liquefied oak tree bark was investigated by using elemental analysis, x-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, bulk density and compressive strength tests.
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
Determination of asteroid bulk density is an important aspect of NEO characterization, yet difficult to measure. As a fraction of meteoroids originate from asteroids (including some NEOs), a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs in lieu of mutual perturbations, satellite, or expensive spacecraft missions. NASA's Meteoroid Environment Office characterizes the meteoroid environment for the purpose of spacecraft risk and operations. To accurately determine the risk, a distribution of meteoroid bulk densities are needed. This is not trivial to determine. If the particle survives to the ground the bulk density can be directly measured, however only the most dense particles land on the Earth. The next best approach is to model the meteor's ablation, which is not straightforward. Clear deceleration is necessary to do this and there are discrepancies in results between models. One approach to a distribution of bulk density is to use a measured proxy for the densities, then calibrate the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, K(sub B), thought to indicate the strength of a meteoroid. KB is frequented cited as a good proxy for meteoroid densities, but we find it is poorly correlated with density. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter, T(sub J), with meteoroids from Halley Type comets (T(sub J less than 2 ) exhibiting much lower densities than those originating from Jupiter and asteroids (T(sub J greater than 2).
Chen, Li-Jin; Wang, Yueh-Jan; Tseng, Guo-Fang
2017-10-24
Trauma and tumor compressing the brain distort underlying cortical neurons. Compressed cortical neurons remodel their dendrites instantly. The effects on axons however remain unclear. Using a rat epidural bead implantation model, we studied the effects of unilateral somatosensory cortical compression on its transcallosal projection and the reversibility of the changes following decompression. Compression reduced the density, branching profuseness and boutons of the projection axons in the contralateral homotopic cortex 1week and 1month post-compression. Projection fiber density was higher 1-month than 1-week post-compression, suggesting adaptive temporal changes. Compression reduced contralateral cortical synaptophysin, vesicular glutamate transporter 1 (VGLUT1) and postsynaptic density protein-95 (PSD95) expressions in a week and the first two marker proteins further by 1month. βIII-tubulin and kinesin light chain (KLC) expressions in the corpus callosum (CC) where transcallosal axons traveled were also decreased. Kinesin heavy chain (KHC) level in CC was temporarily increased 1week after compression. Decompression increased transcallosal axon density and branching profuseness to higher than sham while bouton density returned to sham levels. This was accompanied by restoration of synaptophysin, VGLUT1 and PSD95 expressions in the contralateral cortex of the 1-week, but not the 1-month, compression rats. Decompression restored βIII-tubulin, but not KLC and KHC expressions in CC. However, KLC and KHC expressions in the cell bodies of the layer II/III pyramidal neurons partially recovered. Our results show cerebral compression compromised cortical axonal outputs and reduced transcallosal projection. Some of these changes did not recover in long-term decompression. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Nonlinear fractional waves at elastic interfaces
NASA Astrophysics Data System (ADS)
Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.
2017-11-01
We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
46 CFR 153.8 - Procedures for requesting an endorsed Certificate of Inspection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... endorsed Certificate of Inspection that § 153.900 requires for a ship to carry a cargo listed in Table 1... Inspection. 153.8 Section 153.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS...
46 CFR 153.520 - Special requirements for carbon disulfide.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for carbon disulfide. 153.520 Section 153.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.520 Special...
46 CFR 153.520 - Special requirements for carbon disulfide.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for carbon disulfide. 153.520 Section 153.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.520 Special...
46 CFR 153.520 - Special requirements for carbon disulfide.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for carbon disulfide. 153.520 Section 153.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.520 Special...
46 CFR 153.602 - Special requirements for cargoes reactive with water.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for cargoes reactive with water. 153.602 Section 153.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements §...
46 CFR 153.602 - Special requirements for cargoes reactive with water.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for cargoes reactive with water. 153.602 Section 153.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements §...
46 CFR 153.1000 - Special operating requirements for cargoes reactive with water.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Special operating requirements for cargoes reactive with water. 153.1000 Section 153.1000 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures §...
46 CFR 153.1000 - Special operating requirements for cargoes reactive with water.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Special operating requirements for cargoes reactive with water. 153.1000 Section 153.1000 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures §...
Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Xinguo; Duffy, Thomas S.; Ehm, Lars
2015-11-16
The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K 0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K 0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS)more » of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. In conclusion, the internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au.« less
Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading.
Hong, Xinguo; Duffy, Thomas S; Ehm, Lars; Weidner, Donald J
2015-12-09
The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au.
The Compressive Failure of Aluminum Nitride Considered as a Model Advanced Ceramic
2012-06-01
and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Materialia 52 (2), 355–367. Xia, Q., Xia, H., Ruoff, A.L., 1993...Orphal et al., 1996) both as a standalone material and as part of ceramic composites (particularly with SiC ). Much of the literature on bulk...compression experiments. Tungsten carbide platens jacketed by the Ti-6Al-4V titanium alloy were used to protect the loading surfaces of the testing
Pressure-induced transition in the grain boundary of diamond
NASA Astrophysics Data System (ADS)
Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.
2017-12-01
Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature Communications, DOI: 10.1038/ncomms4666, 2014
Ghazvini, Saba; Kalonia, Cavan; Volkin, David B; Dhar, Prajnaparamita
2016-05-01
Mechanical agitation of monoclonal antibody (mAb) solutions often leads to protein particle formation. In this study, various formulations of an immunoglobulin G (IgG) 1 mAb were subjected to different controlled interfacial stresses using a Langmuir trough, and protein particles formed at the interface and measured in bulk solution were characterized using atomic force microscopy and flow digital imaging. Results were compared to mAb solutions agitated in glass vials and unstressed controls. At lower pH, mAb solutions exhibited larger hysteresis in their surface pressure versus area isotherms and increased number of particles in bulk solution, when subjected to interfacial stresses. mAb samples subjected to 750-1000 interfacial compression-expansion cycles in 6 h contained high particle numbers in bulk solution, and displayed similar particulation trends when agitated in vials. At compression rates of 50 cycles in 6 h, however, particle levels in mAb solutions were comparable to unstressed controls, despite protein aggregates being present at the air-solution interface. These results suggest that while the air-solution interface serves as a nucleation site for initiating protein aggregation, the number of protein particles measured in bulk mAb solutions depends on the total number of compression cycles that proteins at the air-solution interface are subjected to within a fixed time. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Sample sizes to control error estimates in determining soil bulk density in California forest soils
Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber
2016-01-01
Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2014 CFR
2014-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2011 CFR
2011-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
NASA Astrophysics Data System (ADS)
Torii, S.; Yuasa, K.
2004-10-01
Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in; Sekar Iyengar, A. N.
It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leadsmore » to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.« less
Development of modified-release tablets of zolpidem tartrate by biphasic quick/slow delivery system.
Mahapatra, Anjan Kumar; Sameeraja, N H; Murthy, P N
2015-06-01
Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium starch glycolate acts as a superdisintegrant in immediate-release part and hydroxypropyl methyl cellulose as a release retarding agent in extended-release core. Tablets were prepared by direct compression. Both the core and the coat contained the drug. The pre-compression blends were evaluated for angle of repose, bulk density, and compressibility index. The tablets were evaluated for thickness, hardness, weight variation test, friability, and in vitro release studies. No interaction was observed between zolpidem tartrate and excipients from the Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. The results of all the formulations prepared were compared with reference product Stilnoct®. Optimized formulations showed release patterns that match the United States Pharmacopeia (USP) guidelines for zolpidem tartrate extended-release tablets. The mechanism of drug release was studied using different mathematical models, and the optimized formulation has shown Fickian diffusion. Accelerated stability studies were performed on the optimized formulation.
NASA Astrophysics Data System (ADS)
Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai
2017-10-01
A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.
Jingxin Wang; Chris B. LeDoux; Pam Edwards
2007-01-01
A harvesting system consisting of chainsaw felling and cable skidder extraction was studied to determine soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge preharvest and postharvest systematically across the harvest site, on transects across skid trails, and for a subset of skid trail transects...
Numerical analysis of laser-driven reservoir dynamics for shockless loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Mu; Zhang Hongping; Sun Chengwei
2011-05-01
Laser-driven plasma loader for shockless compression provides a new approach to study the rapid compression response of materials not attainable in conventional shock experiments. In this method, the strain rate is varied from {approx}10{sup 6}/s to {approx}10{sup 8}/s, significantly higher than other shockless compression methods. Thus, this loading process is attractive in the research of solid material dynamics and astrophysics. The objective of the current study is to demonstrate the dynamic properties of the jet from the rear surface of the reservoir, and how important parameters such as peak load, rise time, shockless compression depth, and stagnating melt depth inmore » the sample vary with laser intensity, laser pulse length, reservoir thickness, vacuum gap size, and even the sample material. Numerical simulations based on the space-time conservation element and solution element method, together with the bulk ablation model, were used. The dynamics of the reservoir depend on the laser intensity, pulse length, equation of state, as well as the molecular structure of the reservoir. The critical pressure condition at which the reservoir will unload, similar to a gas or weak plasma, is 40-80 GPa before expansion. The momentum distribution bulges downward near the front of the plasma jet, which is an important characteristic that determines shockless compression. The total energy density is the most important parameter, and has great influence on the jet characteristics, and consequently on the shockless compression characteristics. If the reservoir is of a single material irradiated at a given laser condition, the relation of peak load and shockless compression depth is in conflict, and the highest loads correspond to the smallest thickness of sample. The temperature of jet front runs up several electron volts after impacting on the sample, and the heat transfer between the stagnating plasma and the sample is sufficiently significant to induce the melting of the sample surface. However, this diffusion heat wave propagates much more slowly than the stress wave, and has minimal effect on the shockless compression progress at a deeper position.« less
APPARATUS FOR THE DENSIFICATION AND ENERGIZATION OF CHARGED PARTICLES
Post, R.F.; Coensgen, F.H.
1962-12-18
This patent relates to a device for materially increasing the energy and density of a plasma to produce conditions commensurate with the establishment and promotion of controlled thermonuclear reactions. To this end the device employs three successive stages of magnetic compression, each stage having magnetic mirrors to compress a plasma, the mirrors being moveable to transfer the plasma to successive stages for further compression. Accordingly, a plasma introduced to the first stage is increased in density and energy in stepwide fashion by virtue of the magnetic compression in the successive stages such that the plasma upon reaching the last stage is of extremely high energy and density commensurate the plasma particles undergoing thermonuclear reactions. The principal novelty of the device resides in the provision of a unidirectional magnetic field which increases in stepwise fashion in coaxially communicating compression chambers of progressively decreasing lengths and diameters. Pulsed magnetic fields are superimposed upon the undirectional field and are manipulated to establish resultant magnetic compression fields which increase in intensity and progressively move, with respect to time, through the compression chambers in the direction of the smallest one thereof. The resultant field in the last compression chamber is hence of relatively high intensity, and the density and energy of the plasma confined therein are correspondingly high. (AEC)
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Testing and Inspection § 153.809 Procedures for... § 153.808, must proceed as follows: (a) Notify the Officer in Charge, Marine Inspection of the port...
46 CFR 153.12 - IMO Certificates for United States Ships.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false IMO Certificates for United States Ships. 153.12 Section 153.12 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.12 IMO Certificates for United States Ships....
46 CFR 153.976 - Transfer of packaged cargo or ship's stores.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Transfer of packaged cargo or ship's stores. 153.976 Section 153.976 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.976 Transfer of...